Sample records for affecting mutational specificity

  1. Treacher Collins syndrome: clinical implications for the paediatrician--a new mutation in a severely affected newborn and comparison with three further patients with the same mutation, and review of the literature.

    PubMed

    Schlump, Jan-Ulrich; Stein, Anja; Hehr, Ute; Karen, Tanja; Möller-Hartmann, Claudia; Elcioglu, Nursel H; Bogdanova, Nadja; Woike, Hartmut Fritz; Lohmann, Dietmar R; Felderhoff-Mueser, Ursula; Linz, Annette; Wieczorek, Dagmar

    2012-11-01

    Treacher Collins syndrome (TCS) is the most common and well-known mandibulofacial dysostosis caused by mutations in at least three genes involved in pre-rRNA transcription, the TCOF1, POLR1D and POLR1C genes. We present a severely affected male individual with TCS with a heterozygous de novo frameshift mutation within the TCOF1 gene (c.790_791delAG,p.Ser264GlnfsX7) and compare the clinical findings with three previously unpublished, milder affected individuals from two families with the same mutation. We elucidate typical clinical features of TCS and its clinical implications for the paediatrician and mandibulofacial surgeon, especially in severely affected individuals and give a short review of the literature. The clinical data of these three families illustrate that the phenotype associated with this specific mutation has a wide intra- and interfamilial variability, which confirms that variable expressivity in carriers of TCOF1 mutations is not a simple consequence of the mutation but might be modified by the combination of genetic, environmental and stochastic factors. Being such a highly complex disease treatment of individuals with TCS should be tailored to the specific needs of each individual, preferably by a multidisciplinary team consisting of paediatricians, craniofacial surgeons and geneticists.

  2. Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients

    PubMed Central

    Barbano, Raffaela; Pasculli, Barbara; Coco, Michelina; Fontana, Andrea; Copetti, Massimiliano; Rendina, Michelina; Valori, Vanna Maria; Graziano, Paolo; Maiello, Evaristo; Fazio, Vito Michele; Parrella, Paola

    2015-01-01

    BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients’ samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAFV600E and BRAFV600K mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method. PMID:26690267

  3. Psychological Distress, Anxiety, and Depression of Cancer-Affected BRCA1/2 Mutation Carriers: a Systematic Review.

    PubMed

    Ringwald, Johanna; Wochnowski, Christina; Bosse, Kristin; Giel, Katrin Elisabeth; Schäffeler, Norbert; Zipfel, Stephan; Teufel, Martin

    2016-10-01

    Understanding the intermediate- and long-term psychological consequences of genetic testing for cancer patients has led to encouraging research, but a clear consensus of the psychosocial impact and clinical routine for cancer-affected BRCA1 and BRCA2 mutation carriers is still missing. We performed a systematic review of intermediate- and long-term studies investigating the psychological impact like psychological distress, anxiety, and depression in cancer-affected BRCA mutation carriers compared to unaffected mutation carriers. This review included the screening of 1243 studies. Eight intermediate- and long-term studies focusing on distress, anxiety, and depression symptoms among cancer-affected mutation carriers at least six months after the disclosure of genetic testing results were included. Studies reported a great variety of designs, methods, and patient outcomes. We found evidence indicating that cancer-affected mutation carriers experienced a negative effect in relation to psychological well-being in terms of an increase in symptoms of distress, anxiety, and depression in the first months after test disclosure. In the intermediate- and long-term, no significant clinical relevant symptoms occurred. However, none of the included studies used specific measurements, which can clearly identify psychological burdens of cancer-affected mutation carriers. We concluded that current well-implemented distress screening instruments are not sufficient for precisely identifying the psychological burden of genetic testing. Therefore, future studies should implement coping strategies, specific personality structures, the impact of genetic testing, supportive care needs and disease management behaviour to clearly screen for the possible intermediate- and long-term psychological impact of a positive test disclosure.

  4. [Mutants of the yeast Saccharomyces cerevisiae characterized by enhanced induced mutagenesis. III. Effect of the him mutation on the effectiveness and specificity of UF-induced mutagenesis].

    PubMed

    Ivanov, E L; Koval'tsova, S V; Korolev, V G

    1987-09-01

    We have studied the influence of him1-1, him2-1, him3-1 and himX mutations on induction frequency and specificity of UV-induced adenine-dependent mutations in the yeast Saccharomyces cerevisiae. Him mutations do not render haploid cells more sensitive to the lethal action of UV-light; however, in him strains adenine-dependent mutations (ade1, ade2) were induced more frequently (1.5--2-fold), as compared to the HIM strain. An analysis of the molecular nature of ade2 mutants revealed that him1-1, him2-1 and himX mutations increase specifically the yield of transitions (AT----GC and GC----AT), whereas in the him3-1 strain the yield of transversions was enhanced as well. We suggest him mutations analysed to affect specific repair pathway for mismatch correction.

  5. Statistical Methods for Identifying Sequence Motifs Affecting Point Mutations

    PubMed Central

    Zhu, Yicheng; Neeman, Teresa; Yap, Von Bing; Huttley, Gavin A.

    2017-01-01

    Mutation processes differ between types of point mutation, genomic locations, cells, and biological species. For some point mutations, specific neighboring bases are known to be mechanistically influential. Beyond these cases, numerous questions remain unresolved, including: what are the sequence motifs that affect point mutations? How large are the motifs? Are they strand symmetric? And, do they vary between samples? We present new log-linear models that allow explicit examination of these questions, along with sequence logo style visualization to enable identifying specific motifs. We demonstrate the performance of these methods by analyzing mutation processes in human germline and malignant melanoma. We recapitulate the known CpG effect, and identify novel motifs, including a highly significant motif associated with A→G mutations. We show that major effects of neighbors on germline mutation lie within ±2 of the mutating base. Models are also presented for contrasting the entire mutation spectra (the distribution of the different point mutations). We show the spectra vary significantly between autosomes and X-chromosome, with a difference in T→C transition dominating. Analyses of malignant melanoma confirmed reported characteristic features of this cancer, including statistically significant strand asymmetry, and markedly different neighboring influences. The methods we present are made freely available as a Python library https://bitbucket.org/pycogent3/mutationmotif. PMID:27974498

  6. Recruitment and positioning determine the specific role of the XPF-ERCC1 endonuclease in interstrand crosslink repair.

    PubMed

    Klein Douwel, Daisy; Hoogenboom, Wouter S; Boonen, Rick Acm; Knipscheer, Puck

    2017-07-14

    XPF-ERCC1 is a structure-specific endonuclease pivotal for several DNA repair pathways and, when mutated, can cause multiple diseases. Although the disease-specific mutations are thought to affect different DNA repair pathways, the molecular basis for this is unknown. Here we examine the function of XPF-ERCC1 in DNA interstrand crosslink (ICL) repair. We used Xenopus egg extracts to measure both ICL and nucleotide excision repair, and we identified mutations that are specifically defective in ICL repair. One of these separation-of-function mutations resides in the helicase-like domain of XPF and disrupts binding to SLX4 and recruitment to the ICL A small deletion in the same domain supports recruitment of XPF to the ICL, but inhibited the unhooking incisions most likely by disrupting a second, transient interaction with SLX4. Finally, mutation of residues in the nuclease domain did not affect localization of XPF-ERCC1 to the ICL but did prevent incisions on the ICL substrate. Our data support a model in which the ICL repair-specific function of XPF-ERCC1 is dependent on recruitment, positioning and substrate recognition. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Genetic analysis of an Indian family with members affected with Waardenburg syndrome and Duchenne muscular dystrophy

    PubMed Central

    Kapoor, Saketh; Bindu, Parayil Sankaran; Taly, Arun B.; Sinha, Sanjib; Gayathri, Narayanappa; Rani, S. Vasantha; Chandak, Giriraj Ratan

    2012-01-01

    Purpose Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3. PMID:22876130

  8. Genetic analysis of an Indian family with members affected with Waardenburg syndrome and Duchenne muscular dystrophy.

    PubMed

    Kapoor, Saketh; Bindu, Parayil Sankaran; Taly, Arun B; Sinha, Sanjib; Gayathri, Narayanappa; Rani, S Vasantha; Chandak, Giriraj Ratan; Kumar, Arun

    2012-01-01

    Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.

  9. Mutation testing in Treacher Collins Syndrome.

    PubMed

    Ellis, P E; Dawson, M; Dixon, M J

    2002-12-01

    To report on a study where 97 subjects were screened for mutations in the Treacher Collins syndrome (TCS) gene TCOF1. Ninety-seven subjects with a clinical diagnosis of TCS were screened for potential mutations in TCOF1, by means of single strand conformation polymorphism (SSCP) analysis. In those subjects where potential mutations were detected, sequence analysis was performed to determine the site and type of mutation present. Thirty-six TCS-specific mutations are reported including 27 deletions, six point mutations, two splice junction mutations, and one insertion/deletion. This brings the total number of mutations reported to date to 105. The importance of detection of these mutations is mainly in postnatal diagnosis and genetic counselling. Knowledge of the family specific mutation may also be used in prenatal diagnosis to confirm whether the foetus is affected or not, and give the parents the choice of whether to continue with the pregnancy.

  10. Screening mosaic F1 females for mutations affecting zebrafish heart induction and patterning.

    PubMed

    Alexander, J; Stainier, D Y; Yelon, D

    1998-01-01

    The genetic pathways underlying the induction and anterior-posterior patterning of the heart are poorly understood. The recent emergence of the zebrafish model system now allows a classical genetic approach to such challenging problems in vertebrate development. Two large-scale screens for mutations affecting zebrafish embryonic development have recently been completed; among the hundreds of mutations identified were several that affect specific aspects of cardiac morphogenesis, differentiation, and function. However, very few mutations affecting induction and/or anterior-posterior patterning of the heart were identified. We hypothesize that a directed approach utilizing molecular markers to examine these particular steps of heart development will uncover additional such mutations. To test this hypothesis, we are conducting two parallel screens for mutations that affect either the induction or the anterior-posterior patterning of the zebrafish heart. As an indicator of cardiac induction, we examine expression of nkx2.5, the earliest known marker of precardiac mesoderm; to assess anterior-posterior patterning, we distinguish ventricle from atrium with antibodies that recognize different myosin heavy chain isoforms. In order to expedite the examination of a large number of mutations, we are screening the haploid progeny of mosaic F1 females. In these ongoing screens, we have identified four mutations that affect nkx2.5 expression as well as 21 that disrupt either ventricular or atrial development and thus far have recovered several of these mutations, demonstrating the value of our approach. Future analysis of these and other cardiac mutations will provide further insight into the processes of induction and anterior-posterior patterning of the heart.

  11. Regulation of leukemia-initiating cell activity by the ubiquitin ligase FBXW7

    PubMed Central

    King, Bryan; Trimarchi, Thomas; Reavie, Linsey; Xu, Luyao; Mullenders, Jasper; Ntziachristos, Panagiotis; Aranda-Orgilles, Beatriz; Perez-Garcia, Arianne; Shi, Junwei; Vakoc, Christopher; Sandy, Peter; Shen, Steven S.; Ferrando, Adolfo; Aifantis, Iannis

    2013-01-01

    SUMMARY Sequencing efforts led to the identification of somatic mutations that could affect self-renewal and differentiation of cancer-initiating cells. One such recurrent mutation targets the binding pocket of the ubiquitin ligase FBXW7. Missense FBXW7 mutations are prevalent in various tumors, including T-cell acute lymphoblastic leukemia (T-ALL). To study the effects of such lesions, we generated animals carrying regulatable Fbxw7 mutant alleles. We show here that these mutations specifically bolster cancer-initiating cell activity in collaboration with Notch1 oncogenes, but spare normal hematopoietic stem cell function. We were also able to show that FBXW7 mutations specifically affect the ubiquitylation and half-life of c-Myc protein, a key T-ALL oncogene. Using animals carrying c-Myc fusion alleles, we connected Fbxw7 function to c-Myc abundance and correlated c-Myc expression to leukemia-initiating activity. Finally, we demonstrated that small molecule-mediated suppression of MYC activity leads to T-ALL remission, suggesting a novel effective therapeutic strategy. PMID:23791182

  12. How mutation affects evolutionary games on graphs

    PubMed Central

    Allen, Benjamin; Traulsen, Arne; Tarnita, Corina E.; Nowak, Martin A.

    2011-01-01

    Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration. PMID:21473871

  13. SIX2 and BMP4 mutations associate with anomalous kidney development.

    PubMed

    Weber, Stefanie; Taylor, Jaclyn C; Winyard, Paul; Baker, Kari F; Sullivan-Brown, Jessica; Schild, Raphael; Knüppel, Tanja; Zurowska, Aleksandra M; Caldas-Alfonso, Alberto; Litwin, Mieczyslaw; Emre, Sevinc; Ghiggeri, Gian Marco; Bakkaloglu, Aysin; Mehls, Otto; Antignac, Corinne; Network, Escape; Schaefer, Franz; Burdine, Rebecca D

    2008-05-01

    Renal hypodysplasia (RHD) is characterized by reduced kidney size and/or maldevelopment of the renal tissue following abnormal organogenesis. Mutations in renal developmental genes have been identified in a subset of affected individuals. Here, we report the first mutations in BMP4 and SIX2 identified in patients with RHD. We detected 3 BMP4 mutations in 5 RHD patients, and 3 SIX2 mutations in 5 different RHD patients. Overexpression assays in zebrafish demonstrated that these mutations affect the function of Bmp4 and Six2 in vivo. Overexpression of zebrafish six2.1 and bmp4 resulted in dorsalization and ventralization, respectively, suggesting opposing roles in mesendoderm formation. When mutant constructs containing the identified human mutations were overexpressed instead, these effects were attenuated. Morpholino knockdown of bmp4 and six2.1 affected glomerulogenesis, suggesting specific roles for these genes in the formation of the pronephros. In summary, these studies implicate conserved roles for Six2 and Bmp4 in the development of the renal system. Defects in these proteins could affect kidney development at multiple stages, leading to the congenital anomalies observed in patients with RHD.

  14. U2AF1 mutations alter splice site recognition in hematological malignancies.

    PubMed

    Ilagan, Janine O; Ramakrishnan, Aravind; Hayes, Brian; Murphy, Michele E; Zebari, Ahmad S; Bradley, Philip; Bradley, Robert K

    2015-01-01

    Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in patients, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1's zinc finger domains. © 2015 Ilagan et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Allele-specific Characterization of Alanine: Glyoxylate Aminotransferase Variants Associated with Primary Hyperoxaluria

    PubMed Central

    Lage, Melissa D.; Pittman, Adrianne M. C.; Roncador, Alessandro; Cellini, Barbara; Tucker, Chandra L.

    2014-01-01

    Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type) and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele. PMID:24718375

  16. A multidisciplinary approach for the diagnosis of hypocalcified amelogenesis imperfecta in two Chilean families.

    PubMed

    Urzúa, Blanca; Ortega-Pinto, Ana; Farias, Daniela Adorno; Franco, Eugenia; Morales-Bozo, Irene; Moncada, Gustavo; Escobar-Pezoa, Nicolás; Scholz, Ursula; Cifuentes, Victor

    2012-01-01

    The purpose of this study was to conduct a multidisciplinary analysis of a specific type of tooth enamel disturbance (amelogenesis imperfecta) affecting two Chilean families to obtain a precise diagnosis and to investigate possible underlying mutations. Two non-related families affected with amelogenesis imperfecta were evaluated with clinical, radiographic and histopathological methods. Furthermore, pedigrees of both families were constructed and the presence of eight mutations in the enamelin gene (ENAM) and three mutations in the enamelysin gene (MMP-20) were investigated by PCR and direct sequencing. In the two affected patients, the dental malformation presented as soft and easily disintegrated enamel and exposed dark dentin. Neither of the affected individuals presented with a dental and skeletal open bite. Histologically, a high level of an organic matrix with prismatic organization was found. Genetic analysis indicated that the condition is autosomal recessive in one family and either autosomal recessive or due to a new mutation in the other family. Molecular mutational analysis revealed that none of the eight mutations previously described in the ENAM gene or the three mutations in the MMP-20 gene were present in the probands. A multidisciplinary analysis allowed for a diagnosis of hypocalcified amelogenesis imperfecta, Witkop type III, which was unrelated to previously described mutations in the ENAM or MMP-20 genes.

  17. Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation.

    PubMed

    Edwards, Thomas E; Robinson, Bruce H; Sigurdsson, Snorri Th

    2005-03-01

    The Tat protein and the transactivation responsive (TAR) RNA form an essential complex in the HIV lifecycle, and mutations in the basic region of the Tat protein alter this RNA-protein molecular recognition. Here, EPR spectroscopy was used to identify amino acids, flanking an essential arginine of the Tat protein, which contribute to specific and rigid TAR-Tat complex formation by monitoring changes in the mobility of nitroxide spin-labeled TAR RNA nucleotides upon binding. Arginine to lysine N-terminal mutations did not affect TAR RNA interfacial dynamics. In contrast, C-terminal point mutations, R56 in particular, affected the mobility of nucleotides U23 and U38, which are involved in a base-triple interaction in the complex. This report highlights the role of dynamics in specific molecular complex formation and demonstrates the ability of EPR spectroscopy to study interfacial dynamics of macromolecular complexes.

  18. Opposing effects of cancer-type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors.

    PubMed

    Janouskova, Hana; El Tekle, Geniver; Bellini, Elisa; Udeshi, Namrata D; Rinaldi, Anna; Ulbricht, Anna; Bernasocchi, Tiziano; Civenni, Gianluca; Losa, Marco; Svinkina, Tanya; Bielski, Craig M; Kryukov, Gregory V; Cascione, Luciano; Napoli, Sara; Enchev, Radoslav I; Mutch, David G; Carney, Michael E; Berchuck, Andrew; Winterhoff, Boris J N; Broaddus, Russell R; Schraml, Peter; Moch, Holger; Bertoni, Francesco; Catapano, Carlo V; Peter, Matthias; Carr, Steven A; Garraway, Levi A; Wild, Peter J; Theurillat, Jean-Philippe P

    2017-09-01

    It is generally assumed that recurrent mutations within a given cancer driver gene elicit similar drug responses. Cancer genome studies have identified recurrent but divergent missense mutations affecting the substrate-recognition domain of the ubiquitin ligase adaptor SPOP in endometrial and prostate cancers. The therapeutic implications of these mutations remain incompletely understood. Here we analyzed changes in the ubiquitin landscape induced by endometrial cancer-associated SPOP mutations and identified BRD2, BRD3 and BRD4 proteins (BETs) as SPOP-CUL3 substrates that are preferentially degraded by endometrial cancer-associated SPOP mutants. The resulting reduction of BET protein levels sensitized cancer cells to BET inhibitors. Conversely, prostate cancer-specific SPOP mutations resulted in impaired degradation of BETs, promoting their resistance to pharmacologic inhibition. These results uncover an oncogenomics paradox, whereby mutations mapping to the same domain evoke opposing drug susceptibilities. Specifically, we provide a molecular rationale for the use of BET inhibitors to treat patients with endometrial but not prostate cancer who harbor SPOP mutations.

  19. Erythrocytic Pyruvate Kinase Mutations Causing Hemolytic Anemia, Osteosclerosis, and Secondary Hemochromatosis in Dogs

    PubMed Central

    Gultekin, G. Inal; Raj, K.; Foureman, P.; Lehman, S.; Manhart, K.; Abdulmalik, O.; Giger, U.

    2013-01-01

    Background Erythrocytic pyruvate kinase (PK) deficiency, first documented in Basenjis, is the most common inherited erythroenzymopathy in dogs. Objectives To report 3 new breed-specific PK-LR gene mutations and a retrospective survey of PK mutations in a small and selected group of Beagles and West Highland White Terriers (WHWT). Animals Labrador Retrievers (2 siblings, 5 unrelated), Pugs (2 siblings, 1 unrelated), Beagles (39 anemic, 29 other), WHWTs (22 anemic, 226 nonanemic), Cairn Terrier (n = 1). Methods Exons of the PK-LR gene were sequenced from genomic DNA of young dogs (<2 years) with persistent highly regenerative hemolytic anemia. Results A nonsense mutation (c.799C>T) resulting in a premature stop codon was identified in anemic Labrador Retriever siblings that had osteosclerosis, high serum ferritin concentrations, and severe hepatic secondary hemochromatosis. Anemic Pug and Beagle revealed 2 different missense mutations (c.848T>C, c.994G>A, respectively) resulting in intolerable amino acid changes to protein structure and enzyme function. Breed-specific mutation tests were developed. Among the biased group of 248 WHWTs, 9% and 35% were homozygous (affected) and heterozygous, respectively, for the previously described mutation (mutant allele frequency 0.26). A PK-deficient Cairn Terrier had the same insertion mutation as the affected WHWTs. Of the selected group of 68 Beagles, 35% were PK-deficient and 3% were carriers (0.37). Conclusions and Clinical Importance Erythrocytic PK deficiency is caused by different mutations in different dog breeds and causes chronic severe hemolytic anemia, hemosiderosis, and secondary hemochromatosis because of chronic hemolysis and, an as yet unexplained osteosclerosis. The newly developed breed-specific mutation assays simplify the diagnosis of PK deficiency. PMID:22805166

  20. Mapping mutational effects along the evolutionary landscape of HIV envelope

    PubMed Central

    Hilton, Sarah K; Overbaugh, Julie

    2018-01-01

    The immediate evolutionary space accessible to HIV is largely determined by how single amino acid mutations affect fitness. These mutational effects can shift as the virus evolves. However, the prevalence of such shifts in mutational effects remains unclear. Here, we quantify the effects on viral growth of all amino acid mutations to two HIV envelope (Env) proteins that differ at >100 residues. Most mutations similarly affect both Envs, but the amino acid preferences of a minority of sites have clearly shifted. These shifted sites usually prefer a specific amino acid in one Env, but tolerate many amino acids in the other. Surprisingly, shifts are only slightly enriched at sites that have substituted between the Envs—and many occur at residues that do not even contact substitutions. Therefore, long-range epistasis can unpredictably shift Env’s mutational tolerance during HIV evolution, although the amino acid preferences of most sites are conserved between moderately diverged viral strains. PMID:29590010

  1. Mapping Second Chromosome Mutations to Defined Genomic Regions in Drosophila melanogaster

    PubMed Central

    Kahsai, Lily; Cook, Kevin R.

