Science.gov

Sample records for affecting mrna stability

  1. Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability

    PubMed Central

    Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina

    2016-01-01

    Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication. PMID:27265729

  2. Alkaline decontamination of sputum specimens adversely affects stability of mycobacterial mRNA.

    PubMed Central

    Desjardin, L E; Perkins, M D; Teixeira, L; Cave, M D; Eisenach, K D

    1996-01-01

    Reverse transcriptase PCR (RT-PCR) is an important tool for Mycobacterium tuberculosis research and diagnostics. A standard procedure using N-acetyl-L-cysteine (NALC) and NaOH has been widely adopted for digestion and decontamination of sputum specimens for mycobacterial culture. The objective of this study was to determine the compatibility of this method with the recovery of RNA for RT-PCR assays. Nineteen sputum specimens were collected from smear-positive, pretreatment tuberculosis patients. After homogenization with NALC and glass beads, specimens were further processed by the addition of either NaOH, as per the standard decontamination protocol, or phosphate buffer. RNA was prepared by using a modified guanidine-phenol extraction method developed specifically for sputum sediments. DNA was isolated from the same specimens. Reverse transcriptions of alpha antigen (85B protein) mRNA and 16S rRNA were performed together, and aliquots were removed for separate PCRs. In all specimens, the 85B mRNA target was greatly diminished by treatment with NaOH; however, the 16S rRNA target remained unaffected. Storing sputum specimens for 48 h at 4 degrees C before processing did not seem to affect the integrity or yield of RNA; however, some degradation occurred by 72 h. Data suggest that the NaOH-NALC method for processing sputum samples is not suitable for detecting mRNA targets in RT-PCR assays. PMID:8880495

  3. Amphotericin B severely affects expression and activity of the endothelial constitutive nitric oxide synthase involving altered mRNA stability

    PubMed Central

    Suschek, Christoph Viktor; Bonmann, Eckhard; Kleinert, Hartmut; Wenzel, Michael; Mahotka, Csaba; Kolb, Hubert; Förstermann, Ulrich; Gerharz, Claus-Dieter; Kolb-Bachofen, Victoria

    2000-01-01

    The therapeutic use of the antifungal drug amphotericin B (AmB) is limited due to severe side effects like glomerular vasoconstriction and risk of renal failure during AmB administration. As nitric oxide (NO) has substantial functions in renal autoregulation, we have determined the effects of AmB on endothelial constitutive NO synthase (ecNOS) expression and activity in human and rat endothelial cell cultures.AmB used at concentrations of 0.6 to 1.25 μg ml−1 led to increases in ecNOS mRNA and protein expression as well as NO production. This was the result of an increased ecNOS mRNA half-life. In contrast, incubation of cells with higher albeit subtoxic concentrations of AmB (2.5–5.0 μg ml−1) resulted in a decrease or respectively in completely abolished ecNOS mRNA and protein expression with a strongly reduced or inhibited ecNOS activity, due to a decrease of ecNOS mRNA half-life. None of the AmB concentrations affected promoter activity as found with a reporter gene construct stably transfected into ECV304 cells.Thus, our experiments show a concentration-dependent biphasic effect of AmB on expression and activity of ecNOS, an effect best explained by AmB influencing ecNOS mRNA stability. In view of the known renal accumulation of this drug the results reported here could help to elucidate its renal toxicity. PMID:11015297

  4. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  5. Cross Talk between β1 and αV Integrins: β1 Affects β3 mRNA Stability

    PubMed Central

    Retta, Saverio Francesco; Cassarà, Georgia; D'Amato, Monica; Alessandro, Riccardo; Pellegrino, Maurizio; Degani, Simona; De Leo, Giacomo; Silengo, Lorenzo; Tarone, Guido

    2001-01-01

    There is increasing evidence that a fine-tuned integrin cross talk can generate a high degree of specificity in cell adhesion, suggesting that spatially and temporally coordinated expression and activation of integrins are more important for regulated cell adhesive functions than the intrinsic specificity of individual receptors. However, little is known concerning the molecular mechanisms of integrin cross talk. With the use of β1-null GD25 cells ectopically expressing the β1A integrin subunit, we provide evidence for the existence of a cross talk between β1 and αV integrins that affects the ratio of αVβ3 and αVβ5 integrin cell surface levels. In particular, we demonstrate that a down-regulation of αVβ3 and an up-regulation of αVβ5 occur as a consequence of β1A expression. Moreover, with the use of GD25 cells expressing the integrin isoforms β1B and β1D, as well as two β1 cytoplasmic domain deletion mutants lacking either the entire cytoplasmic domain (β1TR) or only its “variable” region (β1COM), we show that the effects of β1 over αV integrins take place irrespective of the type of β1 isoform, but require the presence of the “common” region of the β1 cytoplasmic domain. In an attempt to establish the regulatory mechanism(s) whereby β1 integrins exert their trans-acting functions, we have found that the down-regulation of αVβ3 is due to a decreased β3 subunit mRNA stability, whereas the up-regulation of αVβ5 is mainly due to translational or posttranslational events. These findings provide the first evidence for an integrin cross talk based on the regulation of mRNA stability. PMID:11598197

  6. Impairment of FOS mRNA stabilization following translation arrest in granulocytes from myelodysplastic syndrome patients.

    PubMed

    Feng, Xiaomin; Shikama, Yayoi; Shichishima, Tsutomu; Noji, Hideyoshi; Ikeda, Kazuhiko; Ogawa, Kazuei; Kimura, Hideo; Takeishi, Yasuchika; Kimura, Junko

    2013-01-01

    Although quantitative and qualitative granulocyte defects have been described in myelodysplastic syndromes (MDS), the underlying molecular basis of granulocyte dysfunction in MDS is largely unknown. We recently found that FOS mRNA elevation under translation-inhibiting stimuli was significantly smaller in granulocytes from MDS patients than in healthy individuals. The aim of this study is to clarify the cause of the impaired FOS induction in MDS. We first examined the mechanisms of FOS mRNA elevation using granulocytes from healthy donors cultured with the translation inhibitor emetine. Emetine increased both transcription and mRNA stability of FOS. p38 MAPK inhibition abolished the emetine-induced increase of FOS transcription but did not affect FOS mRNA stabilization. The binding of an AU-rich element (ARE)-binding protein HuR to FOS mRNA containing an ARE in 3'UTR was increased by emetine, and the knockdown of HuR reduced the FOS mRNA stabilizing effect of emetine. We next compared the emetine-induced transcription and mRNA stabilization of FOS between MDS patients and healthy controls. Increased rates of FOS transcription by emetine were similar in MDS and controls. In the absence of emetine, FOS mRNA decayed to nearly 17% of initial levels in 45 min in both groups. In the presence of emetine, however, 76.7±19.8% of FOS mRNA remained after 45 min in healthy controls, versus 37.9±25.5% in MDS (P<0.01). To our knowledge, this is the first report demonstrating attenuation of stress-induced FOS mRNA stabilization in MDS granulocytes.

  7. Fragile X mental retardation protein control of neuronal mRNA metabolism: Insights into mRNA stability.

    PubMed

    De Rubeis, Silvia; Bagni, Claudia

    2010-01-01

    The fragile X mental retardation protein (FMRP) is an RNA binding protein that has an essential role in neurons. From the soma to the synapse, FMRP is associated with a specific subset of messenger RNAs and controls their posttranscriptional fates, i.e., dendritic localization and local translation. Because FMRP target mRNAs encode important neuronal proteins, the deregulation of their expression in the absence of FMRP leads to a strong impairment of synaptic function. Here, we review emerging evidence indicating a critical role for FMRP in the control of mRNA stability. To date, two mRNAs have been identified as being regulated in this manner: PSD-95 mRNA, encoding a scaffolding protein, and Nxf1 mRNA, encoding a general export factor. Moreover, expression studies suggest that the turnover of other neuronal mRNAs, including those encoding for the GABA(A) receptors subunits, could be affected by the loss of FMRP. According to the specific target and/or cellular context, FMRP could influence mRNA stability in the brain.

  8. Effect of ribosome shielding on mRNA stability

    NASA Astrophysics Data System (ADS)

    Deneke, Carlus; Lipowsky, Reinhard; Valleriani, Angelo

    2013-08-01

    Based on the experimental evidence that translating ribosomes stabilize the mRNAs, we introduce and study a theoretical model for the dynamic shielding of mRNA by ribosomes. We present an improved fitting of published decay assay data in E. coli and show that only one third of the decay patterns are exponential. Our new transcriptome-wide estimate of the average lifetimes and mRNA half-lives shows that these timescales are considerably shorter than previous estimates. We also explain why there is a negative correlation between mRNA length and average lifetime when the mRNAs are subdivided in classes sharing the same degradation parameters. As a by-product, our model indicates that co-transcriptional translation in E. coli may be less common than previously believed.

  9. Poly(rC) binding proteins mediate poliovirus mRNA stability.

    PubMed Central

    Murray, K E; Roberts, A W; Barton, D J

    2001-01-01

    The 5'-terminal 88 nt of poliovirus RNA fold into a cloverleaf RNA structure and form ribonucleoprotein complexes with poly(rC) binding proteins (PCBPs; AV Gamarnik, R Andino, RNA, 1997, 3:882-892; TB Parsley, JS Towner, LB Blyn, E Ehrenfeld, BL Semler, RNA, 1997, 3:1124-1134). To determine the functional role of these ribonucleoprotein complexes in poliovirus replication, HeLa S10 translation-replication reactions were used to quantitatively assay poliovirus mRNA stability, poliovirus mRNA translation, and poliovirus negative-strand RNA synthesis. Ribohomopoly(C) RNA competitor rendered wild-type poliovirus mRNA unstable in these reactions. A 5'-terminal 7-methylguanosine cap prevented the degradation of wild-type poliovirus mRNA in the presence of ribohomopoly(C) competitor. Ribohomopoly(A), -(G), and -(U) did not adversely affect poliovirus mRNA stability. Ribohomopoly(C) competitor RNA inhibited the translation of poliovirus mRNA but did not inhibit poliovirus negative-strand RNA synthesis when poliovirus replication proteins were provided in trans using a chimeric helper mRNA possessing the hepatitis C virus IRES. A C24A mutation prevented UV crosslinking of PCBPs to 5' cloverleaf RNA and rendered poliovirus mRNA unstable. A 5'-terminal 7-methylguanosine cap blocked the degradation of C24A mutant poliovirus mRNA. The C24A mutation did not inhibit the translation of poliovirus mRNA nor diminish viral negative-strand RNA synthesis relative to wild-type RNA. These data support the conclusion that poly(rC) binding protein(s) mediate the stability of poliovirus mRNA by binding to the 5'-terminal cloverleaf structure of poliovirus mRNA. Because of the general conservation of 5' cloverleaf RNA sequences among picornaviruses, including C24 in loop b of the cloverleaf, we suggest that viral mRNA stability of polioviruses, coxsackieviruses, echoviruses, and rhinoviruses is mediated by interactions between PCBPs and 5' cloverleaf RNA. PMID:11497431

  10. Sustained stabilization of Interleukin-8 mRNA in human macrophages

    PubMed Central

    Mahmoud, Linah; Al-Enezi, Fatma; Al-Saif, Maher; Warsy, Arjumand; Khabar, Khalid SA; Hitti, Edward G

    2014-01-01

    The mRNAs of most inflammatory mediators are short-lived due to AU-rich elements (AREs) in their 3′-untranslated regions. AREs ensure a low basal level of expression during homeostasis and a transient nature of expression during the inflammatory response. Here, we report that the mRNA of the pro-inflammatory chemokine IL-8, which contains an archetypal ARE, is unexpectedly constitutively abundant and highly stable in primary human monocytes and macrophages. Using the pre-monocyte-like THP-1 cell line that can differentiate into macrophage-like cells, we show that a low level of unstable IL-8 mRNA in undifferentiated cells (half-life < 30 min) becomes constitutively elevated and the mRNA is dramatically stabilized in differentiated THP-1 cells with a half-life of more than 15 h similar to primary monocytes and macrophages. In contrast, the level and stability of TNF-α mRNA also containing an ARE is only slightly affected by differentiation; it remains low and unstable in primary macrophages and differentiated THP-1 cells with an estimated half-life of less than 20 min. This differentiation-dependent stabilization of IL-8 mRNA is p38 MAPK-independent and is probably coupled with reduced protein translation. Reporter assays in THP-1 cells suggest that the ARE alone is not sufficient for the constitutive stabilization in macrophage-like cells and imply an effect of the natural biogenesis of the transcript on the stabilization of the mature form. We present a novel, cell type-dependent sustained stabilization of an ARE-containing mRNA with similarities to situations found in disease. PMID:24525793

  11. Supersonic Wave Interference Affecting Stability

    NASA Technical Reports Server (NTRS)

    Love, Eugene S.

    1958-01-01

    Some of the significant interference fields that may affect stability of aircraft at supersonic speeds are briefly summarized. Illustrations and calculations are presented to indicate the importance of interference fields created by wings, bodies, wing-body combinations, jets, and nacelles.

  12. Expression and stability of c-sis mRNA in human glioblastoma cells

    SciTech Connect

    Press, R.D.; Samols, D.; Goldthwait, D.A.

    1988-07-26

    The production of platelet-derived growth factor like (PDGF-like) material by glioblastomas may be involved in the conversion of normal cells to tumor cells. In an investigation of this problem, the authors have examined some of the properties of the platelet-derived growth factor B-chain mRNA (c-sis mRNA) by a sensitive and quantitative RNA-RNA solution hybridization method. In 5 out of 8 human glioblastoma cell lines, c-sis mRNA was present, and in the line with the highest level, there were approximately 4-10 molecules per cell. The half-lives of the c-sis mRNA in two glioblastoma cell lines were 2.6 and 3.4 h, while in human umbilical vein endothelial (HUVE) and bladder carcinoma (T24) cells they were 1.6 and 2.5 h, respectively. Inhibiting protein synthesis produced no significant alteration of the c-sis mRNA half-lives in the glioblastoma or HUVE cells. The A-U-rich sequence at the 3' end of the c-sis mRNA therefore does not appear to affect the mRNA stability in the presence of cycloheximide as it does in other transcripts. The similarity of the c-sis mRNA half-lives in normal and tumor cells suggests that regulation of stability of c-sis mRNA is not a major factor in tumorigenesis in the glioblastoma cell lines examined.

  13. Hypoxia and Hypoglycemia Synergistically Regulate mRNA Stability.

    PubMed

    Carraway, Kristen R; Johnson, Ellen M; Kauffmann, Travis C; Fry, Nate J; Mansfield, Kyle D

    2017-03-31

    Ischemic events, common in many diseases, result from decreased blood flow and impaired delivery of oxygen and glucose to tissues of the body. While much is known about the cellular transcriptional response to ischemia, much less is known about the posttranscriptional response to oxygen and glucose deprivation. The goal of this project was to investigate one such posttranscriptional response, the regulation of mRNA stability. To that end, we have identified a number of novel ischemia-related mRNAs that are synergistically stabilized by oxygen and glucose deprivation including VEGF, MYC, MDM2, and CYR61. This increase in mRNA half-life requires the synergistic effects of both low oxygen (1%) as well as low glucose (≤1 g/L) conditions. Oxygen or glucose deprivation alone fails to initiate the response, as exposure to either high glucose (4 g/L) or normoxic conditions inhibits the response. Furthermore, in response to hypoxia/hypoglycemia, the identified mRNAs are released from the RNA binding protein KHSRP which likely contributes to their stabilization.

  14. Cyclin-Dependent Kinase 7 Controls mRNA Synthesis by Affecting Stability of Preinitiation Complexes, Leading to Altered Gene Expression, Cell Cycle Progression, and Survival of Tumor Cells

    PubMed Central

    Kelso, Timothy W. R.; Baumgart, Karen; Eickhoff, Jan; Albert, Thomas; Antrecht, Claudia; Lemcke, Sarah; Klebl, Bert

    2014-01-01

    Cyclin-dependent kinase 7 (CDK7) activates cell cycle CDKs and is a member of the general transcription factor TFIIH. Although there is substantial evidence for an active role of CDK7 in mRNA synthesis and associated processes, the degree of its influence on global and gene-specific transcription in mammalian species is unclear. In the current study, we utilize two novel inhibitors with high specificity for CDK7 to demonstrate a restricted but robust impact of CDK7 on gene transcription in vivo and in in vitro-reconstituted reactions. We distinguish between relative low- and high-dose responses and relate them to distinct molecular mechanisms and altered physiological responses. Low inhibitor doses cause rapid clearance of paused RNA polymerase II (RNAPII) molecules and sufficed to cause genome-wide alterations in gene expression, delays in cell cycle progression at both the G1/S and G2/M checkpoints, and diminished survival of human tumor cells. Higher doses and prolonged inhibition led to strong reductions in RNAPII carboxyl-terminal domain (CTD) phosphorylation, eventual activation of the p53 program, and increased cell death. Together, our data reason for a quantitative contribution of CDK7 to mRNA synthesis, which is critical for cellular homeostasis. PMID:25047832

  15. Posttranscriptional regulation of GAP-43 gene expression in PC12 cells through protein kinase C-dependent stabilization of the mRNA

    PubMed Central

    1993-01-01

    We have previously shown that nerve growth factor (NGF) selectively stabilizes the GAP-43 mRNA in PC12 cells. To study the cellular mechanisms for this post-transcriptional control and to determine the contribution of mRNA stability to GAP-43 gene expression, we examined the effects of several agents that affect PC12 cell differentiation on the level of induction and rate of degradation of the GAP-43 mRNA. The NGF-mediated increase in GAP-43 mRNA levels and neurite outgrowth was mimicked by the phorbol ester TPA, but not by dibutyryl cAMP or the calcium ionophore A12783. Downregulation of protein kinase C (PKC) by high doses of phorbol esters or selective PKC inhibitors prevented the induction of this mRNA by NGF, suggesting that NGF and TPA act through a common PKC-dependent pathway. In mRNA decay studies, phorbol esters caused a selective 6-fold increase in the half-life of the GAP-43 mRNA, which accounts for most of the induction of this mRNA by TPA. The phorbol ester-induced stabilization of GAP-43 mRNA was blocked by the protein kinase inhibitor polymyxin B and was partially inhibited by dexamethasone, an agent that blocks GAP-43 expression and neuronal differentiation in PC12 cells. In contrast, the rates of degradation and the levels of the GAP-43 mRNA in control and TPA-treated cells were not affected by cycloheximide treatment. Thus, changes in GAP-43 mRNA turnover do not appear to require continuous protein synthesis. In conclusion, these data suggest that PKC activity regulates the levels of the GAP-43 mRNA in PC12 cells through a novel, translation- independent mRNA stabilization mechanism. PMID:8436593

  16. Salt stress affects mRNA editing in soybean chloroplasts.

    PubMed

    Rodrigues, Nureyev F; Fonseca, Guilherme C da; Kulcheski, Franceli R; Margis, Rogério

    2017-03-02

    Soybean, a crop known by its economic and nutritional importance, has been the subject of several studies that assess the impact and the effective plant responses to abiotic stresses. Salt stress is one of the main environmental stresses and negatively impacts crop growth and yield. In this work, the RNA editing process in the chloroplast of soybean plants was evaluated in response to a salt stress. Bioinformatics approach using sRNA and mRNA libraries were employed to detect specific sites showing differences in editing efficiency. RT-qPCR was used to measure editing efficiency at selected sites. We observed that transcripts of NDHA, NDHB, RPS14 and RPS16 genes presented differences in coverage and editing rates between control and salt-treated libraries. RT-qPCR assays demonstrated an increase in editing efficiency of selected genes. The salt stress enhanced the RNA editing process in transcripts, indicating responses to components of the electron transfer chain, photosystem and translation complexes. These increases can be a response to keep the homeostasis of chloroplast protein functions in response to salt stress.

  17. Osteoblastic alkaline phosphatase mRNA is stabilized by binding to vimentin intermediary filaments.

    PubMed

    Schmidt, Yvonne; Biniossek, Martin; Stark, G Björn; Finkenzeller, Günter; Simunovic, Filip

    2015-03-01

    Vascularization is essential in bone tissue engineering and recent research has focused on interactions between osteoblasts (hOBs) and endothelial cells (ECs). It was shown that cocultivation increases the stability of osteoblastic alkaline phosphatase (ALP) mRNA. We investigated the mechanisms behind this observation, focusing on mRNA binding proteins. Using a luciferase reporter assay, we found that the 3'-untranslated region (UTR) of ALP mRNA is necessary for human umbilical vein endothelial cells (HUVEC)-mediated stabilization of osteoblastic ALP mRNA. Using pulldown experiments and nanoflow-HPLC mass spectrometry, vimentin was identified to bind to the 3'-UTR of ALP mRNA. Validation was performed by Western blotting. Functional experiments inhibiting intermediate filaments with iminodipropionitrile and specific inhibition of vimentin by siRNA transfection showed reduced levels of ALP mRNA and protein. Therefore, ALP mRNA binds to and is stabilized by vimentin. This data add to the understanding of intracellular trafficking of ALP mRNA, its function, and have possible implications in tissue engineering applications.

  18. qPCR based mRNA quality score show intact mRNA after heat stabilization

    PubMed Central

    Karlsson, Oskar; Segerström, Lova; Sjöback, Robert; Nylander, Ingrid; Borén, Mats

    2016-01-01

    Analysis of multiple analytes from biological samples can be challenging as different analytes require different preservation measures. Heat induced enzymatic inactivation is an efficient way to preserve proteins and their modifications in biological samples but RNA quality, as measured by RIN value, has been a concern in such samples. Here, we investigate the effect of heat stabilization compared with standard snap freezing on RNA quality using two RNA extraction protocols, QiaZol with and without urea pre-solubilization, and two RNA quality measurements: RIN value, as defined by the Agilent Bioanalyzer, and an alternative qPCR based method. DNA extraction from heat stabilized brain samples was also examined. The snap frozen samples had RIN values about 1 unit higher than heat stabilized samples for the direct QiaZol extraction but equal with stabilized samples using urea pre-solubilization. qPCR based RNA quality measurement showed no difference in quality between snap frozen and heat inactivated samples. The probable explanation for this discrepancy is that the RIN value is an indirect measure based on rRNA, while the qPCR score is based on actual measurement of mRNA quality. The DNA yield from heat stabilized brain tissue samples was significantly increased, compared to the snap frozen tissue, without any effects on purity or quality. Hence, heat stabilization of tissues opens up the possibility for a two step preservation protocol, where proteins and their modifications can be preserved in the first heat based step, while in a second step, using standard RNA preservation strategies, mRNA be preserved. This collection strategy will enable biobanking of samples where the ultimate analysis is not determined without loss of sample quality. PMID:27077049

  19. HDAC3 regulates stability of estrogen receptor α mRNA

    SciTech Connect

    Oie, Shohei; Matsuzaki, Kazuya; Yokoyama, Wataru; Murayama, Akiko; Yanagisawa, Junn

    2013-03-08

    Highlights: ► HDAC inhibitors decrease the stability of ERα mRNA in MCF-7 cells. ► HDAC3 is involved in maintaining ERα mRNA stability in MCF-7 cells. ► ERα mRNA instability by knockdown of HDAC3 reduces the estrogen-dependent proliferation of ERα-positive MCF-7 cells. ► HDAC3 specific inhibitor will be one of new drugs for ERα-positive breast cancers. -- Abstract: Estrogen receptor alpha (ERα) expression is a risk factor for breast cancer. HDAC inhibitors have been demonstrated to down-regulate ERα expression in ERα-positive breast cancer cell lines, but the molecular mechanisms are poorly understood. Here, we showed that HDAC inhibitors decrease the stability of ERα mRNA, and that knockdown of HDAC3 decreases the stability of ERα mRNA and suppresses estrogen-dependent proliferation of ERα-positive MCF-7 breast cancer cells. In the Oncomine database, expression levels of HDAC3 in ERα-positive tumors are higher than those in ERα-negative tumors, thus suggesting that HDAC3 is necessary for ERα mRNA stability, and is involved in the estrogen-dependent proliferation of ERα-positive tumors.

  20. Respiratory Deficiency Mediates the Regulation of CHO1-encoded Phosphatidylserine Synthase by mRNA Stability in Saccharomyces cerevisiae*

    PubMed Central

    Choi, Hyeon-Son; Carman, George M.

    2007-01-01

    The CHO1-encoded phosphatidylserine synthase (CDP-diacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) is one of the most highly regulated phospholipid biosynthetic enzymes in the yeast Saccharomyces cerevisiae. CHO1 expression is regulated by nutrient availability through a regulatory circuit involving a UASINO cis-acting element in the CHO1 promoter, the positive transcription factors Ino2p and Ino4p, and the transcriptional repressor Opi1p. In this work, we examined the posttranscriptional regulation of CHO1 by mRNA stability. CHO1 mRNA was stabilized in mutants defective in deadenylation (ccr4Δ), mRNA decapping (dcp1), and the 5’-3’ exonuclease (xrn1) indicating that the CHO1 transcript is primarily degraded through the general 5’-3’ mRNA decay pathway. In respiratory sufficient cells, the CHO1 transcript was moderately stable with a half-life of 12 min. However, the CHO1 transcript was stabilized to a half-life of greater than 45 min in respiratory deficient (rho− and rho°) cells, the cox4Δ mutant defective in the cytochrome c oxidase, and wild type cells treated with KCN (a cytochorome c oxidase inhibitor). The increased CHO1 mRNA stability in response to respiratory deficiency caused increases in CHO1 mRNA abundance, phosphatidylserine synthase protein and activity, and the synthesis of phosphatidylserine in vivo. Respiratory deficiency also caused increases in the activities of CDP-diacylglycerol synthase, phosphatidylserine decarboxylase, and the phospholipid methyltransferases. Phosphatidylinositol synthase and choline kinase activities were not affected by respiratory deficiency. This work advances our understanding of phosphatidylserine synthase regulation and underscores the importance of mitochondrial respiration to the regulation of phospholipid synthesis in S. cerevisiae. PMID:17761681

  1. An mRNA decapping mutant deficient in P body assembly limits mRNA stabilization in response to osmotic stress

    PubMed Central

    Huch, Susanne; Nissan, Tracy

    2017-01-01

    Yeast is exposed to changing environmental conditions and must adapt its genetic program to provide a homeostatic intracellular environment. An important stress for yeast in the wild is high osmolarity. A key response to this stress is increased mRNA stability primarily by the inhibition of deadenylation. We previously demonstrated that mutations in decapping activators (edc3∆ lsm4∆C), which result in defects in P body assembly, can destabilize mRNA under unstressed conditions. We wished to examine whether mRNA would be destabilized in the edc3∆ lsm4∆C mutant as compared to the wild-type in response to osmotic stress, when P bodies are intense and numerous. Our results show that the edc3∆ lsm4∆C mutant limits the mRNA stability in response to osmotic stress, while the magnitude of stabilization was similar as compared to the wild-type. The reduced mRNA stability in the edc3∆ lsm4∆C mutant was correlated with a shorter PGK1 poly(A) tail. Similarly, the MFA2 mRNA was more rapidly deadenylated as well as significantly stabilized in the ccr4∆ deadenylation mutant in the edc3∆ lsm4∆C background. These results suggest a role for these decapping factors in stabilizing mRNA and may implicate P bodies as sites of reduced mRNA degradation. PMID:28290514

  2. Occlusion of the Ribosome Binding Site Connects the Translational Initiation Frequency, mRNA Stability and Premature Transcription Termination

    PubMed Central

    Eriksen, Mette; Sneppen, Kim; Pedersen, Steen; Mitarai, Namiko

    2017-01-01

    Protein production is controlled by ribosome binding to the messenger RNA (mRNA), quantified in part by the binding affinity between the ribosome and the ribosome binding sequence on the mRNA. Using the E. coli lac operon as model, Ringquist et al. (1992) found a more than 1,000-fold difference in protein yield when varying the Shine-Dalgarno sequence and its distance to the translation start site. Their proposed model accounted for this large variation by only a variation in the binding affinity and the subsequent initiation rate. Here we demonstrate that the decrease in protein yield with weaker ribosome binding sites in addition is caused by a decreased mRNA stability, and by an increased rate of premature transcription termination. Using different ribosome binding site sequences of the E. coli lacZ gene, we found that an approximately 100-fold span in protein expression could be subdivided into three mechanisms that each affected expression 3- to 6-fold. Our experiments is consistent with a two-step ribosome initiation model, in which occlusion of the initial part of the mRNA by a ribosome simultaneously protects the mRNA from both premature transcription termination and degradation: The premature termination we suggest is coupled to the absence of occlusion that allows binding of transcription termination factor, possibly Rho. The mRNA stability is explained by occlusion that prevents binding of the degrading enzymes. In our proposed scenario, a mRNA with lower translation initiation rate would at the same time be “hit” by an increased premature termination and a shorter life-time. Our model further suggests that the transcription from most if not all natural promoters is substantially influenced by premature termination. PMID:28382022

  3. Control of mRNA stability during development of Dictyostelium discoideum.

    PubMed

    Mangiarotti, G

    1989-01-01

    A large group of mRNA species (which are mainly pre-spore specific) accumulate only after the formation of multicellular aggregates. They are transcribed at a constant rate from the beginning of development and their accumulation is controlled by a 10-20-fold increase in their stability. This mRNA stabilization is dependent upon multicellularity. When aggregates are dispersed, the mRNAs are destabilized; if cells are allowed to reaggregate, the destabilization is reversed. Destabilization is not due to a selective exclusion of mRNA from polyribosomes, but is a primary control event. It does not require synthesis of new RNA or protein, but it may require an interaction between ribosome and the 5'-end of mRNA molecules.

  4. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    SciTech Connect

    Lazarus, Kyren A.; Zhao, Zhe; Knower, Kevin C.; To, Sarah Q.; Chand, Ashwini L.; Clyne, Colin D.

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.

  5. Oestradiol reduces liver receptor homolog-1 mRNA transcript stability in breast cancer cell lines.

    PubMed

    Lazarus, Kyren A; Zhao, Zhe; Knower, Kevin C; To, Sarah Q; Chand, Ashwini L; Clyne, Colin D

    2013-08-30

    The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E2), with LRH-1 mRNA transcript levels higher in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER- cells. However, the presence of LRH-1 protein in ER- cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER- breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER- compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E2, showed increased mRNA stability in ER- versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E2 treatment, this effect mediated by ERα. Our data demonstrates that in ER- cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER- cells as well as ER- tumors suggests a possible role in the development of ER- tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER- and ER+ breast cancer.

  6. The RNA-binding protein HuR regulates DNA methylation through stabilization of DNMT3b mRNA.

    PubMed

    López de Silanes, Isabel; Gorospe, Myriam; Taniguchi, Hiroaki; Abdelmohsen, Kotb; Srikantan, Subramanya; Alaminos, Miguel; Berdasco, María; Urdinguio, Rocío G; Fraga, Mario F; Jacinto, Filipe V; Esteller, Manel

    2009-05-01

    The molecular basis underlying the aberrant DNA-methylation patterns in human cancer is largely unknown. Altered DNA methyltransferase (DNMT) activity is believed to contribute, as DNMT expression levels increase during tumorigenesis. Here, we present evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. The presence of a putative HuR-recognition motif in the DNMT3b 3'UTR prompted studies to investigate if this transcript associated with HuR. The interaction between HuR and DNMT3b mRNA was studied by immunoprecipitation of endogenous HuR ribonucleoprotein complexes followed by RT-qPCR detection of DNMT3b mRNA, and by in vitro pulldown of biotinylated DNMT3b RNAs followed by western blotting detection of HuR. These studies revealed that binding of HuR stabilized the DNMT3b mRNA and increased DNMT3b expression. Unexpectedly, cisplatin treatment triggered the dissociation of the [HuR-DNMT3b mRNA] complex, in turn promoting DNMT3b mRNA decay, decreasing DNMT3b abundance, and lowering the methylation of repeated sequences and global DNA methylation. In summary, our data identify DNMT3b mRNA as a novel HuR target, present evidence that HuR affects DNMT3b expression levels post-transcriptionally, and reveal the functional consequences of the HuR-regulated DNMT3b upon DNA methylation patterns.

  7. Controlling mRNA stability and translation with the CRISPR endoribonuclease Csy4

    PubMed Central

    Borchardt, Erin K.; Vandoros, Leonidas A.; Huang, Michael; Lackey, Patrick E.; Marzluff, William F.; Asokan, Aravind

    2015-01-01

    The bacterial CRISPR endoribonuclease Csy4 has recently been described as a potential RNA processing tool. Csy4 recognizes substrate RNA through a specific 28-nt hairpin sequence and cleaves at the 3′ end of the stem. To further explore applicability in mammalian cells, we introduced this hairpin at various locations in mRNAs derived from reporter transgenes and systematically evaluated the effects of Csy4-mediated processing on transgene expression. Placing the hairpin in the 5′ UTR or immediately after the start codon resulted in efficient degradation of target mRNA by Csy4 and knockdown of transgene expression by 20- to 40-fold. When the hairpin was incorporated in the 3′ UTR prior to the poly(A) signal, the mRNA was cleaved, but only a modest decrease in transgene expression (∼2.5-fold) was observed. In the absence of a poly(A) tail, Csy4 rescued the target mRNA substrate from degradation, resulting in protein expression, which suggests that the cleaved mRNA was successfully translated. In contrast, neither catalytically inactive (H29A) nor binding-deficient (R115A/R119A) Csy4 mutants were able to exert any of the effects described above. Generation of a similar 3′ end by RNase P-mediated cleavage was unable to rescue transgene expression independent of Csy4. These results support the idea that the selective generation of the Csy4/hairpin complex resulting from cleavage of target mRNA might serve as a functional poly(A)/poly(A) binding protein (PABP) surrogate, stabilizing the mRNA and supporting translation. Although the exact mechanism(s) remain to be determined, our studies expand the potential utility of CRISPR nucleases as tools for controlling mRNA stability and translation. PMID:26354771

  8. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies

    PubMed Central

    Patial, Sonika; Curtis, Alan D.; Lai, Wi S.; Stumpo, Deborah J.; Hill, Georgette D.; Flake, Gordon P.; Mannie, Mark D.; Blackshear, Perry J.

    2016-01-01

    Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate–rich elements (AREs) in the 3′-untranslated regions (3′UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3′UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases. PMID:26831084

  9. NOX4 Regulates CCR2 and CCL2 mRNA Stability in Alcoholic Liver Disease

    PubMed Central

    Sasaki, Yu; Dehnad, Ali; Fish, Sarah; Sato, Ai; Jiang, Joy; Tian, Jijing; Schröder, Kathrin; Brandes, Ralf; Török, Natalie J.

    2017-01-01

    Recruitment of inflammatory cells is a major feature of alcoholic liver injury however; the signals and cellular sources regulating this are not well defined. C-C chemokine receptor type 2 (CCR2) is expressed by active hepatic stellate cells (HSC) and is a key monocyte recruitment signal. Activated HSC are also important sources of hydrogen peroxide resulting from the activation of NADPH oxidase 4 (NOX4). As the role of this NOX in early alcoholic liver injury has not been addressed, we studied NOX4-mediated regulation of CCR2/CCL2 mRNA stability. NOX4 mRNA was significantly induced in patients with alcoholic liver injury, and was co-localized with αSMA-expressing activated HSC. We generated HSC-specific NOX4 KO mice and these were pair-fed on alcohol diet. Lipid peroxidation have not changed significantly however, the expression of CCR2, CCL2, Ly6C, TNFα, and IL-6 was significantly reduced in NOX4HSCKO compared to fl/fl mice. NOX4 promoter was induced in HSC by acetaldehyde treatment, and NOX4 has significantly increased mRNA half-life of CCR2 and CCL2 in conjunction with Ser221 phosphorylation and cytoplasmic shuttling of HuR. In conclusion, NOX4 is induced in early alcoholic liver injury and regulates CCR2/CCL2 mRNA stability thereby promoting recruitment of inflammatory cells and production of proinflammatory cytokines. PMID:28383062

  10. Stabilization of a specific nuclear mRNA precursor by thyroid hormone.

    PubMed Central

    Narayan, P; Towle, H C

    1985-01-01

    The regulation of a thyroid hormone-responsive gene in rats, designated spot 14, was explored. The expression of this gene in liver is rapidly (less than 10 min) and markedly (greater than 10-fold) altered by the administration of 3,5,3'-triiodo-L-thyronine (T3) to hypothyroid rats (P. Narayan, C. W. Liaw, and H. C. Towle, Proc. Natl. Acad. Sci. USA 81:4687-4691, 1984). To investigate the cellular site at which T3 acts to induce this hepatic mRNA, we made parallel measurements of the relative levels of spot 14 mRNA and nuclear precursor RNA and of the rate of gene transcription after treatments designed to alter the thyroid status of rats. The relative levels of both the mRNA and nuclear precursor were elevated roughly 5- to 6-fold in euthyroid animals and 9- to 12-fold in hyperthyroid animals over those in hypothyroid controls. However, only a small difference of approximately 1.5-fold was detected in the rate of spot 14 gene transcription. After a single injection of T3 into hypothyroid animals, a small and transient rise in the transcription rate was detected at 30 min. However, the levels of spot 14 mRNA and nuclear precursor RNA increased much more dramatically throughout the first 4 h of treatment. In both cases, changes in the rate of gene transcription were not capable of accounting for the alterations observed in mRNA levels. Thus, the major site of spot 14 gene regulation by T3 is at a posttranscriptional level. The proportional changes observed in the nuclear precursor and mRNA levels suggest that the site of control is at the level of stability of the nuclear precursor RNA for spot 14 mRNA. PMID:3837180

  11. Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability.

    PubMed

    Vytvytska, O; Jakobsen, J S; Balcunaite, G; Andersen, J S; Baccarini, M; von Gabain, A

    1998-11-24

    The stability of the ompA mRNA depends on the bacterial growth rate. The 5' untranslated region is the stability determinant of this transcript and the target of the endoribonuclease, RNase E, the key player of mRNA degradation. An RNA-binding protein with affinity for the 5' untranslated region ompA was purified and identified as Hfq, a host factor initially recognized for its function in phage Qbeta replication. The ompA RNA-binding activity parallels the amount of Hfq, which is elevated in bacteria cultured at slow growth rate, a condition leading to facilitated degradation of the ompA mRNA. In hfq mutant cells with a deficient Hfq gene product, the RNA-binding activity is missing, and analysis of the ompA mRNA showed that the growth-rate dependence of degradation is lost. Furthermore, the half-life of the ompA mRNA is prolonged in the mutant cells, irrespective of growth rate. Hfq has no affinity for the lpp transcript whose degradation, like that of bulk mRNA, is not affected by bacterial growth rate. Compatible with our results, we found that the intracellular concentration of RNase E and its associated degradosome components is independent of bacterial growth rate. Thus our results suggest a regulatory role for Hfq that specifically facilitates the ompA mRNA degradation in a growth rate-dependent manner.

  12. Post-transcriptional regulation of coumarin 7-hydroxylase (P450coh) induction by xenobiotics in mouse liver: mRNA stabilization by pyrazole

    SciTech Connect

    Aida, K.; Negishi, M. )

    1991-03-15

    The induction mechanism by pyrazole or phenobarbital of coumarin 7-hydroxylase was investigated in DBA/2J male mice. The P450coh mRNA in the pyrazole-induced mice was increased gradually to a 20-fold higher level within 48 hr, yet transcription of the P450coh gene was not affected. The half-life of P450coh mRNA, on the other hand, was at least 4-fold longer in the pyrazole-induced DBA2J than in control DBA/2J male mice. The stabilization of P450coh mRNA, therefore, is the primary mechanism for the induction by pyrazole of coumarin 7-hydroxylase. Phenobarbital, on the other hand, regulates the induction translationally or post-translationally. This drug affected neither the P450coh mRNA nor the P450coh gene's transcription levels in the DBA/2J male mice, although Western blots showed a 2- to 3-fold increase of the P450coh protein in the liver microsomes of the drug-treated mice. The results indicate, therefore, that both phenobarbital and pyrazole regulate the P450coh induction post-transcriptional efficiency of P450coh mRNA or alters the degradation rate of P450coh protein, while the latter stabilizes P450coh mRNA.

  13. Stability of mRNA in the hyperthermophilic archaeon Sulfolobus solfataricus.

    PubMed Central

    Bini, Elisabetta; Dikshit, Vidula; Dirksen, Kristi; Drozda, Melissa; Blum, Paul

    2002-01-01

    Archaea-like bacteria are prokaryotes but, in contrast, use eukaryotic-like systems for key aspects of DNA, RNA, and protein metabolism. mRNA is typically unstable in bacteria and stable in eukaryotes, but little information is available about mRNA half-lives in archaea. Because archaea are generally insensitive to antibiotics, examination of mRNA stability in the hyperthermophile, Sulfolobus solfataricus, required the identification of transcription inhibitors for half-life determinations. An improved lacS promoter-dependent in vitro transcription system was used to assess inhibitor action. Efficient inhibitors were distinguished as blocking both lacSp transcription in vitro and the incorporation of 3H-uracil into bulk RNA in vivo. Actinomycin D was the most stable and potent compound identified. A survey of transcript chemical half-lives normalized to levels of the signal recognition particle 7S RNA ranged from at least 2 h for tfb1, a transcription factor TFIIB paralog, to a minimum of 6.3 min for gln1, one of three glutamine synthetase paralogs. Transcript half-lives for other mRNAs were: 2 h, superoxide dismutase (sod); 37.5 min, glucose dehydrogenase (dhg1); 25 min, alpha-glucosidase (malA); and 13.5 min, transcription factor TFIIB-2 (tfb2) resulting in a minimum average half-life of 54 min. These are the first mRNA half-lives reported for a hyperthermophile or member of the crenarchaea. The unexpected stability of several transcripts has important implications for gene expression and mRNA degradation in this organism. PMID:12358432

  14. RNAIII of the Staphylococcus aureus agr system activates global regulator MgrA by stabilizing mRNA

    PubMed Central

    Gupta, Ravi Kr.; Luong, Thanh T.; Lee, Chia Y.

    2015-01-01

    RNAIII, the effector of the agr quorum-sensing system, plays a key role in virulence gene regulation in Staphylococcus aureus, but how RNAIII transcriptionally regulates its downstream genes is not completely understood. Here, we show that RNAIII stabilizes mgrA mRNA, thereby increasing the production of MgrA, a global transcriptional regulator that affects the expression of many genes. The mgrA gene is transcribed from two promoters, P1 and P2, to produce two mRNA transcripts with long 5′ UTR. Two adjacent regions of the mgrA mRNA UTR transcribed from the upstream P2 promoter, but not the P1 promoter, form a stable complex with two regions of RNAIII near the 5′ and 3′ ends. We further demonstrate that the interaction has several biological effects. We propose that MgrA can serve as an intermediary regulator through which agr exerts its regulatory function. PMID:26504242

  15. Cytoplasmic-nuclear shuttling of the urokinase mRNA binding protein regulates message stability.

    PubMed

    Shetty, Sreerama

    2002-08-01

    Treatment of small airway epithelial (SAEC) cells or lung epithelial (Beas2B) cells with TNF-alpha or PMA induces urokinase-type plasminogen activator (uPA) expression. Treatment of these cells with TNF-alpha, PMA or cycloheximide but not TGF-beta increased steady-state expression of uPAmRNA. TNF-alpha, PMA or cycloheximide caused 8-10 fold extensions of the uPAmRNA half-life in SAEC or Beas2B cells treated with DRB, a transcriptional inhibitor. These findings suggest that uPA gene expression involves a post-transcriptional regulatory mechanism. Using gel mobility shift and UV cross-linking assays, we identified a 30 kDa uPA mRNA binding protein (uPA mRNABp) that selectively binds to a 66 nt protein binding fragment of uPA mRNA containing regulatory information for message stabilization. Binding of cytoplasmic uPA mRNABp to uPA mRNA was abolished after treatment with TNF-alpha but not TGF-beta. In addition, we found the accumulation of 30 kDa uPAmRNABp in the nuclear extracts of TNF-alpha but not TGF-beta treated cells. The uPA mRNABp starts moving to the nucleus from the cytoplasmic compartment as early as three hours after TNF-alpha treatment. Complete translocation is achieved between 12-24 h, which coincides with the maximal expression of uPA protein effected by cytokine stimulation. Treatment of Beas2B cells with NaF inhibited TNF-alpha-mediated translocation of uPA mRNABp from the cytoplasm to the nucleus and concomitant inhibition of uPA expression. TNF-alpha stabilizes uPA mRNA by translocating the uPA mRNABp from the cytoplasm to the nucleus. Our results demonstrate a novel mechanism governing uPA mRNA stability through shuttling of uPA mRNABp between the nucleus and cytoplasm. This newly identified pathway may have evolved to regulate uPA-mediated functions of the lung epithelium in inflamation or neoplasia.

  16. Tristetraprolin regulation of interleukin 23 mRNA stability prevents a spontaneous inflammatory disease

    PubMed Central

    Molle, Céline; Zhang, Tong; Ysebrant de Lendonck, Laure; Gueydan, Cyril; Andrianne, Mathieu; Sherer, Félicie; Van Simaeys, Gaetan; Blackshear, Perry J.; Leo, Oberdan

    2013-01-01

    Interleukin (IL) 12 and IL23 are two related heterodimeric cytokines produced by antigen-presenting cells. The balance between these two cytokines plays a crucial role in the control of Th1/Th17 responses and autoimmune inflammation. Most studies focused on their transcriptional regulation. Herein, we explored the role of the adenine and uridine–rich element (ARE)–binding protein tristetraprolin (TTP) in influencing mRNA stability of IL12p35, IL12/23p40, and IL23p19 subunits. LPS-stimulated bone marrow–derived dendritic cells (BMDCs) from TTP−/− mice produced normal levels of IL12/23p40. Production of IL12p70 was modestly increased in these conditions. In contrast, we observed a strong impact of TTP on IL23 production and IL23p19 mRNA stability through several AREs in the 3′ untranslated region. TTP−/− mice spontaneously develop an inflammatory syndrome characterized by cachexia, myeloid hyperplasia, dermatitis, and erosive arthritis. We observed IL23p19 expression within skin lesions associated with exacerbated IL17A and IL22 production by infiltrating γδ T cells and draining lymph node CD4 T cells. We demonstrate that the clinical and immunological parameters associated with TTP deficiency were completely dependent on the IL23–IL17A axis. We conclude that tight control of IL23 mRNA stability by TTP is critical to avoid severe inflammation. PMID:23940256

  17. Factors Affecting Lateral Stability and Controllability

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Toll, Thomas A

    1948-01-01

    The effects on dynamic lateral stability and controllability of some of the important aerodynamic and mass characteristics are discussed and methods are presented for estimating the various stability parameters to be used in the calculation of the dynamic lateral stability of airplanes with swept and low-aspect-ratio wings.

  18. Stem-loop RNA labeling can affect nuclear and cytoplasmic mRNA processing.

    PubMed

    Heinrich, Stephanie; Sidler, Corinne L; Azzalin, Claus M; Weis, Karsten

    2017-02-01

    The binding of sequence-specific RNA-interacting proteins, such as the bacteriophage MS2 or PP7 coat proteins, to their corresponding target sequences has been extremely useful and widely used to visualize single mRNAs in vivo. However, introduction of MS2 stem-loops into yeast mRNAs has recently been shown to lead to the accumulation of RNA fragments, suggesting that the loops impair mRNA decay. This result was questioned, because fragment occurrence was mainly assessed using ensemble methods, and their cellular localization and its implications had not been addressed on a single transcript level. Here, we demonstrate that the introduction of either MS2 stem-loops (MS2SL) or PP7 stem-loops (PP7SL) can affect the processing and subcellular localization of mRNA. We use single-molecule fluorescence in situ hybridization (smFISH) to determine the localization of three independent mRNAs tagged with the stem-loop labeling systems in glucose-rich and glucose starvation conditions. Transcripts containing MS2SL or PP7SL display aberrant localization in both the nucleus and the cytoplasm. These defects are most prominent in glucose starvation conditions, with nuclear mRNA processing being altered and stem-loop fragments abnormally enriching in processing bodies (PBs). The mislocalization of SL-containing RNAs is independent of the presence of the MS2 or PP7 coat protein (MCP or PCP).

  19. Role of post-transcriptional regulation of mRNA stability in renal pathophysiology: focus on chronic kidney disease.

    PubMed

    Feigerlová, Eva; Battaglia-Hsu, Shyue-Fang

    2017-02-01

    Chronic kidney disease (CKD) represents an important public health problem. Its progression to end-stage renal disease is associated with increased morbidity and mortality. The determinants of renal function decline are not fully understood. Recent progress in the understanding of post-transcriptional regulation of mRNA stability has helped the identification of both the trans- and cis-acting elements of mRNA as potential markers and therapeutic targets for difficult-to-diagnose and -treat diseases, including CKDs such as diabetic nephropathy. Human antigen R (HuR), a trans-acting element of mRNA, is an RNA binding factor (RBF) best known for its ability to stabilize AU-rich-element-containing mRNAs. Deregulated HuR subcellular localization or expression occurs in a wide range of renal diseases, such as metabolic acidosis, ischemia, and fibrosis. Besides RBFs, recent evidence revealed that noncoding RNA, such as microRNA and long noncoding RNA, participates in regulating mRNA stability and that aberrant noncoding RNA expression accounts for many pathologic renal conditions. The goal of this review is to provide an overview of our current understanding of the post-transcriptional regulation of mRNA stability in renal pathophysiology and to offer perspectives for this class of diseases. We use examples of diverse renal diseases to illustrate different mRNA stability pathways in specific cellular compartments and discuss the roles and impacts of both the cis- and trans-activating factors on the regulation of mRNA stability in these diseases.-Feigerlová, E., Battaglia-Hsu, S.-F. Role of post-transcriptional regulation of mRNA stability in renal pathophysiology: focus on chronic kidney disease.

  20. Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition.

    PubMed

    Tong, Xin; Van Dross, Rukiyah T; Abu-Yousif, Adnan; Morrison, Aubrey R; Pelling, Jill C

    2007-01-01

    Cyclooxygenase 2 (COX-2) is a key enzyme in the conversion of arachidonic acid to prostaglandins, and COX-2 overexpression plays an important role in carcinogenesis. Exposure to UVB strongly increased COX-2 protein expression in mouse 308 keratinocytes, and this induction was inhibited by apigenin, a nonmutagenic bioflavonoid that has been shown to prevent mouse skin carcinogenesis induced by both chemical carcinogens and UV exposure. Our previous study suggested that one pathway by which apigenin inhibits UV-induced and basal COX-2 expression is through modulation of USF transcriptional activity in the 5' upstream region of the COX-2 gene. Here, we found that apigenin treatment also increased COX-2 mRNA stability, and the inhibitory effect of apigenin on UVB-induced luciferase reporter gene activity was dependent on the AU-rich element of the COX-2 3'-untranslated region. Furthermore, we identified two RNA-binding proteins, HuR and the T-cell-restricted intracellular antigen 1-related protein (TIAR), which were associated with endogenous COX-2 mRNA in 308 keratinocytes, and apigenin treatment increased their localization to cell cytoplasm. More importantly, reduction of HuR levels by small interfering RNA inhibited apigenin-mediated stabilization of COX-2 mRNA. Cells expressing reduced TIAR showed marked resistance to apigenin's ability to inhibit UVB-induced COX-2 expression. Taken together, these results indicate that in addition to transcriptional regulation, another mechanism by which apigenin prevents COX-2 expression is through mediating TIAR suppression of translation.

  1. Induction of human spermine oxidase SMO(PAOh1) is regulated at the levels of new mRNA synthesis, mRNA stabilization and newly synthesized protein.

    PubMed

    Wang, Yanlin; Hacker, Amy; Murray-Stewart, Tracy; Fleischer, Jennifer G; Woster, Patrick M; Casero, Robert A

    2005-03-15

    The oxidation of polyamines induced by antitumour polyamine analogues has been associated with tumour response to specific agents. The human spermine oxidase, SMO(PAOh1), is one enzyme that may play a direct role in the cellular response to the antitumour polyamine analogues. In the present study, the induction of SMO(PAOh1) enzyme activity by CPENSpm [N1-ethyl-N11-(cyclopropyl)methyl-4,8,diazaundecane] is demonstrated to be a result of newly synthesized mRNA and protein. Inhibition of new RNA synthesis by actinomycin D inhibits both the appearance of SMO(PAOh1) mRNA and enzyme activity. Similarly, inhibition of newly synthesized protein with cycloheximide prevents analogue-induced enzyme activity. Half-life determinations indicate that stabilization of SMO(PAOh1) protein does not play a significant role in analogue-induced activity. However, half-life experiments using actinomycin D indicate that CPENSpm treatment not only increases mRNA expression, but also leads to a significant increase in mRNA half-life (17.1 and 8.8 h for CPENSpm-treated cells and control respectively). Using reporter constructs encompassing the SMO(PAOh1) promoter region, a 30-90% increase in transcription is observed after exposure to CPENSpm. The present results are consistent with the hypothesis that analogue-induced expression of SMO(PAOh1) is a result of increased transcription and stabilization of SMO(PAOh1) mRNA, leading to increased protein production and enzyme activity. These data indicate that the major level of control of SMO(PAOh1) expression in response to polyamine analogues exposure is at the level of mRNA.

  2. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver

    PubMed Central

    Atger, Florian; Gobet, Cédric; Marquis, Julien; Martin, Eva; Wang, Jingkui; Weger, Benjamin; Lefebvre, Grégory; Descombes, Patrick; Naef, Felix; Gachon, Frédéric

    2015-01-01

    Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light–dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5′-Terminal Oligo Pyrimidine tract (5′-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5′-UTR (TISU) motif. The increased translation efficiency of 5′-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation. PMID:26554015

  3. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver.

    PubMed

    Atger, Florian; Gobet, Cédric; Marquis, Julien; Martin, Eva; Wang, Jingkui; Weger, Benjamin; Lefebvre, Grégory; Descombes, Patrick; Naef, Felix; Gachon, Frédéric

    2015-11-24

    Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light-dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5'-Terminal Oligo Pyrimidine tract (5'-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5'-UTR (TISU) motif. The increased translation efficiency of 5'-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation.

  4. Non-Invasive Analysis of Recombinant mRNA Stability in Escherichia coli by a Combination of Transcriptional Inducer Wash-Out and qRT-PCR

    PubMed Central

    Kucharova, Veronika; Strand, Trine Aakvik; Almaas, Eivind; Naas, Adrian E.; Brautaset, Trygve; Valla, Svein

    2013-01-01

    mRNA stability is one among many parameters that can potentially affect the level of recombinant gene expression in bacteria. Blocking of the entire prokaryotic transcription machinery by addition of rifampicin is commonly used in protocols for analysis of mRNA stability. Here we show that such treatment can be effectively replaced by a simple, non-invasive method based on removal of the relevant transcriptional inducers and that the mRNA decay can then be followed by qRT-PCR. To establish the methodology we first used the m-toluate-inducible XylS/Pm expression cassette as a model system and analyzed several examples of DNA modifications causing gene expression stimulation in Escherichia coli. The new method allowed us to clearly discriminate whether an improvement in mRNA stability contributes to observed increases in transcript amounts for each individual case. To support the experimental data a simple mathematical fitting model was developed to calculate relative decay rates. We extended the relevance of the method by demonstrating its application also for an IPTG-inducible expression cassette (LacI/Ptac) and by analyzing features of the bacteriophage T7-based expression system. The results suggest that the methodology is useful in elucidating factors controlling mRNA stability as well as other specific features of inducible expression systems. Moreover, as expression systems based on diffusible inducers are almost universally available, the concept can be most likely used to measure mRNA decay for any gene in any cell type that is heavily used in molecular biology research. PMID:23840466

  5. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    SciTech Connect

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-09-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  6. The Expression of Antibiotic Resistance Methyltransferase Correlates with mRNA Stability Independently of Ribosome Stalling

    PubMed Central

    Dzyubak, Ekaterina

    2016-01-01

    Members of the Erm methyltransferase family modify 23S rRNA of the bacterial ribosome and render cross-resistance to macrolides and multiple distantly related antibiotics. Previous studies have shown that the expression of erm is activated when a macrolide-bound ribosome stalls the translation of the leader peptide preceding the cotranscribed erm. Ribosome stalling is thought to destabilize the inhibitory stem-loop mRNA structure and exposes the erm Shine-Dalgarno (SD) sequence for translational initiation. Paradoxically, mutations that abolish ribosome stalling are routinely found in hyper-resistant clinical isolates; however, the significance of the stalling-dead leader sequence is largely unknown. Here, we show that nonsense mutations in the Staphylococcus aureus ErmB leader peptide (ErmBL) lead to high basal and induced expression of downstream ErmB in the absence or presence of macrolide concomitantly with elevated ribosome methylation and resistance. The overexpression of ErmB is associated with the reduced turnover of the ermBL-ermB transcript, and the macrolide appears to mitigate mRNA cleavage at a site immediately downstream of the ermBL SD sequence. The stabilizing effect of antibiotics on mRNA is not limited to ermBL-ermB; cationic antibiotics representing a ribosome-stalling inducer and a noninducer increase the half-life of specific transcripts. These data unveil a new layer of ermB regulation and imply that ErmBL translation or ribosome stalling serves as a “tuner” to suppress aberrant production of ErmB because methylated ribosome may impose a fitness cost on the bacterium as a result of misregulated translation. PMID:27645242

  7. Cyclic AMP and AKAP-mediated targeting of protein kinase A regulates lactate dehydrogenase subunit A mRNA stability.

    PubMed

    Jungmann, Richard A; Kiryukhina, Olga

    2005-07-01

    Expression of the lactate dehydrogenase A subunit (ldh-A) gene is controlled through transcriptional as well as post-transcriptional mechanisms. Both mechanisms involve activation of protein kinase A (PKA) into its subunits and subsequent phosphorylation and activation of several key regulatory factors. In rat C6 glioma cells, post-transcriptional gene regulation occurs through PKA-mediated stabilization of LDH-A mRNA and subsequent increase of intracellular LDH-A mRNA levels. Previous studies have demonstrated a cAMP-stabilizing region (CSR) located in the LDH-A 3'-untranslated region which, in combination with several phosphorylated CSR-binding proteins (CSR-BP), regulates the PKA-mediated stabilization of LDH-A mRNA. However, the mechanistic details of interaction of CSR with proteins as they pertain to mRNA stabilization by PKA are so far largely unknown. In this study we tested the hypothesis that ribosomal protein extracts (RSW) from glioma cells contain PKA regulatory (RII) and catalytic (C) subunits that, in combination with a protein kinase A anchoring protein (AKAP 95) and CSR-BPs participate in forming CSR-protein complexes that are responsible for mRNA stability regulation. To demonstrate the importance of CSR-protein complex formation, the PKA subunits and AKAP 95 were removed from the RSW by immunoprecipitation, and the antigen-deleted RSW were subjected to CSR binding analysis using gel mobility shift and UV cross-linking. It was shown that AKAP 95 as well as RII formed a direct linkage with CSR during CSR-protein complex formation. In contrast, the catalytic subunit formed part of the CSR-protein complex but did not bind to CSR directly in a covalent linkage. To determine whether formation of CSR complexes that included C, RII, and AKAP 95 constituted a functional event and was necessary for mRNA stabilization, cell-free decay reactions were carried out with RSW extracts, and the kinetics of decay of LDH-A mRNA was determined. Depletion of PKA

  8. Iron chelation down-regulates dopamine transporter expression by decreasing mRNA stability and increasing endocytosis in N2a cells.

    PubMed

    Hegde, Narasimha V; Jensen, Gordon L; Unger, Erica L

    2011-02-15

    Cell surface expression of the dopamine transporter (DAT) is determined by the relative rates of its internalization and recycling. Changes in the cellular labile iron pool (LIP) affect many cellular mechanisms including those that regulate DAT trafficking. In this study, we analyzed DAT expression and posttranslational modifications in response to changes in cellular iron in transfected neuroblastoma cells (N2a). Iron chelation by desferrioxamine (DFO) altered DAT protein levels by decreasing the stability of DAT mRNA. Increased phosphorylation and ubiquitination of this transporter protein following DFO treatment were also observed. Cellular iron depletion elevated protein levels of the early endosomal marker Rab5. Moreover, confocal microscopy studies showed increased localization of DAT into the endosomal compartment in DFO-treated cells compared to control. Together, these findings suggest that cellular iron depletion regulates DAT expression through reducing mRNA stability as well as an increasing in endocytosis.

  9. Analysis of xanthine dehydrogenase mRNA levels in mutants affecting the expression of the rosy locus.

    PubMed Central

    Covington, M; Fleenor, D; Devlin, R B

    1984-01-01

    Xanthine dehydrogenase (XDH) mRNA levels were measured in a number of mutants and natural variants affecting XDH gene expression. Two variants, ry+4 and ry+10, contain cis-acting elements which map to a region flanking the 5' end of the XDH gene. Ry+4, which has 2-3 times more XDH protein than a wild type strain, has 3.2 times more XDH mRNA. Ry+10 has 50% of the wild type XDH level and 54% of the wild type XDH mRNA level. Three rosy mutants which map within the structural gene were also examined. Two of these had little if any XDH mRNA, but the third mutant had 1.3 times more XDH mRNA than wild type flies. Another mutant, ry2 , which contains no XDH protein and has a 9KB transposable element inserted into the XDH gene, has normal levels of XDH mRNA transcripts which are also the same size as those found in the wild type strain. Changes in XDH mRNA levels were measured during Drosophila development and found to parallel changes in the amount of XDH protein. In addition, there were no large changes in the size of XDH mRNA during development. Images PMID:6588363

  10. On how hydrogen bonds affect foam stability.

    PubMed

    Stubenrauch, Cosima; Hamann, Martin; Preisig, Natalie; Chauhan, Vinay; Bordes, Romain

    2017-02-08

    Do intermolecular H-bonds between surfactant head groups play a role for foam stability? From the literature on the foam stability of various surfactants with C12 alkyl chains but different head groups a clear picture emerges: stable foams are only generated when hydrogen bonds can form between the head groups, i.e. when the polar head group has a hydrogen bond donor and a proton acceptor. Stable foams can therefore be generated with surfactants having a sugar unit, a glycine, an amine oxide (at pH~5), or a carboxylic acid (at pH~pKa) as polar head group. On the other hand, aqueous foams stabilized with surfactants having oligo(ethylene oxide), phosphine oxide, quaternary ammonium, sulfate, sarcosine, amine oxide (at pH≠5), or carboxylic acid (at pH≠pKa) are not very stable. These observations suggest that hydrogen bonds between neighbouring molecules at the surface enhance foam stability. Formation of hydrogen bonds between surfactant head groups gives rise to a short-range attractive interaction that may restrict the surfactant's mobility while providing a more elastic surfactant layer which can counteract deformations. To support our hypothesis we carried out a systematic foaming study of two types of surfactants, one of them being capable of forming H-bonds and the other one not. Generating foams of all surfactants mentioned above with the same foaming conditions we found that stable foams are obtained when the head group is capable of forming intersurfactant H-bonds. The outcome of this study constitutes a new step towards the implementation of H-bonds in the future design of surfactants.

  11. Importance of cis determinants and nitrogenase activity in regulated stability of the Klebsiella pneumoniae nitrogenase structural gene mRNA.

    PubMed

    Simon, H M; Gosink, M M; Roberts, G P

    1999-06-01

    The Klebsiella pneumoniae nitrogen fixation (nif) mRNAs are unusually stable, with half-lives of 20 to 30 min under conditions favorable to nitrogen fixation (limiting nitrogen, anaerobiosis, temperatures of 30 degrees C). Addition of O2 or fixed nitrogen or temperature increases to 37 degrees C or more result in the dramatic destabilization of the nif mRNAs, decreasing the half-lives by a factor of 3 to 5. A plasmid expression system, independent of nif transcriptional regulation, was used to define cis determinants required for the regulated stability of the 5.2-kb nifHDKTY mRNA and to test the model suggested by earlier work that NifA is required in trans to stabilize nif mRNA under nif-derepressing conditions. O2 regulation of nifHDKTY mRNA stability is impaired in a plasmid containing a deletion of a 499-bp region of nifH, indicating that a site(s) required for the O2-regulated stability of the mRNA is located within this region. The simple model suggested from earlier work that NifA is required for stabilizing nif mRNA under conditions favorable for nitrogen fixation was disproved, and in its place, a more complicated model involving the sensing of nitrogenase activity as a component of the system regulating mRNA stability is proposed. Analysis of nifY mutants and overexpression suggests a possible involvement of the protein in this sensing process.

  12. Changes in the stability of a human H3 histone mRNA during the HeLa cell cycle.

    PubMed Central

    Morris, T D; Weber, L A; Hickey, E; Stein, G S; Stein, J L

    1991-01-01

    A major component of the regulation of histone protein synthesis during the cell cycle is the modulation of the half-life of histone mRNA. We have uncoupled transcriptional and posttranscriptional regulation by using a Drosophila hsp70-human H3 histone fusion gene that produces a marked human H3 histone mRNA upon heat induction. Transcription of this gene can be switched on and off by raising and lowering cell culture temperatures, respectively. HeLa cell lines containing stably integrated copies of the fusion gene were synchronized by double thymidine block. Distinct populations of H3 histone mRNA were produced by heat induction in early S-phase, late S-phase, or G2-phase cells, and the stability of the induced H3 histone mRNA was measured. The H3 histone mRNA induced during early S phase decayed with a half-life of 110 min, whereas the same transcript induced during late S phase had a half-life of 10 to 15 min. The H3 histone mRNA induced in non-S-phase cells is more stable than that induced in late S phase, with a half-life of 40 min. Thus, the stability of histone mRNA is actively regulated throughout the cell cycle. Our results are consistent with an autoregulatory model in which the stability of histone mRNA is determined by the level of free histone protein in the cytoplasm. Images PMID:1986245

  13. Staufen Recruitment into Stress Granules Does Not Affect Early mRNA Transport in Oligodendrocytes

    PubMed Central

    Thomas, María G.; Tosar, Leandro J. Martinez; Loschi, Mariela; Pasquini, Juana M.; Correale, Jorge; Kindler, Stefan; Boccaccio, Graciela L.

    2005-01-01

    Staufen is a conserved double-stranded RNA-binding protein required for mRNA localization in Drosophila oocytes and embryos. The mammalian homologues Staufen 1 and Staufen 2 have been implicated in dendritic RNA targeting in neurons. Here we show that in rodent oligodendrocytes, these two proteins are present in two independent sets of RNA granules located at the distal myelinating processes. A third kind of RNA granules lacks Staufen and contains major myelin mRNAs. Myelin Staufen granules associate with microfilaments and microtubules, and their subcellular distribution is affected by polysome-disrupting drugs. Under oxidative stress, both Staufen 1 and Staufen 2 are recruited into stress granules (SGs), which are stress-induced organelles containing transiently silenced messengers. Staufen SGs contain the poly(A)-binding protein (PABP), the RNA-binding proteins HuR and TIAR, and small but not large ribosomal subunits. Staufen recruitment into perinuclear SGs is paralleled by a similar change in the overall localization of polyadenylated RNA. Under the same conditions, the distribution of recently transcribed and exported mRNAs is not affected. Our results indicate that Staufen 1 and Staufen 2 are novel and ubiquitous SG components and suggest that Staufen RNPs are involved in repositioning of most polysomal mRNAs, but not of recently synthesized transcripts, during the stress response. PMID:15525674

  14. p73 expression is regulated by ribosomal protein RPL26 through mRNA translation and protein stability

    PubMed Central

    Yan, Wensheng; Chen, Xinbin

    2016-01-01

    p73, a p53 family tumor suppressor, is regulated by multiple mechanisms, including transcription and mRNA and protein stability. However, whether p73 expression is regulated via mRNA translation has not been explored. To test this, we examined whether ribosomal protein 26 (RPL26) plays a role in p73 expression. Here, we showed that p73 expression is controlled by RPL26 via protein stability and mRNA translation. To examine whether MDM2 mediates RPL26 to regulate p73 protein stability, we generated multiple MDM2-knockout cell lines by CRISPR-cas9. We found that in the absence of MDM2, the half-life of p73 protein is markedly increased. Interestingly, we also found that RPL26 is still capable of regulating p73 expression, albeit to a lesser extent, in MDM2-KO cells compared to that in isogenic control cells, suggesting that RPL26 regulates p73 expression via multiple mechanisms. Indeed, we found that RPL26 is necessary for efficient assembly of polysomes on p73 mRNA and de novo synthesis of p73 protein. Consistently, we found that RPL26 directly binds to p73 3′ untranslated region (3′UTR) and that RPL26 is necessary for efficient expression of an eGFP reporter that carries p73 3′UTR. We also found that RPL26 interacts with cap-binding protein eIF4E and enhances the association of eIF4E with p73 mRNA, leading to increased p73 mRNA translation. Finally, we showed that knockdown of RPL26 promotes, whereas ectopic expression of RPL26 inhibits, cell growth in a TAp73-dependent manner. Together, our data indicate that RPL26 regulates p73 expression via two distinct mechanisms: protein stability and mRNA translation. PMID:27825141

  15. Determinants of mRNA stability in Dictyostelium discoideum amoebae: differences in poly(A) tail length, ribosome loading, and mRNA size cannot account for the heterogeneity of mRNA decay rates.

    PubMed Central

    Shapiro, R A; Herrick, D; Manrow, R E; Blinder, D; Jacobson, A

    1988-01-01

    As an approach to understanding the structures and mechanisms which determine mRNA decay rates, we have cloned and begun to characterize cDNAs which encode mRNAs representative of the stability extremes in the poly(A)+ RNA population of Dictyostelium discoideum amoebae. The cDNA clones were identified in a screening procedure which was based on the occurrence of poly(A) shortening during mRNA aging. mRNA half-lives were determined by hybridization of poly(A)+ RNA, isolated from cells labeled in a 32PO4 pulse-chase, to dots of excess cloned DNA. Individual mRNAs decayed with unique first-order decay rates ranging from 0.9 to 9.6 h, indicating that the complex decay kinetics of total poly(A)+ RNA in D. discoideum amoebae reflect the sum of the decay rates of individual mRNAs. Using specific probes derived from these cDNA clones, we have compared the sizes, extents of ribosome loading, and poly(A) tail lengths of stable, moderately stable, and unstable mRNAs. We found (i) no correlation between mRNA size and decay rate; (ii) no significant difference in the number of ribosomes per unit length of stable versus unstable mRNAs, and (iii) a general inverse relationship between mRNA decay rates and poly(A) tail lengths. Collectively, these observations indicate that mRNA decay in D. discoideum amoebae cannot be explained in terms of random nucleolytic events. The possibility that specific 3'-structural determinants can confer mRNA instability is suggested by a comparison of the labeling and turnover kinetics of different actin mRNAs. A correlation was observed between the steady-state percentage of a given mRNA found in polysomes and its degree of instability; i.e., unstable mRNAs were more efficiently recruited into polysomes than stable mRNAs. Since stable mRNAs are, on average, "older" than unstable mRNAs, this correlation may reflect a translational role for mRNA modifications that change in a time-dependent manner. Our previous studies have demonstrated both a time

  16. Isoeugenol destabilizes IL-8 mRNA expression in THP-1 cells through induction of the negative regulator of mRNA stability tristetraprolin.