    2017-01-01

    Hundreds of Drosophila melanogaster stocks are currently maintained at the Bloomington Drosophila Stock Center with mutations that have not been associated with sequence-defined genes. They have been preserved because they have interesting loss-of-function phenotypes. The experimental value of these mutations would be increased by tying them to specific genomic intervals so that geneticists can more easily associate them with annotated genes. Here, we report the mapping of 85 second chromosome complementation groups in the Bloomington collection to specific, small clusters of contiguous genes or individual genes in the sequenced genome. This information should prove valuable to Drosophila geneticists interested in processes associated with particular phenotypes and those searching for mutations affecting specific sequence-defined genes. PMID:29066472

  2. Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1.

    PubMed

    Nelson, Omar; Tu, Huiping; Lei, Tianhua; Bentahir, Mostafa; de Strooper, Bart; Bezprozvanny, Ilya

    2007-05-01

    Mutations in presenilins are responsible for approximately 40% of all early-onset familial Alzheimer disease (FAD) cases in which a genetic cause has been identified. In addition, a number of mutations in presenilin-1 (PS1) have been suggested to be associated with the occurrence of frontal temporal dementia (FTD). Presenilins are highly conserved transmembrane proteins that support cleavage of the amyloid precursor protein by gamma-secretase. Recently, we discovered that presenilins also function as passive ER Ca(2+) leak channels. Here we used planar lipid bilayer reconstitution assays and Ca(2+) imaging experiments with presenilin-null mouse embryonic fibroblasts to analyze ER Ca(2+) leak function of 6 FAD-linked PS1 mutants and 3 known FTD-associated PS1 mutants. We discovered that L166P, A246E, E273A, G384A, and P436Q FAD mutations in PS1 abolished ER Ca(2+) leak function of PS1. In contrast, A79V FAD mutation or FTD-associated mutations (L113P, G183V, and Rins352) did not appear to affect ER Ca(2+) leak function of PS1 in our experiments. We validated our findings in Ca(2+) imaging experiments with primary fibroblasts obtained from an FAD patient possessing mutant PS1-A246E. Our results indicate that many FAD mutations in presenilins are loss-of-function mutations affecting ER Ca(2+) leak activity. In contrast, none of the FTD-associated mutations affected ER Ca(2+) leak function of PS1, indicating that the observed effects are disease specific. Our observations are consistent with the potential role of disturbed Ca(2+) homeostasis in Alzheimer disease pathogenesis.

  3. How do messenger RNA splicing alterations drive myelodysplasia?

    PubMed Central

    2017-01-01

    Mutations in RNA splicing factors are the single most common class of genetic alterations in myelodysplastic syndrome (MDS) patients. Although much has been learned about how these mutations affect splicing at a global- and transcript-specific level, critical questions about the role of these mutations in MDS development and maintenance remain. Here we present the questions to be addressed in order to understand the unique enrichment of these mutations in MDS. PMID:28348147

  4. The Val192Leu mutation in the alpha-subunit of beta-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease.

    PubMed Central

    Hou, Y.; Vavougios, G.; Hinek, A.; Wu, K. K.; Hechtman, P.; Kaplan, F.; Mahuran, D. J.

    1996-01-01

    Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8659543

  5. The Val192Leu mutation in the alpha-subunit of beta-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease.

    PubMed

    Hou, Y; Vavougios, G; Hinek, A; Wu, K K; Hechtman, P; Kaplan, F; Mahuran, D J

    1996-07-01

    Substitution mutations adversely affecting the alpha-subunit of beta-hexosaminidase A (alphabeta) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-alpha chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an "active-site" residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all alpha-specific activity. This biochemical phenotype is referred to as the "B1-variant form" of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and both subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, alpha-Val192Leu. Chinese hamster ovary cells were permanently cotransfected with an alpha-cDNA-construct encoding the substitution and a mutant beta-cDNA (beta-Arg211Lys), encoding a beta-subunit that is inactive but normal in all other respects. We were surprised to find that the Val192Leu substitution, produced a pro-alpha chain that did not form alpha-beta dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val192Leu substitution does not specifically affect the alpha-active site.

  6. Spontaneous mutation during the sexual cycle of Neurospora crassa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watters, M.K.; Stadler, D.R.

    The DNA sequences of 42 spontaneous mutations of the mtr gene in Neurospora crassa have been determined. The mutants were selected among sexual spores to represent mutations arising in the sexual cycle. Three sexual-cycle-specific mutational classes are described: hotspot mutants, spontaneous repeat-induced point mutation (RIPs) and mutations occurring during a mutagenic phase of the sexual cycle. Together, these three sexual-cycle-specific mutational classes account for 50% of the mutations in the sexual-cycle mutational spectrum. One third of all mutations occurred at one of two mutational hotspots that predominantly produced tandem duplications of varying lengths with short repeats at their end-points. Neithermore » of the two hotspots are present in the vegetative spectrum, suggesting that sexual-cycle-specific mutational pathways are responsible for their presence in the spectrum. One mutant was observed that appeared to have been RIPed precociously. The usual prerequisite for RIP, a duplication of the affected region, was not present in the parent stocks and was not detected in this mutant. Finally, there is a phase early in the premeiotic sexual cycle that is overrepresented in the generation of mutations. This {open_quotes}peak{close_quotes} appears to represent a phase during which the mutation rate rises significantly. This phase produces a disproportionally high fraction of frame shift mutations. In divisions subsequent to this, the mutation rate appears to be constant. 26 refs., 6 figs., 2 tabs.« less

  7. Reduced striatal D2 receptor binding in myoclonus-dystonia.

    PubMed

    Beukers, R J; Booij, J; Weisscher, N; Zijlstra, F; van Amelsvoort, T A M J; Tijssen, M A J

    2009-02-01

    To study striatal dopamine D(2) receptor availability in DYT11 mutation carriers of the autosomal dominantly inherited disorder myoclonus-dystonia (M-D). Fifteen DYT11 mutation carriers (11 clinically affected) and 15 age- and sex-matched controls were studied using (123)I-IBZM SPECT. Specific striatal binding ratios were calculated using standard templates for striatum and occipital areas. Multivariate analysis with corrections for ageing and smoking showed significantly lower specific striatal to occipital IBZM uptake ratios (SORs) both in the left and right striatum in clinically affected patients and also in all DYT11 mutation carriers compared to control subjects. Our findings are consistent with the theory of reduced dopamine D(2) receptor (D2R) availability in dystonia, although the possibility of increased endogenous dopamine, and consequently, competitive D2R occupancy cannot be ruled out.

  8. Mapping mutational effects along the evolutionary landscape of HIV envelope.

    PubMed

    Haddox, Hugh K; Dingens, Adam S; Hilton, Sarah K; Overbaugh, Julie; Bloom, Jesse D

    2018-03-28

    The immediate evolutionary space accessible to HIV is largely determined by how single amino acid mutations affect fitness. These mutational effects can shift as the virus evolves. However, the prevalence of such shifts in mutational effects remains unclear. Here, we quantify the effects on viral growth of all amino acid mutations to two HIV envelope (Env) proteins that differ at [Formula: see text]100 residues. Most mutations similarly affect both Envs, but the amino acid preferences of a minority of sites have clearly shifted. These shifted sites usually prefer a specific amino acid in one Env, but tolerate many amino acids in the other. Surprisingly, shifts are only slightly enriched at sites that have substituted between the Envs-and many occur at residues that do not even contact substitutions. Therefore, long-range epistasis can unpredictably shift Env's mutational tolerance during HIV evolution, although the amino acid preferences of most sites are conserved between moderately diverged viral strains. © 2018, Haddox et al.

  9. High Incidence of Noonan Syndrome Features Including Short Stature and Pulmonic Stenosis in Patients carrying NF1 Missense Mutations Affecting p.Arg1809: Genotype-Phenotype Correlation.

    PubMed

    Rojnueangnit, Kitiwan; Xie, Jing; Gomes, Alicia; Sharp, Angela; Callens, Tom; Chen, Yunjia; Liu, Ying; Cochran, Meagan; Abbott, Mary-Alice; Atkin, Joan; Babovic-Vuksanovic, Dusica; Barnett, Christopher P; Crenshaw, Melissa; Bartholomew, Dennis W; Basel, Lina; Bellus, Gary; Ben-Shachar, Shay; Bialer, Martin G; Bick, David; Blumberg, Bruce; Cortes, Fanny; David, Karen L; Destree, Anne; Duat-Rodriguez, Anna; Earl, Dawn; Escobar, Luis; Eswara, Marthanda; Ezquieta, Begona; Frayling, Ian M; Frydman, Moshe; Gardner, Kathy; Gripp, Karen W; Hernández-Chico, Concepcion; Heyrman, Kurt; Ibrahim, Jennifer; Janssens, Sandra; Keena, Beth A; Llano-Rivas, Isabel; Leppig, Kathy; McDonald, Marie; Misra, Vinod K; Mulbury, Jennifer; Narayanan, Vinodh; Orenstein, Naama; Galvin-Parton, Patricia; Pedro, Helio; Pivnick, Eniko K; Powell, Cynthia M; Randolph, Linda; Raskin, Salmo; Rosell, Jordi; Rubin, Karol; Seashore, Margretta; Schaaf, Christian P; Scheuerle, Angela; Schultz, Meredith; Schorry, Elizabeth; Schnur, Rhonda; Siqveland, Elizabeth; Tkachuk, Amanda; Tonsgard, James; Upadhyaya, Meena; Verma, Ishwar C; Wallace, Stephanie; Williams, Charles; Zackai, Elaine; Zonana, Jonathan; Lazaro, Conxi; Claes, Kathleen; Korf, Bruce; Martin, Yolanda; Legius, Eric; Messiaen, Ludwine

    2015-11-01

    Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype-phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple café-au-lait macules (CALM) with or without freckling and Lisch nodules, but no externally visible plexiform neurofibromas or clear cutaneous neurofibromas were found. About 25% of the individuals had Noonan-like features. Pulmonic stenosis and short stature were significantly more prevalent compared with classic cohorts (P < 0.0001). Developmental delays and/or learning disabilities were reported in over 50% of patients. Melanocytes cultured from a CALM in a segmental NF1-patient showed two different somatic NF1 mutations, p.Arg1809Cys and a multi-exon deletion, providing genetic evidence that p.Arg1809Cys is a loss-of-function mutation in the melanocytes and causes a pigmentary phenotype. Constitutional missense mutations at p.Arg1809 affect 1.23% of unrelated NF1 probands in the UAB cohort, therefore this specific NF1 genotype-phenotype correlation will affect counseling and management of a significant number of patients. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  10. Therapeutic strategies based on modified U1 snRNAs and chaperones for Sanfilippo C splicing mutations.

    PubMed

    Matos, Liliana; Canals, Isaac; Dridi, Larbi; Choi, Yoo; Prata, Maria João; Jordan, Peter; Desviat, Lourdes R; Pérez, Belén; Pshezhetsky, Alexey V; Grinberg, Daniel; Alves, Sandra; Vilageliu, Lluïsa

    2014-12-10

    Mutations affecting RNA splicing represent more than 20% of the mutant alleles in Sanfilippo syndrome type C, a rare lysosomal storage disorder that causes severe neurodegeneration. Many of these mutations are localized in the conserved donor or acceptor splice sites, while few are found in the nearby nucleotides. In this study we tested several therapeutic approaches specifically designed for different splicing mutations depending on how the mutations affect mRNA processing. For three mutations that affect the donor site (c.234 + 1G > A, c.633 + 1G > A and c.1542 + 4dupA), different modified U1 snRNAs recognizing the mutated donor sites, have been developed in an attempt to rescue the normal splicing process. For another mutation that affects an acceptor splice site (c.372-2A > G) and gives rise to a protein lacking four amino acids, a competitive inhibitor of the HGSNAT protein, glucosamine, was tested as a pharmacological chaperone to correct the aberrant folding and to restore the normal trafficking of the protein to the lysosome. Partial correction of c.234 + 1G > A mutation was achieved with a modified U1 snRNA that completely matches the splice donor site suggesting that these molecules may have a therapeutic potential for some splicing mutations. Furthermore, the importance of the splice site sequence context is highlighted as a key factor in the success of this type of therapy. Additionally, glucosamine treatment resulted in an increase in the enzymatic activity, indicating a partial recovery of the correct folding. We have assayed two therapeutic strategies for different splicing mutations with promising results for the future applications.

  11. A novel mutation in FRMD7 causing X-linked idiopathic congenital nystagmus in a large family

    PubMed Central

    He, Xiang; Gu, Feng; Wang, Yujing; Yan, Jinting; Zhang, Meng; Huang, Shangzhi

    2008-01-01

    Purpose To identify the gene responsible for causing an X-linked idiopathic congenital nystagmus (XLICN) in a six-generation Chinese family. Methods Forty-nine members of an XLICN family were recruited and examined after obtaining informed consent. Affected male individuals were genotyped with microsatellite markers around the FRMD7 locus. Mutations were comprehensively screened by direct sequencing using gene specific primers. An X-inactivation pattern was investigated by X chromosome methylation analysis. Results The patients showed phenotypes consistent with XLICN. Genotype analysis showed that male affected individuals in the family shared a common haplotype with the selected markers. Sequencing FRMD7 revealed a G>T transversion (c.812G>T) in exon 9, which caused a conservative substitution of Cys to Phe at codon 271 (p.C271F). This mutation co-segregated with all affected individuals and was present in the obligate, non-penetrant female carriers. However, the mutation was not observed in unaffected familial males or 400 control males. Females with the mutant gene could be affected or carrier and they shared the same inactivated X chromosome harboring the mutation in blood cells, which showed there is no clear causal link between X-inactivation pattern and phenotype. Conclusions We identified a novel mutation in FRMD7 and confirmed the role of this mutation in the pathogenesis of X-linked congenital nystagmus. PMID:18246032

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudneva, Irina A.; Timofeeva, Tatiana A.; Ignatieva, Anna V.

    In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and inmore » vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential. - Highlights: • HA1 N142K mutation significantly lowered the pH of fusion optimum. • Mutations located in the HA lateral loop significantly affected H5 HA thermostability. • HA changes at positions 131, 142, 144, 145, and 156 affected the replicative ability of H5 mutants. • Acquisition of glycosylation site could lead to the emergence of multiple pleiotropic effects.« less

  13. Novel domain-specific POU3F4 mutations are associated with X-linked deafness: examples from different populations.

    PubMed

    Bademci, Guney; Lasisi, Akeem; Yariz, Kemal O; Montenegro, Paola; Menendez, Ibis; Vinueza, Rodrigo; Paredes, Rosario; Moreta, Germania; Subasioglu, Asli; Blanton, Susan; Fitoz, Suat; Incesulu, Armagan; Sennaroglu, Levent; Tekin, Mustafa

    2015-02-25

    Mutations in the POU3F4 gene cause X-linked deafness type 3 (DFN3), which is characterized by inner ear anomalies. Three Turkish, one Ecuadorian, and one Nigerian families were included based on either inner ear anomalies detected in probands or X-linked family histories. Exome sequencing and/or Sanger sequencing were performed in order to identify the causative DNA variants in these families. Four novel, c.707A>C (p.(Glu236Ala)), c.772delG (p.(Glu258ArgfsX30)), c.902C>T (p.(Pro301Leu)), c.987T>C (p.(Ile308Thr)), and one previously reported mutation c.346delG (p.(Ala116ProfsX26)) in POU3F4, were identified. All mutations identified are predicted to affect the POU-specific or POU homeo domains of the protein and co-segregated with deafness in all families. Expanding the spectrum of POU3F4 mutations in different populations along with their associated phenotypes provides better understanding of their clinical importance and will be helpful in clinical evaluation and counseling of the affected individuals.

  14. Patterns of Novel Alleles and Genotype/Phenotype Correlations Resulting from the Analysis of 108 Previously Undetected Mutations in Patients Affected by Neurofibromatosis Type I

    PubMed Central

    Bonatti, Francesco; Adorni, Alessia; Matichecchia, Annalisa; Mozzoni, Paola; Uliana, Vera; Pisani, Francesco; Garavelli, Livia; Graziano, Claudio; Gnoli, Maria; Bigoni, Stefania; Boschi, Elena; Martorana, Davide; Percesepe, Antonio

    2017-01-01

    Neurofibromatosis type I, a genetic disorder due to mutations in the NF1 gene, is characterized by a high mutation rate (about 50% of the cases are de novo) but, with the exception of whole gene deletions associated with a more severe phenotype, no specific hotspots and few solid genotype/phenotype correlations. After retrospectively re-evaluating all NF1 gene variants found in the diagnostic activity, we studied 108 patients affected by neurofibromatosis type I who harbored mutations that had not been previously reported in the international databases, with the aim of analyzing their type and distribution along the gene and of correlating them with the phenotypic features of the affected patients. Out of the 108 previously unreported variants, 14 were inherited by one of the affected parents and 94 were de novo. Twenty-nine (26.9%) mutations were of uncertain significance, whereas 79 (73.2%) were predicted as pathogenic or probably pathogenic. No differential distribution in the exons or in the protein domains was observed and no statistically significant genotype/phenotype correlation was found, confirming previous evidences. PMID:28961165

  15. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  16. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum).

    PubMed

    Shaw, Lindsay M; Turner, Adrian S; Laurie, David A

    2012-07-01

    Flowering time is a trait that has been extensively altered during wheat domestication, enabling it to be highly productive in diverse environments and providing a rich source of variation for studying adaptation mechanisms. Hexaploid wheat is ancestrally a long-day plant, but many environments require varieties with photoperiod insensitivity (PI) that can flower in short days. PI results from mutations in the Ppd-1 gene on the A, B or D genomes, with individual mutations conferring different degrees of earliness. The basis of this is poorly understood. Using a common genetic background, the effects of A, B and D genome PI mutations on genes of the circadian clock and photoperiod pathway were studied using genome-specific expression assays. Ppd-1 PI mutations did not affect the clock or immediate clock outputs, but affected TaCO1 and TaFT1, with a reduction in TaCO1 expression as TaFT1 expression increased. Therefore, although Ppd-1 is related to PRR genes of the Arabidopsis circadian clock, Ppd-1 affects flowering by an alternative route, most likely by upregulating TaFT1 with a feedback effect that reduces TaCO1 expression. Individual genes in the circadian clock and photoperiod pathway were predominantly expressed from one genome, and there was no genome specificity in Ppd-1 action. Lines combining PI mutations on two or three genomes had enhanced earliness with higher levels, but not earlier induction, of TaFT1, showing that there is a direct quantitative relationship between Ppd-1 mutations, TaFT1 expression and flowering. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  17. How Single-site Mutation Affects HP Lattice Proteins

    NASA Astrophysics Data System (ADS)

    Shi, Guangjie; Landau, David P.; Vogel, Thomas; Wüst, Thomas; Li, Ying Wai

    2014-03-01

    We developed a heuristic method based on Wang-Landauand multicanonical sampling for determining the ground-state degeneracy of HP lattice proteins . Our algorithm allowed the most precise estimations of the (sometimes substantial) ground-state degeneracies of some widely studied HP sequences. We investigated the effects of single-site mutation on specific long HP lattice proteins comprehensively, including structural changes in ground-states, changes of ground-state degeneracy and thermodynamic properties of the systems. Both extremely sensitive and insensitive cases have been observed; consequently, properties such as specific heat, tortuosities etc. may be either largely unaffected or may change significantly due to mutation. More interestingly, mutation can even induce a lower ground-state energy in a few cases. Supported by NSF.

  18. Biallelic Mutations of Methionyl-tRNA Synthetase Cause a Specific Type of Pulmonary Alveolar Proteinosis Prevalent on Réunion Island

    PubMed Central

    Hadchouel, Alice; Wieland, Thomas; Griese, Matthias; Baruffini, Enrico; Lorenz-Depiereux, Bettina; Enaud, Laurent; Graf, Elisabeth; Dubus, Jean Christophe; Halioui-Louhaichi, Sonia; Coulomb, Aurore; Delacourt, Christophe; Eckstein, Gertrud; Zarbock, Ralf; Schwarzmayr, Thomas; Cartault, François; Meitinger, Thomas; Lodi, Tiziana; de Blic, Jacques; Strom, Tim M.

    2015-01-01

    Methionyl-tRNA synthetase (MARS) catalyzes the ligation of methionine to tRNA and is critical for protein biosynthesis. We identified biallelic missense mutations in MARS in a specific form of pediatric pulmonary alveolar proteinosis (PAP), a severe lung disorder that is prevalent on the island of Réunion and the molecular basis of which is unresolved. Mutations were found in 26 individuals from Réunion and nearby islands and in two families from other countries. Functional consequences of the mutated alleles were assessed by growth of wild-type and mutant strains and methionine-incorporation assays in yeast. Enzyme activity was attenuated in a liquid medium without methionine but could be restored by methionine supplementation. In summary, identification of a founder mutation in MARS led to the molecular definition of a specific type of PAP and will enable carrier screening in the affected community and possibly open new treatment opportunities. PMID:25913036

  19. Evidence for a founder effect for the IVS4 +4 A{r_arrow}T mutation in the Fanconi anemia gene FACC in a Jewish population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verlander, P.C.; Kaporis, A.G.; Qian, L.

    1994-09-01

    Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder defined by hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C(FACC) has been cloned. Two common mutations, IVS4 +4 A{r_arrow}T and 322delG, and several rare mutations have recently been reported in affected individuals. We now report the development of amplification refractory mutation system (ARMS) assays for rapid, non-radioactive detection of these known mutations in FACC. Primer pairs specific for variant sequences were designed, with the 3{prime} terminal base of one primer matching the variant base. PCR products are separated by electrophoresis on 2.5% agarose gels; mutationsmore » are indicated by the presence of a band of a specific size. These ARMS assays can be multiplexed to allow screening for all known mutations in two PCR reactions. We have used these assays for detection of FACC mutations in affected individuals in the International Fanconi Anemia Registry (IFAR), and for carrier detection FACC families. IVS4 +4 A{r_arrow}T is the only FACC mutation found in Jewish FA patients and their families, of both Ashkenazi and Sephardic ancestry. This mutation was not found in any affected individual of non-Jewish origin. In addition, DNA samples from 1596 healthy Jewish individuals primarily of Ashkenazi ancestry were supplied to us by Dor Yeshorim. These samples, ascertained for carrier screening for Tay Sachs, cystic fibrosis, and other genetic diseases with a high frequency in the religious Jewish community served by this organization, were tested for both IVS4 +4 A{r_arrow}T and 322delG mutations; seventeen IVS4 +4 A{r_arrow}T are of Sephardic Jewish ancestry. We hypothesize that IVS4 +4 A{r_arrow}T is a very old mutation, predating the divergence of the Ashkenazi and Sephardic populations. Haplotype analysis with microsatellite markers is in progress.« less

  20. The Val{sup 192}Leu mutation in the {alpha}-subunit of {beta}-hexosaminidase A is not associated with the B1-variant form of Tay-Sachs disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Y.; Vavougios, G.; Hinek, A.

    1996-07-01

    Substitution mutations adversely affecting the {alpha}-subunit of {beta}-hexosaminidase A ({alpha}{beta}) (EC 3.2.1.52) result in Tay-Sachs disease. The majority affect the initial folding of the pro-{alpha} chain in the endoplasmic reticulum, resulting in its retention and degradation. A much less common occurrence is a mutation that specifically affects an {open_quotes}active-site{close_quotes} residue necessary for substrate binding and/or catalysis. In this case, hexosaminidase A is present in the lysosome, but it lacks all {alpha}-specific activity. This biochemical phenotype is referred to as the {open_quotes}B1-variant form{close_quotes} of Tay-Sachs disease. Kinetic analysis of suspected B1-variant mutations is complex because hexosaminidase A is heterodimeric and bothmore » subunits possess similar active sites. In this report, we examine a previously identified B1-variant mutation, {alpha}-Val{sup 192}Leu. Chinese hamster ovary cells were permanently cotransfected with an {alpha}-cDNA-construct encoding the substitution and a mutant {beta}-cDNA ({beta}-Arg{sup 211}Lys), encoding a {beta}-subunit that is inactive but normal in all other respects. We were surprised to find that the Val{sup 192}Leu substitution produced a pro-{alpha} chain that did not form {alpha}-{beta} dimers and was not transported to the lysosome. Finally, we reexamined the hexosaminidase activity and protein levels in the fibroblasts from the original patient. These data were also not consistent with the biochemical phenotype of the B1 variant of Tay-Sachs disease previously reported to be present. Thus, we conclude that the Val{sup 192}Leu substitution does not specifically affect the {alpha}-active site. 23 refs., 4 figs., 2 tabs.« less

  1. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas.

    PubMed

    Palles, Claire; Cazier, Jean-Baptiste; Howarth, Kimberley M; Domingo, Enric; Jones, Angela M; Broderick, Peter; Kemp, Zoe; Spain, Sarah L; Guarino, Estrella; Guarino Almeida, Estrella; Salguero, Israel; Sherborne, Amy; Chubb, Daniel; Carvajal-Carmona, Luis G; Ma, Yusanne; Kaur, Kulvinder; Dobbins, Sara; Barclay, Ella; Gorman, Maggie; Martin, Lynn; Kovac, Michal B; Humphray, Sean; Lucassen, Anneke; Holmes, Christopher C; Bentley, David; Donnelly, Peter; Taylor, Jenny; Petridis, Christos; Roylance, Rebecca; Sawyer, Elinor J; Kerr, David J; Clark, Susan; Grimes, Jonathan; Kearsey, Stephen E; Thomas, Huw J W; McVean, Gilean; Houlston, Richard S; Tomlinson, Ian

    2013-02-01

    Many individuals with multiple or large colorectal adenomas or early-onset colorectal cancer (CRC) have no detectable germline mutations in the known cancer predisposition genes. Using whole-genome sequencing, supplemented by linkage and association analysis, we identified specific heterozygous POLE or POLD1 germline variants in several multiple-adenoma and/or CRC cases but in no controls. The variants associated with susceptibility, POLE p.Leu424Val and POLD1 p.Ser478Asn, have high penetrance, and POLD1 mutation was also associated with endometrial cancer predisposition. The mutations map to equivalent sites in the proofreading (exonuclease) domain of DNA polymerases ɛ and δ and are predicted to cause a defect in the correction of mispaired bases inserted during DNA replication. In agreement with this prediction, the tumors from mutation carriers were microsatellite stable but tended to acquire base substitution mutations, as confirmed by yeast functional assays. Further analysis of published data showed that the recently described group of hypermutant, microsatellite-stable CRCs is likely to be caused by somatic POLE mutations affecting the exonuclease domain.

  2. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome

    PubMed Central

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions. PMID:26544948

  3. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome.

    PubMed

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.

  4. Canine chondrodysplasia caused by a truncating mutation in collagen-binding integrin alpha subunit 10.

    PubMed

    Kyöstilä, Kaisa; Lappalainen, Anu K; Lohi, Hannes

    2013-01-01

    The skeletal dysplasias are disorders of the bone and cartilage tissues. Similarly to humans, several dog breeds have been reported to suffer from different types of genetic skeletal disorders. We have studied the molecular genetic background of an autosomal recessive chondrodysplasia that affects the Norwegian Elkhound and Karelian Bear Dog breeds. The affected dogs suffer from disproportionate short stature dwarfism of varying severity. Through a genome-wide approach, we mapped the chondrodysplasia locus to a 2-Mb region on canine chromosome 17 in nine affected and nine healthy Elkhounds (praw = 7.42×10(-6), pgenome-wide = 0.013). The associated locus contained a promising candidate gene, cartilage specific integrin alpha 10 (ITGA10), and mutation screening of its 30 exons revealed a nonsense mutation in exon 16 (c.2083C>T; p.Arg695*) that segregated fully with the disease in both breeds (p = 2.5×10(-23)). A 24% mutation carrier frequency was indicated in NEs and an 8% frequency in KBDs. The ITGA10 gene product, integrin receptor α10-subunit combines into a collagen-binding α10β1 integrin receptor, which is expressed in cartilage chondrocytes and mediates chondrocyte-matrix interactions during endochondral ossification. As a consequence of the nonsense mutation, the α10-protein was not detected in the affected cartilage tissue. The canine phenotype highlights the importance of the α10β1 integrin in bone growth, and the large animal model could be utilized to further delineate its specific functions. Finally, this study revealed a candidate gene for human chondrodysplasias and enabled the development of a genetic test for breeding purposes to eradicate the disease from the two dog breeds.

  5. Detection of the mtDNA 14484 mutation on an African-specific haplotype: Implications about its role in causing Leber hereditary optic neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torroni, A.; Petrozzi, M.; Terracina, M.

    1996-07-01

    Leber hereditary optic neuropathy (LHON) is a maternally transmitted disease whose primary clinical manifestation is acute or subacute bilateral loss of central vision leading to central scotoma and blindness. To date, LHON has been associated with 18 mtDNA missense mutations, even though, for many of these mutations, it remains unclear whether they cause the disease, contribute to the pathology, or are nonpathogenic mtDNA polymorphisms. On the basis of numerous criteria, which include the specificity for LHON, the frequency in the general population, and the penetrance within affected pedigrees, the detection of associated defects in the respiratory chain, mutations at threemore » nucleotide positions (nps), 11778 (G{r_arrow}A), 3460 (G{r_arrow}A), and 14484 (T{r_arrow}C) have been classified as high-risk and primary LHON mutations. Overall, these three mutations encompass {ge}90% of the LHON cases. 29 refs., 1 fig.« less

  6. DNA-directed mutations. Leading and lagging strand specificity

    NASA Technical Reports Server (NTRS)

    Sinden, R. R.; Hashem, V. I.; Rosche, W. A.

    1999-01-01

    The fidelity of replication has evolved to reproduce B-form DNA accurately, while allowing a low frequency of mutation. The fidelity of replication can be compromised, however, by defined order sequence DNA (dosDNA) that can adopt unusual or non B-DNA conformations. These alternative DNA conformations, including hairpins, cruciforms, triplex DNAs, and slipped-strand structures, may affect enzyme-template interactions that potentially lead to mutations. To analyze the effect of dosDNA elements on spontaneous mutagenesis, various mutational inserts containing inverted repeats or direct repeats were cloned in a plasmid containing a unidirectional origin of replication and a selectable marker for the mutation. This system allows for analysis of mutational events that are specific for the leading or lagging strands during DNA replication in Escherichia coli. Deletions between direct repeats, involving misalignment stabilized by DNA secondary structure, occurred preferentially on the lagging strand. Intermolecular strand switch events, correcting quasipalindromes to perfect inverted repeats, occurred preferentially during replication of the leading strand.

  7. Computational Modeling of Molecular Effects of Mutations Causing Snyder-Robinson Syndrome

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Teng, Shaolei; Alexov, Emil

    2009-11-01

    Snyder-Robinson syndrome is an X-linked mental retardation disorder disease. The disease is associated with defects in a particular biomolecule, the spermine synthase (SMS) protein. Specifically, three missense mutations, G56S, I150T and V132G in SMS were identified to cause the disease, but molecular mechanism of their effect is unknown. We apply single-point energy calculations, molecular dynamics simulations and pKa calculations to reveal the effects of these mutations on SMS's stability, flexibility and interactions. It is demonstrated that even saddle changes as very conservative mutations can significantly affect wild type properties of SMS protein. While the mutations do not involve ionizable groups, still slight changes in the protonation of neighboring amino acids are suggested by the computational protocol. The dynamics of SMS was also affected by the mutations resulting in larger structural fluctuations in the mutant protein compared to the wild type. At the same time, the effect on SMS's stability was found to depend on the location of the mutation site with respect to the surface of the protein. Our investigation suggests that the disease is caused by diverse molecular mechanisms depending on the site of mutation and amino acid type substitution.

  8. A recurrent mutation causing Melnick-Needles syndrome in females confers a severe, lethal phenotype in males.

    PubMed

    Spencer, Careni; Lombaard, Hendrik; Wise, Amy; Krause, Amanda; Robertson, Stephen P

    2018-04-01

    Melnick-Needles syndrome (MNS; MIM 309350) is an X-linked skeletal dysplasia caused by mutations in FLNA. Females with the condition present with characteristic facial features, short stature, skeletal anomalies, including poorly modeled and sclerotic bones, and structural abnormalities such as cardiac and urological defects. Previously males were thought to present with either a mild phenotype compatible with life or a severe lethal presentation depending on the maternal phenotype. The discovery of a limited number of mutations in FLNA as the cause of the condition has clarified the molecular basis of the disorder, but only a very small number of severely affected males have been reported with MNS. Furthermore, no mildly affected males have been described with a molecular confirmation of the condition. In this report, we describe the clinical and molecular findings of a mildly affected mother with MNS and her severely affected son. They shared a well-documented disease-causing variant in FLNA, p.(Ala1188Thr), one of two highly recurrent mutations leading to the disorder. This is only the fourth report of a male with perinatal lethal MNS and a molecular confirmation; it is the first description of this specific mutation in a male. © 2018 Wiley Periodicals, Inc.

  9. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia

    PubMed Central

    Alaa el Din, Ferdos; Patri, Sylvie; Thoreau, Vincent; Rodriguez-Ballesteros, Montserrat; Hamade, Eva; Bailly, Sabine; Gilbert-Dussardier, Brigitte; Abou Merhi, Raghida; Kitzis, Alain

    2015-01-01

    Hereditary Hemorrhagic Telangiectasia syndrome (HHT) or Rendu-Osler-Weber (ROW) syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1or ALK1) genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1), the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val) affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7) was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations. PMID:26176610

  10. Novel Mutations in PSENEN Gene in Two Chinese Acne Inversa Families Manifested as Familial Multiple Comedones and Dowling-Degos Disease

    PubMed Central

    Zhou, Cheng; Wen, Guang-Dong; Soe, Lwin Myint; Xu, Hong-Jun; Du, Juan; Zhang, Jian-Zhong

    2016-01-01

    Background: Acne inversa (AI), also called hidradenitis suppurativa, is a chronic, inflammatory, recurrent skin disease of the hair follicle. Familial AI shows autosomal-dominant inheritance caused by mutations in the γ-secretase genes. This study was aimed to identify the specific mutations in the γ-secretase genes in two Chinese families with AI. Methods: In this study, two Chinese families with AI were investigated. All the affected individuals in the two families mainly manifested with multiple comedones, pitted scars, and a few inflammatory nodules on their face, neck, trunk, axilla, buttocks, upper arms, and thighs. Reticulate pigmentation in the flexures areas resembled Dowling-Degos disease clinically and pathologically. In addition, one of the affected individuals developed anal canal squamous cell carcinoma. Molecular mutation analysis of γ-secretase genes including PSENEN, PSEN1, and NCSTN was performed by polymerase chain reaction and direct DNA sequencing. Results: Two novel mutations of PSENEN gene were identified, including a heterozygous missense mutation c.194T>G (p.L65R) and a splice site mutation c.167-2A>G. Conclusions: The identification of the two mutations could expand the spectrum of mutations in the γ-secretase genes underlying AI and provide valuable information for further study of genotype-phenotype correlations. PMID:27900998

  11. Analysis of the Afrikaner mutation in exon 9 of the low-density lipoprotein receptor gene in a large Dutch kindred suffering from familial hypercholesterolaemia.

    PubMed

    Defesche, J C; Lansberg, P J; Reymer, P W; Lamping, R J; Kastelein, J J

    1993-02-01

    Familial hypercholesterolaemia (FH) is the most common genetic metabolic disorder, affecting about 1 in 500 persons in the general population. With novel techniques, it is possible to identify the molecular defects underlying FH in the gene coding for the low-density lipoprotein (LDL) receptor, thereby confirming the diagnosis of FH. In this study we present a large family with a specific mutation in exon 9 of the LDL-receptor gene (an Afrikaner mutation) and we demonstrate that by a large-scale case-finding study in this family, carriers of such a mutation can be detected. Of 63 family members, 13 were shown to be at risk for cardiovascular disease as judged by their lipoprotein profile or the presence of the Afrikaner mutation. Two persons were detected, affected with a dyslipidaemia other than FH. Medical management was initiated in order to reduce the high cardiovascular risk associated with this disorder.

  12. Ocular findings associated with a Cys39Arg mutation in the Norrie disease gene.

    PubMed

    Joos, K M; Kimura, A E; Vandenburgh, K; Bartley, J A; Stone, E M

    1994-12-01

    To diagnose the carriers and noncarriers in a family affected with Norrie disease based on molecular analysis. Family members from three generations, including one affected patient, two obligate carriers, one carrier identified with linkage analysis, one noncarrier identified with linkage analysis, and one female family member with indeterminate carrier status, were examined clinically and electrophysiologically. Linkage analysis had previously failed to determine the carrier status of one female family member in the third generation. Blood samples were screened for mutations in the Norrie disease gene with single-strand conformation polymorphism analysis. The mutation was characterized by dideoxy-termination sequencing. Ophthalmoscopy and electroretinographic examination failed to detect the carrier state. The affected individuals and carriers in this family were found to have a transition from thymidine to cytosine in the first nucleotide of codon 39 of the Norrie disease gene, causing a cysteine-to-arginine mutation. Single-strand conformation polymorphism analysis identified a patient of indeterminate status (by linkage) to be a noncarrier of Norrie disease. Ophthalmoscopy and electroretinography could not identify carriers of this Norrie disease mutation. Single-strand conformation polymorphism analysis was more sensitive and specific than linkage analysis in identifying carriers in this family.

  13. X-exome sequencing in Finnish families with Intellectual Disability - four novel mutations and two novel syndromic phenotypes

    PubMed Central

    2014-01-01

    Background X-linked intellectual disability (XLID) is a group of genetically heterogeneous disorders characterized by substantial impairment in cognitive abilities, social and behavioral adaptive skills. Next generation sequencing technologies have become a powerful approach for identifying molecular gene mutations relevant for diagnosis. Methods & objectives Enrichment of X-chromosome specific exons and massively parallel sequencing was performed for identifying the causative mutations in 14 Finnish families, each of them having several males affected with intellectual disability of unknown cause. Results We found four novel mutations in known XLID genes. Two mutations; one previously reported missense mutation (c.1111C > T), and one novel frameshift mutation (c. 990_991insGCTGC) were identified in SLC16A2, a gene that has been linked to Allan-Herndon-Dudley syndrome (AHDS). One novel missense mutation (c.1888G > C) was found in GRIA3 and two novel splice donor site mutations (c.357 + 1G > C and c.985 + 1G > C) were identified in the DLG3 gene. One missense mutation (c.1321C > T) was identified in the candidate gene ZMYM3 in three affected males with a previously unrecognized syndrome characterized by unique facial features, aortic stenosis and hypospadia was detected. All of the identified mutations segregated in the corresponding families and were absent in > 100 Finnish controls and in the publicly available databases. In addition, a previously reported benign variant (c.877G > A) in SYP was identified in a large family with nine affected males in three generations, who have a syndromic phenotype. Conclusions All of the mutations found in this study are being reported for the first time in Finnish families with several affected male patients whose etiological diagnoses have remained unknown to us, in some families, for more than 30 years. This study illustrates the impact of X-exome sequencing to identify rare gene mutations and the challenges of interpreting the results. Further functional studies are required to confirm the cause of the syndromic phenotypes associated with ZMYM3 and SYP in this study. PMID:24721225

  14. A Novel MAPT Mutation, G55R, in a Frontotemporal Dementia Patient Leads to Altered Tau Function

    PubMed Central

    Guzman, Elmer; Barczak, Anna; Chodakowska-Żebrowska, Małgorzata; Barcikowska, Maria; Feinstein, Stuart

    2013-01-01

    Over two dozen mutations in the gene encoding the microtubule associated protein tau cause a variety of neurodegenerative dementias known as tauopathies, including frontotemporal dementia (FTD), PSP, CBD and Pick's disease. The vast majority of these mutations map to the C-terminal region of tau possessing microtubule assembly and microtubule dynamics regulatory activities as well as the ability to promote pathological tau aggregation. Here, we describe a novel and non-conservative tau mutation (G55R) mapping to an alternatively spliced exon encoding part of the N-terminal region of the protein in a patient with the behavioral variant of FTD. Although less well understood than the C-terminal region of tau, the N-terminal region can influence both MT mediated effects as well as tau aggregation. The mutation changes an uncharged glycine to a basic arginine in the midst of a highly conserved and very acidic region. In vitro, 4-repeat G55R tau nucleates microtubule assembly more effectively than wild-type 4-repeat tau; surprisingly, this effect is tau isoform specific and is not observed in a 3-repeat G55R tau versus 3-repeat wild-type tau comparison. In contrast, the G55R mutation has no effect upon the abilities of tau to regulate MT growing and shortening dynamics or to aggregate. Additionally, the mutation has no effect upon kinesin translocation in a microtubule gliding assay. Together, (i) we have identified a novel tau mutation mapping to a mutation deficient region of the protein in a bvFTD patient, and (ii) the G55R mutation affects the ability of tau to nucleate microtubule assembly in vitro in a 4-repeat tau isoform specific manner. This altered capability could markedly affect in vivo microtubule function and neuronal cell biology. We consider G55R to be a candidate mutation for bvFTD since additional criteria required to establish causality are not yet available for assessment. PMID:24086739

  15. Compound-Specific Effects of Mutations at Val787 in DII-S6 of Nav1.4 Sodium Channels on the Action of Sodium Channel Inhibitor Insecticides

    PubMed Central

    von Stein, Richard T.; Soderlund, David M.