    PubMed

    Galbiati, Valentina; Carne, Alice; Mitjans, Montserrat; Galli, Corrado Lodovico; Marinovich, Marina; Corsini, Emanuela

    2012-02-01

    We previously demonstrated in the human promyelocytic cell line THP-1 that all allergens tested, with the exception of the prohapten isoeugenol, induced a dose-related release of interleukin-8 (IL-8). In the present study, we investigated whether this abnormal behavior was regulated by the AU-rich element-binding proteins HuR and tristetraprolin (TTP) or by the downstream molecule suppressor of cytokine signaling (SOCS)-3. The contact allergens isoeugenol, diethylmaleate (DEM), and 2,4-dinitrochlorobenzene (DNCB), and the irritant salicylic acid were used as reference compounds. Chemicals were used at concentrations that induced a 20% decrease in cell viability as assessed by propidium iodide staining, namely 100 μg/ml (0.61 mM) for isoeugenol, 100 μg/ml (0.58 mM) for DEM, 3 μg/ml (14.8 μM) for DNCB, and 250 μg/ml (1.81 mM) for salicylic acid. Time course experiments of IL-8 mRNA expression and assessment of IL-8 mRNA half-life, indicated a decreased IL-8 mRNA stability in isoeugenol-treated cells. We could demonstrate that a combination and regulation of HuR and TTP following exposure to contact allergens resulted in a different modulation of IL-8 mRNA half-life and release. The increased expression of TTP in THP-1 cells treated with isoeugenol results in destabilization of the IL-8 mRNA, which can account for the lack of IL-8 release. In contrast, the strong allergen DNCB failing to up-regulate TTP, while inducing HuR, resulted in longer IL-8 mRNA half-life and protein release. SOCS-3 was induced only in isoeugenol-treated cells; however, its modulation did not rescue the lack of IL-8 release, indicating that it is unlikely to be involved in the lack of IL-8 production. Finally, the destabilization effect of isoeugenol on IL-8 mRNA expression together with SOCS-3 expression resulted in an anti-inflammatory effect, as demonstrated by the ability of isoeugenol to modulate LPS or ionomycin-induced cytokine release.

  17. Stability and Change in Affect among Centenarians

    ERIC Educational Resources Information Center

    Martin, Peter; da Rosa, Grace; Margrett, Jennifer A.; Garasky, Steven; Franke, Warren

    2012-01-01

    Much information is available about physical and functional health among very old adults, but little knowledge exists about the mental health and mental health changes in very late life. This study reports findings concerning positive and negative affect changes among centenarians. Nineteen centenarians from a Midwestern state participated in four…

  18. AUF1 and HuR: possible implications of mRNA stability in thyroid function and disorders

    PubMed Central

    2011-01-01

    Abstract RNA-binding proteins may regulate every aspect of RNA metabolism, including pre-mRNA splicing, mRNA trafficking, stability and translation of many genes. The dynamic association of these proteins with RNA defines the lifetime, cellular localization, processing and the rate at which a specific mRNA is translated. One of the pathways involved in regulating of mRNA stability is mediated by adenylate uridylate-rich element (ARE) binding proteins. These proteins are involved in processes of apoptosis, tumorigenesis and development. Out of many ARE-binding proteins, two of them AUF1 and HuR were studied most extensively and reported to regulate the mRNA stability in vivo. Our previously published data demonstrate that both proteins are involved in thyroid carcinogenesis. Several other reports postulate that mRNA binding proteins may participate in thyroid hormone actions. However, until now, exacts mechanisms and the possible role of post-transcriptional regulation and especially the role of AUF1 and HuR in those processes remain not fully understood. In this study we shortly review the possible function of both proteins in relation to development and various physiological and pathophysiological processes, including thyroid function and disorders. PMID:21835052

  19. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae

    PubMed Central

    Huch, Susanne; Müller, Maren; Muppavarapu, Mridula; Gommlich, Jessie; Balagopal, Vidya; Nissan, Tracy

    2016-01-01

    ABSTRACT The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC) reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization. PMID:27543059

  20. Effect of the increased stability of the penicillin amidase mRNA on the protein expression levels.

    PubMed

    Viegas, Sandra C; Schmidt, Dorothea; Kasche, Volker; Arraiano, Cecília M; Ignatova, Zoya

    2005-09-12

    Several factors at transcriptional, post-transcriptional or post-translational level determine the fate of a target protein and can severely restrict its yield. Here, we focus on the post-transcriptional regulation of the biosynthesis of the periplasmic protein, penicillin amidase (PA). The PA mRNA stability was determined under depleted RNase conditions in strains carrying single or multiple RNase deletions. Single deletion of the endonuclease RNase E yielded, as the highest, a fourfold stabilization of the PA mRNA. This effect, however, was reduced twice at post-translational level. The RNase II, generating secondary exonucleolytic cleavages in the mRNA, although not significantly influencing the PA mRNA decay, led also to an increase of the amount of mature PA. The non-proportional correlation between increased mRNA longevity and amount of active enzyme propose that the rational strategies for yield improvement must be based on a simultaneous tuning of more than one yield restricting factor.

  1. A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability

    PubMed Central

    Moon, Stephanie L.; Anderson, John R.; Kumagai, Yutaro; Wilusz, Carol J.; Akira, Shizuo; Khromykh, Alexander A.; Wilusz, Jeffrey

    2012-01-01

    All arthropod-borne flaviviruses generate a short noncoding RNA (sfRNA) from the viral 3′ untranslated region during infection due to stalling of the cellular 5′-to-3′ exonuclease XRN1. We show here that formation of sfRNA also inhibits XRN1 activity. Cells infected with Dengue or Kunjin viruses accumulate uncapped mRNAs, decay intermediates normally targeted by XRN1. XRN1 repression also resulted in the increased overall stability of cellular mRNAs in flavivirus-infected cells. Importantly, a mutant Kunjin virus that cannot form sfRNA but replicates to normal levels failed to affect host mRNA stability or XRN1 activity. Expression of sfRNA in the absence of viral infection demonstrated that sfRNA formation was directly responsible for the stabilization of cellular mRNAs. Finally, numerous cellular mRNAs were differentially expressed in an sfRNA-dependent fashion in a Kunjin virus infection. We conclude that flaviviruses incapacitate XRN1 during infection and dysregulate host mRNA stability as a result of sfRNA formation. PMID:23006624

  2. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    PubMed

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  3. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability.

  4. Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts.

    PubMed

    Ferizi, Mehrije; Aneja, Manish K; Balmayor, Elizabeth R; Badieyan, Zohreh Sadat; Mykhaylyk, Olga; Rudolph, Carsten; Plank, Christian

    2016-12-15

    Modified nucleotide chemistries that increase the half-life (T1/2) of transfected recombinant mRNA and the use of non-native 5'- and 3'-untranslated region (UTR) sequences that enhance protein translation are advancing the prospects of transcript therapy. To this end, a set of UTR sequences that are present in mRNAs with long cellular T1/2 were synthesized and cloned as five different recombinant sequence set combinations as upstream 5'-UTR and/or downstream 3'-UTR regions flanking a reporter gene. Initial screening in two different cell systems in vitro revealed that cytochrome b-245 alpha chain (CYBA) combinations performed the best among all other UTR combinations and were characterized in detail. The presence or absence of CYBA UTRs had no impact on the mRNA stability of transfected mRNAs, but appeared to enhance the productivity of transfected transcripts based on the measurement of mRNA and protein levels in cells. When CYBA UTRs were fused to human bone morphogenetic protein 2 (hBMP2) coding sequence, the recombinant mRNA transcripts upon transfection produced higher levels of protein as compared to control transcripts. Moreover, transfection of human adipose mesenchymal stem cells with recombinant hBMP2-CYBA UTR transcripts induced bone differentiation demonstrating the osteogenic and therapeutic potential for transcript therapy based on hybrid UTR designs.

  5. Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts

    PubMed Central

    Ferizi, Mehrije; Aneja, Manish K.; Balmayor, Elizabeth R.; Badieyan, Zohreh Sadat; Mykhaylyk, Olga; Rudolph, Carsten; Plank, Christian

    2016-01-01

    Modified nucleotide chemistries that increase the half-life (T1/2) of transfected recombinant mRNA and the use of non-native 5′- and 3′-untranslated region (UTR) sequences that enhance protein translation are advancing the prospects of transcript therapy. To this end, a set of UTR sequences that are present in mRNAs with long cellular T1/2 were synthesized and cloned as five different recombinant sequence set combinations as upstream 5′-UTR and/or downstream 3′-UTR regions flanking a reporter gene. Initial screening in two different cell systems in vitro revealed that cytochrome b-245 alpha chain (CYBA) combinations performed the best among all other UTR combinations and were characterized in detail. The presence or absence of CYBA UTRs had no impact on the mRNA stability of transfected mRNAs, but appeared to enhance the productivity of transfected transcripts based on the measurement of mRNA and protein levels in cells. When CYBA UTRs were fused to human bone morphogenetic protein 2 (hBMP2) coding sequence, the recombinant mRNA transcripts upon transfection produced higher levels of protein as compared to control transcripts. Moreover, transfection of human adipose mesenchymal stem cells with recombinant hBMP2-CYBA UTR transcripts induced bone differentiation demonstrating the osteogenic and therapeutic potential for transcript therapy based on hybrid UTR designs. PMID:27974853

  6. Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability.

    PubMed

    Russo, Joseph; Heck, Adam M; Wilusz, Jeffrey; Wilusz, Carol J

    2017-02-20

    Changes in the rate of mRNA decay are closely coordinated with transcriptional changes and together these events have profound effects on gene expression during development and disease. Traditional approaches to assess mRNA decay have relied on inhibition of transcription, which can alter mRNA decay rates and confound interpretation. More recently, metabolic labeling combined with chemical modification and fractionation of labeled RNAs has allowed the isolation of nascent transcripts and the subsequent calculation of mRNA decay rates. This approach has been widely adopted for measuring mRNA half-lives on a global scale, but has proven challenging to use for analysis of single genes. We present a series of normalization and quality assurance steps to be used in combination with 4-thiouridine pulse labeling of cultured eukaryotic cells. Importantly, we demonstrate how the relative amount of 4sU-labeled nascent RNA influences accurate quantification. The approach described facilitates reproducible measurement of individual mRNA half-lives using 4-thiouridine and could be adapted for use with other nucleoside analogs.

  7. Intronless mRNA transport elements may affect multiple steps of pre-mRNA processing.

    PubMed Central

    Huang, Y; Wimler, K M; Carmichael, G G

    1999-01-01

    We have reported recently that a small element within the mouse histone H2a-coding region permits efficient cytoplasmic accumulation of intronless beta-globin cDNA transcripts. This sequence lowers the levels of spliced products from intron-containing constructs and can functionally replace Rev and the Rev-responsive element (RRE) in the nuclear export of unspliced HIV-1-related mRNAs. In work reported here, we further investigate the molecular mechanisms by which this element might work. We demonstrate here through both in vivo and in vitro assays that, in addition to promoting mRNA nuclear export, this element acts as a polyadenylation enhancer and as a potent inhibitor of splicing. Surprisingly, two other described intronless mRNA transport elements (from the herpes simplex virus thymidine kinase gene and hepatitis B virus) appear to function in a similar manner. These findings prompt us to suggest that a general feature of intronless mRNA transport elements might be a collection of phenotypes, including the inhibition of splicing and the enhancement of both polyadenylation and mRNA export. PMID:10075934

  8. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration

    PubMed Central

    Yan, Dong; Wu, Zilu; Chisholm, Andrew D.; Jin, Yishi

    2009-01-01

    Growth cone guidance and synaptic plasticity involve dynamic local changes in proteins at axons and dendrites. The Dual Leucine zipper MAPKKK (DLK) has been previously implicated in synaptogenesis and axon outgrowth in C. elegans and other animals. Here we show that in C. elegans DLK-1 regulates not only proper synapse formation and axon morphology, but also axon regeneration, by influencing mRNA stability. DLK-1 kinase signals via a MAPKAP kinase, MAK-2, to stabilize the mRNA encoding CEBP-1, a bZip protein related to CCAAT/enhancer binding proteins, via its 3′ UTR. Inappropriate upregulation of cebp-1 in adult neurons disrupts synapses and axon morphology. CEBP-1 and the DLK-1 pathway are essential for axon regeneration after laser axotomy in adult neurons, and that axotomy induces translation of CEBP-1 in axons. Our findings identify the DLK-1 pathway as a regulator of mRNA stability in synapse formation and maintenance and also in adult axon regeneration. PMID:19737525

  9. Cistanches Herba aqueous extract affecting serum BGP and TRAP and bone marrow Smad1 mRNA, Smad5 mRNA, TGF-β1 mRNA and TIEG1 mRNA expression levels in osteoporosis disease.

    PubMed

    Liang, Hai-Dong; Yu, Fang; Tong, Zhi-Hong; Zhang, Hong-Quan; Liang, Wu

    2013-02-01

    We studied molecular mechanism of Cistanches Herba aqueous extract (CHAE) in ovariectomized (OVX) rats, as an experimental model of postmenopausal osteoporosis. Female rats were either sham-operated or bilaterally OVX; and at 60 days postoperatively. The OVX group (n = 8) received an ovariectomy and treatment with normal saline for 90 days commencing from 20th post ovariectomy day. The ovariectomized +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy and were treated with Cistanches Herba aqueous extract of 100 mg/kg body weight daily for 90 days commencing from 22nd post ovariectomy day. The ovariectomy +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy, and were treated with the of 200 mg/kg body weight daily for 90 days commencing from 20th post ovariectomy day. Serum BGP and TRAP, E2, FSH and LH level, bone marrow Smad1, Smad5, TGF-β1 and TIEG1 mRNA expression levels were examined. Results showed that serum BGP and TRAP, FSH and LH levels were significantly increased, whereas E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels were significantly decreased in OVX rats compared to sham rats. 90 days of CHAE treatment could significantly decrease serum BGP and TRAP, FSH and LH levels, and increase E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels in OVX rats. It can be concluded that CHAE play its protective effect against OVX-induced bone degeneration partly by regulating some bone metabolism related genes, e.g. Smad1, Smad5, TGF-β1 and TIEG1.

  10. Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells

    SciTech Connect

    Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou; Huang, Xin; Wang, Tao; Huang, Xiao; Li, Han; Zhang, Luyong

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression. In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.

  11. Nitrous oxide emissions affected by biochar and nitrogen stabilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emission...

  12. Plakophilins 1 and 3 Bind to FXR1 and Thereby Influence the mRNA Stability of Desmosomal Proteins

    PubMed Central

    Fischer-Kešo, Regina; Breuninger, Sonja; Hofmann, Sarah; Henn, Manuela; Röhrig, Theresa; Ströbel, Philipp; Stoecklin, Georg

    2014-01-01

    Plakophilins 1 and 3 (PKP1/3) are members of the arm repeat family of catenin proteins and serve as structural components of desmosomes, which are important for cell-cell-adhesion. In addition, PKP1/3 occur as soluble proteins outside desmosomes, yet their role in the cytoplasm is not known. We found that cytoplasmic PKP1/3 coprecipitated with the RNA-binding proteins FXR1, G3BP, PABPC1, and UPF1, and these PKP1/3 complexes also comprised desmoplakin and PKP2 mRNAs. Moreover, we showed that the interaction of PKP1/3 with G3BP, PABPC1, and UPF1 but not with FXR1 was RNase sensitive. To address the cytoplasmic function of PKP1/3, we performed gain-and-loss-of-function studies. Both PKP1 and PKP3 knockdown cell lines showed reduced protein and mRNA levels for desmoplakin and PKP2. Whereas global rates of translation were unaffected, desmoplakin and PKP2 mRNA were destabilized. Furthermore, binding of PKP1/3 to FXR1 was RNA independent, and both PKP3 and FXR1 stabilized PKP2 mRNA. Our results demonstrate that cytoplasmic PKP1/3 are components of mRNA ribonucleoprotein particles and act as posttranscriptional regulators of gene expression. PMID:25225333

  13. The Circadian Deadenylase Nocturnin Is Necessary for Stabilization of the iNOS mRNA in Mice

    PubMed Central

    Garbarino-Pico, Eduardo; Kojima, Shihoko; Gilbert, Misty; Green, Carla B.

    2011-01-01

    Nocturnin is a member of the CCR4 deadenylase family, and its expression is under circadian control with peak levels at night. Because it can remove poly(A) tails from mRNAs, it is presumed to play a role in post-transcriptional control of circadian gene expression, but its target mRNAs are not known. Here we demonstrate that Nocturnin expression is acutely induced by the endotoxin lipopolysaccharide (LPS). Mouse embryo fibroblasts (MEFs) lacking Nocturnin exhibit normal patterns of acute induction of TNFα and iNOS mRNAs during the first three hours following LPS treatment, but by 24 hours, while TNFα mRNA levels are indistinguishable from WT cells, iNOS message is significantly reduced 20-fold. Accordingly, analysis of the stability of the mRNAs showed that loss of Nocturnin causes a significant decrease in the half-life of the iNOS mRNA (t1/2 = 3.3 hours in Nocturnin knockout MEFs vs. 12.4 hours in wild type MEFs), while having no effect on the TNFα message. Furthermore, mice lacking Nocturnin lose the normal nighttime peak of hepatic iNOS mRNA, and have improved survival following LPS injection. These data suggest that Nocturnin has a novel stabilizing activity that plays an important role in the circadian response to inflammatory signals. PMID:22073225

  14. The Drosophila RNA-binding protein HOW controls the stability of dgrasp mRNA in the follicular epithelium

    PubMed Central

    Giuliani, Giuliano; Giuliani, Fabrizio; Volk, Talila; Rabouille, Catherine

    2014-01-01

    Post-transcriptional regulation of RNA stability and localization underlies a wide array of developmental processes, such as axon guidance and epithelial morphogenesis. In Drosophila, ectopic expression of the classically Golgi peripheral protein dGRASP at the plasma membrane is achieved through its mRNA targeting at key developmental time-points, in a process critical to follicular epithelium integrity. However, the trans-acting factors that tightly regulate the spatio-temporal dynamics of dgrasp are unknown. Using an in silico approach, we identified two putative HOW Response Elements (HRE1 and HRE2) within the dgrasp open reading frame for binding to Held Out Wings (HOW), a member of the Signal Transduction and Activation of RNA family of RNA-binding proteins. Using RNA immunoprecipitations, we confirmed this by showing that the short cytoplasmic isoform of HOW binds directly to dgrasp HRE1. Furthermore, HOW loss of function in vivo leads to a significant decrease in dgrasp mRNA levels. We demonstrate that HRE1 protects dgrasp mRNA from cytoplasmic degradation, but does not mediate its targeting. We propose that this binding event promotes the formation of ribonucleoprotein particles that ensure dgrasp stability during transport to the basal plasma membrane, thus enabling the local translation of dgrasp for its roles at non-Golgi locations. PMID:24217913

  15. Stability of maternal mRNA in Xenopus embryos: role of transcription and translation.

    PubMed

    Duval, C; Bouvet, P; Omilli, F; Roghi, C; Dorel, C; LeGuellec, R; Paris, J; Osborne, H B

    1990-08-01

    The first 12 cell divisions of Xenopus laevis embryos do not require gene transcription. This means that the regulation of gene expression during this period is controlled at post transcriptional levels and makes Xenopus early development a potentially interesting biological system with which to study the mechanisms involved. We describe here the stability characteristics of several maternal Xenopus mRNAs which are deadenylated soon after fertilisation (J. Paris and M. Philippe, Dev. Biol., in press). We show that these mRNAs were only degraded in the embryo after the midblastula transition (MBT), when gene transcription was initiated. The kinetics with which the deadenylated maternal mRNAs decreased in the post-MBT embryos showed sequence specificity. The degradation of these mRNAs after the MBT was inhibited by cycloheximide but was not affected by dactinomycin. Therefore, the destabilization of these mRNAs does not appear to be initiated by new embryonic gene transcripts. Sequence comparisons of the 3' untranslated region of these mRNAs identified several motifs which may be involved in the posttranscriptional control of these gene products.

  16. Determinants that contribute to cytoplasmic stability of human c-fos and. beta. -globin mRNAs are located at several sites in each mRNA

    SciTech Connect

    Kabnick, K.S.; Housman, D.E.

    1988-08-01

    The authors have analyzed the contributions to cytoplasmic stability in an mRNA species with a very short half-life (human c-fos) and an mRNA species with a very long half-life (human ..beta..-globin). When the human c-fos promoter was used to drive the expression of human c-fos, ..beta..-globin, and chimeric DNAs between c-fos and ..beta..-globin in transfected cells, a pulse of mRNA synthesis was obtained following induction of transcription by refeeding quiescent cells with medium containing 15% calf serum. The mRNA half-life was determined by using Northern (RNA) blot analysis of mRNAs prepared at various times following the pulse of transcription. Under these conditions human c-fos mRNA exhibited a half-life of 6.6 min and human ..beta..-globin mRNA exhibited a half-life of 17.5 h. Replacement of the 3' end of the c-fos mRNA with the 3' end of the ..beta..-globin mRNA increased the half-life of the resultant RNA from 6.6 to 34 min. The reciprocal chimera had a half-life of 34.6 min compared with the 17.5-half-life of ..beta..-globin mRNA. These results suggest that sequences which make a major contribution to mRNA stability reside in the 3' end of either or both molecules. A chimera in which the 5' untranslated region of globin was replaced by part of the 5' untranslated region of fos led to destabilization of the encoded mRNA. This construct produced an mRNA with a half-life of 6.8 h instead of the 17.5-h half-life of globin. This result suggests that additional determinants of stability reside in the 5' end of these mRNA molecules. Substitution of part of the 5' untranslated region of fox by the 5' untranslated region of ..beta..-globin yielded an mRNA with stability similar to fos mRNA. These results suggest that interactions among sequences within each mRNA contribute to the stability of the respective molecules.

  17. Stage structure alters how complexity affects stability of ecological networks

    USGS Publications Warehouse

    Rudolf, V.H.W.; Lafferty, Kevin D.

    2011-01-01

    Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.

  18. Translational stability of native and deadenylylated rabbit globin mRNA injected into HeLa cells.

    PubMed Central

    Huez, G; Bruck, C; Cleuter, Y

    1981-01-01

    HeLa human cells were injected with a natural mixture of rabbit alpha and beta globin mRNA. They were incubated for 6 hr with [35S]methionine either immediately after injection or 20 hr later. The labeled proteins in the injected cells were analyzed by fluorography of two-dimensional electrophoresis gels. By using this procedure, it was possible to show that, during the first few hours after injection, both alpha and beta globin molecules are synthesized with an alpha to beta ratio approximately equal to 0.6. The rate of synthesis of alpha globin decreased significantly faster than that of beta globin over a 26-hr period after injection of the two mRNAs. It thus seems that two messenger RNAs coding for closely related polypeptides possess a markedly different translational stability. When deadenylylated rabbit globin mRNAs were injected into HeLa cells, no globin synthesis could be detected by the techniques used. We conclude that the translational half-life of mRNAs lacking poly(A) is very short in these cells. It is thus clear that the poly(A) segment is required to ensure stability to globin mRNA in somatic cells as in Xenopus oocytes. Images PMID:6940155

  19. mRNA stabilization controls the expression of a class of developmentally regulated genes in Dictyostelium discoideum

    PubMed Central

    Mangiarotti, Giorgio; Giorda, Roberto; Ceccarelli, Adriano; Perlo, Carla

    1985-01-01

    During the development of Dictyostelium discoideum, several thousand new mRNA species appear in the cytoplasm after the cells have formed stable aggregates. Here we show that six of these late mRNAs, corresponding to six clones randomly chosen from a genomic library, are synthesized from the very beginning of development at a rate comparable to that observed late in development but that transcripts do not accumulate until after aggregation. The early- and late-synthesized mRNAs are identical in size and compete with each other for hybridization to the genomic clones. The early-synthesized mRNAs do not accumulate in the cytoplasm in the preaggregation stage because they are very unstable. Their stability, estimated from the kinetics of incorporation during continuous labeling with 32P, increases by perhaps an order of magnitude in the postaggregation stage. We conclude that mRNA stabilization is the major controlling factor of the expression of these genes. Images PMID:16593597

  20. Nickel Ions Selectively Inhibit Lipopolysaccharide-Induced Interleukin-6 Production by Decreasing Its mRNA Stability

    PubMed Central

    Asakawa, Sanki; Kishimoto, Yu; Takano, Takayuki; Okita, Kiyuki; Takakuwa, Shiho; Sato, Taiki; Hiratsuka, Masahiro; Takeuchi, Osamu; Hirasawa, Noriyasu

    2015-01-01

    Nickel (Ni) ions easily elute from many alloys and elicit inflammation and allergies. Previous studies have shown that infections due to the implantation of medical devices cause inflammation and enhance the elution of Ni ions (Ni2+). However, cross-talk between infection- and Ni2+-induced signaling pathways has not yet been elucidated in detail. In the present study, we investigated the effects of Ni2+ on the lipopolysaccharide (LPS)-induced production of cytokines in a LPS-induced air pouch-type inflammation model in BALB/c mice and the murine macrophage cell line RAW264. We demonstrated that Ni2+ inhibited the LPS-induced production of interleukin (IL)-6, but not that of tumor necrosis factor (TNF)-α both in vivo and in vitro. This inhibitory effect was also observed with cobalt ion (Co2+), but not with chloride ion (Cl-), zinc ion (Zn2+), or palladium ion (Pd2+), and was highly selective to the production of IL-6. Ni2+ did not inhibit the activation of ERK1/2, p38 MAPK, or JNK. Although Ni2+ decreased IL-6 mRNA levels, it failed to inhibit the LPS-induced activation of the IL-6 promoter. An experiment using actinomycin D, a transcription inhibitor, revealed that Ni2+ decreased the stability of IL-6 mRNA. Moreover, Ni2+ inhibited the LPS-induced expression of Arid5a, but not regnase-1. These results demonstrated that Ni2+ may have selectively inhibited the LPS-induced production of IL-6 by decreasing the Arid5a-dependent stabilization of IL-6 mRNA. PMID:25742007

  1. Quantification of mRNA stability of stress-responsive yeast genes following conditional excision of open reading frames.

    PubMed

    Talarek, Nicolas; Bontron, Séverine; De Virgilio, Claudio

    2013-08-01

    Eukaryotic cells rapidly adjust the levels of mRNAs in response to environmental stress primarily by controlling transcription and mRNA turnover. How different stress conditions influence the fate of stress-responsive mRNAs, however, is relatively poorly understood. This is largely due to the fact that mRNA half-life assays are traditionally based on interventions (e.g., temperature-shifts using temperature-sensitive RNA polymerase II alleles or treatment with general transcription inhibitory drugs), which, rather than blocking, specifically induce transcription of stress-responsive genes. To study the half-lives of the latter suite of mRNAs, we developed and describe here a minimally perturbing alternative method, coined CEO, which is based on discontinuance of transcription following the conditional excision of open reading frames. Using CEO, we confirm that the target of rapamycin complex I (TORC1), a nutrient-activated, central stimulator of eukaryotic cell growth, favors the decay of mRNAs that depend on the stress- and/or nutrient-regulated transcription factors Msn2/4 and Gis1 for their transcription. We further demonstrate that TORC1 controls the stability of these mRNAs via the Rim15-Igo1/2-PP2A(Cdc55) effector branch, which reportedly also controls Gis1 promoter recruitment. These data pinpoint PP2A(Cdc55) as a central node in homo-directional coordination of transcription and post-transcriptional mRNA stabilization of a specific array of nutrient-regulated genes.

  2. Identification of cytoplasmic capping targets reveals a role for cap homeostasis in translation and mRNA stability

    PubMed Central

    Mukherjee, Chandrama; Patil, Deepak P.; Kennedy, Brian A.; Bakthavachalu, Baskar; Bundschuh, Ralf; Schoenberg, Daniel R.

    2012-01-01

    Summary The notion that decapping leads irreversibly to mRNA decay changed with the identification of capped transcripts missing portions of their 5′ ends and a cytoplasmic complex that can restore the cap on uncapped mRNAs. The current study used accumulation of uncapped transcripts in cells inhibited for cytoplasmic capping to identify the targets of this pathway. Inhibition of cytoplasmic capping resulted in the destabilization of some transcripts and the redistribution of others from polysomes to non-translating mRNPs, where they accumulate in an uncapped state. Only a portion of the mRNA transcriptome is affected by cytoplasmic capping, and its targets encode proteins involved in nucleotide binding, RNA and protein localization and the mitotic cell cycle. The 3′-UTRs of recapping targets are enriched for AU-rich elements and microRNA binding sites, both of which function in cap-dependent mRNA silencing. These findings identify a cyclical process of decapping and recapping we term cap homeostasis. PMID:22921400

  3. Stabilization of Oncostatin-M mRNA by Binding of Nucleolin to a GC-Rich Element in Its 3'UTR.

    PubMed

    Saha, Sucharita; Chakraborty, Alina; Bandyopadhyay, Sumita Sengupta

    2016-04-01

    Oncostatin-M (OSM) is a patho-physiologically important pleiotropic, multifunctional cytokine. OSM mRNA sequence analysis revealed that its 3'UTR contains three highly conserved GC-rich cis-elements (GCREs) whose role in mRNA stability is unidentified. In the present study, the functional role of the proximal GC-rich region of osm 3'-UTR (GCRE-1) in post-transcriptional regulation of osm expression in U937 cells was assessed by transfecting construct containing GCRE-1 at 3'-end of a fairly stable reporter gene followed by analysis of the expression of the reporter. GCRE-1 showed mRNA destabilizing activity; however, upon PMA treatment the reporter message containing GCRE-1 was stabilized. This stabilization is owing to a time-dependent progressive binding of trans-factors (at least five proteins) to GCRE-1 post-PMA treatment. Nucleolin was identified as one of the proteins in the RNP complex of GCRE-1 with PMA-treated U937 cytosolic extracts by oligo-dT affinity chromatography of poly-adenylated GCRE-1. Immuno-blot revealed time-dependent enhancement of nucleolin in the cytoplasm which in turn directly binds GCRE-1. RNA co-immunoprecipitation confirmed the GCRE-1-nucleolin interaction in vivo. To elucidate the functional role of nucleolin in stabilization of osm mRNA, nucleolin was overexpressed in U937 cells and found to stabilize the intrinsic osm mRNA, where co-transfection with the reporter containing GCRE-1 confirms the role of GCRE-1 in stabilization of the reporter mRNA. Thus, in conclusion, the results asserted that PMA treatment in U937 cells leads to cytoplasmic translocation of nucleolin that directly binds GCRE-1, one of the major GC-rich instability elements, thereby stabilizing the osm mRNA.

  4. Free-surface stability criterion as affected by velocity distribution

    USGS Publications Warehouse

    Cheng-Lung, Chen

    1995-01-01

    This paper examines how the velocity distribution of flow in open channels affects the kinematic and dynamic wave velocities, from which the various forms of the Vedernikov number V can be formulated. When V >1, disturbances created in open-channel flow will amplify in the form of roll waves; when V <1, some (though not all) disturbances will attenuate. A study of the Vedernikov stability criterion reveals that it can be readily deduced within the framework of the kinematic and dynamic wave theories by comparing the kinematic wave velocity to the corresponding dynamic wave velocity. -from Author

  5. miR-346 Controls Release of TNF-α Protein and Stability of Its mRNA in Rheumatoid Arthritis via Tristetraprolin Stabilization

    PubMed Central

    Alsaleh, Ghada; Suffert, Guillaume; Gottenberg, Jacques-Eric; Sibilia, Jean; Pfeffer, Sebastien; Wachsmann, Dominique

    2011-01-01

    TNF-α is a major cytokine implicated in rheumatoid arthritis. Its expression is regulated both at the transcriptional and posttranscriptional levels and recent data demonstrated that miRNAs are implicated in TNF-α response in macrophages. LPS-activated FLS isolated from RA patients express TNF-α mRNA but not the mature protein. This prompted us to look for miRNAs which could be implicated in this anti-inflammatory effect. Using a microarray, we found two miRNAs, miR-125b and miR-939 predicted to target the 3′-UTR of TNF-α mRNA, to be up-regulated in RA FLS in response to LPS, but their repression did not restore mature TNF-α expression in FLS. We showed previously that miR-346, which is upregulated in LPS-activated FLS, inhibited Btk expression that stabilized TNF-α mRNA. Blocking miR-346 reestablished TNF-α expression in activated FLS. Interestingly, transfection of miR-346 in LPS-activated THP-1 cells inhibited TNF-α secretion. We also demonstrated that TTP, a RNA binding protein which inhibited TNF-α synthesis, is overexpressed in activated FLS and that inhibition of miR-346 decreases its expression. Conversely, transfection of miR-346 in LPS-activated THP-1 cells increased TTP mRNA expression and inhibited TNF-α release. These results indicate that miR-346 controls TNF-α synthesis by regulating TTP expression. PMID:21611196

  6. Effect of copy number and mRNA processing and stabilization on transcript and protein levels from an engineered dual-gene operon.

    PubMed

    Smolke, Christina D; Keasling, Jay D

    2002-05-20

    To study the effect of mRNA stability and DNA copy number on protein production from a dual-gene operon, a synthetic operon containing the reporter genes gfp and lacZ under the control of the araBAD promoter was placed in pMB1-based (approximately 100 copies/cell) and F plasmid-based (approximately 1 copy/cell) vectors. DNA cassettes encoding secondary structures were placed at the 5' and 3' ends of the genes and a putative RNase E site was placed between the two genes. Although the copy number of the pMB1-based vectors was approximately 100-fold greater than the copy number of the F plasmid-based vectors, transcript and protein levels from the pMB1-based vector were not 100-fold greater than from the F plasmid-based vectors. In identical plasmid backbones, different combinations of mRNA control elements were used to alter steady-state levels of transcripts. Control elements that amplified the stability of one coding region relative to another amplified the ratio of protein produced from those transcripts. The effects of mRNA stability control elements were greater at low inducer concentrations, where mRNA levels limit protein production, than at high inducer concentrations. Although we can alter mRNA and protein levels through copy number, induction level, and mRNA stability control elements, some aspect of gene expression remains dependent on inherent characteristics of the coding region.

  7. Regulation of mRNA abundance in activated T lymphocytes: identification of mRNA species affected by the inhibition of protein synthesis.

    PubMed Central

    Coleclough, C; Kuhn, L; Lefkovits, I

    1990-01-01

    Inhibition of protein synthesis has often been observed to increase the concentration of mRNAs that encode proteins associated with the regulation of cell division. As two-dimensional gel electrophoresis permits the simultaneous monitoring of individual elements in large populations of gene products, we have used this technique to assess the effect of cycloheximide treatment on the mRNA complement of activated mouse T cells in an objective fashion. Two-dimensional gels of proteins generated by cell-free translation of mRNA from T-cell blasts display about 400 spots; only 5 of these are reproducibly enhanced by cycloheximide treatment and about 4 are diminished. The cDNA cloning vector lambda jac allows analysis of large arrays of molecular clones by cell-free expression, and we have used it in a sibling selection scheme to isolate a clone of one of the prominently induced mRNA species, which we refer to as chx1. chx1 mRNA concentration is increased by cycloheximide treatment of activated B cells, as well as T cells, and it is rapidly and transiently induced, in a cycloheximide-enhanced manner, upon serum stimulation of resting 3T3 fibroblastoid cells. The chx1 protein is hydrophilic, is slightly basic, and has patches of homology with the Jun-D gene product. The chx1 gene is remarkable in its lack of detectable introns and of strong bias against CpG dinucleotides. Images PMID:2308934

  8. Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis

    PubMed Central

    Donaldson, Michael E; Saville, Barry J

    2013-01-01

    Ustilago maydis infection of Zea mays leads to the production of thick-walled diploid teliospores that are the dispersal agent for this pathogen. Transcriptome analyses of this model biotrophic basidiomycete fungus identified natural antisense transcripts (NATs) complementary to 247 open reading frames. The U. maydis NAT cDNAs were fully sequenced and annotated. Strand-specific RT-PCR screens confirmed expression and identified NATs preferentially expressed in the teliospore. Targeted screens revealed four U. maydis NATs that are conserved in a related fungus. Expression of NATs in haploid cells, where they are not naturally occurring, resulted in increased steady-state levels of some complementary mRNAs. The expression of one NAT, as-um02151, in haploid cells resulted in a twofold increase in complementary mRNA levels, the formation of sense–antisense double-stranded RNAs, and unchanged Um02151 protein levels. This led to a model for NAT function in the maintenance and expression of stored teliospore mRNAs. In testing this model by deletion of the regulatory region, it was determined that alteration in NAT expression resulted in decreased pathogenesis in both cob and seedling infections. This annotation and functional analysis supports multiple roles for U. maydis NATs in controlling gene expression and influencing pathogenesis. PMID:23650872

  9. RNA-Binding Protein Dnd1 Promotes Breast Cancer Apoptosis by Stabilizing the Bim mRNA in a miR-221 Binding Site

    PubMed Central

    Cheng, Feng; Pan, Ying; Lu, Yi-Min; Zhu, Lei

    2017-01-01

    RNA-binding proteins (RBPs) and miRNAs are capable of controlling processes in normal development and cancer. Both of them could determine RNA transcripts fate from synthesis to decay. One such RBP, Dead end (Dnd1), is essential for regulating germ-cell viability and suppresses the germ-cell tumors development, yet how it exerts its functions in breast cancer has remained unresolved. The level of Dnd1 was detected in 21 cancerous tissues paired with neighboring normal tissues by qRT-PCR. We further annotated TCGA (The Cancer Genome Atlas) mRNA expression profiles and found that the expression of Dnd1 and Bim is positively correlated (p = 0.04). Patients with higher Dnd1 expression level had longer overall survival (p = 0.0014) by KM Plotter tool. Dnd1 knockdown in MCF-7 cells decreased Bim expression levels and inhibited apoptosis. While knockdown of Dnd1 promoted the decay of Bim mRNA 3′UTR, the stability of Bim-5′UTR was not affected. In addition, mutation of miR-221-binding site in Bim-3′UTR canceled the effect of Dnd1 on Bim mRNA. Knockdown of Dnd1 in MCF-7 cells confirmed that Dnd1 antagonized miR-221-inhibitory effects on Bim expression. Overall, our findings indicate that Dnd1 facilitates apoptosis by increasing the expression of Bim via its competitive combining with miR-221 in Bim-3′UTR. The new function of Dnd1 may contribute to a vital role in breast cancer development. PMID:28191469

  10. RNA-Binding Protein Dnd1 Promotes Breast Cancer Apoptosis by Stabilizing the Bim mRNA in a miR-221 Binding Site.

    PubMed

    Cheng, Feng; Pan, Ying; Lu, Yi-Min; Zhu, Lei; Chen, Shuzheng

    2017-01-01

    RNA-binding proteins (RBPs) and miRNAs are capable of controlling processes in normal development and cancer. Both of them could determine RNA transcripts fate from synthesis to decay. One such RBP, Dead end (Dnd1), is essential for regulating germ-cell viability and suppresses the germ-cell tumors development, yet how it exerts its functions in breast cancer has remained unresolved. The level of Dnd1 was detected in 21 cancerous tissues paired with neighboring normal tissues by qRT-PCR. We further annotated TCGA (The Cancer Genome Atlas) mRNA expression profiles and found that the expression of Dnd1 and Bim is positively correlated (p = 0.04). Patients with higher Dnd1 expression level had longer overall survival (p = 0.0014) by KM Plotter tool. Dnd1 knockdown in MCF-7 cells decreased Bim expression levels and inhibited apoptosis. While knockdown of Dnd1 promoted the decay of Bim mRNA 3'UTR, the stability of Bim-5'UTR was not affected. In addition, mutation of miR-221-binding site in Bim-3'UTR canceled the effect of Dnd1 on Bim mRNA. Knockdown of Dnd1 in MCF-7 cells confirmed that Dnd1 antagonized miR-221-inhibitory effects on Bim expression. Overall, our findings indicate that Dnd1 facilitates apoptosis by increasing the expression of Bim via its competitive combining with miR-221 in Bim-3'UTR. The new function of Dnd1 may contribute to a vital role in breast cancer development.

  11. Human eosinophil activin A synthesis and mRNA stabilization are induced by the combination of IL-3 plus TNF

    PubMed Central

    Kelly, Elizabeth A.; Esnault, Stephane; Johnson, Sean H.; Liu, Lin Ying; Malter, James S.; Burnham, Mandy E.; Jarjour, Nizar N.

    2016-01-01

    Eosinophils contribute to immune regulation and wound healing/fibrosis in various diseases including asthma. Growing appreciation for the role of activin A in such processes led us to hypothesize that eosinophils are a source of this TGF-β superfamily member. TNFα (TNF) induces activin A by other cell types and is often present at the site of allergic inflammation along with the eosinophil activating common β (βc) chain-signaling cytokines (IL-5, IL-3, GM-CSF). Previously, we established that the combination of TNF plus a βc chain-signaling cytokine synergistically induces eosinophil synthesis of the remodeling enzyme MMP-9. Therefore, eosinophils were stimulated ex vivo by these cytokines and in vivo through an allergen-induced airway inflammatory response. In contrast to IL-5+TNF or GM-CSF+TNF, the combination of IL-3+TNF synergistically induced activin A synthesis and release by human blood eosinophils. IL-3+TNF enhanced activin A mRNA stability, which required sustained signaling of pathways downstream of p38 and ERK MAP kinases. In vivo, following segmental airway allergen challenge of subjects with mild allergic asthma, activin A mRNA was upregulated in airway eosinophils compared to circulating eosinophils, and ex vivo, circulating eosinophils tended to release activin A in response to IL-3+TNF. These data provide evidence that eosinophils release activin A and that this function is enhanced when eosinophils are present in an allergen-induced inflammatory environment. Moreover, these data provide the first evidence for post-transcriptional control of activin A mRNA. We propose that, an environment rich in IL-3+TNF will lead to eosinophil–derived activin A, which plays an important role in regulating inflammation and/or fibrosis. PMID:27001469

  12. Transition State Charge Stabilization and Acid-Base Catalysis of mRNA Cleavage by the Endoribonuclease RelE.

    PubMed

    Dunican, Brian F; Hiller, David A; Strobel, Scott A

    2015-12-01

    The bacterial toxin RelE is a ribosome-dependent endoribonuclease. It is part of a type II toxin-antitoxin system that contributes to antibiotic resistance and biofilm formation. During amino acid starvation, RelE cleaves mRNA in the ribosomal A-site, globally inhibiting protein translation. RelE is structurally similar to microbial RNases that employ general acid-base catalysis to facilitate RNA cleavage. The RelE active site is atypical for acid-base catalysis, in that it is enriched with positively charged residues and lacks the prototypical histidine-glutamate catalytic pair, making the mechanism of mRNA cleavage unclear. In this study, we use a single-turnover kinetic analysis to measure the effect of pH and phosphorothioate substitution on the rate constant for cleavage of mRNA by wild-type RelE and seven active-site mutants. Mutation and thio effects indicate a major role for stabilization of increased negative change in the transition state by arginine 61. The wild-type RelE cleavage rate constant is pH-independent, but the reaction catalyzed by many of the mutants is strongly dependent on pH, suggestive of general acid-base catalysis. pH-rate curves indicate that wild-type RelE operates with the pK(a) of at least one catalytic residue significantly downshifted by the local environment. Mutation of any single active-site residue is sufficient to disrupt this microenvironment and revert the shifted pK(a) back above neutrality. pH-rate curves are consistent with K54 functioning as a general base and R81 as a general acid. The capacity of RelE to effect a large pK(a) shift and facilitate a common catalytic mechanism by uncommon means furthers our understanding of other atypical enzymatic active sites.

  13. Factors affecting storage stability of various commercial phytase sources.

    PubMed

    Sulabo, R C; Jones, C K; Tokach, M D; Goodband, R D; Dritz, S S; Campbell, D R; Ratliff, B W; DeRouchey, J M; Nelssen, J L

    2011-12-01

    phytase activity than when phytases were mixed with the vitamin or VTM premixes. Coated phytases stored in any form had greater (P < 0.01) activity retention than the uncoated phytases at all sampling periods. Results indicate that storage stability of commercially available phytases is affected by duration of storage, temperature, product form, coating, and phytase source. Pure products held at 23°C or less were the most stable. In premixes, longer storage times and higher temperatures reduced phytase activity, but coating mitigated some of these negative effects.

  14. Toxaphene affects the levels of mRNA transcripts that encode antioxidant enzymes in Hydra.

    PubMed

    Woo, Seonock; Lee, Aekyung; Won, Hyokyoung; Ryu, Jae-Chun; Yum, Seungshic

    2012-06-01

    We evaluated toxaphene-induced acute toxicity in Hydra magnipapillata. The median lethal concentrations of the animals (LC(50)) were determined to be 34.5 mg/L, 25.0 mg/L and 12.0 mg/L after exposure to toxaphene for 24 h, 48 h and 72 h, respectively. Morphological responses of hydra polyps to a range of toxaphene concentrations suggested that toxaphene negatively affects the nervous system of H. magnipapillata. We used real-time quantitative PCR of RNA extracted from polyps exposed to two concentrations of toxaphene (0.3 mg/L and 3 mg/L) for 24 h to evaluate the differential regulation of levels of transcripts that encode six antioxidant enzymes (CAT, G6PD, GPx, GR, GST and SOD), two proteins involved in detoxification and molecular stress responses (CYP1A and UB), and two proteins involved in neurotransmission and nerve cell differentiation (AChE and Hym-355). Of the genes involved in antioxidant responses, the most striking changes were observed for transcripts that encode GPx, G6PD, SOD, CAT and GST, with no evident change in levels of transcripts encoding GR. Levels of UB and CYP1A transcripts increased in a dose-dependent manner following exposure to toxaphene. Given that toxaphene-induced neurotoxicity was not reflected in the level of AChE transcripts and only slight accumulation of Hym-355 transcript was observed only at the higher of the two doses of toxaphene tested, there remains a need to identify transcriptional biomarkers for toxaphene-mediated neurotoxicity in H. magnipapillata. Transcripts that respond to toxaphene exposure could be valuable biomarkers for stress levels in H. magnipapillata and may be useful for monitoring the pollution of aquatic environments.

  15. The 3' untranslated region of human Cyclin-Dependent Kinase 5 Regulatory subunit 1 contains regulatory elements affecting transcript stability

    PubMed Central

    Moncini, Silvia; Bevilacqua, Annamaria; Venturin, Marco; Fallini, Claudia; Ratti, Antonia; Nicolin, Angelo; Riva, Paola

    2007-01-01

    Background CDK5R1 plays a central role in neuronal migration and differentiation during central nervous system development. CDK5R1 has been implicated in neurodegenerative disorders and proposed as a candidate gene for mental retardation. The remarkable size of CDK5R1 3'-untranslated region (3'-UTR) suggests a role in post-transcriptional regulation of CDK5R1 expression. Results The bioinformatic study shows a high conservation degree in mammals and predicts several AU-Rich Elements (AREs). The insertion of CDK5R1 3'-UTR into luciferase 3'-UTR causes a decreased luciferase activity in four transfected cell lines. We identified 3'-UTR subregions which tend to reduce the reporter gene expression, sometimes in a cell line-dependent manner. In most cases the quantitative analysis of luciferase mRNA suggests that CDK5R1 3'-UTR affects mRNA stability. A region, leading to a very strong mRNA destabilization, showed a significantly low half-life, indicating an accelerated mRNA degradation. The 3' end of the transcript, containing a class I ARE, specifically displays a stabilizing effect in neuroblastoma cell lines. We also observed the interaction of the stabilizing neuronal RNA-binding proteins ELAV with the CDK5R1 transcript in SH-SY5Y cells and identified three 3'-UTR sub-regions showing affinity for ELAV proteins. Conclusion Our findings evince the presence of both destabilizing and stabilizing regulatory elements in CDK5R1 3'-UTR and support the hypothesis that CDK5R1 gene expression is post-transcriptionally controlled in neurons by ELAV-mediated mechanisms. This is the first evidence of the involvement of 3'-UTR in the modulation of CDK5R1 expression. The fine tuning of CDK5R1 expression by 3'-UTR may have a role in central nervous system development and functioning, with potential implications in neurodegenerative and cognitive disorders. PMID:18053171

  16. Factors affecting hazardous waste solidification/stabilization: a review.

    PubMed

    Malviya, Rachana; Chaudhary, Rubina

    2006-09-01

    Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.

  17. Regulation of PMP22 mRNA by G3BP1 affects cell proliferation in breast cancer cells

    PubMed Central

    2013-01-01

    Background Regulation of mRNAs is one way to control protein levels and thereby important cellular processes such as growth, invasion and apoptosis. G3BPs constitute a family of mRNA-binding proteins, shown to be overexpressed in several cancer types, including breast, colon and pancreas cancer. G3BP has been reported to both stabilize and induce degradation of specific mRNAs. Results Here, we show that G3BP1, but not G3BP2, supports proliferation of several breast cancer cell lines. Global gene expression analyses of G3BP1- and G3BP2-depleted cells indicate that primarily G3BP1, and much less G3BP2, influences mRNA expression levels. Peripheral myelin protein 22 (PMP22) was one gene that was significantly influenced by G3BP1 depletion which led to a 2–3 fold increased expression. Depletion of PMP22 resulted in increased proliferation and the G3BP1-mediated effect on proliferation was not seen upon PMP22-depletion. Conclusions This indicates a novel role for G3BP1 in the regulation of cell proliferation in breast cancer cells, perhaps via a regulatory effect on PMP22 expression. PMID:24321297

  18. Posttranscriptional regulation of hsp70 expression in human cells: effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability.

    PubMed Central

    Theodorakis, N G; Morimoto, R I

    1987-01-01

    We have examined the posttranscriptional regulation of hsp70 gene expression in two human cell lines, HeLa and 293 cells, which constitutively express high levels of HSP70. HSP70 mRNA translates with high efficiency in both control and heat-shocked cells. Therefore, heat shock is not required for the efficient translation of HSP70 mRNA. Rather, the main effect of heat shock on translation is to suppress the translatability of non-heat shock mRNAs. Heat shock, however, has a marked effect on the stability of HSP70 mRNA; in non-heat-shocked cells the half-life of HSP70 mRNA is approximately 50 min, and its stability increases at least 10-fold upon heat shock. Moreover, HSP70 mRNA is more stable in cells treated with protein synthesis inhibitors, suggesting that a heat shock-sensitive labile protein regulates its turnover. An additional effect on posttranscriptional regulation of hsp70 expression can be found in adenovirus-infected cells, in which HSP70 mRNA levels decline precipititously late during infection although hsp70 transcription continues unabated. Images PMID:3437893

  19. Cholesterol Side-Chain Cleavage Gene Expression in Theca Cells: Augmented Transcriptional Regulation and mRNA Stability in Polycystic Ovary Syndrome

    PubMed Central

    Nelson-DeGrave, Velen L.; Legro, Richard S.; Strauss, Jerome F.; McAllister, Jan M.

    2012-01-01

    Hyperandrogenism is characteristic of women with polycystic ovary syndrome (PCOS). Ovarian theca cells isolated from PCOS follicles and maintained in long-term culture produce elevated levels of progestins and androgens compared to normal theca cells. Augmented steroid production in PCOS theca cells is associated with changes in the expression of genes for several steroidogenic enzymes, including CYP11A1, which encodes cytochrome P450 cholesterol side-chain cleavage. Here, we further examined CYP11A1 gene expression, at both the transcriptional and post-transcriptional level in normal and PCOS theca cells propagated in long-term culture utilizing quantitative RT-PCR, functional promoter analyses, and mRNA degradation studies. The minimal element(s) that conferred increased basal and cAMP-dependent CYP11A1 promoter function were determined. CYP11A1 mRNA half-life in normal and PCOS theca cells was compared. Results of these cumulative studies showed that basal and forskolin stimulated steady state CYP11A1 mRNA abundance and CYP11A1 promoter activity were increased in PCOS theca cells. Deletion analysis of the CYP11A1 promoter demonstrated that augmented promoter function in PCOS theca cells results from increased basal regulation conferred by a minimal sequence between −160 and −90 bp of the transcriptional start site. The transcription factor, nuclear factor 1C2, was observed to regulate basal activity of this minimal CYP11A1 element. Examination of mRNA stability in normal and PCOS theca cells demonstrated that CYP11A1 mRNA half-life increased >2-fold, from approximately 9.22+/−1.62 h in normal cells, to 22.38+/−0.92 h in PCOS cells. Forskolin treatment did not prolong CYP11A1 mRNA stability in either normal or PCOS theca cells. The 5′-UTR of CYP11A1 mRNA confers increased basal mRNA stability in PCOS cells. In conclusion, these studies show that elevated steady state CYP11A1 mRNA abundance in PCOS cells results from increased transactivation of the CYP

  20. Interaction of CCR4–NOT with EBF1 regulates gene-specific transcription and mRNA stability in B lymphopoiesis

    PubMed Central

    Yang, Cheng-Yuan; Ramamoorthy, Senthilkumar; Boller, Sören; Rosenbaum, Marc; Rodriguez Gil, Alfonso; Mittler, Gerhard; Imai, Yumiko; Kuba, Keiji; Grosschedl, Rudolf

    2016-01-01

    Transcription factor EBF1 (early B-cell factor 1) regulates early B-cell differentiation by poising or activating lineage-specific genes and repressing genes associated with alternative cell fates. To identify proteins that regulate the diverse functions of EBF1, we used SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry of proteins associated with endogenous EBF1 in pro-B cells. This analysis identified most components of the multifunctional CCR4–NOT complex, which regulates transcription and mRNA degradation. CNOT3 interacts with EBF1, and we identified histidine 240 in EBF1 as a critical residue for this interaction. Complementation of Ebf1−/− progenitors with EBF1H240A revealed a partial block of pro-B-cell differentiation and altered expression of specific EBF1 target genes that show either reduced transcription or increased mRNA stability. Most deregulated EBF1 target genes show normal occupancy by EBF1H240A, but we also detected genes with altered occupancy, suggesting that the CCR4–NOT complex affects multiple activities of EBF1. Mice with conditional Cnot3 inactivation recapitulate the block of early B-cell differentiation, which we found to be associated with an impaired autoregulation of Ebf1 and reduced expression of pre-B-cell receptor components. Thus, the interaction of the CCR4–NOT complex with EBF1 diversifies the function of EBF1 in a context-dependent manner and may coordinate transcriptional and post-transcriptional gene regulation. PMID:27807034

  1. Interaction of CCR4-NOT with EBF1 regulates gene-specific transcription and mRNA stability in B lymphopoiesis.

    PubMed

    Yang, Cheng-Yuan; Ramamoorthy, Senthilkumar; Boller, Sören; Rosenbaum, Marc; Rodriguez Gil, Alfonso; Mittler, Gerhard; Imai, Yumiko; Kuba, Keiji; Grosschedl, Rudolf

    2016-10-15

    Transcription factor EBF1 (early B-cell factor 1) regulates early B-cell differentiation by poising or activating lineage-specific genes and repressing genes associated with alternative cell fates. To identify proteins that regulate the diverse functions of EBF1, we used SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry of proteins associated with endogenous EBF1 in pro-B cells. This analysis identified most components of the multifunctional CCR4-NOT complex, which regulates transcription and mRNA degradation. CNOT3 interacts with EBF1, and we identified histidine 240 in EBF1 as a critical residue for this interaction. Complementation of Ebf1(-/-) progenitors with EBF1H240A revealed a partial block of pro-B-cell differentiation and altered expression of specific EBF1 target genes that show either reduced transcription or increased mRNA stability. Most deregulated EBF1 target genes show normal occupancy by EBF1H240A, but we also detected genes with altered occupancy, suggesting that the CCR4-NOT complex affects multiple activities of EBF1. Mice with conditional Cnot3 inactivation recapitulate the block of early B-cell differentiation, which we found to be associated with an impaired autoregulation of Ebf1 and reduced expression of pre-B-cell receptor components. Thus, the interaction of the CCR4-NOT complex with EBF1 diversifies the function of EBF1 in a context-dependent manner and may coordinate transcriptional and post-transcriptional gene regulation.

  2. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells

    SciTech Connect

    Pham, Hung; Ekaterina Rodriguez, C.; Donald, Graham W.; Hertzer, Kathleen M.; Jung, Xiaoman S.; Chang, Hui-Hua; Moro, Aune; Reber, Howard A.; Hines, O. Joe; Eibl, Guido

    2013-09-13

    Highlights: •Pancreatic cancer cells express low miR-143 levels and elevated p-MEK, p-MAPK and RREB1. •MEK inhibitors U0126 and PD98059 increase miR-143 expression. •miR-143 decreases COX-2 mRNA stability and expression and PGE{sub 2}. •miR-143 decreases p-p38MAPK, p-MEK, p-MAPK and RREB1 expression. -- Abstract: Small non-coding RNAs, microRNAs (miRNA), inhibit the translation or accelerate the degradation of message RNA (mRNA) by targeting the 3′-untranslated region (3′-UTR) in regulating growth and survival through gene suppression. Deregulated miRNA expression contributes to disease progression in several cancers types, including pancreatic cancers (PaCa). PaCa tissues and cells exhibit decreased miRNA, elevated cyclooxygenase (COX)-2 and increased prostaglandin E{sub 2} (PGE{sub 2}) resulting in increased cancer growth and metastases. Human PaCa cell lines were used to demonstrate that restoration of miRNA-143 (miR-143) regulates COX-2 and inhibits cell proliferation. miR-143 were detected at fold levels of 0.41 ± 0.06 in AsPC-1, 0.20 ± 0.05 in Capan-2 and 0.10 ± 0.02 in MIA PaCa-2. miR-143 was not detected in BxPC-3, HPAF-II and Panc-1 which correlated with elevated mitogen-activated kinase (MAPK) and MAPK kinase (MEK) activation. Treatment with 10 μM of MEK inhibitor U0126 or PD98059 increased miR-143, respectively, by 187 ± 18 and 152 ± 26-fold in BxPC-3 and 182 ± 7 and 136 ± 9-fold in HPAF-II. miR-143 transfection diminished COX-2 mRNA stability at 60 min by 2.6 ± 0.3-fold in BxPC-3 and 2.5 ± 0.2-fold in HPAF-II. COX-2 expression and cellular proliferation in BxPC-3 and HPAF-II inversely correlated with increasing miR-143. PGE{sub 2} levels decreased by 39.3 ± 5.0% in BxPC-3 and 48.0 ± 3.0% in HPAF-II transfected with miR-143. Restoration of miR-143 in PaCa cells suppressed of COX-2, PGE{sub 2}, cellular proliferation and MEK/MAPK activation, implicating this pathway in regulating miR-143 expression.

  3. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    PubMed

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-03-15

    Although tumor protein D52 (TPD) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than TPD53 and 54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3' end of a reporter green fluorescence protein gene. RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RNA immunoprecipitation assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3' end of the 78-280 fragment. Stimulation of TGF-b and EGF decreased the binding ability of these factors, resulted in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we herein report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene.

  4. CIL-102 induces matrix metalloproteinase-2 (MMP-2)/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability.

    PubMed

    Liu, Wen-Hsin; Chen, Yeh-Long; Chang, Long-Sen

    2012-12-01

    This study explores the CIL-102 suppression mechanism on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia K562 cells. CIL-102 attenuated K562 cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels. Moreover, CIL-102 reduced luciferase activity of MMP-2/MMP-9 promoter constructs and MMP-2/MMP-9 mRNA stability. CIL-102 treatment induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Transfection of constitutively active MEK1 restored MMP-2 and MMP-9 promoter activity in CIL-102-treated cells, while suppression of p38 MAPK/JNK activation abolished CIL-102-induced MMP-2/MMP-9 mRNA decay. CIL-102-induced p38 MAPK/JNK activation led to protein phosphatase 2A-mediated tristetraprolin (TTP) down-regulation. The reduction in TTP-KH-type splicing regulatory protein (KSRP) complexes formation promoted KSRP-mediated MMP-2/MMP-9 mRNA decay in CIL-102-treated K562 cells. Moreover, CIL-102 reduced invasion and MMP-2/MMP-9 expression in breast and liver cancer cells. Taken together, our data indicate that CIL-102 induces MMP-2/MMP-2 down-regulation via simultaneous suppression of genetic transcription and mRNA stability, and suggest a potential utility for CIL-102 in reducing MMP-2/MMP-9-mediated cancer progression.

  5. A Single Element in the 3′ UTR of the Apical Sodium-Dependent Bile Acid Transporter Controls both Stabilization and Destabilization of mRNA

    PubMed Central

    Soler, Dellys M.; Ghosh, Ayantika; Chen, Frank; Shneider, Benjamin L.

    2016-01-01

    mRNA stability appears to play a key role in the ontogenic regulation of the apical sodium dependent bile acid transporter (ASBT). The RNA binding proteins, Hu antigen R (HuR) and Tristetraprolin (TTP), stabilize and destabilize ASBT mRNA, respectively. Potential HuR binding sites were assessed by sequence analysis in the context of prior in vitro functional analyses of the rat ASBT 3′UTR. Wild type and mutant binding sites were investigated by gel shift analysis using IEC-6 cell extracts. The functional consequences of binding site mutations were assessed using two different hybrid reporter constructs linking the 3′UTR element to a either a luciferase or a β-globin coding mRNA sequence. A specific metastasis associated gene 1 cis-element (MTA1) was identified in the ASBT 3′UTR that became associated with proteins in IEC-6 cell extracts and could be supershifted by HuR or TTP antibodies. Mutation of this cis-element abrogated the gel shift of IEC-6 proteins. Furthermore hybrid constructs containing a mutant MTA1 element had reduced responses to modulation of HuR or TTP. For the first time we have identified a single specific sequence element in the 3′UTR of the rat ASBT mRNA that mediates counter-regulatory changes in mRNA abundance in response to both HuR and TTP. PMID:24946903

  6. p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation.

    PubMed

    Xie, Qipeng; Guo, Xirui; Gu, Jiayan; Zhang, Liping; Jin, Honglei; Huang, Haishan; Li, Jingxia; Huang, Chuanshu

    2016-03-29

    p85α is a regulatory subunit of phosphatidylinositol 3-kinase (PI3K) that is a key lipid enzyme for generating phosphatidylinositol 3, 4, 5-trisphosphate, and subsequently activates signaling that ultimately regulates cell cycle progression, cell growth, cytoskeletal changes, and cell migration. In addition to form a complex with the p110 catalytic subunit, p85α also exists as a monomeric form due to that there is a greater abundance of p85α than p110 in many cell types. Our previous studies have demonstrated that monomeric p85α exerts a pro-apoptotic role in UV response through induction of TNF-α gene expression in PI3K-independent manner. In current studies, we identified a novel biological function of p85α as a positive regulator of epidermal growth factor receptor (EGFR) expression and cell malignant transformation via nucleolin-dependent mechanism. Our results showed that p85α was crucial for EGFR and nucleolin expression and subsequently resulted in an increase of malignant cellular transformation by using both specific knockdown and deletion of p85α in its normal expressed cells. Mechanistic studies revealed that p85α upregulated EGFR protein expression mainly through stabilizing its mRNA, whereas nucleolin (NCL) was able to bind to egfr mRNA and increase its mRNA stability. Consistently, overexpression of NCL in p85α-/- cells restored EGFR mRNA stabilization, protein expression and cell malignant transformation. Moreover, we discovered that p85α upregulated NCL gene transcription via enhancing C-Jun activation. Collectively, our studies demonstrate a novel function of p85α as a positive regulator of EGFR mRNA stability and cell malignant transformation, providing a significant insight into the understanding of biomedical nature of p85α protein in mammalian cells and further supporting that p85α might be a potential target for cancer prevention and therapy.

  7. p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation

    PubMed Central

    Gu, Jiayan; Zhang, Liping; Jin, Honglei; Huang, Haishan; Li, Jingxia; Huang, Chuanshu

    2016-01-01

    p85α is a regulatory subunit of phosphatidylinositol 3-kinase (PI3K) that is a key lipid enzyme for generating phosphatidylinositol 3, 4, 5-trisphosphate, and subsequently activates signaling that ultimately regulates cell cycle progression, cell growth, cytoskeletal changes, and cell migration. In addition to form a complex with the p110 catalytic subunit, p85α also exists as a monomeric form due to that there is a greater abundance of p85α than p110 in many cell types. Our previous studies have demonstrated that monomeric p85α exerts a pro-apoptotic role in UV response through induction of TNF-α gene expression in PI3K-independent manner. In current studies, we identified a novel biological function of p85α as a positive regulator of epidermal growth factor receptor (EGFR) expression and cell malignant transformation via nucleolin-dependent mechanism. Our results showed that p85α was crucial for EGFR and nucleolin expression and subsequently resulted in an increase of malignant cellular transformation by using both specific knockdown and deletion of p85α in its normal expressed cells. Mechanistic studies revealed that p85α upregulated EGFR protein expression mainly through stabilizing its mRNA, whereas nucleolin (NCL) was able to bind to egfr mRNA and increase its mRNA stability. Consistently, overexpression of NCL in p85α−/− cells restored EGFR mRNA stabilization, protein expression and cell malignant transformation. Moreover, we discovered that p85α upregulated NCL gene transcription via enhancing C-Jun activation. Collectively, our studies demonstrate a novel function of p85α as a positive regulator of EGFR mRNA stability and cell malignant transformation, providing a significant insight into the understanding of biomedical nature of p85α protein in mammalian cells and further supporting that p85α might be a potential target for cancer prevention and therapy. PMID:26918608

  8. Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mRNA or the half-life of cytoplasmic mRNA.

    PubMed Central

    Cheng, J; Maquat, L E

    1993-01-01

    The abundance of the mRNA for human triosephosphate isomerase (TPI) is decreased to approximately 20% of normal by frameshift and nonsense mutations that cause translation to terminate at a nonsense codon within the first three-fourths of the reading frame. Results of previous studies inhibiting RNA synthesis with actinomycin D suggested that the decrease is not attributable to an increased rate of cytoplasmic mRNA decay. However, the step in TPI RNA metabolism that is altered was not defined, and the use of actinomycin D, in affecting all polymerase II-transcribed genes, could result in artifactual conclusions. In data presented here, the nonsense codon-mediated reduction in the level of TPI mRNA is shown to be characteristic of both nuclear and cytoplasmic fractions of the cell, indicating that the altered metabolic step is nucleus associated. Neither aberrancies in gene transcription nor aberrancies in RNA splicing appear to contribute to the reduction since there were no accompanying changes in the amount of nuclear run-on transcription, the level of any of the six introns in TPI pre-mRNA, or the size of processed mRNA in the nucleus. Deletion of all splice sites that reside downstream of a nonsense codon does not abrogate the reduction, indicating that the reduction takes place independently of the splicing of a downstream intron. Experiments that placed TPI gene expression under the control of the human c-fos promoter, which can be transiently activated by the addition of serum to serum-deprived cells, verified that there is no detectable effect of a nonsense codon on the turnover of cytoplasmic mRNA. Images PMID:8441420

  9. mRNA decay during herpes simplex virus (HSV) infections: mutations that affect translation of an mRNA influence the sites at which it is cleaved by the HSV virion host shutoff (Vhs) protein.

    PubMed

    Shiflett, Lora A; Read, G Sullivan

    2013-01-01

    During lytic infections, the herpes simplex virus (HSV) virion host shutoff (Vhs) endoribonuclease degrades many host and viral mRNAs. Within infected cells it cuts mRNAs at preferred sites, including some in regions of translation initiation. Vhs binds the translation initiation factors eIF4H, eIF4AI, and eIF4AII, suggesting that its mRNA degradative function is somehow linked to translation. To explore how Vhs is targeted to preferred sites, we examined the in vitro degradation of a target mRNA in rabbit reticulocyte lysates containing in vitro-translated Vhs. Vhs caused rapid degradation of mRNAs beginning with cleavages at sites in the first 250 nucleotides, including a number near the start codon and in the 5' untranslated region. Ligation of the ends to form a circular mRNA inhibited Vhs cleavage at the same sites at which it cuts capped linear molecules. This was not due to an inability to cut any circular RNA, since Vhs cuts circular mRNAs containing an encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) at the same sites as linear molecules with the IRES. Cutting linear mRNAs at preferred sites was augmented by the presence of a 5' cap. Moreover, mutations that altered the 5' proximal AUG abolished Vhs cleavage at nearby sites, while mutations that changed sequences surrounding the AUG to improve their match to the Kozak consensus sequence enhanced Vhs cutting near the start codon. The results indicate that mutations in an mRNA that affect its translation affect the sites at which it is cut by Vhs and suggest that Vhs is directed to its preferred cut sites during translation initiation.

  10. Galectin-3 is a non-classic RNA binding protein that stabilizes the mucin MUC4 mRNA in the cytoplasm of cancer cells.

    PubMed

    Coppin, Lucie; Vincent, Audrey; Frénois, Frédéric; Duchêne, Belinda; Lahdaoui, Fatima; Stechly, Laurence; Renaud, Florence; Villenet, Céline; Seuningen, Isabelle Van; Leteurtre, Emmanuelle; Dion, Johann; Grandjean, Cyrille; Poirier, Françoise; Figeac, Martin; Delacour, Delphine; Porchet, Nicole; Pigny, Pascal

    2017-03-06

    Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3'UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3(-/-) mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally.