    2012-01-01

    Sodium channel inhibitor (SCI) insecticides are hypothesized to inhibit voltage-gated sodium channels by binding selectively to the slow-inactivated state. Replacement of valine at position 787 in the S6 segment of homology domain II of the rat Nav1.4 sodium channel by lysine (V787K) enchances slow inactivation of this channel whereas replacement by alanine or cysteine (V787A, V787C) inhibits slow inactivation. To test the hypothesis that SCI insecticides bind selectively to the slow-inactivated state, we constructed mutated Nav1.4/V787A, Nav1.4/V787C, and Nav1.4/V787K cDNAs, expressed wildtype and mutated channels with the auxiliary β1 subunit in Xenopus oocytes, and used the two-electrode voltage clamp technique to examine the effects of these mutations on channel inhibition by four SCI insecticides (indoxacarb, its bioactivated metabolite DCJW, metaflumizone, and RH3421). Mutations at Val787 affected SCI insecticide sensitivity in a manner that was independent of mutation-induced changes in slow inactivation gating. Sensitivity to inhibition by 10 μM indoxacarb was significantly increased in all three mutated channels, whereas sensitivity to inhibition by 10 μM metaflumizone was significantly reduced in Nav1.4/V787A channels and completely abolished in Nav1.4/V787K channels. The effects of Val787 mutations on metaflumizone were correlated with the hydrophobicity of the substituted amino acid rather than the extent of slow inactivation. None of the mutations at Val787 significantly affected the sensitivity to inhibition by DCJW or RH3421. These results demonstrate that the impact of mutations at Val787 on sodium channel inhibition by SCI insecticides depends on the specific insecticide examined and is independent of mutation-induced changes in slow inactivation gating. We propose that Val787 may be a unique determinant of metaflumizone binding. PMID:22983119

  16. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly

    PubMed Central

    Rios, Jonathan J.; Paria, Nandina; Burns, Dennis K.; Israel, Bonnie A.; Cornelia, Reuel; Wise, Carol A.; Ezaki, Marybeth

    2013-01-01

    Macrodactyly is a discrete congenital anomaly consisting of enlargement of all tissues localized to the terminal portions of a limb, typically within a ‘nerve territory’. The classic terminology for this condition is ‘lipofibromatous hamartoma of nerve’ or Type I macrodactyly. The peripheral nerve, itself, is enlarged both in circumference and in length. It is not related to neurofibromatosis (NF1), nor is it associated with vascular malformations, such as in the recently reported CLOVES syndrome. The specific nerve pathophysiology in this form of macrodactyly has not been well described and a genetic etiology for this specific form of enlargement is unknown. To identify the genetic cause of macrodactyly, we used whole-exome sequencing to identify somatic mutations present in the affected nerve of a single patient. We confirmed a novel mutation in PIK3CA (R115P) present in the patient's affected nerve tissue but not in blood DNA. Sequencing PIK3CA exons identified gain-of-function mutations (E542K, H1047L or H1047R) in the affected tissue of five additional unrelated patients; mutations were absent in blood DNA available from three patients. Immunocytochemistry confirmed AKT activation in cultured cells from the nerve of a macrodactyly patient. Additionally, we found that the most abnormal structure within the involved nerve in a macrodactylous digit is the perineurium, with additional secondary effects on the axon number and size. Thus, isolated congenital macrodactyly is caused by somatic activation of the PI3K/AKT cell-signaling pathway and is genetically and biochemically related to other overgrowth syndromes. PMID:23100325

  17. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly.

    PubMed

    Rios, Jonathan J; Paria, Nandina; Burns, Dennis K; Israel, Bonnie A; Cornelia, Reuel; Wise, Carol A; Ezaki, Marybeth

    2013-02-01

    Macrodactyly is a discrete congenital anomaly consisting of enlargement of all tissues localized to the terminal portions of a limb, typically within a 'nerve territory'. The classic terminology for this condition is 'lipofibromatous hamartoma of nerve' or Type I macrodactyly. The peripheral nerve, itself, is enlarged both in circumference and in length. It is not related to neurofibromatosis (NF1), nor is it associated with vascular malformations, such as in the recently reported CLOVES syndrome. The specific nerve pathophysiology in this form of macrodactyly has not been well described and a genetic etiology for this specific form of enlargement is unknown. To identify the genetic cause of macrodactyly, we used whole-exome sequencing to identify somatic mutations present in the affected nerve of a single patient. We confirmed a novel mutation in PIK3CA (R115P) present in the patient's affected nerve tissue but not in blood DNA. Sequencing PIK3CA exons identified gain-of-function mutations (E542K, H1047L or H1047R) in the affected tissue of five additional unrelated patients; mutations were absent in blood DNA available from three patients. Immunocytochemistry confirmed AKT activation in cultured cells from the nerve of a macrodactyly patient. Additionally, we found that the most abnormal structure within the involved nerve in a macrodactylous digit is the perineurium, with additional secondary effects on the axon number and size. Thus, isolated congenital macrodactyly is caused by somatic activation of the PI3K/AKT cell-signaling pathway and is genetically and biochemically related to other overgrowth syndromes.

  18. A novel BRCA-1 mutation in Arab kindred from east Jerusalem with breast and ovarian cancer

    PubMed Central

    Kadouri, Luna; Bercovich, Dani; Elimelech, Arava; Lerer, Israela; Sagi, Michal; Glusman, Gila; Shochat, Chen; Korem, Sigal; Hamburger, Tamar; Nissan, Aviram; Abu-Halaf, Nahil; Badrriyah, Muhmud; Abeliovich, Dvorah; Peretz, Tamar

    2007-01-01

    Background The incidence of breast cancer (BC) in Arab women is lower compared to the incidence in the Jewish population in Israel; still, it is the most common malignancy among Arab women. There is a steep rise in breast cancer incidence in the Arab population in Israel over the last 10 years that can be attributed to life style changes. But, the younger age of BC onset in Arab women compared with that of the Jewish population is suggestive of a genetic component in BC occurrence in that population. Methods We studied the family history of 31 women of Palestinian Arab (PA) origin affected with breast (n = 28), ovarian (n = 3) cancer. We used denaturing high performance liquid chromatography (DHPLC) to screen for mutations of BRCA1/2 in 4 women with a personal and family history highly suggestive of genetic predisposition. Results A novel BRCA1 mutation, E1373X in exon 12, was found in a patient affected with ovarian cancer. Four of her family members, 3 BC patients and a healthy individual were consequently also found to carry this mutation. Of the other 27 patients, which were screened for this specific mutation none was found to carry it. Conclusion We found a novel BRCA1 mutation in a family of PA origin with a history highly compatible with BRCA1 phenotype. This mutation was not found in additional 30 PA women affected with BC or OC. Therefore full BRCA1/2 screening should be offered to patients with characteristic family history. The significance of the novel BRCA1 mutation we identified should be studied in larger population. However, it is likely that the E1373X mutation is not a founder frequent mutation in the PA population. PMID:17233897

  19. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation

    PubMed Central

    Carroll, Jeffrey B.; Deik, Amy; Fossale, Elisa; Weston, Rory M.; Guide, Jolene R.; Arjomand, Jamshid; Kwak, Seung; Clish, Clary B.; MacDonald, Marcy E.

    2015-01-01

    The HTT CAG expansion mutation causes Huntington’s Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident in brain, where the striatum featured signature accumulation of a set of lipids including sphingomyelin, phosphatidylcholine, cholesterol ester and triglyceride species. Importantly, in the presence of the CAG mutation, metabolite changes were unmasked in peripheral tissues by an interaction with dietary fat, implying that the design of studies to discover metabolic changes in HD mutation carriers should include metabolic perturbations. PMID:26295712

  20. Mutations in CSPP1 lead to classical Joubert syndrome.

    PubMed

    Akizu, Naiara; Silhavy, Jennifer L; Rosti, Rasim Ozgur; Scott, Eric; Fenstermaker, Ali G; Schroth, Jana; Zaki, Maha S; Sanchez, Henry; Gupta, Neerja; Kabra, Madhulika; Kara, Majdi; Ben-Omran, Tawfeg; Rosti, Basak; Guemez-Gamboa, Alicia; Spencer, Emily; Pan, Roger; Cai, Na; Abdellateef, Mostafa; Gabriel, Stacey; Halbritter, Jan; Hildebrandt, Friedhelm; van Bokhoven, Hans; Gunel, Murat; Gleeson, Joseph G

    2014-01-02

    Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. The nuclear lamina and heterochromatin: a complex relationship.

    PubMed

    Bank, Erin M; Gruenbaum, Yosef

    2011-12-01

    In metazoan cells, the heterochromatin is generally localized at the nuclear periphery, whereas active genes are preferentially found in the nuclear interior. In the present paper, we review current evidence showing that components of the nuclear lamina interact directly with heterochromatin, which implicates the nuclear lamina in a mechanism of specific gene retention at the nuclear periphery and release to the nuclear interior upon gene activation. We also discuss recent data showing that mutations in lamin proteins affect gene positioning and expression, providing a potential mechanism for how these mutations lead to tissue-specific diseases.

  2. Genetic Characterization of the SufJ Frameshift Suppressor in SALMONELLA TYPHIMURIUM

    PubMed Central

    Bossi, Lionello; Kohno, Tadahiko; Roth, John R.

    1983-01-01

    A new suppressor of +1 frameshift mutations has been isolated in Salmonella typhimurium. This suppressor, sufJ, maps at minute 89 on the Salmonella genetic map between the argH and rpo(rif) loci, closely linked to the gene for the ochre suppressor tyrU(supM). The suppressor mutation is dominant to its wild-type allele, consistent with the suppressor phenotype being caused by an altered tRNA species. The sufJ map position coincides with that of a threonine tRNA(ACC/U) gene; the suppressor has been shown to read the related fourbase codons ACCU, ACCC, ACCA.—The ability of sufJ to correct one particular mutation depends on the presence of a hisT mutation which causes a defect in tRNA modification. This requirement is allele specific, since other frameshift mutations can be corrected by sufJ regardless of the state of the hisT locus.—Strains carrying both a sufJ and a hisT mutation are acutely sensitive to growth inhibition by uracil; the inhibition is reversed by arginine. This behavior is characteristic of strains with mutations affecting the arginine-uracil biosynthetic enzyme carbamyl phosphate synthetase. The combination of two mutations affecting tRNA structure may reduce expression of the structural gene for this enzyme (pyrA). PMID:6188650

  3. RNA splicing factors as oncoproteins and tumor suppressors

    PubMed Central

    Dvinge, Heidi; Kim, Eunhee; Abdel-Wahab, Omar; Bradley, Robert K.

    2016-01-01

    Preface The recent genomic characterization of cancers has revealed recurrent somatic point mutations and copy number changes affecting genes encoding RNA splicing factors. Initial studies of these ‘spliceosomal mutations’ suggest that the proteins bearing these mutations exhibit altered splice site and/or exon recognition preferences relative to their wild-type counterparts, resulting in cancer-specific mis-splicing. Such changes in the splicing machinery may create novel vulnerabilities in cancer cells that can be therapeutically exploited using compounds that can influence the splicing process. Further studies to dissect the biochemical, genomic, and biological effects of spliceosomal mutations are critical for the development of cancer therapies targeted to these mutations. PMID:27282250

  4. De novo mutations in MED13, a component of the Mediator complex, are associated with a novel neurodevelopmental disorder.

    PubMed

    Snijders Blok, Lot; Hiatt, Susan M; Bowling, Kevin M; Prokop, Jeremy W; Engel, Krysta L; Cochran, J Nicholas; Bebin, E Martina; Bijlsma, Emilia K; Ruivenkamp, Claudia A L; Terhal, Paulien; Simon, Marleen E H; Smith, Rosemarie; Hurst, Jane A; McLaughlin, Heather; Person, Richard; Crunk, Amy; Wangler, Michael F; Streff, Haley; Symonds, Joseph D; Zuberi, Sameer M; Elliott, Katherine S; Sanders, Victoria R; Masunga, Abigail; Hopkin, Robert J; Dubbs, Holly A; Ortiz-Gonzalez, Xilma R; Pfundt, Rolph; Brunner, Han G; Fisher, Simon E; Kleefstra, Tjitske; Cooper, Gregory M

    2018-05-08

    Many genetic causes of developmental delay and/or intellectual disability (DD/ID) are extremely rare, and robust discovery of these requires both large-scale DNA sequencing and data sharing. Here we describe a GeneMatcher collaboration which led to a cohort of 13 affected individuals harboring protein-altering variants, 11 of which are de novo, in MED13; the only inherited variant was transmitted to an affected child from an affected mother. All patients had intellectual disability and/or developmental delays, including speech delays or disorders. Other features that were reported in two or more patients include autism spectrum disorder, attention deficit hyperactivity disorder, optic nerve abnormalities, Duane anomaly, hypotonia, mild congenital heart abnormalities, and dysmorphisms. Six affected individuals had mutations that are predicted to truncate the MED13 protein, six had missense mutations, and one had an in-frame-deletion of one amino acid. Out of the seven non-truncating mutations, six clustered in two specific locations of the MED13 protein: an N-terminal and C-terminal region. The four N-terminal clustering mutations affect two adjacent amino acids that are known to be involved in MED13 ubiquitination and degradation, p.Thr326 and p.Pro327. MED13 is a component of the CDK8-kinase module that can reversibly bind Mediator, a multi-protein complex that is required for Polymerase II transcription initiation. Mutations in several other genes encoding subunits of Mediator have been previously shown to associate with DD/ID, including MED13L, a paralog of MED13. Thus, our findings add MED13 to the group of CDK8-kinase module-associated disease genes.

  5. HLA class I-restricted MYD88 L265P-derived peptides as specific targets for lymphoma immunotherapy

    PubMed Central

    Nelde, Annika; Walz, Juliane Sarah; Kowalewski, Daniel Johannes; Schuster, Heiko; Wolz, Olaf-Oliver; Peper, Janet Kerstin; Cardona Gloria, Yamel; Langerak, Anton W.; Muggen, Alice F.; Claus, Rainer; Bonzheim, Irina; Fend, Falko; Salih, Helmut Rainer; Kanz, Lothar; Rammensee, Hans-Georg; Stevanović, Stefan; Weber, Alexander N. R.

    2017-01-01

    ABSTRACT Genome sequencing has uncovered an array of recurring somatic mutations in different non-Hodgkin lymphoma (NHL) subtypes. If affecting protein-coding regions, such mutations may yield mutation-derived peptides that may be presented by HLA class I proteins and recognized by cytotoxic T cells. A recurring somatic and oncogenic driver mutation of the Toll-like receptor adaptor protein MYD88, Leu265Pro (L265P) was identified in up to 90% of different NHL subtype patients. We therefore screened the potential of MYD88L265P-derived peptides to elicit cytotoxic T cell responses as tumor-specific neoantigens. Based on in silico predictions, we identified potential MYD88L265P-containing HLA ligands for several HLA class I restrictions. A set of HLA class I MYD88L265P-derived ligands elicited specific cytotoxic T cell responses for HLA-B*07 and -B*15. These data highlight the potential of MYD88L265P mutation-specific peptide-based immunotherapy as a novel personalized treatment approach for patients with MYD88L265P+ NHLs that may complement pharmacological approaches targeting oncogenic MyD88 L265P signaling. PMID:28405493

  6. Inhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines.

    PubMed

    Suijker, Johnny; Oosting, Jan; Koornneef, Annemarie; Struys, Eduard A; Salomons, Gajja S; Schaap, Frank G; Waaijer, Cathelijn J F; Wijers-Koster, Pauline M; Briaire-de Bruijn, Inge H; Haazen, Lizette; Riester, Scott M; Dudakovic, Amel; Danen, Erik; Cleton-Jansen, Anne-Marie; van Wijnen, Andre J; Bovée, Judith V M G

    2015-05-20

    Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found in a subset of benign and malignant cartilage tumors, gliomas and leukaemias. The mutant enzyme causes the production of D-2-hydroxyglutarate (D-2-HG), affecting CpG island and histone methylation. While mutations in IDH1/2 are early events in benign cartilage tumors, we evaluated whether these mutations play a role in malignant chondrosarcomas. Compared to IDH1/2 wildtype cell lines, chondrosarcoma cell lines harboring an endogenous IDH1 (n=3) or IDH2 mutation (n=2) showed up to a 100-fold increase in intracellular and extracellular D-2-HG levels. Specific inhibition of mutant IDH1 using AGI-5198 decreased levels of D-2-HG in a dose dependent manner. After 72 hours of treatment one out of three mutant IDH1 cell lines showed a moderate decrease in viability , while D-2-HG levels decreased >90%. Likewise, prolonged treatment (up to 20 passages) did not affect proliferation and migration. Furthermore, global gene expression, CpG island methylation as well as histone H3K4, -9, and -27 trimethylation levels remained unchanged. Thus, while IDH1/2 mutations cause enchondroma, malignant progression towards central chondrosarcoma renders chondrosarcoma growth independent of these mutations. Thus, monotherapy based on inhibition of mutant IDH1 appears insufficient for treatment of inoperable or metastasized chondrosarcoma patients.

  7. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice.

    PubMed

    Mikami, Masafumi; Toki, Seiichi; Endo, Masaki

    2015-10-01

    Frequency of CRISPR/Cas9-mediated targeted mutagenesis varies depending on Cas9 expression level and culture period of rice callus. Recent reports have demonstrated that the CRISPR/Cas9 system can function as a sequence-specific nuclease in various plant species. Induction of mutation in proliferating tissue during embryogenesis or in germline cells is a practical means of generating heritable mutations. In the case of plant species in which cultured cells are used for transformation, non-chimeric plants can be obtained when regeneration occurs from mutated cells. Since plantlets are regenerated from both mutated and non-mutated cells in a random manner, any increment in the proportion of mutated cells in Cas9- and guide RNA (gRNA)-expressing cells will help increase the number of plants containing heritable mutations. In this study, we examined factors affecting mutation frequency in rice calli. Following sequential transformation of rice calli with Cas9- and gRNA- expression constructs, the mutation frequency in independent Cas9 transgenic lines was analyzed. A positive correlation between Cas9 expression level and mutation frequency was found. This positive relationship was observed regardless of whether the transgene or an endogenous gene was used as the target for CRISPR/Cas9-mediated mutagenesis. Furthermore, we found that extending the culture period increased the proportion of mutated cells as well as the variety of mutations obtained. Because mutated and non-mutated cells might proliferate equally, these results suggest that a prolonged tissue culture period increases the chance of inducing de novo mutations in non-mutated cells. This fundamental knowledge will help improve systems for obtaining non-chimeric regenerated plants in many plant species.

  8. Genetic screens for mutations affecting development of Xenopus tropicalis.

    PubMed

    Goda, Tadahiro; Abu-Daya, Anita; Carruthers, Samantha; Clark, Matthew D; Stemple, Derek L; Zimmerman, Lyle B

    2006-06-01

    We present here the results of forward and reverse genetic screens for chemically-induced mutations in Xenopus tropicalis. In our forward genetic screen, we have uncovered 77 candidate phenotypes in diverse organogenesis and differentiation processes. Using a gynogenetic screen design, which minimizes time and husbandry space expenditures, we find that if a phenotype is detected in the gynogenetic F2 of a given F1 female twice, it is highly likely to be a heritable abnormality (29/29 cases). We have also demonstrated the feasibility of reverse genetic approaches for obtaining carriers of mutations in specific genes, and have directly determined an induced mutation rate by sequencing specific exons from a mutagenized population. The Xenopus system, with its well-understood embryology, fate map, and gain-of-function approaches, can now be coupled with efficient loss-of-function genetic strategies for vertebrate functional genomics and developmental genetics.

  9. Calmodulin point mutations affect Drosophila development and behavior.

    PubMed

    Nelson, H B; Heiman, R G; Bolduc, C; Kovalick, G E; Whitley, P; Stern, M; Beckingham, K

    1997-12-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations.

  10. Calmodulin Point Mutations Affect Drosophila Development and Behavior

    PubMed Central

    Nelson, H. B.; Heiman, R. G.; Bolduc, C.; Kovalick, G. E.; Whitley, P.; Stern, M.; Beckingham, K.