  11. Galectin-3 is a non-classic RNA binding protein that stabilizes the mucin MUC4 mRNA in the cytoplasm of cancer cells

    PubMed Central

    Coppin, Lucie; Vincent, Audrey; Frénois, Frédéric; Duchêne, Belinda; Lahdaoui, Fatima; Stechly, Laurence; Renaud, Florence; Villenet, Céline; Seuningen, Isabelle Van; Leteurtre, Emmanuelle; Dion, Johann; Grandjean, Cyrille; Poirier, Françoise; Figeac, Martin; Delacour, Delphine; Porchet, Nicole; Pigny, Pascal

    2017-01-01

    Pancreatic cancer cells express high levels of MUC1, MUC4 and MUC16 mRNAs that encode membrane-bound mucins. These mRNAs share unusual features such as a long half-life. However, it remains unknown how mucin mRNA stability is regulated. Galectin-3 (Gal-3) is an endogenous lectin playing important biological functions in epithelial cells. Gal-3 is encoded by LGALS3 which is up-regulated in pancreatic cancer. Despite the absence of a RNA-recognition motif, Gal-3 interacts indirectly with pre-mRNAs in the nucleus and promotes constitutive splicing. However a broader role of Gal-3 in mRNA fate is unexplored. We report herein that Gal-3 increases MUC4 mRNA stability through an intermediate, hnRNP-L which binds to a conserved CA repeat element in the 3′UTR in a Gal-3 dependent manner and also controls Muc4 mRNA levels in epithelial tissues of Gal3−/− mice. Gal-3 interacts with hnRNP-L in the cytoplasm, especially during cell mitosis, but only partly associates with protein markers of P-Bodies or Stress Granules. By RNA-IP plus RNA-seq analysis and imaging, we demonstrate that Gal-3 binds to mature spliced MUC4 mRNA in the perinuclear region, probably in hnRNP-L-containing RNA granules. Our findings highlight a new role for Gal-3 as a non-classic RNA-binding protein that regulates MUC4 mRNA post-transcriptionally. PMID:28262838

  12. In vitro neuropeptide Y mRNA expressing model for screening essences that may affect appetite using Rolf B1.T cells.

    PubMed

    Chen, Shiau-Wei; Wu, Po-Ju; Chiang, Been-Huang

    2012-08-15

    Neuropeptide Y (NPY) is the most important appetite regulator. This study aimed to establish an in vitro NPY mRNA expression model for screening essences to determine if they are an appetite stimulator or inhibitor. We cultured the olfactory nerve cells Rolf B1.T for 2 days and then treated the cells with the known appetite inhibitor limonene and stimulator linalool. It was found that linalool could significantly stimulate NPY mRNA expression in 10 min, and limonene had the opposite effect. Similar results were also found in primary olfactory ensheathing cells isolated from rats. Further clinical trials using human subjects found that, when 10 min of treatment was applied, linalool indeed increased the serum NPY level in human peripheral blood. Limonene, on the other hand, decreased the serum NPY level. Thus, NPY mRNA expression in Rolf B1.T cells could be used as an in vitro model for screening essences that may affect appetite.

  13. AU-rich elements in the mRNA 3'-untranslated region of the rat receptor for advanced glycation end products and their relevance to mRNA stability.

    PubMed

    Caballero, José Juan; Girón, María Dolores; Vargas, Alberto Manuel; Sevillano, Natalia; Suárez, María Dolores; Salto, Rafael

    2004-06-18

    Several putative polyadenylation sequences and an adenylate plus timidylate rich element (ARE) are present at the 3' end of the rat advanced glycation end products receptor (RAGE) gene. Two transcripts are generated by the use of alternative polyadenylation sequences, one containing the ARE sequence in its 3'-untranslated region (3'-UTR). Transfections of CHO-k1 or NRK cells with constructs expressing the 3'-UTRs of the transcripts fused to a green fluorescence protein mRNA show that the ARE sequence has a negative effect on protein expression correlating with a decrease in the amount of mRNA, as shown in CHO-k1 transfected cells. When transfected cells were incubated in the presence of Actinomycin D the amount of fluorescence decreased in cells transfected with the ARE sequence, indicating that this sequence induces lower mRNA stability. Thus, alternative polyadenylation signals and an ARE sequence provide a novel mechanism for the regulation of the rat RAGE gene expression.

  14. Dynamic stability as affected by the longitudinal moment of inertia

    NASA Technical Reports Server (NTRS)

    Wilson, Edwin B

    1924-01-01

    In a recent Technical Note (NACA-TN-115, October, 1922), Norton and Carrol have reported experiments showing that a relatively large (15 per cent) increase in longitudinal moment of inertia made no noticeable difference in the stability of a standard SE-5A airplane. They point out that G. P. Thomson, "Applied Aeronautics," page 208, stated that an increase in longitudinal moment of inertia would decrease the stability. Neither he nor they make any theoretical forecast of the amount of decrease. Although it is difficult, on account of the complications of the theory of stability of the airplane, to make any accurate forecast, it is the purpose of this report to attempt a discussion of the matter theoretically with reference to finding a rough quantitative estimate.

  15. FACTORS AFFECTING DISINFECTION AND STABILIZATION OF SEWAGE SLUDGE

    EPA Science Inventory

    Effective disinfection and stabilization of sewage sludge prior to land application is essential to not only protect human health, but also to convince the public of its benefits and safety. A basic understanding of the key factors involved in producing a stable biosolid product ...

  16. p38 Mitogen-Activated Protein Kinase-Dependent and -Independent Signaling of mRNA Stability of AU-Rich Element-Containing Transcripts

    PubMed Central

    Frevel, Mathias A. E.; Bakheet, Tala; Silva, Aristobolo M.; Hissong, John G.; Khabar, Khalid S. A.; Williams, Bryan R. G.

    2003-01-01

    Adenylate/uridylate-rich element (ARE)-mediated mRNA turnover is an important regulatory component of gene expression for innate and specific immunity, in the hematopoietic system, in cellular growth regulation, and for many other cellular processes. This diversity is reflected in the distribution of AREs in the human genome, which we have established as a database of more than 900 ARE-containing genes that may utilize AREs as a means of controlling cellular mRNA levels. The p38 mitogen-activated protein kinase (MAP kinase) pathway has been implicated in regulating the stability of nine ARE-containing transcripts. Here we explored the entire spectrum of ARE-containing genes for p38-dependent regulation of ARE-mediated mRNA turnover with a custom cDNA array containing probes for 950 ARE mRNAs. The human monocytic cell line THP-1 treated with lipopolysaccharide (LPS) was used as a reproducible cellular model system that allowed us to precisely control the conditions of mRNA induction and decay in the absence and presence of the p38 inhibitor SB203580. This approach allowed us to establish an LPS-induced ARE mRNA expression profile in human monocytes and determine the half-lives of 470 AU-rich mRNAs. Most importantly, we identified 42 AU-rich genes, previously unrecognized, that show p38-dependent mRNA stabilization. In addition to a number of cytokines, several interesting novel AU-rich transcripts likely to play a role in macrophage activation by LPS exhibited p38-dependent transcript stabilization, including macrophage-specific colony-stimulating factor 1, carbonic anhydrase 2, Bcl2, Bcl2-like 2, and nuclear factor erythroid 2-like 2. Finally, the identification of the p38-dependent upstream activator MAP kinase kinase 6 as a member of this group identifies a positive feedback loop regulating macrophage signaling via p38 MAP kinase-dependent transcript stabilization. PMID:12509443

  17. Quantitative mapping shows that serotonin rather than dopamine receptor mRNA expressions are affected after repeated intermittent administration of MDMA in rat brain.

    PubMed

    Kindlundh-Högberg, Anna M S; Svenningsson, Per; Schiöth, Helgi B

    2006-09-01

    Ecstasy, (+/-)-3,4-methylenedioxy-metamphetamine (MDMA), is a popular recreational drug among young people. The present study aims to mimic MDMA intake among adolescents at dance clubs, taking repeated doses in the same evening on an intermittent basis. Male Sprague-Dawley rats received either 3x1 or 3x5 mg/kg/day (3 h apart) every seventh day during 4 weeks. We used real-time RT-PCR to determine the gene expression of serotonin 5HT1A, 5HT1B, 5HT2A, 5HT2C, 5HT3, 5HT6 receptors and dopamine D1, D2, D3 receptors in seven brain nuclei. The highest dose of MDMA extensively increased the 5HT1B-receptor mRNA in the cortex, caudate putamen, nucleus accumbens, and hypothalamus. The 5HT2A-receptor mRNA was reduced at the highest MDMA dose in the cortex. The 5HT2C mRNA was significantly increased in a dose-dependent manner in the cortex and the hypothalamus, as well as the 5HT3-receptor mRNA was in the hypothalamus. The 5HT6 mRNA level was increased in the forebrain cortex and the amygdala. Dopamine receptor mRNAs were only affected in the hypothalamus. In conclusion, this study provides evidence for a unique implication of serotonin rather than dopamine receptor mRNA levels, in response to repeated intermittent MDMA administration. We therefore suggest that serotonin regulated functions also primarily underlie repeated MDMA intake at rave parties.

  18. Regulation of cyclooxygenase-2 expression by cAMP response element and mRNA stability in a human airway epithelial cell line exposed to zinc

    SciTech Connect

    Wu Weidong Silbajoris, Robert A.; Cao Dongsun; Bromberg, Philip A.; Zhang Qiao; Peden, David B.; Samet, James M.

    2008-09-01

    Exposure to zinc-laden particulate matter in ambient and occupational settings has been associated with proinflammatory responses in the lung. Cyclooxygenase 2-derived eicosanoids are important modulators of airway inflammation. In this study, we characterized the transcriptional and posttranscriptional events that regulate COX-2 expression in a human bronchial epithelial cell line BEAS-2B exposed to Zn{sup 2+}. Zn{sup 2+} exposure resulted in pronounced increases in COX-2 mRNA and protein expression, which were prevented by pretreatment with the transcription inhibitor actinomycin D, implying the involvement of transcriptional regulation. This was supported by the observation of increased COX-2 promoter activity in Zn{sup 2+}-treated BEAS-2B cells. Mutation of the cAMP response element (CRE), but not the {kappa}B-binding sites in the COX-2 promoter markedly reduced COX-2 promoter activity induced by Zn{sup 2+}. Inhibition of NF{kappa}B activation did not block Zn{sup 2+}-induced COX-2 expression. Measurement of mRNA stability demonstrated that Zn{sup 2+} exposure impaired the degradation of COX-2 mRNA in BEAS-2B cells. This message stabilization effect of Zn{sup 2+} exposure was shown to be dependent on the integrity of the 3'-untranslated region found in the COX-2 transcript. Taken together, these data demonstrate that the CRE and mRNA stability regulates COX-2 expression induced in BEAS-2B cells exposed to extracellular Zn{sup 2+}.

  19. Effects of disruption of the nucleotide pattern in CRID element and Kozak sequence of interferon β on mRNA stability and protein production.

    PubMed

    Kay, Maryam; Hojati, Zohreh; Heidari, Maryam; Bazi, Zahra; Korbekandi, Hassan

    2015-01-01

    Interferon β (IFNβ) is the most important drug that has been used frequently for multiple sclerosis treatment. This study has tried to improve the IFNβ production by introducing mutations in the coding region of IFNβ, while its amino acid sequence is intact. Two recombinant vectors IFNβ(K) and IFNβ(K+CRID )were designed by site-directed mutagenesis. The IFNβ(K) and IFNβ(K+CRID) have two substitutions in Kozak sequence and four substitutions in CRID sequence, respectively. The Chinese hamster ovary (CHO) cell codon usage optimization was also performed for both of them. They were transiently transfected to CHO-dhfr(-) cell line using Lipofectamine kit (Invitrogen, Grand Island, NY). The amount of mRNA and protein was determined by real time PCR and ELISA. The results of this study indicate that the amount of IFNβ protein produced by CHO cells containing IFNβ(K) has been elevated up to 3.5-fold. On the other hand, enormous amounts of IFNβ mRNA and protein were produced by cells containing IFNβ(K+CRID) construct; more than 4.6-fold and 6-fold, respectively. It could be concluded that disruption of AT pattern in CRID element increase RNA and protein production, improve IFNβ mRNA stability and, may also enhance mRNA half-life. In a similar way, more proteins are produced by modification of Kozak sequence.

  20. Selenium Deficiency Affects the mRNA Expression of Inflammatory Factors and Selenoprotein Genes in the Kidneys of Broiler Chicks.

    PubMed

    Zhang, Jiu-Li; Xu, Bo; Huang, Xiao-Dan; Gao, Yu-Hong; Chen, Yu; Shan, An-Shan

    2016-05-01

    The aim of this study was to investigate the influence of Se deficiency on the transcription of inflammatory factors and selenoprotein genes in the kidneys of broiler chicks. One hundred fifty 1-day-old broiler chicks were randomly assigned to two groups fed with either a low-Se diet (L group, 0.033 mg/kg Se) or an adequate Se diet (C group, 0.2 mg/kg Se). The levels of uric acid (UA) and creatinine (Cr) in the serum and the mRNA levels of 6 inflammatory factors and 25 selenoprotein genes in the kidneys were measured as the clinical signs of Se deficiency occurred at 20 days old. The results indicated that the contents of UA and Cr in the serum increased in L group (p < 0.05), and the mRNA levels of the inflammatory factors (NF-κB, iNOS, COX-2, and TNF-α) increased in L group (p < 0.05). Meanwhile, the mRNA levels of PTGEs and HO-1 were not changed. In addition, 25 selenoprotein transcripts displayed ubiquitous expression in the kidneys of the chicks. The mRNA levels of 14 selenoprotein genes (Dio1, Dio2, GPx3, Sepp1, SelH, SelI, SelK, Sepn1, SelO, SelW, Sep15, SelT, SelU, and SelS) decreased, and 9 selenoprotein genes (GPx1, GPx2, GPx4, SelPb, Txnrd1, Txnrd2, Txnrd3, SPS2, and SelM) increased in L group (p < 0.05), but the Dio3 and Sepx1 mRNA levels did not change. The results indicated that Se deficiency resulted in kidney dysfunction, activation of the NF-κB pathway, and a change in selenoprotein gene expression. The changes of inflammatory factor and selenoprotein gene expression levels were directly related to the abnormal renal functions induced by Se deficiency.

  1. Fas-activated Ser/Thr phosphoprotein (FAST) is a eukaryotic initiation factor 4E-binding protein that regulates mRNA stability and cell survival

    PubMed Central

    Li, Wei; Ivanov, Pavel; Anderson, Paul

    2013-01-01

    The recognition of T cell intracellular antigen-1 (TIA-1) by Fas-activated Ser/Thr phosphoprotein (FAST) results in prolonged cell survival by inducing the expression of inhibitors of apoptosis. Here we show that the functional effects of FAST are dependent on its interactions with eukaryotic translation initiation factor 4E (eIF4E) which is the major cytosolic cap binding protein in cells. FAST binds to eIF4E via a consensus motif (428YXXXXLL433) that is also found in eIF4G, 4E-BP1/2/3, 4E-T, and cup. A point mutation within this motif at Y428 dampens the ability of FAST to recognize eIF4E. Wild-type (WT) FAST, but not its Y428G mutant, increases the expression of co-transfected cellular inhibitor of apoptosis-1 (cIAP-1) and β-gal mRNA and protein, but inhibits the Fas-induced activation of caspase-3. Increased expression of the co-transfected proteins results, in part, from stabilization of mRNA, suggesting that FAST:eIF4E interactions can inhibit mRNA decay. We propose that eIF4E:FAST:TIA-1 complexes regulate the translation and stability of specific mRNAs that encode proteins important for cell survival. PMID:26824015

  2. Cow biological type affects ground beef colour stability.

    PubMed

    Raines, Christopher R; Hunt, Melvin C; Unruh, John A

    2009-12-01

    To determine the effects of cow biological type on colour stability of ground beef, M. semimembranosus from beef-type (BSM) and dairy-type (DSM) cows was obtained 5d postmortem. Three blends (100% BSM, 50% BSM+50% DSM, 100% DSM) were adjusted to 90% and 80% lean points using either young beef trim (YBT) or beef cow trim (BCT), then packaged in high oxygen (High-O(2); 80% O(2)) modified atmosphere (MAP). The BSM+YBT patties had the brightest colour initially, but discoloured rapidly. Although DSM+BCT patties had the darkest colour initially, they discoloured least during display. Metmyoglobin reducing ability of ground DSM was up to fivefold greater than ground BSM, and TBARS values of BSM was twofold greater than DSM by the end of display (4d). Though initially darker than beef cow lean, dairy cow lean has a longer display colour life and may be advantageous to retailers using High-O(2) MAP.

  3. High intensity interval training favourably affects antioxidant and inflammation mRNA expression in early-stage chronic kidney disease.

    PubMed

    Tucker, Patrick S; Briskey, David R; Scanlan, Aaron T; Coombes, Jeff S; Dalbo, Vincent J

    2015-12-01

    Increased levels of oxidative stress and inflammation have been linked to the progression of chronic kidney disease. To reduce oxidative stress and inflammation related to chronic kidney disease, chronic aerobic exercise is often recommended. Data suggests high intensity interval training may be more beneficial than traditional aerobic exercise. However, appraisals of differing modes of exercise, along with explanations of mechanisms responsible for observed effects, are lacking. This study assessed effects of eight weeks of high intensity interval training (85% VO2max), versus low intensity exercise (45-50% VO2max) and sedentary behaviour, in an animal model of early-stage chronic kidney disease. We examined kidney-specific mRNA expression of genes related to endogenous antioxidant enzyme activity (glutathione peroxidase 1; Gpx1, superoxide dismutase 1; Sod1, and catalase; Cat) and inflammation (kidney injury molecule 1; Kim1 and tumour necrosis factor receptor super family 1b; Tnfrsf1b), as well as plasma F2-isoprostanes, a marker of lipid peroxidation. Compared to sedentary behaviour, high intensity interval training resulted in increased mRNA expression of Sod1 (p=0.01) and Cat (p<0.001). Compared to low intensity exercise, high intensity interval training resulted in increased mRNA expression of Cat (p<0.001) and Tnfrsf1b (p=0.047). In this study, high intensity interval training was superior to sedentary behaviour and low intensity exercise as high intensity interval training beneficially influenced expression of genes related to endogenous antioxidant enzyme activity and inflammation.

  4. PKCε Promotes HuD-Mediated Neprilysin mRNA Stability and Enhances Neprilysin-Induced Aβ Degradation in Brain Neurons

    PubMed Central

    Lim, Chol Seung; Alkon, Daniel L.

    2014-01-01

    Amyloid-beta (Aβ) peptide accumulation in the brain is a pathological hallmark of all forms of Alzheimer’s disease. An imbalance between Aβ production and clearance from the brain may contribute to accumulation of neurotoxic Aβ and subsequent synaptic loss, which is the strongest correlate of the extent of memory loss in AD. The activity of neprilysin (NEP), a potent Aβ-degrading enzyme, is decreased in the AD brain. Expression of HuD, an mRNA-binding protein important for synaptogenesis and neuronal plasticity, is also decreased in the AD brain. HuD is regulated by protein kinase Cε (PKCε), and we previously demonstrated that PKCε activation decreases Aβ levels. We hypothesized that PKCε acts through HuD to stabilize NEP mRNA, modulate its localization, and support NEP activity. Conversely, loss of PKCε-activated HuD in AD leads to decreased NEP activity and accumulation of Aβ. Here we show that HuD is associated with NEP mRNA in cultures of human SK-N-SH cells. Treatment with bryostatin, a PKCε-selective activator, enhanced NEP association with HuD and increased NEP mRNA stability. Activation of PKCε also increased NEP protein levels, increased NEP phosphorylation, and induced cell surface expression. In addition, specific PKCε activation directly stimulated NEP activity, leading to degradation of a monomeric form of Aβ peptide and decreased Aβ neuronal toxicity, as measured by cell viability. Bryostatin treatment also rescued Aβ-mediated inhibition of HuD-NEP mRNA binding, NEP protein expression, and NEP cell membrane translocation. These results suggest that PKCε activation reduces Aβ by up-regulating, via the mRNA-binding protein HuD, Aβ-degrading enzymes such as NEP. Thus, PKCε activation may have therapeutic efficacy for AD by reducing neurotoxic Aβ accumulation as well as having direct anti-apoptotic and synaptogenic effects. PMID:24848988

  5. Detrimental ELAVL-1/HuR-dependent GSK3β mRNA stabilization impairs resolution in acute respiratory distress syndrome

    PubMed Central

    Hoffman, Olivia; Burns, Nana; Vadász, István; Eltzschig, Holger K.; Edwards, Michael G.

    2017-01-01

    A hallmark of acute respiratory distress syndrome (ARDS) is accumulation of protein-rich edema in the distal airspaces and its removal is critical for patient survival. Previous studies have shown a detrimental role of Glycogen Synthase Kinase (GSK) 3β during ARDS via inhibition of alveolar epithelial protein transport. We hypothesized that post-transcriptional regulation of GSK3β could play a functional role in ARDS resolution. To address this hypothesis, we performed an in silico analysis to identify regulatory genes whose expression correlation to GSK3β messenger RNA utilizing two lung cancer cell line array datasets. Among potential regulatory partners of GSK3β, these studies identified the RNA-binding protein ELAVL-1/HuR (Embryonic Lethal, Abnormal Vision, Drosophila-Like) as a central component in a likely GSK3β signaling network. ELAVL-1/HuR is a RNA-binding protein that selectively binds to AU-rich elements of mRNA and enhances its stability thereby increasing target gene expression. Subsequent studies with siRNA suppression of ELAVL-1/HuR demonstrated deceased GSK3β mRNA and protein expression and improved clearance of FITC-albumin in A549 cells. Conversely, stabilization of ELAVL-1/HuR with the proteasome inhibitor MG-132 resulted in induction of GSK3β at mRNA and protein level and attenuated FITC-albumin clearance. Utilizing ventilator-induced lung injury or intra-tracheal installation of hydrochloric acid to induce ARDS in mice, we observed increased mRNA and protein expression of ELAVL-1/HuR and GSK3β. Together, our findings indicate a previously unknown interaction between GSK3β and ELAV-1 during ARDS, and suggest the inhibition of the ELAV-1- GSK3β pathways as a novel ARDS treatment approach. PMID:28196122

  6. Detrimental ELAVL-1/HuR-dependent GSK3β mRNA stabilization impairs resolution in acute respiratory distress syndrome.

    PubMed

    Hoffman, Olivia; Burns, Nana; Vadász, István; Eltzschig, Holger K; Edwards, Michael G; Vohwinkel, Christine U

    2017-01-01

    A hallmark of acute respiratory distress syndrome (ARDS) is accumulation of protein-rich edema in the distal airspaces and its removal is critical for patient survival. Previous studies have shown a detrimental role of Glycogen Synthase Kinase (GSK) 3β during ARDS via inhibition of alveolar epithelial protein transport. We hypothesized that post-transcriptional regulation of GSK3β could play a functional role in ARDS resolution. To address this hypothesis, we performed an in silico analysis to identify regulatory genes whose expression correlation to GSK3β messenger RNA utilizing two lung cancer cell line array datasets. Among potential regulatory partners of GSK3β, these studies identified the RNA-binding protein ELAVL-1/HuR (Embryonic Lethal, Abnormal Vision, Drosophila-Like) as a central component in a likely GSK3β signaling network. ELAVL-1/HuR is a RNA-binding protein that selectively binds to AU-rich elements of mRNA and enhances its stability thereby increasing target gene expression. Subsequent studies with siRNA suppression of ELAVL-1/HuR demonstrated deceased GSK3β mRNA and protein expression and improved clearance of FITC-albumin in A549 cells. Conversely, stabilization of ELAVL-1/HuR with the proteasome inhibitor MG-132 resulted in induction of GSK3β at mRNA and protein level and attenuated FITC-albumin clearance. Utilizing ventilator-induced lung injury or intra-tracheal installation of hydrochloric acid to induce ARDS in mice, we observed increased mRNA and protein expression of ELAVL-1/HuR and GSK3β. Together, our findings indicate a previously unknown interaction between GSK3β and ELAV-1 during ARDS, and suggest the inhibition of the ELAV-1- GSK3β pathways as a novel ARDS treatment approach.

  7. Posttranscriptional regulation of ribosomal protein S20 and stability of the S20 mRNA species.

    PubMed Central

    Mackie, G A

    1987-01-01

    I have tested whether selective degradation of mRNA for ribosomal protein S20 of Escherichia coli occurs under conditions for which the expression of S20 is regulated posttranscriptionally. Blot hybridization of total RNA extracted from cultures at different times after addition of rifampin has permitted the estimation of relative levels of the two S20 mRNA species and their half-lives. In a strain harboring a plasmid containing the complete gene for S20, including the transcriptional terminator, moderate posttranscriptional repression of S20 synthesis is accompanied by a substantial increase in the half-lives of both S20 mRNAs relative to those in the haploid parental strain. In an otherwise identical strain in which the transcriptional terminator is deleted from the plasmid-borne S20 genes, the half-life of total S20 mRNA declines more than twofold relative to that in the haploid parent. Thus accelerated decay of the mRNAs for ribosomal protein S20 appears to be an artifact of deletion of the transcriptional terminator, rather than a physiologically significant consequence of translational repression. Images PMID:2438268

  8. Stability Affects of Artificial Viscosity in Detonation Modeling

    SciTech Connect

    Vitello, P; Souers, P C

    2002-06-03

    Accurate multi-dimensional modeling of detonation waves in solid HE materials is a difficult task. To treat applied problems which contain detonation waves one must consider reacting flow with a wide range of length-scales, non-linear equations of state (EOS), and material interfaces at which the detonation wave interacts with other materials. To be useful numerical models of detonation waves must be accurate, stable, and insensitive to details of the modeling such as the mesh spacing, and mesh aspect ratio for multi-dimensional simulations. Studies we have performed show that numerical simulations of detonation waves can be very sensitive to the form of the artificial viscosity term used. The artificial viscosity term is included in our ALE hydrocode to treat shock discontinuities. We show that a monotonic, second order artificial viscosity model derived from an approximate Riemann solver scheme can strongly damp unphysical oscillations in the detonation wave reaction zone, improving the detonation wave boundary wall interaction. These issues are demonstrated in 2D model simulations presented of the 'Bigplate' test. Results using LX-I 7 explosives are compared with numerical simulation results to demonstrate the affects of the artificial viscosity model.

  9. Isorhapontigenin (ISO) inhibited cell transformation by inducing G0/G1 phase arrest via increasing MKP-1 mRNA Stability.

    PubMed

    Gao, Guangxun; Chen, Liang; Li, Jingxia; Zhang, Dongyun; Fang, Yong; Huang, Haishan; Chen, Xiequn; Huang, Chuanshu

    2014-05-15

    The cancer chemopreventive property of Chinese herb new isolate isorhapontigenin (ISO) and mechanisms underlying its activity have never been explored. Here we demonstrated that ISO treatment with various concentrations for 3 weeks could dramatically inhibit TPA/EGF-induced cell transformation of Cl41 cells in Soft Agar assay, whereas co-incubation of cells with ISO at the same concentrations could elicit G0/G1 cell-cycle arrest without redundant cytotoxic effects on non-transformed cells. Further studies showed that ISO treatment resulted in cyclin D1 downregulation in dose- and time-dependent manner. Our results indicated that ISO regulated cyclin D1 at transcription level via targeting JNK/C-Jun/AP-1 activation. Moreover, we found that ISO-inhibited JNK/C-Jun/AP-1 activation was mediated by both upregulation of MKP-1 expression through increasing its mRNA stability and deactivating MKK7. Most importantly, MKP-1 knockdown could attenuate ISO-mediated suppression of JNK/C-Jun activation and cyclin D1 expression, as well as G0/G1 cell cycle arrest and cell transformation inhibition, while ectopic expression of FLAG-cyclin D1 T286A mutant also reversed ISO-induced G0/G1 cell-cycle arrest and inhibition of cell transformation. Our results demonstrated that ISO is a promising chemopreventive agent via upregulating mkp-1 mRNA stability, which is distinct from its cancer therapeutic effect with downregulation of XIAP and cyclin D1 expression.

  10. Dermal nanocrystals from medium soluble actives - physical stability and stability affecting parameters.

    PubMed

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-09-01

    Nanocrystals are meanwhile applied to increase the dermal penetration of drugs, but were applied by now only to poorly soluble drugs (e.g. 1-10 μg/ml). As a new concept nanocrystals from medium soluble actives were produced, using caffeine as model compound (solubility 16 mg/ml at 20 °C). Penetration should be increased by (a) further increase in solubility and (b) mainly by increased hair follicle targeting of nanocrystals compared to pure solution. Caffeine nanocrystal production in water lead to pronounced crystal growth. Therefore the stability of nanocrystals in water-ethanol (1:9) and ethanol-propylene glycol (3:7) mixtures with lower dielectric constant D was investigated, using various stabilizers. Both mixtures in combination with Carbopol 981 (non-neutralized) yielded stable nanosuspensions over 2 months at 4 °C and room temperature. Storage at 40 °C lead to crystal growth, attributed to too strong solubility increase, supersaturation and Ostwald ripening effects. Stability of caffeine nanocrystals at lower temperatures could not only be attributed to lower solubility, because the solubilities of caffeine in mixtures and in water are not that much different. Other effects such as quantified by reduced dielectric constant D, and specific interactions between dispersion medium and crystal surface seem to play a role. With the 2 mixtures and Carbopol 981, a basic formulation composition for this type of nanocrystals has been established, to be used in the in vivo proof of principle of the new concept.

  11. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  12. MEIS1 intronic risk haplotype associated with restless legs syndrome affects its mRNA and protein expression levels

    PubMed Central

    Xiong, Lan; Catoire, Hélène; Dion, Patrick; Gaspar, Claudia; Lafrenière, Ronald G.; Girard, Simon L.; Levchenko, Anastasia; Rivière, Jean-Baptiste; Fiori, Laura; St-Onge, Judith; Bachand, Isabelle; Thibodeau, Pascale; Allen, Richard; Earley, Christopher; Turecki, Gustavo; Montplaisir, Jacques; Rouleau, Guy A.

    2009-01-01

    Restless legs syndrome (RLS) is a common neurological disorder characterized by an irresistible urge to move the legs at night, which is often accompanied by unpleasant sensations. A recent genomewide association study identified an association between RLS and intronic markers from the MEIS1 gene. Comparative genomic analysis indicates that MEIS1 is the only gene encompassed in this evolutionarily conserved chromosomal segment, i.e. a conservation synteny block, from mammals to fish. We carried out a series of experiments to delineate the role of MEIS1 in RLS pathogenesis and the underlying genetic mechanism. We sequenced all 13 MEIS1 exons and their splice junctions in 285 RLS probands with confirmed clinical diagnosis and did not identify any causative coding or exon–intron junction mutations. We found no evidence of structural variation or disease-associated haplotype differential splicing. However, sequencing of conserved regions of MEIS1 introns 8 and 9 identified a novel single nucleotide polymorphism (C13B_2) significantly associated with RLS (allelic association, P = 1.81E−07). We detected a significant decrease in MEIS1 mRNA expression by quantitative real-time polymerase chain reaction in lymphoblastoid cell lines (LCLs) and brain tissues from RLS patients homozygous for the intronic RLS risk haplotype, compared with those homozygous for the non-risk haplotype. Finally, we found significantly decreased MEIS1 protein levels in the same batch of LCLs and brain tissues from the homozygous carriers of the risk haplotype, compared with the homozygous non-carriers. Therefore, these data suggest that reduced expression of the MEIS1 gene, possibly through intronic cis-regulatory element(s), predisposes to RLS. PMID:19126776

  13. Let-7b/c enhance the stability of a tissue-specific mRNA during mammalian organogenesis as part of a feedback loop involving KSRP.

    PubMed

    Repetto, Emanuela; Briata, Paola; Kuziner, Nathalie; Harfe, Brian D; McManus, Michael T; Gherzi, Roberto; Rosenfeld, Michael G; Trabucchi, Michele

    2012-01-01

    Gene silencing mediated by either microRNAs (miRNAs) or Adenylate/uridylate-rich elements Mediated mRNA Degradation (AMD) is a powerful way to post-transcriptionally modulate gene expression. We and others have reported that the RNA-binding protein KSRP favors the biogenesis of select miRNAs (including let-7 family) and activates AMD promoting the decay of inherently labile mRNAs. Different layers of interplay between miRNA- and AMD-mediated gene silencing have been proposed in cultured cells, but the relationship between the two pathways in living organisms is still elusive. We conditionally deleted Dicer in mouse pituitary from embryonic day (E) 9.5 through Cre-mediated recombination. In situ hybridization, immunohistochemistry, and quantitative reverse transcriptase-PCR revealed that Dicer is essential for pituitary morphogenesis and correct expression of hormones. Strikingly, αGSU (alpha glycoprotein subunit, common to three pituitary hormones) was absent in Dicer-deleted pituitaries. αGSU mRNA is unstable and its half-life increases during pituitary development. A transcriptome-wide analysis of microdissected E12.5 pituitaries revealed a significant increment of KSRP expression in conditional Dicer-deleted mice. We found that KSRP directly binds to αGSU mRNA, promoting its rapid decay; and, during pituitary development, αGSU expression displays an inverse temporal relationship to KSRP. Further, let-7b/c downregulated KSRP expression, promoting the degradation of its mRNA by directly binding to the 3'UTR. Therefore, we propose a model in which let-7b/c and KSRP operate within a negative feedback loop. Starting from E12.5, KSRP induces the maturation of let-7b/c that, in turn, post-transcriptionally downregulates the expression of KSRP itself. This event leads to stabilization of αGSU mRNA, which ultimately enhances the steady-state expression levels. We have identified a post-transcriptional regulatory network active during mouse pituitary development in

  14. Differential IL-1β secretion by monocyte subsets is regulated by Hsp27 through modulating mRNA stability

    PubMed Central

    Hadadi, Eva; Zhang, Biyan; Baidžajevas, Kajus; Yusof, Nurhashikin; Puan, Kia Joo; Ong, Siew Min; Yeap, Wei Hseun; Rotzschke, Olaf; Kiss-Toth, Endre; Wilson, Heather; Wong, Siew Cheng

    2016-01-01

    Monocytes play a central role in regulating inflammation in response to infection or injury, and during auto-inflammatory diseases. Human blood contains classical, intermediate and non-classical monocyte subsets that each express characteristic patterns of cell surface CD16 and CD14; each subset also has specific functional properties, but the mechanisms underlying many of their distinctive features are undefined. Of particular interest is how monocyte subsets regulate secretion of the apical pro-inflammatory cytokine IL-1β, which is central to the initiation of immune responses but is also implicated in the pathology of various auto-immune/auto-inflammatory conditions. Here we show that primary human non-classical monocytes, exposed to LPS or LPS + BzATP (3’-O-(4-benzoyl)benzyl-ATP, a P2X7R agonist), produce approx. 80% less IL-1β than intermediate or classical monocytes. Despite their low CD14 expression, LPS-sensing, caspase-1 activation and P2X7R activity were comparable in non-classical monocytes to other subsets: their diminished ability to produce IL-1β instead arose from 50% increased IL-1β mRNA decay rates, mediated by Hsp27. These findings identify the Hsp27 pathway as a novel therapeutic target for the management of conditions featuring dysregulated IL-1β production, and represent an advancement in understanding of both physiological inflammatory responses and the pathogenesis of inflammatory diseases involving monocyte-derived IL-1β. PMID:27976724

  15. Differential IL-1β secretion by monocyte subsets is regulated by Hsp27 through modulating mRNA stability.

    PubMed

    Hadadi, Eva; Zhang, Biyan; Baidžajevas, Kajus; Yusof, Nurhashikin; Puan, Kia Joo; Ong, Siew Min; Yeap, Wei Hseun; Rotzschke, Olaf; Kiss-Toth, Endre; Wilson, Heather; Wong, Siew Cheng

    2016-12-15

    Monocytes play a central role in regulating inflammation in response to infection or injury, and during auto-inflammatory diseases. Human blood contains classical, intermediate and non-classical monocyte subsets that each express characteristic patterns of cell surface CD16 and CD14; each subset also has specific functional properties, but the mechanisms underlying many of their distinctive features are undefined. Of particular interest is how monocyte subsets regulate secretion of the apical pro-inflammatory cytokine IL-1β, which is central to the initiation of immune responses but is also implicated in the pathology of various auto-immune/auto-inflammatory conditions. Here we show that primary human non-classical monocytes, exposed to LPS or LPS + BzATP (3'-O-(4-benzoyl)benzyl-ATP, a P2X7R agonist), produce approx. 80% less IL-1β than intermediate or classical monocytes. Despite their low CD14 expression, LPS-sensing, caspase-1 activation and P2X7R activity were comparable in non-classical monocytes to other subsets: their diminished ability to produce IL-1β instead arose from 50% increased IL-1β mRNA decay rates, mediated by Hsp27. These findings identify the Hsp27 pathway as a novel therapeutic target for the management of conditions featuring dysregulated IL-1β production, and represent an advancement in understanding of both physiological inflammatory responses and the pathogenesis of inflammatory diseases involving monocyte-derived IL-1β.

  16. The use of "stabilization exercises" to affect neuromuscular control in the lumbopelvic region: a narrative review.

    PubMed

    Bruno, Paul

    2014-06-01

    It is well-established that the coordination of muscular activity in the lumbopelvic region is vital to the generation of mechanical spinal stability. Several models illustrating mechanisms by which dysfunctional neuromuscular control strategies may serve as a cause and/or effect of low back pain have been described in the literature. The term "core stability" is variously used by clinicians and researchers, and this variety has led to several rehabilitative approaches suggested to affect the neuromuscular control strategies of the lumbopelvic region (e.g. "stabilization exercise", "motor control exercise"). This narrative review will highlight: 1) the ongoing debate in the clinical and research communities regarding the terms "core stability" and "stabilization exercise", 2) the importance of sub-grouping in identifying those patients most likely to benefit from such therapeutic interventions, and 3) two protocols that can assist clinicians in this process.

  17. The phosphorylation of protein S6 modulates the interaction of the 40 S ribosomal subunit with the 5'-untranslated region of a dictyostelium pre-spore-specific mRNA and controls its stability.

    PubMed

    Chiaberge, S; Cassarino, E; Mangiarotti, G

    1998-10-16

    AC914 mRNA, a pre-spore-specific mRNA that accumulates only in the post-aggregation stage of development, is transcribed constitutively as shown by nuclear run-off experiments and by fusing its promoter to the luciferase reporter gene. The same mRNA disappears quickly from disaggregated cells. If the 5'-untranslated region (5'UTR) of the constitutively expressed Actin 15 mRNA is substituted for the 5'UTR of AC914 mRNA, this can no longer be destabilized and accumulates both in growing and disaggregated cells. If the 5'UTR of AC914 mRNA is substituted for the 5'UTR of Actin 15 mRNA, the latter accumulates only in aggregated cells. Pactamycin, but not other inhibitors of protein synthesis, prevents AC914 mRNA from being destabilized in disaggregated cells, suggesting a role of 40 S subunits in the destabilization. This has been confirmed by using an in vitro system in which the in vivo stability of different mRNAs is reproduced. A protein kinase A-dependent phosphorylation of ribosomal protein S6 determines whether 40 S subunits are capable or not of destabilizing AC914 mRNA in the in vitro system.

  18. Anguillicola crassus Infection Significantly Affects the Silvering Related Modifications in Steady State mRNA Levels in Gas Gland Tissue of the European Eel

    PubMed Central

    Pelster, Bernd; Schneebauer, Gabriel; Dirks, Ron P.

    2016-01-01

    Using Illumina sequencing, transcriptional changes occurring during silvering in swimbladder tissue of the European eel have been analyzed by comparison of yellow and silver eel tissue samples. Functional annotation analysis based on GO terms revealed significant expression changes in a number of genes related to the extracellular matrix, important for the control of gas permeability of the swimbladder, and to reactive oxygen species (ROS) defense, important to cope with ROS generated under hyperbaric oxygen partial pressures. Focusing on swimbladder tissue metabolism, levels of several mRNA species encoding glucose transport proteins were several-fold higher in silver eels, while enzymes of the glycolytic pathway were not affected. The significantly higher steady state level of a transcript encoding for membrane bound carbonic anhydrase, however, suggested that CO2 production in the pentose phosphate shunt and diffusion of CO2 was of particular importance in silver eel swimbladder. In addition, the mRNA level of a large number of genes related to immune response and to sexual maturation was significantly modified in the silver eel swimbladder. The modification of several processes related to protein metabolism and transport, cell cycle, and apoptosis suggested that these changes in swimbladder metabolism and permeability were achieved by increasing cell turn-over. The impact of an infection of the swimbladder with the nematode Anguillicola crassus has been assessed by comparing these expression changes with expression changes observed between uninfected yellow eel swimbladder tissue and infected silver eel swimbladder tissue. In contrast to uninfected silver eel swimbladder tissue, in infected tissue the mRNA level of several glycolytic enzymes was significantly elevated, and with respect to extracellular matrix, several mucin genes were many-fold higher in their mRNA level. Modification of many immune related genes and of the functional categories “response to

  19. Anguillicola crassus Infection Significantly Affects the Silvering Related Modifications in Steady State mRNA Levels in Gas Gland Tissue of the European Eel.

    PubMed

    Pelster, Bernd; Schneebauer, Gabriel; Dirks, Ron P

    2016-01-01

    Using Illumina sequencing, transcriptional changes occurring during silvering in swimbladder tissue of the European eel have been analyzed by comparison of yellow and silver eel tissue samples. Functional annotation analysis based on GO terms revealed significant expression changes in a number of genes related to the extracellular matrix, important for the control of gas permeability of the swimbladder, and to reactive oxygen species (ROS) defense, important to cope with ROS generated under hyperbaric oxygen partial pressures. Focusing on swimbladder tissue metabolism, levels of several mRNA species encoding glucose transport proteins were several-fold higher in silver eels, while enzymes of the glycolytic pathway were not affected. The significantly higher steady state level of a transcript encoding for membrane bound carbonic anhydrase, however, suggested that CO2 production in the pentose phosphate shunt and diffusion of CO2 was of particular importance in silver eel swimbladder. In addition, the mRNA level of a large number of genes related to immune response and to sexual maturation was significantly modified in the silver eel swimbladder. The modification of several processes related to protein metabolism and transport, cell cycle, and apoptosis suggested that these changes in swimbladder metabolism and permeability were achieved by increasing cell turn-over. The impact of an infection of the swimbladder with the nematode Anguillicola crassus has been assessed by comparing these expression changes with expression changes observed between uninfected yellow eel swimbladder tissue and infected silver eel swimbladder tissue. In contrast to uninfected silver eel swimbladder tissue, in infected tissue the mRNA level of several glycolytic enzymes was significantly elevated, and with respect to extracellular matrix, several mucin genes were many-fold higher in their mRNA level. Modification of many immune related genes and of the functional categories "response to

  20. The RNA-binding protein HuD is required for GAP-43 mRNA stability, GAP-43 gene expression, and PKC-dependent neurite outgrowth in PC12 cells.

    PubMed

    Mobarak, C D; Anderson, K D; Morin, M; Beckel-Mitchener, A; Rogers, S L; Furneaux, H; King, P; Perrone-Bizzozero, N I

    2000-09-01

    The RNA-binding protein HuD binds to a regulatory element in the 3' untranslated region (3' UTR) of the GAP-43 mRNA. To investigate the functional significance of this interaction, we generated PC12 cell lines in which HuD levels were controlled by transfection with either antisense (pDuH) or sense (pcHuD) constructs. pDuH-transfected cells contained reduced amounts of GAP-43 protein and mRNA, and these levels remained low even after nerve growth factor (NGF) stimulation, a treatment that is normally associated with protein kinase C (PKC)-dependent stabilization of the GAP-43 mRNA and neuronal differentiation. Analysis of GAP-43 mRNA stability demonstrated that the mRNA had a shorter half-life in these cells. In agreement with their deficient GAP-43 expression, pDuH cells failed to grow neurites in the presence of NGF or phorbol esters. These cells, however, exhibited normal neurite outgrowth when exposed to dibutyryl-cAMP, an agent that induces outgrowth independently from GAP-43. We observed opposite effects in pcHuD-transfected cells. The GAP-43 mRNA was stabilized in these cells, leading to an increase in the levels of the GAP-43 mRNA and protein. pcHuD cells were also found to grow short spontaneous neurites, a process that required the presence of GAP-43. In conclusion, our results suggest that HuD plays a critical role in PKC-mediated neurite outgrowth in PC12 cells and that this protein does so primarily by promoting the stabilization of the GAP-43 mRNA.

  1. Methods of RNA preparation affect mRNA abundance quantification of reference genes in pig maturing oocytes.

    PubMed

    Wang, Y-K; Li, X; Song, Z-Q; Yang, C-X

    2017-04-13

    To ensure accurate normalization and quantification of target RNA transcripts using reverse transcription quantitative polymerase chain reaction (RT-qPCR), most studies focus on the identification of stably expressed gene(s) as internal reference. However, RNA preparation methods could also be an important factor, especially for test samples of limited quantity (e.g. oocytes). In this study, we aimed to select appropriate reference gene(s), and evaluate the effect of RNA preparation methods on gene expression quantification in porcine oocytes and cumulus cells during in vitro maturation. Expression profiles of seven genes (GAPDH, 18S, YWHAG, BACT, RPL4, HPRT1 and PPIA) were examined, on RNA samples extracted from cumulus cells (RNeasy Kit) and oocytes (RNeasy Kit and Lysis Kit) during in vitro maturation, respectively. Interestingly, different RNA preparation methods were found to potentially affect the quantification of reference gene expression in pig oocytes cultured in vitro. After geNorm analyses, the most suitable genes for normalization were identified, GAPDH/18S for cumulus cells and YWHAG/BACT for oocytes, respectively. Thus, our results provide useful data and information on the selection of better reference genes and RNA preparation method for related functional studies.

  2. Correlation of mRNA expression and protein abundance affected by multiple sequence features related to translational efficiency in Desulfovibrio vulgaris: A quantitative analysis

    SciTech Connect

    Nie, Lei; Wu, Gang; Zhang, Weiwen

    2006-12-01

    The modest correlation between mRNA expression and protein abundance in large scale datasets is explained in part by experimental challenges, such as technological limitations, and in part by fundamental biological factors in the transcription and translation processes. Among various factors affecting the mRNA-protein correlation, the roles of biological factors related to translation are poorly understood. In this study, using experimental mRNA expression and protein abundance data collected from Desulfovibrio vulgaris by DNA microarray and LC-MS/MS proteomic analysis, we quantitatively examined the effects of several translational-efficiency-related sequence features on mRNA-protein correlation. Three classes of sequence features were investigated according to different translational stages: (1) initiation: Shine-Dalgarno sequences, start codon identity and start codon context; (2) elongation: codon usage and amino acid usage; and (3) termination: stop codon identity and stop codon context. Surprisingly, although it is widely accepted that translation initiation is a rate-limiting step for translation, our results showed that the mRNA-protein correlation was affected the most by the features at elongation stages, codon usage and amino acid composition (7.4-12.6% and 5.3-9.3% of the total variation of mRNA-protein correlation, respectively), followed by stop codon context and the Shine-Dalgarno sequence (2.5-4.2% and 2.3%, respectively). Taken together, all sequence features contributed to 18.4-21.8% of the total variation of mRNA-protein correlation. As the first comprehensive quantitative analysis of the mRNA-protein correlation in bacterial D. vulgaris, our results suggest that the traditional view of the relative importance of various sequence features in prokaryotic protein translation might be questionable.

  3. Cytoplasmic mRNA turnover and ageing

    PubMed Central

    Borbolis, Fivos; Syntichaki, Popi

    2015-01-01

    Messenger RNA (mRNA) turnover that determines the lifetime of cytoplasmic mRNAs is a means to control gene expression under both normal and stress conditions, whereas its impact on ageing and age-related disorders has just become evident. Gene expression control is achieved at the level of the mRNA clearance as well as mRNA stability and accessibility to other molecules. All these processes are regulated by cis-acting motifs and trans-acting factors that determine the rates of translation and degradation of transcripts. Specific messenger RNA granules that harbor the mRNA decay machinery or various factors, involved in translational repression and transient storage of mRNAs, are also part of the mRNA fate regulation. Their assembly and function can be modulated to promote stress resistance to adverse conditions and over time affect the ageing process and the lifespan of the organism. Here, we provide insights into the complex relationships of ageing modulators and mRNA turnover mechanisms. PMID:26432921

  4. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water.

    PubMed

    Bowyer, John F; Latendresse, John R; Delongchamp, Robert R; Warbritton, Alan R; Thomas, Monzy; Divine, Becky; Doerge, Daniel R

    2009-11-01

    A study was undertaken to determine whether alterations in the gene expression or overt histological signs of neurotoxicity in selected regions of the forebrain might occur from acrylamide exposure via drinking water. Gene expression at the mRNA level was evaluated by cDNA array and/or RT-PCR analysis in the striatum, substantia nigra and parietal cortex of rat after a 2-week acrylamide exposure. The highest dose tested (maximally tolerated) of approximately 44 mg/kg/day resulted in a significant decreased body weight, sluggishness, and locomotor activity reduction. These physiological effects were not accompanied by prominent changes in gene expression in the forebrain. All the expression changes seen in the 1200 genes that were evaluated in the three brain regions were < or =1.5-fold, and most not significant. Very few, if any, statistically significant changes were seen in mRNA levels of the more than 50 genes directly related to the cholinergic, noradrenergic, GABAergic or glutamatergic neurotransmitter systems in the striatum, substantia nigra or parietal cortex. All the expression changes observed in genes related to dopaminergic function were less than 1.5-fold and not statistically significant and the 5HT1b receptor was the only serotonin-related gene affected. Therefore, gene expression changes were few and modest in basal ganglia and sensory cortex at a time when the behavioral manifestations of acrylamide toxicity had become prominent. No histological evidence of axonal, dendritic or neuronal cell body damage was found in the forebrain due to the acrylamide exposure. As well, microglial activation was not present. These findings are consistent with the absence of expression changes in genes related to changes in neuroinflammation or neurotoxicity. Over all, these data suggest that oral ingestion of acrylamide in drinking water or food, even at maximally tolerable levels, induced neither marked changes in gene expression nor neurotoxicity in the motor and

  5. The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water

    SciTech Connect

    Bowyer, John F.; Latendresse, John R.; Delongchamp, Robert R.; Warbritton, Alan R.; Thomas, Monzy; Divine, Becky; Doerge, Daniel R.

    2009-11-01

    A study was undertaken to determine whether alterations in the gene expression or overt histological signs of neurotoxicity in selected regions of the forebrain might occur from acrylamide exposure via drinking water. Gene expression at the mRNA level was evaluated by cDNA array and/or RT-PCR analysis in the striatum, substantia nigra and parietal cortex of rat after a 2-week acrylamide exposure. The highest dose tested (maximally tolerated) of approximately 44 mg/kg/day resulted in a significant decreased body weight, sluggishness, and locomotor activity reduction. These physiological effects were not accompanied by prominent changes in gene expression in the forebrain. All the expression changes seen in the 1200 genes that were evaluated in the three brain regions were <= 1.5-fold, and most not significant. Very few, if any, statistically significant changes were seen in mRNA levels of the more than 50 genes directly related to the cholinergic, noradrenergic, GABAergic or glutamatergic neurotransmitter systems in the striatum, substantia nigra or parietal cortex. All the expression changes observed in genes related to dopaminergic function were less than 1.5-fold and not statistically significant and the 5HT1b receptor was the only serotonin-related gene affected. Therefore, gene expression changes were few and modest in basal ganglia and sensory cortex at a time when the behavioral manifestations of acrylamide toxicity had become prominent. No histological evidence of axonal, dendritic or neuronal cell body damage was found in the forebrain due to the acrylamide exposure. As well, microglial activation was not present. These findings are consistent with the absence of expression changes in genes related to changes in neuroinflammation or neurotoxicity. Over all, these data suggest that oral ingestion of acrylamide in drinking water or food, even at maximally tolerable levels, induced neither marked changes in gene expression nor neurotoxicity in the motor and

  6. Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities.

    PubMed

    Hauzy, Céline; Gauduchon, Mathias; Hulot, Florence D; Loreau, Michel

    2010-10-07

    Although density-dependent dispersal and relative dispersal (the difference in dispersal rates between species) have been documented in natural systems, their effects on the stability of metacommunities are poorly understood. Here we investigate the effects of intra- and interspecific density-dependent dispersal on the regional stability in a predator-prey metacommunity model. We show that, when the dynamics of the populations reach equilibrium, the stability of the metacommunity is not affected by density-dependent dispersal. However, the regional stability, measured as the regional variability or the persistence, can be modified by density-dependent dispersal when local populations fluctuate over time. Moreover these effects depend on the relative dispersal of the predator and the prey. Regional stability is modified through changes in spatial synchrony. Interspecific density-dependent dispersal always desynchronizses local dynamics, whereas intraspecific density-dependent dispersal may either synchronize or desynchronize it depending on dispersal rates. Moreover, intra- and interspecific density-dependent dispersal strengthen the top-down control of the prey by the predator at intermediate dispersal rates. As a consequence the regional stability of the metacommunity is increased at intermediate dispersal rates. Our results show that density-dependent dispersal and relative dispersal of species are keys to understanding the response of ecosystems to fragmentation.

  7. Conditional regulation of Puf1p, Puf4p, and Puf5p activity alters YHB1 mRNA stability for a rapid response to toxic nitric oxide stress in yeast

    PubMed Central

    Russo, Joseph; Olivas, Wendy M.

    2015-01-01

    Puf proteins regulate mRNA degradation and translation through interactions with 3′ untranslated regions (UTRs). Such regulation provides an efficient method to rapidly alter protein production during cellular stress. YHB1 encodes the only protein to detoxify nitric oxide in yeast. Here we show that YHB1 mRNA is destabilized by Puf1p, Puf4p, and Puf5p through two overlapping Puf recognition elements (PREs) in the YHB1 3′ UTR. Overexpression of any of the three Pufs is sufficient to fully rescue wild-type decay in the absence of other Pufs, and overexpression of Puf4p or Puf5p can enhance the rate of wild-type decay. YHB1 mRNA decay stimulation by Puf proteins is also responsive to cellular stress. YHB1 mRNA is stabilized in galactose and high culture density, indicating inactivation of the Puf proteins. This condition-specific inactivation of Pufs is overcome by Puf overexpression, and Puf4p/Puf5p overexpression during nitric oxide exposure reduces the steady-state level of endogenous YHB1 mRNA, resulting in slow growth. Puf inactivation is not a result of altered expression or localization. Puf1p and Puf4p can bind target mRNA in inactivating conditions; however, Puf5p binding is reduced. This work demonstrates how multiple Puf proteins coordinately regulate YHB1 mRNA to protect cells from nitric oxide stress. PMID:25631823

  8. Tumor suppressor NFκB2 p100 interacts with ERK2 and stabilizes PTEN mRNA via inhibition of miR-494

    PubMed Central

    Wang, Yulei; Xu, Jiawei; Gao, Guangxun; Li, Jingxia; Huang, Haishan; Jin, Honglei; Zhu, Junlan; Che, Xun; Huang, Chuanshu

    2015-01-01

    Emerging evidence from The Cancer Genome Atlas (TCGA) has revealed that nfκb2 gene encoding p100 is genetically deleted or mutated in human cancers, implicating NFκB2 as a potential tumor suppressor. However, the molecular mechanism underlying the anti-tumorigenic action of p100 remains poorly understood. Here, we report that p100 inhibits cancer cell anchorage-independent growth, a hallmark of cellular malignancy, by stabilizing the tumor suppressor PTEN mRNA via a mechanism that is independent of p100’s inhibitory role in NFκB activation. We further demonstrate that the regulatory effect of p100 on PTEN expression is mediated by its downregulation of miR-494 as a result of the inactivation of ERK2, in turn leading to inhibition of c-Jun/AP-1-dependent transcriptional activity. Furthermore, we identify that p100 specifically interacts with non-phosphorylated ERK2 and prevents ERK2 phosphorylation and nuclear translocation. Moreover, the death domain at C-terminal of p100 is identified as being crucial and sufficient for its interaction with ERK2. Taken together, our findings provide novel mechanistic insights into the understanding of the tumor suppressive role for NFκB2 p100. PMID:26686085

  9. Several Cis-regulatory Elements Control mRNA Stability, Translation Efficiency, and Expression Pattern of Prrxl1 (Paired Related Homeobox Protein-like 1)*

    PubMed Central

    Regadas, Isabel; Matos, Mariana Raimundo; Monteiro, Filipe Almeida; Gómez-Skarmeta, José Luis; Lima, Deolinda; Bessa, José; Casares, Fernando; Reguenga, Carlos

    2013-01-01

    The homeodomain transcription factor Prrxl1/DRG11 has emerged as a crucial molecule in the establishment of the pain circuitry, in particular spinal cord targeting of dorsal root ganglia (DRG) axons and differentiation of nociceptive glutamatergic spinal cord neurons. Despite Prrxl1 importance in the establishment of the DRG-spinal nociceptive circuit, the molecular mechanisms that regulate its expression along development remain largely unknown. Here, we show that Prrxl1 transcription is regulated by three alternative promoters (named P1, P2, and P3), which control the expression of three distinct Prrxl1 5′-UTR variants, named 5′-UTR-A, 5′-UTR-B, and 5′-UTR-C. These 5′-UTR sequences confer distinct mRNA stability and translation efficiency to the Prrxl1 transcript. The most conserved promoter (P3) contains a TATA-box and displays in vivo enhancer activity in a pattern that overlaps with the zebrafish Prrxl1 homologue, drgx. Regulatory modules present in this sequence were identified and characterized, including a binding site for Phox2b. Concomitantly, we demonstrate that zebrafish Phox2b is required for the expression of drgx in the facial, glossopharyngeal, and vagal cranial ganglia. PMID:24214975

  10. hnRNP A1 antagonizes cellular senescence and senescence-associated secretory phenotype via regulation of SIRT1 mRNA stability.

    PubMed

    Wang, Hui; Han, Limin; Zhao, Ganye; Shen, Hong; Wang, Pengfeng; Sun, Zhaomeng; Xu, Chenzhong; Su, Yuanyuan; Li, Guodong; Tong, Tanjun; Chen, Jun

    2016-09-09

    Senescent cells display a senescence-associated secretory phenotype (SASP) which contributes to tumor suppression, aging, and cancer. However, the underlying mechanisms for SASP regulation are not fully elucidated. SIRT1, a nicotinamide adenosine dinucleotide-dependent deacetylase, plays multiple roles in metabolism, inflammatory response, and longevity, etc. However, its posttranscriptional regulation and its roles in cellular senescence and SASP regulation are still elusive. Here, we identify the RNA-binding protein hnRNP A1 as a posttranscriptional regulator of SIRT1, as well as cell senescence and SASP regulator. hnRNP A1 directly interacts with the 3' untranslated region of SIRT1 mRNA, promotes its stability, and increases SIRT1 expression. hnRNP A1 delays replicative cellular senescence and prevents from Ras OIS via upregulation of SIRT1 expression to deacetylate NF-κB, thus blunting its transcriptional activity and subsequent IL-6/IL-8 induction. hnRNP A1 overexpression promotes cell transformation and tumorigenesis in a SIRT1-dependent manner. Together, our findings unveil a novel posttranscriptional regulation of SIRT1 by hnRNP A1 and uncover a critical role of hnRNP A1-SIRT1-NF-κB pathway in regulating cellular senescence and SASP expression.

  11. RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation.

    PubMed

    Chang, Xing; Li, Bin; Rao, Anjana

    2015-04-14

    Posttranscriptional regulation is a major mechanism to rewire transcriptomes during differentiation. Heterogeneous nuclear RNA-binding protein LL (hnRNPLL) is specifically induced in terminally differentiated lymphocytes, including effector T cells and plasma cells. To study the molecular functions of hnRNPLL at a genome-wide level, we identified hnRNPLL RNA targets and binding sites in plasma cells through integrated Photoactivatable-Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) and RNA sequencing. hnRNPLL preferentially recognizes CA dinucleotide-containing sequences in introns and 3' untranslated regions (UTRs), promotes exon inclusion or exclusion in a context-dependent manner, and stabilizes mRNA when associated with 3' UTRs. During differentiation of primary B cells to plasma cells, hnRNPLL mediates a genome-wide switch of RNA processing, resulting in loss of B-cell lymphoma 6 (Bcl6) expression and increased Ig production--both hallmarks of plasma-cell maturation. Our data identify previously unknown functions of hnRNPLL in B-cell to plasma-cell differentiation and demonstrate that the RNA-binding protein hnRNPLL has a critical role in tuning transcriptomes of terminally differentiating B lymphocytes.

  12. Detection of three nonsense mutations and one missense mutation in the interleukin-2 receptor [gamma] chain gene in SCIDX1 that differently affect the mRNA processing

    SciTech Connect

    Markiewicz, S.; Fischer, A.; Saint Basile, G. de ); Subtil, A.; Dautry-Varsat, A. )

    1994-05-01

    The interleukin-2 receptor [gamma] (IL-2R[gamma]) chain gene encodes a 64-kDa protein that not only composes the high-affinity form of the IL-2 binding receptor in association with the 2R [alpha] and [beta] chains, but also participates in at least the IL-4 and IL-7 receptor complexes. Mutations in this gene have recently been shown to cause X-linked severe combined immunodeficiency (SCIDX1). This disease of the immune system results from an early block of T lymphocyte and natural killer (NK) cell differentiation, which leads to a severe cellular and humoral immune defect that is lethal unless treated by bone marrow transplantation. Analysis of the IL-2R[gamma] gene in SCIDX1 patients has revealed the presence of heterogeneous mutations principally located in the extracellular domain of the molecule. We report here three intraexonic mutations and one deletion in the IL-2R[gamma] gene in four SCIDX1 patients. These mutations appear to differentially affect RNA processing, either by decreasing IL-2R[gamma] mRNA level or by the skipping of a constitutive exon. 16 refs., 1 fig.

  13. Seat surface inclination may affect postural stability during Boccia ball throwing in children with cerebral palsy.

    PubMed

    Tsai, Yung-Shen; Yu, Yi-Chen; Huang, Po-Chang; Cheng, Hsin-Yi Kathy

    2014-12-01

    The aim of the study was to examine how seat surface inclination affects Boccia ball throwing movement and postural stability among children with cerebral palsy (CP). Twelve children with bilateral spastic CP (3 with gross motor function classification system Level I, 5 with Level II, and 4 with Level III) participated in this study. All participants underwent pediatric reach tests and ball throwing performance analyses while seated on 15° anterior- or posterior-inclined, and horizontal surfaces. An electromagnetic motion analysis system was synchronized with a force plate to assess throwing motion and postural stability. The results of the pediatric reach test (p = 0.026), the amplitude of elbow movement (p = 0.036), peak vertical ground reaction force (PVGRF) (p < 0.001), and movement range of the center of pressure (COP) (p < 0.020) were significantly affected by seat inclination during throwing. Post hoc comparisons showed that anterior inclination allowed greater amplitude of elbow movement and PVGRF, and less COP movement range compared with the other inclines. Posterior inclination yielded less reaching distance and PVGRF, and greater COP movement range compared with the other inclines. The anterior-inclined seat yielded superior postural stability for throwing Boccia balls among children with bilateral spastic CP, whereas the posterior-inclined seat caused difficulty.

  14. A mutation in cnot8, component of the Ccr4-not complex regulating transcript stability, affects expression levels of developmental regulators and reveals a role of Fgf3 in development of caudal hypothalamic dopaminergic neurons.

    PubMed

    Koch, Peter; Löhr, Heiko B; Driever, Wolfgang

    2014-01-01

    While regulation of the activity of developmental control genes at the transcriptional level as well as by specific miRNA-based degradation are intensively studied, little is known whether general cellular mechanisms controlling mRNA decay may contribute to differential stability of mRNAs of developmental control genes. Here, we investigate whether a mutation in the deadenylation dependent mRNA decay pathway may reveal differential effects on developmental mechanisms, using dopaminergic differentiation in the zebrafish brain as model system. In a zebrafish genetic screen aimed at identifying genes controlling dopaminergic neuron development we isolated the m1061 mutation that selectively caused increased dopaminergic differentiation in the caudal hypothalamus, while other dopaminergic groups were not affected. Positional cloning revealed that m1061 causes a premature stop codon in the cnot8 open reading frame. Cnot8 is a component of the Ccr4-Not complex and displays deadenylase activity, which is required for removal of the poly (A) tail in bulk mRNA turnover. Analyses of expression of developmental regulators indicate that loss of Cnot8 activity results in increased mRNA in situ hybridization signal levels for a subset of developmental control genes. We show that in the area of caudal hypothalamic dopaminergic differentiation, mRNA levels for several components of the FGF signaling pathway, including Fgf3, FGF receptors, and FGF target genes, are increased. Pharmacological inhibition of FGF signaling or a mutation in the fgf3 gene can compensate the gain of caudal hypothalamic dopaminergic neurons in cnot8m1061 mutants, indicating a role for Fgf3 in control of development of this dopaminergic population. The cnot8m1061 mutant phenotype provides an in vivo system to study roles of the Cnot8 deadenylase component of the mRNA decay pathway in vertebrate development. Our data indicate that attenuation of Cnot8 activity differentially affects mRNA levels of

  15. A Mutation in cnot8, Component of the Ccr4-Not Complex Regulating Transcript Stability, Affects Expression Levels of Developmental Regulators and Reveals a Role of Fgf3 in Development of Caudal Hypothalamic Dopaminergic Neurons

    PubMed Central

    Koch, Peter; Löhr, Heiko B.; Driever, Wolfgang

    2014-01-01

    While regulation of the activity of developmental control genes at the transcriptional level as well as by specific miRNA-based degradation are intensively studied, little is known whether general cellular mechanisms controlling mRNA decay may contribute to differential stability of mRNAs of developmental control genes. Here, we investigate whether a mutation in the deadenylation dependent mRNA decay pathway may reveal differential effects on developmental mechanisms, using dopaminergic differentiation in the zebrafish brain as model system. In a zebrafish genetic screen aimed at identifying genes controlling dopaminergic neuron development we isolated the m1061 mutation that selectively caused increased dopaminergic differentiation in the caudal hypothalamus, while other dopaminergic groups were not affected. Positional cloning revealed that m1061 causes a premature stop codon in the cnot8 open reading frame. Cnot8 is a component of the Ccr4-Not complex and displays deadenylase activity, which is required for removal of the poly (A) tail in bulk mRNA turnover. Analyses of expression of developmental regulators indicate that loss of Cnot8 activity results in increased mRNA in situ hybridization signal levels for a subset of developmental control genes. We show that in the area of caudal hypothalamic dopaminergic differentiation, mRNA levels for several components of the FGF signaling pathway, including Fgf3, FGF receptors, and FGF target genes, are increased. Pharmacological inhibition of FGF signaling or a mutation in the fgf3 gene can compensate the gain of caudal hypothalamic dopaminergic neurons in cnot8m1061 mutants, indicating a role for Fgf3 in control of development of this dopaminergic population. The cnot8m1061 mutant phenotype provides an in vivo system to study roles of the Cnot8 deadenylase component of the mRNA decay pathway in vertebrate development. Our data indicate that attenuation of Cnot8 activity differentially affects mRNA levels of

  16. Allochthonous subsidy of periodical cicadas affects the dynamics and stability of pond communities.

    PubMed

    Nowlin, Weston H; González, María J; Vanni, Michael J; Stevens, M Henry H; Fields, Matthew W; Valente, Jonathon J

    2007-09-01

    Periodical cicadas emerge from below ground every 13 or 17 years in North American forests, with individual broods representing the synchronous movement of trillions of individuals across geographic regions. Due to predator satiation, most individuals escape predation, die, and become deposited as detritus. Some of this emergent biomass falls into woodland aquatic habitats (small streams and woodland ponds) and serves as a high-quality allochthonous detritus pulse in early summer. We present results of a two-part study in which we (1) quantified deposition of Brood X periodical cicada detritus into woodland ponds and low-order streams in southwestern Ohio, and (2) conducted an outdoor mesocosm experiment in which we examined the effects of deposition of different amounts of cicada detritus on food webs characteristic of forest ponds. In the mesocosm experiment, we manipulated the amount of cicada detritus input to examine if food web dynamics and stability varied with the magnitude of this allochthonous resource subsidy, as predicted by numerous theoretical models. Deposition data indicate that, during years of periodical cicada emergence, cicada carcasses can represent a sizable pulse of allochthonous detritus to forest aquatic ecosystems. In the mesocosm experiment, cicada carcass deposition rapidly affected food webs, leading to substantial increases in nutrients and organism biomass, with the magnitude of increase dependent upon the amount of cicada detritus. Deposition of cicada detritus impacted the stability of organism functional groups and populations by affecting the temporal variability and biomass minima. However, contrary to theory, stability measures were not consistently related to the size of the allochthonous pulse (i.e., the amount of cicada detritus). Our study underscores the need for theory to further explore consequences of pulsed allochthonous subsidies for food web stability.

  17. Stability Limits of Capillary Bridges: How Contact Angle Hysteresis Affects Morphology Transitions of Liquid Microstructures.

    PubMed

    de Ruiter, Riëlle; Semprebon, Ciro; van Gorcum, Mathijs; Duits, Michèl H G; Brinkmann, Martin; Mugele, Frieder

    2015-06-12

    The equilibrium shape of a drop in contact with solid surfaces can undergo continuous or discontinuous transitions upon changes in either drop volume or surface energies. In many instances, such transitions involve the motion of the three-phase contact line and are thus sensitive to contact angle hysteresis. Using a combination of electrowetting-based experiments and numerical calculations, we demonstrate for a generic sphere-plate confinement geometry how contact angle hysteresis affects the mechanical stability of competing axisymmetric and nonaxisymmetric drop conformations and qualitatively changes the character of transitions between them.

  18. p190RhoGEF Binds to a destabilizing element in the 3' untranslated region of light neurofilament subunit mRNA and alters the stability of the transcript.

    PubMed

    Cañete-Soler, R; Wu, J; Zhai, J; Shamim, M; Schlaepfer, W W

    2001-08-24

    Stabilization of neurofilament (NF) mRNAs plays a major role in regulating levels of NF expression and in establishing axonal size and rate of axonal conduction. Previous studies have identified a 68-nucleotide destabilizing element at the junction of the coding region and 3' untranslated region of the light NF subunit (NF-L) mRNA. The present study has used the destabilizing element (probe A) to screen a rat brain cDNA library for interactive proteins. A cDNA clone encoding 1068 nucleotides in the C-terminal domain of p190RhoGEF (clone 39) was found to bind strongly and specifically to the RNA probe. The interaction was confirmed using a glutathione S-transferase/clone 39 fusion protein in Northwestern, gel-shift, and cross-linkage studies. The glutathione S-transferase/clone 39 fusion protein also enhanced the cross-linkage of a major 43-kDa protein in brain extract to the destabilizing element. Functional studies on stably transfected neuronal cells showed that p190RhoGEF expression increased the half-life of a wild-type NF-L mRNA but did not alter the half-life of a mutant NF-L mRNA lacking the destabilizing element. The findings reveal a novel interactive feature of p190RhoGEF that links the exchange factor with NF mRNA stability and regulation of the axonal cytoskeleton.

  19. SIRT1 stimulation by polyphenols is affected by their stability and metabolism.

    PubMed

    de Boer, Vincent C J; de Goffau, Marcus C; Arts, Ilja C W; Hollman, Peter C H; Keijer, Jaap

    2006-07-01

    Silent information regulator two ortholog 1 (SIRT1) is the human ortholog of the yeast sir2 protein; one of the most important regulators of lifespan extension by caloric restriction in several organisms. Dietary polyphenols, abundant in vegetables, fruits, cereals, wine and tea, were reported to stimulate the deacetylase activity of recombinant SIRT1 protein and could therefore be potential regulators of aging associated processes. However, inconsistent data between effects of polyphenols on the recombinant SIRT1 and on in vivo SIRT1, led us to investigate the influence of (1) stability of polyphenols under experimental conditions and (2) metabolism of polyphenols in human HT29 cells, on stimulation of SIRT1. With an improved SIRT1 deacetylation assay we found three new polyphenolic stimulators. Epigallocatechin galate (EGCg, 1.76-fold), epicatechin galate (ECg, 1.85-fold) and myricetin (3.19-fold) stimulated SIRT1 under stabilizing conditions, whereas without stabilization, these polyphenols strongly inhibited SIRT1, probably due to H2O2 formation. Using metabolically active HT29 cells we were able to show that quercetin (a stimulator of recombinant SIRT1) could not stimulate intracellular SIRT1. The major quercetin metabolite in humans, quercetin 3-O-glucuronide, slightly inhibited the recombinant SIRT1 activity which explains the lack of stimulatory action of quercetin in HT29 cells. This study shows that the stimulation of SIRT1 is strongly affected by polyphenol stability and metabolism, therefore extrapolation of in vitro SIRT1 stimulation results to physiological effects should be done with caution.

  20. Lack of Drosophila cytoskeletal tropomyosin affects head morphogenesis and the accumulation of oskar mRNA required for germ cell formation.

    PubMed Central

    Tetzlaff, M T; Jäckle, H; Pankratz, M J

    1996-01-01

    Drosophila encodes five muscle and one cytoskeletal isoform of the actin-binding protein tropomyosin. We have identified a lack-of-function mutation in the cytoskeletal isoform (cTmII). Zygotic mutant embryos show a defect in head morphogenesis, while embryos lacking maternal cTmII are defective in germ cell formation but otherwise give rise to viable adults. oskar mRNA, which is required for both germ cell formation and abdominal segmentation, fails to accumulate at the posterior pole in these embryos. nanos mRNA, however, which is required exclusively for abdominal segmentation, is localized at wild-type levels. These results indicate that head morphogenesis and the accumulation of high levels of oskar mRNA necessary for germ cell formation require tropomyosin-dependent cytoskeleton. Images PMID:8635457

  1. Starvation and diet composition affect mRNA levels of the high density-lipoprotein-beta glucan binding protein in the shrimp Litopenaeus vannamei.

    PubMed

    Muhlia-Almazán, Adriana; Sánchez-Paz, Arturo; García-Carreño, Fernando; Peregrino-Uriarte, Alma Beatriz; Yepiz-Plascencia, Gloria

    2005-10-01

    A high density lipoprotein-beta glucan binding protein (HDL-BGBP) is synthesized in the hepatopancreas of the white shrimp Litopenaeus vannamei and secreted to the hemolymph. Recently, we reported the HDL-BGBP full length cDNA sequence and found that the predicted polypeptide is larger than the mature protein and also, that it contains a long 5'- and 3'-UTRs that may be involved in transcript level regulation. To test whether starvation and feeding may play a role in regulating HDL-BGBP mRNA levels, two different stimuli were evaluated: starvation and composition of diets. After 24 h, the steady state HDL-BGBP mRNA levels of starved shrimp decreased, suggesting that synthesis of the lipoprotein is less required in the absence of food. When shrimp were fed with diets containing different concentrations of protein and lipids, changes in HDL-BGBP mRNA levels were also detected. Shrimp fed the lower concentration of protein and lipid feed accumulated higher levels of HDL-BGBP mRNA. These results indicate that feeding influences HDL-BGBP transcript levels in the hepatopancreas.

  2. Insulin-Regulated Srebp-1c and Pck1 mRNA Expression in Primary Hepatocytes from Zucker Fatty but Not Lean Rats Is Affected by Feeding Conditions

    PubMed Central

    Zhang, Yan; Chen, Wei; Li, Rui; Li, Yang; Ge, Yuebin; Chen, Guoxun

    2011-01-01

    Insulin regulates the transcription of genes for hepatic glucose and lipid metabolism. We hypothesized that this action may be impaired in hepatocytes from insulin resistant animals. Primary hepatocytes from insulin sensitive Zucker lean (ZL) and insulin resistant Zucker fatty (ZF) rats in ad libitum or after an overnight fasting were isolated, cultured and treated with insulin and other compounds for analysis of gene expression using real-time PCR. The mRNA levels of one insulin-induced (Srebp-1c) and one insulin-suppressed (Pck1) genes in response to insulin, glucagon, and compactin treatments in hepatocytes from ad libitum ZL and ZF rats were analyzed. Additionally, the effects of insulin and T1317 on their levels in hepatocytes from ad libitum or fasted ZL or ZF rats were compared. The mRNA levels of Srebp-1c, Fas, and Scd1, but not that of Insr, Gck and Pck1, were higher in freshly isolated hepatocytes from ad libitum ZF than that from ZL rats. These patterns of Srebp-1c and Pck1 mRNA levels remained in primary hepatocyte cultured in vitro. Insulin's ability to regulate Srebp-1c and Pck1 expression was diminished in hepatocytes from ad libitum ZF, but not ZL rats. Glucagon or compactin suppressed Srebp-1c mRNA expression in lean, but not fatty hepatocytes. However, glucagon induced Pck1 mRNA expression similarly in hepatocytes from ad libitum ZL and ZF rats. Insulin caused the same dose-dependent increase of Akt phosphorylation in hepatocytes from ad libitum ZL and ZF rats. It synergized with T1317 to induce Srebp-1c, and suppressed Pck1 mRNA levels in hepatocytes from fasted, but not that from ad libitum ZF rats. We demonstrated that insulin was unable to regulate its downstream genes' mRNA expression in hepatocytes from ad libitum ZF rats. This impairment can be partially restored in hepatocytes from ZF rats after an overnight fasting, a phenomenon that deserves further investigation. PMID:21731709

  3. Low-intensity red and infrared lasers affect mRNA expression of DNA nucleotide excision repair in skin and muscle tissue.

    PubMed

    Sergio, Luiz Philippe S; Campos, Vera Maria A; Vicentini, Solange C; Mencalha, Andre Luiz; de Paoli, Flavia; Fonseca, Adenilson S

    2016-04-01

    Lasers emit light beams with specific characteristics, in which wavelength, frequency, power, fluence, and emission mode properties determine the photophysical, photochemical, and photobiological responses. Low-intensity lasers could induce free radical generation in biological tissues and cause alterations in macromolecules, such as DNA. Thus, the aim of this work was to evaluate excision repair cross-complementing group 1 (ERCC1) and excision repair cross-complementing group 2 (ERCC2) messenger RNA (mRNA) expression in biological tissues exposed to low-intensity lasers. Wistar rat (n = 28, 4 for each group) skin and muscle were exposed to low-intensity red (660 nm) and near-infrared (880 nm) lasers at different fluences (25, 50, and 100 J/cm(2)), and samples of these tissues were withdrawn for RNA extraction, cDNA synthesis, and gene expression evaluation by quantitative polymerase chain reaction. Laser exposure was in continuous wave and power of 100 mW. Data show that ERCC1 and ERCC2 mRNA expressions decrease in skin (p < 0.001) exposed to near-infrared laser, but increase in muscle tissue (p < 0.001). ERCC1 mRNA expression does not alter (p > 0.05), but ERCC2 mRNA expression decreases in skin (p < 0.001) and increases in muscle tissue (p < 0.001) exposed to red laser. Our results show that ERCC1 and ERCC2 mRNA expression is differently altered in skin and muscle tissue exposed to low-intensity lasers depending on wavelengths and fluences used in therapeutic protocols.

  4. Habitat stability affects dispersal and the ability to track climate change.

    PubMed

    Hof, Christian; Brändle, Martin; Dehling, D Matthias; Munguía, Mariana; Brandl, Roland; Araújo, Miguel B; Rahbek, Carsten

    2012-08-23

    Habitat persistence should influence dispersal ability, selecting for stronger dispersal in habitats of lower temporal stability. As standing (lentic) freshwater habitats are on average less persistent over time than running (lotic) habitats, lentic species should show higher dispersal abilities than lotic species. Assuming that climate is an important determinant of species distributions, we hypothesize that lentic species should have distributions that are closer to equilibrium with current climate, and should more rapidly track climatic changes. We tested these hypotheses using datasets from 1988 and 2006 containing all European dragon- and damselfly species. Bioclimatic envelope models showed that lentic species were closer to climatic equilibrium than lotic species. Furthermore, the models over-predicted lotic species ranges more strongly than lentic species ranges, indicating that lentic species track climatic changes more rapidly than lotic species. These results are consistent with the proposed hypothesis that habitat persistence affects the evolution of dispersal.

  5. Harvest date affects aronia juice polyphenols, sugars, and antioxidant activity, but not anthocyanin stability.

    PubMed

    Bolling, Bradley W; Taheri, Rod; Pei, Ruisong; Kranz, Sarah; Yu, Mo; Durocher, Shelley N; Brand, Mark H

    2015-11-15

    The goal of this work was to characterize how the date of harvest of 'Viking' aronia berry impacts juice pigmentation, sugars, and antioxidant activity. Aronia juice anthocyanins doubled at the fifth week of the harvest, and then decreased. Juice hydroxycinnamic acids decreased 33% from the first week, while proanthocyanidins increased 64%. Juice fructose and glucose plateaued at the fourth week, but sorbitol increased 40% to the seventh harvest week. Aronia juice pigment density increased due to anthocyanin concentration, and polyphenol copigmentation did not significantly affect juice pigmentation. Anthocyanin stability at pH 4.5 was similar between weeks. However, addition of quercetin, sorbitol, and chlorogenic acid to aronia anthocyanins inhibited pH-induced loss of color. Sorbitol and citric acid may be partially responsible for weekly variation in antioxidant activity, as addition of these agents inhibited DPPH scavenging 13-30%. Thus, aronia polyphenol and non-polyphenol components contribute to its colorant and antioxidant functionality.

  6. Homogenization conditions affect the oxidative stability of fish oil enriched milk emulsions: lipid oxidation.

    PubMed

    Let, Mette B; Jacobsen, Charlotte; Sørensen, Ann-Dorit M; Meyer, Anne S

    2007-03-07

    In this study fish oil was incorporated into commercial homogenized milk using different homogenization temperatures and pressures. The main aim was to understand the significance of homogenization temperature and pressure on the oxidative stability of the resulting milks. Increasing homogenization temperature from 50 to 72 degrees C decreased droplet size only slightly, whereas a pressure increase from 5 to 22.5 MPa decreased droplet size significantly. Surprisingly, emulsions having small droplets, and therefore large interfacial area, were less oxidized than emulsions having bigger droplets. Emulsions with similar droplet size distributions, but resulting from different homogenization conditions, had significantly different oxidative stabilities, indicating that properties of significance to oxidation other than droplet size itself were affected by the different treatments. In general, homogenization at 72 degrees C appeared to induce protective effects against oxidation as compared to homogenization at 50 degrees C. The results thus indicated that the actual composition of the oil-water interface is more important than total surface area itself.

  7. Spectrofluorimetric methods of stability-indicating assay of certain drugs affecting the cardiovascular system

    NASA Astrophysics Data System (ADS)

    Moussa, B. A.; Mohamed, M. F.; Youssef, N. F.

    2011-01-01

    Two stability-indicating spectrofluorimetric methods have been developed for the determination of ezetimibe and olmesartan medoxomil, drugs affecting the cardiovascular system, and validated in the presence of their degradation products. The first method, for ezetimibe, is based on an oxidative coupling reaction of ezetimibe with 3-methylbenzothiazolin-2-one hydrazone hydrochloride in the presence of cerium (IV) ammonium sulfate in an acidic medium. The quenching effect of ezetimibe on the fluorescence of excess cerous ions is measured at the emission wavelength, λem, of 345 nm with the excitation wavelength, λex, of 296 nm. Factors affecting the reaction were carefully studied and optimized. The second method, for olmesartan medoxomil, is based on measuring the native fluorescence intensity of olmesartan medoxomil in methanol at λem = 360 nm with λex = 286 nm. Regression plots revealed good linear relationships in the assay limits of 10-120 and 8-112 g/ml for ezetimibe and olmesartan medoxomil, respectively. The validity of the methods was assessed according to the United States Pharmacopeya guidelines. Statistical analysis of the results exposed good Student's t-test and F-ratio values. The introduced methods were successfully applied to the analysis of ezetimibe and olmesartan medoxomil in drug substances and drug products as well as in the presence of their degradation products.

  8. Altered expression of hyaluronan synthase and hyaluronidase mRNA may affect hyaluronic acid distribution in keloid disease compared with normal skin.

    PubMed

    Sidgwick, Gary P; Iqbal, Syed A; Bayat, Ardeshir

    2013-05-01

    Keloid disease (KD) is a fibroproliferative disorder characterised partly by an altered extracellular matrix (ECM) profile. In fetal scarring, hyaluronic acid (HA) expression is increased, but is reduced in KD tissue compared with normal skin (NS). The expression of Hyaluronan Synthase (HAS) and hyaluronidase (HYAL) in KD and NS tissue were investigated for the first time using a range of techniques. Hyaluronan synthase and HYAL mRNA expression were significantly increased in NS tissue compared with KD tissue (P < 0.05). Immunohistological analysis of tissue indicated an accumulation of HAS and HYAL protein expression in KD compared with NS due to the thicker epidermis. No differences were observed in mRNA or protein expression in KD and NS fibroblasts. Reduced expression of HAS and HYAL may alter HA synthesis, degradation and accumulation in KD. Better understanding of the role of HA in KD may lead to novel therapeutic approaches to address the resulting ECM imbalance.

  9. Prenatal ethanol increases ethanol intake throughout adolescence, alters ethanol-mediated aversive learning, and affects μ but not δ or κ opioid receptor mRNA expression.

    PubMed

    Fabio, María Carolina; Macchione, Ana Fabiola; Nizhnikov, Michael E; Pautassi, Ricardo Marcos

    2015-06-01

    Animal models of prenatal ethanol exposure (PEE) have indicated a facilitatory effect of PEE on adolescent ethanol intake, but few studies have assessed the effects of moderate PEE throughout adolescence. The mechanisms underlying this facilitatory effect remain largely unknown. In the present study, we analysed ethanol intake in male and female Wistar rats with or without PEE (2.0 g/kg, gestational days 17-20) from postnatal days 37 to 62. The results revealed greater ethanol consumption in PEE rats than in controls, which persisted throughout adolescence. By the end of testing, ethanol ingestion in PEE rats was nearly 6.0 g/kg. PEE was associated with insensitivity to ethanol-induced aversion. PEE and control rats were further analysed for levels of μ, δ and κ opioid receptor mRNA in the infralimbic cortex, nucleus accumbens shell, and ventral tegmental area. Similar levels of mRNA were observed across most areas and opioid receptors, but μ receptor mRNA in the ventral tegmental area was significantly increased by PEE. Unlike previous studies that assessed the effects of PEE on ethanol intake close to birth, or in only a few sessions during adolescence, the present study observed a facilitatory effect of PEE that lasted throughout adolescence. PEE was associated with insensitivity to the aversive effect of ethanol, and increased levels of μ opioid receptor transcripts. PEE is a prominent vulnerability factor that probably favors the engagement of adolescents in risky trajectories of ethanol use.

  10. Numerical solution of the chemical master equation uniqueness and stability of the stationary distribution for chemical networks, and mRNA bursting in a gene network with negative feedback regulation.

    PubMed

    Zeron, E S; Santillán, M

    2011-01-01

    In this work, we introduce a couple of algorithms to compute the stationary probability distribution for the chemical master equation (CME) of arbitrary chemical networks. We further find the conditions guaranteeing the algorithms' convergence and the unity and stability of the stationary distribution. Next, we employ these algorithms to study the mRNA and protein probability distributions in a gene regulatory network subject to negative feedback regulation. In particular, we analyze the influence of the promoter activation/deactivation speed on the shape of such distributions. We find that a reduction of the promoter activation/deactivation speed modifies the shape of those distributions in a way consistent with the phenomenon known as mRNA (or transcription) bursting.

  11. Post-Biostimulation Biogenic U(IV) Stability and Microbial Community Structure that Affects its Dynamics

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Long, P. E.; Moon, H.; N'Guessan, L.; Peacock, A.; Sinha, M.; Tan, H.; Traub, D.; Williams, K. H.

    2010-12-01

    Flow-through sediment column experiments were conducted to determine the stability of biogenic U(IV) after biostimulation has been discontinued, and to isolate the key biogeochemical processes that affect the post-biostimulation U(IV) stability. Columns, packed with sediments from an UMTRA site (Rifle Colorado) were biostimulated for two months by injecting groundwater containing 3 mM acetate and 20 uM U(VI) at flow rates typically encountered at the Rifle site. After the biostimulation period, acetate injection was discontinued, and groundwater containing dissolved oxygen was allowed to enter the columns. Columns were then sacrificed at two week intervals to examine the sediment geochemistry and associated microbial community. Results showed that iron sulfide precipitates, that formed during the bioreduction phase, acted as a buffer to partially prevent biogenic U(IV) oxidation during the month post stimulation period. Groundwater and sediment microbial community compositions were analyzed over a period of one month post-biostimulation. The results indicate that two distinct biological processes, characterized by oxygen utilization, played important roles during this period. Within two weeks post stimulation, organisms such as Hydrogenophaga sp. and Thiobacillus sp. were observed in the columns. These bacteria, are able to use Fe(II), sulfide, or thiosulfate as their electron donor in the presence of O2. Furthermore, organisms closely related to Lysobacter sp. and Sterolibacterium sp. were also detected in the groundwater and sediment. It was suggested that these organisms may be feeding on decaying biomass and consuming O2 in the process. The presence of these oxidizing and spoilage bacteria is thought to have resulted in the consumption of oxygen, therefore protecting the biogenic U(IV) from being reoxidized in the sediment columns. To simulate the in situ U(IV) stability under post biostimulation conditions, columns bioreduced in the laboratory, as described

  12. Replacement of Val3 in Human Thymidylate Synthase Affects Its Kinetic Properties and Intracellular Stability

    SciTech Connect

    Huang, Xiao; Gibson, Lydia M.; Bell, Brittnaie J.; Lovelace, Leslie L.; Pea, Maria Marjorette O.; Berger, Franklin G.; Berger, Sondra H.; Lebioda, Lukasz

    2010-11-03

    Human and other mammalian thymidylate synthase (TS) enzymes have an N-terminal extension of {approx}27 amino acids that is not present in bacterial TSs. The extension, which is disordered in all reported crystal structures of TSs, has been considered to play a primary role in protein turnover but not in catalytic activity. In mammalian cells, the variant V3A has a half-life similar to that of wild-type human TS (wt hTS) while V3T is much more stable; V3L, V3F, and V3Y have half-lives approximately half of that for wt hTS. Catalytic turnover rates for most Val3 mutants are only slightly diminished, as expected. However, two mutants, V3L and V3F, have strongly compromised dUMP binding, with K{sub m,app} values increased by factors of 47 and 58, respectively. For V3L, this observation can be explained by stabilization of the inactive conformation of the loop of residues 181-197, which prevents substrate binding. In the crystal structure of V3L, electron density corresponding to a leucine residue is present in a position that stabilizes the loop of residues 181-197 in the inactive conformation. Since this density is not observed in other mutants and all other leucine residues are ordered in this structure, it is likely that this density represents Leu3. In the crystal structure of a V3F {center_dot} FdUMP binary complex, the nucleotide is bound in an alternative mode to that proposed for the catalytic complex, indicating that the high K{sub m,app} value is caused not by stabilization of the inactive conformer but by substrate binding in a nonproductive, inhibitory site. These observations show that the N-terminal extension affects the conformational state of the hTS catalytic region. Each of the mechanisms leading to the high K{sub m,app} values can be exploited to facilitate design of compounds acting as allosteric inhibitors of hTS.

  13. Stability and Control Harmony in Approach and Landing. [analysis of factors affecting flight characteristics at low airspeeds

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.

    1975-01-01

    A review of the factors which affect stability and control harmony in approach and landing is made to obtain a clearer understanding of the proper relationship, the trade-offs involved, and to show how limits in stability and control harmony are established for advanced aircraft. Factors which influence stability and control harmony include the longitudinal short period response of the aircraft and the level of several pitch control characteristics including control power, control sensitivity, and control feel. At low stability levels for advanced aircraft, less conventional control techniques such as DLC are needed to improve harmony and some form of stability augmentation must be provided to improve precession of flight path control and reduce pilot work load.

  14. Factors affecting the stability and performance of ipratropium bromide; fenoterol hydrobromide pressurized-metered dose inhalers.

    PubMed

    Ninbovorl, Jenjira; Sawatdee, Somchai; Srichana, Teerapol

    2013-12-01

    The aim of the study was to investigate the factors affecting the stability and performance of ipratropium bromide and fenoterol hydrobromide in a pressurized-metered dose inhaler (pMDI). A factorial design was applied to investigate the effects of three parameters (propellant, water, and ethanol) on the performance of 27 designed formulations of a solution-based pMDI. The formulations that contained a hydrofluoroalkane (HFA) propellant lower than 72% v/v and an ethanol concentration higher than 27% v/v remained as clear solutions. Nine formulations that contained the HFA propellant higher than 74% v/v precipitated. The results indicated that it was not only the HFA propellant content of the formulations that was related to the formulation instability but also ethanol content. Only six formulations from the 18 formulations, that did not precipitate, produced drug contents that were within the acceptable range (80-120%). These six formulations generated aerosols with mass median aerodynamic diameters (MMAD) of approximately 2 μm with a fine particle fraction (FPF; particle size, <6.4 μm) between 45% and 52%. The MMAD and FPF did not change significantly after 6 months of storage (P > 0.05).

  15. High Intensity Interval Training Favourably Affects Angiotensinogen mRNA Expression and Markers of Cardiorenal Health in a Rat Model of Early-Stage Chronic Kidney Disease

    PubMed Central

    Tucker, Patrick S.; Scanlan, Aaron T.; Dalbo, Vincent J.

    2015-01-01

    The majority of CKD-related complications stem from cardiovascular pathologies such as hypertension. To help reduce cardiovascular complications, aerobic exercise is often prescribed. Emerging evidence suggests high intensity interval training (HIIT) may be more beneficial than traditional aerobic exercise. However, appraisals of varying forms of aerobic exercise, along with descriptions of mechanisms responsible for health-related improvements, are lacking. This study examined the effects of 8 weeks of HIIT (85% VO2max), versus low intensity aerobic exercise (LIT; 45–50% VO2max) and sedentary behaviour (SED), in an animal model of early-stage CKD. Tissue-specific mRNA expression of RAAS-related genes and CKD-related clinical markers were examined. Compared to SED, HIIT resulted in increased plasma albumin (p = 0.001), reduced remnant kidney weight (p = 0.028), and reduced kidney weight-body weight ratios (p = 0.045). Compared to LIT, HIIT resulted in reduced Agt mRNA expression (p = 0.035), reduced plasma LDL (p = 0.001), triglycerides (p = 0.029), and total cholesterol (p = 0.002), increased plasma albumin (p = 0.047), reduced remnant kidney weight (p = 0.005), and reduced kidney weight-body weight ratios (p = 0.048). These results suggest HIIT is a more potent regulator of several markers that describe and influence health in CKD. PMID:26090382

  16. Silent exonic mutations in the low-density lipoprotein receptor gene that cause familial hypercholesterolemia by affecting mRNA splicing.

    PubMed

    Defesche, J C; Schuurman, E J M; Klaaijsen, L N; Khoo, K L; Wiegman, A; Stalenhoef, A F H

    2008-06-01

    In a large group of patients with the clinical phenotype of familial hypercholesterolemia, such as elevated low-density lipoprotein (LDL) cholesterol and premature atherosclerosis, but without functional mutations in the genes coding for the LDL receptor and apolipoprotein B, we examined the effect of 128 seemingly neutral exonic and intronic DNA variants, discovered by routine sequencing of these genes. Two variants, G186G and R385R, were found to be associated with altered splicing. The nucleotide change leading to G186G resulted in the generation of new 3'-splice donor site in exon 4 and R385R was associated with a new 5'-splice acceptor site in exon 9 of the LDL receptor gene. Splicing of these alternate splice sites leads to an in-frame 75-base pair deletion in a stable mRNA of exon 4 in case of G186G and R385R resulted in a 31-base pair frame-shift deletion in exon 9 and non-sense-mediated mRNA decay.

  17. Steroid exposure during larval development of Xenopus laevis affects mRNA expression of the reproductive pituitary-gonadal axis in a sex- and stage-dependent manner.

    PubMed

    Urbatzka, Ralph; Lorenz, Claudia; Wiedemann, Caterina; Lutz, Ilka; Kloas, Werner

    2014-03-01

    Steroids are known to influence the reproductive pituitary-gonadal axis in adult amphibians. Here, we studied the effects of hormones on pituitary and gonadal mRNA expression during the development of Xenopus laevis. Tadpoles at NF 58 (prometamorphosis) and at NF 66 (freshly metamorphosed) were exposed for three days to 17β-estradiol (E2), tamoxifen (TAM), testosterone (T), dihydrotestosterone (DHT) at 10(-7)M, and flutamide (FLU) at 10(-6)M. In both genders at NF 58 and 66, T and DHT decreased luteinizing hormone beta (lhβ), but increased follicle stimulating hormone beta (fshβ), while FLU induced lhβ specifically in males. In the testis steroidogenic genes (p450 side chain cleavage enzyme, p450scc; steroid acute regulatory protein, star) at NF 58 showed a similar pattern as for lhβ, while the response at NF 66 was only partially present. In females, TAM induced lhβ at NF 58, while E2 decreased lhβ and increased fshβ at NF 66. In the ovaries, no alterations were observed for the steroidogenic genes. Summarizing, gonadotropic and steroidogenic mRNA expression may indicate control of androgen level during testis differentiation in male tadpoles at NF 58. In females the non-responsiveness of steroidogenic genes could be a sign of gonadal quiescence during pre-pubertal stages.

  18. Interleukin-1β induced Stress Granules Sequester COX-2 mRNA and Regulates its Stability and Translation in Human OA Chondrocytes

    PubMed Central

    Ansari, Mohammad Y.; Haqqi, Tariq M.

    2016-01-01

    Enhanced and immediate expression of cyclooxygenase-2 (COX-2) mRNA is observed in IL-1β-stimulated OA chondrocytes but the synthesis of protein found significantly delayed. Here we investigated the role of stress granules (SGs), ribonucleoprotein complexes that regulate mRNA translation, in the delayed translation of COX-2 mRNAs in IL-1β-stimulated OA chondrocytes. Stimulation of human chondrocytes with IL-1β activated the stress response genes and the phosphorylation of eIF2α that triggered the assembly of SGs. Using combined immunofluorescence staining of SGs markers and COX-2 protein, RNA fluorescence in situ hybridization and RNA immunoprecipitation, the COX-2 mRNAs were found sequestered in SGs in IL-1β-stimulated OA chondrocytes. No increase in COX-2 protein expression was observed during the persistence of SGs but enhanced expression of COX-2 protein was noted upon clearance of the SGs. Inhibition of SGs clearance blocked COX-2 mRNA translation whereas blocking the assembly of SGs by TIA-1 depletion resulted in rapid and increased production of COX-2 and PGE2. Our findings show for the first time assembly of SGs and sequestration of COX-2 mRNAs in human OA chondrocytes under pathological conditions. Post-transcriptional regulation of COX-2 mRNAs translation by SGs indicates a role in IL-1β-mediated catabolic response that could be therapeutically targeted in OA. PMID:27271770

  19. Nerve growth factor affects Ca2+ currents via the p75 receptor to enhance prolactin mRNA levels in GH3 rat pituitary cells

    PubMed Central

    López-Domínguez, Adriana M; Espinosa, Juan Luis; Navarrete, Araceli; Avila, Guillermo; Cota, Gabriel

    2006-01-01

    In clonal pituitary GH3 cells, spontaneous action potentials drive the opening of Cav1 (L-type) channels, leading to Ca2+ transients that are coupled to prolactin gene transcription. Nerve growth factor (NGF) has been shown to stimulate prolactin synthesis by GH3 cells, but the underlying mechanisms are unknown. Here we studied whether NGF influences prolactin gene expression and Ca2+ currents. By using RT-PCR, NGF (50 ng ml−1) was found to augment prolactin mRNA levels by ∼80% when applied to GH3 cells for 3 days. A parallel change in the prolactin content was detected by Western blotting. Both NGF-induced responses were mimicked by an agonist (Bay K 8644) and prevented by a blocker (nimodipine) of L-type channels. In whole-cell patch-clamp experiments, NGF enhanced the L-type Ca2+ current by ∼2-fold within 60 min. This effect reversed quickly upon growth factor withdrawal, but was maintained for days in the continued presence of NGF. In addition, chronic treatment (≥ 24 h) with NGF amplified the T-type current, which flows through Cav3 channels and is thought to support pacemaking activity. Thus, NGF probably increases the amount of Ca2+ that enters per action potential and may also induce a late increase in spike frequency. MC192, a specific antibody for the p75 neurotrophin receptor, but not tyrosine kinase inhibitors (K252a and lavendustin A), blocked the effects of NGF on Ca2+ currents. Overall, the results indicate that NGF activates the p75 receptor to cause a prolonged increase in Ca2+ influx through L-type channels, which in turn up-regulates the prolactin mRNA. PMID:16690703

  20. Factors affecting the stability of the performance of ambient fine-particle concentrators.

    PubMed

    Kim, S; Sioutas, C; Chang, M C; Gong, H

    2000-01-01

    This article describes a systematic evaluation of factors affecting the stability of the performance of Harvard ambient fine-particle concentrators, an essential requirement for controlled animal and human exposure studies that utilize these technologies. Phenomenological problems during the operation of the concentrator, including pressure drop increase and decrease in concentration enrichment, were statistically correlated with ambient air parameters such as temperature, relative humidity, PM2.5 mass concentration, and mass median diameter. The normalized hourly pressure drop across the concentrator was strongly associated (R2 = .81) with the product of ambient PM2.5 mass concentration and the difference between the vapor pressure downstream of the impactor nozzle and the saturation vapor pressure at the adiabatic expansion temperature (i.e., the temperature of the aerosol immediately downstream of the virtual impactors). From multiple regression analysis, the average enrichment factor was predicted reasonably well (R2 = .67) by aerosol mass median diameter and the normalized hourly pressure drop. Based on these results, we can anticipate in any given day whether an exposure study can be conducted without a considerable increase in the concentrator pressure drop, which might lead to an abrupt or premature termination of the exposure. As particle mass concentration and ambient dewpoint are the two main parameters responsible for raising the pressure drop across the concentrator, efforts should be made to either desiccate the ambient aerosol at days of high dewpoints, or to dilute the ambient PM at days of high concentrations, prior to drawing the aerosol through the virtual impactors. The latter approach is recommended on days of severe ambient pollution conditions because it is simpler and also makes it possible to maintain the appropriate concentration level delivered to the exposure chamber.

  1. mRNA decay rates in late-developing Dictyostelium discoideum cells are heterogeneous, and cyclic AMP does not act directly to stabilize cell-type-specific mRNAs.

    PubMed Central

    Manrow, R E; Jacobson, A

    1988-01-01

    We reevaluated the use of 32PO4 pulse-chases for analyzing mRNA decay rates in late-developing Dictyostelium cells. We found that completely effective PO4 chases could not be obtained in developing cells and that, as a consequence, the decay rates exhibited by some mRNAs were influenced by the rates at which they were transcribed. In developing cells disaggregated in the presence of cyclic AMP, the poly(A)+ mRNA population turned over with an apparent half-life of 4 h, individual mRNA decay rates were heterogeneous, and some prestalk and prespore mRNAs appeared to decay with biphasic kinetics. In cells disaggregated in the absence of cyclic AMP, all prestalk and prespore mRNAs decayed with biphasic kinetics. During the first 1 to 1.5 h after disaggregation in the absence of cyclic AMP, the cell-type-specific mRNAs were selectively degraded, decaying with half-lives of 20 to 30 min; thereafter, the residual prestalk and prespore mRNA molecules decayed at rates that were similar to those measured in the presence of cyclic AMP. This short-term labilization of cell-type-specific mRNAs was observed even for those species not requiring cyclic AMP for their accumulation in developing cells. The observation that cell-type specific mRNAs can decay at similar rates in disaggregated cells with or without cyclic AMP indicates that this compound does not act directly to stabilize prestalk and prespore mRNAs during development and that its primary role in the maintenance of cyclic-AMP-dependent mRNAs is likely to be transcriptional. Images PMID:2847029

  2. DUX4-induced dsRNA and MYC mRNA stabilization activate apoptotic pathways in human cell models of facioscapulohumeral dystrophy.

    PubMed

    Shadle, Sean C; Zhong, Jun Wen; Campbell, Amy E; Conerly, Melissa L; Jagannathan, Sujatha; Wong, Chao-Jen; Morello, Timothy D; van der Maarel, Silvère M; Tapscott, Stephen J

    2017-03-01

    Facioscapulohumeral dystrophy (FSHD) is caused by the mis-expression of DUX4 in skeletal muscle cells. DUX4 is a transcription factor that activates genes normally associated with stem cell biology and its mis-expression in FSHD cells results in apoptosis. To identify genes and pathways necessary for DUX4-mediated apoptosis, we performed an siRNA screen in an RD rhabdomyosarcoma cell line with an inducible DUX4 transgene. Our screen identified components of the MYC-mediated apoptotic pathway and the double-stranded RNA (dsRNA) innate immune response pathway as mediators of DUX4-induced apoptosis. Further investigation revealed that DUX4 expression led to increased MYC mRNA, accumulation of nuclear dsRNA foci, and activation of the dsRNA response pathway in both RD cells and human myoblasts. Nuclear dsRNA foci were associated with aggregation of the exon junction complex component EIF4A3. The elevation of MYC mRNA, dsRNA accumulation, and EIF4A3 nuclear aggregates in FSHD muscle cells suggest that these processes might contribute to FSHD pathophysiology.

  3. Identification of the cis-elements mediating the autogenous control of ribosomal protein L2 mRNA stability in yeast.

    PubMed Central

    Presutti, C; Villa, T; Hall, D; Pertica, C; Bozzoni, I

    1995-01-01

    The ribosomal protein L2 (rpL2) of Saccharomyces cerevisiae regulates the accumulation of its own mRNA by a feedback mechanism. An RNA sequence is responsible for this control, initially characterized as a 360 nucleotide-long region, localized at the 5' end of the transcript. This region, fused to an unrelated coding sequence, is able to down-regulate the accumulation of the chimeric transcript when increased levels of rpL2 are induced in the cell. The target regulatory region also responds to regulation when inserted inside an intron, demonstrating that the control process can take place inside the nucleus. Deletion analysis from the 5' and 3' borders have restricted the responsive region to approximately 200 nt. The insertion of a poly-G cassette downstream of the regulatory region allowed the identification of truncated 3' cut-off poly(A)+ RNA molecules. The parallel identification of cut-off molecules containing the 5' portion of the transcript allowed us to deduce that the truncated products originate by endonucleolytic cleavage. Altogether, these results are consistent with a mechanism by which the presence of excess amounts of rpL2 in the cell triggers its own mRNA to a degradative pathway; this involves an initial endonucleolytic cleavage that is followed by exonucleolytic trimming. Such a regulatory mechanism shows interesting analogies with the translational regulation of r-proteins in Escherichia coli. Images PMID:7664741

  4. Identification of the cis-elements mediating the autogenous control of ribosomal protein L2 mRNA stability in yeast.

    PubMed

    Presutti, C; Villa, T; Hall, D; Pertica, C; Bozzoni, I

    1995-08-15

    The ribosomal protein L2 (rpL2) of Saccharomyces cerevisiae regulates the accumulation of its own mRNA by a feedback mechanism. An RNA sequence is responsible for this control, initially characterized as a 360 nucleotide-long region, localized at the 5' end of the transcript. This region, fused to an unrelated coding sequence, is able to down-regulate the accumulation of the chimeric transcript when increased levels of rpL2 are induced in the cell. The target regulatory region also responds to regulation when inserted inside an intron, demonstrating that the control process can take place inside the nucleus. Deletion analysis from the 5' and 3' borders have restricted the responsive region to approximately 200 nt. The insertion of a poly-G cassette downstream of the regulatory region allowed the identification of truncated 3' cut-off poly(A)+ RNA molecules. The parallel identification of cut-off molecules containing the 5' portion of the transcript allowed us to deduce that the truncated products originate by endonucleolytic cleavage. Altogether, these results are consistent with a mechanism by which the presence of excess amounts of rpL2 in the cell triggers its own mRNA to a degradative pathway; this involves an initial endonucleolytic cleavage that is followed by exonucleolytic trimming. Such a regulatory mechanism shows interesting analogies with the translational regulation of r-proteins in Escherichia coli.

  5. DUX4-induced dsRNA and MYC mRNA stabilization activate apoptotic pathways in human cell models of facioscapulohumeral dystrophy

    PubMed Central

    Shadle, Sean C.; Jagannathan, Sujatha; Wong, Chao-Jen; Morello, Timothy D.; van der Maarel, Silvère M.

    2017-01-01

    Facioscapulohumeral dystrophy (FSHD) is caused by the mis-expression of DUX4 in skeletal muscle cells. DUX4 is a transcription factor that activates genes normally associated with stem cell biology and its mis-expression in FSHD cells results in apoptosis. To identify genes and pathways necessary for DUX4-mediated apoptosis, we performed an siRNA screen in an RD rhabdomyosarcoma cell line with an inducible DUX4 transgene. Our screen identified components of the MYC-mediated apoptotic pathway and the double-stranded RNA (dsRNA) innate immune response pathway as mediators of DUX4-induced apoptosis. Further investigation revealed that DUX4 expression led to increased MYC mRNA, accumulation of nuclear dsRNA foci, and activation of the dsRNA response pathway in both RD cells and human myoblasts. Nuclear dsRNA foci were associated with aggregation of the exon junction complex component EIF4A3. The elevation of MYC mRNA, dsRNA accumulation, and EIF4A3 nuclear aggregates in FSHD muscle cells suggest that these processes might contribute to FSHD pathophysiology. PMID:28273136

  6. The role of mRNA and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells

    PubMed Central

    Moss Bendtsen, Kristian; Jensen, Mogens H.; Krishna, Sandeep; Semsey, Szabolcs

    2015-01-01

    Oscillators and switches are important elements of regulation in biological systems. These are composed of coupling negative feedback loops, which cause oscillations when delayed, and positive feedback loops, which lead to memory formation. Here, we examine the behavior of a coupled feedback system, the Negative Autoregulated Frustrated bistability motif (NAF). This motif is a combination of two previously explored motifs, the frustrated bistability motif (FBM) and the negative auto regulation motif (NAR), which both can produce oscillations. The NAF motif was previously suggested to govern long term memory formation in animals, and was used as a synthetic oscillator in bacteria. We build a mathematical model to analyze the dynamics of the NAF motif. We show analytically that the NAF motif requires an asymmetry in the strengths of activation and repression links in order to produce oscillations. We show that the effect of time delays in eukaryotic cells, originating from mRNA export and protein import, are negligible in this system. Based on the reported protein and mRNA half-lives in eukaryotic cells, we find that even though the NAF motif possesses the ability for oscillations, it mostly promotes constant protein expression at the biologically relevant parameter regimes. PMID:26365394

  7. Soil aggregate stability as affected by clay mineralogy and polyacrylamide addition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of polyacrylamide (PAM) to soil leads to stabilization of existing aggregates and improved bonding between, and aggregation of adjacent soil particles However, the dependence of PAM efficacy as an aggregate stabilizing agent on soil-clay mineralogy has not been studied. Sixteen soil sam...

  8. Soil-Structural Stability as Affected by Clay Mineralogy, Soil Texture and Polyacrylamide Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...

  9. Murine startle mutant Nmf11 affects the structural stability of the glycine receptor and increases deactivation

    PubMed Central

    Wilkins, Megan E.; Caley, Alex; Gielen, Marc C.; Harvey, Robert J.

    2016-01-01

    Key points Hyperekplexia or startle disease is a serious neurological condition affecting newborn children and usually involves dysfunctional glycinergic neurotransmission.Glycine receptors (GlyRs) are major mediators of inhibition in the spinal cord and brainstem.A missense mutation, replacing asparagine (N) with lysine (K), at position 46 in the GlyR α1 subunit induced hyperekplexia following a reduction in the potency of the transmitter glycine; this resulted from a rapid deactivation of the agonist current at mutant GlyRs.These effects of N46K were rescued by mutating a juxtaposed residue, N61 on binding Loop D, suggesting these two asparagines may interact.Asparagine 46 is considered to be important for the structural stability of the subunit interface and glycine binding site, and its mutation represents a new mechanism by which GlyR dysfunction induces startle disease. Abstract Dysfunctional glycinergic inhibitory transmission underlies the debilitating neurological condition, hyperekplexia, which is characterised by exaggerated startle reflexes, muscle hypertonia and apnoea. Here we investigated the N46K missense mutation in the GlyR α1 subunit gene found in the ethylnitrosourea (ENU) murine mutant, Nmf11, which causes reduced body size, evoked tremor, seizures, muscle stiffness, and morbidity by postnatal day 21. Introducing the N46K mutation into recombinant GlyR α1 homomeric receptors, expressed in HEK cells, reduced the potencies of glycine, β‐alanine and taurine by 9‐, 6‐ and 3‐fold respectively, and that of the competitive antagonist strychnine by 15‐fold. Replacing N46 with hydrophobic, charged or polar residues revealed that the amide moiety of asparagine was crucial for GlyR activation. Co‐mutating N61, located on a neighbouring β loop to N46, rescued the wild‐type phenotype depending on the amino acid charge. Single‐channel recording identified that burst length for the N46K mutant was reduced and fast agonist application

  10. Moonlight affects mRNA abundance of arylalkylamine N-acetyltransferase in the retina of a lunar-synchronized spawner, the goldlined spinefoot.

    PubMed

    Kashiwagi, Tomomi; Park, Yong-Ju; Park, Ji-Gweon; Imamura, Satoshi; Takeuchi, Yuki; Hur, Sung-Pyo; Takemura, Akihiro

    2013-11-01

    Melatonin synthesis in the pineal gland and retina shows a rhythmic fashion with high levels at night and is controlled by a rate-limiting enzyme, arylalkylamine N-acetyltransferase (AANAT). A previous study revealed that moonlight suppresses the plasma melatonin levels of the goldlined spinefoot (Siganus guttatus), which exhibits a lunar cycle in its reproductive activity and repeats gonadal development toward and spawning around the first quarter moon. Whether the retina of this species responds to moonlight is unknown. To clarify the photoperceptive ability of this species, we aimed to clone the full-length cDNA of Aanat1 (sgAanat1) from the retina and examine its transcriptional pattern under several daylight and moonlight regimes. The full-length sgAanat1 cDNA (1,038 bp) contained a reading frame encoding a protein of 225 amino acids, which was highly homologous to AANAT1 of other teleosts. Reverse transcription-polymerase chain reaction (PCR) analysis revealed that among the tissues tested, sgAanat1 fragments were expressed exclusively in the retina. Real-time quantitative PCR analysis revealed that sgAanat1 fluctuated with high abundance at night under light-dark cycle and at subjective night under constant darkness, but not under constant light. These results suggest that sgAanat1 is regulated by both the external light signal and internal clock system. The abundance of sgAanat1 in the retina was higher at the culmination time around new moon than full moon phase. Additionally, exposing fish to brightness around the full moon period suppressed sgAanat1 mRNA abundance. Thus, moonlight is perceived by fish and has an impact on melatonin fluctuation in the retina.

  11. Oxygen concentration and cysteamine supplementation during in vitro production of buffalo (Bubalus bubalis) embryos affect mRNA expression of BCL-2, BCL-XL, MCL-1, BAX and BID.

    PubMed

    Elamaran, G; Singh, K P; Singh, M K; Singla, S K; Chauhan, M S; Manik, R S; Palta, P

    2012-12-01

    This study examined the effects of O(2) concentration (5% vs 20%) during in vitro maturation (IVM), fertilization (IVF) and culture (IVC) or supplementation of IVM and IVC media with cysteamine (50 and 100 μm, respectively; IVM, IVF and IVC carried out in 20% O(2)), on blastocyst rate and relative mRNA abundance of some apoptosis-related genes measured by real-time qPCR in immature and in vitro-matured buffalo oocytes and in embryos at 2-, 4-, 8- to 16-cell, morula and blastocyst stages. The blastocyst rate was significantly higher (p < 0.05) while the percentage of TUNEL-positive cells was significantly lower (p < 0.05) under 5% O(2) than that under 20% O(2). The mRNA expression of anti-apoptotic genes BCL-2 and MCL-1 was significantly higher (p < 0.05) and that of pro-apoptotic genes BAX and BID was lower (p < 0.05) under 5% O(2) than that under 20% O(2) concentration at many embryonic stages. Following cysteamine supplementation, the blastocyst rate and the relative mRNA abundance of BCL-XL and MCL-1 was significantly higher (p < 0.05) and that of BAX but not BID was lower (p < 0.05) at many stages of embryonic development, although it did not affect the percentage of TUNEL positive cells in the blastocysts significantly. The mRNA expression pattern of these genes during embryonic development was different in 5% vs 20% O(2) groups and in cysteamine supplemented vs controls. At the 8- to 16-cell stage, where developmental block occurs in buffalo, the relative mRNA abundance of BCL-2 and MCL-1 was highest under 5% O(2) concentration and that of BAX and BID was highest (p < 0.05) under 20% O(2) concentration. These results suggest that one of the mechanisms through which beneficial effects of low O(2) concentration and cysteamine supplementation are mediated during in vitro embryo production is through an increase in the expression of anti-apoptotic and a decrease in the expression of pro-apoptotic genes.

  12. FOXP3 mRNA expression at 6 months of age is higher in infants who develop atopic dermatitis, but is not affected by giving probiotics from birth.

    PubMed

    Taylor, Angie L; Hale, Jasmine; Hales, Belinda J; Dunstan, Janet A; Thomas, Wayne R; Prescott, Susan L

    2007-02-01

    Factors that influence immune regulation in early life may be implicated in the rise in allergic disease, including reduced microbial burden. The aim of the study was to examine the infant regulatory T-cell function in relation to (a) probiotic supplementation for the first 6 months of life and (b) the subsequent development of an early allergic phenotype. Two hundred and thirty-one allergic, pregnant women were recruited into a randomized, controlled trial. The infants received either a probiotic or placebo daily for the first 6 months of life. One hundred and seventy-eight children completed the study, with blood samples available from 118 (60 placebo; 58 probiotic). CD4(+)CD25(+)CTLA4(+)T-regulatory phenotype and allergen-induced FOXP3 mRNA expression were compared in relation to this intervention as well as according to evidence of early disease (atopic dermatitis). The administration of probiotics was not associated with any significant differences in the proportion of circulating CD4(+)CD25(+)CTLA4(+)cells, or in the resting expression of FOXP3. There were also no relationships between these parameters and patterns of gut colonization, and this probiotic did not reduce the risk of atopic dermatitis. Children who developed atopic dermatitis (n = 36/118) had significantly higher induced FOXP3 expression following stimulation with both house dust mite (HDM) (p = 0.017) and ovalbumin (OVA) allergens (p = 0.021) than those that did not develop atopic dermatitis. Although this relationship was seen in both the probiotic and placebo groups, it was more pronounced in the probiotic group. However, regression analysis demonstrated that higher allergen-induced FOXP3 expression was predicted by the presence of atopic dermatitis (p = 0.018) rather than probiotics supplementation (p = 0.217). The higher levels of allergen-induced FOXP3 in atopic dermatitis suggest activation of these compensatory mechanisms rather than a primary defect in this pathway. Probiotic

  13. The use of “stabilization exercises” to affect neuromuscular control in the lumbopelvic region: a narrative review

    PubMed Central

    Bruno, Paul

    2014-01-01

    It is well-established that the coordination of muscular activity in the lumbopelvic region is vital to the generation of mechanical spinal stability. Several models illustrating mechanisms by which dysfunctional neuromuscular control strategies may serve as a cause and/or effect of low back pain have been described in the literature. The term “core stability” is variously used by clinicians and researchers, and this variety has led to several rehabilitative approaches suggested to affect the neuromuscular control strategies of the lumbopelvic region (e.g. “stabilization exercise”, “motor control exercise”). This narrative review will highlight: 1) the ongoing debate in the clinical and research communities regarding the terms “core stability” and “stabilization exercise”, 2) the importance of sub-grouping in identifying those patients most likely to benefit from such therapeutic interventions, and 3) two protocols that can assist clinicians in this process. PMID:24932016

  14. Denaturation and Oxidative Stability of Hemp Seed (Cannabis sativa L.) Protein Isolate as Affected by Heat Treatment.

    PubMed

    Raikos, Vassilios; Duthie, Garry; Ranawana, Viren

    2015-09-01

    The present study investigated the impact of heat treatments on the denaturation and oxidative stability of hemp seed protein during simulated gastrointestinal digestion (GID). Heat-denatured hemp protein isolate (HPI) solutions were prepared by heating HPI (2 mg/ml, pH 6.8) to 40, 60, 80 and 100 °C for 10 min. Heat-induced denaturation of the protein isolates was monitored by polyacrylamide gel electrophoresis. Heating HPI at temperatures above 80 °C significantly reduced solubility and led to the formation of large protein aggregates. The isolates were then subjected to in vitro GID and the oxidative stability of the generated peptides was investigated. Heating did not significantly affect the formation of oxidation products during GID. The results suggest that heat treatments should ideally remain below 80 °C if heat stability and solubility of HPI are to be preserved.

  15. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    SciTech Connect

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-01-21

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. Furthermore, these results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  16. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    SciTech Connect

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-03-01

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  17. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    DOE PAGES

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; ...

    2015-01-21

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. Furthermore, these results could serve asmore » guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.« less

  18. TATA boxes in gene transcription and poly (A) tails in mRNA stability: New perspective on the effects of berberine

    PubMed Central

    Yuan, Zhi-Yi; Lu, Xi; Lei, Fan; Chai, Yu-Shuang; Wang, Yu-Gang; Jiang, Jing-Fei; Feng, Tian-Shi; Wang, Xin-Pei; Yu, Xuan; Yan, Xiao-Jin; Xing, Dong-Ming; Du, Li-Jun

    2015-01-01

    Berberine (BBR) is a natural compound with variable pharmacological effects and a broad panel of target genes. We investigated berberine’s pharmacological activities from the perspective of its nucleotide-binding ability and discovered that BBR directly regulates gene expression by targeting TATA boxes in transcriptional regulatory regions as well as the poly adenine (poly (A)) tail at the mRNA terminus. BBR inhibits gene transcription by binding the TATA boxes in the transcriptional regulatory region, but it promotes higher levels of expression by targeting the poly (A) tails of mRNAs. The present study demonstrates that TATA boxes and poly (A) tails are the first and second primary targets by which BBR regulates gene expression. The final outcome of gene regulation by BBR depends on the structure of the individual gene. This is the first study to reveal that TATA boxes and poly (A) tails are direct targets for BBR in its regulation of gene expression. Our findings provide a novel explanation for the complex activities of a small molecule compound in a biological system and a novel horizon for small molecule-compound pharmacological studies. PMID:26671652

  19. MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability.

    PubMed

    Gámez, Beatriz; Rodríguez-Carballo, Edgardo; Bartrons, Ramon; Rosa, José Luis; Ventura, Francesc

    2013-05-17

    Osteogenesis depends on a coordinated network of signals and transcription factors such as Runx2 and Osterix. Recent evidence indicates that microRNAs (miRNAs) act as important post-transcriptional regulators in a large number of processes, including osteoblast differentiation. In this study, we performed miRNA expression profiling and identified miR-322, a BMP-2-down-regulated miRNA, as a regulator of osteoblast differentiation. We report miR-322 gain- and loss-of-function experiments in C2C12 and MC3T3-E1 cells and primary cultures of murine bone marrow-derived mesenchymal stem cells. We demonstrate that overexpression of miR-322 enhances BMP-2 response, increasing the expression of Osx and other osteogenic genes. Furthermore, we identify Tob2 as a target of miR-322, and we characterize the specific Tob2 3'-UTR sequence bound by miR-322 by reporter assays. We demonstrate that Tob2 is a negative regulator of osteogenesis that binds and mediates degradation of Osx mRNA. Our results demonstrate a new molecular mechanism controlling osteogenesis through the specific miR-322/Tob2 regulation of specific target mRNAs. This regulatory circuit provides a clear example of a complex miRNA-transcription factor network for fine-tuning the osteoblast differentiation program.

  20. Nitrogen transformation and nitrous oxide emissions affected by biochar amendment and fertilizer stabilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar as a soil amendment and the use of fertilizer stabilizers (N transformation inhibitors) have been shown to reduce N2O emissions, but the mechanisms or processes involved are not well understood. The objective of this research was to investigate N transformation processes and the relationship...

  1. Factors Affecting the Stability of Biodiesel Sold in the United States

    SciTech Connect

    McCormick, R. L.; Ratcliff, M.; Moens, L.; Lawrence, R.

    2006-01-01

    As part of a survey of biodiesel quality and stability in the United States, 27 biodiesel (B100) samples were collected from blenders and distributor nationwide. For this sample set, 85% met all of the requirements of the industry standard for biodiesel, ASTM D6751.

  2. AN EVALUATION OF FACTORS AFFECTING THE SOLIDIFICATION/STABILIZATION OF HEAVY METAL SLUDGE

    EPA Science Inventory

    Solidification/stabilization (SIS) of hazardous waste involves mixing the waste with a binder material to enhance the physical properties of the waste and to immobilize contaminants that may be detrimental to the environment. Many hazardous wastes contain materials that are know...

  3. Temporal stability of soil water contents as affected by weather patterns: a simulation study.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temporal stability of soil water content (TS SWC) is a natural phenomenon that recently attracts attention and finds multiple applications. Large variations in the interannual and interseasonal TS SWC have been encountered among locations studied by various authors. The objective of this work was ...

  4. An Evaluation of Factors Affecting the Solidification/Stabilization of Heavy Metal Sludge

    DTIC Science & Technology

    1993-03-01

    Regression Analysis of UCS and CI ...... ............... .. 63 Wet/ Dry Testing ............... ........................ .. 70 Permeability...wet/ dry test . . . 89 53 Wet/dry cycling for the LFA solidified/stabilized samples with grease interference .......... ................... .. 90 54...one wet/ dry test . Disintegration of over 70 percent of the original sample was recorded as failure of a product. Sample A was carried through this

  5. Sublethal concentrations of silver nanoparticles affect the mechanical stability of biofilms.

    PubMed

    Grün, Alexandra Y; Meier, Jutta; Metreveli, George; Schaumann, Gabriele E; Manz, Werner

    2016-12-01

    Bacterial biofilms are most likely confronted with silver nanoparticles (Ag NPs) as a pollutant stressor in aquatic systems. In this study, biofilms of Aquabacterium citratiphilum were exposed for 20 h to 30 and 70 nm citrate stabilized Ag NPs in low-dose concentrations ranging from 600 to 2400 μg l(-1), and the Ag NP-mediated effects on descriptive, structural, and functional biofilm characteristics, including viability, protein content, architecture, and mechanical stability, were investigated. Viability, based on the bacterial cell membrane integrity of A. citratiphilum, as determined by epifluorescence microscopy, remained unaffected after Ag NP exposure. Moreover, in contrast to information in the current literature, protein contents of cells and extracellular polymeric substances (EPS) and biofilm architecture, including dry mass, thickness, and density, were not significantly impacted by exposure to Ag NPs. However, the biofilms themselves served as effective sinks for Ag NPs, exhibiting enrichment factors from 5 to 8. Biofilms showed a greater capacity to accumulate 30 nm sized Ag NPs than 70 nm Ag NPs. Furthermore, Ag NPs significantly threatened the mechanical stability of biofilms, as determined by a newly developed assay. For 30 nm Ag NPs, the mechanical stability of biofilms decreased as the Ag NP concentrations applied to them increased. In contrast, 70 nm Ag NPs produced a similar decrease in mechanical stability for each applied concentration. Overall, this finding demonstrates that exposure to Ag NPs triggers remarkable changes in biofilm adhesion and/or cohesiveness. Because of biofilm-mediated ecological services, this response raises environmental concerns regarding Ag NP release into freshwater systems, even in sublethal concentrations.

  6. Stability and heavy metal distribution of soil aggregates affected by application of apatite, lime, and charcoal.

    PubMed

    Cui, Hongbiao; Ma, Kaiqiang; Fan, Yuchao; Peng, Xinhua; Mao, Jingdong; Zhou, Dongmei; Zhang, Zhongbin; Zhou, Jing

    2016-06-01

    Only a few studies have been reported on the stability and heavy metal distribution of soil aggregates after soil treatments to reduce the availability of heavy metals. In this study, apatite (22.3 t ha(-1)), lime (4.45 t ha(-1)), and charcoal (66.8 t ha(-1)) were applied to a heavy metal-contaminated soil for 4 years. The stability and heavy metal distribution of soil aggregates were investigated by dry and wet sieving. No significant change in the dry mean weight diameter was observed in any treatments. Compared with the control, three-amendment treatments significantly increased the wet mean weight diameter, but only charcoal treatment significantly increased the wet aggregate stability. The soil treatments increased the content of soil organic carbon, and the fraction 0.25-2 mm contained the highest content of soil organic carbon. Amendments' application slightly increased soil total Cu and Cd, but decreased the concentrations of CaCl2 -extractable Cu and Cd except for the fraction <0.053 mm. The fractions >2 and 0.25-2 mm contained the highest concentrations of CaCl2-extractable Cu and Cd, accounted for about 74.5-86.8 % of CaCl2-extractable Cu and Cd in soil. The results indicated that amendments' application increased the wet soil aggregate stability and decreased the available Cu and Cd. The distribution of available heavy metals in wet soil aggregates was not controlled by soil aggregate stability, but possibly by soil organic carbon.

  7. Snf1-Dependent Transcription Confers Glucose-Induced Decay upon the mRNA Product

    PubMed Central

    Braun, Katherine A.; Dombek, Kenneth M.

    2015-01-01

    In the yeast Saccharomyces cerevisiae, the switch from respiratory metabolism to fermentation causes rapid decay of transcripts encoding proteins uniquely required for aerobic metabolism. Snf1, the yeast ortholog of AMP-activated protein kinase, has been implicated in this process because inhibiting Snf1 mimics the addition of glucose. In this study, we show that the SNF1-dependent ADH2 promoter, or just the major transcription factor binding site, is sufficient to confer glucose-induced mRNA decay upon heterologous transcripts. SNF1-independent expression from the ADH2 promoter prevented glucose-induced mRNA decay without altering the start site of transcription. SNF1-dependent transcripts are enriched for the binding motif of the RNA binding protein Vts1, an important mediator of mRNA decay and mRNA repression whose expression is correlated with decreased abundance of SNF1-dependent transcripts during the yeast metabolic cycle. However, deletion of VTS1 did not slow the rate of glucose-induced mRNA decay. ADH2 mRNA rapidly dissociated from polysomes after glucose repletion, and sequences bound by RNA binding proteins were enriched in the transcripts from repressed cells. Inhibiting the protein kinase A pathway did not affect glucose-induced decay of ADH2 mRNA. Our results suggest that Snf1 may influence mRNA stability by altering the recruitment activity of the transcription factor Adr1. PMID:26667037

  8. Balancing protein stability and activity in cancer: a new approach for identifying driver mutations affecting CBL ubiquitin ligase activation

    PubMed Central

    Li, Minghui; Kales, Stephen C.; Ma, Ke; Shoemaker, Benjamin A.; Crespo-Barreto, Juan; Cangelosi, Andrew L.; Lipkowitz, Stanley; Panchenko, Anna R.

    2015-01-01

    Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) structures have recently been solved depicting the protein at different stages of its activation cycle and thus provide mechanistic insight underlying how stability-activity tradeoffs in cancer-related proteins may influence disease onset and progression. In this study, we computationally modeled the effects of missense cancer mutations on structures representing four stages of the CBL activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing effects on CBL states than did random non-cancer mutations. We further tested the ability of these computational models assessing the changes in CBL stability and its binding to ubiquitin conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL stability and, to a lesser extent, with CBL-E2 binding affinity. Two-thirds of all experimentally tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. Collectively, our findings demonstrate that computational methods incorporating multiple protein conformations and stability and binding affinity evaluations can successfully predict the functional consequences of cancer mutations on protein activity, and provide a proof of concept for mutations in CBL. PMID:26676746

  9. Hypoxia may increase rat insulin mRNA levels by promoting binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich insulin mRNA 3'-untranslated region.

    PubMed Central

    Tillmar, Linda; Welsh, Nils

    2002-01-01

    BACKGROUND: Recent reports identify the 3'-UTR of insulin mRNA as crucial for control of insulin messenger stability. This region contains a pyrimidine-rich sequence, which is similar to the hypoxia-responsive mRNA-stabilizing element of tyrosine hydroxylase. This study aimed to determine whether hypoxia affects insulin mRNA levels. MATERIALS AND METHODS: Rat islets were incubated at normoxic or hypoxic conditions and with or without hydrogen peroxide and a nitric oxide donor. Insulin mRNA was determined by Northern hybridization. Islet homogenates were used for electrophoretic mobility shift assay with an RNA-oligonucleotide, corresponding to the pyrimidine-rich sequence of the 3'-UTR of rat insulin I mRNA. The expression of reporter gene mRNA, in islets transfected with reporter gene constructs containing the wild-type or mutated insulin mRNA pyrimidine-rich sequences, was measured by semiquantitive RT-PCR. RESULTS: Insulin mRNA was increased in response to hypoxia. This was paralleled by increased binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich sequence of the 3'-UTR of insulin mRNA, which was counteracted by hydrogen peroxide. The reporter gene mRNA level containing the wild-type binding site was not increased in response to hypoxia, but mutation of the site resulted in a destabilization of the mRNA. CONCLUSIONS: The complete understanding of different diabetic conditions requires the elucidation of mechanisms that control insulin gene expression. Our data show that hypoxia may increase insulin mRNA levels by promoting the binding of PTB to the insulin mRNA 3'-UTR. Hydrogen peroxide abolishes the hypoxic effect indicating involvement of reactive oxygen species and/or the redox potential in the oxygen-signaling pathway. PMID:12359957

  10. ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins.

    PubMed

    Martirosyan, Araks; De Martino, Andrea; Pagnani, Andrea; Marinari, Enzo

    2017-03-07

    Gene expression is a noisy process and several mechanisms, both transcriptional and post-transcriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions.

  11. ceRNA crosstalk stabilizes protein expression and affects the correlation pattern of interacting proteins

    PubMed Central

    Martirosyan, Araks; De Martino, Andrea; Pagnani, Andrea; Marinari, Enzo

    2017-01-01

    Gene expression is a noisy process and several mechanisms, both transcriptional and post-transcriptional, can stabilize protein levels in cells. Much work has focused on the role of miRNAs, showing in particular that miRNA-mediated regulation can buffer expression noise for lowly expressed genes. Here, using in silico simulations and mathematical modeling, we demonstrate that miRNAs can exert a much broader influence on protein levels by orchestrating competition-induced crosstalk between mRNAs. Most notably, we find that miRNA-mediated cross-talk (i) can stabilize protein levels across the full range of gene expression rates, and (ii) modifies the correlation pattern of co-regulated interacting proteins, changing the sign of correlations from negative to positive. The latter feature may constitute a potentially robust signature of the existence of RNA crosstalk induced by endogenous competition for miRNAs in standard cellular conditions. PMID:28266541

  12. Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement

    NASA Astrophysics Data System (ADS)

    Zhou, Weisai; Li, Caibin; Wang, Zhiyu; Zhang, Wenli; Liu, Jianping

    2016-09-01

    Polymeric micelles (PMs) self-assembled by amphiphilic block copolymers have been used as promising nanocarriers for tumor-targeted delivery due to their favorable properties, such as excellent biocompatibility, prolonged circulation time, favorable particle sizes (10-100 nm) to utilize enhanced permeability and retention effect and the possibility for functionalization. However, PMs can be easily destroyed due to dilution of body fluid and the absorption of proteins in system circulation, which may induce drug leakage from these micelles before reaching the target sites and compromise the therapeutic effect. This paper reviewed the factors that influence stability of micelles in terms of thermodynamics and kinetics consist of the critical micelle concentration of block copolymers, glass transition temperature of hydrophobic segments and polymer-polymer and polymer-cargo interaction. In addition, some effective strategies to improve the stability of micelles were also summarized.

  13. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil.

    PubMed

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-05-05

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using (13)C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems.

  14. Stability of the Octameric Structure Affects Plasminogen-Binding Capacity of Streptococcal Enolase

    PubMed Central

    Law, Ruby H. P.; Casey, Lachlan W.; Valkov, Eugene; Bertozzi, Carlo; Stamp, Anna; Jovcevski, Blagojce; Aquilina, J. Andrew; Whisstock, James C.; Walker, Mark J.; Kobe, Bostjan

    2015-01-01

    Group A Streptococcus (GAS) is a human pathogen that has the potential to cause invasive disease by binding and activating human plasmin(ogen). Streptococcal surface enolase (SEN) is an octameric α-enolase that is localized at the GAS cell surface. In addition to its glycolytic role inside the cell, SEN functions as a receptor for plasmin(ogen) on the bacterial surface, but the understanding of the molecular basis of plasmin(ogen) binding is limited. In this study, we determined the crystal and solution structures of GAS SEN and characterized the increased plasminogen binding by two SEN mutants. The plasminogen binding ability of SENK312A and SENK362A is ~2- and ~3.4-fold greater than for the wild-type protein. A combination of thermal stability assays, native mass spectrometry and X-ray crystallography approaches shows that increased plasminogen binding ability correlates with decreased stability of the octamer. We propose that decreased stability of the octameric structure facilitates the access of plasmin(ogen) to its binding sites, leading to more efficient plasmin(ogen) binding and activation. PMID:25807546

  15. How Does Functional Soccer Training on Uneven Ground Affect Dynamic Stability of Lower Limbs in Young Soccer Players

    PubMed Central

    Plenzler, Marcin; Mrozińska, Natalia; Mierzwińska, Anna; Korbolewska, Olga; Mejnartowicz, Daria; Popieluch, Marcin; Śmigielski, Robert

    2014-01-01

    the supporting limb after the preparatory period, during which a stability and proprioception training was completed. The significance of these results is even greater when the parallel substantial increase of the physical body height of these young players is taken into account (the taller the player is, the harder it is for him to keep the balance). The players’ tests results are, also, statistically lower than the control group’s data. That, in turn, means that the players had better stability in comparison to the control group. This co-dependence regarding the overall stability was mainly affected by the A/P stability indexes taken in a sagittal plane. Also, no new injuries were recorded within the young players group. Conclusion: 1. The exercised functional training significantly improved stability results of the supporting limb among the young players. 2. The results encourage to continue the study, and, in the later stage, check whether there is an actual relationship between the dynamic stability results and sports achievements combined with the frequency of injuries.

  16. Severe fluoropyrimidine toxicity due to novel and rare DPYD missense mutations, deletion and genomic amplification affecting DPD activity and mRNA splicing.

    PubMed

    van Kuilenburg, André B P; Meijer, Judith; Maurer, Dirk; Dobritzsch, Doreen; Meinsma, Rutger; Los, Maartje; Knegt, Lia C; Zoetekouw, Lida; Jansen, Rob L H; Dezentjé, Vincent; van Huis-Tanja, Lieke H; van Kampen, Roel J W; Hertz, Jens Michael; Hennekam, Raoul C M

    2017-03-01

    Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5FU). Genetic variations in DPD have emerged as predictive risk factors for severe fluoropyrimidine toxicity. Here, we report novel and rare genetic variants underlying DPD deficiency in 9 cancer patients presenting with severe fluoropyrimidine-associated toxicity. All patients possessed a strongly reduced DPD activity, ranging from 9 to 53% of controls. Analysis of the DPD gene (DPYD) showed the presence of 21 variable sites including 4 novel and 4 very rare aberrations: 3 missense mutations, 2 splice-site mutations, 1 intronic mutation, a deletion of 21 nucleotides and a genomic amplification of exons 9-12. Two novel/rare variants (c.2843T>C, c.321+1G>A) were present in multiple, unrelated patients. Functional analysis of recombinantly-expressed DPD mutants carrying the p.I948T and p.G284V mutation showed residual DPD activities of 30% and 0.5%, respectively. Analysis of a DPD homology model indicated that the p.I948T and p.G284V mutations may affect electron transfer and the binding of FAD, respectively. cDNA analysis showed that the c.321+1G>A mutation in DPYD leads to skipping of exon 4 immediately upstream of the mutated splice-donor site in the process of DPD pre-mRNA splicing. A lethal toxicity in two DPD patients suggests that fluoropyrimidines combined with other therapies such as radiotherapy might be particularly toxic for DPD deficient patients. Our study advocates a more comprehensive genotyping approach combined with phenotyping strategies for upfront screening for DPD deficiency to ensure the safe administration of fluoropyrimidines.

  17. Stability of the Stevia-Derived Sweetener Rebaudioside A in Solution as Affected by Ultraviolet Light Exposure.

    PubMed

    Zhang, Jiewen; Bell, Leonard N

    2017-04-01

    Rebaudioside A is a natural noncaloric high-potency sweetener extracted from the leaves of Stevia rebaudiana. With rebaudioside A use increasing in foods, understanding the factors affecting its stability is necessary. This project evaluated the degradation rate constants of rebaudioside A in water, 0.1 M phosphate buffer, and 0.1 M citrate buffer at pH 3 and 7 as a function of ultraviolet (UV) light intensity (365 nm, 0 μW/cm(2) for dark conditions, 27 μW/cm(2) for low intensity, and 190 μW/cm(2) for high intensity) at 32.5 °C. Rebaudioside A stability was adversely affected by light exposure. The pseudo-1st-order degradation rate constants increased significantly (P < 0.05) with increasing light intensity in all solutions. Under dark conditions, rebaudioside A in phosphate buffers was more susceptible to breakdown than in water and citrate buffers at both pH levels. However, exposure to UV light resulted in rebaudioside A degradation occurring approximately 10 times faster in citrate than in phosphate buffers at both pH levels. The sensitivity of rebaudioside A to UV light was greater in citrate buffers than in water or phosphate buffers. The use of light-protective packaging for beverages containing rebaudioside A will improve its stability.