    1997-01-01

    Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations. PMID:9409836

  11. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease

    PubMed Central

    Bustamante, Jacinta; Arias, Andres A; Vogt, Guillaume; Picard, Capucine; Galicia, Lizbeth Blancas; Prando, Carolina; Grant, Audrey V; Marchal, Christophe C; Hubeau, Marjorie; Chapgier, Ariane; de Beaucoudrey, Ludovic; Puel, Anne; Feinberg, Jacqueline; Valinetz, Ethan; Jannière, Lucile; Besse, Céline; Boland, Anne; Brisseau, Jean-Marie; Blanche, Stéphane; Lortholary, Olivier; Fieschi, Claire; Emile, Jean-François; Boisson-Dupuis, Stéphanie; Al-Muhsen, Saleh; Woda, Bruce; Newburger, Peter E; Condino-Neto, Antonio; Dinauer, Mary C; Abel, Laurent; Casanova, Jean-Laurent

    2011-01-01

    Germline mutations in CYBB, the human gene encoding the gp91phox subunit of the phagocyte NADPH oxidase, impair the respiratory burst of all types of phagocytes and result in X-linked chronic granulomatous disease (CGD). We report here two kindreds in which otherwise healthy male adults developed X-linked recessive Mendelian susceptibility to mycobacterial disease (MSMD) syndromes. These patients had previously unknown mutations in CYBB that resulted in an impaired respiratory burst in monocyte-derived macrophages but not in monocytes or granulocytes. The macrophage-specific functional consequences of the germline mutation resulted from cell-specific impairment in the assembly of the NADPH oxidase. This ‘experiment of nature’ indicates that CYBB is associated with MSMD and demonstrates that the respiratory burst in human macrophages is a crucial mechanism for protective immunity to tuberculous mycobacteria. PMID:21278736

  12. Severe Gardner syndrome in families with mutations restricted to a specific region of the APC gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, D.R.; Armstrong, J.G.; Thakker, N.

    Familial adenomatous polyposis (FAP) is associated with a number of extraintestinal manifestations, which include osteomas, epidermoid cysts, and desmoid tumors, often referred to as {open_quotes}Gardner syndrome.{close_quotes} Recent studies have suggested that some of the phenotypic features of FAP are dependent on the position of the mutation within the APC gene. In particular, the correlation between congenital hypertrophy of the retinal pigment epithelium (CHRPE) and APC genotype indicates that affected families may be divided into distinct groups. We have investigated the association between the dento-osseous features of GS on dental panoramic radiographs (DPRs) and APC genotype in a regional cohort ofmore » FAP families. DPRs were performed on 84 affected individuals from 36 families, and the dento-osseous features of FAP were quantified by a weighted scoring system. Significant DPR abnormalities were present in 69% of affected individuals. The APC gene mutation was identified in 27 of these families, and for statistical analysis these were subdivided into three groups. Group 1 comprised 18 affected individuals from seven families with mutations 5{prime} of exon 9; these families (except one) did not express CHRPE. Groups 2 comprised 38 individuals from 16 families with mutations between exon 9 and codon 1444, all of whom expressed CHRPE. Group 3 comprised 11 individuals from four families with mutations 3{prime} of codon 1444, none of whom expressed CHRPE. Families with mutations 3{prime} of codon 1444 had significantly more lesions on DPRs (P < .001) and appeared to have a higher incidence of desmoid tumors. These results suggest that severity of some of the features of Gardner syndrome may correlate with genotype in FAP. 32 refs., 2 figs., 2 tabs.« less

  13. Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling.

    PubMed

    Snijders Blok, Lot; Madsen, Erik; Juusola, Jane; Gilissen, Christian; Baralle, Diana; Reijnders, Margot R F; Venselaar, Hanka; Helsmoortel, Céline; Cho, Megan T; Hoischen, Alexander; Vissers, Lisenka E L M; Koemans, Tom S; Wissink-Lindhout, Willemijn; Eichler, Evan E; Romano, Corrado; Van Esch, Hilde; Stumpel, Connie; Vreeburg, Maaike; Smeets, Eric; Oberndorff, Karin; van Bon, Bregje W M; Shaw, Marie; Gecz, Jozef; Haan, Eric; Bienek, Melanie; Jensen, Corinna; Loeys, Bart L; Van Dijck, Anke; Innes, A Micheil; Racher, Hilary; Vermeer, Sascha; Di Donato, Nataliya; Rump, Andreas; Tatton-Brown, Katrina; Parker, Michael J; Henderson, Alex; Lynch, Sally A; Fryer, Alan; Ross, Alison; Vasudevan, Pradeep; Kini, Usha; Newbury-Ecob, Ruth; Chandler, Kate; Male, Alison; Dijkstra, Sybe; Schieving, Jolanda; Giltay, Jacques; van Gassen, Koen L I; Schuurs-Hoeijmakers, Janneke; Tan, Perciliz L; Pediaditakis, Igor; Haas, Stefan A; Retterer, Kyle; Reed, Patrick; Monaghan, Kristin G; Haverfield, Eden; Natowicz, Marvin; Myers, Angela; Kruer, Michael C; Stein, Quinn; Strauss, Kevin A; Brigatti, Karlla W; Keating, Katherine; Burton, Barbara K; Kim, Katherine H; Charrow, Joel; Norman, Jennifer; Foster-Barber, Audrey; Kline, Antonie D; Kimball, Amy; Zackai, Elaine; Harr, Margaret; Fox, Joyce; McLaughlin, Julie; Lindstrom, Kristin; Haude, Katrina M; van Roozendaal, Kees; Brunner, Han; Chung, Wendy K; Kooy, R Frank; Pfundt, Rolph; Kalscheuer, Vera; Mehta, Sarju G; Katsanis, Nicholas; Kleefstra, Tjitske

    2015-08-06

    Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Transfer RNA and human disease.

    PubMed

    Abbott, Jamie A; Francklyn, Christopher S; Robey-Bond, Susan M

    2014-01-01

    Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are "hotspots" for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

  15. Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA.

    PubMed

    Dong, F; Allawi, H T; Anderson, T; Neri, B P; Lyamichev, V I

    2001-08-01

    DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5'-nucleases with an energy minimization algorithm that utilizes the 5'-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5'-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific 'bridge' probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37 degrees C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.

  16. Genetic testing in benign familial epilepsies of the first year of life: clinical and diagnostic significance.

    PubMed

    Zara, Federico; Specchio, Nicola; Striano, Pasquale; Robbiano, Angela; Gennaro, Elena; Paravidino, Roberta; Vanni, Nicola; Beccaria, Francesca; Capovilla, Giuseppe; Bianchi, Amedeo; Caffi, Lorella; Cardilli, Viviana; Darra, Francesca; Bernardina, Bernardo Dalla; Fusco, Lucia; Gaggero, Roberto; Giordano, Lucio; Guerrini, Renzo; Incorpora, Gemma; Mastrangelo, Massimo; Spaccini, Luigina; Laverda, Anna Maria; Vecchi, Marilena; Vanadia, Francesca; Veggiotti, Pierangelo; Viri, Maurizio; Occhi, Guya; Budetta, Mauro; Taglialatela, Maurizio; Coviello, Domenico A; Vigevano, Federico; Minetti, Carlo

    2013-03-01

    To dissect the genetics of benign familial epilepsies of the first year of life and to assess the extent of the genetic overlap between benign familial neonatal seizures (BFNS), benign familial neonatal-infantile seizures (BFNIS), and benign familial infantile seizures (BFIS). Families with at least two first-degree relatives affected by focal seizures starting within the first year of life and normal development before seizure onset were included. Families were classified as BFNS when all family members experienced neonatal seizures, BFNIS when the onset of seizures in family members was between 1 and 4 months of age or showed both neonatal and infantile seizures, and BFIS when the onset of seizures was after 4 months of age in all family members. SCN2A, KCNQ2, KCNQ3, PPRT2 point mutations were analyzed by direct sequencing of amplified genomic DNA. Genomic deletions involving KCNQ2 and KCNQ3 were analyzed by multiple-dependent probe amplification method. A total of 46 families including 165 affected members were collected. Eight families were classified as BFNS, 9 as BFNIS, and 29 as BFIS. Genetic analysis led to the identification of 41 mutations, 14 affecting KCNQ2, 1 affecting KCNQ3, 5 affecting SCN2A, and 21 affecting PRRT2. The detection rate of mutations in the entire cohort was 89%. In BFNS, mutations specifically involve KCNQ2. In BFNIS two genes are involved (KCNQ2, six families; SCN2A, two families). BFIS families are the most genetically heterogeneous, with all four genes involved, although about 70% of them carry a PRRT2 mutation. Our data highlight the important role of KCNQ2 in the entire spectrum of disorders, although progressively decreasing as the age of onset advances. The occurrence of afebrile seizures during follow-up is associated with KCNQ2 mutations and may represent a predictive factor. In addition, we showed that KCNQ3 mutations might be also involved in families with infantile seizures. Taken together our data indicate an important role of K-channel genes beyond the typical neonatal epilepsies. The identification of a novel SCN2A mutation in a family with infantile seizures with onset between 6 and 8 months provides further confirmation that this gene is not specifically associated with BFNIS and is also involved in families with a delayed age of onset. Our data indicate that PRRT2 mutations are clustered in families with BFIS. Paroxysmal kinesigenic dyskinesia emerges as a distinctive feature of PRRT2 families, although uncommon in our series. We showed that the age of onset of seizures is significantly correlated with underlying genetics, as about 90% of the typical BFNS families are linked to KCNQ2 compared to only 3% of the BFIS families, for which PRRT2 represents the major gene. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  17. A Mutation Associated with Stuttering Alters Mouse Pup Ultrasonic Vocalizations.

    PubMed

    Barnes, Terra D; Wozniak, David F; Gutierrez, Joanne; Han, Tae-Un; Drayna, Dennis; Holy, Timothy E

    2016-04-13

    A promising approach to understanding the mechanistic basis of speech is to study disorders that affect speech without compromising other cognitive or motor functions. Stuttering, also known as stammering, has been linked to mutations in the lysosomal enzyme-targeting pathway, but how this remarkably specific speech deficit arises from mutations in a family of general "cellular housekeeping" genes is unknown. To address this question, we asked whether a missense mutation associated with human stuttering causes vocal or other abnormalities in mice. We compared vocalizations from mice engineered to carry a mutation in the Gnptab (N-acetylglucosamine-1-phosphotransferase subunits alpha/beta) gene with wild-type littermates. We found significant differences in the vocalizations of pups with the human Gnptab stuttering mutation compared to littermate controls. Specifically, we found that mice with the mutation emitted fewer vocalizations per unit time and had longer pauses between vocalizations and that the entropy of the temporal sequence was significantly reduced. Furthermore, Gnptab missense mice were similar to wild-type mice on an extensive battery of non-vocal behaviors. We then used the same language-agnostic metrics for auditory signal analysis of human speech. We analyzed speech from people who stutter with mutations in this pathway and compared it to control speech and found abnormalities similar to those found in the mouse vocalizations. These data show that mutations in the lysosomal enzyme-targeting pathway produce highly specific effects in mouse pup vocalizations and establish the mouse as an attractive model for studying this disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Osteopoikilosis and multiple exostoses caused by novel mutations in LEMD3 and EXT1 genes respectively - coincidence within one family

    PubMed Central

    2010-01-01

    Background Osteopoikilosis is a rare autosomal dominant genetic disorder, characterised by the occurrence of the hyperostotic spots preferentially localized in the epiphyses and metaphyses of the long bones, and in the carpal and tarsal bones [1]. Heterozygous LEMD3 gene mutations were shown to be the primary cause of the disease [2]. Association of the primarily asymptomatic osteopokilosis with connective tissue nevi of the skin is categorized as Buschke-Ollendorff syndrome (BOS) [3]. Additionally, osteopoikilosis can coincide with melorheostosis (MRO), a more severe bone disease characterised by the ectopic bone formation on the periosteal and endosteal surface of the long bones [4-6]. However, not all MRO affected individuals carry germ-line LEMD3 mutations [7]. Thus, the genetic cause of MRO remains unknown. Here we describe a familial case of osteopoikilosis in which a novel heterozygous LEMD3 mutation coincides with a novel mutation in EXT1, a gene involved in aetiology of multiple exostosis syndrome. The patients affected with both LEMD3 and EXT1 gene mutations displayed typical features of the osteopoikilosis. There were no additional skeletal manifestations detected however, various non-skeletal pathologies coincided in this group. Methods We investigated LEMD3 and EXT1 in the three-generation family from Poland, with 5 patients affected with osteopoikilosis and one child affected with multiple exostoses. Results We found a novel c.2203C > T (p.R735X) mutation in exon 9 of LEMD3, resulting in a premature stop codon at amino acid position 735. The mutation co-segregates with the osteopoikilosis phenotype and was not found in 200 ethnically matched controls. Another new substitution G > A was found in EXT1 gene at position 1732 (cDNA) in Exon 9 (p.A578T) in three out of five osteopoikilosis affected family members. Evolutionary conservation of the affected amino acid suggested possible functional relevance, however no additional skeletal manifestations were observed other then those specific for osteopoikilosis. Finally in one member of the family we found a splice site mutation in the EXT1 gene intron 5 (IVS5-2 A > G) resulting in the deletion of 9 bp of cDNA encoding three evolutionarily conserved amino acid residues. This child patient suffered from a severe form of exostoses, thus a causal relationship can be postulated. Conclusions We identified a new mutation in LEMD3 gene, accounting for the familial case of osteopoikilosis. In the same family we identified two novel EXT1 gene mutations. One of them A598T co-incided with the LEMD3 mutation. Co-incidence of LEMD3 and EXT1 gene mutations was not associated with a more severe skeletal phenotype in those patients. PMID:20618940

  19. A Missense Mutation in PPP1R15B Causes a Syndrome Including Diabetes, Short Stature, and Microcephaly

    PubMed Central

    Abdulkarim, Baroj; Igoillo-Esteve, Mariana; Daures, Mathilde; Romero, Sophie; Philippi, Anne; Senée, Valérie; Lopes, Miguel; Cunha, Daniel A.; Harding, Heather P.; Derbois, Céline; Bendelac, Nathalie; Hattersley, Andrew T.; Eizirik, Décio L.; Ron, David

    2015-01-01

    Dysregulated endoplasmic reticulum stress and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) are associated with pancreatic β-cell failure and diabetes. Here, we report the first homozygous mutation in the PPP1R15B gene (also known as constitutive repressor of eIF2α phosphorylation [CReP]) encoding the regulatory subunit of an eIF2α-specific phosphatase in two siblings affected by a novel syndrome of diabetes of youth with short stature, intellectual disability, and microcephaly. The R658C mutation in PPP1R15B affects a conserved amino acid within the domain important for protein phosphatase 1 (PP1) binding. The R658C mutation decreases PP1 binding and eIF2α dephosphorylation and results in β-cell apoptosis. Our findings support the concept that dysregulated eIF2α phosphorylation, whether decreased by mutation of the kinase (EIF2AK3) in Wolcott-Rallison syndrome or increased by mutation of the phosphatase (PPP1R15B), is deleterious to β-cells and other secretory tissues, resulting in diabetes associated with multisystem abnormalities. PMID:26159176

  20. Multiplex Droplet Digital PCR Quantification of Recurrent Somatic Mutations in Diffuse Large B-Cell and Follicular Lymphoma.

    PubMed

    Alcaide, Miguel; Yu, Stephen; Bushell, Kevin; Fornika, Daniel; Nielsen, Julie S; Nelson, Brad H; Mann, Koren K; Assouline, Sarit; Johnson, Nathalie A; Morin, Ryan D

    2016-09-01

    A plethora of options to detect mutations in tumor-derived DNA currently exist but each suffers limitations in analytical sensitivity, cost, or scalability. Droplet digital PCR (ddPCR) is an appealing technology for detecting the presence of specific mutations based on a priori knowledge and can be applied to tumor biopsies, including formalin-fixed paraffin embedded (FFPE) tissues. More recently, ddPCR has gained popularity in its utility in quantifying circulating tumor DNA. We have developed a suite of novel ddPCR assays for detecting recurrent mutations that are prevalent in common B-cell non-Hodgkin lymphomas (NHLs), including diffuse large B-cell lymphoma, follicular lymphoma, and lymphoplasmacytic lymphoma. These assays allowed the differentiation and counting of mutant and wild-type molecules using one single hydrolysis probe. We also implemented multiplexing that allowed the simultaneous detection of distinct mutations and an "inverted" ddPCR assay design, based on employing probes matching wild-type alleles, capable of detecting the presence of multiple single nucleotide polymorphisms. The assays successfully detected and quantified somatic mutations commonly affecting enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) (Y641) and signal transducer and activator of transcription 6 (STAT6) (D419) hotspots in fresh tumor, FFPE, and liquid biopsies. The "inverted" ddPCR approach effectively reported any single nucleotide variant affecting either of these 2 hotspots as well. Finally, we could effectively multiplex hydrolysis probes targeting 2 additional lymphoma-related hotspots: myeloid differentiation primary response 88 (MYD88; L265P) and cyclin D3 (CCND3; I290R). Our suite of ddPCR assays provides sufficient analytical sensitivity and specificity for either the invasive or noninvasive detection of multiple recurrent somatic mutations in B-cell NHLs. © 2016 American Association for Clinical Chemistry.

  1. Mutation Supply and Relative Fitness Shape the Genotypes of Ciprofloxacin-Resistant Escherichia coli.

    PubMed

    Huseby, Douglas L; Pietsch, Franziska; Brandis, Gerrit; Garoff, Linnéa; Tegehall, Angelica; Hughes, Diarmaid

    2017-05-01

    Ciprofloxacin is an important antibacterial drug targeting Type II topoisomerases, highly active against Gram-negatives including Escherichia coli. The evolution of resistance to ciprofloxacin in E. coli always requires multiple genetic changes, usually including mutations affecting two different drug target genes, gyrA and parC. Resistant mutants selected in vitro or in vivo can have many different mutations in target genes and efflux regulator genes that contribute to resistance. Among resistant clinical isolates the genotype, gyrA S83L D87N, parC S80I is significantly overrepresented suggesting that it has a selective advantage. However, the evolutionary or functional significance of this high frequency resistance genotype is not fully understood. By combining experimental data and mathematical modeling, we addressed the reasons for the predominance of this specific genotype. The experimental data were used to model trajectories of mutational resistance evolution under different conditions of drug exposure and population bottlenecks. We identified the order in which specific mutations are selected in the clinical genotype, showed that the high frequency genotype could be selected over a range of drug selective pressures, and was strongly influenced by the relative fitness of alternative mutations and factors affecting mutation supply. Our data map for the first time the fitness landscape that constrains the evolutionary trajectories taken during the development of clinical resistance to ciprofloxacin and explain the predominance of the most frequently selected genotype. This study provides strong support for the use of in vitro competition assays as a tool to trace evolutionary trajectories, not only in the antibiotic resistance field. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.

    PubMed

    Engin, H Billur; Kreisberg, Jason F; Carter, Hannah

    2016-01-01

    Recently it has been shown that cancer mutations selectively target protein-protein interactions. We hypothesized that mutations affecting distinct protein interactions involving established cancer genes could contribute to tumor heterogeneity, and that novel mechanistic insights might be gained into tumorigenesis by investigating protein interactions under positive selection in cancer. To identify protein interactions under positive selection in cancer, we mapped over 1.2 million nonsynonymous somatic cancer mutations onto 4,896 experimentally determined protein structures and analyzed their spatial distribution. In total, 20% of mutations on the surface of known cancer genes perturbed protein-protein interactions (PPIs), and this enrichment for PPI interfaces was observed for both tumor suppressors (Odds Ratio 1.28, P-value < 10(-4)) and oncogenes (Odds Ratio 1.17, P-value < 10(-3)). To study this further, we constructed a bipartite network representing structurally resolved PPIs from all available human complexes in the Protein Data Bank (2,864 proteins, 3,072 PPIs). Analysis of frequently mutated cancer genes within this network revealed that tumor-suppressors, but not oncogenes, are significantly enriched with functional mutations in homo-oligomerization regions (Odds Ratio 3.68, P-Value < 10(-8)). We present two important examples, TP53 and beta-2-microglobulin, for which the patterns of somatic mutations at interfaces provide insights into specifically perturbed biological circuits. In patients with TP53 mutations, patient survival correlated with the specific interactions that were perturbed. Moreover, we investigated mutations at the interface of protein-nucleotide interactions and observed an unexpected number of missense mutations but not silent mutations occurring within DNA and RNA binding sites. Finally, we provide a resource of 3,072 PPI interfaces ranked according to their mutation rates. Analysis of this list highlights 282 novel candidate cancer genes that encode proteins participating in interactions that are perturbed recurrently across tumors. In summary, mutation of specific protein interactions is an important contributor to tumor heterogeneity and may have important implications for clinical outcomes.

  3. Familial cardiofaciocutaneous syndrome in a father and a son with a novel MEK2 mutation.

    PubMed

    Karaer, Kadri; Lissewski, Christina; Zenker, Martin

    2015-02-01

    Cardiofaciocutaneous (CFC) syndrome is a rare genetic disorder belonging to the group of RASopathies. It is typically characterized by congenital heart defects, short stature, dysmorphic craniofacial features, intellectual disability, failure to thrive, and ectodermal abnormalities such as hyperkeratosis and sparse, brittle, curly hair. CFC syndrome is caused by dominant mutations in one of the four genes BRAF, MEK1, MEK2, and KRAS. Only three familial cases of CFC syndrome have been reported to date, whereas the vast majorities are sporadic cases due to de novo mutations. We report on a fourth familial case with transmission of CFC syndrome from father to son due to a novel heterozygous sequence change c.376A>G (p.N126D) in exon 3 of MEK2 gene. This observation further documents the possibility of vertical transmission of CFC syndrome, which appears to be associated with rare mutations and relatively mild intellectual disability in affected individual. The hypomorphic effect of specific mutations particularly regarding neurocognitive issues may be related to the variable fertility of affected individuals. © 2014 Wiley Periodicals, Inc.