  18. Factors affecting the thermal shock behavior of yttria stabilized hafnia based graphite and tungsten composites.

    NASA Technical Reports Server (NTRS)

    Lineback, L. D.; Manning, C. R.

    1971-01-01

    Hafnia-based composites containing either graphite or tungsten were investigated as rocket nozzle throat inserts in solid propellant rocket engines. The thermal shock resistance of these materials is considered in terms of macroscopic thermal conductivity, thermal expansion, modulus of elasticity, and compressive fracture stress. The effect of degree of hafnia stabilization, density, and graphite or tungsten content upon these parameters is discussed. The variation of the ratio of elastic modulus to compressive fracture stress with density and its effect upon thermal shock resistance of these materials are discussed in detail.

  19. Intermonomer Interactions in Hemagglutinin Subunits HA1 and HA2 Affecting Hemagglutinin Stability and Influenza Virus Infectivity

    PubMed Central

    DeFeo, Christopher J.; Alvarado-Facundo, Esmeralda; Vassell, Russell

    2015-01-01

    ABSTRACT Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endosomal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket, coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus [A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1 and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a glutamate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and HA2 that interact to help regulate H1N1 HA stability and virus infectivity. IMPORTANCE Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective antibodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains. Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine production, as well

  20. The turnip yellow mosaic virus tRNA-like structure cannot be replaced by generic tRNA-like elements or by heterologous 3' untranslated regions known to enhance mRNA expression and stability.

    PubMed Central

    Skuzeski, J M; Bozarth, C S; Dreher, T W

    1996-01-01

    The tRNA-like structure (TLS) at the 3' end of the turnip yellow mosaic virus genome was replaced with heterologous tRNA-like elements, and with a poly(A) tail, in order to assess its role. Replacement with the valylatable TLSs from two closely related tymoviruses resulted in infectious viruses. In contrast, no systemic symptoms on plants, and only low viral accumulations in protoplasts, were observed for three chimeric genomes with 3' sequences known to enhance mRNA stability and translatability. One of these chimeras had a poly(A) tail, and the others had the TLS with associated upstream pseudoknot tracts from the 3' ends of brome mosaic and tobacco mosaic viruses. The latter two chimeric RNAs were shown to be appropriately folded by demonstrating their aminoacylation in vitro with tyrosine and histidine, respectively. The results show that enhancement of genome stability or gene expression is not the major role of the turnip yellow mosaic virus TLS. The major role is likely to be replicational, dependent on features present in tymoviral TLSs but not in generic tRNA-like structures. PMID:8642631

  1. Redefining a Bizarre Situation: Relative Concept Stability in Affect Control Theory

    ERIC Educational Resources Information Center

    Nelson, Steven M.

    2006-01-01

    I analyze the process by which we react cognitively to information that contradicts our culturally held sentiments in the context of affect control theory. When bizarre, unanticipated events come to our attention and we have no opportunity to act so as to alter them, we must reidentify at least one event component: the actor, the behavior, or the…

  2. Heat stability and acid gelation properties of calcium-enriched reconstituted skim milk affected by ultrasonication.

    PubMed

    Chandrapala, Jayani; Bui, Don; Kentish, Sandra; Ashokkumar, Muthupandian

    2014-05-01

    The aggregation of proteins after heating of calcium-fortified milks has been an ongoing problem in the dairy industry. This undesirable effect restricts the manufacture of calcium rich dairy products. To overcome this problem, a completely new approach in controlling the heat stability of dairy protein solutions, developed in our lab, has been employed. In this approach, high intensity, low frequency ultrasound is applied for a very short duration after a pre-heating step at ⩾70 °C. The ultrasound breaks apart whey/whey and whey/casein aggregates through the process of acoustic cavitation. Protein aggregates do not reform on subsequent post-heating, thereby making the systems heat stable. In this paper, the acid gelation properties of ultrasonicated calcium-enriched skim milks have also been investigated. It is shown that ultrasonication alone does not change the gelation properties significantly whereas a sequence of preheating (72 °C/1 min) followed by ultrasonication leads to decreased gelation times, decreased gel syneresis and increased skim milk viscosity in comparison to heating alone. Overall, ultrasonication has the potential to provide calcium-fortified dairy products with increased heat stability. However, enhanced gelation properties can only be achieved when ultrasonication is completed in conjunction with heating.

  3. Dissecting the Factors Affecting the Fluorescence Stability of Quantum Dots in Live Cells.

    PubMed

    Wang, Zhi-Gang; Liu, Shu-Lin; Hu, Yuan-Jun; Tian, Zhi-Quan; Hu, Bin; Zhang, Zhi-Ling; Pang, Dai-Wen

    2016-04-06

    Labeling and imaging of live cells with quantum dots (QDs) has attracted great attention in the biomedical field over the past two decades. Maintenance of the fluorescence of QDs in a biological environment is crucial for performing long-term cell tracking to investigate the proliferation and functional evolution of cells. The cell-penetrating peptide transactivator of transcription (TAT) is a well-studied peptide to efficiently enhance the transmembrane delivery. Here, we used TAT peptide-conjugated QDs (TAT-QDs) as a model system to examine the fluorescence stability of QDs in live cells. By confocal microscopy, we found that TAT-QDs were internalized into cells by endocytosis, and transported into the cytoplasm via the mitochondria, Golgi apparatus, and lysosomes. More importantly, the fluorescence of TAT-QDs in live cells was decreased mainly by cell proliferation, and the low pH value in the lysosomes could also lower the fluorescence intensity of intracellular QDs. Quantitative analysis of the amount of QDs in the extracellular region and whole cells indicated that the exocytosis was not the primary cause of fluorescence decay of intracellular QDs. This work facilitates a better understanding of the fluorescence stability of QDs for cell imaging and long-term tracking in live cells. Also, it provides insights into the utility of TAT for transmembrane transportation, and the preparation and modification of QDs for cell imaging and tracking.

  4. Vestibular ablation and a semicircular canal prosthesis affect postural stability during head turns.

    PubMed

    Thompson, Lara A; Haburcakova, Csilla; Lewis, Richard F

    2016-11-01

    In our study, we examined postural stability during head turns for two rhesus monkeys: one animal study contrasted normal and mild bilateral vestibular ablation and a second animal study contrasted severe bilateral vestibular ablation with and without prosthetic stimulation. The monkeys freely stood, unrestrained on a balance platform and made voluntary head turns between visual targets. To quantify each animals' posture, motions of the head and trunk, as well as torque about the body's center of mass, were measured. In the mildly ablated animal, we observed less foretrunk sway in comparison with the normal state. When the canal prosthesis provided electric stimulation to the severely ablated animal, it showed a decrease in trunk sway during head turns. Because the rhesus monkey with severe bilateral vestibular loss exhibited a decrease in trunk sway when receiving vestibular prosthetic stimulation, we propose that the prosthetic electrical stimulation partially restored head velocity information. Our results provide an indication that a semicircular canal prosthesis may be an effective way to improve postural stability in patients with severe peripheral vestibular dysfunction.

  5. Vestibular ablation and a semicircular canal prosthesis affect postural stability during head turns

    PubMed Central

    Thompson, Lara A.; Haburcakova, Csilla; Lewis, Richard F.

    2016-01-01

    In our study, we examined postural stability during head turns for two rhesus monkeys: one, single animal study contrasted normal and mild bilateral vestibular ablation and a second animal study contrasted severe bilateral vestibular ablation with and without prosthetic stimulation. The monkeys freely stood, unrestrained on a balance platform and made voluntary head turns between visual targets. To quantify each animals’ posture, motions of the head and trunk, as well as torque about the body’s center-of-mass, were measured. In the mildly ablated animal, we observed less foretrunk sway in comparison to the normal state. When the canal prosthesis provided electric stimulation to the severely ablated animal, it showed a decrease in trunk sway during head turns. Because the rhesus monkey with severe bilateral vestibular loss exhibited a decrease in trunk sway when receiving vestibular prosthetic stimulation, we propose that the prosthetic electrical stimulation partially restored head velocity information. Our results provide an indication that a semicircular canal prosthesis may be an effective way to improve postural stability in patients with severe peripheral vestibular dysfunction. PMID:27405997

  6. Stability of micronutrients and phytochemicals of grapefruit jam as affected by the obtention process.

    PubMed

    Igual, M; García-Martínez, E; Camacho, M M; Martínez-Navarrete, N

    2016-04-01

    Fruits are widely revered for their micronutrient properties. They serve as a primary source of vitamins and minerals as well as of natural phytonutrients with antioxidant properties. Jam constitutes an interesting way to preserve fruit. Traditionally, this product is obtained by intense heat treatment that may cause irreversible loss of these bioactive compounds responsible for the health-related properties of fruits. In this work, different grapefruit jams obtained by conventional, osmotic dehydration (OD) without thermal treatment and/or microwave (MW) techniques were compared in terms of their vitamin, organic acid and phytochemical content and their stability through three months of storage. If compared with heating, osmotic treatments lead to a greater loss of organic acids and vitamin C during both processing and storage. MW treatments permit jam to be obtained which has a similar nutritional and functional value than that obtained when using a conventional heating method, but in a much shorter time.

  7. Gemini surfactants affect the structure, stability, and activity of ribonuclease Sa.

    PubMed

    Amiri, Razieh; Bordbar, Abdol-Khalegh; Laurents, Douglas V

    2014-09-11

    Gemini surfactants have important advantages, e.g., low micromolar CMCs and slow millisecond monomer ↔ micelle kinetics, for membrane mimetics and for delivering nucleic acids for gene therapy or RNA silencing. However, as a prerequisite, it is important to characterize interactions occurring between Gemini surfactants and proteins. Here NMR and CD spectroscopies are employed to investigate the interactions of cationic Gemini surfactants with RNase Sa, a negatively charged ribonuclease. We find that RNase Sa binds Gemini surfactant monomers and micelles at pH values above 4 to form aggregates. Below pH 4, where the protein is positively charged, these aggregates dissolve and interactions are undetectable. Thermal denaturation experiments show that surfactant lowers RNase Sa's conformational stability, suggesting that surfactant binds the protein's denatured state preferentially. Finally, Gemini surfactants were found to bind RNA, leading to the formation of large complexes. Interestingly, Gemini surfactant binding did not prevent RNase Sa from cleaving RNA.

  8. Water making hot rocks soft: How hydrothermal alteration affects volcano stability

    NASA Astrophysics Data System (ADS)

    Ball, J. L.

    2015-12-01

    My research involves using numerical models of groundwater flow and slope stability to determine how long-term hydrothermal alteration in stratovolcanoes can cause increases in pore fluid pressure that lead to edifice collapse. Or in simpler terms: We can use computers to figure out how and why water that moves through hot rocks changes them into softer rocks that want to fall down. It's important to pay attention to the soft rocks even if they look safe because this can happen a long time after the stuff that makes them hot goes away or becomes cool. Wet soft rocks can go very far from high places and run over people in their way. I want show where the soft wet rocks are and how they might fall down so people will be safer.

  9. Electricity and colloidal stability: how charge distribution in the tissue can affects wound healing.

    PubMed

    Farber, Paulo Luiz; Hochman, Bernardo; Furtado, Fabianne; Ferreira, Lydia Masako

    2014-02-01

    The role of endogenous electric fields in wound healing is still not fully understood. Electric fields are of fundamental importance in various biological processes, ranging from embryonic development to disease progression, as described by many investigators in the last century. This hypothesis brings together some relevant literature on the importance of electric fields in physiology and pathology, the theory of biologically closed electric circuits, skin battery (a phenomenon that occurs after skin injury and seems to be involved in tissue repair), the relationship between electric charge and interstitial exclusion, and how skin tissues can be regarded as colloidal systems. The importance of electric charges, as established in the early works on the subject and the relevance of zeta potential and colloid stability are also analyzed, and together bring a new light for the physics involved in the wound repair of all the body tissues.

  10. Phosphine passivated gold clusters: how charge transfer affects electronic structure and stability.

    PubMed

    Mollenhauer, Doreen; Gaston, Nicola

    2016-11-02

    A systematic evaluation of small phosphine ligand-protected gold clusters with six to nine gold atoms using density functional theory with dispersion correction has been performed in order to understand the major factors determining stability, including its size, shape, and charge dependence. We show that the charge per atom of the cluster is much more important for the interaction between the ligand shell and gold cluster than the system size. Thus, strong charge transfer effects determine the binding strength between the ligand shell and cluster. The clusters in this series are all non-spherical and exhibit large HOMO-LUMO gaps (above 2.7 eV). Analysis of the delocalized nature of the electronic states at the centre of the clusters demonstrates the presence of nascent superatomic states. However the number of delocalized electrons in these systems is significantly influenced by the charge transfer from the phosphine ligands, contrary to the usual accounting rule for superatom complex systems. Thus, not only electron withdrawing but also charge transfer effects should be considered to influence the superatomic structure of charged ligand surrounded clusters. In consequence in the phosphine gold cluster series under consideration the systems Au7(PPh3)7(+) and Au8(PPh3)8(2+) exhibit nearly fully filled S and P states and the HOMO-LUMO gap increases by 0.2 eV and 0.9 eV, respectively. The interpretation for the stability of the gold phosphine systems is in agreement with experimental results and demonstrates the importance of the superatomic concept.

  11. Chemical properties and oxidative stability of perilla oils obtained from roasted perilla seeds as affected by extraction methods.

    PubMed

    Jung, Dong Min; Yoon, Suk Hoo; Jung, Mun Yhung

    2012-12-01

    The chemical properties and oxidative stability of perilla oils obtained from roasted perilla seeds as affected by extraction methods (supercritical carbon dioxide [SC-CO(2)], mechanical press, and solvent extraction) were studied. The SC-CO(2) extraction at 420 bar and 50 °C and hexane extraction showed significantly higher oil yield than mechanical press extraction (P < 0.05). The fatty acid compositions in the oils were virtually identical regardless of the extraction methods. The contents of tocopherol, sterol, policosanol, and phosphorus in the perilla oils greatly varied with the extraction methods. The SC-CO(2) -extracted perilla oils contained significantly higher contents of tocopherols, sterols, and policosanols than the mechanical press-extracted and hexane-extracted oils (P < 0.05). The SC-CO(2) -extracted oil showed the greatly lower oxidative stability than press-extracted and hexane-extracted oils during the storage in the oven under dark at 60 °C. However, the photooxidative stabilities of the oils were not considerably different with extraction methods.

  12. mRNA degradation machines in eukaryotic cells.

    PubMed

    Tourrière, Hélène; Chebli, Karim; Tazi, Jamal

    2002-08-01

    The steady-state levels of mRNAs depend upon their combined rates of synthesis and processing, transport from the nucleus to cytoplasm, and decay in the cytoplasm. In eukaryotic cells, the degradation of mRNA is an essential determinant in the regulation of gene expression, and it can be modulated in response to developmental, environmental, and metabolic signals. This level of regulation is particularly important for proteins that are active for a brief period, such as growth factors, transcription factors, and proteins that control cell cycle progression. The mechanisms by which mRNAs are degraded and the sequence elements within the mRNAs that affect their stability are the subject of this review. We will summarize the current state of knowledge regarding cis-acting elements in mRNA and trans-acting factors that contribute to mRNA regulation decay. We will then consider the mechanisms by which specific signaling proteins seem to contribute to a dynamic organization of the mRNA degradation machinery in response to physiological stimuli.

  13. Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows.

    PubMed

    O'Doherty, Alan M; O'Gorman, Aoife; al Naib, Abdullah; Brennan, Lorraine; Daly, Edward; Duffy, Pat; Fair, Trudee

    2014-09-01

    Ovarian follicle development in post-partum, high-producing dairy cows, occurs in a compromised endogenous metabolic environment (referred to as negative energy balance, NEB). Key events that occur during oocyte/follicle growth, such as the vital process of genomic imprinting, may be detrimentally affected by this altered ovarian environment. Imprinting is crucial for placental function and regulation of fetal growth, therefore failure to establish and maintain imprints during oocyte growth may contribute to early embryonic loss. Using ovum pick-up (OPU), oocytes and follicular fluid samples were recovered from cows between days 20 and 115 post-calving, encompassing the NEB period. In a complimentary study, cumulus oocyte complexes were in vitro matured under high non-esterified fatty acid (NEFA) concentrations and in the presence of the methyl-donor S-adenosylmethionine (SAM). Pyrosequencing revealed the loss of methylation at several imprinted loci in the OPU derived oocytes. The loss of DNA methylation was observed at the PLAGL1 locus in oocytes, following in vitro maturation (IVM) in the presence of elevated NEFAs and SAM. Finally, metabolomic analysis of postpartum follicular fluid samples revealed significant differences in several branched chain amino acids, with fatty acid profiles bearing similarities to those characteristic of lactating dairy cows. These results provide the first evidence that (1) the postpartum ovarian environment may affect maternal imprint acquisition and (2) elevated NEFAs during IVM can lead to the loss of imprinted gene methylation in bovine oocytes.

  14. Habitat stability and predation pressure affect temperament behaviours in populations of three-spined sticklebacks.

    PubMed

    Brydges, Nichola M; Colegrave, Nick; Heathcote, Robert J P; Braithwaite, Victoria A

    2008-03-01

    1. There is growing interest in the causes and consequences of animal temperaments. Temperament behaviours often have heritable components, but ecological variables can also affect them. Numerous variables are likely to differ between habitats, and these may interact to influence temperament behaviours. 2. Temperament behaviours may be correlated within populations (behavioural syndromes), although the underlying causes of such correlations are currently unclear. 3. We analysed three different temperament behaviours and learning ability in three-spined sticklebacks, Gasterosteus aculeatus, to determine how different ecological variables influence them both within and between populations. We selected populations from four ponds and four rivers that varied naturally in their exposure to predators. 4. High-predation river populations were significantly less bold than a high-predation pond and low-predation river populations, and low-predation pond populations were significantly less bold than a high-predation pond population. Within populations, temperament behaviours were correlated in one high-predation river population only. 5. These results suggest that multiple ecological factors can interact to affect temperament behaviours between populations, and also correlations in those behaviours within populations.

  15. Uner Tan syndrome caused by a homozygous TUBB2B mutation affecting microtubule stability.

    PubMed

    Breuss, Martin W; Nguyen, Thai; Srivatsan, Anjana; Leca, Ines; Tian, Guoling; Fritz, Tanja; Hansen, Andi H; Musaev, Damir; McEvoy-Venneri, Jennifer; James, Kiely N; Rosti, Rasim O; Scott, Eric; Tan, Uner; Kolodner, Richard D; Cowan, Nicholas J; Keays, David A; Gleeson, Joseph G

    2016-12-23

    The integrity and dynamic properties of the microtubule cytoskeleton are indispensable for the development of the mammalian brain. Consequently, mutations in the genes that encode the structural component (the α/β-tubulin heterodimer) can give rise to severe, sporadic neurodevelopmental disorders. These are commonly referred to as the tubulinopathies. Here we report the addition of recessive quadrupedalism, also known as Uner Tan syndrome (UTS), to the growing list of diseases caused by tubulin variants. Analysis of a consanguineous UTS family identified a biallelic TUBB2B mutation, resulting in a p.R390Q amino acid substitution. In addition to the identifying quadrupedal locomotion, all three patients showed severe cerebellar hypoplasia. None, however, displayed the basal ganglia malformations typically associated with TUBB2B mutations. Functional analysis of the R390Q substitution revealed that it did not affect the ability of β-tubulin to fold or become assembled into the α/β-heterodimer, nor did it influence the incorporation of mutant-containing heterodimers into microtubule polymers. The 390Q mutation in S. cerevisiae TUB2 did not affect growth under basal conditions, but did result in increased sensitivity to microtubule-depolymerizing drugs, indicative of a mild impact of this mutation on microtubule function. The TUBB2B mutation described here represents an unusual recessive mode of inheritance for missense-mediated tubulinopathies and reinforces the sensitivity of the developing cerebellum to microtubule defects.

  16. Phytochemical stability in dried tomato pulp and peel as affected by moisture properties.

    PubMed

    Lavelli, Vera; Kerr, William; Sri Harsha, P S C

    2013-01-23

    Phytochemical stability was studied in dried tomato pulp and dried tomato peel stored at 30 °C with various water activity (a(w)) levels and related to glass transition temperature (T(g)) and water mobility. At a(w) < 0.32, the values for T(g) were >30 °C for both the pulp and peel, indicating that they were in the glassy state, with little molecular mobility. At a(w) = 0.56, T(g) was <30 °C, indicating the samples were in the rubbery state, with decreased viscosity and increased molecular mobility. The hydrophilic antioxidants (hydroxycinnamic acids and naringenin) were stable for samples in the glassy state, but were unstable for samples in the rubbery state. In contrast, the lipophilic antioxidants lycopene and α-tocopherol were mostly unstable for samples in the glassy state. These results could be used to optimize phytochemical contents in tomato products that must be dried prior to further processing.

  17. Enzyme bread improvers affect the stability of deoxynivalenol and deoxynivalenol-3-glucoside during breadmaking.

    PubMed

    Vidal, Arnau; Ambrosio, Asier; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia

    2016-10-01

    The stability of deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON-3-glucoside) during the breadmaking process was studied. Some enzymes used in the bakery industry were examined to evaluate their effects on DON and DON-3-glucoside. The level of DON in breads without added enzymes was reduced (17-21%). Similarly, the addition of cellulase, protease, lipase and glucose-oxidase did not modify this decreasing trend. The effect of xylanase and α-amylase on DON content depended on the fermentation temperature. These enzymes reduced the DON content by 10-14% at 45°C. In contrast, at 30°C, these enzymes increased the DON content by 13-23%. DON-3-glucoside levels decreased at the end of fermentation, with a final reduction of 19-48% when no enzymes were used. However, the presence of xylanase, α-amylase, cellulase and lipase resulted in bread with greater quantities of DON-3-glucoside when fermentation occurred at 30°C. The results showed that wheat bran and flour may contain hidden DON that may be enzymatically released during the breadmaking process when the fermentation temperature is close to 30°C.

  18. Sulfur bacteria in wastewater stabilization ponds periodically affected by the 'red-water' phenomenon.

    PubMed

    Belila, Abdelaziz; Abbas, Ben; Fazaa, Imed; Saidi, Neila; Snoussi, Mejdi; Hassen, Abdennaceur; Muyzer, Gerard

    2013-01-01

    Several wastewater stabilization ponds (WSP) in Tunisia suffer periodically from the 'red-water' phenomenon due to blooming of purple sulfur bacteria, indicating that sulfur cycle is one of the main element cycles in these ponds. In this study, we investigated the microbial diversity of the El Menzeh WSP and focused in particular on the different functional groups of sulfur bacteria. For this purpose, we used denaturing gradient gel electrophoresis of PCR-amplified fragments of the 16S rRNA gene and of different functional genes involved in microbial sulfur metabolism (dsrB, aprA, and pufM). Analyses of the 16S rRNA revealed a relatively high microbial diversity where Proteobacteria, Chlorobi, Bacteroidetes, and Cyanobacteria constitute the major bacterial groups. The dsrB and aprA gene analysis revealed the presence of deltaproteobacterial sulfate-reducing bacteria (i.e., Desulfobacter and Desulfobulbus), while the analysis of 16S rRNA, aprA, and pufM genes assigned the sulfur-oxidizing bacteria community to the photosynthetic representatives belonging to the Chlorobi (green sulfur bacteria) and the Proteobacteria (purple sulfur and non sulfur bacteria) phyla. These results point on the diversity of the metabolic processes within this wastewater plant and/or the availability of sulfate and diverse electron donors.

  19. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study

    PubMed Central

    Hernandez-Soriano, Maria C.; Kerré, Bart; Kopittke, Peter M.; Horemans, Benjamin; Smolders, Erik

    2016-01-01

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils. PMID:27113269

  20. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    PubMed Central

    Tsao, Jeng-Ting; Lee, Lin-Wen; Lin, Che-Tong

    2015-01-01

    One of the causes of dental pulpitis is lipopolysaccharide- (LPS-) induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs), and dental pulp stem cells (DPSCs) will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF) can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability. PMID:25884030

  1. Biochar affects carbon composition and stability in soil: a combined spectroscopy-microscopy study

    NASA Astrophysics Data System (ADS)

    Hernandez-Soriano, Maria C.; Kerré, Bart; Kopittke, Peter M.; Horemans, Benjamin; Smolders, Erik

    2016-04-01

    The use of biochar can contribute to carbon (C) storage in soil. Upon addition of biochar, there is a spatial reorganization of C within soil particles, but the mechanisms remain unclear. Here, we used Fourier transformed infrared-microscopy and confocal laser scanning microscopy to examine this reorganization. A silty-loam soil was amended with three different organic residues and with the biochar produced from these residues and incubated for 237 d. Soil respiration was lower in biochar-amended soils than in residue-amended soils. Fluorescence analysis of the dissolved organic matter revealed that biochar application increased a humic-like fluorescent component, likely associated with biochar-C in solution. The combined spectroscopy-microscopy approach revealed the accumulation of aromatic-C in discrete spots in the solid-phase of microaggregates and its co-localization with clay minerals for soil amended with raw residue or biochar.The co-localization of aromatic-C:polysaccharides-C was consistently reduced upon biochar application. We conclude that reduced C metabolism is an important mechanism for C stabilization in biochar-amended soils.

  2. Modifications of the C terminus Affect Functionality and Stability of Yeast Triacylglycerol Lipase Tgl3p*

    PubMed Central

    Koch, Barbara; Schmidt, Claudia; Ploier, Birgit; Daum, Günther

    2014-01-01

    Lipid droplets are specific organelles for the storage of triacylglycerols and steryl esters. They are surrounded by a phospholipid monolayer with a small but specific set of proteins embedded. Assembly and insertion of proteins into this surface membrane is an intriguing question of lipid droplet biology. To address this question we studied the topology of Tgl3p, the major triacylglycerol lipase of the yeast Saccharomyces cerevisiae, on lipid droplets. Employing the method of limited proteolysis of lipid droplet surface proteins, we found that the C terminus of Tgl3p faces the inside of the organelle, whereas the N terminus is exposed at the cytosolic side of lipid droplets. Detailed analysis of the C terminus revealed a stretch of seven amino acids that are critical for protein stability and functionality. The negative charge of two aspartate residues within this stretch is crucial for lipase activity of Tgl3p. A portion of Tgl3p, which is located to the endoplasmic reticulum, exhibits a different topology. In the phospholipid bilayer of the endoplasmic reticulum the C terminus faces the cytosol, which results in instability of the protein. Thus, the topology of Tgl3p is important for its function and strongly dependent on the membrane environment. PMID:24847060

  3. Residue Asn277 affects the stability and substrate specificity of the SMG1 lipase from Malassezia globosa.

    PubMed

    Lan, Dongming; Wang, Qian; Xu, Jinxin; Zhou, Pengfei; Yang, Bo; Wang, Yonghua

    2015-03-31

    Thermostability and substrate specificity are important characteristics of enzymes for industrial application, which can be improved by protein engineering. SMG1 lipase from Malassezia globosa is a mono- and diacylglycerol lipase (MDL) that shows activity toward mono- and diacylglycerols, but no activity toward triacylglycerols. SMG1 lipase is considered a potential biocatalyst applied in oil/fat modification and its crystal structure revealed that an interesting residue-Asn277 may contribute to stabilize loop 273-278 and the 3104 helix which are important to enzyme characterization. In this study, to explore its role in affecting the stability and catalytic activity, mutagenesis of N277 with Asp (D), Val (V), Leu (L) and Phe (F) was conducted. Circular dichroism (CD) spectral analysis and half-life measurement showed that the N277D mutant has better thermostability. The melting temperature and half-life of the N277D mutant were 56.6 °C and 187 min, respectively, while that was 54.6 °C and 121 min for SMG1 wild type (WT). Biochemical characterization of SMG1 mutants were carried out to test whether catalytic properties were affected by mutagenesis. N277D had similar enzymatic properties as SMG1 WT, but N277F showed a different substrate selectivity profile as compared to other SMG1 mutants. Analysis of the SMG1 3D model suggested that N277D formed a salt bridge via its negative charged carboxyl group with a positively charged guanidino group of R227, which might contribute to confer N277D higher temperature stability. These findings not only provide some clues to understand the molecular basis of the lipase structure/function relationship but also lay the framework for engineering suitable MDL lipases for industrial applications.

  4. PsbI affects the stability, function, and phosphorylation patterns of photosystem II assemblies in tobacco.

    PubMed

    Schwenkert, Serena; Umate, Pavan; Dal Bosco, Cristina; Volz, Stefanie; Mlçochová, Lada; Zoryan, Mikael; Eichacker, Lutz A; Ohad, Itzhak; Herrmann, Reinhold G; Meurer, Jörg

    2006-11-10

    Photosystem II (PSII) core complexes consist of CP47, CP43, D1, D2 proteins and of several low molecular weight integral membrane polypeptides, such as the chloroplast-encoded PsbE, PsbF, and PsbI proteins. To elucidate the function of PsbI in the photosynthetic process as well as in the biogenesis of PSII in higher plants, we generated homoplastomic knock-out plants by replacing most of the tobacco psbI gene with a spectinomycin resistance cartridge. Mutant plants are photoautotrophically viable under green house conditions but sensitive to high light irradiation. Antenna proteins of PSII accumulate to normal amounts, but levels of the PSII core complex are reduced by 50%. Bioenergetic and fluorescence studies uncovered that PsbI is required for the stability but not for the assembly of dimeric PSII and supercomplexes consisting of PSII and the outer antenna (PSII-LHCII). Thermoluminescence emission bands indicate that the presence of PsbI is required for assembly of a fully functional Q(A) binding site. We show that phosphorylation of the reaction center proteins D1 and D2 is light and redox-regulated in the wild type, but phosphorylation is abolished in the mutant, presumably due to structural alterations of PSII when PsbI is deficient. Unlike wild type, phosphorylation of LHCII is strongly increased in the dark due to accumulation of reduced plastoquinone, whereas even upon state II light phosphorylation is decreased in delta psbI. These data attest that phosphorylation of D1/D2, CP43, and LHCII is regulated differently.

  5. Factors affecting the stability and conformation of Locusta migratoria apolipophorin III.

    PubMed

    Weers, P M; Kay, C M; Oikawa, K; Wientzek, M; Van der Horst, D J; Ryan, R O

    1994-03-29

    Apolipophorin III (apoLp-III) from the migratory locust, Locusta migratoria, represents the only full-length apolipoprotein whose three-dimensional structure has been solved. In the present study, spectroscopic methods have been employed to investigate the effects of deglycosylation (via endoglycosidase F treatment) and complexation with lipid on the stability and conformation of this protein. Addition of isolated lipid-free apoLp-III to sonicated vesicles of dimyristoylphosphatidylcholine (DMPC) resulted in the formation of relatively uniform disklike complexes with an average Strokes diameter of 13.5 nm. Flotation equilibrium experiments conducted in the analytical ultracentrifuge revealed a particle molecular mass of 588 500 Da. Chemical cross-linking and compositional analysis of apoLp-III.DMPC complexes indicated five apoLp-III molecules per disk and an overall DMPC:apoLp-III molar ratio of 122:1. Circular dichroism (CD) spectra of apoLp-III samples suggested a loss of alpha-helical structure upon deglycosylation, while complexation with DMPC did not significantly alter the helix content (estimated to be > 75%). Fluorescence spectroscopy revealed that the apoLp-III tryptophan fluorescence emission maximum was blue-shifted from 347 to 332 and 321 nm upon deglycosylation and complexation with DMPC, respectively. In quenching experiments with native apoLp-III, tryptophan residues were shielded from the positively charged quencher, CsCl. Increased exposure to KI, CsCl, and acrylamide was observed upon deglycosylation, whereas complexation with DMPC yielded lower Ksv values for KI and acrylamide and an increased value for CsCl versus native lipid-free apoLp-III. In guanidine hydrochloride denaturation studies monitored by CD or fluorescence, native, lipid-free apoLp-III displayed a denaturation midpoint of 0.60 M, and delta GDH2O = 5.37 kcal/mol was calculated.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Amount and source of dietary copper affects small intestine morphology, duodenal lipid peroxidation, hepatic oxidative stress,and mRNA expression of hepatic copper regulatory proteins in weanling pigs.

    PubMed

    Fry, R S; Ashwell, M S; Lloyd, K E; O'Nan, A T; Flowers, W L; Stewart, K R; Spears, J W

    2012-09-01

    Thirty weanling, crossbred barrows (SUS SCROFA) were used to determine the effects of amount and source of dietary Cu on small intestinal morphology and lipid peroxidation, Cu metabolism, and mRNA expression of proteins involved in hepatic Cu homeostasis. At 21 d of age, pigs were stratified by BW (6.33 ± 0.23 kg) and allocated to 1 of the following dietary treatments: i) control (no supplemental Cu; 6.7 mg Cu/kg), ii) 225 mg supplemental Cu/kg diet from Cu sulfate (CuSO(4)), or iii) 225 mg supplemental Cu/kg diet from tribasic Cu chloride (TBCC). Pigs were housed 2 pigs per pen and were fed a 3-phase diet regimen until d 35 or 36 of the study. During harvest, bile and liver were obtained for mineral analysis, and liver samples were also obtained for analysis of liver glutathione (GSH) and mRNA expression of Cu regulatory proteins. Segments of duodenum, proximal jejunum, and ileum were obtained for mucosal morphology, and duodenal mucosal scrapings were collected from all pigs for analysis of malondialdehyde (MDA). Duodenal villus height was reduced in CuSO(4) pigs compared with control (P = 0.001) and TBCC (P = 0.03) pigs. Villus height in the proximal jejunum of CuSO(4) pigs was reduced (P = 0.03) compared with control pigs, but ileal villus height was not affected (P = 0.82) by treatment. Duodenal MDA concentrations were greater (P = 0.03) in CuSO(4) pigs and tended to be greater (P = 0.10) in pigs supplemented with TBCC compared with control pigs. Liver Cu was greater (P = 0.01) in CuSO(4) vs. control pigs, and tended (P = 0.07) to be greater in TBCC pigs than control pigs. Bile Cu concentrations were greater (P < 0.001) in CuSO(4) and TBCC pigs vs. controls and were also greater (P = 0.04) in TBCC vs. CuSO(4) pigs. Total liver GSH concentrations were less (P = 0.02) in pigs fed diets supplemented with CuSO(4) vs. pigs fed control diets but total liver GSH did not differ (P = 0.11) between control and TBCC pigs. Hepatic mRNA of cytochrome c oxidase assembly

  7. Feeding dried distillers grains with solubles affects composition but not oxidative stability of milk.

    PubMed

    Testroet, E D; Li, G; Beitz, D C; Clark, S

    2015-05-01

    detected off-flavor scores were less than 1.5cm on a 15-cm line scale, indicating that the differences are not practically significant. Peroxide values support the findings by the sensory panel that both feeding DDGS at 10 and 25% and vitamin E and C fortification did not practically change the oxidative stability of milk. These results, taken together, indicate that feeding DDGS under our experimental conditions modified milk composition, but did not contribute to the development of off-flavors in milk.

  8. Dynamics of aggregate stability and soil organic C distribution as affected by climatic aggressiveness: a mesocosm approach

    NASA Astrophysics Data System (ADS)

    Pellegrini, Sergio; Elio Agnelli, Alessandro; Costanza Andrenelli, Maria; Barbetti, Roberto; Castelli, Fabio; Costantini, Edoardo A. C.; Lagomarsino, Alessandra; Pasqui, Massimiliano; Tomozeiu, Rodica; Razzaghi, Somayyeh; Vignozzi, Nadia

    2014-05-01

    In the framework of a research project aimed at evaluating the adaptation scenarios of the Italian agriculture to the current climate change, a mesocosm experiment under controlled conditions was set up for studying the dynamics of soil aggregate stability and organic C in different size fractions. Three alluvial loamy soils (BOV - Typic Haplustalfs coarse-loamy; CAS - Typic Haplustalfs fine-loamy; MED - Typic Hapludalfs fine-loamy) along a climatic gradient (from dryer to moister pedoclimatic conditions) in the river Po valley (northern Italy), under crop rotation for animal husbandry from more than 40 years, were selected. The Ap horizons (0-30cm) were taken and placed in 9 climatic chambers under controlled temperature and rainfall. Each soil was subjected to three different climate scenarios in terms of erosivity index obtained by combining Modified Fournier and Bagnouls-Gaussen indexes: i) typical (TYP), the median year of each site related to the 1961-1990 reference period; ii) maximum aggressive year (MAX) observed in the same period, and iii) the simulated climate (SIM), obtained by projections of climate change precipitation and temperature for the period 2021-2050 as provided by the IPCC-A1B emission scenario. In the climatic chambers the year climate was reduced to six months. The soils were analyzed for particle size distribution, aggregate stability by wet and dry sieving, and organic C content at the beginning and at the end of the trial. The soils showed different behaviour in terms of aggregate stability and dynamics of organic C in the diverse size fractions. The soils significantly differed in terms of initial mean weight diameter (MWD) (CAS>MED>BOV). A general reduction of MWD in all sites was observed at the end of the experiment, with the increase of the smallest aggregate fractions (0.250-0.05 mm). In particular, BOV showed the maximum decrease of the aggregate stability and MED the lowest. C distribution in aggregate fractions significantly

  9. How can climate, soil, and monitoring schedule affect temporal stability of soil water contents?

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2012-12-01

    Temporal stability (TS) of soil water content (SWC) reflects the spatio-temporal organization of soil water. The TS SWC was originally recognized as a phenomenon that can be used to provide temporal average SWC of an area of interest from observations at a representative location(s). Currently application fields of TS SWC are numerous, e.g. up- and downscaling SWC, SWC monitoring and data assimilation, precision farming, and sensor network design and optimization. However, the factors that control the SWC organization and TS SWC are not completely understood. Among these factors are soil hydraulic properties that are considered as local controls, weather patterns, and the monitoring schedule. The objective of this work was to use modeling to assess the effect of these factors on the spatio-temporal patterns of SWC. We ran the HYDRUS6 code to simulate four years of SWC in 4-m long soil columns. The columns were assumed homogeneous, soil hydraulic conductivity was drawn from lognormal distributions. Sets of columns were generated separately for sandy loam and loamy soils, soil water retention was set to typical values for those soil textures. Simulations were carried out for four climates present at the continental US. The climate-specific weather patterns were obtained with the CLIGEN code using climate-specific weather observation locations that were humid subtropical from College Station (TX), humid continental from Indianapolis (IN), cold semiarid from Moscow (ID) and hot semiarid from Tucson (AZ). We evaluated the TS and representative location (RL) selections by comparing i) different climates; ii) for the same climates different years; iii) different time intervals between samplings; iv) one year duration surveys vs. one month summer campaigns; and v) different seasons of the same year. Spatial variability of the mean relative differences (MRD) differed among climates for both soils, as the probability of observing the same variance in the MRD was lower than

  10. Liming effects on cadmium stabilization in upland soil affected by gold mining activity.

    PubMed

    Hong, Chang Oh; Lee, Do Kyoung; Chung, Doug Young; Kim, Pil Joo

    2007-05-01

    To reduce cadmium (Cd) uptake of plants cultivated in heavy metal-contaminated soil, the best liming material was selected in the incubation test. The effect of the selected material was evaluated in the field. In the incubation experimentation, CaCO(3), Ca(OH)(2), CaSO(4).2H(2)O, and oyster shell meal were mixed with soil at rates corresponding to 0, 400, 800, 1600, 3200 mg Ca kg(-1). The limed soil was moistened to 70% of field moisture capacity, and incubated at 25 degrees C for 4 weeks. Ca(OH)(2) was found to be more efficient on reducing soil NH(4)OAc extractable Cd concentration, due to pH increase induced net negative charge. The selected Ca(OH)(2) was applied at rates 0, 2, 4, 8 Mg ha(-1) and then cultivated radish (Raphanus sativa L.) in the field. NH(4)OAc extractable Cd concentration of soil and plant Cd concentration decreased significantly with increasing Ca(OH)(2) rate, since alkaline-liming material markedly increased net negative charge of soil induced by pH increase, and decreased bioavailable Cd fractions (exchangeable + acidic and reducible Cd fraction) during radish cultivation. Cadmium uptake of radish could be reduced by about 50% by amending with about 5 Mg ha(-1) Ca(OH)(2) without adverse effect on radish yield and growth. The increase of net negative charge of soil by Ca(OH)(2) application may suppress Cd uptake and the competition between Ca(2+) and Cd(2+) may additionally affect the suppression of Cd uptake.

  11. Cognitive vulnerability to depression during middle childhood: Stability and associations with maternal affective styles and parental depression.

    PubMed

    Hayden, Elizabeth P; Olino, Thomas M; Mackrell, Sarah V M; Jordan, Patricia L; Desjardins, Jasmine; Katsiroumbas, Patrice

    2013-11-01

    Theories of cognitive vulnerability to depression (CVD) imply that CVD is early-emerging and trait-like; however, little longitudinal work has tested this premise in middle childhood, or examined theoretically relevant predictors of child CVD. We examined test-retest correlations of self-referent encoding task performance and self-reported attributional styles and their associations with parental characteristics in 205 seven-year-olds. At baseline, child CVD was assessed, structured clinical interviews were conducted with parents, and ratings of observed maternal affective styles were made. Children's CVD was re-assessed approximately one and two years later. Both measures of children's CVD were prospectively and concurrently associated with children's depressive symptoms and showed modest stability. Multilevel modeling indicated that maternal criticism and paternal depression were related to children's CVD. Findings indicate that even early-emerging CVD is a valid marker of children's depression risk.

  12. The oxidation of methionine-54 of epoetinum alfa does not affect molecular structure or stability, but does decrease biological activity.

    PubMed

    Labrenz, Steven R; Calmann, Melissa A; Heavner, George A; Tolman, Glen

    2008-01-01

    Erythropoietin therapy is used to treat severe anemia in renal failure and chemotherapy patients. One of these therapies based on recombinant human erythropoietin is marketed under the trade name of EPREX and utilizes epoetinum alfa as the active pharmaceutical ingredient. The effect of oxidation of methionine-54 on the structure and stability of the erythropoietin molecule has not been directly tested. We have observed partial and full chemical oxidation of methionine-54 to methionine-54 sulfoxide, accomplished using tert-Butylhydroperoxide and hydrogen peroxide, respectively. A blue shift in the fluorescence center of spectral mass wavelength was observed as a linear response to the level of methionine sulfoxide in the epoetinum alfa molecule, presumably arising from a local change in the environment near tryptophan-51, as supported by potassium iodide quenching studies. Circular dichroism studies demonstrated no change in the folded structure of the molecule with methionine oxidation. The thermal unfolding profiles of partial and completely oxidized epoetinum alfa overlap, with a T(m) of 49.5 degrees C across all levels of methionine sulfoxide content. When the protein was tested for activity, a decrease in biological activity was observed, correlating with methionine sulfoxide levels. An allosteric effect between Met54, Trp51, and residues involved in receptor binding is proposed. These results indicate that methionine oxidation has no effect on the folded structure and global thermodynamic stability of the recombinant human erythropoietin molecule. Oxidation can affect potency, but only at levels significantly in excess of those seen in EPREX.

  13. Rapid eye movement sleep deprivation decreases long-term potentiation stability and affects some glutamatergic signaling proteins during hippocampal development.

    PubMed

    Lopez, J; Roffwarg, H P; Dreher, A; Bissette, G; Karolewicz, B; Shaffery, J P

    2008-04-22

    Development of the mammalian CNS requires formation and stabilization of neuronal circuits and synaptic connections. Sensory stimulation provided by the environment orchestrates neuronal circuit formation in the waking state. Endogenous sources of activation are also implicated in these processes. Accordingly we hypothesized that sleep, especially rapid eye movement sleep (REMS), the stage characterized by high neuronal activity that is more prominent in development than adulthood, provides endogenous stimulation, which, like sensory input, helps to stabilize and refine neuronal circuits during CNS development. Young (Y: postnatal day (PN) 16) and adolescent (A: PN44) rats were rapid eye movement sleep-deprived (REMSD) by gentle cage-shaking for only 4 h on 3 consecutive days (total 12 h). The effect of REMS deprivation in Y and A rats was tested 3-7 days after the last deprivation session (Y, PN21-25; A, PN49-53) and was compared with younger (immature, I, PN9-12) untreated, age-matched, treated and normal control groups. REMS deprivation negatively affected the stability of long-term potentiation (LTP) in Y but not A animals. LTP instability in Y-REMSD animals was similar to the instability in even the more immature, untreated animals. Utilizing immunoblots, we identified changes in molecular components of glutamatergic synapses known to participate in mechanisms of synaptic refinement and plasticity. Overall, N-methyl-d-aspartate receptor subunit 2B (NR2B), N-methyl-d-aspartate receptor subunit 2A, AMPA receptor subunit 1 (GluR1), postsynaptic density protein 95 (PSD-95), and calcium/calmodulin kinase II tended to be lower in Y REMSD animals (NR2B, GluR1 and PSD-95 were significantly lower) compared with controls, an effect not present in the A animals. Taken together, these data indicate that early-life REMS deprivation reduces stability of hippocampal neuronal circuits, possibly by hindering expression of mature glutamatergic synaptic components. The findings

  14. Short-term hypertonic exposure enhances in vitro follicle growth and meiotic competence of enclosed oocytes while modestly affecting mRNA expression of aquaporin and steroidogenic genes in the domestic cat model.

    PubMed

    Songsasen, N; Thongkittidilok, C; Yamamizu, K; Wildt, D E; Comizzoli, P

    2017-03-01

    Using the domestic cat as a non-rodent, larger animal model, the objective was to determine the impact of a brief incubation in a hypertonic microenvironment on (1) ovarian follicle and oocyte growth in vitro, (2) developmental capacity of the resident oocyte, and (3) expression of aquaporin (AQP) genes in parallel with genes involved in regulation of folliculogenesis. In Study 1: Secondary or early antral follicles encapsulated in 0.5% alginate were allocated to one of three treatment groups: 1) culture in standard medium at 290 mOsm for 15 d (Control); 2) incubation in 350 mOsm medium for 1 h followed by culture in standard medium for 15 d (Hypertonic-1h); or 3) incubation in 350 mOsm medium for 24 h followed by incubation in standard medium for additional 14 d (Hypertonic-24h). After measuring follicle and oocyte diameters on Day 15, in vitro-grown oocytes were incubated for 24 h before assessing nuclear status. In Study 2: secondary or early antral follicles were subjected to one of the three treatments: 1) culture in standard medium at 290 mOsm for 48 h; 2) incubation in 350 mOsm medium for 1 h followed by culture in standard medium for additional 47 h; or 3) incubation in 350 mOsm medium for 24 h followed by culture in standard medium for additional 24 h. At the end of the culture period, all follicles were assessed for mRNA level of Cyp17a1, Cyp19a1, Star, Aqp1, 3, 5, 7 and 8 as well as Fshr using qPCR. Freshly collected follicles also were subjected to gene expression analysis and served as the 'Non-cultured control'. Hypertonic-24h follicles grew larger (P < 0.05) than the control, whereas those in Hypertonic-1h group exhibited intermediate growth, especially when the culture started at the early antral stage. Oocytes in the Hypertonic-24h group were larger and resumed meiosis at a higher rate than in the other treatments. In vitro culture affected (P < 0.05) mRNA expression of Cyp19a1, Star, Aqp1, and Aqp7 in both the secondary and early

  15. "DNA Binding Region" of BRCA1 Affects Genetic Stability through modulating the Intra-S-Phase Checkpoint.

    PubMed

    Masuda, Takaaki; Xu, Xiaoling; Dimitriadis, Emilios K; Lahusen, Tyler; Deng, Chu-Xia

    2016-01-01

    The breast cancer associated gene 1 (BRCA1) contains 3 domains: an N-terminal RING domain with ubiquitin E3 ligase activity, C-terminal BRCT protein interaction domain and a central region. RING and BRCT domains are well characterized, yet the function of the central region remains unclear. In this study, we identified an essential DNA binding region (DBR: 421-701 amino acids) within the central region of human BRCA1, and found that BRCA1 brings DNA together and preferably binds to splayed-arm DNA in a sequence-independent manner. To investigate the biological role of the DBR, we generated mouse ES cells, which lack the DBR (ΔDBR) by using the TALEN method. The ΔDBR cells exhibited decreased survival as compared to the wild type (WT) cells treated with a PARP inhibitor, however they have an intact ability to conduct DNA repair mediated by homologous recombination (HR). The ΔDBR cells continued to incorporate more EdU in the presence of hydroxyurea (HU), which causes replication stress and exhibited reduced viability than the WT cells. Moreover, phosphorylation of CHK1, which regulates the intra-S phase checkpoint, was moderately decreased in ΔDBR cells. These data suggest that DNA binding by BRCA1 affects the stability of DNA replication folks, resulting in weakened intra-S-phase checkpoint control in the ΔDBR cells. The ΔDBR cells also exhibited an increased number of abnormal chromosome structures as compared with WT cells, indicating that the ΔDBR cells have increased genetic instability. Thus, we demonstrated that the DBR of BRCA1 modulates genetic stability through the intra-S-phase checkpoint activated by replication stress.

  16. “DNA Binding Region” of BRCA1 Affects Genetic Stability through modulating the Intra-S-Phase Checkpoint

    PubMed Central

    Masuda, Takaaki; Xu, Xiaoling; Dimitriadis, Emilios K.; Lahusen, Tyler; Deng, Chu-Xia

    2016-01-01

    The breast cancer associated gene 1 (BRCA1) contains 3 domains: an N-terminal RING domain with ubiquitin E3 ligase activity, C-terminal BRCT protein interaction domain and a central region. RING and BRCT domains are well characterized, yet the function of the central region remains unclear. In this study, we identified an essential DNA binding region (DBR: 421-701 amino acids) within the central region of human BRCA1, and found that BRCA1 brings DNA together and preferably binds to splayed-arm DNA in a sequence-independent manner. To investigate the biological role of the DBR, we generated mouse ES cells, which lack the DBR (ΔDBR) by using the TALEN method. The ΔDBR cells exhibited decreased survival as compared to the wild type (WT) cells treated with a PARP inhibitor, however they have an intact ability to conduct DNA repair mediated by homologous recombination (HR). The ΔDBR cells continued to incorporate more EdU in the presence of hydroxyurea (HU), which causes replication stress and exhibited reduced viability than the WT cells. Moreover, phosphorylation of CHK1, which regulates the intra-S phase checkpoint, was moderately decreased in ΔDBR cells. These data suggest that DNA binding by BRCA1 affects the stability of DNA replication folks, resulting in weakened intra-S-phase checkpoint control in the ΔDBR cells. The ΔDBR cells also exhibited an increased number of abnormal chromosome structures as compared with WT cells, indicating that the ΔDBR cells have increased genetic instability. Thus, we demonstrated that the DBR of BRCA1 modulates genetic stability through the intra-S-phase checkpoint activated by replication stress. PMID:26884712

  17. Genetic stability of murine pluripotent and somatic hybrid cells may be affected by conditions of their cultivation.

    PubMed

    Ivanovna, Shramova Elena; Alekseevich, Larionov Oleg; Mikhailovich, Khodarovich Yurii; Vladimirovna, Zatsepina Olga

    2011-01-01

    Using mouse pluripotent teratocarcinoma PCC4azal cells and proliferating spleen lymphocytes we obtained a new type of hybrids, in which marker lymphocyte genes were suppressed, but expression the Oct-4 gene was not effected; the hybrid cells were able to differentiate to cardiomyocytes. In order to specify the environmental factors which may affect the genetic stability and other hybrid properties, we analyzed the total chromosome number and differentiation potencies of hybrids respectively to conditions of their cultivation. Particular attention was paid to the number and transcription activity of chromosomal nucleolus organizing regions (NORs), which harbor the most actively transcribed - ribosomal - genes. The results showed that the hybrids obtained are characterized by a relatively stable chromosome number which diminished less than in 5% during 27 passages. However, a long-term cultivation of hybrid cells in non-selective conditions resulted in preferential elimination of some NO- chromosomes, whereas the number of active NORs per cell was increased due to activation of latent NORs. On the contrary, in selective conditions, i.e. in the presence of hypoxantine, aminopterin and thymidine, the total number of NOR-bearing chromosomes was not changed, but a partial inactivation of remaining NORs was observed. The higher number of active NORs directly correlated with the capability of hybrid cells for differentiation to cardiomyocytes.

  18. The FlgT Protein Is Involved in Aeromonas hydrophila Polar Flagella Stability and Not Affects Anchorage of Lateral Flagella

    PubMed Central

    Merino, Susana; Tomás, Juan M.

    2016-01-01

    Aeromonas hydrophila sodium-driven polar flagellum has a complex stator-motor. Consist of two sets of redundant and non-exchangeable proteins (PomA/PomB and PomA2/PomB2), which are homologs to other sodium-conducting polar flagellum stator motors; and also two essential proteins (MotX and MotY), that they interact with one of those two redundant pairs of proteins and form the T-ring. In this work, we described an essential protein for polar flagellum stability and rotation which is orthologs to Vibrio spp. FlgT and it is encoded outside of the A. hydrophila polar flagellum regions. The flgT was present in all mesophilic Aeromonas strains tested and also in the non-motile Aeromonas salmonicida. The A. hydrophila ΔflgT mutant is able to assemble the polar flagellum but is more unstable and released into the culture supernatant from the cell upon completion assembly. Presence of FlgT in purified polar hook-basal bodies (HBB) of wild-type strain was confirmed by Western blotting and electron microscopy observations showed an outer ring of the T-ring (H-ring) which is not present in the ΔflgT mutant. Anchoring and motility of proton-driven lateral flagella was not affected in the ΔflgT mutant and specific antibodies did not detect FlgT in purified lateral HBB of wild type strain. PMID:27507965

  19. Does the temperature of beverages affect the surface roughness, hardness, and color stability of a composite resin?

    PubMed Central

    Tuncer, Duygu; Karaman, Emel; Firat, Esra

    2013-01-01

    Objective: To investigate the effect of beverages’ temperature on the surface roughness, hardness, and color stability of a composite resin. Materials and Methods: Fifty specimens of the Filtek Z250 composite (3M ESPE, Dental Products, St.Paul, MN, USA) were prepared and initial roughness, microhardness, and color were measured. Then the specimens were randomly divided into five groups of 10 specimens each: Coffee at 70°C, coffee at 37°C, cola at 10°C, cola at 37°C, and artificial saliva (control). After the samples were subjected to 15 min × 3 cycles per day of exposure to the solutions for 30 days, the final measurements were recorded. Results: After immersion in beverages, the artificial saliva group showed hardness values higher than those of the other groups (P < 0.001) and the microhardness values were significantly different from the initial values in all groups except for the control group. Both cola groups showed roughness values higher than the baseline values (P < 0.05), while the other groups showed values similar to the baseline measurements. When ΔE measurements were examined, the 70°C coffee group showed the highest color change among all the groups (P < 0.05). Conclusion: High-temperature solutions caused alterations in certain properties of composites, such as increased color change, although they did not affect the hardness or roughness of the composite resin material tested. PMID:24883021

  20. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    PubMed Central

    Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo

    2016-01-01

    The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A), allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries. PMID:27886048

  1. Messenger RNA (mRNA) nanoparticle tumour vaccination

    NASA Astrophysics Data System (ADS)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.

    2014-06-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.

  2. Whole genome sequencing identifies a deletion in protein phosphatase 2A that affects its stability and localization in Chlamydomonas reinhardtii.

    PubMed

    Lin, Huawen; Miller, Michelle L; Granas, David M; Dutcher, Susan K

    2013-01-01

    Whole genome sequencing is a powerful tool in the discovery of single nucleotide polymorphisms (SNPs) and small insertions/deletions (indels) among mutant strains, which simplifies forward genetics approaches. However, identification of the causative mutation among a large number of non-causative SNPs in a mutant strain remains a big challenge. In the unicellular biflagellate green alga Chlamydomonas reinhardtii, we generated a SNP/indel library that contains over 2 million polymorphisms from four wild-type strains, one highly polymorphic strain that is frequently used in meiotic mapping, ten mutant strains that have flagellar assembly or motility defects, and one mutant strain, imp3, which has a mating defect. A comparison of polymorphisms in the imp3 strain and the other 15 strains allowed us to identify a deletion of the last three amino acids, Y313F314L315, in a protein phosphatase 2A catalytic subunit (PP2A3) in the imp3 strain. Introduction of a wild-type HA-tagged PP2A3 rescues the mutant phenotype, but mutant HA-PP2A3 at Y313 or L315 fail to rescue. Our immunoprecipitation results indicate that the Y313, L315, or YFLΔ mutations do not affect the binding of PP2A3 to the scaffold subunit, PP2A-2r. In contrast, the Y313, L315, or YFLΔ mutations affect both the stability and the localization of PP2A3. The PP2A3 protein is less abundant in these mutants and fails to accumulate in the basal body area as observed in transformants with either wild-type HA-PP2A3 or a HA-PP2A3 with a V310T change. The accumulation of HA-PP2A3 in the basal body region disappears in mated dikaryons, which suggests that the localization of PP2A3 may be essential to the mating process. Overall, our results demonstrate that the terminal YFL tail of PP2A3 is important in the regulation on Chlamydomonas mating.

  3. How do how internal and external processes affect the behaviors of coupled marsh mudflat systems; infill, stabilize, retreat, or drown?

    NASA Astrophysics Data System (ADS)

    Carr, J. A.; Mariotti, G.; Wiberg, P.; Fagherazzi, S.; McGlathery, K.

    2013-12-01

    an eventual lateral equilibrium are possible only with large allochthonous sediment supply. Once marshes expanded, marsh retreat can be prevented by a sediment supply smaller than the one that filled the basin. At the GCE, the Altamaha River allows for enhanced allochthonous supply directly to the salt marsh platform, reducing the importance of waves on the tidal flat. As a result, infilling or retreat become the prevalent behaviors. For the VCR, the presence of seagrass decreases near bed shear stresses and sediment flux to the salt marsh platform, however, seagrass also reduces the wave energy acting on the boundary of the marsh reducing boundary erosion. Results indicate that the reduction in wave power allows for seagrass to provide a strong stabilizing affect on the coupled salt marsh tidal flat system, but as external sediment supply increases and light conditions decline the system reverts to that of a bare tidal flat. Across all systems and with current rates of sea level rise, retreat is a more likely marsh loss modality than drowning.

  4. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP)

    PubMed Central

    Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2016-01-01

    Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3′-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3′-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP. PMID:27836661

  5. Amino Acid Substitutions That Affect Receptor Binding and Stability of the Hemagglutinin of Influenza A/H7N9 Virus

    PubMed Central

    Schrauwen, Eefje J. A.; Burke, David F.; Rimmelzwaan, Guus F.; Herfst, Sander; Fouchier, Ron A. M.

    2016-01-01

    Receptor-binding preference and stability of hemagglutinin have been implicated as crucial determinants of airborne transmission of influenza viruses. Here, amino acid substitutions previously identified to affect these traits were tested in the context of an A/H7N9 virus. Some combinations of substitutions, most notably G219S and K58I, resulted in relatively high affinity for α2,6-linked sialic acid receptor and acid and temperature stability. Thus, the hemagglutinin of the A/H7N9 virus may adopt traits associated with airborne transmission. PMID:26792744

  6. Gallium nitrate regulates rat osteoblast expression of osteocalcin protein and mRNA levels.

    PubMed

    Guidon, P T; Salvatori, R; Bockman, R S

    1993-01-01

    Gallium nitrate, a group IIIa metal salt, has been found to be clinically effective for the treatment of accelerated bone resorption in cancer-related hypercalcemia and Paget's disease. Here we report the effects of gallium nitrate on osteocalcin mRNA and protein levels on the rat osteoblast-like cell line ROS 17/2.8. Gallium nitrate reduced both constitutive and vitamin D3-stimulated osteocalcin protein levels in culture medium by one-half and osteocalcin mRNA levels to one-third to one-tenth of control. Gallium nitrate also inhibited vitamin D3 stimulation of osteocalcin and osteopontin mRNA levels but did not affect constitutive osteopontin mRNA levels. Among several different metals examined, gallium was unique in its ability to reduce osteocalcin mRNA levels without decreasing levels of other mRNAs synthesized by ROS 17/2.8 cells. The effects of gallium nitrate on osteocalcin mRNA and protein synthesis mimic those seen when ROS 17/2.8 cells are exposed to transforming growth factor beta 1 (TGF beta 1); however, TGF-beta 1 was not detected in gallium nitrate-treated ROS 17/2.8 cell media. Use of the RNA polymerase II inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that gallium nitrate did not alter the stability of osteocalcin mRNA. Transient transfection assays using the rat osteocalcin promoter linked to the bacterial reporter gene chloramphenicol acetyltransferase indicated that gallium nitrate blocked reporter gene expression stimulated by the osteocalcin promoter. This is the first reported effect of gallium nitrate on isolated osteoblast cells.

  7. Sequences controlling histone H4 mRNA abundance.

    PubMed Central

    Capasso, O; Bleecker, G C; Heintz, N

    1987-01-01

    The post-transcriptional regulation of histone mRNA abundance is manifest both by accumulation of histone mRNA during the S phase, and by the rapid degradation of mature histone mRNA following the inhibition of DNA synthesis. We have constructed a comprehensive series of substitution mutants within a human H4 histone gene, introduced them into the mouse L cell genome, and analyzed their effects on the post-transcriptional control of the H4 mRNA. Our results demonstrate that most of the H4 mRNA is dispensable for proper regulation of histone mRNA abundance. However, recognition of the 3' terminus of the mature H4 mRNA is critically important for regulating its cytoplasmic half-life. Thus, this region of the mRNA functions both in the nucleus as a signal for proper processing of the mRNA terminus, and in the cytoplasm as an essential element in the control of mRNA stability. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3608993

  8. Does the Implant Surgical Technique Affect the Primary and/or Secondary Stability of Dental Implants? A Systematic Review

    PubMed Central

    Shadid, Rola Muhammed; Sadaqah, Nasrin Rushdi; Othman, Sahar Abdo

    2014-01-01

    Background. A number of surgical techniques for implant site preparation have been advocated to enhance the implant of primary and secondary stability. However, there is insufficient scientific evidence to support the association between the surgical technique and implant stability. Purpose. This review aimed to investigate the influence of different surgical techniques including the undersized drilling, the osteotome, the piezosurgery, the flapless procedure, and the bone stimulation by low-level laser therapy on the primary and/or secondary stability of dental implants. Materials and methods. A search of PubMed, Cochrane Library, and grey literature was performed. The inclusion criteria comprised observational clinical studies and randomized controlled trials (RCTs) conducted in patients who received dental implants for rehabilitation, studies that evaluated the association between the surgical technique and the implant primary and/or secondary stability. The articles selected were carefully read and classified as low, moderate, and high methodological quality and data of interest were tabulated. Results. Eight clinical studies were included then they were classified as moderate or high methodological quality and control of bias. Conclusions. There is a weak evidence suggesting that any of previously mentioned surgical techniques could influence the primary and/or secondary implant stability. PMID:25126094

  9. Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability

    PubMed Central

    Karimi, Maryam; Ignasiak, Marta T.; Chan, Bun; Croft, Anna K.; Radom, Leo; Schiesser, Carl H.; Pattison, David I.; Davies, Michael J.

    2016-01-01

    Disulfide bonds play a key role in stabilizing protein structures, with disruption strongly associated with loss of protein function and activity. Previous data have suggested that disulfides show only modest reactivity with oxidants. In the current study, we report kinetic data indicating that selected disulfides react extremely rapidly, with a variation of 104 in rate constants. Five-membered ring disulfides are particularly reactive compared with acyclic (linear) disulfides or six-membered rings. Particular disulfides in proteins also show enhanced reactivity. This variation occurs with multiple oxidants and is shown to arise from favorable electrostatic stabilization of the incipient positive charge on the sulfur reaction center by remote groups, or by the neighboring sulfur for conformations in which the orbitals are suitably aligned. Controlling these factors should allow the design of efficient scavengers and high-stability proteins. These data are consistent with selective oxidative damage to particular disulfides, including those in some proteins. PMID:27941824

  10. Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability

    NASA Astrophysics Data System (ADS)

    Karimi, Maryam; Ignasiak, Marta T.; Chan, Bun; Croft, Anna K.; Radom, Leo; Schiesser, Carl H.; Pattison, David I.; Davies, Michael J.

    2016-12-01

    Disulfide bonds play a key role in stabilizing protein structures, with disruption strongly associated with loss of protein function and activity. Previous data have suggested that disulfides show only modest reactivity with oxidants. In the current study, we report kinetic data indicating that selected disulfides react extremely rapidly, with a variation of 104 in rate constants. Five-membered ring disulfides are particularly reactive compared with acyclic (linear) disulfides or six-membered rings. Particular disulfides in proteins also show enhanced reactivity. This variation occurs with multiple oxidants and is shown to arise from favorable electrostatic stabilization of the incipient positive charge on the sulfur reaction center by remote groups, or by the neighboring sulfur for conformations in which the orbitals are suitably aligned. Controlling these factors should allow the design of efficient scavengers and high-stability proteins. These data are consistent with selective oxidative damage to particular disulfides, including those in some proteins.

  11. Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability.

    PubMed

    Karimi, Maryam; Ignasiak, Marta T; Chan, Bun; Croft, Anna K; Radom, Leo; Schiesser, Carl H; Pattison, David I; Davies, Michael J

    2016-12-12

    Disulfide bonds play a key role in stabilizing protein structures, with disruption strongly associated with loss of protein function and activity. Previous data have suggested that disulfides show only modest reactivity with oxidants. In the current study, we report kinetic data indicating that selected disulfides react extremely rapidly, with a variation of 10(4) in rate constants. Five-membered ring disulfides are particularly reactive compared with acyclic (linear) disulfides or six-membered rings. Particular disulfides in proteins also show enhanced reactivity. This variation occurs with multiple oxidants and is shown to arise from favorable electrostatic stabilization of the incipient positive charge on the sulfur reaction center by remote groups, or by the neighboring sulfur for conformations in which the orbitals are suitably aligned. Controlling these factors should allow the design of efficient scavengers and high-stability proteins. These data are consistent with selective oxidative damage to particular disulfides, including those in some proteins.

  12. Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy

    PubMed Central

    Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter

    2016-01-01

    Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in

  13. Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy.

    PubMed

    Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter

    2016-01-01

    Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in

  14. Experimental and molecular dynamics studies showed that CBP KIX mutation affects the stability of CBP:c-Myb complex.

    PubMed

    Odoux, Anne; Jindal, Darren; Tamas, Tamara C; Lim, Benjamin W H; Pollard, Drake; Xu, Wu

    2016-06-01

    The coactivators CBP (CREBBP) and its paralog p300 (EP300), two conserved multi-domain proteins in eukaryotic organisms, regulate gene expression in part by binding DNA-binding transcription factors. It was previously reported that the CBP/p300 KIX domain mutant (Y650A, A654Q, and Y658A) altered both c-Myb-dependent gene activation and repression, and that mice with these three point mutations had reduced numbers of platelets, B cells, T cells, and red blood cells. Here, our transient transfection assays demonstrated that mouse embryonic fibroblast cells containing the same mutations in the KIX domain and without a wild-type allele of either CBP or p300, showed decreased c-Myb-mediated transcription. Dr. Wright's group solved a 3-D structure of the mouse CBP:c-Myb complex using NMR. To take advantage of the experimental structure and function data and improved theoretical calculation methods, we performed MD simulations of CBP KIX, CBP KIX with the mutations, and c-Myb, as well as binding energy analysis for both the wild-type and mutant complexes. The binding between CBP and c-Myb is mainly mediated by a shallow hydrophobic groove in the center where the side-chain of Leu302 of c-Myb plays an essential role and two salt bridges at the two ends. We found that the KIX mutations slightly decreased stability of the CBP:c-Myb complex as demonstrated by higher binding energy calculated using either MM/PBSA or MM/GBSA methods. More specifically, the KIX mutations affected the two salt bridges between CBP and c-Myb (CBP-R646 and c-Myb-E306; CBP-E665 and c-Myb-R294). Our studies also revealed differing dynamics of the hydrogen bonds between CBP-R646 and c-Myb-E306 and between CBP-E665 and c-Myb-R294 caused by the CBP KIX mutations. In the wild-type CBP:c-Myb complex, both of the hydrogen bonds stayed relatively stable. In contrast, in the mutant CBP:c-Myb complex, hydrogen bonds between R646 and E306 showed an increasing trend followed by a decreasing trend, and hydrogen

  15. Induction of VEGFA mRNA translation by CoCl2 mediated by HuR

    PubMed Central

    Osera, Cecilia; Martindale, Jennifer L; Amadio, Marialaura; Kim, Jiyoung; Yang, Xiaoling; Moad, Christopher A; Indig, Fred E; Govoni, Stefano; Abdelmohsen, Kotb; Gorospe, Myriam; Pascale, Alessia

    2015-01-01

    Vascular endothelial growth factor (VEGF) A is a master regulator of neovascularization and angiogenesis. VEGFA is potently induced by hypoxia and by pathological conditions including diabetic retinopathy and tumorigenesis. Fine-tuning of VEGFA expression by different stimuli is important for maintaining tissue vascularization and organ homeostasis. Here, we tested the effect of the hypoxia mimetic cobalt chloride (CoCl2) on VEGFA expression in human cervical carcinoma HeLa cells. We found that CoCl2 increased the levels of VEGFA mRNA and VEGFA protein without affecting VEGFA mRNA stability. Biotin pulldown analysis to capture the RNA-binding proteins (RBPs) bound to VEGFA mRNA followed by mass spectrometry analysis revealed that the RBP HuR [human antigen R, a member of the embryonic lethal abnormal vision (ELAV) family of proteins], interacts with VEGFA mRNA. VEGFA mRNA-tagging experiments showed that exposure to CoCl2 increases the interaction of HuR with VEGFA mRNA and promoted the colocalization of HuR and the distal part of the VEGFA 3′-untranslated region (UTR) in the cytoplasm. We propose that under hypoxia-like conditions, HuR enhances VEGFA mRNA translation. PMID:26325091

  16. Frameshift mutations in the v-src gene of avian sarcoma virus act in cis to specifically reduce v-src mRNA levels.

    PubMed Central

    Simpson, S B; Stoltzfus, C M

    1994-01-01

    A portion of the avian sarcoma virus (ASV) primary RNA transcripts is alternatively spliced in chicken embryo fibroblast cells to two different messages, the src and env mRNAs. Frameshift mutations of the viral genome causing premature translation termination within the src gene result in a decreased steady-state level of the src mRNA. In marked contrast, frameshift mutations at various positions of the env gene do not decrease the level of the env mRNA. We show that the src gene product is not required in trans for splicing and accumulation of src mRNA. Conversely, the truncated Src proteins do not act negatively in trans to decrease specifically the levels of src mRNA. Taken together, these results indicate that the frameshift mutations act in cis to reduce src mRNA levels. A double mutant with a lesion in the src initiator AUG and a frameshift within the src gene demonstrated wild-type RNA levels, indicating that the src mRNA must be recognized as a translatable mRNA for the effect on src mRNA levels to occur. Our results indicate that the reduced levels do not result from decreased cytoplasmic stability of the mature src mRNA. We also show that the src gene frameshift mutations affect src mRNA levels when expressed from intronless src cDNA clones. We conclude that the reduction of src mRNA levels triggered by the presence of frameshift mutations within the src gene occurs while it is associated with the nucleus. Our data also strongly suggest that this occurs at a step of RNA processing or transport independent of RNA splicing. Images PMID:8114716

  17. Factors affecting stability of z-ligustilide in the volatile oil of radix angelicae sinensis and ligusticum chuanxiong and its stability prediction.

    PubMed

    Cui, F; Feng, L; Hu, J

    2006-07-01

    The purpose of this investigation is to obtain a suitable vehicle for Z-ligustilide in the volatile oil of Radix Angelicae Sinensis and Ligusticum Chuanxiong in which it is stable enough for the application in pharmaceutics, to investigate its degradation laws, and to predict its shelf-life at 25 degrees C. Factors including temperature, light, pH value, co-solvents and antioxidants can all influence the stability of Z-ligustilide, thereinto antioxidants could markedly improve its stability in aqueous solution by almost 35%. The suitable vehicle for Z-ligustilide contains 1.5% tween-80, 0.3% Vitamin C, and 20% propylene glycol (PG). Furthermore, the degradation rates of Z-ligustilide were found to conform to a rate equation following Weibull probability distribution within a range of degradation ratio, and the equation could be expressed as follow: ln ln (1/1-alpha) = ln k + m ln t. Where alpha is degradation ratio; t is time; m and k are constants relating to the degradation rate. The degradation rate will get greater as the increasing of parameter k. According to the degradation law obtained from the equation, the drug shelf-life (10% of active ingredient degraded, T90) in this vehicle was predicted to be more than 1.77 years at 25 degrees C through Arrehenius equation and accelerating experiments. The present investigation was undertaken to propose a kinetic treatment that may be applicable to any type of degradation of the active ingredient of pharmaceutical formulation, and also could provide a good foundation for the new drug development of Z-ligustilide, especially for injection formulation.

  18. pH-sensitive residues in the p19 RNA silencing suppressor protein from carnation Italian ringspot virus affect siRNA binding stability

    PubMed Central

    Law, Sean M; Zhang, Bin W; Brooks, Charles L

    2013-01-01

    Tombusviruses, such as Carnation Italian ringspot virus (CIRV), encode a protein homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by binding to and sequestering short-interfering RNA (siRNA) away from the RNA silencing pathway. P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid residues involved have remained unclear. Using constant pH molecular dynamics simulations, we have identified key pH-dependent residues that affect CIRV p19–siRNA binding stability at various pH ranges based on calculated changes in the free energy contribution from each titratable residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35, and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and His132 provide a small increase in the binding stability and we find that the optimal pH range for siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and are in excellent agreement with data on the pH-dependent binding profile. PMID:23450521

  19. pH-sensitive residues in the p19 RNA silencing suppressor protein from carnation Italian ringspot virus affect siRNA binding stability.

    PubMed

    Law, Sean M; Zhang, Bin W; Brooks, Charles L

    2013-05-01

    Tombusviruses, such as Carnation Italian ringspot virus (CIRV), encode a protein homodimer called p19 that is capable of suppressing RNA silencing in their infected hosts by binding to and sequestering short-interfering RNA (siRNA) away from the RNA silencing pathway. P19 binding stability has been shown to be sensitive to changes in pH but the specific amino acid residues involved have remained unclear. Using constant pH molecular dynamics simulations, we have identified key pH-dependent residues that affect CIRV p19-siRNA binding stability at various pH ranges based on calculated changes in the free energy contribution from each titratable residue. At high pH, the deprotonation of Lys60, Lys67, Lys71, and Cys134 has the largest effect on the binding stability. Similarly, deprotonation of several acidic residues (Asp9, Glu12, Asp20, Glu35, and/or Glu41) at low pH results in a decrease in binding stability. At neutral pH, residues Glu17 and His132 provide a small increase in the binding stability and we find that the optimal pH range for siRNA binding is between 7.0 and 10.0. Overall, our findings further inform recent experiments and are in excellent agreement with data on the pH-dependent binding profile.

  20. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.

    PubMed

    Maxfield, Lynn; Palaparthi, Anil; Titze, Ingo

    2017-03-01

    The traditional source-filter theory of voice production describes a linear relationship between the source (glottal flow pulse) and the filter (vocal tract). Such a linear relationship does not allow for nor explain how changes in the filter may impact the stability and regularity of the source. The objective of this experiment was to examine what effect unpredictable changes to vocal tract dimensions could have on fo stability and individual harmonic intensities in situations in which low frequency harmonics cross formants in a fundamental frequency glide. To determine these effects, eight human subjects (five male, three female) were recorded producing fo glides while their vocal tracts were artificially lengthened by a section of vinyl tubing inserted into the mouth. It was hypothesized that if the source and filter operated as a purely linear system, harmonic intensities would increase and decrease at nearly the same rates as they passed through a formant bandwidth, resulting in a relatively symmetric peak on an intensity-time contour. Additionally, fo stability should not be predictably perturbed by formant/harmonic crossings in a linear system. Acoustic analysis of these recordings, however, revealed that harmonic intensity peaks were asymmetric in 76% of cases, and that 85% of fo instabilities aligned with a crossing of one of the first four harmonics with the first three formants. These results provide further evidence that nonlinear dynamics in the source-filter relationship can impact fo stability as well as harmonic intensities as harmonics cross through formant bandwidths.

  1. Suspension stability and aggregation of multi-walled carbon nanotubes as affected by dissolved organic matters extracted from agricultural wastes.

    PubMed

    Li, Helian; Qiu, Yanhua; Wang, Xiaonuan; Liu, Wenhao; Chen, Guangcai; Ma, Yibing; Xing, Baoshan

    2016-03-01

    Dissolved organic matters (DOMs) extracted from wheat straw (SDOM) and cow manure (MDOM) were used to investigate their effects on the suspension stability and aggregation of multi-walled carbon nanotubes (MWCNTs). Two types of DOM can effectively disperse and stabilize the MWCNTs. At initial MWCNT concentration of 500 mg/L, suspended MWCNT concentration ranged from 8.0 to 17.9 mg/L as DOM were varied from 50 to 200 mg/L dissolved organic carbon (DOC). The critical coagulation concentration (CCC) values were estimated to be 41.4 mM NaCl and 5.3 mM CaCl2 in the absence of DOM. The presence of SDOM and MDOM significantly retarded the aggregation rate of MWCNTs. The CCC values increased to 120 mM NaCl and 14.8 mM CaCl2 at SDOM concentration of 20 mg/L DOC. Due to its higher aromaticity and molecular weight, MDOM showed higher ability to stabilize MWCNTs, with CCC values of 201 mM and 15.8 mM at 20 mg/L DOC. These findings revealed that DOMs originated from agricultural wastes will have great impact on the dispersion and stabilization of MWCNTs, thus their fate in the aquatic environment.

  2. Does Implant Design Affect Implant Primary Stability? A Resonance Frequency Analysis-Based Randomized Split-Mouth Clinical Trial.

    PubMed

    Gehrke, Sergio Alexandre; da Silva, Ulisses Tavares; Del Fabbro, Massimo

    2015-12-01

    The purpose of this study was to assess implant stability in relation to implant design (conical vs. semiconical and wide-pitch vs narrow-pitch) using resonance frequency analysis. Twenty patients with bilateral edentulous maxillary premolar region were selected. In one hemiarch, conical implants with wide pitch (group 1) were installed; in the other hemiarch, semiconical implants with narrow pitch were installed (group 2). The implant allocation was randomized. The implant stability quotient (ISQ) was measured by resonance frequency analysis immediately following implant placement to assess primary stability (time 1) and at 90 days after placement (time 2). In group 1, the mean and standard deviation ISQ for time 1 was 65.8 ± 6.22 (95% confidence interval [CI], 55 to 80), and for time 2, it was 68.0 ± 5.52 (95% CI, 57 to 77). In group 2, the mean and standard deviation ISQ was 63.6 ± 5.95 (95% CI, 52 to 78) for time 1 and 67.0 ± 5.71 (95% CI, 58 to 78) for time 2. The statistical analysis demonstrated significant difference in the ISQ values between groups at time 1 (P = .007) and no statistical difference at time 2 (P = .54). The greater primary stability of conical implants with wide pitch compared with semiconical implants with narrow pitch might suggest a preference for the former in case of the adoption of immediate or early loading protocols.

  3. Disruption of a hydrogen bond network in human versus spider monkey cytochrome c affects heme crevice stability.

    PubMed

    Goldes, Matthew E; Jeakins-Cooley, Margaret E; McClelland, Levi J; Mou, Tung-Chung; Bowler, Bruce E

    2016-05-01

    The hypothesis that the recent rapid evolution of primate cytochromes c, which primarily involves residues in the least stable Ω-loop (Ω-loop C, residues 40-57), stabilizes the heme crevice of cytochrome c relative to other mammals, is tested. To accomplish this goal, we have compared the properties of human and spider monkey cytochrome c and a set of four variants produced in the process of converting human cytochrome c into spider monkey cytochrome c. The global stability of all variants has been measured by guanidine hydrochloride denaturation. The stability of the heme crevice has been assessed with the alkaline conformational transition. Structural insight into the effects of the five amino acid substitutions needed to convert human cytochrome c into spider monkey cytochrome c is provided by a 1.15Å resolution structure of spider monkey cytochrome c. The global stability for all variants is near 9.0kcal/mol at 25°C and pH7, which is higher than that observed for other mammalian cytochromes c. The heme crevice stability is more sensitive to the substitutions required to produce spider monkey cytochrome c with decreases of up to 0.5 units in the apparent pKa of the alkaline conformational transition relative to human cytochrome c. The structure of spider monkey cytochrome c indicates that the Y46F substitution destabilizes the heme crevice by disrupting an extensive hydrogen bond network that connects three surface loops including Ω-loop D (residues 70-85), which contains the Met80 heme ligand.

  4. Probiotics Differently Affect Gut-Associated Lymphoid Tissue Indolamine-2,3-Dioxygenase mRNA and Cerebrospinal Fluid Neopterin Levels in Antiretroviral-Treated HIV-1 Infected Patients: A Pilot Study

    PubMed Central

    Scagnolari, Carolina; Corano Scheri, Giuseppe; Selvaggi, Carla; Schietroma, Ivan; Najafi Fard, Saeid; Mastrangelo, Andrea; Giustini, Noemi; Serafino, Sara; Pinacchio, Claudia; Pavone, Paolo; Fanello, Gianfranco; Ceccarelli, Giancarlo; Vullo, Vincenzo; d’Ettorre, Gabriella

    2016-01-01

    Recently the tryptophan pathway has been considered an important determinant of HIV-1 infected patients’ quality of life, due to the toxic effects of its metabolites on the central nervous system (CNS). Since the dysbiosis described in HIV-1 patients might be responsible for the microbial translocation, the chronic immune activation, and the altered utilization of tryptophan observed in these individuals, we speculated a correlation between high levels of immune activation markers in the cerebrospinal fluid (CSF) of HIV-1 infected patients and the over-expression of indolamine-2,3-dioxygenase (IDO) at the gut mucosal surface. In order to evaluate this issue, we measured the levels of neopterin in CSF, and the expression of IDO mRNA in gut-associated lymphoid tissue (GALT), in HIV-1-infected patients on effective combined antiretroviral therapy (cART), at baseline and after six months of probiotic dietary management. We found a significant reduction of neopterin and IDO mRNA levels after the supplementation with probiotic. Since the results for the use of adjunctive therapies to reduce the levels of immune activation markers in CSF have been disappointing so far, our pilot study showing the efficacy of this specific probiotic product should be followed by a larger confirmatory trial. PMID:27689995

  5. Water Retention and Structure Stability in Smectitic or Kaolinitic Loam and Clay Soils Affected by Polyacrylamide Addition

    NASA Astrophysics Data System (ADS)

    Mamedov, Amirakh; Levy, Guy

    2015-04-01

    Studying the effects of polyacrylamide (PAM) on soil aggregate and structure stability is important in developing effective soil and water conservation practices and in sustaining soil and water quality. Five concentrations of an anionic PAM (0, 25, 50, 100 and 200 mg L-1) with a high molecular weight were tested on loam and clay soils having either a predominant smectitic or kaolinitic clay mineralogy. The effects of the PAM and of soil texture on soil water retention at near saturation and on aggregate and structure stability were investigated using the high energy moisture characteristic (HEMC) method. The S-shaped water retention curves obtained by the HEMC method were characterized by the modified van Genuchten (1980) model that provided: (i) the model parameters α and n, which represent the location of the inflection point and the steepness of the water retention curve, respectively; and (ii) the soil structure index, SI =VDP/MS, where VDP is the volume of drainable pores, an indicator of the quantity of water released by a soil over the range of applied suctions (0-5 J kg-1), and MS is the modal suction representing the most frequent pore sizes (> 60 μm). In general, the treatments tested (clay mineralogy, soil type and PAM concentration) resulted in: (i) a considerable modification of the shape of the water retention curves as indicated by the changes in the α and n values; and; (ii) substantial effects on the stability indices and other model parameters. The contribution of PAM concentration to soil structure stability depended on the clay mineralogy, being more effective in the smectitic soils than in the kaolinitic ones. Although kaolinitic soils are usually more stable than smectitic soils, when the latter were treated with PAM (25-200 mg L-1) the opposite trend was observed. In the loam soils, increasing the PAM concentration notably decreased the differences between values of the stability indices of the smectitic and kaolinitic samples. The

  6. Neurotransmitter Release Can Be Stabilized by a Mechanism That Prevents Voltage Changes Near the End of Action Potentials from Affecting Calcium Currents.

    PubMed

    Clarke, Stephen G; Scarnati, Matthew S; Paradiso, Kenneth G

    2016-11-09

    At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes.

  7. Stability of Chloropyromorphite in Ryegrass Rhizosphere as Affected by Root-Secreted Low Molecular Weight Organic Acids

    PubMed Central

    Wei, Wei; Wang, Yu; Wang, Zheng; Han, Ruiming; Li, Shiyin; Wei, Zhenggui; Zhang, Yong

    2016-01-01

    Understanding the stability of chloropyromorphite (CPY) is of considerable benefit for improving risk assessment and remediation strategies in contaminated water and soil. The stability of CPY in the rhizosphere of phosphorus-deficient ryegrass was evaluated to elucidate the role of root-secreted low molecular weight organic acids (LMWOAs) on the dissolution of CPY. Results showed that CPY treatments significantly reduced the ryegrass biomass and rhizosphere pH. The presence of calcium nitrate extractable lead (Pb) and phosphorus (P) suggested that CPY in the rhizosphere could be bioavailable, because P and Pb uptake by ryegrass potentially provided a significant concentration gradient that would promote CPY dissolution. Pb accumulation and translocation in ryegrass was found to be significantly higher in P-sufficient conditions than in P-deficient conditions. CPY treatments significantly enhanced root exudation of LMWOAs irrigated with P-nutrient solution or P-free nutrient solution. Oxalic acid was the dominant species in root-secreted LMWOAs of ryegrass under P-free nutrient solution treatments, suggesting that root-secreted oxalic acid may be the driving force of root-induced dissolution of CPY. Hence, our work, provides clarifying hints on the role of LMWOAs in controlling the stability of CPY in the rhizosphere. PMID:27494023

  8. The N-terminal tails of the H2A-H2B histones affect dimer structure and stability.

    PubMed

    Placek, Brandon J; Gloss, Lisa M

    2002-12-17

    The histone proteins of the core nucleosome are highly basic and form heterodimers in a "handshake motif." The N-terminal tails of the histones extend beyond the canonical histone fold of the hand-shake motif and are the sites of posttranslational modifications, including lysine acetylations and serine phosphorylations, which influence chromatin structure and activity as well as alter the charge state of the tails. However, it is not well understood if these modifications are signals for recruitment of other cellular factors or if the removal of net positive charge from the N-terminal tail plays a role in the overall structure of chromatin. To elucidate the effects of the N-terminal tails on the structure and stability of histones, the highly charged N-terminal tails were truncated from the H2A and H2B histones. Three mutant dimers were studied: DeltaN-H2A/WT H2B; WT H2A/DeltaN-H2B, and DeltaN-H2A/DeltaN-H2B. The CD spectra, stabilities to urea-denaturation, and the salt-dependent stabilization of the three truncated dimers were compared with those of the wild-type dimer. The data support four conclusions regarding the effects of the N-terminal tails of H2A and H2B: (1) Removal of the N-terminal tails of H2A and H2B enhance the helical structure of the mutant heterodimers. (2) Relative to the full-length WT heterodimer, the DeltaN-H2A/WT H2B dimer is destabilized, while the WT H2A/DeltaN-H2B and DeltaN-H2A/DeltaN-H2B dimers are slightly stabilized. (3) The truncated dimers exhibit decreased m values, relative to the WT dimer, supporting the hypothesis that the N-terminal tails in the isolated dimer adopt a collapsed structure. (4) Electrostatic repulsion in the N-terminal tails decreases the stability of the H2A-H2B dimer.

  9. An AU-Rich Sequence Element (UUUN[A/U]U) Downstream of the Edited C in Apolipoprotein B mRNA Is a High-Affinity Binding Site for Apobec-1: Binding of Apobec-1 to This Motif in the 3′ Untranslated Region of c-myc Increases mRNA Stability

    PubMed Central

    Anant, Shrikant; Davidson, Nicholas O.

    2000-01-01

    Apobec-1, the catalytic subunit of the mammalian apolipoprotein B (apoB) mRNA-editing enzyme, is a cytidine deaminase with RNA binding activity for AU-rich sequences. This RNA binding activity is required for Apobec-1 to mediate C-to-U RNA editing. Filter binding assays, using immobilized Apobec-1, demonstrate saturable binding to a 105-nt apoB RNA with a Kd of ∼435 nM. A series of AU-rich templates was used to identify a high-affinity (∼50 nM) binding site of consensus sequence UUUN[A/U]U, with multiple copies of this sequence constituting the high-affinity binding site. In order to determine whether this consensus site could be functionally demonstrated from within an apoB RNA, circular-permutation analysis was performed, revealing one major (UUUGAU) and one minor (UU) site located 3 and 16 nucleotides, respectively, downstream of the edited base. Secondary-structure predictions reveal a stem-loop flanking the edited base with Apobec-1 binding to the consensus site(s) at an open loop. A similar consensus (AUUUA) is present in the 3′ untranslated regions of several mRNAs, including that of c-myc, that are known to undergo rapid degradation. In this context, it is presumed that the consensus motif acts as a destabilizing element. As an independent test of the ability of Apobec-1 to bind to this sequence, F442A cells were transfected with Apobec-1 and the half-life of c-myc mRNA was determined following actinomycin D treatment. These studies demonstrated an increase in the half-life of c-myc mRNA from 90 to 240 min in control versus Apobec-1-expressing cells. Apobec-1 expression mutants, in which RNA binding activity is eliminated, failed to alter c-myc mRNA turnover. Taken together, the data establish a consensus binding site for Apobec-1 embedded in proximity to the edited base in apoB RNA. Binding to this site in other target RNAs raises the possibility that Apobec-1 may be involved in other aspects of RNA metabolism, independent of its role as an apoB RNA

  10. Cyclic AMP stabilizes a class of developmentally regulated Dictyostelium discoideum mRNAs.

    PubMed

    Mangiarotti, G; Ceccarelli, A; Lodish, H F

    The stability of mRNA is an important facet of the regulation of protein synthesis. In mammalian cells most mRNAs have long half-lives (5-15 hours) but a substantial fraction are much less stable. There are few examples where the stability of a particular mRNA or class of mRNAs is specifically affected by environmental or developmental stimuli. Certain hormones cause specific stabilization of mRNAs species and preferential mRNA stability is important in the accumulation of globin and myosin mRNAs during the terminal stages of erythropoesis or myogenesis, respectively. Disaggregation of Dictyostelium discoideum aggregates induces the specific destabilization of a large class of developmentally regulated mRNAs; thus, this system is an excellent one in which to determine how such controls are effected. Here we show that addition of cyclic AMP to disaggregated cells specifically prevents the destabilization of these mRNAs.

  11. The influence of somatosensory and muscular deficits on postural stabilization: Insights from an instrumented analysis of subjects affected by different types of Charcot-Marie-Tooth disease.

    PubMed

    Lencioni, Tiziana; Piscosquito, Giuseppe; Rabuffetti, Marco; Bovi, Gabriele; Calabrese, Daniela; Aiello, Alessia; Di Sipio, Enrica; Padua, Luca; Diverio, Manuela; Pareyson, Davide; Ferrarin, Maurizio

    2015-08-01

    Charcot-Marie-Tooth (CMT) disease is the most common hereditary neuromuscular disorder. CMT1 is primarily demyelinating, CMT2 is primarily axonal, and CMTX1 is characterized by both axonal and demyelinating abnormalities. We investigated the role of somatosensory and muscular deficits on quiet standing and postural stabilization in patients affected by different forms of CMT, comparing their performances with those of healthy subjects. Seventy-six CMT subjects (CMT1A, CMT2 and CMTX1) and 41 healthy controls were evaluated during a sit-to-stand transition and the subsequent quiet upright posture by means of a dynamometric platform. All CMT patients showed altered balance and postural stabilization compared to controls. Multivariate analysis showed that in CMT patients worsening of postural stabilization was related to vibration sense deficit and to dorsi-flexor's weakness, while quiet standing instability was related to the reduction of pinprick sensibility and to plantar-flexor's weakness. Our results show that specific sensory and muscular deficits play different roles in balance impairment of CMT patients, both during postural stabilization and in static posture. An accurate evaluation of residual sensory and muscular functions is therefore necessary to plan for the appropriate balance rehabilitation treatment for each patient, besides the CMT type.

  12. Lack of the D2 protein in a Chlamydomonas reinhardtii psbD mutant affects photosystem II stability and D1 expression

    PubMed Central

    Erickson, Jeanne M.; Rahire, Michéle; Malnoë, Pia; Girard-Bascou, Jacqueline; Pierre, Yves; Bennoun, Pierre; Rochaix, Jean-David

    1986-01-01

    D1 and D2, two chloroplast proteins with apparent mol. wt of 32 000-34 000, play an important role in the photosynthetic reactions mediated by the membrane-bound protein complex of photosystem II (PSII). We have isolated and characterized an uniparental, non-photosynthetic mutant of Chlamydomonas reinhardtii and show that the mutation is in the chloroplast gene psbD, coding for D2. A 46 bp direct DNA duplication in the coding region of the mutant gene causes a frame-shift which results in a psbD transcript coding for 186 amino acid residues instead of the normal 352. The truncated D2 peptide is never seen, even after pulse-labeling, suggesting that the mutant protein is very unstable. In addition, little or no D1 protein is detected in this mutant although the gene and normal levels of mRNA for D1 are present in mutant cells. All other core PSII proteins are synthesized and inserted into the membrane fraction, but never accumulate. These results suggest that D2 contributes not only to the stabilization of the PSII complex in the membrane, but also may play a specific role in the regulation of the D1 protein, either at the translational or post-translational level. ImagesFig. 1.Fig. 2.Fig. 6. PMID:16453694

  13. Reduced oxide sites and surface corrugation affecting the reactivity, thermal stability, and selectivity of supported Au-Pd bimetallic clusters on SiO2/Si(100).

    PubMed

    Gross, Elad; Sorek, Elishama; Murugadoss, Arumugam; Asscher, Micha

    2013-05-21

    The morphology and surface elemental composition of Au-Pd bimetallic nanoclusters are reported to be sensitive to and affected by reduced silicon defect sites and structural corrugation on SiO2/Si(100), generated by argon ion sputtering under ultrahigh vacuum (UHV) conditions. Metastable structures of the bimetallic clusters, where Au atoms are depleted from the top surface upon annealing, are stabilized by the interaction with the reduced silica sites, as indicated from CO temperature programmed desorption (TPD) titration measurements. Acetylene conversion to ethylene and benzene has been studied as a probe reaction, revealing the modification of selectivity and reactivity enhancement in addition to improved thermal stability on substrates rich in reduced-silica sites. These observations suggest that these unique sites play an important role in anchoring thermodynamically metastable conformations of supported Au-Pd bimetallic catalysts and dictate their high-temperature activity.

  14. The cellular energization state affects peripheral stalk stability of plant vacuolar H+-ATPase and impairs vacuolar acidification.

    PubMed

    Schnitzer, Daniel; Seidel, Thorsten; Sander, Tim; Golldack, Dortje; Dietz, Karl-Josef

    2011-05-01

    The plant vacuolar H(+)-ATPase takes part in acidifying compartments of the endomembrane system including the secretory pathway and the vacuoles. The structural variability of the V-ATPase complex as well as its presence in different compartments and tissues involves multiple isoforms of V-ATPase subunits. Furthermore, a versatile regulation is essential to allow for organelle- and tissue-specific fine tuning. In this study, results from V-ATPase complex disassembly with a chaotropic reagent, immunodetection and in vivo fluorescence resonance energy transfer (FRET) analyses point to a regulatory mechanism in plants, which depends on energization and involves the stability of the peripheral stalks as well. Lowering of cellular ATP by feeding 2-deoxyglucose resulted in structural alterations within the V-ATPase, as monitored by changes in FRET efficiency between subunits VHA-E and VHA-C. Potassium iodide-mediated disassembly revealed a reduced stability of V-ATPase after 2-deoxyglucose treatment of the cells, but neither the complete V(1)-sector nor VHA-C was released from the membrane in response to 2-deoxyglucose treatment, precluding a reversible dissociation mechanism like in yeast. These data suggest the existence of a regulatory mechanism of plant V-ATPase by modification of the peripheral stator structure that is linked to the cellular energization state. This mechanism is distinct from reversible dissociation as reported for the yeast V-ATPase, but might represent an evolutionary precursor of reversible dissociation.

  15. SUMF1 mutations affecting stability and activity of formylglycine generating enzyme predict clinical outcome in multiple sulfatase deficiency.

    PubMed

    Schlotawa, Lars; Ennemann, Eva Charlotte; Radhakrishnan, Karthikeyan; Schmidt, Bernhard; Chakrapani, Anupam; Christen, Hans-Jürgen; Moser, Hugo; Steinmann, Beat; Dierks, Thomas; Gärtner, Jutta

    2011-03-01

    Multiple Sulfatase Deficiency (MSD) is caused by mutations in the sulfatase-modifying factor 1 gene encoding the formylglycine-generating enzyme (FGE). FGE post translationally activates all newly synthesized sulfatases by generating the catalytic residue formylglycine. Impaired FGE function leads to reduced sulfatase activities. Patients display combined clinical symptoms of single sulfatase deficiencies. For ten MSD patients, we determined the clinical phenotype, FGE expression, localization and stability, as well as residual FGE and sulfatase activities. A neonatal, very severe clinical phenotype resulted from a combination of two nonsense mutations leading to almost fully abrogated FGE activity, highly unstable FGE protein and nearly undetectable sulfatase activities. A late infantile mild phenotype resulted from FGE G263V leading to unstable protein but high residual FGE activity. Other missense mutations resulted in a late infantile severe phenotype because of unstable protein with low residual FGE activity. Patients with identical mutations displayed comparable clinical phenotypes. These data confirm the hypothesis that the phenotypic outcome in MSD depends on both residual FGE activity as well as protein stability. Predicting the clinical course in case of molecularly characterized mutations seems feasible, which will be helpful for genetic counseling and developing therapeutic strategies aiming at enhancement of FGE.

  16. IL-1beta induces stabilization of IL-8 mRNA in malignant breast cancer cells via the 3' untranslated region: Involvement of divergent RNA-binding factors HuR, KSRP and TIAR.

    PubMed

    Suswam, Esther A; Nabors, L Burt; Huang, Yuanyuan; Yang, Xiuhua; King, Peter H

    2005-03-01

    IL-8 plays an integral role in promoting the malignant phenotype in breast cancer, and its production is directly influenced by inflammatory cytokines in the tumor microenvironment. Here, we show that activation of IL-1beta receptors on malignant HS578t and MDA-MB-231 breast cancer cells strongly induces IL-8 expression and that RNA stabilization is persistently activated at least 12-24 hr after stimulation. SB 203580 and rapamycin reversed the RNA stabilization effect of IL-1beta in a dose-dependent manner, suggesting involvement of the p38/MAP kinase and mTOR pathways. A luciferase reporter assay indicated that the stabilization effect was dependent on cis elements in the 3'-untranslated region (UTR) of the IL-8 transcript. By UV cross-linking, we identified multiple cellular factors that interact with the IL-8 3'UTR, ranging 34-76 kDa. Immunoprecipitation analysis indicated that HuR, KSRP and TIAR bound to one or more loci in the 3'UTR. While the cross-linking patterns were similar, quantitative immunoprecipitation of native IL-8 RNA from IL-1beta-stimulated cytoplasmic extract revealed a 20-fold greater association of transcript with the stabilizing factor HuR vs. the destabilizing factor KSRP. In conclusion, IL-1beta is a potent cytokine stimulus for IL-8 RNA stabilization in breast cancer cells, possibly by enhanced binding of cytoplasmic HuR to the 3'UTR.

  17. Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay

    PubMed Central

    Nasim, Zeeshan; Fahim, Muhammad; Ahn, Ji Hoon

    2017-01-01

    Eukaryotic cells use nonsense-mediated mRNA decay (NMD) to clear aberrant mRNAs from the cell, thus preventing the accumulation of truncated proteins. In Arabidopsis, two UP-Frameshift (UPF) proteins, UPF1 and UPF3, play a critical role in NMD. Although deficiency of UPF1 and UPF3 leads to various developmental defects, little is known about the mechanism underlying the regulation of flowering time by NMD. Here, we showed that the upf1-5 and upf3-1 mutants had a late-flowering phenotype under long-day conditions and the upf1-5 upf3-1 double mutants had an additive effect in delaying flowering time. RNA sequencing of the upf mutants revealed that UPF3 exerted a stronger effect than UPF1 in the UPF-mediated regulation of flowering time. Among genes known to regulate flowering time, FLOWERING LOCUS C (FLC) mRNA levels increased (up to 8-fold) in upf mutants, as confirmed by qPCR. The upf1-5, upf3-1, and upf1-5 upf3-1 mutants responded to vernalization, suggesting a role of FLC in delayed flowering of upf mutants. Consistent with the high FLC transcript levels and delayed flowering in upf mutants, levels of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) mRNAs were reduced in the upf mutants. However, RNA-seq did not identify an aberrant FLC transcript containing a premature termination codon (PTC), suggesting that FLC is not a direct target in the regulation of flowering time by NMD. Among flowering time regulators that act in an FLC-dependent manner, we found that MAF3, NF-YA2, NF-YA5, and TAF14 showed increased transcript levels in upf mutants. We also found that BBX19 and ATC, which act in an FLC-independent manner, showed increased transcript levels in upf mutants. An aberrant transcript containing a PTC was identified from MAF3 and BBX19 and the levels of the aberrant transcripts increased in upf mutants. Taking these results together, we propose that the late-flowering phenotype of upf mutants is mediated by at least two different

  18. Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay.

    PubMed

    Nasim, Zeeshan; Fahim, Muhammad; Ahn, Ji Hoon

    2017-01-01

    Eukaryotic cells use nonsense-mediated mRNA decay (NMD) to clear aberrant mRNAs from the cell, thus preventing the accumulation of truncated proteins. In Arabidopsis, two UP-Frameshift (UPF) proteins, UPF1 and UPF3, play a critical role in NMD. Although deficiency of UPF1 and UPF3 leads to various developmental defects, little is known about the mechanism underlying the regulation of flowering time by NMD. Here, we showed that the upf1-5 and upf3-1 mutants had a late-flowering phenotype under long-day conditions and the upf1-5 upf3-1 double mutants had an additive effect in delaying flowering time. RNA sequencing of the upf mutants revealed that UPF3 exerted a stronger effect than UPF1 in the UPF-mediated regulation of flowering time. Among genes known to regulate flowering time, FLOWERING LOCUS C (FLC) mRNA levels increased (up to 8-fold) in upf mutants, as confirmed by qPCR. The upf1-5, upf3-1, and upf1-5 upf3-1 mutants responded to vernalization, suggesting a role of FLC in delayed flowering of upf mutants. Consistent with the high FLC transcript levels and delayed flowering in upf mutants, levels of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) mRNAs were reduced in the upf mutants. However, RNA-seq did not identify an aberrant FLC transcript containing a premature termination codon (PTC), suggesting that FLC is not a direct target in the regulation of flowering time by NMD. Among flowering time regulators that act in an FLC-dependent manner, we found that MAF3, NF-YA2, NF-YA5, and TAF14 showed increased transcript levels in upf mutants. We also found that BBX19 and ATC, which act in an FLC-independent manner, showed increased transcript levels in upf mutants. An aberrant transcript containing a PTC was identified from MAF3 and BBX19 and the levels of the aberrant transcripts increased in upf mutants. Taking these results together, we propose that the late-flowering phenotype of upf mutants is mediated by at least two different

  19. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase

    PubMed Central

    Sharma, Reetu; Sastry, G. Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant’s functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies. PMID:26657745

  20. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase.

    PubMed

    Sharma, Reetu; Sastry, G Narahari

    2015-01-01

    Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant's functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies.

  1. Does the personal lift-assist device affect the local dynamic stability of the spine during lifting?

    PubMed

    Graham, Ryan B; Sadler, Erin M; Stevenson, Joan M

    2011-02-03

    The personal lift-assist device (PLAD) is an on-body ergonomic aid that reduces low back physical demands through the restorative moment of an external spring element, which possesses a mechanical advantage over the erector spinae. Although the PLAD has proven effective at reducing low back muscular demand, spinal moments, and localized muscular fatigue during laboratory and industrial tasks, the effects of the device on the neuromuscular control of spinal stability during lifting have yet to be assessed. Thirty healthy subjects (15M, 15F) performed repetitive lifting for three minutes, at a rate of 10 lifts per minute, with and without the PLAD. Maximum finite-time Lyapunov exponents, representing short-term (λ(max-s)) and long-term (λ(max-l)) divergence were calculated from the measured trunk kinematics to estimate the local dynamic stability of the lumbar spine. Using a mixed-design repeated-measures ANOVA, it was determined that wearing the PLAD did not significantly change λ(max-s) (μ(NP)=0.335, μ(P)=0.321, p=0.225), but did significantly reduce λ(max-l) (μ(NP)=0.0024, μ(P)=-0.0011, p=0.014, η(2)=0.197). There were no between-subject effects of sex, or significant interactions (p>0.720). The present results indicated that λ(max-s) was not statistically different between the device conditions, but that the PLAD significantly reduced λ(max-l) to a negative (stable) value. This shows that subjects' neuromuscular systems were able to respond to local perturbations more effectively when wearing the device, reflecting a more stable control of spinal movements. These findings are important when recommending the PLAD for long-term industrial or clinical use.

  2. Interleukin 7 up-regulates CD95 protein on CD4+ T cells by affecting mRNA alternative splicing: priming for a synergistic effect on HIV-1 reservoir maintenance.

    PubMed

    Yin, Yue; Zhang, Shaoying; Luo, Haihua; Zhang, Xu; Geng, Guannan; Li, Jun; Guo, Xuemin; Cai, Weiping; Li, Linghua; Liu, Chao; Zhang, Hui

    2015-01-02

    Interleukin-7 (IL-7) has been used as an immunoregulatory and latency-reversing agent in human immunodeficiency virus type 1 (HIV-1) infection. Although IL-7 can restore circulating CD4(+) T cell counts in HIV-1-infected patients, the anti-apoptotic and proliferative effects of IL-7 appear to benefit survival and expansion of HIV-1-latently infected memory CD4(+) T lymphocytes. IL-7 has been shown to elevate CD95 on CD4(+) T cells in HIV-1-infected individuals and prime CD4(+) T lymphocytes to CD95-mediated proliferative or apoptotic signals. Here we observed that through increasing microRNA-124, IL-7 down-regulates the splicing regulator polypyrimidine tract binding protein (PTB), leading to inclusion of the transmembrane domain-encoding exon 6 of CD95 mRNA and, subsequently, elevation of CD95 on memory CD4(+) T cells. Moreover, IL-7 up-regulates cellular FLICE-like inhibitory protein (c-FLIP) and stimulates c-Jun N-terminal kinase (JNK) phosphorylation, which switches CD95 signaling to survival mode in memory CD4(+) T lymphocytes. As a result, co-stimulation through IL-7/IL-7R and FasL/CD95 signal pathways augments IL-7-mediated survival and expansion of HIV-1-latently infected memory CD4(+) T lymphocytes. Collectively, we have demonstrated a novel mechanism for IL-7-mediated maintenance of HIV-1 reservoir.

  3. Stability of psychological impairment: two year follow-up of former microelectronics workers' affective and personality disturbance.

    PubMed

    Bowler, R M; Mergler, D; Rauch, S S; Bowler, R P

    1992-01-01

    For the past twenty years women's complaints in the microelectronics industry have often been diagnosed as mass psychogenic illness, despite evidence of potential exposure to organic solvents, which have been associated with affect and mood changes. In the present study, the standard version of the Minnesota Multiphasic Personality Inventory (MMPI) was used to evaluate affective and personality disturbance among 63 former microelectronics workers (56 women and 7 men) over a two-year period of time. In both 1986 and 1988, the former workers obtained mean scale score elevations beyond two standard deviations above the normative sample (T = greater than 70) on the MMPI clinical scales of schizophrenia, hypochondriasis, psychasthenia, depression and hysteria. For most scales, 86-88 mean score differences did not attain the 0.05 significance level (two-tailed paired t-test) and no significant differences were observed for 86-88 comparison scale scores = greater than 70 (McNemar paired statistic). Although there were too few men to perform gender comparisons, men scored higher than women on 5 scales and all of the men had scores = greater than 70 on hypochondriasis, depression, hysteria, psychasthenia and schizophrenia. These findings reveal that these former microelectronics workers manifested affective and personality disturbances, consistent with organic solvent toxicity, which persisted over a two year period, indicating that they were not reactive, transient hysterical neurosis.

  4. Viral and Cellular mRNA Translation in Coronavirus-Infected Cells

    PubMed Central

    Nakagawa, K.; Lokugamage, K.G.; Makino, S.

    2017-01-01

    Coronaviruses have large positive-strand RNA genomes that are 5′ capped and 3′ polyadenylated. The 5′-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15–16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3′-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5′ leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells. PMID:27712623

  5. Viral and Cellular mRNA Translation in Coronavirus-Infected Cells.

    PubMed

    Nakagawa, K; Lokugamage, K G; Makino, S

    2016-01-01

    Coronaviruses have large positive-strand RNA genomes that are 5' capped and 3' polyadenylated. The 5'-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15-16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3'-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5' leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells.

  6. Permeability models affecting nonlinear stability in the asymptotic suction boundary layer: the Forchheimer versus the Darcy model

    NASA Astrophysics Data System (ADS)

    Wedin, Håkan; Cherubini, Stefania

    2016-12-01

    The asymptotic suction boundary layer (ASBL) is used for studying two permeability models, namely the Darcy and the Forchheimer model, the latter being more physically correct according to the literature. The term that defines the two apart is a function of the non-Darcian wall permeability {\\hat{K}}2 and of the wall suction {\\hat{V}}0, whereas the Darcian wall permeability {\\hat{K}}1 is common to the two models. The underlying interest of the study lies in the field of transition to turbulence where focus is put on two-dimensional nonlinear traveling waves (TWs) and their three-dimensional linear stability. Following a previous study by Wedin et al (2015 Phys. Rev. E 92 013022), where only the Darcy model was considered, the present work aims at comparing the two models, assessing where in the parameter space they cease to produce the same results. For low values of {\\hat{K}}1 both models produce almost identical TW solutions. However, when both increasing the suction {\\hat{V}}0 to sufficiently high amplitudes (i.e. lowering the Reynolds number Re, based on the displacement thickness) and using large values of the wall porosity, differences are observed. In terms of the non-dimensional Darcian wall permeability parameter, a, strong differences in the overall shape of the bifurcation curves are observed for a≳ 0.70, with the emergence of a new family of solutions at Re lower than 100. For these large values of a, a Forchheimer number {{Fo}}\\max ≳ 0.5 is found, where Fo expresses the ratio between the kinetic and viscous forces acting on the porous wall. Moreover, the minimum Reynolds number, {{Re}}g, for which the Navier-Stokes equations allow for nonlinear solutions, decreases for increasing values of a. Fixing the streamwise wavenumber to α = 0.154, as used in the study by Wedin et al referenced above, we find that {{Re}}g is lowered from Re ≈ 3000 for zero permeability, to below 50 for a = 0.80 for both permeability models. Finally, the stability of

  7. ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease

    PubMed Central

    Moloney, Elizabeth B.; de Winter, Fred; Verhaagen, Joost

    2014-01-01

    Amyotrophic Lateral Sclerosis (ALS) is being redefined as a distal axonopathy, in that many molecular changes influencing motor neuron degeneration occur at the neuromuscular junction (NMJ) at very early stages of the disease prior to symptom onset. A huge variety of genetic and environmental causes have been associated with ALS, and interestingly, although the cause of the disease can differ, both sporadic and familial forms of ALS show a remarkable similarity in terms of disease progression and clinical manifestation. The NMJ is a highly specialized synapse, allowing for controlled signaling between muscle and nerve necessary for skeletal muscle function. In this review we will evaluate the clinical, animal experimental and cellular/molecular evidence that supports the idea of ALS as a distal axonopathy. We will discuss the early molecular mechanisms that occur at the NMJ, which alter the functional abilities of the NMJ. Specifically, we focus on the role of axon guidance molecules on the stability of the cytoskeleton and how these molecules may directly influence the cells of the NMJ in a way that may initiate or facilitate the dismantling of the neuromuscular synapse in the presymptomatic stages of ALS. PMID:25177267

  8. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain.

    PubMed

    Selzer, Lisa; Kant, Ravi; Wang, Joseph C-Y; Bothner, Brian; Zlotnick, Adam

    2015-11-20

    Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle.

  9. A preliminary study of factors affecting the calibration stability of the iridium versus iridium-40 percent rhodium thermocouple

    NASA Technical Reports Server (NTRS)

    Ahmed, Shaffiq; Germain, Edward F.; Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E.

    1987-01-01

    An iridium versus iridium-40% rhodium thermocouple was studied. Problems associated with the use of this thermocouple for high temperature applications (up to 2000 C) were investigated. The metallurgical studies included X-ray, macroscopic, resistance, and metallographic studies. The thermocouples in the as-received condition from the manufacturer revealed large amounts of internal stress caused by cold working during manufacturing. The thermocouples also contained a large amount of inhomogeneities and segregations. No phase transformations were observed in the alloy up to 1100 C. It was found that annealing the thermocouple at 1800 C for two hours, and then at 1400 C for 2 to 3 hours yielded a fine grain structure, relieving some of the strains, and making the wire more ductile. It was also found that the above annealing procedure stabilized the thermal emf behavior of the thermocouple for application below 1800 C (an improvement from + or - 1% to + or - 0.02% within the range of the test parameters used).

  10. Storage Stability of Kinnow Fruit (Citrus reticulata) as Affected by CMC and Guar Gum-Based Silver Nanoparticle Coatings.

    PubMed

    Shah, Syed Wasim Ahmad; Jahangir, Muhammad; Qaisar, Muhammad; Khan, Sher Aslam; Mahmood, Talat; Saeed, Muhammad; Farid, Abid; Liaquat, Muhammad

    2015-12-18

    The influence of carboxy methyl cellulose (CMC) and guargum-based coatings containing silver nanoparticles was studied on the postharvest storage stability of the kinnow mandarin (Citrus reticulata cv. Blanco) for a period of 120 days (85%-90% relative humidity) at 4 °C and 10 °C. Physicochemical and microbiological qualities were monitored after every 15 days of storage. Overall results revealed an increase in total soluble solid (TSS), total sugars, reducing sugars and weight loss but this increase was comparatively less significant in coated fruits stored at 4 °C. Ascorbic acid, total phenolics, and antioxidant activity was significantly enhanced in coated fruits stored at 4 °C. Titratable acidity significantly decreased during storage except for coated kinnow stored at 4 °C. In control samples stored at 10 °C, high intensity of fruit rotting and no chilling injury was observed. Total aerobic psychrotrophic bacteria and yeast and molds were noticed in all treatments during storage but the growth was not significant in coated fruits at 4 °C. Kinnow fruit can be kept in good quality after coating for four months at 4 °C and for 2 months at 10 °C.

  11. A replacement of the active-site aspartic acid residue 293 in mouse cathepsin D affects its intracellular stability, processing and transport in HEK-293 cells.

    PubMed Central

    Partanen, Sanna; Storch, Stephan; Löffler, Hans-Gerhard; Hasilik, Andrej; Tyynelä, Jaana; Braulke, Thomas

    2003-01-01

    The substitution of an active-site aspartic acid residue by asparagine in the lysosomal protease cathepsin D (CTSD) results in a loss of enzyme activity and severe cerebrocortical atrophy in a novel form of neuronal ceroid lipofuscinosis in sheep [Tyynelä, Sohar, Sleat, Gin, Donnelly, Baumann, Haltia and Lobel (2000) EMBO J. 19, 2786-2792]. In the present study we have introduced the corresponding mutation by replacing aspartic acid residue 293 with asparagine (D293N) into the mouse CTSD cDNA to analyse its effect on synthesis, transport and stability in transfected HEK-293 cells. The complete inactivation of mutant D293N mouse CTSD was confirmed by a newly developed fluorimetric quantification system. Moreover, in the heterologous overexpression systems used, mutant D293N mouse CTSD was apparently unstable and proteolytically modified during early steps of the secretory pathway, resulting in a loss of mass by about 1 kDa. In the affected sheep, the endogenous mutant enzyme was stable but also showed the shift in its molecular mass. In HEK-293 cells, the transport of the mutant D293N mouse CTSD to the lysosome was delayed and associated with a low secretion rate compared with wild-type CTSD. These data suggest that the mutation may result in a conformational change which affects stability, processing and transport of the enzyme. PMID:12350228

  12. Deletion of a C-terminal intrinsically disordered region of WRINKLED1 affects its stability and enhances oil accumulation in Arabidopsis.

    PubMed

    Ma, Wei; Kong, Que; Grix, Michael; Mantyla, Jenny J; Yang, Yang; Benning, Christoph; Ohlrogge, John B

    2015-09-01

    WRINKLED1 (WRI1) is a key transcription factor governing plant oil biosynthesis. We characterized three intrinsically disordered regions (IDRs) in Arabidopsis WRI1, and found that one C-terminal IDR of AtWRI1 (IDR3) affects the stability of AtWRI1. Analysis by bimolecular fluorescence complementation and yeast-two-hybrid assays indicated that the IDR3 domain does not determine WRI1 stability by interacting with BTB/POZ-MATH proteins connecting AtWRI1 with CULLIN3-based E3 ligases. Analysis of the WRI1 sequence revealed that a putative PEST motif (proteolytic signal) is located at the C-terminal region of AtWRI1(IDR) (3). We also show that a 91 amino acid domain at the C-terminus of AtWRI1 without the PEST motif is sufficient for transactivation. We found that removal of the PEST motif or mutations in putative phosphorylation sites increased the stability of AtWRI1, and led to increased oil biosynthesis when these constructs were transiently expressed in tobacco leaves. Oil content was also increased in the seeds of stable transgenic wri1-1 plants expressing AtWRI1 with mutations in the IDR3-PEST motif. Taken together, our data suggest that intrinsic disorder of AtWRI1(IDR3) may facilitate exposure of the PEST motif to protein kinases. Thus, phosphorylation of the PEST motif in the AtWRI1(IDR) (3) domain may affect AtWRI1-mediated plant oil biosynthesis. The results obtained here suggest a means to increase accumulation of oils in plant tissues through WRI1 engineering.

  13. Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii.

    PubMed

    Kochhann, Daiani; Campos, Derek Felipe; Val, Adalberto Luis

    2015-12-01

    The primary goal of this study was to understand how changes in temperature and oxygen could influence social behaviour and aerobic metabolism of the Amazonian dwarf cichlid Apistogramma agassizii. Social hierarchies were established over a period of 96h by observing the social interactions, feeding behaviour and shelter use in groups of four males. In the experimental environment, temperature was increased to 29°C in the high-temperature treatment, and oxygen lowered to 1.0mg·L(-1)O2 in the hypoxia treatment. Fish were maintained at this condition for 96h. The control was maintained at 26°C and 6.6mg·L(-1)O2. After the experimental exposure, metabolism was measured as routine metabolic rate (RMR) and electron transport system (ETS) activity. There was a reduction in hierarchy stability at high-temperature. Aggression changed after environmental changes. Dominant and subdominant fish at high temperatures increased their biting, compared with control-dominant. In contrast, hypoxia-dominant fish decreased their aggressive acts compared with all other fish. Shelter use decreased in control and hypoxic dominant fish. Dominant fish from undisturbed environments eat more than their subordinates. There was a decrease of RMR in fish exposed to the hypoxic environment when compared with control or high-temperature fish, independent of social position. Control-dominant fish had higher RMR than their subordinates. ETS activity increased in fish exposed to high temperatures; however, there was no effect on social rank. Our study reinforces the importance of environmental changes for the maintenance of hierarchies and their characteristics and highlights that most of the changes occur in the dominant position.

  14. TSC2 N-terminal lysine acetylation status affects to its stability modulating mTORC1 signaling and autophagy.

    PubMed

    García-Aguilar, Ana; Guillén, Carlos; Nellist, Mark; Bartolomé, Alberto; Benito, Manuel

    2016-11-01

    There is a growing evidence of the role of protein acetylation in different processes controlling metabolism. Sirtuins (histone deacetylases nicotinamide adenine dinucleotide-dependent) activate autophagy playing a protective role in cell homeostasis. This study analyzes tuberous sclerosis complex (TSC2) lysine acetylation, in the regulation of mTORC1 signaling activation, autophagy and cell proliferation. Nicotinamide 5mM (a concentration commonly used to inhibit SIRT1), increased TSC2 acetylation in its N-terminal domain, and concomitantly with an augment in its ubiquitination protein status, leading to mTORC1 activation and cell proliferation. In contrast, resveratrol (RESV), an activator of sirtuins deacetylation activity, avoided TSC2 acetylation, inhibiting mTORC1 signaling and promoting autophagy. Moreover, TSC2 in its deacetylated state was prevented from ubiquitination. Using MEF Sirt1 +/+ and Sirt1 -/- cells or a SIRT1 inhibitor (EX527) in MIN6 cells, TSC2 was hyperacetylated and neither NAM nor RESV were capable to modulate mTORC1 signaling. Then, silencing Tsc2 in MIN6 or in MEF Tsc2-/- cells, the effects of SIRT1 modulation by NAM or RESV on mTORC1 signaling were abolished. We also observed that two TSC2 lysine mutants in its N-terminal domain, derived from TSC patients, differentially modulate mTORC1 signaling. TSC2 K599M variant presented a lower mTORC1 activity. However, with K106Q mutant, there was an activation of mTORC1 signaling at the basal state as well as in response to NAM. This study provides, for the first time, a relationship between TSC2 lysine acetylation status and its stability, representing a novel mechanism for regulating mTORC1 pathway.

  15. Evaluating factors affecting the permeability of emulsions used to stabilize radioactive contamination from a radiological dispersal device.

    PubMed

    Fox, Garey A; Medina, Victor F

    2005-05-15

    Present strategies for alleviating radioactive contamination from a radiological dispersal device (RDD) or dirty bomb involve either demolishing and removing radioactive surfaces or abandoning portions of the area near the release point. In both cases, it is imperative to eliminate or reduce migration of the radioisotopes until the cleanup is complete or until the radiation has decayed back to acceptable levels. This research investigated an alternative strategy of using emulsions to stabilize radioactive particulate contamination. Emergency response personnel would coat surfaces with emulsions consisting of asphalt or tall oil pitch to prevent migration of contamination. The site can then be evaluated and cleaned up as needed. In order for this approach to be effective, the treatment must eliminate migration of the radioactive agents in the terror device. Water application is an environmental condition that could promote migration into the external environment. This research investigated the potential for water, and correspondingly contaminant, migration through two emulsions consisting of Topein, a resinous byproduct during paper manufacture. Topein C is an asphaltic-based emulsion and Topein S is a tall oil pitch, nonionic emulsion. Experiments included water adsorption/ mobilization studies, filtration tests, and image analysis of photomicrographs from an environmental scanning electron microscope (ESEM) and a stereomicroscope. Both emulsions were effective at reducing water migration. Conductivity estimates were on the order of 10(-80) cm s(-1) for Topein C and 10(-7) cm s(-1) for Topein S. Water mobility depended on emulsion flocculation and coalescence time. Photomicrographs indicate that Topein S consisted of greater and more interconnected porosity. Dilute foams of isolated spherical gas cells formed when emulsions were applied to basic surfaces. Gas cells rose to the surface and ruptured, leaving void spaces that penetrated throughout the emulsion. These

  16. Ehlers-Danlos Syndrome type IV: a multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen

    SciTech Connect

    Superti-Furga, A.; Gugler, E.; Gitzelmann, R.; Steinmann, B.

    1988-05-05

    The authors have studied a patient with severe, dominantly inherited Ehlers-Danlos syndrome type IV. The results indicate that this patient carries a deletion of 3.3 kilobase pairs in the triple helical coding domain of one of the two alleles for the pro-..cap alpha..-chains of type III collagen (COL3A1). His cultured skin fibroblasts contain equal amounts of normal length mRNA and of mRNA shortened by approximately 600 bases, and synthesize both normal and shortened pro-..cap alpha..1(III)-chains. In procollagen molecules containing one or more shortened chains, a triple helix is formed with a length of only about 780 amino acids. The mutant procollagen molecules have decreased thermal stability, are less efficiently secreted, and are not processed as their normal counterpart. The deletion in this family is the first mutation to be described in COL3A1.

  17. Metabolite sensing in eukaryotic mRNA biology

    PubMed Central

    Clingman, Carina C

    2016-01-01

    All living creatures change their gene expression program in response to nutrient availability and metabolic demands. Nutrients and metabolites can directly control transcription and activate second-messenger systems. More recent studies reveal that metabolites also affect post-transcriptional regulatory mechanisms. Here, we review the increasing number of connections between metabolism and post-transcriptional regulation in eukaryotic organisms. First, we present evidence that riboswitches, a common mechanism of metabolite sensing in bacteria, also function in eukaryotes. Next, we review an example of a double stranded RNA modifying enzyme that directly interacts with a metabolite, suggesting a link between RNA editing and metabolic state. Finally, we discuss work that shows some metabolic enzymes bind directly to RNA to affect mRNA stability or translation efficiency. These examples were discovered through gene-specific genetic, biochemical, and structural studies. A directed systems level approach will be necessary to determine whether they are anomalies of evolution or pioneer discoveries in what may be a broadly connected network of metabolism and post-transcriptional regulation. PMID:23653333

  18. Locking and unlocking of running wheel affects circadian period stability differently in three inbred strains of rats.

    PubMed

    Kohler, M; Wollnik, F

    1998-08-01

    Running-wheel access has been shown to shorten the circadian period length (tau) of various mammalian species. Due to the close correlation between tau and the level of activity, running wheel-induced changes of the activity level are thought to be responsible for the observed changes in tau. In the present study, the influence of the running wheel on tau and the activity level was examined in three inbred strains of rats (ACI, BH, LEW). Four animals of each strain had free access to their running wheels, while the wheels of the other 4 animals of each strain were mechanically locked. These conditions were changed twice, so that each animal encountered both kinds of changes, that is, from a locked to an unlocked running wheel and vice versa. During the whole study, overall activity was measured by infrared detectors. Running-wheel access resulted in a significant increase of overall activity in strains LEW and ACI. However, significant changes of tau were observed only in LEW rats. These rats showed a significant shortening of tau after the second change of the housing conditions regardless of whether the wheel was locked or unlocked. Consequently, no causal relationship was found between changes of tau and running wheel-induced changes of overall activity. Instead, the results suggest that subtle environmental influences like locking or unlocking the running wheel affect tau in a strain-dependent manner, whereas changes in the activity level are neither necessary nor sufficient to induce changes of tau.

  19. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator

    USGS Publications Warehouse

    Rosenblatt, Adam E.; Nifong, James C.; Heithaus, Michael R.; Mazzotti, Frank J.; Cherkiss, Michael S.; Jeffery, Brian M.; Elsey, Ruth M.; Decker, Rachel A.; Silliman, Brian R.; Guillette, Louis J.; Lowers, Russell H.; Larson, Justin C.

    2015-01-01

    Individual niche specialization (INS) is increasingly recognized as an important component of ecological and evolutionary dynamics. However, most studies that have investigated INS have focused on the effects of niche width and inter- and intraspecific competition on INS in small-bodied species for short time periods, with less attention paid to INS in large-bodied reptilian predators and the effects of available prey types on INS. We investigated the prevalence, causes, and consequences of INS in foraging behaviors across different populations of American alligators (Alligator mississippiensis), the dominant aquatic apex predator across the southeast US, using stomach contents and stable isotopes. Gut contents revealed that, over the short term, although alligator populations occupied wide ranges of the INS spectrum, general patterns were apparent. Alligator populations inhabiting lakes exhibited lower INS than coastal populations, likely driven by variation in habitat type and available prey types. Stable isotopes revealed that over longer time spans alligators exhibited remarkably consistent use of variable mixtures of carbon pools (e.g., marine and freshwater food webs). We conclude that INS in large-bodied reptilian predator populations is likely affected by variation in available prey types and habitat heterogeneity, and that INS should be incorporated into management strategies to efficiently meet intended goals. Also, ecological models, which typically do not consider behavioral variability, should include INS to increase model realism and applicability.

  20. Low operational stability of enzymes in dry organic solvents: changes in the active site might affect catalysis.

    PubMed

    Bansal, Vibha; Delgado, Yamixa; Legault, Marc; Barletta, Gabriel

    2012-02-14

    The potential of enzyme catalysis in organic solvents for synthetic applications has been overshadowed by the fact that their catalytic properties are affected by organic solvents. In addition, it has recently been shown that an enzyme's initial activity diminishes considerably after prolonged exposure to organic media. Studies geared towards understanding this last drawback have yielded unclear results. In the present work we decided to use electron paramagnetic resonance spectroscopy (EPR) to study the motion of an active site spin label (a nitroxide free radical) during 96 h of exposure of the serine protease subtilisin Carlsberg to four different organic solvents. Our EPR data shows a typical two component spectra that was quantified by the ratio of the anisotropic and isotropic signals. The isotropic component, associated with a mobile nitroxide free radical, increases during prolonged exposure to all solvents used in the study. The maximum increase (of 43%) was observed in 1,4-dioxane. Based on these and previous studies we suggest that prolonged exposure of the enzyme to these solvents provokes a cascade of events that could induce substrates to adopt different binding conformations. This is the first EPR study of the motion of an active-site spin label during prolonged exposure of an enzyme to organic solvents ever reported.

  1. Neuronal function of the mRNA decapping complex determines survival of Caenorhabditis elegans at high temperature through temporal regulation of heterochronic gene expression

    PubMed Central

    Borbolis, Fivos; Flessa, Christina-Maria; Roumelioti, Fani; Diallinas, George; Stravopodis, Dimitrios J.

    2017-01-01

    In response to adverse environmental cues, Caenorhabditis elegans larvae can temporarily arrest development at the second moult and form dauers, a diapause stage that allows for long-term survival. This process is largely regulated by certain evolutionarily conserved signal transduction pathways, but it is also affected by miRNA-mediated post-transcriptional control of gene expression. The 5′–3′ mRNA decay mechanism contributes to miRNA-mediated silencing of target mRNAs in many organisms but how it affects developmental decisions during normal or stress conditions is largely unknown. Here, we show that loss of the mRNA decapping complex activity acting in the 5′–3′ mRNA decay pathway inhibits dauer formation at the stressful high temperature of 27.5°C, and instead promotes early developmental arrest. Our genetic data suggest that this arrest phenotype correlates with dysregulation of heterochronic gene expression and an aberrant stabilization of lin-14 mRNA at early larval stages. Restoration of neuronal dcap-1 activity was sufficient to rescue growth phenotypes of dcap-1 mutants at both high and normal temperatures, implying the involvement of common developmental timing mechanisms. Our work unveils the crucial role of 5′–3′ mRNA degradation in proper regulation of heterochronic gene expression programmes, which proved to be essential for survival under stressful conditions. PMID:28250105

  2. mRNA Quantification of NIPBL Isoforms A and B in Adult and Fetal Human Tissues, and a Potentially Pathological Variant Affecting Only Isoform A in Two Patients with Cornelia de Lange Syndrome

    PubMed Central

    Puisac, Beatriz; Teresa-Rodrigo, María-Esperanza; Hernández-Marcos, María; Baquero-Montoya, Carolina; Gil-Rodríguez, María-Concepción; Visnes, Torkild; Bot, Christopher; Gómez-Puertas, Paulino; Kaiser, Frank J.; Ramos, Feliciano J.; Ström, Lena; Pié, Juan

    2017-01-01

    Cornelia de Lange syndrome (CdLS) is a congenital developmental disorder characterized by craniofacial dysmorphia, growth retardation, limb malformations, and intellectual disability. Approximately 60% of patients with CdLS carry a recognizable pathological variant in the NIPBL gene, of which two isoforms, A and B, have been identified, and which only differ in the C-terminal segment. In this work, we describe the distribution pattern of the isoforms A and B mRNAs in tissues of adult and fetal origin, by qPCR (quantitative polymerase chain reaction). Our results show a higher gene expression of the isoform A, even though both seem to have the same tissue distribution. Interestingly, the expression in fetal tissues is higher than that of adults, especially in brain and skeletal muscle. Curiously, the study of fibroblasts of two siblings with a mild CdLS phenotype and a pathological variant specific of the isoform A of NIPBL (c.8387A > G; P.Tyr2796Cys), showed a similar reduction in both isoforms, and a normal sensitivity to DNA damage. Overall, these results suggest that the position of the pathological variant at the 3´ end of the NIPBL gene affecting only isoform A, is likely to be the cause of the atypical mild phenotype of the two brothers. PMID:28241484

  3. mRNA Quantification of NIPBL Isoforms A and B in Adult and Fetal Human Tissues, and a Potentially Pathological Variant Affecting Only Isoform A in Two Patients with Cornelia de Lange Syndrome.

    PubMed

    Puisac, Beatriz; Teresa-Rodrigo, María-Esperanza; Hernández-Marcos, María; Baquero-Montoya, Carolina; Gil-Rodríguez, María-Concepción; Visnes, Torkild; Bot, Christopher; Gómez-Puertas, Paulino; Kaiser, Frank J; Ramos, Feliciano J; Ström, Lena; Pié, Juan

    2017-02-23

    Cornelia de Lange syndrome (CdLS) is a congenital developmental disorder characterized by craniofacial dysmorphia, growth retardation, limb malformations, and intellectual disability. Approximately 60% of patients with CdLS carry a recognizable pathological variant in the NIPBL gene, of which two isoforms, A and B, have been identified, and which only differ in the C-terminal segment. In this work, we describe the distribution pattern of the isoforms A and B mRNAs in tissues of adult and fetal origin, by qPCR (quantitative polymerase chain reaction). Our results show a higher gene expression of the isoform A, even though both seem to have the same tissue distribution. Interestingly, the expression in fetal tissues is higher than that of adults, especially in brain and skeletal muscle. Curiously, the study of fibroblasts of two siblings with a mild CdLS phenotype and a pathological variant specific of the isoform A of NIPBL (c.8387A > G; P.Tyr2796Cys), showed a similar reduction in both isoforms, and a normal sensitivity to DNA damage. Overall, these results suggest that the position of the pathological variant at the 3´ end of the NIPBL gene affecting only isoform A, is likely to be the cause of the atypical mild phenotype of the two brothers.

  4. A novel cis-acting element from the 3'UTR of DNA damage-binding protein 2 mRNA links transcriptional and post-transcriptional regulation of gene expression.

    PubMed

    Melanson, Brian D; Cabrita, Miguel A; Bose, Reetesh; Hamill, Jeffrey D; Pan, Elysia; Brochu, Christian; Marcellus, Kristen A; Zhao, Tong T; Holcik, Martin; McKay, Bruce C

    2013-06-01

    The DNA damage-binding protein 2 (DDB2) is an adapter protein that can direct a modular Cul4-DDB1-RING E3 Ligase complex to sites of ultraviolet light-induced DNA damage to ubiquitinate substrates during nucleotide excision repair. The DDB2 transcript is ultraviolet-inducible; therefore, its regulation is likely important for its function. Curiously, the DDB2 mRNA is reportedly short-lived, but the transcript does not contain any previously characterized cis-acting determinants of mRNA stability in its 3' untranslated region (3'UTR). Here, we used a tetracycline regulated d2EGFP reporter construct containing specific 3'UTR sequences from DDB2 to identify novel cis-acting elements that regulate mRNA stability. Synthetic 3'UTRs corresponding to sequences as short as 25 nucleotides from the central region of the 3'UTR of DDB2 were sufficient to accelerate decay of the heterologous reporter mRNA. Conversely, these same 3'UTRs led to more rapid induction of the reporter mRNA, export of the message to the cytoplasm and the subsequent accumulation of the encoded reporter protein, indicating that this newly identified cis-acting element affects transcriptional and post-transciptional processes. These results provide clear evidence that nuclear and cytoplasmic processing of the DDB2 mRNA is inextricably linked.

  5. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells.

    PubMed

    Conde, Patricia; Acosta-Saavedra, Leonor C; Goytia-Acevedo, Raquel C; Calderon-Aranda, Emma S

    2007-04-01

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 microM) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 microM) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 microM, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 microM could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69+ expression) in both CD4+ and CD8+, and decreased total CD8+ count without significantly affecting CD4+, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed.

  6. Model of ribosome translation and mRNA unwinding.

    PubMed

    Xie, Ping

    2013-05-01

    A ribosome is an enzyme that catalyzes translation of the genetic information encoded in messenger RNA (mRNA) into proteins. Besides translation through the single-stranded mRNA, the ribosome is also able to translate through the duplex region of mRNA via unwinding the duplex. Here, based on our proposed ribosome translation model, we study analytically the dynamics of Escherichia coli ribosome translation through the duplex region of mRNA, and compare with the available single molecule experimental data. It is shown that the ribosome uses only one active mechanism (mechanical unwinding), rather than two active mechanisms (open-state stabilization and mechanical unwinding), as proposed before, to unwind the duplex. The reduced rate of translation through the duplex region is due to the occurrence of futile transitions, which are induced by the energy barrier from the duplex unwinding to the forward translocation along the single-stranded mRNA. Moreover, we also present predicted results of the average translation rate versus the external force acting on the ribosome translating through the duplex region and through the single-stranded region of mRNA, which can be easily tested by future experiments.

  7. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages.

    PubMed

    Izumi, Hirohisa; Tsuda, Muneya; Sato, Yohei; Kosaka, Nobuyoshi; Ochiya, Takahiro; Iwamoto, Hiroshi; Namba, Kazuyoshi; Takeda, Yasuhiro

    2015-05-01

    We reported previously that microRNA (miRNA) are present in whey fractions of human breast milk, bovine milk, and rat milk. Moreover, we also confirmed that so many mRNA species are present in rat milk whey. These RNA were resistant to acidic conditions and to RNase, but were degraded by detergent. Thus, these RNA are likely packaged in membrane vesicles such as exosomes. However, functional extracellular circulating RNA in bodily fluids, such as blood miRNA, are present in various forms. In the current study, we used bovine raw milk and total RNA purified from exosomes (prepared by ultracentrifugation) and ultracentrifuged supernatants, and analyzed them using miRNA and mRNA microarrays to clarify which miRNA and mRNA species are present in exosomes, and which species exist in other forms. Microarray analyses revealed that most mRNA in milk whey were present in exosomes, whereas miRNA in milk whey were present in supernatant as well as exosomes. The RNA in exosomes might exert functional effects because of their stability. Therefore, we also investigated whether bovine milk-derived exosomes could affect human cells using THP-1 cells. Flow cytometry and fluorescent microscopy studies revealed that bovine milk exosomes were incorporated into differentiated THP-1 cells. These results suggest that bovine milk exosomes might have effects in human cells by containing RNA.

  8. Climate, soil texture, and soil types affect the contributions of fine-fraction-stabilized carbon to total soil organic carbon in different land uses across China.

    PubMed

    Cai, Andong; Feng, Wenting; Zhang, Wenju; Xu, Minggang

    2016-05-01

    Mineral-associated organic carbon (MOC), that is stabilized by fine soil particles (i.e., silt plus clay, <53 μm), is important for soil organic carbon (SOC) persistence and sequestration, due to its large contribution to total SOC (TSOC) and long turnover time. Our objectives were to investigate how climate, soil type, soil texture, and agricultural managements affect MOC contributions to TSOC in China. We created a dataset from 103 published papers, including 1106 data points pairing MOC and TSOC across three major land use types: cropland, grassland, and forest. Overall, the MOC/TSOC ratio ranged from 0.27 to 0.80 and varied significantly among soil groups in cropland, grassland, and forest. Croplands and forest exhibited significantly higher median MOC/TSOC ratios than in grassland. Moreover, forest and grassland soils in temperate regions had higher MOC/TSOC ratios than in subtropical regions. Furthermore, the MOC/TSOC ratio was much higher in ultisol, compared with the other soil types. Both the MOC content and MOC/TSOC ratio were positively correlated with the amount of fine fraction (silt plus clay) in soil, highlighting the importance of soil texture in stabilizing organic carbon across various climate zones. In cropland, different fertilization practices and land uses (e.g., upland, paddy, and upland-paddy rotation) significantly altered MOC/TSOC ratios, but not in cropping systems (e.g., mono- and double-cropping) characterized by climatic differences. This study demonstrates that the MOC/TSOC ratio is mainly driven by soil texture, soil types, and related climate and land uses, and thus the variations in MOC/TSOC ratios should be taken into account when quantitatively estimating soil C sequestration potential of silt plus clay particles on a large scale.

  9. Signaling Pathways That Control mRNA Turnover

    PubMed Central

    Thapar, Roopa; Denmon, Andria P.