  4. Visualizing Mutation-Specific Differences in the Trafficking-Deficient Phenotype of Kv11.1 Proteins Linked to Long QT Syndrome Type 2.

    PubMed

    Hall, Allison R; Anderson, Corey L; Smith, Jennifer L; Mirshahi, Tooraj; Elayi, Claude S; January, Craig T; Delisle, Brian P

    2018-01-01

    KCNH2 encodes the Kv11.1 α-subunit that underlies the rapidly activating delayed-rectifier K + current in the heart. Loss-of-function KCNH2 mutations cause long QT syndrome type 2 (LQT2), and most LQT2-linked missense mutations inhibit the trafficking of Kv11.1 channel protein to the cell surface membrane. Several trafficking-deficient LQT2 mutations (e.g., G601S) generate Kv11.1 proteins that are sequestered in a microtubule-dependent quality control (QC) compartment in the transitional endoplasmic reticulum (ER). We tested the hypothesis that the QC mechanisms that regulate LQT2-linked Kv11.1 protein trafficking are mutation-specific. Confocal imaging analyses of HEK293 cells stably expressing the trafficking-deficient LQT2 mutation F805C showed that, unlike G601S-Kv11.1 protein, F805C-Kv11.1 protein was concentrated in several transitional ER subcompartments. The microtubule depolymerizing drug nocodazole differentially affected G601S- and F805C-Kv11.1 protein immunostaining. Nocodazole caused G601S-Kv11.1 protein to distribute into peripheral reticular structures, and it increased the diffuse immunostaining of F805C-Kv11.1 protein around the transitional ER subcompartments. Proteasome inhibition also affected the immunostaining of G601S- and F805C-Kv11.1 protein differently. Incubating cells in MG132 minimally impacted G601S-Kv11.1 immunostaining, but it dramatically increased the diffuse immunostaining of F805C-Kv11.1 protein in the transitional ER. Similar results were seen after incubating cells in the proteasome inhibitor lactacystin. Differences in the cellular distribution of G601S-Kv11.1 and F805C-Kv11.1 protein persisted in transfected human inducible pluripotent stem cell derived cardiomyocytes. These are the first data to visually demonstrate mutation-specific differences in the trafficking-deficient LQT2 phenotype, and this study has identified a novel way to categorize trafficking-deficient LQT2 mutations based on differences in intracellular retention.

  5. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    PubMed

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  6. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies

    PubMed Central

    Pham, Nikki T.; Wei, Tong; Schackwitz, Wendy S.; Lipzen, Anna M.; Duong, Phat Q.; Jones, Kyle C.; Ruan, Deling; Bauer, Diane; Peng, Yi; Schmutz, Jeremy

    2017-01-01

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations. PMID:28576844

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guotian; Jain, Rashmi; Chern, Mawsheng

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportionmore » of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. In conclusion, this work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations.« less

  8. Multi-layered mutation in hedgehog-related genes in Gorlin syndrome may affect the phenotype.

    PubMed

    Onodera, Shoko; Saito, Akiko; Hasegawa, Daigo; Morita, Nana; Watanabe, Katsuhito; Nomura, Takeshi; Shibahara, Takahiko; Ohba, Shinsuke; Yamaguchi, Akira; Azuma, Toshifumi

    2017-01-01

    Gorlin syndrome is a genetic disorder of autosomal dominant inheritance that predisposes the affected individual to a variety of disorders that are attributed largely to heterozygous germline patched1 (PTCH1) mutations. PTCH1 is a hedgehog (Hh) receptor as well as a repressor, mutation of which leads to constitutive activation of Hh pathway. Hh pathway encompasses a wide variety of cellular signaling cascades, which involve several molecules; however, no associated genotype-phenotype correlations have been reported. Recently, mutations in Suppressor of fused homolog (SUFU) or PTCH2 were reported in patients with Gorlin syndrome. These facts suggest that multi-layered mutations in Hh pathway may contribute to the development of Gorlin syndrome. We demonstrated multiple mutations of Hh-related genes in addition to PTCH1, which possibly act in an additive or multiplicative manner and lead to Gorlin syndrome. High-throughput sequencing was performed to analyze exome sequences in four unrelated Gorlin syndrome patient genomes. Mutations in PTCH1 gene were detected in all four patients. Specific nucleotide variations or frameshift variations of PTCH1 were identified along with the inferred amino acid changes in all patients. We further filtered 84 different genes which are closely related to Hh signaling. Fifty three of these had enough coverage of over ×30. The sequencing results were filtered and compared to reduce the number of sequence variants identified in each of the affected individuals. We discovered three genes, PTCH2, BOC, and WNT9b, with mutations with a predicted functional impact assessed by MutationTaster2 or PolyPhen-2 (Polymorphism Phenotyping v2) analysis. It is noticeable that PTCH2 and BOC are Hh receptor molecules. No significant mutations were observed in SUFU. Multi-layered mutations in Hh pathway may change the activation level of the Hh signals, which may explain the wide phenotypic variability of Gorlin syndrome.

  9. Molecular Genetics of Root Thigmoresponsiveness in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Masson, Patrick H.

    2002-01-01

    The molecular mechanisms that allow plant roots to use gravity and touch as growth guides are investigated. We are using a molecular genetic strategy in Arabidopsis thaliana to study these processes. When Arabidopsis thaliana seedlings grow on tilted hard-agar surfaces, their roots develop a wavy pattern of growth which appears to derive from a succession of left-handed and right-handed circumnutation-like processes triggered by gravity and touch stimulation (Okada and Shimura, 1990; Rutherford et al., 1998; Rutherford and Masson, 1996). Interestingly, mutations that affect root waving on tilted hard-agar surfaces can be identified and characterized. Some of these mutations affect root gravitropism, while others appear to be responsible for the production of abnormal waves (no waves, compressed or square waves, coils) without affecting gravitropism. The specific objectives of this project were to functionally characterize two genes (WVD2 and WVD6) which are required for root waving on tilted agar surfaces, but not for root gravitropism. Specific objectives included a physiological and cytological analysis of the mutants, and molecular cloning and characterization of the corresponding genes. As summarized in this paper, we have reached these objectives. We have also identified and partially characterized other mutations that affect root skewing on hard-agar surfaces (sku5-1 and ago1), and have completed our work on the root-wave phenotype associated with mutations in genes of the tryptophan biosynthesis pathway (Lynn et al., 1999; Rutherford et al., 1998; Sedbrook et al., 2000, 2002). We briefly describe our progress on the cloning and characterization of WVD6, WVD2 and SKU5, and provide a list of papers (published, or in preparation) that derived from this grant. We also discuss the biological implications of our findings, with special emphasis on the analysis of WVD2.

  10. Identification and analysis of mutational hotspots in oncogenes and tumour suppressors.

    PubMed

    Baeissa, Hanadi; Benstead-Hume, Graeme; Richardson, Christopher J; Pearl, Frances M G

    2017-03-28

    The key to interpreting the contribution of a disease-associated mutation in the development and progression of cancer is an understanding of the consequences of that mutation both on the function of the affected protein and on the pathways in which that protein is involved. Protein domains encapsulate function and position-specific domain based analysis of mutations have been shown to help elucidate their phenotypes. In this paper we examine the domain biases in oncogenes and tumour suppressors, and find that their domain compositions substantially differ. Using data from over 30 different cancers from whole-exome sequencing cancer genomic projects we mapped over one million mutations to their respective Pfam domains to identify which domains are enriched in any of three different classes of mutation; missense, indels or truncations. Next, we identified the mutational hotspots within domain families by mapping small mutations to equivalent positions in multiple sequence alignments of protein domainsWe find that gain of function mutations from oncogenes and loss of function mutations from tumour suppressors are normally found in different domain families and when observed in the same domain families, hotspot mutations are located at different positions within the multiple sequence alignment of the domain. By considering hotspots in tumour suppressors and oncogenes independently, we find that there are different specific positions within domain families that are particularly suited to accommodate either a loss or a gain of function mutation. The position is also dependent on the class of mutation.We find rare mutations co-located with well-known functional mutation hotspots, in members of homologous domain superfamilies, and we detect novel mutation hotspots in domain families previously unconnected with cancer. The results of this analysis can be accessed through the MOKCa database (http://strubiol.icr.ac.uk/extra/MOKCa).

  11. [Clinical characteristics of Rett Syndrome].

    PubMed

    Abbes, Zeineb; Bouden, Asma; Halayem, Soumaya; Othman, Sami; Bechir Halayem, Mohamed

    2011-10-01

    Rett Syndrome is a neurodevelopmental disorder, one of the least commonly occurring autism spectrum disorders (ASD),affecting mainly females. To describe features and molecular specificities of Rett syndrome. To identify articles for this review, a Pubmed search was conducted using the following keywords: Rett syndrome, regression,mutation, stereotypes. This syndrome is characterized by cognitive impairment,communication dysfunction, stereotypic movement disorder, and growth failure. It is generally caused by mutations in the MECP2 gene. Rett Syndrome has a prevalence ranging from 10-20 000 females. Specific treatment is not available, but patients need a careful planning for long-term care, with multidisciplinary approaches.

  12. Engineering Lipases: walking the fine line between activity and stability

    NASA Astrophysics Data System (ADS)

    Dasetty, Siva; Blenner, Mark A.; Sarupria, Sapna

    2017-11-01

    Lipases are enzymes that hydrolyze lipids and have several industrial applications. There is a tremendous effort in engineering the activity, specificity and stability of lipases to render them functional in a variety of environmental conditions. In this review, we discuss the recent experimental and simulation studies focused on engineering lipases. Experimentally, mutagenesis studies have demonstrated that the activity, stability, and specificity of lipases can be modulated by mutations. It has been particularly challenging however, to elucidate the underlying mechanisms through which these mutations affect the lipase properties. We summarize results from experiments and molecular simulations highlighting the emerging picture to this end. We end the review with suggestions for future research which underscores the delicate balance of various facets in the lipase that affect their activity and stability necessitating the consideration of the enzyme as a network of interactions.

  13. Axon Transport and Neuropathy

    PubMed Central

    Tourtellotte, Warren G.

    2017-01-01

    Peripheral neuropathies are highly prevalent and are most often associated with chronic disease, side effects from chemotherapy, or toxic-metabolic abnormalities. Neuropathies are less commonly caused by genetic mutations, but studies of the normal function of mutated proteins have identified particular vulnerabilities that often implicate mitochondrial dynamics and axon transport mechanisms. Hereditary sensory and autonomic neuropathies are a group of phenotypically related diseases caused by monogenic mutations that primarily affect sympathetic and sensory neurons. Here, I review evidence to indicate that many genetic neuropathies are caused by abnormalities in axon transport. Moreover, in hereditary sensory and autonomic neuropathies. There may be specific convergence on gene mutations that disrupt nerve growth factor signaling, upon which sympathetic and sensory neurons critically depend. PMID:26724390

  14. Recommendations for Locus-Specific Databases and Their Curation

    PubMed Central

    Cotton, R.G.H.; Auerbach, A.D.; Beckmann, J.S.; Blumenfeld, O.O.; Brookes, A.J.; Brown, A.F.; Carrera, P.; Cox, D.W.; Gottlieb, B.; Greenblatt, M.S.; Hilbert, P.; Lehvaslaiho, H.; Liang, P.; Marsh, S.; Nebert, D.W.; Povey, S.; Rossetti, S.; Scriver, C.R.; Summar, M.; Tolan, D.R.; Verma, I.C.; Vihinen, M.; den Dunnen, J.T.

    2009-01-01

    Expert curation and complete collection of mutations in genes that affect human health is essential for proper genetic healthcare and research. Expert curation is given by the curators of gene-specific mutation databases or locus-specific databases (LSDBs). While there are over 700 such databases, they vary in their content, completeness, time available for curation, and the expertise of the curator. Curation and LSDBs have been discussed, written about, and protocols have been provided for over 10 years, but there have been no formal recommendations for the ideal form of these entities. This work initiates a discussion on this topic to assist future efforts in human genetics. Further discussion is welcome. PMID:18157828

  15. Recommendations for locus-specific databases and their curation.

    PubMed

    Cotton, R G H; Auerbach, A D; Beckmann, J S; Blumenfeld, O O; Brookes, A J; Brown, A F; Carrera, P; Cox, D W; Gottlieb, B; Greenblatt, M S; Hilbert, P; Lehvaslaiho, H; Liang, P; Marsh, S; Nebert, D W; Povey, S; Rossetti, S; Scriver, C R; Summar, M; Tolan, D R; Verma, I C; Vihinen, M; den Dunnen, J T

    2008-01-01

    Expert curation and complete collection of mutations in genes that affect human health is essential for proper genetic healthcare and research. Expert curation is given by the curators of gene-specific mutation databases or locus-specific databases (LSDBs). While there are over 700 such databases, they vary in their content, completeness, time available for curation, and the expertise of the curator. Curation and LSDBs have been discussed, written about, and protocols have been provided for over 10 years, but there have been no formal recommendations for the ideal form of these entities. This work initiates a discussion on this topic to assist future efforts in human genetics. Further discussion is welcome. (c) 2007 Wiley-Liss, Inc.

  16. Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain

    PubMed Central

    2012-01-01

    Background The molecular mechanisms altered by the traditional mutation and screening approach during the improvement of antibiotic-producing microorganisms are still poorly understood although this information is essential to design rational strategies for industrial strain improvement. In this study, we applied comparative genomics to identify all genetic changes occurring during the development of an erythromycin overproducer obtained using the traditional mutate-and- screen method. Results Compared with the parental Saccharopolyspora erythraea NRRL 2338, the genome of the overproducing strain presents 117 deletion, 78 insertion and 12 transposition sites, with 71 insertion/deletion sites mapping within coding sequences (CDSs) and generating frame-shift mutations. Single nucleotide variations are present in 144 CDSs. Overall, the genomic variations affect 227 proteins of the overproducing strain and a considerable number of mutations alter genes of key enzymes in the central carbon and nitrogen metabolism and in the biosynthesis of secondary metabolites, resulting in the redirection of common precursors toward erythromycin biosynthesis. Interestingly, several mutations inactivate genes coding for proteins that play fundamental roles in basic transcription and translation machineries including the transcription anti-termination factor NusB and the transcription elongation factor Efp. These mutations, along with those affecting genes coding for pleiotropic or pathway-specific regulators, affect global expression profile as demonstrated by a comparative analysis of the parental and overproducer expression profiles. Genomic data, finally, suggest that the mutate-and-screen process might have been accelerated by mutations in DNA repair genes. Conclusions This study helps to clarify the mechanisms underlying antibiotic overproduction providing valuable information about new possible molecular targets for rationale strain improvement. PMID:22401291

  17. Genetic analysis of a four generation Indian family with Usher syndrome: a novel insertion mutation in MYO7A.

    PubMed

    Kumar, Arun; Babu, Mohan; Kimberling, William J; Venkatesh, Conjeevaram P

    2004-11-24

    Usher syndrome (USH) is a rare autosomal recessive disorder characterized by deafness and retinitis pigmentosa. The purpose of this study was to determine the genetic cause of USH in a four generation Indian family. Peripheral blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to known USH loci, microsatellite markers were selected from the candidate regions of known loci and used to genotype the family. Exon specific intronic primers for the MYO7A gene were used to amplify DNA samples from one affected individual from the family. PCR products were subsequently sequenced to detect mutation. PCR-SSCP analysis was used to determine if the mutation segregated with the disease in the family and was not present in 50 control individuals. All affected individuals had a classic USH type I (USH1) phenotype which included deafness, vestibular dysfunction and retinitis pigmentosa. Pedigree analysis suggested an autosomal recessive mode of inheritance of USH in the family. Haplotype analysis suggested linkage of this family to the USH1B locus on chromosome 11q. DNA sequence analysis of the entire coding region of the MYO7A gene showed a novel insertion mutation c.2663_2664insA in a homozygous state in all affected individuals, resulting in truncation of MYO7A protein. This is the first study from India which reports a novel MYO7A insertion mutation in a four generation USH family. The mutation is predicted to produce a truncated MYO7A protein. With the novel mutation reported here, the total number of USH causing mutations in the MYO7A gene described to date reaches to 75.

  18. Optimal plasma progranulin cutoff value for predicting null progranulin mutations in neurodegenerative diseases: a multicenter Italian study.

    PubMed

    Ghidoni, Roberta; Stoppani, Elena; Rossi, Giacomina; Piccoli, Elena; Albertini, Valentina; Paterlini, Anna; Glionna, Michela; Pegoiani, Eleonora; Agnati, Luigi F; Fenoglio, Chiara; Scarpini, Elio; Galimberti, Daniela; Morbin, Michela; Tagliavini, Fabrizio; Binetti, Giuliano; Benussi, Luisa

    2012-01-01

    Recently, attention was drawn to a role for progranulin in the central nervous system with the identification of mutations in the progranulin gene (GRN) as an important cause of frontotemporal lobar degeneration. GRN mutations are associated with a strong reduction of circulating progranulin and widely variable clinical phenotypes: thus, the dosage of plasma progranulin is a useful tool for a quick and inexpensive large-scale screening of carriers of GRN mutations. To establish the best cutoff threshold for normal versus abnormal levels of plasma progranulin. 309 cognitively healthy controls (25-87 years of age), 72 affected and unaffected GRN+ null mutation carriers (24-86 years of age), 3 affected GRN missense mutation carriers, 342 patients with neurodegenerative diseases and 293 subjects with mild cognitive impairment were enrolled at the Memory Clinic, IRCCS S. Giovanni di Dio-Fatebenefratelli, Brescia, Italy, and at the Alzheimer Unit, Ospedale Maggiore Policlinico and IRCCS Istituto Neurologico C. Besta, Milan, Italy. Plasma progranulin levels were measured using an ELISA kit (AdipoGen Inc., Seoul, Korea). Plasma progranulin did not correlate with age, gender or body mass index. We established a new plasma progranulin protein cutoff level of 61.55 ng/ml that identifies, with a specificity of 99.6% and a sensitivity of 95.8%, null mutation carriers among subjects attending to a memory clinic. Affected and unaffected GRN null mutation carriers did not differ in terms of circulating progranulin protein (p = 0.686). A significant disease anticipation was observed in GRN+ subjects with the lowest progranulin levels. We propose a new plasma progranulin protein cutoff level useful for clinical practice. Copyright © 2011 S. Karger AG, Basel.

  19. FH Afrikaner-3 LDL receptor mutation results in defective LDL receptors and causes a mild form of familial hypercholesterolemia.

    PubMed

    Graadt van Roggen, J F; van der Westhuyzen, D R; Coetzee, G A; Marais, A D; Steyn, K; Langenhoven, E; Kotze, M J

    1995-06-01

    Three founder-related gene mutations (FH Afrikaner-1, -2, and -3) that affect the LDL receptor are responsible for 90% of the familial hypercholesterolemia (FH) in South African Afrikaners. Patients heterozygous for the FH Afrikaner-1 (FH1) mutation, which results in receptors having approximately 20% of normal receptor activity, have significantly lower plasma cholesterol levels and milder clinical symptoms than heterozygotes with the FH Afrikaner-2 mutation, which completely abolishes LDL receptor activity. In this study we re-created the FH3 mutation (Asp154-->Asn) in exon 4 by site-directed mutagenesis and analyzed the expression of the mutant receptors in Chinese hamster ovary cells. The mutation resulted in the formation of LDL receptors that are markedly defective in their ability to bind LDL, whereas binding of apoE-containing beta-VLDL is less affected. The mutant receptors are poorly expressed on the cell surface as a result of significant degradation of receptor precursors. The plasma cholesterol levels of 31 FH3 heterozygotes were similar to FH1 heterozygotes but significantly lower than FH2 heterozygotes. The FH1 and FH3 heterozygotes also tended to be less severely affected clinically (by coronary heart disease and xanthomata) than FH2 patients. This study demonstrates that mutational heterogeneity in the LDL receptor gene influences the phenotypic expression of heterozygous FH and that severity of expression correlates with the activity of the LDL receptor measured in vitro. The results further indicate that knowledge of the specific mutation underlying FH in heterozygotes is valuable in determining the potential risk of premature atherosclerosis and should influence the clinical management of FH patients.

  20. Clinical Significance of Epigenetic Alterations in Human Hepatocellular Carcinoma and Its Association with Genetic Mutations.

    PubMed

    Nishida, Naoshi; Kudo, Masatoshi

    Accumulation of genetic and epigenetic alterations is a hallmark of cancer genomes, including those in hepatocellular carcinoma (HCC). Particularly, in human HCC, epigenetic changes are more frequently observed than genetic changes in a variety of cancer-related genes, suggesting a potential role for epigenetic alterations during hepatocarcinogenesis. Several environmental factors, such as inflammation, obesity, and steatosis, are reported to affect the epigenetic status in hepatocytes, which could play a role in HCC development. In addition, genetic mutations in histone modulators and chromatin regulators would be critical for the acceleration of epigenetic alteration. It is also possible that major genetic mutations of HCC, such as TP53 and CNTTB1 mutations, are associated with the disturbance of epigenetic integrity. For example, specific TP53 mutations frequently induced by aflatoxin B1 exposure might affect histone modifiers and nucleosome remodelers. Generally, epigenetic alteration is reversible, because of which dysregulation of transcription takes place, without affecting protein structure. Therefore, differentiation therapy is one of the potential approaches for HCC with advanced epigenetic alterations. On the other hand, a tumor carrying an accumulation of genetic mutations would result in many abnormal proteins that could be recognized as non-self and could be targets for immune reactions; thus, immune-checkpoint blockers should be effective for HCCs with genetic hypermutation. Although the emergence of genetic and epigenetic alterations could be linked to each other and there could be some crossover or convergence between these cancer pathways, characterization of the mutation spectrum of genetic and epigenetic alterations could influence future HCC treatment. © 2016 S. Karger AG, Basel.

  1. A genetic cluster of patients with variant xeroderma pigmentosum with two different founder mutations.

    PubMed

    Munford, V; Castro, L P; Souto, R; Lerner, L K; Vilar, J B; Quayle, C; Asif, H; Schuch, A P; de Souza, T A; Ienne, S; Alves, F I A; Moura, L M S; Galante, P A F; Camargo, A A; Liboredo, R; Pena, S D J; Sarasin, A; Chaibub, S C; Menck, C F M

    2017-05-01

    Xeroderma pigmentosum (XP) is a rare human syndrome associated with hypersensitivity to sunlight and a high frequency of skin tumours at an early age. We identified a community in the state of Goias (central Brazil), a sunny and tropical region, with a high incidence of XP (17 patients among approximately 1000 inhabitants). To identify gene mutations in the affected community and map the distribution of the affected alleles, correlating the mutations with clinical phenotypes. Functional analyses of DNA repair capacity and cell-cycle responses after ultraviolet exposure were investigated in cells from local patients with XP, allowing the identification of the mutated gene, which was then sequenced to locate the mutations. A specific assay was designed for mapping the distribution of these mutations in the community. Skin primary fibroblasts showed normal DNA damage removal but abnormal DNA synthesis after ultraviolet irradiation and deficient expression of the Polη protein, which is encoded by POLH. We detected two different POLH mutations: one at the splice donor site of intron 6 (c.764 +1 G>A), and the other in exon 8 (c.907 C>T, p.Arg303X). The mutation at intron 6 is novel, whereas the mutation at exon 8 has been previously described in Europe. Thus, these mutations were likely brought to the community long ago, suggesting two founder effects for this rare disease. This work describes a genetic cluster involving POLH, and, particularly unexpected, with two independent founder mutations, including one that likely originated in Europe. © 2016 British Association of Dermatologists.

  2. Selected AGXT gene mutations analysis provides a genetic diagnosis in 28% of Tunisian patients with primary hyperoxaluria.

    PubMed

    Benhaj Mbarek, Ibtihel; Abroug, Saoussen; Omezzine, Asma; Zellama, Dorsaf; Achour, Abdellatif; Harbi, Abdelaziz; Bouslama, Ali

    2011-05-25

    Primary hyperoxaluria type I (PH1) is a rare genetic disorder characterized by allelic and clinical heterogeneity. Four mutations (G170R, 33_34insC, I244T and F152I) account for more than 50% of PH1 alleles and form the basis for diagnostic genetic screening for PH1. We aimed to analyze the prevalence of these specific mutations causing PH1, and to provide an accurate tool for diagnosis of presymptomatic patients as well as for prenatal diagnosis in the affected families. Polymerase chain reaction/Restriction Fragment Length Polymorphism, were used to detect the four mutations in the AGXT gene in DNA samples from 57 patients belonging to 40 families. Two mutations causing PH1 were detected in 24 patients (42.1%), with a predominance of the I244T mutation (68% of patients) and 33_34insC (in the remaining 32%). In 92% of cases, mutated alleles were in homozygous state. The presented clinical features were similar for the two mutations. The age of onset was heterogeneous with a higher frequency of the pediatric age. In 58.3% of cases, the presentation corresponded to advanced renal disease which occurred early (< 5 years) in the two mutations. In adolescents, only the I244T mutation was detected (41.1%). I244T and 33_34insC mutations were observed in adult patients, with 17.6% and 12.5% respectively. Limited mutation analysis can provide a useful first line investigation for PH1. I244T and 33_34insC presented 28.2% of identified mutations causing disease in our cohort. This identification could provide an accurate tool for prenatal diagnosis in the affected families, for genetic counselling and for detection of presymptomatic individuals.

  3. ENPP1 Mutation Causes Recessive Cole Disease by Altering Melanogenesis.

    PubMed

    Chourabi, Marwa; Liew, Mei Shan; Lim, Shawn; H'mida-Ben Brahim, Dorra; Boussofara, Lobna; Dai, Liang; Wong, Pui Mun; Foo, Jia Nee; Sriha, Badreddine; Robinson, Kim Samirah; Denil, Simon; Common, John Ea; Mamaï, Ons; Ben Khalifa, Youcef; Bollen, Mathieu; Liu, Jianjun; Denguezli, Mohamed; Bonnard, Carine; Saad, Ali; Reversade, Bruno

    2018-02-01

    Cole disease is a genodermatosis of pigmentation following a strict dominant mode of inheritance. In this study, we investigated eight patients affected with an overlapping genodermatosis after recessive inheritance. The patients presented with hypo- and hyperpigmented macules over the body, resembling dyschromatosis universalis hereditaria in addition to punctuate palmoplantar keratosis. By homozygosity mapping and whole-exome sequencing, a biallelic p.Cys120Arg mutation in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) was identified in all patients. We found that this mutation, like those causing dominant Cole disease, impairs homodimerization of the ENPP1 enzyme that is mediated by its two somatomedin-B-like domains. Histological analysis revealed structural and molecular changes in affected skin that were likely to originate from defective melanocytes because keratinocytes do not express ENPP1. Consistently, RNA-sequencing analysis of patient-derived primary melanocytes revealed alterations in melanocyte development and in pigmentation signaling pathways. We therefore conclude that germline ENPP1 cysteine-specific mutations, primarily affecting the melanocyte lineage, cause a clinical spectrum of dyschromatosis, in which the p.Cys120Arg allele represents a recessive and more severe form of Cole disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea.

    PubMed

    Triques, Karine; Sturbois, Bénédicte; Gallais, Stéphane; Dalmais, Marion; Chauvin, Stéphanie; Clepet, Christian; Aubourg, Sébastien; Rameau, Catherine; Caboche, Michel; Bendahmane, Abdelhafid

    2007-09-01

    Scanning DNA sequences for mutations and polymorphisms has become one of the most challenging, often expensive and time-consuming obstacles in many molecular genetic applications, including reverse genetic and clinical diagnostic applications. Enzymatic mutation detection methods are based on the cleavage of heteroduplex DNA at the mismatch sites. These methods are often limited by the availability of a mismatch-specific endonuclease, their sensitivity in detecting one allele in a pool of DNA and their costs. Here, we present detailed biochemical analysis of five Arabidopsis putative mismatch-specific endonucleases. One of them, ENDO1, is presented as the first endonuclease that recognizes and cleaves all types of mismatches with high efficiency. We report on a very simple protocol for the expression and purification of ENDO1. The ENDO1 system could be exploited in a wide range of mutation diagnostic tools. In particular, we report the use of ENDO1 for discovery of point mutations in the gibberellin 3beta-hydrolase gene of Pisum sativum. Twenty-one independent mutants were isolated, five of these were characterized and two new mutations affecting internodes length were identified. To further evaluate the quality of the mutant population we screened for mutations in four other genes and identified 5-21 new alleles per target. Based on the frequency of the obtained alleles we concluded that the pea population described here would be suitable for use in a large reverse-genetics project.

  5. The CAPOS mutation in ATP1A3 alters Na/K-ATPase function and results in auditory neuropathy which has implications for management.

    PubMed

    Tranebjærg, Lisbeth; Strenzke, Nicola; Lindholm, Sture; Rendtorff, Nanna D; Poulsen, Hanne; Khandelia, Himanshu; Kopec, Wojciech; Lyngbye, Troels J Brünnich; Hamel, Christian; Delettre, Cecile; Bocquet, Beatrice; Bille, Michael; Owen, Hanne H; Bek, Toke; Jensen, Hanne; Østergaard, Karen; Möller, Claes; Luxon, Linda; Carr, Lucinda; Wilson, Louise; Rajput, Kaukab; Sirimanna, Tony; Harrop-Griffiths, Katherine; Rahman, Shamima; Vona, Barbara; Doll, Julia; Haaf, Thomas; Bartsch, Oliver; Rosewich, Hendrik; Moser, Tobias; Bitner-Glindzicz, Maria

    2018-02-01

    Cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing impairment (CAPOS) is a rare clinically distinct syndrome caused by a single dominant missense mutation, c.2452G>A, p.Glu818Lys, in ATP1A3, encoding the neuron-specific alpha subunit of the Na+/K+-ATPase α3. Allelic mutations cause the neurological diseases rapid dystonia Parkinsonism and alternating hemiplegia of childhood, disorders which do not encompass hearing or visual impairment. We present detailed clinical phenotypic information in 18 genetically confirmed patients from 11 families (10 previously unreported) from Denmark, Sweden, UK and Germany indicating a specific type of hearing impairment-auditory neuropathy (AN). All patients were clinically suspected of CAPOS and had hearing problems. In this retrospective analysis of audiological data, we show for the first time that cochlear outer hair cell activity was preserved as shown by the presence of otoacoustic emissions and cochlear microphonic potentials, but the auditory brainstem responses were grossly abnormal, likely reflecting neural dyssynchrony. Poor speech perception was observed, especially in noise, which was beyond the hearing level obtained in the pure tone audiograms in several of the patients presented here. Molecular modelling and in vitro electrophysiological studies of the specific CAPOS mutation were performed. Heterologous expression studies of α3 with the p.Glu818Lys mutation affects sodium binding to, and release from, the sodium-specific site in the pump, the third ion-binding site. Molecular dynamics simulations confirm that the structure of the C-terminal region is affected. In conclusion, we demonstrate for the first time evidence for auditory neuropathy in CAPOS syndrome, which may reflect impaired propagation of electrical impulses along the spiral ganglion neurons. This has implications for diagnosis and patient management. Auditory neuropathy is difficult to treat with conventional hearing aids, but preliminary improvement in speech perception in some patients suggests that cochlear implantation may be effective in CAPOS patients.

  6. MD-2 residues tyrosine 42, arginine 69, aspartic acid 122, and leucine 125 provide species specificity for lipid IVA.

    PubMed

    Meng, Jianmin; Drolet, Joshua R; Monks, Brian G; Golenbock, Douglas T

    2010-09-03

    Lipopolysaccharide (LPS) activates the innate immune response through the Toll-like receptor 4 (TLR4).MD-2 complex. A synthetic lipid A precursor, lipid IV(A), induces an innate immune response in mice but not in humans. Both TLR4 and MD-2 are required for the agonist activity of lipid IV(A) in mice, with TLR4 interacting through specific surface charges at the dimerization interface. In this study, we used site-directed mutagenesis to identify the MD-2 residues that determine lipid IV(A) species specificity. A single mutation of murine MD-2 at the hydrophobic pocket entrance, E122K, substantially reduced the response to lipid IV(A). Combining the murine MD-2 E122K with the murine TLR4 K367E/S386K/R434Q mutations completely abolished the response to lipid IV(A), effectively converting the murine cellular response to a human-like response. In human cells, however, simultaneous mutations of K122E, K125L, Y41F, and R69G on human MD-2 were required to promote a response to lipid IV(A). Combining the human MD-2 quadruple mutations with the human TLR4 E369K/Q436R mutations completely converted the human MD-2/human TLR4 receptor to a murine-like receptor. Because MD-2 residues 122 and 125 reside at the dimerization interface near the pocket entrance, surface charge differences here directly affect receptor dimerization. In comparison, residues 42 and 69 reside at the MD-2/TLR4 interaction surface opposite the dimerization interface. Surface charge differences there likely affect the binding angle and/or rigidity between MD-2 and TLR4, exerting an indirect influence on receptor dimerization and activation. Thus, surface charge differences at the two MD-2/TLR4 interfaces determine the species-specific activation of lipid IV(A).

  7. Polyploidy can drive rapid adaptation in yeast

    NASA Astrophysics Data System (ADS)

    Selmecki, Anna M.; Maruvka, Yosef E.; Richmond, Phillip A.; Guillet, Marie; Shoresh, Noam; Sorenson, Amber L.; de, Subhajyoti; Kishony, Roy; Michor, Franziska; Dowell, Robin; Pellman, David

    2015-03-01

    Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely understood. Polyploidy, usually whole-genome duplication, is proposed to alter the rate of evolutionary adaptation. This could occur through complex effects on the frequency or fitness of beneficial mutations. For example, in diverse cell types and organisms, immediately after a whole-genome duplication, newly formed polyploids missegregate chromosomes and undergo genetic instability. The instability following whole-genome duplications is thought to provide adaptive mutations in microorganisms and can promote tumorigenesis in mammalian cells. Polyploidy may also affect adaptation independently of beneficial mutations through ploidy-specific changes in cell physiology. Here we perform in vitro evolution experiments to test directly whether polyploidy can accelerate evolutionary adaptation. Compared with haploids and diploids, tetraploids undergo significantly faster adaptation. Mathematical modelling suggests that rapid adaptation of tetraploids is driven by higher rates of beneficial mutations with stronger fitness effects, which is supported by whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, concerted chromosome loss, and point mutations all provide large fitness gains. We identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains. Together, these results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation.

  8. Mutations in the interleukin receptor IL11RA cause autosomal recessive Crouzon-like craniosynostosis

    PubMed Central

    Keupp, Katharina; Li, Yun; Vargel, Ibrahim; Hoischen, Alexander; Richardson, Rebecca; Neveling, Kornelia; Alanay, Yasemin; Uz, Elif; Elcioğlu, Nursel; Rachwalski, Martin; Kamaci, Soner; Tunçbilek, Gökhan; Akin, Burcu; Grötzinger, Joachim; Konas, Ersoy; Mavili, Emin; Müller-Newen, Gerhard; Collmann, Hartmut; Roscioli, Tony; Buckley, Michael F; Yigit, Gökhan; Gilissen, Christian; Kress, Wolfram; Veltman, Joris; Hammerschmidt, Matthias; Akarsu, Nurten A; Wollnik, Bernd

    2013-01-01

    We have characterized a novel autosomal recessive Crouzon-like craniosynostosis syndrome in a 12-affected member family from Antakya, Turkey, the presenting features of which include: multiple suture synostosis, midface hypoplasia, variable degree of exophthalmos, relative prognathism, a beaked nose, and conductive hearing loss. Homozygosity mapping followed by targeted next-generation sequencing identified a c.479+6T>G mutation in the interleukin 11 receptor alpha gene (IL11RA) on chromosome 9p21. This donor splice-site mutation leads to a high percentage of aberrant IL11RA mRNA transcripts in an affected individual and altered mRNA splicing determined by in vitro exon trapping. An extended IL11RA mutation screen was performed in a cohort of 79 patients with an initial clinical diagnosis of Crouzon syndrome, pansynostosis, or unclassified syndromic craniosynostosis. We identified mutations segregating with the disease in five families: a German patient of Turkish origin and a Turkish family with three affected sibs all of whom were homozygous for the previously identified IL11RA c.479+6T>G mutation; a family with pansynostosis with compound heterozygous missense mutations, p.Pro200Thr and p.Arg237Pro; and two further Turkish families with Crouzon-like syndrome carrying the homozygous nonsense mutations p.Tyr232* and p.Arg292*. Using transient coexpression in HEK293T and COS7 cells, we demonstrated dramatically reduced IL11-mediated STAT3 phosphorylation for all mutations. Immunofluorescence analysis of mouse Il11ra demonstrated specific protein expression in cranial mesenchyme which was localized around the coronal suture tips and in the lambdoidal suture. In situ hybridization analysis of adult zebrafish also detected zfil11ra expression in the coronal suture between the overlapping frontal and parietal plates. This study demonstrates that mutations in the IL11RA gene cause an autosomal recessive Crouzon-like craniosynostosis. PMID:24498618

  9. Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations

    PubMed Central

    Araya, Carlos L.; Cenik, Can; Reuter, Jason A.; Kiss, Gert; Pande, Vijay S.; Snyder, Michael P.; Greenleaf, William J.

    2015-01-01

    Cancer sequencing studies have primarily identified cancer-driver genes by the accumulation of protein-altering mutations. An improved method would be annotation-independent, sensitive to unknown distributions of functions within proteins, and inclusive of non-coding drivers. We employed density-based clustering methods in 21 tumor types to detect variably-sized significantly mutated regions (SMRs). SMRs reveal recurrent alterations across a spectrum of coding and non-coding elements, including transcription factor binding sites and untranslated regions mutated in up to ∼15% of specific tumor types. SMRs reveal spatial clustering of mutations at molecular domains and interfaces, often with associated changes in signaling. Mutation frequencies in SMRs demonstrate that distinct protein regions are differentially mutated among tumor types, as exemplified by a linker region of PIK3CA in which biophysical simulations suggest mutations affect regulatory interactions. The functional diversity of SMRs underscores both the varied mechanisms of oncogenic misregulation and the advantage of functionally-agnostic driver identification. PMID:26691984

  10. How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin.

    PubMed

    Doud, Michael B; Lee, Juhye M; Bloom, Jesse D

    2018-04-11

    Influenza virus can escape most antibodies with single mutations. However, rare antibodies broadly neutralize many viral strains. It is unclear how easily influenza virus might escape such antibodies if there was strong pressure to do so. Here, we map all single amino-acid mutations that increase resistance to broad antibodies to H1 hemagglutinin. Our approach not only identifies antigenic mutations but also quantifies their effect sizes. All antibodies select mutations, but the effect sizes vary widely. The virus can escape a broad antibody to hemagglutinin's receptor-binding site the same way it escapes narrow strain-specific antibodies: via single mutations with huge effects. In contrast, broad antibodies to hemagglutinin's stalk only select mutations with small effects. Therefore, among the antibodies we examine, breadth is an imperfect indicator of the potential for viral escape via single mutations. Antibodies targeting the H1 hemagglutinin stalk are quantifiably harder to escape than the other antibodies tested here.

  11. Heterozygous p.Asp50Asn mutation in the GJB2 gene in two Cameroonian patients with keratitis-ichthyosis-deafness (KID) syndrome.

    PubMed

    Wonkam, Ambroise; Noubiap, Jean Jacques N; Bosch, Jason; Dandara, Collet; Toure, Geneviève Bengono

    2013-08-07

    Keratitis-Ichthyosis-Deafness (KID) syndrome (OMIM 148210) is a congenital ectodermal defect that consists of an atypical ichthyosiform erythroderma associated with congenital sensorineural deafness. KID appears to be genetically heterogeneous and most cases are caused by GJB2 mutations. Mutations in African patients have been rarely described. We report on two unrelated Cameroonian individuals affected with sporadic KID, presenting with the classic phenotypic triad. The two patients were heterozygous for the most frequent p.Asp50Asn mutation. This first report in patients from sub-Saharan African origin supports the hypothesis that the occurrence of KID due to p.Asp50Asn mutation in GJB2 seems not to be population specific. Our finding has implication in medical genetic practice, specifically in the molecular diagnosis of KID in Africans. These cases also reveal and emphasize the urgent need to develop appropriate policies to care for patients with rare/orphan diseases in Sub-Saharan Africa, as many of these cases become more and more recognizable.