    2013-01-01

    Cells regulate their genomes mainly at the level of transcription and at the level of mRNA decay. While regulation at the level of transcription is clearly important, the regulation of mRNA turnover by signaling networks is essential for a rapid response to external stimuli. Signaling pathways result in posttranslational modification of RNA binding proteins by phosphorylation, ubiquitination, methylation, acetylation etc. These modifications are important for rapid remodeling of dynamic ribonucleoprotein complexes and triggering mRNA decay. Understanding how these posttranslational modifications alter gene expression is therefore a fundamental question in biology. In this review we highlight recent findings on how signaling pathways and cell cycle checkpoints involving phosphorylation, ubiquitination, and arginine methylation affect mRNA turnover. PMID:23602935

  10. Role of RNase Y in Clostridium perfringens mRNA Decay and Processing.

    PubMed

    Obana, Nozomu; Nakamura, Kouji; Nomura, Nobuhiko

    2017-01-15

    RNase Y is a major endoribonuclease that plays a crucial role in mRNA degradation and processing. We study the role of RNase Y in the Gram-positive anaerobic pathogen Clostridium perfringens, which until now has not been well understood. Our study implies an important role for RNase Y-mediated RNA degradation and processing in virulence gene expression and the physiological development of the organism. We began by constructing an RNase Y conditional knockdown strain in order to observe the importance of RNase Y on growth and virulence. Our resulting transcriptome analysis shows that RNase Y affects the expression of many genes, including toxin-producing genes. We provide data to show that RNase Y depletion repressed several toxin genes in C. perfringens and involved the virR-virS two-component system. We also observe evidence that RNase Y is indispensable for processing and stabilizing the transcripts of colA (encoding a major toxin collagenase) and pilA2 (encoding a major pilin component of the type IV pili). Posttranscriptional regulation of colA is known to be mediated by cleavage in the 5' untranslated region (5'UTR), and we observe that RNase Y depletion diminishes colA 5'UTR processing. We show that RNase Y is also involved in the posttranscriptional stabilization of pilA2 mRNA, which is thought to be important for host cell adherence and biofilm formation.

  11. Parameters affecting the stability of the digestate from a two-stage anaerobic process treating the organic fraction of municipal solid waste.

    PubMed

    Trzcinski, Antoine P; Stuckey, David C

    2011-07-01

    This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 °C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO(2) g VS(-1) day(-1). Sanitization of the digestate at 65 °C for 7 days allowed a mature digestate to be obtained. At 4 g VS L(-1) d(-1) and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO(2) at a rate lower than 25 mg CO(2) g VS(-1) d(-1) after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO(2) g VS(-1) d(-1). The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.

  12. Langley Full-scale-tunnel Investigation of the Factors Affecting the Static Lateral-stability Characteristics of a Typical Fighter-type Airplane

    NASA Technical Reports Server (NTRS)

    Lange, Roy H

    1947-01-01

    The factors that affect the rate of change of rolling moment with yaw of a typical fighter-type airplane were investigated in the Langley full-scale tunnel on a typical fighter-type airplane.Eight representative flight conditions were investigated in detail. The separate effects of propeller operation, of the wing-fuselage combination, and of the vertical tail to the effective dihedral of the airplane in each condition were determined. The results of the tests showed that for the airplane with the propeller removed, the wing-fuselage combination had positive dihedral effect which increased considerably with increasing angle of attack for all conditions. Flap deflection decreased the dihedral effect of the wing-fuselage combination slightly as compared with that with the flaps retracted. Flap deflection resulted in negative dihedral effect due to the vertical tail. Propeller operation decreased the lateral stability parameter of the airplane for all the conditions investigated with larger decreases being measured for the flaps deflected conditions.

  13. The genetic background affects composition, oxidative stability and quality traits of Iberian dry-cured hams: purebred Iberian versus reciprocal Iberian × Duroc crossbred pigs.

    PubMed

    Fuentes, Verónica; Ventanas, Sonia; Ventanas, Jesús; Estévez, Mario

    2014-02-01

    This study examined the physico-chemical characteristics, oxidative stability and sensory properties of Iberian cry-cured hams as affected by the genetic background of the pigs: purebred Iberian (PBI) pigs vs reciprocal cross-bred Iberian × Duroc pigs (IB × D pigs: Iberian dams × Duroc sires; D × IB pigs: Duroc dams × Iberian sires). Samples from PBI pigs contained significantly higher amounts of IMF, monounsaturated fatty acids, heme pigments and iron than those from crossbred pigs. The extent of lipid and protein oxidation was significantly larger in dry-cured hams of crossbred pigs than in those from PBI pigs. Dry-cured hams from PBI pigs were defined by positive sensory properties (i.e. redness, brightness and juiciness) while hams from crossbred pigs were ascribed to negative ones (i.e. hardness, bitterness and sourness). Hams from PBI pigs displayed a superior quality than those from crossbred pigs. The position of the dam or the sire in reciprocal Iberian × Duroc crosses had no effect on the quality of Iberian hams.

  14. The stability and the hydrological behavior of biological soil crusts is significantly affected by the complex nature of their polysaccharidic matrix

    NASA Astrophysics Data System (ADS)

    De Philippis, Roberto

    2015-04-01

    colloidal fraction of the EPSs, which is more dispersed in the soil, is more easily degradable by the microflora residing in the crusts, while the EPS fraction tightly bound to the soil particles, which is characterized by a high molecular weight, plays a key role in giving a structural stability to the BSCs and in affecting the hydrological behavior of the soil covered by the crusts.

  15. Limited proteolysis differentially modulates the stability and subcellular localization of domains of RPGRIP1 that are distinctly affected by mutations in Leber's congenital amaurosis.

    PubMed

    Lu, Xinrong; Guruju, Mallikarjuna; Oswald, John; Ferreira, Paulo A

    2005-05-15

    The retinitis pigmentosa GTPase regulator (RPGR) protein interacts with the retinitis pigmentosa GTPase regulator interacting protein-1 (RPGRIP1). Genetic lesions in the cognate genes lead to distinct and severe human retinal dystrophies. The biological role of these proteins in retinal function and pathogenesis of retinal diseases is elusive. Here, we present the first physiological assay of the role of RPGRIP1 and mutations therein. We found that the monoallelic and homozygous mutations, DeltaE1279 and D1114G, in the RPGR-interacting domain (RID) of RPGRIP1, enhance and abolish, respectively, its interaction in vivo with RPGR without affecting the stability of RID. In contrast to RID(WT) and RID(D1114G), chemical genetics shows that the interaction of RID(DeltaE1279) with RPGR is resistant to various stress treatments such as osmotic, pH and heat-shock stimuli. Hence, RID(D1114G) and RID(DeltaE1279) constitute loss- and gain-of-function mutations. Moreover, we find that the isoforms, bRPGRIP1 and bRPGRIP1b, undergo limited proteolysis constitutively in vivo in the cytoplasm compartment. This leads to the relocation and accumulation of a small and stable N-terminal domain of approximately 7 kDa to the nucleus, whereas the cytosolic C-terminal domain of RPGRIP1 is degraded and short-lived. The RID(D1114G) and RID(DeltaE1279) mutations exhibit strong cis-acting and antagonistic biological effects on the nuclear relocation, subcellular distribution and proteolytic cleavage of RPGRIP1 and/or domains thereof. These data support distinct and spatiotemporal subcellular-specific roles to RPGRIP1. A novel RPGRIP1-mediated nucleocytoplasmic crosstalk and transport pathway regulated by RID, and hence by RPGR, emerges with implications in the molecular pathogenesis of retinopathies, and a model to other diseases.

  16. Parameters affecting the stability of the digestate from a two-stage anaerobic process treating the organic fraction of municipal solid waste

    SciTech Connect

    Trzcinski, Antoine P.; Stuckey, David C.

    2011-07-15

    This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 {sup o}C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO{sub 2} g VS{sup -1} day{sup -1}. Sanitization of the digestate at 65 {sup o}C for 7 days allowed a mature digestate to be obtained. At 4 g VS L{sup -1} d{sup -1} and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO{sub 2} at a rate lower than 25 mg CO{sub 2} g VS{sup -1} d{sup -1} after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO{sub 2} g VS{sup -1} d{sup -1}. The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.

  17. Links between mRNA splicing, mRNA quality control, and intellectual disability

    PubMed Central

    Fasken, Milo B.; Corbett, Anita H.

    2016-01-01

    In recent years, the impairment of RNA binding proteins that play key roles in the post-transcriptional regulation of gene expression has been linked to numerous neurological diseases. These RNA binding proteins perform critical mRNA processing steps in the nucleus, including splicing, polyadenylation, and export. In many cases, these RNA binding proteins are ubiquitously expressed raising key questions about why only brain function is impaired. Recently, mutations in the ZC3H14 gene, encoding an evolutionarily conserved, polyadenosine RNA binding protein, have been linked to a nonsyndromic form of autosomal recessive intellectual disability. Thus far, research on ZC3H14 and its Nab2 orthologs in budding yeast and Drosophila reveals that ZC3H14/Nab2 is important for mRNA processing and neuronal patterning. Two recent studies now provide evidence that ZC3H14/Nab2 may function in the quality control of mRNA splicing and export and could help to explain the molecular defects that cause neuronal dysfunction and lead to an inherited form of intellectual disability. These studies on ZC3H14/Nab2 reveal new clues to the puzzle of why loss of the ubiquitously expressed ZC3H14 protein specifically affects neurons. PMID:27868086

  18. LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation.

    PubMed

    Küspert, Maritta; Murakawa, Yasuhiro; Schäffler, Katrin; Vanselow, Jens T; Wolf, Elmar; Juranek, Stefan; Schlosser, Andreas; Landthaler, Markus; Fischer, Utz

    2015-07-01

    mRNAs are key molecules in gene expression and subject to diverse regulatory events. Regulation is accomplished by distinct sets of trans-acting factors that interact with mRNAs and form defined mRNA-protein complexes (mRNPs). The resulting "mRNP code" determines the fate of any given mRNA and thus controlling gene expression at the post-transcriptional level. The La-related protein 4B (LARP4B) belongs to an evolutionarily conserved family of RNA-binding proteins characterized by the presence of a La-module implicated in direct RNA binding. Biochemical experiments have shown previously direct interactions of LARP4B with factors of the translation machinery. This finding along with the observation of an association with actively translating ribosomes suggested that LARP4B is a factor contributing to the mRNP code. To gain insight into the function of LARP4B in vivo we tested its mRNA association at the transcriptome level and its impact on the proteome. PAR-CLIP analyses allowed us to identify the in vivo RNA targets of LARP4B. We show that LARP4B binds to a distinct set of cellular mRNAs by contacting their 3' UTRs. Biocomputational analysis combined with in vitro binding assays identified the LARP4B-binding motif on mRNA targets. The reduction of cellular LARP4B levels leads to a marked destabilization of its mRNA targets and consequently their reduced translation. Our data identify LARP4B as a component of the mRNP code that influences the expression of its mRNA targets by affecting their stability.

  19. Liquid marbles stabilized by charged polymer latexes: how does the drying of the latex particles affect the properties of liquid marbles?

    PubMed

    Sun, Guanqing; Sheng, Yifeng; Wu, Jie; Ma, Guanghui; Ngai, To

    2014-10-28

    The coating of solid particles on the surface of liquid in air makes liquid marbles a promising approach in the transportation of a small amount of liquid. The stabilization of liquid marbles by polymeric latex particles imparts extra triggers such as pH and temperature, leading to the remote manipulation of droplets for many potential applications. Because the functionalized polymeric latexes can exist either as colloidally stable latex or as flocculated latex in a dispersion, the drying of latex dispersions under different conditions may play a significant role in the stabilization of subsequent liquid marbles. This article presents the investigation of liquid marbles stabilized by poly(styrene-co-methacrylic acid) (PS-co-MAA) particles drying under varied conditions. Protonation of the particles before freeze drying makes the particles excellent liquid marble stabilizers, but it is hard to stabilize liquid marbles for particles dried in their deprotonated states. The static properties of liquid marbles with increasing concentrations of protonating reagent revealed that the liquid marbles are gradually undermined by protonating the stabilizers. Furthermore, the liquid marbles stabilized by different particles showed distinct behaviors in separation and merging manipulated by tweezers. This study shows that the initial state of the particles should be carefully taken into account in formulating liquid marbles.

  20. The two-component system CpxR/A represses the expression of Salmonella virulence genes by affecting the stability of the transcriptional regulator HilD

    PubMed Central

    De la Cruz, Miguel A.; Pérez-Morales, Deyanira; Palacios, Irene J.; Fernández-Mora, Marcos; Calva, Edmundo; Bustamante, Víctor H.

    2015-01-01

    Salmonella enterica can cause intestinal or systemic infections in humans and animals mainly by the presence of pathogenicity islands SPI-1 and SPI-2, containing 39 and 44 genes, respectively. The AraC-like regulator HilD positively controls the expression of the SPI-1 genes, as well as many other Salmonella virulence genes including those located in SPI-2. A previous report indicates that the two-component system CpxR/A regulates the SPI-1 genes: the absence of the sensor kinase CpxA, but not the absence of its cognate response regulator CpxR, reduces their expression. The presence and absence of cell envelope stress activates kinase and phosphatase activities of CpxA, respectively, which in turn controls the level of phosphorylated CpxR (CpxR-P). In this work, we further define the mechanism for the CpxR/A-mediated regulation of SPI-1 genes. The negative effect exerted by the absence of CpxA on the expression of SPI-1 genes was counteracted by the absence of CpxR or by the absence of the two enzymes, AckA and Pta, which render acetyl-phosphate that phosphorylates CpxR. Furthermore, overexpression of the lipoprotein NlpE, which activates CpxA kinase activity on CpxR, or overexpression of CpxR, repressed the expression of SPI-1 genes. Thus, our results provide several lines of evidence strongly supporting that the absence of CpxA leads to the phosphorylation of CpxR via the AckA/Pta enzymes, which represses both the SPI-1 and SPI-2 genes. Additionally, we show that in the absence of the Lon protease, which degrades HilD, the CpxR-P-mediated repression of the SPI-1 genes is mostly lost; moreover, we demonstrate that CpxR-P negatively affects the stability of HilD and thus decreases the expression of HilD-target genes, such as hilD itself and hilA, located in SPI-1. Our data further expand the insight on the different regulatory pathways for gene expression involving CpxR/A and on the complex regulatory network governing virulence in Salmonella. PMID:26300871

  1. Target and specificity of a nuclear gene product that participates in mRNA 3'-end formation in Chlamydomonas chloroplasts.

    PubMed

    Levy, H; Kindle, K L; Stern, D B

    1999-12-10

    Chloroplast mRNA maturation is catalyzed by nucleus-encoded processing enzymes. We previously described a recessive nuclear mutation (crp3) that affects 3'-end formation of several chloroplast mRNAs in Chlamydomonas reinhardtii (Levy, H., Kindle, K. L., and Stern, D. B. (1997) Plant Cell 9, 825-836). In the crp3 background, atpB mRNA lacking a 3'-inverted repeat normally required for stability accumulates as a discrete transcript. The mutation also affects the atpA gene cluster; polycistronic mRNAs with psbI or cemA 3'-ends accumulate to a lower level in the crp3 background. Here, we demonstrate that the crp3 mutation also alters 3'-end formation of psbI mRNA and cemA-containing mRNAs. A novel 3'-end is formed in monocistronic psbI transcripts, and this is the only terminus observed when the psbI 3'-untranslated region is fused to an aadA reporter gene. Accumulation of mRNAs with 3'-ends between cemA and atpH, which is immediately downstream, was reduced. However, this sequence was not recognized as a 3'-end formation element in chimeric genes. The crp3 mutation was able to confer stability to three different atpB 3'-stem-loop-disrupting mutations that lack sequence similarity, but are located at a similar distance from the translation termination codon. We propose that the wild-type CRP3 gene product is part of the general 3' --> 5' processing machinery.

  2. Nonsense-mediated decay of human HEXA mRNA.

    PubMed

    Rajavel, K S; Neufeld, E F

    2001-08-01

    Nonsense-mediated mRNA decay (NMD), the loss of mRNAs carrying premature stop codons, is a process by which cells recognize and degrade nonsense mRNAs to prevent possibly toxic effects of truncated peptides. Most mammalian nonsense mRNAs are degraded while associated with the nucleus, but a few are degraded in the cytoplasm; at either site, there is a requirement for translation and for an intron downstream of the early stop codon. We have examined the NMD of a mutant HEXA message in lymphoblasts derived from a Tay-Sachs disease patient homozygous for the common frameshift mutation 1278ins4. The mutant mRNA was nearly undetectable in these cells and increased to approximately 40% of normal in the presence of the translation inhibitor cycloheximide. The stabilized transcript was found in the cytoplasm in association with polysomes. Within 5 h of cycloheximide removal, the polysome-associated nonsense message was completely degraded, while the normal message was stable. The increased lability of the polysome-associated mutant HEXA mRNA shows that NMD of this endogenous mRNA occurred in the cytoplasm. Transfection of Chinese hamster ovary cells showed that expression of an intronless HEXA minigene harboring the frameshift mutation or a closely located nonsense codon resulted in half the normal mRNA level. Inclusion of multiple downstream introns decreased the abundance further, to about 20% of normal. Thus, in contrast to other systems, introns are not absolutely required for NMD of HEXA mRNA, although they enhance the low-HEXA-mRNA phenotype.

  3. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons

    PubMed Central

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A.; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E.

    2016-01-01

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay. The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. PMID:26717982

  4. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons.

    PubMed

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E

    2016-05-05

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth.

  5. The pathway of hepatitis C virus mRNA recruitment to the human ribosome.

    PubMed

    Fraser, Christopher S; Hershey, John W B; Doudna, Jennifer A

    2009-04-01

    Eukaryotic protein synthesis begins with mRNA positioning in the ribosomal decoding channel in a process typically controlled by translation-initiation factors. Some viruses use an internal ribosome entry site (IRES) in their mRNA to harness ribosomes independently of initiation factors. We show here that a ribosome conformational change that is induced upon hepatitis C viral IRES binding is necessary but not sufficient for correct mRNA positioning. Using directed hydroxyl radical probing to monitor the assembly of IRES-containing translation-initiation complexes, we have defined a crucial step in which mRNA is stabilized upon initiator tRNA binding. Unexpectedly, however, this stabilization occurs independently of the AUG codon, underscoring the importance of initiation factor-mediated interactions that influence the configuration of the decoding channel. These results reveal how an IRES RNA supplants some, but not all, of the functions normally carried out by protein factors during initiation of protein synthesis.

  6. Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription

    SciTech Connect

    Dreyfuss, G.; Adam, S.A.; Choi, Y.D.

    1984-03-01

    Exposure of intact cells to UV light brings about cross-linking of polyadenylated mRNA to a set of cytoplasmic proteins which are in direct contact with the mRNA in vivo. Substantial amounts of an additional protein of molecular weight 38,000 become cross-linked to the mRNA when cells are treated with inhibitors of mRNA synthesis (actinomycin D, camptothecin, and 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole) or after infection with vesicular stomatitis virus. Cordycepin, which inhibits polyadenylation but not mRNA synthesis, has no such effect. Inhibitors of protein synthesis and of rRNA synthesis are also without effect on 38K cross-linking to mRNA. The onset of the effect of inhibitors of mRNA synthesis on the UV cross-linkable interaction between mRNA and 38K is rapid and reaches a maximal level in less than 60 min, and it is completely and rapidly reversible. In cells treated with actinomycin D, the amount of 38K which becomes cross-linked to mRNA is proportional to the extent of inhibition of mRNA synthesis. The association of 38K with mRNA during transcriptional arrest does not require protein synthesis because simultaneous treatment with the protein synthesis inhibitor emetine does not interfere with it. The effectors which promote the interaction of 38K with mRNA do not affect the proteins which are in contact with polyadenylated heterogeneous nuclear RNA and do not markedly affect protein synthesis in the cell. The 38K protein can be isolated with the polyribosomal polyadenylated fraction from which it was purified, and monoclonal antibodies against it were prepared.

  7. Interaction of octahedral ruthenium(II) polypyridyl complex [Ru(bpy)2(PIP)](2+) with poly(U)·poly(A)*poly(U) triplex: Increasing third-strand stabilization of the triplex without affecting the stability of the duplex.

    PubMed

    Zhu, Zhiyuan; Peng, Mengna; Zhang, Jingwen; Tan, Lifeng

    2017-04-01

    Triple-helical RNA are of interest because of possible biological roles as well as the potential therapeutic uses of these structures, while the stability of triplexes is usually weaker than that of the Watson-Crick base pairing duplex strand due to the electrostatic repulsion between three polyanionic strands. Therefore, how to increase the stability of the specific sequences of triplexes are of importance. In this paper the binding of a Ru(II) complex, [Ru(bpy)2(PIP)](2+) (bpy=2.2'-bipyridine, PIP=2-phenyl-1H-imidazo[4,5-f]- [1,10]-phenanthroline), with poly(U)·poly(A)*poly(U) triplex has been investigated by spectrophotometry, spectrofluorometry, viscosimetry and circular dichroism. The results suggest that [Ru(bpy)2(PIP)](2+) as a metallointercalator can stabilize poly(U)·poly(A)*poly(U) triplex (where · denotes the Watson-Crick base pairing and * denotes the Hoogsteen base pairing),while it stabilizes third-strand with no obvious effect on the duplex of poly(U)·poly(A), reflecting the binding of this complex with the triplex is favored by the Hoogsteen paired poly(U) third strand to a great extent.

  8. Cytoskeleton-Dependent Transport as a Potential Target for Interfering with Post-transcriptional HuR mRNA Regulons

    PubMed Central

    Eberhardt, Wolfgang; Badawi, Amel; Biyanee, Abhiruchi; Pfeilschifter, Josef

    2016-01-01

    The ubiquitous mRNA binding protein human antigen R (HuR), a member of the embryonal lethal abnormal vision protein family has a critical impact on the post-transcriptional control of AU-rich element bearing mRNA regulons implied in inflammation, senescence, and carcinogenesis. HuR in addition to mRNA stability can affect many other aspects of mRNA processing including splicing, polyadenylation, translation, modulation of miRNA repression, and intracellular mRNA trafficking. Since many of the identified HuR mRNA targets (“HuR mRNA regulons”) encode tumor-related proteins, HuR is not only discussed as an useful biomarker but also as promising therapeutic target for treatment of various human cancers. HuR which is most abundantly localized in the nucleus is translocated to the cytoplasm which is fundamental for most of the described HuR functions on target mRNAs. Accordingly, an elevation in cytoplasmic HuR was found in many tumors and correlated with a high grade of malignancy and a poor prognosis of patients. Therefore, direct interference with the intracellular trafficking of HuR offers an attractive approach to intervene with pathologically deregulated HuR functions. Data from several laboratories implicate that the integrity of the cytoskeleton is critical for HuR-mediated intracellular mRNA localization and translation. This review will particularly focus on drugs which have proven a direct inhibitory effect on HuR translocation. Based on the results from those studies, we will also discuss on the principle value of targeting cytoskeleton-dependent transport of HuR by natural or synthetic inhibitors as a potential therapeutic avenue for interfering with dysregulated post-transcriptional HuR mRNA regulons and related tumor cell functions. In spite of that, interfering with cytoplasmic HuR transport could highlight a so far underestimated action of microtubule inhibitors clinically used for cancer chemotherapy. PMID:27582706

  9. Functional mapping of the translation-dependent instability element of yeast MATalpha1 mRNA.

    PubMed Central

    Hennigan, A N; Jacobson, A

    1996-01-01

    The determinants of mRNA stability include specific cis-acting destabilizing sequences located within mRNA coding and noncoding regions. We have developed an approach for mapping coding-region instability sequences in unstable yeast mRNAs that exploits the link between mRNA translation and turnover and the dependence of nonsense-mediated mRNA decay on the activity of the UPF1 gene product. This approach, which involves the systematic insertion of in-frame translational termination codons into the coding sequence of a gene of interest in a upf1delta strain, differs significantly from conventional methods for mapping cis-acting elements in that it causes minimal perturbations to overall mRNA structure. Using the previously characterized MATalpha1 mRNA as a model, we have accurately localized its 65-nucleotide instability element (IE) within the protein coding region. Termination of translation 5' to this element stabilized the MATalpha1 mRNA two- to threefold relative to wild-type transcripts. Translation through the element was sufficient to restore an unstable decay phenotype, while internal termination resulted in different extents of mRNA stabilization dependent on the precise location of ribosome stalling. Detailed mutagenesis of the element's rare-codon/AU-rich sequence boundary revealed that the destabilizing activity of the MATalpha1 IE is observed when the terminal codon of the element's rare-codon interval is translated. This region of stability transition corresponds precisely to a MATalpha1 IE sequence previously shown to be complementary to 18S rRNA. Deletion of three nucleotides 3' to this sequence shifted the stability boundary one codon 5' to its wild-type location. Conversely, constructs containing an additional three nucleotides at this same location shifted the transition downstream by an equivalent sequence distance. Our results suggest a model in which the triggering of MATalpha1 mRNA destabilization results from establishment of an interaction

  10. Diurnal expression of Dnmt3b mRNA in mouse liver is regulated by feeding and hepatic clockwork.

    PubMed

    Maekawa, Fumihiko; Shimba, Shigeki; Takumi, Shota; Sano, Tomoharu; Suzuki, Takehiro; Bao, Jinhua; Ohwada, Mika; Ehara, Tatsuya; Ogawa, Yoshihiro; Nohara, Keiko

    2012-09-01

    DNA methyltransferase 3B (DNMT3B) is critically involved in de novo DNA methylation and genomic stability, while the regulatory mechanism in liver is largely unknown. We previously reported that diurnal variation occurs in the mRNA expression of Dnmt3b in adult mouse liver. The aim of this study was to determine the mechanism underlying the diurnal expression pattern. The highest level and the lowest level of Dnmt3b mRNA expression were confirmed to occur at dawn and in the afternoon, respectively, and the expression pattern of Dnmt3b closely coincided with that of Bmal1. Since the diurnal pattern of Dnmt3b mRNA expression developed at weaning and scheduled feeding to separate the feeding cycle from the light/dark cycle led to a phase-shift in the expression, it could be assumed that feeding plays a critical role as an entrainment signal. In liver-specific Bmal1 knockout (L-Bmal1 KO) mice, L-Bmal1 deficiency resulted in significantly higher levels of Dnmt3b at all measured time points, and the time when the expression was the lowest in wild-type mice was shifted to earlier. Investigation of global DNA methylation revealed a temporal decrease of 5-methyl-cytosine percentage in the genome of wild-type mice in late afternoon. By contrast, no such decrease in 5-methyl-cytosine percentage was detected in L-Bmal1 KO mice, suggesting that altered Dnmt3b expression affects the DNA methylation state. Taken together, the results suggest that the feeding and hepatic clockwork generated by the clock genes, including Bmal1, regulate the diurnal variation in Dnmt3b mRNA expression and the consequent dynamic changes in global DNA methylation.

  11. A Casein Kinase II Phosphorylation Site in AtYY1 Affects Its Activity, Stability, and Function in the ABA Response

    PubMed Central

    Wu, Xiu-Yun; Li, Tian

    2017-01-01

    The phosphorylation and dephosphorylation of proteins are crucial in the regulation of protein activity and stability in various signaling pathways. In this study, we identified an ABA repressor, Arabidopsis Ying Yang 1 (AtYY1) as a potential target of casein kinase II (CKII). AtYY1 physically interacts with two regulatory subunits of CKII, CKB3, and CKB4. Moreover, AtYY1 can be phosphorylated by CKII in vitro, and the S284 site is the major CKII phosphorylation site. Further analyses indicated that S284 phosphorylation can enhance the transcriptional activity and protein stability of AtYY1 and hence strengthen the effect of AtYY1 as a negative regulator in the ABA response. Our study provides novel insights into the regulatory mechanism of AtYY1 mediated by CKII phosphorylation. PMID:28348572

  12. Parameter Stability of the Functional–Structural Plant Model GREENLAB as Affected by Variation within Populations, among Seasons and among Growth Stages

    PubMed Central

    Ma, Yuntao; Li, Baoguo; Zhan, Zhigang; Guo, Yan; Luquet, Delphine; de Reffye, Philippe; Dingkuhn, Michael

    2007-01-01

    Background and Aims It is increasingly accepted that crop models, if they are to simulate genotype-specific behaviour accurately, should simulate the morphogenetic process generating plant architecture. A functional–structural plant model, GREENLAB, was previously presented and validated for maize. The model is based on a recursive mathematical process, with parameters whose values cannot be measured directly and need to be optimized statistically. This study aims at evaluating the stability of GREENLAB parameters in response to three types of phenotype variability: (1) among individuals from a common population; (2) among populations subjected to different environments (seasons); and (3) among different development stages of the same plants. Methods Five field experiments were conducted in the course of 4 years on irrigated fields near Beijing, China. Detailed observations were conducted throughout the seasons on the dimensions and fresh biomass of all above-ground plant organs for each metamer. Growth stage-specific target files were assembled from the data for GREENLAB parameter optimization. Optimization was conducted for specific developmental stages or the entire growth cycle, for individual plants (replicates), and for different seasons. Parameter stability was evaluated by comparing their CV with that of phenotype observation for the different sources of variability. A reduced data set was developed for easier model parameterization using one season, and validated for the four other seasons. Key Results and Conclusions The analysis of parameter stability among plants sharing the same environment and among populations grown in different environments indicated that the model explains some of the inter-seasonal variability of phenotype (parameters varied less than the phenotype itself), but not inter-plant variability (parameter and phenotype variability were similar). Parameter variability among developmental stages was small, indicating that parameter

  13. Stability of α-tocopherol in freeze-dried sugar-protein-oil emulsion solids as affected by water plasticization and sugar crystallization.

    PubMed

    Zhou, Yankun; Roos, Yrjö H

    2012-08-01

    Water plasticization of sugar-protein encapsulants may cause structural changes and decrease the stability of encapsulated compounds during storage. The retention of α-tocopherol in freeze-dried lactose-milk protein-oil, lactose-soy protein-oil, trehalose-milk protein-oil, and trehalose-soy protein-oil systems at various water activities (a(w)) and in the presence of sugar crystallization was studied. Water sorption was determined gravimetrically. Glass transition and sugar crystallization were studied using differential scanning calorimetry and the retention of α-tocopherol spectrophotometrically. The loss of α-tocopherol followed lipid oxidation, but the greatest stability was found at 0 a(w) presumably because of α-tocopherol immobilization at interfaces and consequent reduction in antioxidant activity. A considerable loss of α-tocopherol coincided with sugar crystallization. The results showed that glassy matrices may protect encapsulated α-tocopherol; however, its role as an antioxidant at increasing aw accelerated its loss. Sugar crystallization excluded the oil-containing α-tocopherol from the protecting matrices and exposed it to surroundings, which decreased the stability of α-tocopherol.

  14. Analysis of SAT Type Foot-And-Mouth Disease Virus Capsid Proteins and the Identification of Putative Amino Acid Residues Affecting Virus Stability

    PubMed Central

    Maree, Francois F.; Blignaut, Belinda; de Beer, Tjaart A. P.; Rieder, Elizabeth

    2013-01-01

    Foot-and-mouth disease virus (FMDV) initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces. PMID:23717387

  15. Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability.

    PubMed

    Maree, Francois F; Blignaut, Belinda; de Beer, Tjaart A P; Rieder, Elizabeth

    2013-01-01

    Foot-and-mouth disease virus (FMDV) initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces.

  16. Supersonic aerodynamic characteristics of hypersonic low-wave-drag elliptical body-tail combinations as affected by changes in stabilizer configuration

    NASA Technical Reports Server (NTRS)

    Spencer, B., Jr.; Fournier, R. H.

    1973-01-01

    An investigation has been made at Mach numbers from 1.50 to 4.63 to determine systematically the effects of the addition and position of outboard stabilizers and vertical- and vee-tail configurations on the performance and stability characteristics of a low-wave-drag elliptical body. The basic body shape was a zero-lift hypersonic minimum-wave-drag body as determined for the geometric constraints of length and volume. The elliptical cross section had an axis ratio of 2 (major axis horizontal) and an equivalent fineness ratio of 6.14. Base-mounted outboard stabilizers were at various dihedral angles from 90 deg to minus 90 deg with and without a single center-line vertical tail or a vee-tail. The angle of attack was varied from about minus 6 to 27 deg at sideslip angles of 0 and 5 deg and a constant Reynolds number of 4.58 x one million (based on body length).

  17. Destabilization of TNF-α mRNA by Rapamycin

    PubMed Central

    Park, Jong-Woo; Jeon, Ye Ji; Lee, Jae Cheol; Ahn, So Ra; Ha, Shin Won; Bang, So Young; Park, Eun Kyung; Yi, Sang Ah; Lee, Min Gyu; Han, Jeung-Whan

    2012-01-01

    Stimulation of mast cells through the high affinity IgE receptor (FcεRI) induces degranulation, lipid mediator release, and cytokine secretion leading to allergic reactions. Although various signaling pathways have been characterized to be involved in the FcεRI-mediated responses, little is known about the precious mechanism for the expression of tumor necrosis factor-α (TNF-α) in mast cells. Here, we report that rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), reduces the expression of TNF-α in rat basophilic leukemia (RBL-2H3) cells. IgE or specific antigen stimulation of RBL-2H3 cells increases the expression of TNF-α and activates various signaling molecules including S6K1, Akt and p38 MAPK. Rapamycin specifically inhibits antigen-induced TNF-α mRNA level, while other kinase inhibitors have no effect on TNF-α mRNA level. These data indicate that mTOR signaling pathway is the main regulation mechanism for antigen-induced TNF-α expression. TNF-α mRNA stability analysis using reporter construct containing TNF-α adenylate/uridylate-rich elements (AREs) shows that rapamycin destabilizes TNF-α mRNA via regulating the AU-rich element of TNF-α mRNA. The antigen-induced activation of S6K1 is inhibited by specific kinase inhibitors including mTOR, PI3K, PKC and Ca2+chelator inhibitor, while TNF-α mRNA level is reduced only by rapamycin treatment. These data suggest that the effects of rapamycin on the expression of TNF-α mRNA are not mediated by S6K1 but regulated by mTOR. Taken together, our results reveal that mTOR signaling pathway is a novel regulation mechanism for antigen-induced TNF-α expression in RBL-2H3 cells. PMID:24116273

  18. Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function.

    PubMed

    Del Campo, Cristian; Bartholomäus, Alexander; Fedyunin, Ivan; Ignatova, Zoya

    2015-10-01

    Messenger RNA acts as an informational molecule between DNA and translating ribosomes. Emerging evidence places mRNA in central cellular processes beyond its major function as informational entity. Although individual examples show that specific structural features of mRNA regulate translation and transcript stability, their role and function throughout the bacterial transcriptome remains unknown. Combining three sequencing approaches to provide a high resolution view of global mRNA secondary structure, translation efficiency and mRNA abundance, we unraveled structural features in E. coli mRNA with implications in translation and mRNA degradation. A poorly structured site upstream of the coding sequence serves as an additional unspecific binding site of the ribosomes and the degree of its secondary structure propensity negatively correlates with gene expression. Secondary structures within coding sequences are highly dynamic and influence translation only within a very small subset of positions. A secondary structure upstream of the stop codon is enriched in genes terminated by UAA codon with likely implications in translation termination. The global analysis further substantiates a common recognition signature of RNase E to initiate endonucleolytic cleavage. This work determines for the first time the E. coli RNA structurome, highlighting the contribution of mRNA secondary structure as a direct effector of a variety of processes, including translation and mRNA degradation.

  19. Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function

    PubMed Central

    Fedyunin, Ivan; Ignatova, Zoya

    2015-01-01

    Messenger RNA acts as an informational molecule between DNA and translating ribosomes. Emerging evidence places mRNA in central cellular processes beyond its major function as informational entity. Although individual examples show that specific structural features of mRNA regulate translation and transcript stability, their role and function throughout the bacterial transcriptome remains unknown. Combining three sequencing approaches to provide a high resolution view of global mRNA secondary structure, translation efficiency and mRNA abundance, we unraveled structural features in E. coli mRNA with implications in translation and mRNA degradation. A poorly structured site upstream of the coding sequence serves as an additional unspecific binding site of the ribosomes and the degree of its secondary structure propensity negatively correlates with gene expression. Secondary structures within coding sequences are highly dynamic and influence translation only within a very small subset of positions. A secondary structure upstream of the stop codon is enriched in genes terminated by UAA codon with likely implications in translation termination. The global analysis further substantiates a common recognition signature of RNase E to initiate endonucleolytic cleavage. This work determines for the first time the E. coli RNA structurome, highlighting the contribution of mRNA secondary structure as a direct effector of a variety of processes, including translation and mRNA degradation. PMID:26495981

  20. Bioinspired Nanocomplex for Spatiotemporal Imaging of Sequential mRNA Expression in Differentiating Neural Stem Cells

    PubMed Central

    2015-01-01

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions. PMID:25494492

  1. Factors affecting the stability and equilibria of free radicals. XIII. N-alkoxy- and N-aralkoxypicrylamines and ESR spectra of the corresponding capto-dative persistent aminyls

    NASA Astrophysics Data System (ADS)

    Stanciuc, Gabriela; Caproiu, M. Teodor; Caragheorgheopol, Agneta; Caldararu, Horia; Balaban, Alexandru T.; Walter, Robert I.

    Five O-alkylhydroxylamines and three aralkylhydroxylamines have been picrylated to give O-alkyl- N-picrylhydroxylamines. These were converted to the corresponding N-(ar)alkoxy-picryl-aminyl radicals in toluene solution, and the ESR spectra were recorded. Simulations of the spectra with reasonable parameters and g values confirm the expected radical structures. Hyperfine coupling constants for nuclei in the picryl (acceptor) ring are smaller than those for the (ar)alkoxy group. This indication of competitive electron pair delocalization to the picryl ring, together with the long lifetimes of these radicals (compared with the symmetrically substituted diphenylaminyls), both support the concept of captodative stabilization.

  2. A Study of Variables That Affect Results in the ASTM D2274 Accelerated Stability Test. Part 1. Laboratory, Operator, and Process Variable Effects.

    DTIC Science & Technology

    1987-04-01

    indicator adsorption GC Gas chromatography HPLC High-pressure liquid chromatography Hz Hertz LCO Light-cycle oils L/hr Liters per hour urm Micrometers mg...Process- Var iah Ii’ F fee-t s P FLD CROUP I- SBGROUP h te IeO StI,1i Ii i t\\ P roe edtore DI) i f viCe *𔄃 AB RACT (Continue on reverSe *f necesSary and...34 APPENDIX A - QUESTIONNAIRE ON THE USE OF THE ASTM TEST FOR OXIDATION STABILITY OF DISTILLATE FUEL OIL (ACCELERATED

  3. Regulation of histone mRNA in the unperturbed cell cycle: evidence suggesting control at two posttranscriptional steps.

    PubMed Central

    Harris, M E; Böhni, R; Schneiderman, M H; Ramamurthy, L; Schümperli, D; Marzluff, W F

    1991-01-01

    The levels of histone mRNA increase 35-fold as selectively detached mitotic CHO cells progress from mitosis through G1 and into S phase. Using an exogenous gene with a histone 3' end which is not sensitive to transcriptional or half-life regulation, we show that 3' processing is regulated as cells progress from G1 to S phase. The half-life of histone mRNA is similar in G1- and S-phase cells, as measured after inhibition of transcription by actinomycin D (dactinomycin) or indirectly after stabilization by the protein synthesis inhibitor cycloheximide. Taken together, these results suggest that the change in histone mRNA levels between G1- and S-phase cells must be due to an increase in the rate of biosynthesis, a combination of changes in transcription rate and processing efficiency. In G2 phase, there is a rapid 35-fold decrease in the histone mRNA concentration which our results suggest is due primarily to an altered stability of histone mRNA. These results are consistent with a model for cell cycle regulation of histone mRNA levels in which the effects on both RNA 3' processing and transcription, rather than alterations in mRNA stability, are the major mechanisms by which low histone mRNA levels are maintained during G1. Images PMID:2017161

  4. Exaptive origins of regulated mRNA decay in eukaryotes

    PubMed Central

    Hamid, Fursham M.

    2016-01-01

    Eukaryotic gene expression is extensively controlled at the level of mRNA stability and the mechanisms underlying this regulation are markedly different from their archaeal and bacterial counterparts. We propose that two such mechanisms, nonsense‐mediated decay (NMD) and motif‐specific transcript destabilization by CCCH‐type zinc finger RNA‐binding proteins, originated as a part of cellular defense against RNA pathogens. These branches of the mRNA turnover pathway might have been used by primeval eukaryotes alongside RNA interference to distinguish their own messages from those of RNA viruses and retrotransposable elements. We further hypothesize that the subsequent advent of “professional” innate and adaptive immunity systems allowed NMD and the motif‐triggered mechanisms to be efficiently repurposed for regulation of endogenous cellular transcripts. This scenario explains the rapid emergence of archetypical mRNA destabilization pathways in eukaryotes and argues that other aspects of post‐transcriptional gene regulation in this lineage might have been derived through a similar exaptation route. PMID:27438915

  5. A new regulatory pathway of mRNA export by an F-box protein, Mdm30.

    PubMed

    Durairaj, Geetha; Lahudkar, Shweta; Bhaumik, Sukesh R

    2014-02-01

    Mdm30, an F-box protein in yeast, has been recently shown to promote mRNA export. However, it remains unknown how Mdm30 facilitates mRNA export. Here, we show that Mdm30 targets the Sub2 component of the TREX (Transcription/Export) complex for ubiquitylation and subsequent proteasomal degradation. Such a targeted degradation of Sub2 enhances the recruitment of the mRNA export adaptor, Yra1, to the active genes to promote mRNA export. Together, these results elucidate that Mdm30 promotes mRNA export by lowering Sub2's stability and consequently enhancing Yra1 recruitment, thus illuminating new regulatory mechanisms of mRNA export by Mdm30.

  6. Dengue Type 4 Live-Attenuated Vaccine Viruses Passaged in Vero Cells Affect Genetic Stability and Dengue-Induced Hemorrhaging in Mice

    PubMed Central

    Lee, Hsiang-Chi; Yen, Yu-Ting; Chen, Wen-Yu; Wu-Hsieh, Betty A.; Wu, Suh-Chin

    2011-01-01

    Most live-attenuated tetravalent dengue virus vaccines in current clinical trials are produced from Vero cells. In a previous study we demonstrated that an infectious cDNA clone-derived dengue type 4 (DEN-4) virus retains higher genetic stability in MRC-5 cells than in Vero cells. For this study we investigated two DEN-4 viruses: the infectious cDNA clone-derived DEN-4 2A and its derived 3′ NCR 30-nucleotide deletion mutant DEN-4 2AΔ30, a vaccine candidate. Mutations in the C-prM-E, NS2B-NS3, and NS4B-NS5 regions of the DEN genome were sequenced and compared following cell passages in Vero and MRC-5 cells. Our results indicate stronger genetic stability in both viruses following MRC-5 cell passages, leading to significantly lower RNA polymerase error rates when the DEN-4 virus is used for genome replication. Although no significant increases in virus titers were observed following cell passages, DEN-4 2A and DEN-4 2AΔ30 virus titers following Vero cell passages were 17-fold to 25-fold higher than titers following MRC-5 cell passages. Neurovirulence for DEN-4 2A and DEN-4 2AΔ30 viruses increased significantly following passages in Vero cells compared to passages in MRC-5 cells. In addition, more severe DEN-induced hemorrhaging in mice was noted following DEN-4 2A and DEN-4 2AΔ30 passages in Vero cells compared to passages in MRC-5 cells. Target mutagenesis performed on the DEN-4 2A infectious clone indicated that single point mutation of E-Q438H, E-V463L, NS2B-Q78H, and NS2B-A113T imperatively increased mouse hemorrhaging severity. The relationship between amino acid mutations acquired during Vero cell passage and enhanced DEN-induced hemorrhages in mice may be important for understanding DHF pathogenesis, as well as for the development of live-attenuated dengue vaccines. Taken together, the genetic stability, virus yield, and DEN-induced hemorrhaging all require further investigation in the context of live-attenuated DEN vaccine development. PMID:22053180

  7. Formulation factors affecting the isomerization rate of betamethasone-17-valerate in a developmental hydrophilic cream - a HPLC and microscopy based stability study.

    PubMed

    Byrne, Jonathan; Wyraz, Anke; Velasco-Torrijos, Trinidad; Reinhardt, Robert

    2016-02-19

    The formulation of betamethasone-17-valerate (BV) into topical medicines presents a significant challenge for the formulation chemist. The substance is susceptible to acid and base catalyzed isomerization in aqueous environments, which results in valerate transesterification from carbon 17 to carbon 21 of the steroid ring system. This acyl migration process is of significant clinical importance since the 21-valerate ester possesses only a fraction of the potency of the 17-valerate parent compound. Isomerization of BV should therefore be reduced to a minimum through design of a suitable drug vehicle. In this study, the effect of varying the concentration of several excipient components on the isomerization rate of betamethasone valerate in a model hydrophilic cream has been investigated. These excipients include the emulsifier macrogolstearylether-20/21, the co-emulsifier cetylstearyl alcohol and the thickening agent hydroxyl propyl methylcellulose. Additionally, the influence of pH, the presence of the antioxidant, alpha-tocopherol, as well as the chelating agent, disodium edetate, on the stability of the formulation have been investigated. Trial drug product formulations, which were designed to investigate the influence of the above-mentioned components/parameters were manufactured and their stability was tested according to current ICH Guidelines. The content, purity and crystalline structure of the active substance in these formulations was analyzed by a combination of HPLC and microscopy techniques. The study demonstrates that the rate of isomerization of betamethasone valerate depends significantly on the concentration of emulsifier used in the cream formulation. At higher concentrations of emulsifier the isomerization proceeds rapidly with significant degradation over a period of weeks, whereas at lower concentrations significant degradation may not be observed, even after several years' storage. The influence of the emulsifier has been shown to be

  8. Dengue type 4 live-attenuated vaccine viruses passaged in vero cells affect genetic stability and dengue-induced hemorrhaging in mice.

    PubMed

    Lee, Hsiang-Chi; Yen, Yu-Ting; Chen, Wen-Yu; Wu-Hsieh, Betty A; Wu, Suh-Chin

    2011-01-01

    Most live-attenuated tetravalent dengue virus vaccines in current clinical trials are produced from Vero cells. In a previous study we demonstrated that an infectious cDNA clone-derived dengue type 4 (DEN-4) virus retains higher genetic stability in MRC-5 cells than in Vero cells. For this study we investigated two DEN-4 viruses: the infectious cDNA clone-derived DEN-4 2A and its derived 3' NCR 30-nucleotide deletion mutant DEN-4 2AΔ30, a vaccine candidate. Mutations in the C-prM-E, NS2B-NS3, and NS4B-NS5 regions of the DEN genome were sequenced and compared following cell passages in Vero and MRC-5 cells. Our results indicate stronger genetic stability in both viruses following MRC-5 cell passages, leading to significantly lower RNA polymerase error rates when the DEN-4 virus is used for genome replication. Although no significant increases in virus titers were observed following cell passages, DEN-4 2A and DEN-4 2AΔ30 virus titers following Vero cell passages were 17-fold to 25-fold higher than titers following MRC-5 cell passages. Neurovirulence for DEN-4 2A and DEN-4 2AΔ30 viruses increased significantly following passages in Vero cells compared to passages in MRC-5 cells. In addition, more severe DEN-induced hemorrhaging in mice was noted following DEN-4 2A and DEN-4 2AΔ30 passages in Vero cells compared to passages in MRC-5 cells. Target mutagenesis performed on the DEN-4 2A infectious clone indicated that single point mutation of E-Q(438)H, E-V(463)L, NS2B-Q(78)H, and NS2B-A(113)T imperatively increased mouse hemorrhaging severity. The relationship between amino acid mutations acquired during Vero cell passage and enhanced DEN-induced hemorrhages in mice may be important for understanding DHF pathogenesis, as well as for the development of live-attenuated dengue vaccines. Taken together, the genetic stability, virus yield, and DEN-induced hemorrhaging all require further investigation in the context of live-attenuated DEN vaccine development.

  9. AlFx affects the formation of focal complexes by stabilizing the Arf-GAP ASAP1 in a complex with Arf1.

    PubMed

    Klein, Stéphanie; Franco, Michel; Chardin, Pierre; Luton, Frédéric

    2005-10-24

    Aluminum fluoride (AlFx) is known to activate directly the alpha subunit of G-proteins but not the homologous small GTP-binding proteins. However, AlFx can stabilize complexes formed between Ras, RhoA or Cdc42 and their corresponding GTPase-activating proteins (GAPs). Here, we demonstrate that Arf1GDP can be converted into an active conformation by AlFx to form a complex with the Arf-GAP ASAP1 in vitro and in vivo. Within this complex ASAP1, which GAP activity is inoperative, can still alter the recruitment of paxillin to the focal complexes, thus indicating that ASAP1 interferes with focal complexes independently of its GAP activity.

  10. Control of mRNA Translation in ALS Proteinopathy

    PubMed Central

    Cestra, Gianluca; Rossi, Simona; Di Salvio, Michela; Cozzolino, Mauro

    2017-01-01

    Cells robustly reprogram gene expression during stress generated by protein misfolding and aggregation. In this condition, cells assemble the bulk of mRNAs into translationally silent stress granules (SGs), while they sustain the translation of specific mRNAs coding for proteins that are needed to overcome cellular stress. Alterations of this process are deeply associated to neurodegeneration. This is the case of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder caused by a selective loss of motor neurons. Indeed, impairment of protein homeostasis as well as alterations of RNA metabolism are now recognized as major players in the pathogenesis of ALS. In particular, evidence shows that defective mRNA transport and translation are implicated. Here, we provide a review of what is currently known about altered mRNA translation in ALS and how this impacts on the ability of affected cells to cope with proteotoxic stress. PMID:28386218

  11. Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes.

    PubMed

    Zhang, Qian; Koser, Stephanie L; Donkin, Shawn S

    2016-05-01

    Hepatocytes monolayers from neonatal calves were used to determine the responses of the cytosolic phosphoenolpyruvate carboxykinase (PCK1) mRNA expression to propionate and direct hormonal cues including cyclic AMP (cAMP), dexamethasone, and insulin. The responses of other key gluconeogenic genes, including mitochondrial phosphoenolpyruvate carboxykinase (PCK2), pyruvate carboxylase (PC), and glucose-6-phosphotase (G6PC), were also measured. Expression of PCK1 was linearly induced with increasing propionate concentrations in media and 2.5 mM propionate increased PCK1 mRNA at 3 and 6h of incubation; however, the induction disappeared at 12 and 24 h. The induction of PCK1 mRNA by propionate was mimicked by 1 mM cAMP, or in combination with 5 µM dexamethasone, but not by dexamethasone alone. The induction of PCK1 mRNA by propionate or cAMP was eliminated by addition of 100 nM insulin. Additionally, expression of PCK2 and PC mRNA was also induced by propionate in a concentration-dependent manner. Consistent with PCK1, propionate-stimulated PCK2 and PC mRNA expression was inhibited by insulin. Expression of G6PC mRNA was neither affected by propionate nor cAMP, dexamethasone, insulin, or their combinations. These findings demonstrate that propionate can directly regulate its own metabolism in bovine calf hepatocytes through upregulation of PCK1, PCK2, and PC mRNA expression.

  12. Regulation of mRNA decay in plant responses to salt and osmotic stress.

    PubMed

    Kawa, Dorota; Testerink, Christa

    2017-04-01

    Plant acclimation to environmental stresses requires fast signaling to initiate changes in developmental and metabolic responses. Regulation of gene expression by transcription factors and protein kinases acting upstream are important elements of responses to salt and drought. Gene expression can be also controlled at the post-transcriptional level. Recent analyses on mutants in mRNA metabolism factors suggest their contribution to stress signaling. Here we highlight the components of mRNA decay pathways that contribute to responses to osmotic and salt stress. We hypothesize that phosphorylation state of proteins involved in mRNA decapping affect their substrate specificity.

  13. A Naturally Occurring Mutation of the Opsin Gene (T4R) in Dogs Affects Glycosylation and Stability of the G Protein-coupled Receptor*

    PubMed Central

    Zhu, Li; Jang, Geeng-Fu; Jastrzebska, Beata; Filipek, Sławomir; Pearce-Kelling, Susan E.; Aguirre, Gustavo D.; Stenkamp, Ronald E.; Acland, Gregory M.; Palczewski, Krzysztof

    2005-01-01

    Rho (rhodopsin; opsin plus 11-cis-retinal) is a prototypical G protein-coupled receptor responsible for the capture of a photon in retinal photoreceptor cells. A large number of mutations in the opsin gene associated with autosomal dominant retinitis pigmentosa have been identified. The naturally occurring T4R opsin mutation in the English mastiff dog leads to a progressive retinal degeneration that closely resembles human retinitis pigmentosa caused by the T4K mutation in the opsin gene. Using genetic approaches and biochemical assays, we explored the properties of the T4R mutant protein. Employing immunoaffinity-purified Rho from affected RHOT4R/T4R dog retina, we found that the mutation abolished glycosylation at Asn2, whereas glycosylation at Asn15 was unaffected, and the mutant opsin localized normally to the rod outer segments. Moreover, we found that T4R Rho* lost its chromophore faster as measured by the decay of meta-rhodopsin II and that it was less resistant to heat denaturation. Detergent-solubilized T4R opsin regenerated poorly and interacted abnormally with the G protein transducin (Gt). Structurally, the mutation affected mainly the “plug” at the intradiscal (extracellular) side of Rho, which is possibly responsible for protecting the chromophore from the access of bulk water. The T4R mutation may represent a novel molecular mechanism of degeneration where the unliganded form of the mutant opsin exerts a detrimental effect by losing its structural integrity. PMID:15459196

  14. A naturally occurring mutation of the opsin gene (T4R) in dogs affects glycosylation and stability of the G protein-coupled receptor.

    PubMed

    Zhu, Li; Jang, Geeng-Fu; Jastrzebska, Beata; Filipek, Slawomir; Pearce-Kelling, Susan E; Aguirre, Gustavo D; Stenkamp, Ronald E; Acland, Gregory M; Palczewski, Krzysztof

    2004-12-17

    Rho (rhodopsin; opsin plus 11-cis-retinal) is a prototypical G protein-coupled receptor responsible for the capture of a photon in retinal photoreceptor cells. A large number of mutations in the opsin gene associated with autosomal dominant retinitis pigmentosa have been identified. The naturally occurring T4R opsin mutation in the English mastiff dog leads to a progressive retinal degeneration that closely resembles human retinitis pigmentosa caused by the T4K mutation in the opsin gene. Using genetic approaches and biochemical assays, we explored the properties of the T4R mutant protein. Employing immunoaffinity-purified Rho from affected RHO(T4R/T4R) dog retina, we found that the mutation abolished glycosylation at Asn(2), whereas glycosylation at Asn(15) was unaffected, and the mutant opsin localized normally to the rod outer segments. Moreover, we found that T4R Rho(*) lost its chromophore faster as measured by the decay of meta-rhodopsin II and that it was less resistant to heat denaturation. Detergent-solubilized T4R opsin regenerated poorly and interacted abnormally with the G protein transducin (G(t)). Structurally, the mutation affected mainly the "plug" at the intradiscal (extracellular) side of Rho, which is possibly responsible for protecting the chromophore from the access of bulk water. The T4R mutation may represent a novel molecular mechanism of degeneration where the unliganded form of the mutant opsin exerts a detrimental effect by losing its structural integrity.

  15. Homogenization conditions affect the oxidative stability of fish oil enriched milk emulsions: oxidation linked to changes in protein composition at the oil-water interface.

    PubMed

    Sørensen, Ann-Dorit M; Baron, Caroline P; Let, Mette B; Brüggemann, Dagmar A; Pedersen, Lise R L; Jacobsen, Charlotte

    2007-03-07

    Fish oil was incorporated into milk under different homogenization temperatures (50 and 72 degrees C) and pressures (5, 15, and 22.5 MPa). Subsequently, the oxidative stability of the milk and changes in the protein composition of the milk fat globule membrane (MFGM) were examined. Results showed that high pressure and high temperature (72 degrees C and 22.5 MPa) resulted in less lipid oxidation, whereas low pressure and low temperature (50 degrees C and 5 MPa) resulted in faster lipid oxidation. Analysis of protein oxidation indicated that especially casein was prone to oxidation. The level of free thiol groups was increased by high temperature (72 degrees C) and with increasing pressure. Furthermore, SDS-PAGE and confocal laser scanning microscopy (CLSM) indicated that high temperature resulted in an increase in beta-lactoglobulin adsorbed at the oil-water interface. This was even more pronounced with higher pressure. Less casein seemed to be present at the oil-water interface with increasing pressure. Overall, the results indicated that a combination of more beta-lactoglobulin and less casein at the oil-water interface gave the most stable emulsions with respect to lipid oxidation.

  16. Volatile Oxidation Compounds and Stability of Safflower, Sesame and Canola Cold-Pressed Oils as Affected by Thermal and Microwave Treatments.

    PubMed

    Kiralan, Mustafa; Ramadan, Mohamed Fawzy

    2016-01-01

    The goal of this study was to investigate the effect of heating and microwave treatment on the levels of volatile oxidation products and the stability of safflower (Carthamus tinctorius L.), sesame (Sesamum indicum) and canola (Brassica napus L.) cold-pressed oils. Cold-pressed oils were subjected to conventional heating (oven test) using air-forced oven at 60°C and microwave heating for 2 and 4 min. The changes in conjugated diene (CD) and conjugated triene (CT) values were monitored during treatments. As expected, heating generates an increase in CD and CT values. The volatile compounds in treated oils were determined using solid phase micro-extraction-gas chromatography/mass spectrometry (SPME-GC/MS). The obtained GC/MS data were used to characterize volatile compounds of cold-pressed oils during heating and microeave treatments. Under oven conditions, 2-heptenal and 2,4-heptadienal isomers were identified as major components in canola oil, while hexanal and 2-heptenal were found in high levels in safflower and sesame oils. Among volatiles, p-cymene was the dominant compound found in microwave-treated canola oil. In addition, hexanal and 2-hexenal were found at high amounts upon microwave treatment especially after 4 min of application.

  17. Mutations in salt-bridging residues at the interface of the core and lid domains of epoxide hydrolase StEH1 affect regioselectivity, protein stability and hysteresis.

    PubMed

    Lindberg, Diana; Ahmad, Shabbir; Widersten, Mikael

    2010-03-15

    Epoxide hydrolase, StEH1, shows hysteretic behavior in the catalyzed hydrolysis of trans-2-methylstyrene oxide (2-MeSO)(1). Linkage between protein structure dynamics and catalytic function was probed in mutant enzymes in which surface-located salt-bridging residues were substituted. Salt-bridges at the interface of the alpha/beta-hydrolase fold core and lid domains, as well as between residues in the lid domain, between Lys(179)-Asp(202), Glu(215)-Arg(41) and Arg(236)-Glu(165) were disrupted by mutations, K179Q, E215Q, R236K and R236Q. All mutants displayed enzyme activity with styrene oxide (SO) and 2-MeSO when assayed at 30 degrees C. Disruption of salt-bridges altered the rates for isomerization between distinct Michaelis complexes, with (1R,2R)-2-MeSO as substrate, presumably as a result of increased dynamics of involved protein segments. Another indication of increased flexibility was a lowered thermostability in all mutants. We propose that the alterations to regioselectivity in these mutants derive from an increased mobility in protein segments otherwise stabilized by salt bridging interactions.

  18. Control of Cytokine mRNA Expression by RNA-binding Proteins and microRNAs

    PubMed Central

    Palanisamy, V.; Jakymiw, A.; Van Tubergen, E.A.; D’Silva, N.J.; Kirkwood, K.L.

    2012-01-01

    Cytokines are critical mediators of inflammation and host defenses. Regulation of cytokines can occur at various stages of gene expression, including transcription, mRNA export, and post- transcriptional and translational levels. Among these modes of regulation, post-transcriptional regulation has been shown to play a vital role in controlling the expression of cytokines by modulating mRNA stability. The stability of cytokine mRNAs, including TNFα, IL-6, and IL-8, has been reported to be altered by the presence of AU-rich elements (AREs) located in the 3′-untranslated regions (3′UTRs) of the mRNAs. Numerous RNA-binding proteins and microRNAs bind to these 3′UTRs to regulate the stability and/or translation of the mRNAs. Thus, this paper describes the cooperative function between RNA-binding proteins and miRNAs and how they regulate AU-rich elements containing cytokine mRNA stability/degradation and translation. These mRNA control mechanisms can potentially influence inflammation as it relates to oral biology, including periodontal diseases and oral pharyngeal cancer progression. PMID:22302144

  19. TV or not TV? Does the immediacy of viewing images of a momentous news event affect the quality and stability of flashbulb memories?

    PubMed

    Schaefer, Evelyn G; Halldorson, Michael K; Dizon-Reynante, Cheryl

    2011-04-01

    The flashbulb accounts of 38 participants concerning the September 11th 2001 terrorist attack reported at both 28 hours and 6 months following the event were examined for quantity, quality, and consistency as a function of the time lapse between first learning of the event and initial viewing of media images. The flashbulb accounts of those who reported seeing images at least an hour after learning of the event differed qualitatively, but not quantitatively, from accounts of participants who reported seeing images at the same time as or within minutes of learning of the event. Delayed viewing of images resulted in less elaborate and generally less consistent accounts across the 6-month interval. The results are discussed in terms of factors affecting flashbulb memory formation and individual differences in connectedness to the event.

  20. The effect of dietary supplementation with the natural carotenoids curcumin and lutein on pigmentation, oxidative stability and quality of meat from broiler chickens affected by a coccidiosis challenge.

    PubMed

    Rajput, N; Ali, S; Naeem, M; Khan, M A; Wang, T

    2014-01-01

    1. An experiment was performed to evaluate the effectiveness of the antioxidants curcumin (CRM) and lutein (LTN) on the quality of meat from coccidiosis-infected broilers. A total of 200 one-day-old Arbor Acre chicks were randomly assigned to a treatment group with 5 replicates. The treatments included a basal diet without carotenoid supplementation (control), with 300 mg/kg CRM, with 300 mg/kg LTN or with a combination (C + L) of 150 mg/kg CRM and 150 mg/kg LTN. All chickens were challenged with Eimeria maxima at 21 d old. 2. The results revealed that the coccidiosis reduced redness of meat, while supplementation with carotenoids improved the fresh meat's redness (a*) and yellowness (b*) and contributed to colour stability maintenance after storage (1 month at -18°C and 3 d at 4°C). 3. Coccidiosis did not produce lipid and protein oxidation in fresh meat, but after storage for one month, the malondialdehyde levels and carbonyl contents were lower in the CRM and C + L birds and the sulfhydryl contents were higher in C + L birds. 4. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis banding pattern showed equivalent myosin chain fragmentations in all treatment groups, whereas lower intensity actin bands were observed in the control group (CONT). Moreover, myofibril protein denaturation (differential scanning calorimetry) profiles showed a reduction in the CONT myosin and actin peaks. Coccidiosis reduced the meat's water holding capacity in non-supplemented chicken meat and was improved by natural carotenoid. 5. These results emphasise that coccidiosis did not decrease the eating quality of fresh meat, that natural carotenoids are efficient antioxidants and that CRM (300 mg/kg) fed individually or combined with LTN was the most effective supplemented antioxidant compound.

  1. Analysis of specific mRNA destabilization during Dictyostelium development.

    PubMed

    Mangiarotti, G; Bulfone, S; Giorda, R; Morandini, P; Ceccarelli, A; Hames, B D

    1989-07-01

    A number of specific mRNAs are destabilized upon disaggregation of developing Dictyostelium discoideum cells. Analysis of a family of cloned genes indicates that only prespore-enriched mRNAs are affected; constitutive mRNAs that are expressed throughout development and mRNAs that accumulate preferentially in prestalk cells are stable under these conditions. The decay of sensitive prespore mRNAs can be halted by allowing the cells to reaggregate, indicating that destabilization occurs by the progressive selection of individual molecules rather than on all members of an mRNA subpopulation at the time of disaggregation. Individual molecules of the sensitive mRNA species remain engaged in protein synthesis in the disaggregated cells until selected. Destabilization of sensitive mRNAs is induced by cell dissociation even in the presence of concentrations of nogalamycin that inhibit RNA synthesis. The reported prevention of disaggregation-induced mRNA decay by actinomycin D and daunomycin is therefore probably a secondary effect unrelated to the inhibition of transcription.

  2. MNKs act as a regulatory switch for eIF4E1 and eIF4E3 driven mRNA translation in DLBCL

    PubMed Central

    Landon, Ari L.; Muniandy, Parameswary A.; Shetty, Amol C.; Lehrmann, Elin; Volpon, Laurent; Houng, Simone; Zhang, Yongqing; Dai, Bojie; Peroutka, Raymond; Mazan-Mamczarz, Krystyna; Steinhardt, James; Mahurkar, Anup; Becker, Kevin G.; Borden, Katherine L.; Gartenhaus, Ronald B.

    2014-01-01

    The phosphorylation of eIF4E1 at serine 209 by MNK1 or MNK2 has been shown to initiate oncogenic mRNA translation, a process that favours cancer development and maintenance. Here, we interrogate the MNK-eIF4E axis in diffuse large B-cell lymphoma (DLBCL) and show a distinct distribution of MNK1 and MNK2 in germinal centre B-cell (GCB) and activated B-cell (ABC) DLBCL. Despite displaying a differential distribution in GCB and ABC, both MNKs functionally complement each other to sustain cell survival. MNK inhibition ablates eIF4E1 phosphorylation and concurrently enhances eIF4E3 expression. Loss of MNK protein itself downregulates total eIF4E1 protein level by reducing eIF4E1 mRNA polysomal loading without affecting total mRNA level or stability. Enhanced eIF4E3 expression marginally suppresses eIF4E1-driven translation but exhibits a unique translatome that unveils a novel role for eIF4E3 in translation initiation. We propose that MNKs can modulate oncogenic translation by regulating eIF4E1-eIF4E3 levels and activity in DLBCL. PMID:25403230

  3. Substitutions at the opening of the Rubisco central solvent channel affect holoenzyme stability and CO2/O 2 specificity but not activation by Rubisco activase.

    PubMed

    Esquivel, M Gloria; Genkov, Todor; Nogueira, Ana S; Salvucci, Michael E; Spreitzer, Robert J

    2013-12-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the initial step of carbon metabolism in photosynthesis. The holoenzyme comprises eight large subunits, arranged as a tetramer of dimers around a central solvent channel that defines a fourfold axis of symmetry, and eight small subunits, arranged as two tetramers at the poles of the axis. The phylogenetically divergent small-subunit loops between β-strands A and B form the entrance to the solvent channel. In the green alga Chlamydomonas reinhardtii, Ile-58 from each of the four small-subunit βA-βB loops defines the minimal diameter of the channel opening. To understand the role of the central solvent channel in Rubisco function, directed mutagenesis and transformation of Chlamydomonas were employed to replace Ile-58 with Ala, Lys, Glu, Trp, or three Trp residues (I58W3) to close the entrance to the channel. The I58E, I58K, and I58W substitutions caused only small decreases in photosynthetic growth at 25 and 35 °C, whereas I58W3 had a substantial effect at both temperatures. The mutant enzymes had decreased carboxylation rates, but the I58W3 enzyme had decreases in both carboxylation and CO2/O2 specificity. The I58E, I58W, and I58W3 enzymes were inactivated at lower temperatures than wild-type Rubisco, and were degraded at slower rates under oxidative stress. However, these mutant enzymes were activated by Rubisco activase at normal rates, indicating that the structural transition required for carboxylation is not affected by altering the solvent channel opening. Structural dynamics alone may not be responsible for these distant effects on the Rubisco active site.

  4. Dynamic conformations of nucleophosmin (NPM1) at a key monomer-monomer interface affect oligomer stability and interactions with granzyme B.

    PubMed

    Duan-Porter, Wei D; Woods, Virgil L; Maurer, Kimberly D; Li, Sheng; Rosen, Antony

    2014-01-01

    Nucleophosmin (NPM1) is an abundant, nucleolar tumor antigen with important roles in cell proliferation and putative contributions to oncogenesis. Wild-type NPM1 forms pentameric oligomers through interactions at the amino-terminal core domain. A truncated form of NPM1 found in some hepatocellular carcinoma tissue formed an unusually stable oligomer and showed increased susceptibility to cleavage by granzyme B. Initiation of translation at the seventh methionine generated a protein (M7-NPM) that shared all these properties. We used deuterium exchange mass spectrometry (DXMS) to perform a detailed structural analysis of wild-type NPM1 and M7-NPM, and found dynamic conformational shifts or local "unfolding" at a specific monomer-monomer interface which included the β-hairpin "latch." We tested the importance of interactions at the β-hairpin "latch" by replacing a conserved tyrosine in the middle of the β-hairpin loop with glutamic acid, generating Y67E-NPM. Y67E-NPM did not form stable oligomers and further, prevented wild-type NPM1 oligomerization in a dominant-negative fashion, supporting the critical role of the β-hairpin "latch" in monomer-monomer interactions. Also, we show preferential cleavage by granzyme B at one of two available aspartates (either D161 or D122) in M7-NPM and Y67E-NPM, whereas wild-type NPM1 was cleaved at both sites. Thus, we observed a correlation between the propensity to form oligomers and granzyme B cleavage site selection in nucleophosmin proteins, suggesting that a small change at an important monomer-monomer interface can affect conformational shifts and impact protein-protein interactions.

  5. Role of mRNA structure in the control of protein folding

    PubMed Central

    Faure, Guilhem; Ogurtsov, Aleksey Y.; Shabalina, Svetlana A.; Koonin, Eugene V.

    2016-01-01

    Specific structures in mRNA modulate translation rate and thus can affect protein folding. Using the protein structures from two eukaryotes and three prokaryotes, we explore the connections between the protein compactness, inferred from solvent accessibility, and mRNA structure, inferred from mRNA folding energy (ΔG). In both prokaryotes and eukaryotes, the ΔG value of the most stable 30 nucleotide segment of the mRNA (ΔGmin) strongly, positively correlates with protein solvent accessibility. Thus, mRNAs containing exceptionally stable secondary structure elements typically encode compact proteins. The correlations between ΔG and protein compactness are much more pronounced in predicted ordered parts of proteins compared to the predicted disordered parts, indicative of an important role of mRNA secondary structure elements in the control of protein folding. Additionally, ΔG correlates with the mRNA length and the evolutionary rate of synonymous positions. The correlations are partially independent and were used to construct multiple regression models which explain about half of the variance of protein solvent accessibility. These findings suggest a model in which the mRNA structure, particularly exceptionally stable RNA structural elements, act as gauges of protein co-translational folding by reducing ribosome speed when the nascent peptide needs time to form and optimize the core structure. PMID:27466388

  6. Translation by Ribosomes with mRNA Degradation: Exclusion Processes on Aging Tracks

    NASA Astrophysics Data System (ADS)

    Nagar, Apoorva; Valleriani, Angelo; Lipowsky, Reinhard

    2011-12-01

    We investigate the role of degradation of mRNA on protein synthesis using the totally asymmetric simple exclusion process (TASEP) as the underlying model for ribosome dynamics. mRNA degradation has a strong effect on the lifetime distribution of the mRNA, which in turn affects polysome statistics such as the number of ribosomes present on an mRNA strand of a given size. An average over mRNA of all ages is equivalent to an average over possible configurations of the corresponding TASEP—both before steady state and in steady state. To evaluate the relevant quantities for the translation problem, we first study the approach towards steady state of the TASEP, starting with an empty lattice representing an unloaded mRNA. When approaching the high density phase, the system shows two distinct phases with the entry and exit boundaries taking control of the density at their respective ends in the second phase. The approach towards the maximal current phase exhibits the surprising property that the ribosome entry flux can exceed the maximum possible steady state value. In all phases, the averaging over the mRNA age distribution shows a decrease in the average ribosome density profile as a function of distance from the entry boundary. For entry/exit parameters corresponding to the high density phase of TASEP, the average ribosome density profile also has a maximum near the exit end.

  7. Self-amplifying mRNA vaccines.

    PubMed

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization.

  8. Targeting a Regulatory Element in Human Thymidylate Synthase mRNA

    PubMed Central

    Brunn, Nicholas D.; Sega, Emily Garcia; Kao, Melody B.

    2013-01-01

    Thymidylate synthase (TS) is a key enzyme in the biosynthesis of thymidine. TS inhibitors, which are used in cancer chemotherapy, suffer from resistance development in tumors through upregulation of TS expression. Autoregulatory translation control has been implicated with TS overexpression. TS binding at its own mRNA, which leads to sequestration of the start codon, is abolished when the enzyme forms an inhibitor complex, thereby relieving translation suppression. We have used the protein binding site from the TS mRNA in the context of a bicistronic expression system to validate targeting the regulatory motif with stabilizing ligands that prevent ribosomal initiation. Stabilization of the RNA by mutations, which were studied as surrogates of ligand binding, suppresses translation of the TS protein. Compounds that stabilize the TS binding RNA motif and thereby inhibit ribosomal initiation might be used in combination with existing TS enzyme-targeting drugs to overcome resistance development during chemotherapy. PMID:23143777

  9. Genetic analysis of glucose regulation in saccharomyces cerevisiae: control of transcription versus mRNA turnover.

    PubMed Central

    Cereghino, G P; Scheffler, I E

    1996-01-01

    A major determinant of the steady-state level of the mRNA encoding the iron protein (Ip) subunit of succinate dehydrogenase of yeast is its rate of turnover. This mRNA is significantly more stable in glycerol than in glucose media. Many other genes, for example, SUC2, that are repressed in the presence of glucose are believed to be controlled at the level of transcription. The present study elucidates differences in the regulatory mechanisms by which glucose controls the transcription and turnover of the SUC2 and Ip mRNAs. The signaling pathway for glucose repression at the transcriptional level has been associated with a number of gene products linking glucose uptake with nuclear events. We have investigated whether the same genes are involved in the control of Ip mRNA stability. Phosphorylation of glucose or fructose is critical in triggering the transcript's degradation, but any hexokinase will do. Of the other known genes examined, most, with the exception of REG1, are not involved in determining the differential stability of the Ip transcript. Finally, our results indicate that differential stability on different carbon sources also plays a role in determining the steady-state level of the SUC2 mRNA. Thus, glucose repression includes both transcriptional and post-transcriptional mechanisms. Images PMID:8617211

  10. Dopaminergic control of prolactin mRNA accumulation in the pituitary of the male rat.

    PubMed

    Brocas, H; van Coevorden, A; Seo, H; Refetoff, S; Vassart, G

    1981-04-01

    Dopaminergic control of the expression of the prolactin gene was investigated by administration of bromoergocryptine (CB154) to male rats. The effects of the drug on the following parameters were measured: (i) circulating levels of GH and PRL; (ii) synthesis of GH and PRl measured by pulse labeling pituitary fragments in vitro; (iii) GH and PRL mRNA activities; and (iv) content of PRL and mRNA. After 1 day of CB154 administration, serum PRL fell to undetectable levels whereas it took 3 days to observe a 50% reduction in PRL synthesis. This effect was accounted for by a parallel decrease in PRL mRNA activity and content. GH synthesis and GH mRNA were not affected by the treatment. Our results show that the dopaminergic inhibition of PRL production involves regulation at a pre-translational level.

  11. Antisense Transcript and RNA Processing Alterations Suppress Instability of Polyadenylated mRNA in Chlamydomonas Chloroplasts

    PubMed Central

    Nishimura, Yoshiki; Kikis, Elise A.; Zimmer, Sara L.; Komine, Yutaka; Stern, David B.

    2004-01-01

    In chloroplasts, the control of mRNA stability is of critical importance for proper regulation of gene expression. The Chlamydomonas reinhardtii strain Δ26pAtE is engineered such that the atpB mRNA terminates with an mRNA destabilizing polyadenylate tract, resulting in this strain being unable to conduct photosynthesis. A collection of photosynthetic revertants was obtained from Δ26pAtE, and gel blot hybridizations revealed RNA processing alterations in the majority of these suppressor of polyadenylation (spa) strains, resulting in a failure to expose the atpB mRNA 3′ poly(A) tail. Two exceptions were spa19 and spa23, which maintained unusual heteroplasmic chloroplast genomes. One genome type, termed PS+, conferred photosynthetic competence by contributing to the stability of atpB mRNA; the other, termed PS−, was required for viability but could not produce stable atpB transcripts. Based on strand-specific RT-PCR, S1 nuclease protection, and RNA gel blots, evidence was obtained that the PS+ genome stabilizes atpB mRNA by generating an atpB antisense transcript, which attenuates the degradation of the polyadenylated form. The accumulation of double-stranded RNA was confirmed by insensitivity of atpB mRNA from PS+ genome-containing cells to S1 nuclease digestion. To obtain additional evidence for antisense RNA function in chloroplasts, we used strain Δ26, in which atpB mRNA is unstable because of the lack of a 3′ stem-loop structure. In this context, when a 121-nucleotide segment of atpB antisense RNA was expressed from an ectopic site, an elevated accumulation of atpB mRNA resulted. Finally, when spa19 was placed in a genetic background in which expression of the chloroplast exoribonuclease polynucleotide phosphorylase was diminished, the PS+ genome and the antisense transcript were no longer required for photosynthesis. Taken together, our results suggest that antisense RNA in chloroplasts can protect otherwise unstable transcripts from 3′→5

  12. Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells.

    PubMed Central

    Stefanovic, B; Hellerbrand, C; Holcik, M; Briendl, M; Aliebhaber, S; Brenner, D A

    1997-01-01

    The hepatic stellate cell (HSC) is the primary cell responsible for the dramatic increase in the synthesis of type I collagen in the cirrhotic liver. Quiescent HSCs contain a low level of collagen alpha1(I) mRNA, while activated HSCs contain about 60- to 70-fold more of this mRNA. The transcription rate of the collagen alpha1(I) gene is only two fold higher in activated HSCs than in quiescent HSCs. In assays using actinomycin D or 5,6-dichlorobenzimidazole riboside collagen alpha1(I) mRNA has estimated half-lives of 1.5 h in quiescent HSCs and 24 h in activated HSCs. Thus, this 16-fold change in mRNA stability is primarily responsible for the increase in collagen alpha1(I) mRNA steady-state level in activated HSCs. We have identified a novel RNA-protein interaction targeted to the C-rich sequence in the collagen alpha1(I) mRNA 3' untranslated region (UTR). This sequence is localized 24 nucleotides 3' to the stop codon. In transient transfection experiments, mutation of this sequence diminished accumulation of an mRNA transcribed from a collagen alpha1(I) minigene and in stable transfections decreased the half-life of collagen alpha1(I) minigene mRNA. Binding to the collagen alpha1(I) 3' UTR is present in cytoplasmic extracts of activated but not quiescent HSCs. It contains as a subunit alphaCP, which is also found in the complex involved in stabilization of alpha-globin mRNA. The auxiliary factors necessary to promote binding of alphaCP to the collagen 3' UTR are distinct from the factors necessary for binding to the alpha-globin sequence. Since alphaCP is expressed in both quiescent and activated HSCs, these auxiliary factors are responsible for the differentially expressed RNA-protein interaction at the collagen alpha1(I) mRNA 3' UTR. PMID:9271398

  13. Regulation of mRNA Translation Is a Novel Mechanism for Phthalate Toxicity

    PubMed Central

    Ling, Jun; Lopez-Dee, Zenaida P.; Cottell, Colby; Wolfe, Laura; Nye, Derek

    2016-01-01

    Phthalates are a group of plasticizers that are widely used in many consumer products and medical devices, thus generating a huge burden to human health. Phthalates have been known to cause a number of developmental and reproductive disorders functioning as endocrine modulators. They are also involved in carcinogenesis with mechanisms less understood. To further understand the molecular mechanisms of phthalate toxicity, in this study we reported a new effect of phthalates on mRNA translation/protein synthesis, a key regulatory step of gene expression. Butyl benzyl phthalate (BBP) was found to directly inhibit mRNA translation in vitro but showed a complicated pattern of affecting mRNA translation in cells. In human kidney embryonic cell (HEK-293T), BBP increased cap-dependent mRNA translation at lower concentrations but showed inhibitory effect at higher concentrations. Cap-independent translation was not affected. On the other hand, mono (2-ethylhexyl) phthalate (MEHP) as a major metabolite of another important phthalate di (2-ethylhexyl) phthalate (DEHP) inhibited both can-dependent and -independent mRNA translation in vivo. In contrast, BBP and MEHP exhibited an overall promoting effect on mRNA translation in cancer cells. Mechanistic studies identified that the level and phosphorylation of eIF4E-BP (eIF4E binding protein) and the amount of eIF4GI in eIF4F complex were altered in accordance with the effect of BBP on translation. BBP was also identified to directly bind to eIF4E, providing a further mechanism underlying the regulation of mRNA by phthalate. At the cellular level BBP inhibited normal cell growth but slightly promoted cancer cells (HT29) growth. Overall, this study provides the first evidence that phthalates can directly regulate mRNA translation as a novel mechanism to mediate their biological toxicities. PMID:27992464

  14. Regulation of mRNA Translation Is a Novel Mechanism for Phthalate Toxicity.

    PubMed

    Ling, Jun; Lopez-Dee, Zenaida P; Cottell, Colby; Wolfe, Laura; Nye, Derek

    2016-01-01

    Phthalates are a group of plasticizers that are widely used in many consumer products and medical devices, thus generating a huge burden to human health. Phthalates have been known to cause a number of developmental and reproductive disorders functioning as endocrine modulators. They are also involved in carcinogenesis with mechanisms less understood. To further understand the molecular mechanisms of phthalate toxicity, in this study we reported a new effect of phthalates on mRNA translation/protein synthesis, a key regulatory step of gene expression. Butyl benzyl phthalate (BBP) was found to directly inhibit mRNA translation in vitro but showed a complicated pattern of affecting mRNA translation in cells. In human kidney embryonic cell (HEK-293T), BBP increased cap-dependent mRNA translation at lower concentrations but showed inhibitory effect at higher concentrations. Cap-independent translation was not affected. On the other hand, mono (2-ethylhexyl) phthalate (MEHP) as a major metabolite of another important phthalate di (2-ethylhexyl) phthalate (DEHP) inhibited both can-dependent and -independent mRNA translation in vivo. In contrast, BBP and MEHP exhibited an overall promoting effect on mRNA translation in cancer cells. Mechanistic studies identified that the level and phosphorylation of eIF4E-BP (eIF4E binding protein) and the amount of eIF4GI in eIF4F complex were altered in accordance with the effect of BBP on translation. BBP was also identified to directly bind to eIF4E, providing a further mechanism underlying the regulation of mRNA by phthalate. At the cellular level BBP inhibited normal cell growth but slightly promoted cancer cells (HT29) growth. Overall, this study provides the first evidence that phthalates can directly regulate mRNA translation as a novel mechanism to mediate their biological toxicities.

  15. Sensitivity of mRNA Translation.

    PubMed

    Poker, Gilad; Margaliot, Michael; Tuller, Tamir

    2015-08-04

    Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5' end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies.

  16. Sensitivity of mRNA Translation

    PubMed Central

    Poker, Gilad; Margaliot, Michael; Tuller, Tamir

    2015-01-01

    Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5′ end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies. PMID:26238363

  17. TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.

    PubMed

    Guedes de Almeida, Luciana; Silva Sergio, Luiz Philippe da; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza

    2017-02-16

    Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.

  18. Competitive binding of AUF1 and TIAR to MYC mRNA controls its translation.

    PubMed

    Liao, Baisong; Hu, Yan; Brewer, Gary

    2007-06-01

    (A+U)-rich elements (AREs) within 3' untranslated regions are signals for rapid degradation of messenger RNAs encoding many oncoproteins and cytokines. The ARE-binding protein AUF1 contributes to their degradation. We identified MYC proto-oncogene mRNA as a cellular AUF1 target. Levels of MYC translation and cell proliferation were proportional to AUF1 abundance but inversely proportional to the abundance of the ARE-binding protein TIAR, a MYC translational suppressor. Both AUF1 and TIAR affected MYC translation via the ARE without affecting mRNA abundance. Altering association of one ARE-binding protein with MYC mRNA in vivo reciprocally affected mRNA association with the other protein. Finally, genetic experiments revealed that AUF1 and TIAR control proliferation by a MYC-dependent pathway. Together, these observations suggest a novel regulatory mechanism where tuning the ratios of AUF1 and TIAR bound to MYC mRNA permits dynamic control of MYC translation and cell proliferation.

  19. Mechanism of Cytoplasmic mRNA Translation

    PubMed Central

    2015-01-01

    Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings. PMID:26019692

  20. Viscum album-Mediated COX-2 Inhibition Implicates Destabilization of COX-2 mRNA

    PubMed Central

    Saha, Chaitrali; Hegde, Pushpa; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srinivas V.

    2015-01-01

    Extensive use of Viscum album (VA) preparations in the complementary therapy of cancer and in several other human pathologies has led to an increasing number of cellular and molecular approaches to explore the mechanisms of action of VA. We have recently demonstrated that, VA preparations exert a potent anti-inflammatory effect by selectively down-regulating the COX-2-mediated cytokine-induced secretion of prostaglandin E2 (PGE2), one of the important molecular signatures of inflammatory reactions. In this study, we observed a significant down-regulation of COX-2 protein expression in VA-treated A549 cells however COX-2 mRNA levels were unaltered. Therefore, we hypothesized that VA induces destabilisation of COX-2 mRNA, thereby depleting the available functional COX-2 mRNA for the protein synthesis and for the subsequent secretion of PGE2. To address this question, we analyzed the molecular degradation of COX-2 protein and its corresponding mRNA in A549 cell line. Using cyclohexamide pulse chase experiment, we demonstrate that, COX-2 protein degradation is not affected by the treatment with VA whereas experiments on transcriptional blockade with actinomycin D, revealed a marked reduction in the half life of COX-2 mRNA due to its rapid degradation in the cells treated with VA compared to that in IL-1β-stimulated cells. These results thus demonstrate that VA-mediated inhibition of PGE2 implicates destabilization of COX-2 mRNA. PMID:25664986

  1. Staufen-mediated mRNA decay

    PubMed Central

    Park, Eonyoung; Maquat, Lynne E.

    2013-01-01

    Staufen1 (STAU1)-mediated mRNA decay (SMD) is an mRNA degradation process in mammalian cells that is mediated by the binding of STAU1 to a STAU1-binding site (SBS) within the 3'-untranslated region (3'UTR) of target mRNAs. During SMD, STAU1, a double-stranded (ds) RNA-binding protein, recognizes dsRNA structures formed either by intramolecular base-pairing of 3'UTR sequences or by intermolecular base-pairing of 3'UTR sequences with a long noncoding RNA (lncRNA) via partially complementary Alu elements. Recently, STAU2, a paralog of STAU1, has also been reported to mediate SMD. Both STAU1 and STAU2 interact directly with the ATP-dependent RNA helicase UPF1, a key SMD factor, enhancing its helicase activity to promote effective SMD. Moreover, STAU1 and STAU2 form homodimeric and heterodimeric interactions via domain-swapping. Since both SMD and the mechanistically related nonsense-mediated mRNA decay (NMD) employ UPF1, SMD and NMD are competitive pathways. Competition contributes to cellular differentiation processes, such as myogenesis and adipogenesis, placing SMD at the heart of various physiologically important mechanisms. PMID:23681777

  2. Tristetraprolin (TTP): Interactions with mRNA and proteins, and current thoughts on mechanisms of action

    PubMed Central

    Brooks, Seth A.; Blackshear, Perry J.

    2013-01-01

    Changes in mRNA stability and translation are critical control points in the regulation of gene expression, particularly genes encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenosine and uridine (AU)-rich elements (ARE), often located in the 3′ untranslated regions (3′UTR) of mRNAs, are known to target transcripts for rapid decay. They are also involved in the regulation of mRNA stability and translation in response to extracellular cues. This review focuses on one of the best characterized ARE binding proteins, tristetraprolin (TTP), the founding member of a small family of CCCH tandem zinc finger proteins. In this survey, we have reviewed the current status of TTP interactions with mRNA and proteins, and discussed current thinking about TTP's mechanism of action to promote mRNA decay. We also review the proposed regulation of TTP's functions by phosphorylation. Finally, we have discussed emerging evidence for TTP operating as a translational regulator. PMID:23428348

  3. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acids in relaxed and stringent amino acid auxotrophs of Escherichia coli.

    PubMed

    Gray, W J; Midgley, J E

    1972-08-01

    The biosynthesis and stability of various RNA fractions was studied in RC(str) and RC(rel) multiple amino acid auxotrophs of Escherichia coli. In conditions of amino acid deprivation, RC(str) mutants were labelled with exogenous nucleotide bases at less than 1% of the rate found in cultures growing normally in supplemented media. Studies by DNA-RNA hybridization and by other methods showed that, during a period of amino acid withdrawal, not more than 60-70% of the labelled RNA formed in RC(str) mutants had the characteristics of mRNA. Evidence was obtained for some degradation of newly formed 16S and 23S rRNA species to heterogeneous material of lower molecular weight. This led to overestimations of the mRNA content of rapidly labelled RNA from such methods as simple examination of sucrose-density-gradient profiles. In RC(rel) strains the absolute and relative rates of synthesis of the various RNA fractions were not greatly affected. However, the stability of about half of the mRNA fraction was increased in RC(rel) strains during amino acid starvation, giving kinetics of mRNA labelling and turnover that were identical with those found in either RC(str) or RC(rel) strains inhibited by high concentrations of chloramphenicol. Coincidence hybridization techniques showed that the mRNA content of amino acid-starved RC(str) auxotrophs was unchanged from that found in normally growing cells. In contrast, RC(rel) strains deprived of amino acids increased their mRNA content about threefold. In such cultures the mRNA content of accumulating newly formed RNA was a constant 16% by wt.

  4. The use of Molecular Beacons to Directly Measure Bacterial mRNA Abundances and Transcript Degradation

    PubMed Central

    Kuechenmeister, Lisa J.; Anderson, Kelsi L.; Morrison, John M.; Dunman, Paul M.

    2009-01-01

    The regulation of mRNA turnover is a dynamic means by which bacteria regulate gene expression. Although current methodologies allow characterization of the stability of individual transcripts, procedures designed to measure alterations in transcript abundance/turnover on a high throughput scale are lacking. In the current report, we describe the development of a rapid and simplified molecular beacon-based procedure to directly measure the mRNA abundances and mRNA degradation properties of well-characterized Staphylococcus aureus pathogenicity factors. This method does not require any PCR-based amplification, can monitor the abundances of multiple transcripts within a single RNA sample, and was successfully implemented into a high throughput screen of transposon mutant library members to detect isolates with altered mRNA turnover properties. It is expected that the described methodology will provide great utility in characterizing components of bacterial RNA degradation processes and can be used to directly measure the mRNA levels of virtually any bacterial transcript. PMID:18992285

  5. Comparing efficiency of micro-RNA and mRNA biomarker liberation with microbubble-enhanced ultrasound exposure.

    PubMed

    Forbrich, Alex; Paproski, Robert; Hitt, Mary; Zemp, Roger

    2014-09-01

    Blood biomarkers are potentially powerful diagnostic tools that are limited clinically by low concentrations, the inability to determine biomarker origin and unknown patient baseline. Recently, ultrasound has been shown to liberate proteins and large mRNA biomarkers, overcoming many of these limitations. We have since demonstrated that adding lipid-stabilized microbubbles elevates mRNA concentration an order of magnitude compared with ultrasound without microbubbles, in vitro. Unfortunately the large size of some mRNA molecules may limit efficiency of release and hinder efficacy as an ultrasound-liberated biomarker. We hypothesize that smaller molecules will be released more efficiently with ultrasound than larger molecules. Although investigation of large libraries of biomarkers should be performed to fully validate this hypothesis, we focus on a small subset of mRNA and micro-RNAs. Specifically, we focus on miR-21 (22 base pairs [bp]), which is upregulated in certain forms of cancer, compared with previously investigated mammaglobin mRNA (502 bp). We also report release of micro-RNA miR-155 (22 bp) and housekeeping rRNA S18 (1869 bp). More than 10 million additional miR-21 copies per 100,000 cells are released with ultrasound-microbubble exposure. The low- molecular-weight miR-21 proved to be liberated 50 times more efficiently than high-molecular-weight mammaglobin mRNA, releasing orders of magnitude more miR-21 than mammaglobin mRNA under comparable conditions.

  6. Food Fortification Stability Study

    NASA Technical Reports Server (NTRS)

    Sirmons, T. A.; Cooper, M. R.; Douglas, G. L.

    2016-01-01

    This study aims to assess the stability of vitamin content, sensory acceptability and color variation in fortified spaceflight foods over a period of 2 years. Findings will identify optimal formulation, processing, and storage conditions to maintain stability and acceptability of commercially available fortification nutrients. Changes in food quality are being monitored to indicate whether fortification affects quality over time (compared to the unfortified control), thus indicating their potential for use on long-duration missions.

  7. Food Fortification Stability Study

    NASA Technical Reports Server (NTRS)

    Sirmons, T. A.; Cooper, M. R.; Douglas, G. L.

    2017-01-01

    This study aimed to assess the stability of vitamin content, sensory acceptability and color variation in fortified spaceflight foods over a period of two years. Findings will help to identify optimal formulation, processing, and storage conditions to maintain stability and acceptability of commercially available fortification nutrients. Changes in food quality were monitored to indicate whether fortification affects quality over time (compared to the unfortified control), thus indicating their potential for use on long-duration missions.

  8. Shearing stability of lubricants

    NASA Technical Reports Server (NTRS)

    Shiba, Y.; Gijyutsu, G.

    1984-01-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  9. Increased myogenic repressor Id mRNA and protein levels in hindlimb muscles of aged rats.

    PubMed

    Alway, Stephen E; Degens, Hans; Lowe, Dawn A; Krishnamurthy, Gururaj

    2002-02-01

    The objective of this study was to determine if levels of repressors to myogenic regulatory factors (MRFs) differ between muscles from young adult and aged animals. Total RNA from plantaris, gastrocnemius, and soleus muscles of Fischer 344 x Brown Norway rats aged 9 mo (young adult, n = 10) and 37 mo (aged, n = 10) was reverse transcribed and then amplified by PCR. To obtain a semiquantitative measure of the mRNA levels, PCR signals were normalized to cyclophilin or 18S signals from the corresponding reverse transcription product. Normalization to cyclophilin and 18S gave similar results. The mRNA levels of MyoD and myogenin were approximately 275-650% (P < 0.001) and approximately 500-1,100% (P < 0.001) greater, respectively, in muscles from aged compared with young adults. In contrast, the protein levels were lower in plantaris and gastrocnemius muscles and similar in the soleus muscle of aged vs. young adult rats. Id repressor mRNA levels were approximately 300-900% greater in fast and slow muscles of aged animals (P < or = 0.02), and Mist 1 mRNA was approximately 50% greater in the plantaris and gastrocnemius muscles (P < 0.01). The mRNA level of Twist mRNA was not significantly affected by aging. Id-1, Id-2, and Id-3 protein levels were approximately 17-740% greater (P < 0.05) in hindlimb muscles of aged rats compared with young adult rats. The elevated levels of Id mRNA and protein suggest that MRF repressors may play a role in gene regulation of fast and slow muscles in aged rats.

  10. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics

    PubMed Central

    Kurkcuoglu, Ozge; Doruker, Pemra; Sen, Taner Z.; Kloczkowski, Andrzej; Jernigan, Robert L.

    2009-01-01

    The protein-synthesizing ribosome undergoes large motions to effect the translocation of tRNAs and mRNA; here the domain motions of this system are explored with a coarse-grained elastic network model using normal mode analysis. Crystal structures are used to construct various model systems of the 70S complex with/without tRNA, elongation factor Tu and the ribosomal proteins. Computed motions reveal the well-known ratchet-like rotational motion of the large subunits, as well as the head rotation of the small subunit and the high flexibility of the L1 and L7/L12 stalks, even in the absence of ribosomal proteins. This result indicates that these experimentally observed motions during translocation are inherently controlled by the ribosomal shape and only partially dependent upon GTP hydrolysis. Normal mode analysis further reveals the mobility of A- and P-tRNAs to increase in the absence of the E-tRNA. In addition, the dynamics of the E-tRNA is affected by the absence of the ribosomal protein L1. The mRNA in the entrance tunnel interacts directly with helicase proteins S3 and S4, which constrain the mRNA in a clamp-like fashion, as well as with protein S5, which likely orients the mRNA to ensure correct translation. The ribosomal proteins S7, S11 and S18 may also be involved in assuring translation fidelity by constraining the mRNA at the exit site of the channel. The mRNA also interacts with the 16S 3’ end forming the Shine-Dalgarno complex at the initiation step; the 3’ end may act as a ‘hook’ to reel in the mRNA to facilitate its exit. PACS: 87.10.Pq; 87.15.bk; 87.15.kj; 87.16.dj; 87.16.dr PMID:19029596

  11. Real-Time Quantification of AFP mRNA to Assess Hematogenous Dissemination After Transarterial Chemoembolization of Hepatocellular Carcinoma

    PubMed Central

    Gross-Goupil, Marine; Saffroy, Raphaël; Azoulay, Daniel; Precetti, Sophie; Emile, Jean-François; Delvart, Valérie; Tindilière, Fréderic; Laurent, Alexis; Bellin, Marie-France; Bismuth, Henri; Debuire, Brigitte; Lemoine, Antoinette

    2003-01-01

    Objective: To determine whether the number of hepatocytes containing AFP mRNA shed into the bloodstream during transarterial chemoembolization (TAE) affects the incidence and pattern of recurrence of hepatocellular carcinoma (HCC). Patients and Methods: We developed a Taqman procedure to quantify AFP mRNA prospectively in 52 consecutive patients before and after TAE. Results are expressed in hepatocytes /mL. Results: Thirteen of the patients (24.5%) were positive for AFP mRNA (42 ± 19 hepatocytes/mL) before TAE and 13 (24.5%) (80 ± 32 hepatocytes/mL) after TAE; the difference was not significant. The presence of AFP mRNA in the bloodstream before TAE was associated with larger nodules (85.2 ± 73.8 mm versus 34.8 ± 26.1 mm; P = 0.006). Six of the patients were excluded from the analysis because they underwent curative surgery or were lost to follow-up. The circulating levels of AFP mRNA released in the 46 remaining patients after TAE did not affect metastasis-free survival. A significant number of extrahepatic metastases were found in patients exhibiting at least 1 AFP mRNA-positive blood sample either before or after TAE. However, the TAE procedure did not increase the risk of extrahepatic recurrences. Conclusion: Cells containing AFP mRNA are inconsistently released into the circulation during TAE. The amount of these cells released does not affect the recurrence of HCC. PMID:12894018

  12. Zinc metallothionein (MT) induction by parenteral iron and endotoxin: A temporal analysis of hepatic MT mRNA changes

    SciTech Connect

    McCormick, C.C. )

    1991-03-15

    The present study was undertaken to compare the temporal characteristics of iron-induced hepatic MT mRNA accumulation to that effected by endotoxin. Young chicks were given (ip) either endotoxin, ferrous gluconate or an equivalent volume of saline. At various times following injections, liver was obtained from 5 chicks per treatment for total RNA extraction. Equal amounts of total hepatic RNA from each chick were pooled and 10 {mu}g separated by denaturing agarose gel electrophoresis. Hepatic MT mRNA and albumin mRNA were analyzed by Northern blot analysis using synthetic oligonucleotides. The results indicated little temporal difference in the accumulation of hepatic MT mRNA as affected by either endotoxin or iron. In both treatments, MT mRNA was minimally affected at 3 hours post-injection. Maximum accumulation was achieved during a 6 h period from 6 to 12 hours post-injection. At 24 hours, MT mRNA was considerably higher in liver of endotoxin-injected chicks when compared to that of iron-injection chicks. Albumin expression appeared not to be substantially affected by either treatment. The results suggest that the induction of hepatic MT by iron injection is not substantially different than that observed following endotoxin administration. It would be speculative to suggest that the processes by which MT is induced under these conditions are also similar.

  13. Transformer 2β and miR-204 regulate apoptosis through competitive binding to 3' UTR of BCL2 mRNA.

    PubMed

    Kuwano, Y; Nishida, K; Kajita, K; Satake, Y; Akaike, Y; Fujita, K; Kano, S; Masuda, K; Rokutan, K

    2015-05-01

    RNA-binding proteins and microRNAs are potent post-transcriptional regulators of gene expression. Human transformer 2β (Tra2β) is a serine/arginine-rich-like protein splicing factor and is now implicated to have wide-ranging roles in gene expression as an RNA-binding protein. RNA immunoprecipitation (RIP) with an anti-Tra2β antibody and microarray analysis identified a subset of Tra2β-associated mRNAs in HCT116 human colon cancer cells, many of which encoded cell death-related proteins including Bcl-2 (B-cell CLL/lymphoma 2). Tra2β knockdown in HCT116 cells decreased Bcl-2 expression and induced apoptosis. Tra2β knockdown accelerated the decay of BCL2α mRNA that encodes Bcl-2 and full-length 3' UTR, while it did not affect the stability of BCL2β mRNA having a short, alternatively spliced 3' UTR different from BCL2α 3' UTR. RIP assays with anti-Tra2β and anti-Argonaute 2 antibodies, respectively, showed that Tra2β bound to BCL2α 3' UTR, and that Tra2β knockdown facilitated association of miR-204 with BCL2α 3' UTR. The consensus sequence (GAA) for Tra2β-binding lies within the miR-204-binding site of BCL2 3' UTR. Mutation of the consensus sequence canceled the binding of Tra2β to BCL2 3' UTR without disrupting miR-204-binding to BCL2 3' UTR. Transfection of an anti-miR-204 or introduction of three-point mutations into the miR-204-binding site increased BCL2 mRNA and Bcl-2 protein levels. Inversely, transfection of precursor miR-204 reduced their levels. Experiments with Tra2β-silenced or overexpressed cells revealed that Tra2β antagonized the effects of miR-204 and upregulated Bcl-2 expression. Furthermore, TRA2β mRNA expression was significantly upregulated in 22 colon cancer tissues compared with paired normal tissues and positively correlated with BCL2 mRNA expression. Tra2β knockdown in human lung adenocarcinoma cells (A549) increased their sensitivity to anticancer drugs. Taken together, our findings suggest that Tra2β regulates apoptosis by

  14. Transformer 2β and miR-204 regulate apoptosis through competitive binding to 3′ UTR of BCL2 mRNA

    PubMed Central

    Kuwano, Y; Nishida, K; Kajita, K; Satake, Y; Akaike, Y; Fujita, K; Kano, S; Masuda, K; Rokutan, K

    2015-01-01

    RNA-binding proteins and microRNAs are potent post-transcriptional regulators of gene expression. Human transformer 2β (Tra2β) is a serine/arginine-rich-like protein splicing factor and is now implicated to have wide-ranging roles in gene expression as an RNA-binding protein. RNA immunoprecipitation (RIP) with an anti-Tra2β antibody and microarray analysis identified a subset of Tra2β-associated mRNAs in HCT116 human colon cancer cells, many of which encoded cell death-related proteins including Bcl-2 (B-cell CLL/lymphoma 2). Tra2β knockdown in HCT116 cells decreased Bcl-2 expression and induced apoptosis. Tra2β knockdown accelerated the decay of BCL2α mRNA that encodes Bcl-2 and full-length 3′ UTR, while it did not affect the stability of BCL2β mRNA having a short, alternatively spliced 3′ UTR different from BCL2α 3′ UTR. RIP assays with anti-Tra2β and anti-Argonaute 2 antibodies, respectively, showed that Tra2β bound to BCL2α 3′ UTR, and that Tra2β knockdown facilitated association of miR-204 with BCL2α 3′ UTR. The consensus sequence (GAA) for Tra2β-binding lies within the miR-204-binding site of BCL2 3′ UTR. Mutation of the consensus sequence canceled the binding of Tra2β to BCL2 3′ UTR without disrupting miR-204-binding to BCL2 3′ UTR. Transfection of an anti-miR-204 or introduction of three-point mutations into the miR-204-binding site increased BCL2 mRNA and Bcl-2 protein levels. Inversely, transfection of precursor miR-204 reduced their levels. Experiments with Tra2β-silenced or overexpressed cells revealed that Tra2β antagonized the effects of miR-204 and upregulated Bcl-2 expression. Furthermore, TRA2β mRNA expression was significantly upregulated in 22 colon cancer tissues compared with paired normal tissues and positively correlated with BCL2 mRNA expression. Tra2β knockdown in human lung adenocarcinoma cells (A549) increased their sensitivity to anticancer drugs. Taken together, our findings suggest that Tra2

  15. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons

    PubMed Central

    Fallini, Claudia; Donlin-Asp, Paul G.; Rouanet, Jeremy P.

    2016-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels of GAP43 mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restores GAP43 mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. SIGNIFICANCE STATEMENT The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite

  16. Ammonium Chloride Ingestion Attenuates Exercise-Induced mRNA Levels in Human Muscle

    PubMed Central

    Mündel, Toby; Pilegaard, Henriette; Hawke, Emma; Leikis, Murray; Lopez-Villalobos, Nicolas; Oliveira, Rodrigo S. F.; Bishop, David J.

    2015-01-01

    Minimizing the decrease in intracellular pH during high-intensity exercise training promotes greater improvements in mitochondrial respiration. This raises the intriguing hypothesis that pH may affect the exercise-induced transcription of genes that regulate mitochondrial biogenesis. Eight males performed 10x2-min cycle intervals at 80% V˙O2peak intensity on two occasions separated by ~2 weeks. Participants ingested either ammonium chloride (ACID) or calcium carbonate (PLA) the day before and on the day of the exercise trial in a randomized, counterbalanced order, using a crossover design. Biopsies were taken from the vastus lateralis muscle before and after exercise. The mRNA level of peroxisome proliferator-activated receptor co-activator 1α (PGC-1α), citrate synthase, cytochome c and FOXO1 was elevated at rest following ACID (P<0.05). During the PLA condition, the mRNA content of mitochondrial- and glucose-regulating proteins was elevated immediately following exercise (P<0.05). In the early phase (0–2 h) of post-exercise recovery during ACID, PGC-1α, citrate synthase, cytochome C, FOXO1, GLUT4, and HKII mRNA levels were not different from resting levels (P>0.05); the difference in PGC-1α mRNA content 2 h post-exercise between ACID and PLA was not significant (P = 0.08). Thus, metabolic acidosis abolished the early post-exercise increase of PGC-1α mRNA and the mRNA of downstream mitochondrial and glucose-regulating proteins. These findings indicate that metabolic acidosis may affect mitochondrial biogenesis, with divergent responses in resting and post-exercise skeletal muscle. PMID:26656911

  17. Identification of Edc3p as an enhancer of mRNA decapping in Saccharomyces cerevisiae.

    PubMed Central

    Kshirsagar, Meenakshi; Parker, Roy

    2004-01-01

    The major pathway of mRNA decay in yeast initiates with deadenylation, followed by mRNA decapping and 5'-3' exonuclease digestion. An in silico approach was used to identify new proteins involved in the mRNA decay pathway. One such protein, Edc3p, was identified as a conserved protein of unknown function having extensive two-hybrid interactions with several proteins involved in mRNA decapping and 5'-3' degradation including Dcp1p, Dcp2p, Dhh1p, Lsm1p, and the 5'-3' exonuclease, Xrn1p. We show that Edc3p can stimulate mRNA decapping of both unstable and stable mRNAs in yeast when the decapping enzyme is compromised by temperature-sensitive alleles of either the DCP1 or the DCP2 genes. In these cases, deletion of EDC3 caused a synergistic mRNA-decapping defect at the permissive temperatures. The edc3Delta had no effect when combined with the lsm1Delta, dhh1Delta, or pat1Delta mutations, which appear to affect an early step in the decapping pathway. This suggests that Edc3p specifically affects the function of the decapping enzyme per se. Consistent with a functional role in decapping, GFP-tagged Edc3p localizes to cytoplasmic foci involved in mRNA decapping referred to as P-bodies. These results identify Edc3p as a new protein involved in the decapping reaction. PMID:15020463

  18. Quantitative studies of mRNA recruitment to the eukaryotic ribosome

    PubMed Central

    Fraser, Christopher S.

    2015-01-01

    The process of peptide bond synthesis by ribosomes is conserved between species, but the initiation step differs greatly between the three kingdoms of life. This is illustrated by the evolution of roughly an order of magnitude more initiation factor mass found in humans compared with bacteria. Eukaryotic initiation of translation is comprised of a number of sub-steps: (i) recruitment of an mRNA and initiator methionyl-tRNA to the 40S ribosomal subunit; (ii) migration of the 40S subunit along the 5′ UTR to locate the initiation codon; and (iii) recruitment of the 60S subunit to form the 80S initiation complex. Although the mechanism and regulation of initiation has been studied for decades, many aspects of the pathway remain unclear. In this review, I will focus discussion on what is known about the mechanism of mRNA selection and its recruitment to the 40S subunit. I will summarize how the 43S preinitiation complex (PIC) is formed and stabilized by interactions between its components. I will discuss what is known about the mechanism of mRNA selection by the eukaryotic initiation factor 4F (eIF4F) complex and how the selected mRNA is recruited to the 43S PIC. The regulation of this process by secondary structure located in the 5′ UTR of an mRNA will also be discussed. Finally, I present a possible kinetic model with which to explain the process of mRNA selection and recruitment to the eukaryotic ribosome. PMID:25742741

  19. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    PubMed

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release

  20. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction

    PubMed Central

    Pu, Xiangyuan; Ren, Meixia; An, Weiwei; Zhang, Ruoxin; Yan, Shunying; Situ, Haiteng; He, Xinjie; Chen, Yequn; Tan, Xuerui; Xiao, Qingzhong; Tucker, Arthur T.; Caulfield, Mark J.; Ye, Shu

    2016-01-01

    Genome-wide association studies have revealed an association between coronary heart disease (CHD) and genetic variation on chromosome 13q34, with the lead single nucleotide polymorphism rs4773144 residing in the COL4A2 gene in this genomic region. We investigated the functional effects of this genetic variant. Analyses of primary cultures of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) from different individuals showed a difference between rs4773144 genotypes in COL4A2 and COL4A1 expression levels, being lowest in the G/G genotype, intermediate in A/G and highest in A/A. Chromatin immunoprecipitation followed by allelic imbalance assays of primary cultures of SMCs and ECs that were of the A/G genotype revealed that the G allele had lower transcriptional activity than the A allele. Electrophoretic mobility shift assays and luciferase reporter gene assays showed that a short DNA sequence encompassing the rs4773144 site interacted with a nuclear protein, with lower efficiency for the G allele, and that the G allele sequence had lower activity in driving reporter gene expression. Analyses of cultured SMCs from different individuals demonstrated that cells of the G/G genotype had higher apoptosis rates. Immunohistochemical and histological examinations of ex vivo atherosclerotic coronary arteries from different individuals disclosed that atherosclerotic plaques with the G/G genotype had lower collagen IV abundance and thinner fibrous cap, a hallmark of unstable, rupture-prone plaques. A study of a cohort of patients with angiographically documented coronary artery disease showed that patients of the G/G genotype had higher rates of myocardial infarction, a phenotype often caused by plaque rupture. These results indicate that the CHD-related genetic variant at the COL4A2 locus affects COL4A2/COL4A1 expression, SMC survival, and atherosclerotic plaque stability, providing a mechanistic explanation for the association between the genetic variant and CHD

  1. Purification and characterization of mRNA cap-binding protein from Drosophila melanogaster embryos.

    PubMed Central

    Maroto, F G; Sierra, J M

    1989-01-01

    A protein with specific affinity for the mRNA cap structure was purified both from the postribosomal supernatant and from the ribosomal high-salt wash of Drosophila melanogaster embryos by m7GTP-Sepharose chromatography. This protein had an apparent molecular mass of 35 kilodaltons (kDa) in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a size very different from those of the cap-binding proteins that have been characterized thus far. Drosophila 35-kDa cap-binding protein (CBP) could also be isolated from the ribosomal high-salt wash as part of a salt-stable protein complex consisting of polypeptides of 35, 72, and 140 to 180 kDa. Polyclonal antibodies against Drosophila 35-kDa CBP neither reacted with eucaryotic initiation factor 4E from rabbit reticulocytes nor affected mRNA translation in a rabbit reticulocyte cell-free system. However, in a cell-free system from Drosophila embryos, mRNA translation was specifically inhibited by these antibodies. The requirement of 35-kDa CBP for mRNA translation in Drosophila was diminished under ionic conditions in which the importance of mRNA cap structure recognition was reduced. Despite the structural differences between Drosophila 35-kDa CBP and mammalian initiation factor 4E, both proteins were functionally interchangeable in the in vitro translation system from Drosophila embryos. Images PMID:2501660

  2. Dietary fat elevates hepatic apoA-I production by increasing the fraction of apolipoprotein A-I mRNA in the translating pool.

    PubMed

    Azrolan, N; Odaka, H; Breslow, J L; Fisher, E A

    1995-08-25

    Elevated plasma high density lipoprotein cholesterol (HDL-C) levels are associated with a decreased risk for coronary heart disease. Ironically, diets enriched in saturated fat and cholesterol (HF/HC diets), which tend to accelerate atherosclerotic processes by increasing LDL cholesterol levels, also raise HDL-C. We have recently reported, using a human apoA-I (hapoA-1) transgenic mouse model, that the elevation of HDL-C by a HF/HC diet is attributable, in part, to an increase in the hepatic production of hapoA-1. To further define the hepatocellular processes associated with this induction, we have prepared primary hepatocytes from hapoA-1 transgenic mice. Rates of hapoA-1 secretion were 40% greater from cells prepared from animals fed the HF/HC relative to a low fat-low cholesterol (LF/LC) control diet. The abundance of hapoA-1 mRNA in these cells was similar between hepatocytes prepared from the HF/HC and LF/LC diet fed animals, suggesting a post-transcriptional mechanism that does not involve mRNA stability. Inhibition of secretion using brefeldin A revealed an increase in cellular hapoA-1 accumulation. Thus, the HF/HC diet apparently affects hepatic hapoA-1 production via a mechanism that is manifest prior to the exit of newly synthesized hapoA-1 from the Golgi. Pulse-chase experiments revealed a 39% greater peak hapoA-1 synthesis, with no difference in the degradation of total labeled hapoA-1 protein, as a result of the HF/HC diet feeding. Finally, resolution of liver S10 extracts via sucrose density sedimentation and metrizamide density equilibrium gradient centrifugation analyses both revealed similar increases (31 and 24%, respectively) in the relative percentage of hapoA-1 mRNA associated with the translating polysomal fractions as a result of the HF/HC feeding. Together, these data suggest that the HF/HC diet affects hepatic hapoA-1 production via a specific modulation in the relative amount of hapoA-1 mRNA in the polysomal pool. These observations

  3. Light-dark condition regulates sirtuin mRNA levels in the retina.

    PubMed

    Ban, Norimitsu; Ozawa, Yoko; Inaba, Takaaki; Miyake, Seiji; Watanabe, Mitsuhiro; Shinmura, Ken; Tsubota, Kazuo

    2013-11-01

    Sirtuins (Sirt1-7) are nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases/ADP-ribosyltransferases that modulate many metabolic responses affecting aging. Sirtuins expressed in tissues and organs involved in systemic metabolism have been extensively studied. However, the characteristics of sirtuins in the retina, where local energy expenditure changes dynamically in response to light stimuli, are largely unknown. Here we analyzed sirtuin mRNA levels by real-time PCR, and found that all seven sirtuins are highly expressed in the retina compared with other tissues, such as liver. We then analyzed the sirtuin mRNA profiles in the retina over time, under a 12-h light/12-h dark cycle (LD condition) and in constant darkness (DD condition). All seven sirtuins showed significant daily variation under the LD condition, with all except Sirt6 being increased in the dark phase. The expression patterns were different under the DD condition, suggesting that sirtuin mRNA levels except Sirt6 are affected by light-dark condition. These findings were not obtained in the brain and liver. In addition, the mRNA expression patterns of Nicotinamide phosphoribosyltransferase (Nampt), peroxisome proliferator-activated receptor gamma coactivator (PGC1α), and transcription factor A, mitochondrial (Tfam) in the retina, were similar to those of the sirtuins except Sirt6. Our observations provide new insights into the metabolic mechanisms of the retina and the sirtuins' regulatory systems.

  4. Global analysis of mRNA decay intermediates in Saccharomyces cerevisiae.

    PubMed

    Harigaya, Yuriko; Parker, Roy

    2012-07-17

    The general pathways of eukaryotic mRNA decay occur via deadenylation followed by 3' to 5' degradation or decapping, although some endonuclease sites have been identified in metazoan mRNAs. To determine the role of endonucleases in mRNA degradation in Saccharomyces cerevisiae, we mapped 5' monophosphate ends on mRNAs in wild-type and dcp2 xrn1 yeast cells, wherein mRNA endonuclease cleavage products are stabilized. This led to three important observations. First, only few mRNAs that undergo low-level endonucleolytic cleavage were observed, suggesting that endonucleases are not a major contributor to yeast mRNA decay. Second, independent of known decapping enzymes, we observed low levels of 5' monophosphates on some mRNAs, suggesting that an unknown mechanism can generate 5' exposed ends, although for all substrates tested, Dcp2 was the primary decapping enzyme. Finally, we identified debranched lariat intermediates from intron-containing genes, demonstrating a significant discard pathway for mRNAs during the second step of pre-mRNA splicing, which is a potential step to regulate gene expression.

  5. Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay

    PubMed Central

    Hausburg, Melissa A; Doles, Jason D; Clement, Sandra L; Cadwallader, Adam B; Hall, Monica N; Blackshear, Perry J; Lykke-Andersen, Jens; Olwin, Bradley B

    2015-01-01

    Skeletal muscle satellite cells in their niche are quiescent and upon muscle injury, exit quiescence, proliferate to repair muscle tissue, and self-renew to replenish the satellite cell population. To understand the mechanisms involved in maintaining satellite cell quiescence, we identified gene transcripts that were differentially expressed during satellite cell activation following muscle injury. Transcripts encoding RNA binding proteins were among the most significantly changed and included the mRNA decay factor Tristetraprolin. Tristetraprolin promotes the decay of MyoD mRNA, which encodes a transcriptional regulator of myogenic commitment, via binding to the MyoD mRNA 3′ untranslated region. Upon satellite cell activation, p38α/β MAPK phosphorylates MAPKAP2 and inactivates Tristetraprolin, stabilizing MyoD mRNA. Satellite cell specific knockdown of Tristetraprolin precociously activates satellite cells in vivo, enabling MyoD accumulation, differentiation and cell fusion into myofibers. Regulation of mRNAs by Tristetraprolin appears to function as one of several critical post-transcriptional regulatory mechanisms controlling satellite cell homeostasis. DOI: http://dx.doi.org/10.7554/eLife.03390.001 PMID:25815583

  6. Cell cycle-dependent regulation of Aurora kinase B mRNA by the Microprocessor complex.

    PubMed

    Jung, Eunsun; Seong, Youngmo; Seo, Jae Hong; Kwon, Young-Soo; Song, Hoseok

    2014-03-28

    Aurora kinase B regulates the segregation of chromosomes and the spindle checkpoint during mitosis. In this study, we showed that the Microprocessor complex, which is responsible for the processing of the primary transcripts during the generation of microRNAs, destabilizes the mRNA of Aurora kinase B in human cells. The Microprocessor-mediated cleavage kept Aurora kinase B at a low level and prevented premature entrance into mitosis. The cleavage was reduced during mitosis leading to the accumulation of Aurora kinase B mRNA and protein. In addition to Aurora kinase B mRNA, the processing of other primary transcripts of miRNAs were also decreased during mitosis. We found that the cleavage was dependent on an RNA helicase, DDX5, and the association of DDX5 and DDX17 with the Microprocessor was reduced during mitosis. Thus, we propose a novel mechanism by which the Microprocessor complex regulates stability of Aurora kinase B mRNA and cell cycle progression.

  7. Gawky is a component of cytoplasmic mRNA processing bodies required for early Drosophila development

    PubMed Central

    Schneider, Mary D.; Najand, Nima; Chaker, Sana; Pare, Justin M.; Haskins, Julie; Hughes, Sarah C.; Hobman, Tom C.; Locke, John; Simmonds, Andrew J.

    2006-01-01

    In mammalian cells, the GW182 protein localizes to cytoplasmic bodies implicated in the regulation of messenger RNA (mRNA) stability, translation, and the RNA interference pathway. Many of these functions have also been assigned to analogous yeast cytoplasmic mRNA processing bodies. We have characterized the single Drosophila melanogaster homologue of the human GW182 protein family, which we have named Gawky (GW). Drosophila GW localizes to punctate, cytoplasmic foci in an RNA-dependent manner. Drosophila GW bodies (GWBs) appear to function analogously to human GWBs, as human GW182 colocalizes with GW when expressed in Drosophila cells. The RNA-induced silencing complex component Argonaute2 and orthologues of LSm4 and Xrn1 (Pacman) associated with 5′–3′ mRNA degradation localize to some GWBs. Reducing GW activity by mutation or antibody injection during syncytial embryo development leads to abnormal nuclear divisions, demonstrating an early requirement for GWB-mediated cytoplasmic mRNA regulation. This suggests that gw represents a previously unknown member of a small group of genes that need to be expressed zygotically during early embryo development. PMID:16880270

  8. Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA

    SciTech Connect

    Dibrov, Sergey; McLean, Jaime; Hermann, Thomas

    2011-09-27

    A sequence around the start codon of the mRNA of human thymidylate synthase (TS) folds into a secondary-structure motif in which the initiation site is sequestered in a metastable hairpin. Binding of the protein to its own mRNA at the hairpin prevents the production of TS through a translation-repression feedback mechanism. Stabilization of the mRNA hairpin by other ligands has been proposed as a strategy to reduce TS levels in anticancer therapy. Rapidly proliferating cells require high TS activity to maintain the production of thymidine as a building block for DNA synthesis. The crystal structure of a model oligonucleotide (TS1) that represents the TS-binding site of the mRNA has been determined. While fluorescence studies showed that the TS1 RNA preferentially adopts a hairpin structure in solution, even at high RNA concentrations, an asymmetric dimer of two hybridized TS1 strands was obtained in the crystal. The TS1 dimer contains an unusual S-turn motif that also occurs in the 'off' state of the human ribosomal decoding site RNA.

  9. Analysis of mutations in the yeast mRNA decapping enzyme.

    PubMed Central

    Tharun, S; Parker, R

    1999-01-01

    A major mechanism of mRNA decay in yeast is initiated by deadenylation, followed by mRNA decapping, which exposes the transcript to 5' to 3' exonucleolytic degradation. The decapping enzyme that removes the 5' cap structure is encoded by the DCP1 gene. To understand the function of the decapping enzyme, we used alanine scanning mutagenesis to create 31 mutant versions of the enzyme, and we examined the effects of the mutations both in vivo and in vitro. Two types of mutations that affected mRNA decapping in vivo were identified, including a temperature-sensitive allele. First, two mutants produced decapping enzymes that were defective for decapping in vitro, suggesting that these mutated residues are required for enzymatic activity. In contrast, several mutants that moderately affected mRNA decapping in vivo yielded decapping enzymes that had at least the same specific activity as the wild-type enzyme in vitro. Combination of alleles within this group yielded decapping enzymes that showed a strong loss of function in vivo, but that still produced fully active enzymes in vitro. This suggested that interactions of the decapping enzyme with other factors may be required for efficient decapping in vivo, and that these particular mutations may be disrupting such interactions. Interestingly, partial loss of decapping activity in vivo led to a defect in normal deadenylation-dependent decapping, but it did not affect the rapid deadenylation-independent decapping triggered by early nonsense codons. This observation suggested that these two types of mRNA decapping differ in their requirements for the decapping enzyme. PMID:10101156

  10. Genome-wide identification of Wig-1 mRNA targets by RIP-Seq analysis

    PubMed Central

    Bersani, Cinzia; Huss, Mikael; Giacomello, Stefania; Xu, Li-Di; Bianchi, Julie; Eriksson, Sofi; Jerhammar, Fredrik; Alexeyenko, Andrey; Vilborg, Anna; Lundeberg, Joakim; Lui, Weng-Onn; Wiman, Klas G.

    2016-01-01

    RNA-binding proteins (RBPs) play important roles in the regulation of gene expression through a variety of post-transcriptional mechanisms. The p53-induced RBP Wig-1 (Zmat3) binds RNA through its zinc finger domains and enhances stability of p53 and N-Myc mRNAs and decreases stability of FAS mRNA. To identify novel Wig-1-bound RNAs, we performed RNA-immunoprecipitation followed by high-throughput sequencing (RIP-Seq) in HCT116 and Saos-2 cells. We identified 286 Wig-1-bound mRNAs common between the two cell lines. Sequence analysis revealed that AU-rich elements (AREs) are highly enriched in the 3′UTR of these Wig-1-bound mRNAs. Network enrichment analysis showed that Wig-1 preferentially binds mRNAs involved in cell cycle regulation. Moreover, we identified a 2D Wig-1 binding motif in HIF1A mRNA. Our findings confirm that Wig-1 is an ARE-BP that regulates cell cycle-related processes and provide a novel view of how Wig-1 may bind mRNA through a putative structural motif. We also significantly extend the repertoire of Wig-1 target mRNAs. Since Wig-1 is a transcriptional target of the tumor suppressor p53, these results have implications for our understanding of p53-dependent stress responses and tumor suppression. PMID:26672765

  11. Changes in surfactant protein A mRNA levels in a rat model of insulin-treated diabetic pregnancy.

    PubMed

    Moglia, B B; Phelps, D S

    1996-02-01

    Maternal diabetes during pregnancy is associated with increased risk of neonatal respiratory distress syndrome (RDS). Previous studies using rat models for the diabetic pregnancy have documented decreased amounts of surfactant protein mRNA in the lungs of fetuses. In this study, we measured fetal lung surfactant-associated protein A (SP-A) mRNA from diabetic rats treated with insulin by daily injection or osmotic pump. Lungs were taken from fetuses on gestational d 20, and RNA was isolated and subjected to Northern blotting and densitometry to quantify SP-A mRNA. Fetal lung SP-A mRNA from untreated diabetic pregnancies was 34 +/- 2.9% of control. Insulin treatment increased levels to 55 +/- 4.2% of control values. Fetal lung SP-A mRNA levels were affected by the timing, length, and effectiveness of insulin treatment. Although levels from all treatment groups were still less than control values, insulin treatment during the last 5 or 10 d of pregnancy resulted in a substantial increase in SP-A mRNA levels over those of from untreated diabetic pregnancies. However, fetuses from the group with insulin treatment for the entire pregnancy showed decreases in fetal SP-A mRNA levels. Although the mechanism(s) responsible for the effects of diabetes and its treatment on fetal SP-A expression remain unclear, it appears unlikely that hyperglycemia is the principal cause.

  12. Role of miRNAs and alternative mRNA 3'-end cleavage and polyadenylation of their mRNA targets in cardiomyocyte hypertrophy.

    PubMed

    Soetanto, R; Hynes, C J; Patel, H R; Humphreys, D T; Evers, M; Duan, G; Parker, B J; Archer, S K; Clancy, J L; Graham, R M; Beilharz, T H; Smith, N J; Preiss, T

    2016-05-01

    miRNAs play critical roles in heart disease. In addition to differential miRNA expression, miRNA-mediated control is also affected by variable miRNA processing or alternative 3'-end cleavage and polyadenylation (APA) of their mRNA targets. To what extent these phenomena play a role in the heart remains unclear. We sought to explore miRNA processing and mRNA APA in cardiomyocytes, and whether these change during cardiac hypertrophy. Thoracic aortic constriction (TAC) was performed to induce hypertrophy in C57BL/6J mice. RNA extracted from cardiomyocytes of sham-treated, pre-hypertrophic (2 days post-TAC), and hypertrophic (7 days post-TAC) mice was subjected to small RNA- and poly(A)-test sequencing (PAT-Seq). Differential expression analysis matched expectations; nevertheless we identified ~400 mRNAs and hundreds of noncoding RNA loci as altered with hypertrophy for the first time. Although multiple processing variants were observed for many miRNAs, there was little change in their relative proportions during hypertrophy. PAT-Seq mapped ~48,000 mRNA 3'-ends, identifying novel 3' untranslated regions (3'UTRs) for over 7000 genes. Importantly, hypertrophy was associated with marked changes in APA with a net shift from distal to more proximal mRNA 3'-ends, which is predicted to decrease overall miRNA repression strength. We independently validated several examples of 3'UTR proportion change and showed that alternative 3'UTRs associate with differences in mRNA translation. Our work suggests that APA contributes to altered gene expression with the development of cardiomyocyte hypertrophy and provides a rich resource for a systems-level understanding of miRNA-mediated regulation in physiological and pathological states of the heart.

  13. Dynein light chain binding to a 3′-untranslated sequence mediates parathyroid hormone mRNA association with microtubules

    PubMed Central

    Epstein, Eyal; Sela-Brown, Alin; Ringel, Israel; Kilav, Rachel; King, Stephen M.; Benashski, Sharon E.; Yisraeli, Joel K.; Silver, Justin; Naveh-Many, Tally

    2000-01-01

    The 3′-untranslated region (UTR) of mRNAs binds proteins that determine mRNA stability and localization. The 3′-UTR of parathyroid hormone (PTH) mRNA specifically binds cytoplasmic proteins. We screened an expression library for proteins that bind the PTH mRNA 3′-UTR, and the sequence of 1 clone was identical to that of the dynein light chain LC8, a component of the dynein complexes that translocate cytoplasmic components along microtubules. Recombinant LC8 binds PTH mRNA 3′-UTR, as shown by RNA electrophoretic mobility shift assay. We showed that PTH mRNA colocalizes with microtubules in the parathyroid gland, as well as with a purified microtubule preparation from calf brain, and that this association was mediated by LC8. To our knowledge, this is the first report of a dynein complex protein binding an mRNA. The dynein complex may be the motor that is responsible for transporting mRNAs to specific locations in the cytoplasm and for the consequent is asymmetric distribution of translated proteins in the cell. PMID:10683380

  14. Evolutionary stability on graphs

    PubMed Central

    Ohtsuki, Hisashi; Nowak, Martin A.

    2008-01-01

    Evolutionary stability is a fundamental concept in evolutionary game theory. A strategy is called an evolutionarily stable strategy (ESS), if its monomorphic population rejects the invasion of any other mutant strategy. Recent studies have revealed that population structure can considerably affect evolutionary dynamics. Here we derive the conditions of evolutionary stability for games on graphs. We obtain analytical conditions for regular graphs of degree k > 2. Those theoretical predictions are compared with computer simulations for random regular graphs and for lattices. We study three different update rules: birth-death (BD), death-birth (DB), and imitation (IM) updating. Evolutionary stability on sparse graphs does not imply evolutionary stability in a well-mixed population, nor vice versa. We provide a geometrical interpretation of the ESS condition on graphs. PMID:18295801

  15. Huntington’s Disease Protein Huntingtin Associates with its own mRNA

    PubMed Central

    Culver, Brady P.; DeClercq, Josh; Dolgalev, Igor; Yu, Man Shan; Ma, Bin; Heguy, Adriana; Tanese, Naoko

    2016-01-01

    Background: The Huntington’s disease (HD) protein huntingtin (Htt) plays a role in multiple cellular pathways. Deregulation of one or more of these pathways by the mutant Htt protein has been suggested to contribute to the disease pathogenesis. Our recent discovery-based proteomics studies have uncovered RNA binding proteins and translation factors associated with the endogenous Htt protein purified from mouse brains, suggesting a potential new role for Htt in RNA transport and translation. Objective: To investigate how Htt might affect RNA metabolism we set out to purify and analyze RNA associated with Htt. Methods: RNA was extracted from immunopurified Htt-containing protein complexes and analyzed by microarrays and RNA-Seq. Results: Surprisingly, the most enriched mRNA that co-purified with Htt was Htt mRNA itself. The association of Htt protein and Htt mRNA was detected independent of intact ribosomes suggesting that it is not an RNA undergoing translation. Furthermore, we identified the recently reported mis-spliced Htt mRNA encoding a truncated protein comprised of exon 1 and a portion of the downstream intron in the immunoprecipitates containing mutant Htt protein. We show that Htt protein co-localizes with Htt mRNA and that wild-type Htt reduces expression of a reporter construct harboring the Htt 3’ UTR. Conclusions: HD protein is found in a complex with its own mRNA and RNA binding proteins and translation factors. Htt may be involved in modulating its expression through post-transcriptional pathways. It is possible that Htt shares mechanistic properties similar to RNA binding proteins such as TDP-43 and FUS implicated in other neurodegenerative diseases. PMID:26891106

  16. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation

    PubMed Central

    Williams, Kathryn R.; McAninch, Damian S.; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J.

    2016-01-01

    Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development. PMID:26658614

  17. Database for mRNA Half-Life of 19 977 Genes Obtained by DNA Microarray Analysis of Pluripotent and Differentiating Mouse Embryonic Stem Cells

    PubMed Central

    Sharova, Lioudmila V.; Sharov, Alexei A.; Nedorezov, Timur; Piao, Yulan; Shaik, Nabeebi; Ko, Minoru S.H.

    2009-01-01

    Degradation of mRNA is one of the key processes that control the steady-state level of gene expression. However, the rate of mRNA decay for the majority of genes is not known. We successfully obtained the rate of mRNA decay for 19 977 non-redundant genes by microarray analysis of RNA samples obtained from mouse embryonic stem (ES) cells. Median estimated half-life was 7.1 h and only <100 genes, including Prdm1, Myc, Gadd45 g, Foxa2, Hes5 and Trib1, showed half-life less than 1 h. In general, mRNA species with short half-life were enriched among genes with regulatory functions (transcription factors), whereas mRNA species with long half-life were enriched among genes related to metabolism and structure (extracellular matrix, cytoskeleton). The stability of mRNAs correlated more significantly with the structural features of genes than the function of genes: mRNA stability showed the most significant positive correlation with the number of exon junctions per open reading frame length, and negative correlation with the presence of PUF-binding motifs and AU-rich elements in 3′-untranslated region (UTR) and CpG di-nucleotides in the 5′-UTR. The mRNA decay rates presented in this report are the largest data set for mammals and the first for ES cells. PMID:19001483

  18. ErbB3 mRNA leukocyte levels as a biomarker for major depressive disorder

    PubMed Central

    2012-01-01

    Background In recent years, the identification of peripheral biomarkers that are associated with psychiatric diseases, such as Major Depressive Disorder (MDD), has become relevant because these biomarkers may improve the efficiency of the differential diagnosis process and indicate targets for new antidepressant drugs. Two recent candidate genes, ErbB3 and Fgfr1, are growth factors whose mRNA levels have been found to be altered in the leukocytes of patients that are affected by bipolar disorder in a depressive state. On this basis, the aim of the study was to determine if ErbB3 and Fgfr1 mRNA levels could be a biomarkers of MDD. Methods We measured by Real Time PCR ErbB3 and Fgfr1 mRNA expression levels in leukocytes of MDD patients compared with controls. Successively, to assess whether ErbB3 mRNA levels were influenced by previous antidepressant treatment we stratified our patients sample in two cohorts, comparing drug-naive versus drug-free patients. Moreover, we evaluated the levels of the transcript in MDD patients after 12 weeks of antidepressant treatment, and in prefrontal cortex of rats stressed and treated with an antidepressant drug of the same class. Results These results showed that ErbB3 but not Fgfr1 mRNA levels were reduced in leukocytes of MDD patients compared to healthy subjects. Furthermore, ErbB3 levels were not affected by antidepressant treatment in either human or animal models Conclusions Our data suggest that ErbB3 might be considered as a biomarker for MDD and that its deficit may underlie the pathopsysiology of the disease and is not a consequence of treatment. Moreover the study supports the usefulness of leukocytes as a peripheral system for identifying biomarkers in psychiatric diseases. PMID:22989054

  19. Expression of statherin mRNA and protein in nasal and vaginal secretions.

    PubMed

    Sakurada, Koichi; Akutsu, Tomoko; Watanabe, Ken; Fujinami, Yoshihito; Yoshino, Mineo

    2011-11-01

    Nasal secretion has been regarded as one of the most difficult body fluids to identify and is especially difficult to discriminate from vaginal secretions and saliva. At present, few specific markers are known for nasal secretions. The aim of this study is to find a new approach for the identification of nasal secretions. We examined expression levels of statherin and histatin, peptides which are commonly found in saliva, in nasal and vaginal secretions by real-time RT-PCR and ELISA assays. Statherin mRNA was highly expressed in all nasal samples (dCt value=-1.49±1.10, n=8) and was detected even in 1-day-old 0.1-μL stains. However, the stability of mRNA in nasal stains was significantly (P<0.01) lower than in saliva. Low levels of statherin mRNA were detected in 4 of the 17 vaginal samples (dCt value=11.65-14.72). Histatin mRNA was not detected in any nasal or vaginal samples, although it was highly expressed in all saliva samples. ELISA assays with anti-statherin goat polyclonal antibody showed that statherin peptide was detected in all nasal and saliva samples even after dilution of more than 1000-fold. The statherin peptide was not detected in any vaginal samples, including samples that expressed low levels of statherin mRNA. The amount of statherin peptide in vaginal samples might be less than the limit of detection of this assay. In the present study, statherin was highly expressed in nasal secretions, but histatin was not. These markers may be useful for discriminating nasal secretions from vaginal secretions and saliva. However, the usefulness of these markers in practical forensic case samples has not yet been examined. Therefore, further research is required to establish the utility of these assays for identification of nasal secretions.

  20. Enhanced levels of scrapie responsive gene mRNA in BSE-infected mouse brain.

    PubMed

    Dandoy-Dron, F; Benboudjema, L; Guillo, F; Jaegly, A; Jasmin, C; Dormont, D; Tovey, M G; Dron, M

    2000-03-10

    The expression of the mRNA of nine scrapie responsive genes was analyzed in the brains of FVB/N mice infected with bovine spongiform encephalopathy (BSE). The RNA transcripts of eight genes were overexpressed to a comparable extent in both BSE-infected and scrapie-infected mice, indicating a common series of pathogenic events in the two transmissible spongiform encephalopathies (TSEs). In contrast, the serine proteinase inhibitor spi 2, an analogue of the human alpha-1 antichymotrypsin gene, was overexpressed to a greater extent in the brains of scrapie-infected animals than in animals infected with BSE, reflecting either an agent specific or a mouse strain specific response. The levels of spi 2 mRNA were increased during the course of scrapie prior to the onset of clinical signs of the disease and the increase reached 11 to 45 fold relative to uninfected controls in terminally ill mice. Spi 2, in common with four of the other scrapie responsive genes studied, is known to be associated with pro-inflammatory processes. These observations underline the importance of cell reactivity in TSE. In addition, scrg2 mRNA the level of which is enhanced in TSE-infected mouse brain, was identified as a previously unrecognized long transcript of the murine aldolase C gene. However, the level of the principal aldolase C mRNA is unaffected in TSE. The increased representation of the longer transcript in the late stage of the disease may reflect changes in mRNA processing and/or stability in reactive astrocytes or in damaged Purkinje cells.

  1. Membrane stabilizer

    DOEpatents

    Mingenbach, William A.

    1988-01-01

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material.

  2. ACTH Action on Messenger RNA Stability Mechanisms

    PubMed Central

    Desroches-Castan, Agnès; Feige, Jean-Jacques; Cherradi, Nadia

    2017-01-01

    The regulation of mRNA stability has emerged as a critical control step in dynamic gene expression. This process occurs in response to modifications of the cellular environment, including hormonal variations, and regulates the expression of subsets of proteins whose levels need to be rapidly adjusted. Modulation of messenger RNA stability is usually mediated by stabilizing or destabilizing RNA-binding proteins (RNA-BP) that bind to the 3′-untranslated region regulatory motifs, such as AU-rich elements (AREs). Destabilizing ARE-binding proteins enhance the decay of their target transcripts by recruiting the mRNA decay machineries. Failure of such mechanisms, in particular misexpression of RNA-BP, has been linked to several human diseases. In the adrenal cortex, the expression and activity of mRNA stability regulatory proteins are still understudied. However, ACTH- or cAMP-elicited changes in the expression/phosphorylation status of the major mRNA-destabilizing protein TIS11b/BRF1 or in the subcellular localization of the stabilizing protein Human antigen R have been reported. They suggest that this level of regulation of gene expression is also important in endocrinology. PMID:28163695

  3. MRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas.

    PubMed

    Castelli, Martina Galatea; Rusten, Marte; Goksøyr, Anders; Routti, Heli

    2014-01-01

    There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes encoding hepatic PPARγ, adipose FABP4, adipose ADIPOQ and ΣPOP concentrations was observed. These findings suggest that lipid metabolism may be affected by contaminant exposure in the Baltic population. mRNA expression of genes encoding PPARβ, PPARγ, FABP4 and ADIPOQ were similar between the mid and inner adipose layer. Hepatic mRNA expression of genes encoding PPARα and PPARγ was higher in the pre

  4. Luteotropic and luteolytic factors regulate mRNA and protein expression of progesterone receptor isoforms A and B in the bovine endometrium.

    PubMed

    Rekawiecki, Robert; Kowalik, Magdalena Karolina; Kotwica, Jan