  12. Heterozygous p.Asp50Asn mutation in the GJB2 gene in two Cameroonian patients with keratitis-ichthyosis-deafness (KID) syndrome

    PubMed Central

    2013-01-01

    Background Keratitis-Ichthyosis-Deafness (KID) syndrome (OMIM 148210) is a congenital ectodermal defect that consists of an atypical ichthyosiform erythroderma associated with congenital sensorineural deafness. KID appears to be genetically heterogeneous and most cases are caused by GJB2 mutations. Mutations in African patients have been rarely described. Case presentation We report on two unrelated Cameroonian individuals affected with sporadic KID, presenting with the classic phenotypic triad. The two patients were heterozygous for the most frequent p.Asp50Asn mutation. This first report in patients from sub-Saharan African origin supports the hypothesis that the occurrence of KID due to p.Asp50Asn mutation in GJB2 seems not to be population specific. Conclusions Our finding has implication in medical genetic practice, specifically in the molecular diagnosis of KID in Africans. These cases also reveal and emphasize the urgent need to develop appropriate policies to care for patients with rare/orphan diseases in Sub-Saharan Africa, as many of these cases become more and more recognizable. PMID:23924173

  13. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy

    PubMed Central

    Sarparanta, Jaakko; Jonson, Per Harald; Golzio, Christelle; Sandell, Satu; Luque, Helena; Screen, Mark; McDonald, Kristin; Stajich, Jeffrey M.; Mahjneh, Ibrahim; Vihola, Anna; Raheem, Olayinka; Penttilä, Sini; Lehtinen, Sara; Huovinen, Sanna; Palmio, Johanna; Tasca, Giorgio; Ricci, Enzo; Hackman, Peter; Hauser, Michael; Katsanis, Nicholas; Udd, Bjarne

    2012-01-01

    Limb-girdle muscular dystrophy type 1D (LGMD1D) was linked to 7q36 over a decade ago1, but its genetic cause has remained elusive. We have studied nine LGMD families from Finland, the U.S., and Italy, and identified four dominant missense mutations leading to p.Phe93Leu or p.Phe89Ile changes in the ubiquitously expressed co-chaperone DNAJB6. Functional testing in vivo showed that the mutations have a dominant toxic effect mediated specifically by the cytoplasmic isoform of DNAJB6. In vitro studies demonstrated that the mutations increase the half-life of DNAJB6, extending this effect to the wild-type protein, and reduce its protective anti-aggregation effect. Further, we show that DNAJB6 interacts with members of the CASA complex, including the myofibrillar-myopathy-causing protein BAG3. Our data provide the genetic cause of LGMD1D, suggest that the pathogenesis is mediated by defective chaperone function, and highlight how mutations expressed ubiquitously can exert their effect in a tissue-, cellular compartment-, and isoform-specific manner. PMID:22366786

  14. The high frequency of GJB2 gene mutation c.313_326del14 suggests its possible origin in ancestors of Lithuanian population.

    PubMed

    Mikstiene, Violeta; Jakaitiene, Audrone; Byckova, Jekaterina; Gradauskiene, Egle; Preiksaitiene, Egle; Burnyte, Birute; Tumiene, Birute; Matuleviciene, Ausra; Ambrozaityte, Laima; Uktveryte, Ingrida; Domarkiene, Ingrida; Rancelis, Tautvydas; Cimbalistiene, Loreta; Lesinskas, Eugenijus; Kucinskas, Vaidutis; Utkus, Algirdas

    2016-02-19

    Congenital hearing loss (CHL) is diagnosed in 1 - 2 newborns in 1000, genetic factors contribute to two thirds of CHL cases in industrialised countries. Mutations of the GJB2 gene located in the DFNB1 locus (13q11-12) are a major cause of CHL worldwide. The aim of this cross-sectional study was to assess the contribution of the DFNB1 locus containing the GJB2 and GJB6 genes in the development of early onset hearing loss in the affected group of participants, to determine the population-specific mutational profile and DFNB1-related HL burden in Lithuanian population. Clinical data were obtained from a collection of 158 affected participants (146 unrelated probands) with early onset non-syndromic HL. GJB2 and GJB6 gene sequencing and GJB6 gene deletion testing were performed. The data of GJB2 and GJB6 gene sequencing in 98 participants in group of self-reported healthy Lithuanian inhabitants were analysed. Statistic summary, homogeneity tests, and logistic regression analysis were used for the assessment of genotype-phenotype correlation. Our findings show 57.5% of affected participants with two pathogenic GJB2 gene mutations identified. The most prevalent GJB2 mutations were c.35delG, p. (Gly12Valfs*2) (rs80338939) and c.313_326del14, p. (Lys105Glyfs*5) (rs111033253) with allele frequencies 64.7% and 28.3% respectively. GJB6 gene mutations were not identified in the affected group of participants. The statistical analysis revealed significant differences between GJB2(-) and GJB2(+) groups in disease severity (p = 0.001), and family history (p = 0.01). The probability of identification of GJB2 mutations in patients with various HL characteristics was estimated. The carrier rate of GJB2 gene mutations - 7.1% (~1 in 14) was identified in the group of healthy participants and a high frequency of GJB2-related hearing loss was estimated in our population. The results show a very high proportion of GJB2-positive individuals in the research group affected with sensorineural HL. The allele frequency of c.35delG mutation (64.7 %) is consistent with many previously published studies in groups of affected individuals of Caucasian populations. The high frequency of the c.313_326del14 (28.3 % of pathogenic alleles) mutation in affected group of participants was an unexpected finding in our study suggesting not only a high frequency of carriers of this mutation in our population but also its possible origin in Lithuanian ancestors. The high frequency of carriers of the c.313_326del14 mutation in the entire Lithuanian population is supported by it being identified twice in the ethnic Lithuanian group of healthy participants (a frequency 2.0 % of carriers in the study group). Analysis of the allele frequency of GJB2 gene mutations revealed a high proportion of c. 313_326del14 (rs111033253) mutations in the GJB2-positive group suggesting its possible origin in Lithuanian forebears. The high frequency of carriers of GJB2 gene mutations in the group of healthy participants corresponds to the substantial frequency of GJB2-associated HL in Lithuania. The observations of the study indicate the significant contribution of GJB2 gene mutations to the pathogenesis of the disorder in the Lithuanian population and will contribute to introducing principles to predict the characteristics of the disease in patients.

  15. RAS mutations affect pattern of metastatic spread and increase propensity for brain metastasis in colorectal cancer.

    PubMed

    Yaeger, Rona; Cowell, Elizabeth; Chou, Joanne F; Gewirtz, Alexandra N; Borsu, Laetitia; Vakiani, Efsevia; Solit, David B; Rosen, Neal; Capanu, Marinela; Ladanyi, Marc; Kemeny, Nancy

    2015-04-15

    RAS and PIK3CA mutations in metastatic colorectal cancer (mCRC) have been associated with worse survival. We sought to evaluate the impact of RAS and PIK3CA mutations on cumulative incidence of metastasis to potentially curable sites of liver and lung and other sites such as bone and brain. We performed a computerized search of the electronic medical record of our institution for mCRC cases genotyped for RAS or PIK3CA mutations from 2008 to 2012. Cases were reviewed for patient characteristics, survival, and site-specific metastasis. Among the 918 patients identified, 477 cases were RAS wild type, and 441 cases had a RAS mutation (394 at KRAS exon 2, 29 at KRAS exon 3 or 4, and 18 in NRAS). RAS mutation was significantly associated with shorter median overall survival (OS) and on multivariate analysis independently predicted worse OS (HR, 1.6; P < .01). RAS mutant mCRC exhibited a significantly higher cumulative incidence of lung, bone, and brain metastasis and on multivariate analysis was an independent predictor of involvement of these sites (HR, 1.5, 1.6, and 3.7, respectively). PIK3CA mutations occurred in 10% of the 786 cases genotyped, did not predict for worse survival, and did not exhibit a site-specific pattern of metastatic spread. The metastatic potential of CRC varies with the presence of RAS mutation. RAS mutation is associated with worse OS and increased incidence of lung, bone, and brain metastasis. An understanding of this site-specific pattern of spread may help to inform physicians' assessment of symptoms in patients with mCRC. © 2014 American Cancer Society.

  16. The methylenetetrahydrofolate reductase C677T mutation induces cell-specific changes in genomic DNA methylation and uracil misincorporation: A possible molecular basis for the site-specific cancer risk modification

    PubMed Central

    Sohn, Kyoung-Jin; Jang, Hyeran; Campan, Mihaela; Weisenberger, Daniel J.; Dickhout, Jeffrey; Wang, Yi-Cheng; Cho, Robert C.; Yates, Zoe; Lucock, Mark; Chiang, En-Pei; Austin, Richard C.; Choi, Sang-Woon; Laird, Peter W.; Kim, Young-In

    2009-01-01

    The C677T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene is associated with a decreased risk of colon cancer while it may increase the risk of breast cancer. This polymorphism is associated with changes in intracellular folate cofactors, which may affect DNA methylation and synthesis via altered one-carbon transfer reactions. We investigated the effect of this mutation on DNA methylation and uracil misincorporation and its interaction with exogenous folate in further modulating these biomarkers of one-carbon transfer reactions in an in vitro model of the MTHFR 677T mutation in HCT116 colon and MDA-MB-435 breast adenocarcinoma cells. In HCT116 cells, the MTHFR 677T mutation was associated with significantly increased genomic DNA methylation when folate supply was adequate or high; however, in the setting of folate insufficiency, this mutation was associated with significantly decreased genomic DNA methylation. In contrast, in MDA-MB-435 cells, the MTHFR 677T mutation was associated with significantly decreased genomic DNA methylation when folate supply was adequate or high and with no effect when folate supply was low. The MTHFR 677T mutation was associated with a nonsignificant trend toward decreased and increased uracil misincorporation in HCT116 and MDA-MB-435 cells, respectively. Our data demonstrate for the first time a functional consequence of changes in intracellular folate cofactors resulting from the MTHFR 677T mutation in cells derived from the target organs of interest, thus providing a plausible cellular mechanism that may partly explain the site-specific modification of colon and breast cancer risks associated with the MTHFR C677T mutation. PMID:19123462

  17. Gaucher disease: molecular heterogeneity and phenotype-genotype correlations.

    PubMed

    Theophilus, B; Latham, T; Grabowski, G A; Smith, F I

    1989-08-01

    Gaucher disease (GD) is the most prevalent lysosomal storage disease. This autosomal recessive trait results from the defective activity of acid beta-glucosidase (beta-Glc). Four different exonic point mutations have been identified as causal alleles for GD. To facilitate screening for these alleles, assays were developed using allele-specific oligonucleotide hybridization to amplified genomic DNA sequences. Specifically, intron bases flanking exons 5, 9, and 10 were determined, and conditions for PCR amplification of these exons were obtained. Two different procedures were developed to distinguish signals obtained from the structural beta-Glc gene exons and those from the pseudogene. These procedures were used to determine the distribution of all known GD alleles in a population of 44 affected patients of varying phenotypes and ethnicity. The high frequency of one of the exon 9 mutations in Ashkenazi Jewish GD type 1 patients was confirmed, and, in addition, this mutation was present in ethnically diverse non-Jewish type 1 GD patients. Homozygotes (N = 5) for this allele were midly affected older individuals, and this mutant allele was not found in any patient with neuronopathic disease. The exon 10 mutation was confirmed as the predominant allele in types 2 and 3 GD. However, several type 1 GD patients, including one of Ashkenazi-Jewish heritage, also were heterozygous for this allele. The presence of this allele in type 1 patients did not correlate with the severity of clinical symptoms. The second exon 9 mutation and the exon 5 mutation were rare, since they occurred only heterozygously either in one type 2 GD patient or in two related Ashkenazi-Jewish GD patients, respectively. Although most GD patients (38 of 44) had at least one of the known mutant alleles, 57% were heterozygotes for only one of these mutations. Fourteen percent of patients were negative for all mutations. A total of 73% of GD patients had at least one unknown allele. The varying clinical phenotypes and ethnic origins of these incompletely characterized patients suggest that multiple other GD alleles exist.

  18. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    PubMed

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  19. Detection of eight BRCA1 mutations in 10 breast/ovarian cancer families, including 1 family with male breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sruewing, J.P.; Brody, L.C.; Erdos, M.R.

    Genetic epidemiological evidence suggests that mutations in BRCA1 may be responsible for approximately one half of early onset familial breast cancer and the majority of familial breast/ovarian cancer. The recent cloning of BRCA1 allows for the direct detection of mutations, but the feasibility of presymptomatic screening for cancer susceptibility is unknown. We analyzed genomic DNA from one affected individual from each of 24 families with at least three cases of ovarian or breast cancer, using SSCP assays. Variant SSCP bands were subcloned and sequenced. Allele-specific oligonucleotide hybridization was used to verify sequence changes and to screen DNA from control individuals.more » Six frameshift and two missense mutations were detected in 10 different families. A frameshift mutation was detected in a male proband affected with both breast and prostate cancer. A 40-bp deletion was detected in a patient who developed intra-abdominal carcinomatosis 1 year after prophylactic oophorectomy. Mutations were detected throughout the gene, and only one was detected in more than a single family. These results provide further evidence that inherited breast and ovarian cancer can occur as a consequence of a wide array of BRCA1 mutations. These results suggests that development of a screening test for BRCA1 mutations will be technically challenging. The finding of a mutation in a family with male breast cancer, not previously thought to be related to BRCA1, also illustrates the potential difficulties of genetic counseling for individuals known to carry mutations. 37 refs., 1 fig., 1 tab.« less

  20. [Molecular diagnosis of cystic fibrosis in 93 Argentinean patients and detection of heterozygotes in affected families. Impact on health services and therapeutic advances].

    PubMed

    Oller de Ramírez, Ana M; Ghio, Addy; Melano de Botelli, Myrna; Dodelson de Kremer, Raquel

    2008-08-01

    The cystic fibrosis is an autosomal recessive disease caused by more than 1500 mutations and variants in the cystic fibrosis transmembrane conductance regulator gene. To establish the spectrum and frequency of mutations on this gene in Argentinean patients.To detect heterozygotes in affected families. We investigated 91 clinical and biochemically confirmed patients with 2 elevated sweat tests and 2 sterile adults. We worked with 165 relatives. The molecular diagnosis was accomplished in 3 serial stages: a) determination of 29 frequent mutations; b) haplotypes for microsatellites; c) an extensive screening of gene through single strand conformation analysis and multiplex denaturing gradient gel electrophoresis with sequencing of abnormal patterns. Once patient's genotype was confirmed, we investigated the heterozygotes' state in the relatives. 1ST OBJECTIVE: Fourteen mutations were identified. Three more mutations were detected and other 11 mutations were characterized, 3 of them novel (p.G27R, c.622-2A>G, p.W277R). In total, we have identified 28 mutations responsible for 90.3% of the mutated alleles, 14 with a higher frequency than 1%. 2ND OBJECTIVE: From 165 investigated people, 143 were confirmed as heterozygotes and with normal genotype 22. This work contributed to the molecular characterization of patients with classic and atypical phenotypes and to the detection of great numbers of carriers. New pharmacological therapeutic investigations are based on the mutation type. Therefore, knowledge of patients, mutations (genotype) has significant importance for the future application of specific therapies.

  1. Deoxynucleoside salvage enzymes and tissue specific mitochondrial DNA depletion.

    PubMed

    Wang, L

    2010-06-01

    Adequate mitochondrial DNA (mtDNA) copies are required for normal mitochondria function and reductions in mtDNA copy number due to genetic alterations cause tissue-specific mtDNA depletion syndrome (MDS). There are eight nuclear genes, directly or indirectly involved in mtDNA replication and mtDNA precursor synthesis, which have been identified as the cause of MDS. However, the tissue specific pathology of these nuclear gene mutations is not well understood. Here, mtDNA synthesis, mtDNA copy number control, and mtDNA turnover, as well as the synthesis of mtDNA precursors in relation to the levels of salvage enzymes are discussed. The question why MDS caused by TK2 and p53R2 mutations are predominantly muscle specific while dGK deficiency affected mainly liver will be addressed.

  2. Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia[S

    PubMed Central

    Mendoza-Barberá, Elena; Julve, Josep; Nilsson, Stefan K.; Lookene, Aivar; Martín-Campos, Jesús M.; Roig, Rosa; Lechuga-Sancho, Alfonso M.; Sloan, John H.; Fuentes-Prior, Pablo; Blanco-Vaca, Francisco

    2013-01-01

    During the diagnosis of three unrelated patients with severe hypertriglyceridemia, three APOA5 mutations [p.(Ser232_Leu235)del, p.Leu253Pro, and p.Asp332ValfsX4] were found without evidence of concomitant LPL, APOC2, or GPIHBP1 mutations. The molecular mechanisms by which APOA5 mutations result in severe hypertriglyceridemia remain poorly understood, and the functional impairment/s induced by these specific mutations was not obvious. Therefore, we performed a thorough structural and functional analysis that included follow-up of patients and their closest relatives, measurement of apoA-V serum concentrations, and sequencing of the APOA5 gene in 200 nonhyperlipidemic controls. Further, we cloned, overexpressed, and purified both wild-type and mutant apoA-V variants and characterized their capacity to activate LPL. The interactions of recombinant wild-type and mutated apoA-V variants with liposomes of different composition, heparin, LRP1, sortilin, and SorLA/LR11 were also analyzed. Finally, to explore the possible structural consequences of these mutations, we developed a three-dimensional model of full-length, lipid-free human apoA-V. A complex, wide array of impairments was found in each of the three mutants, suggesting that the specific residues affected are critical structural determinants for apoA-V function in lipoprotein metabolism and, therefore, that these APOA5 mutations are a direct cause of hypertriglyceridemia. PMID:23307945

  3. Impacts of the Callipyge Mutation on Ovine Plasma Metabolites and Muscle Fibre Type

    PubMed Central

    Li, Juan; Greenwood, Paul L.; Cockett, Noelle E.; Hadfield, Tracy S.; Vuocolo, Tony; Byrne, Keren; White, Jason D.; Tellam, Ross L.; Schirra, Horst Joachim

    2014-01-01

    The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. Using muscle fibre typing immunohistochemistry, we confirmed muscle specific effects and demonstrated that affected muscles had greater prevalence and hypertrophy of type 2X fast twitch glycolytic fibres and decreased representation of types 1, 2C, 2A and/or 2AX fibres. To investigate potential systemic effects of the mutation, proton NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. Microarray analysis of the perirenal adipose tissue depot did not reveal a transcriptional effect of the mutation in this tissue. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness. PMID:24937646

  4. Impacts of the Callipyge mutation on ovine plasma metabolites and muscle fibre type.

    PubMed

    Li, Juan; Greenwood, Paul L; Cockett, Noelle E; Hadfield, Tracy S; Vuocolo, Tony; Byrne, Keren; White, Jason D; Tellam, Ross L; Schirra, Horst Joachim

    2014-01-01

    The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. Using muscle fibre typing immunohistochemistry, we confirmed muscle specific effects and demonstrated that affected muscles had greater prevalence and hypertrophy of type 2X fast twitch glycolytic fibres and decreased representation of types 1, 2C, 2A and/or 2AX fibres. To investigate potential systemic effects of the mutation, proton NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. Microarray analysis of the perirenal adipose tissue depot did not reveal a transcriptional effect of the mutation in this tissue. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness.

  5. The mitochondrial DNA G13513A MELAS mutation in the NADH dehydrogenase 5 gene is a frequent cause of Leigh-like syndrome with isolated complex I deficiency.

    PubMed

    Chol, M; Lebon, S; Bénit, P; Chretien, D; de Lonlay, P; Goldenberg, A; Odent, S; Hertz-Pannier, L; Vincent-Delorme, C; Cormier-Daire, V; Rustin, P; Rötig, A; Munnich, A

    2003-03-01

    Leigh syndrome is a subacute necrotising encephalomyopathy frequently ascribed to mitochondrial respiratory chain deficiency. This condition is genetically heterogeneous, as mutations in both mitochondrial (mt) and nuclear genes have been reported. Here, we report the G13513A transition in the ND5 mtDNA gene in three unrelated children with complex I deficiency and a peculiar MRI aspect distinct from typical Leigh syndrome. Brain MRI consistently showed a specific involvement of the substantia nigra and medulla oblongata sparing the basal ganglia. Variable degrees of heteroplasmy were found in all tissues tested and a high percentage of mutant mtDNA was observed in muscle. The asymptomatic mothers presented low levels of mutant mtDNA in blood leucocytes. This mutation, which affects an evolutionary conserved amino acid (D393N), has been previously reported in adult patients with MELAS or LHON/MELAS syndromes, emphasising the clinical heterogeneity of mitochondrial DNA mutations. Since the G13513A mutation was found in 21% of our patients with Leigh syndrome and complex I deficiency (3/14), it appears that this mutation represents a frequent cause of Leigh-like syndrome, which should be systematically tested for molecular diagnosis in affected children and for genetic counselling in their maternal relatives.

  6. Mutant HSPB1 causes loss of translational repression by binding to PCBP1, an RNA binding protein with a possible role in neurodegenerative disease.

    PubMed

    Geuens, Thomas; De Winter, Vicky; Rajan, Nicholas; Achsel, Tilmann; Mateiu, Ligia; Almeida-Souza, Leonardo; Asselbergh, Bob; Bouhy, Delphine; Auer-Grumbach, Michaela; Bagni, Claudia; Timmerman, Vincent

    2017-01-11

    The small heat shock protein HSPB1 (Hsp27) is an ubiquitously expressed molecular chaperone able to regulate various cellular functions like actin dynamics, oxidative stress regulation and anti-apoptosis. So far disease causing mutations in HSPB1 have been associated with neurodegenerative diseases such as distal hereditary motor neuropathy, Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Most mutations in HSPB1 target its highly conserved α-crystallin domain, while other mutations affect the C- or N-terminal regions or its promotor. Mutations inside the α-crystallin domain have been shown to enhance the chaperone activity of HSPB1 and increase the binding to client proteins. However, the HSPB1-P182L mutation, located outside and downstream of the α-crystallin domain, behaves differently. This specific HSPB1 mutation results in a severe neuropathy phenotype affecting exclusively the motor neurons of the peripheral nervous system. We identified that the HSPB1-P182L mutant protein has a specifically increased interaction with the RNA binding protein poly(C)binding protein 1 (PCBP1) and results in a reduction of its translational repressive activity. RNA immunoprecipitation followed by RNA sequencing on mouse brain lead to the identification of PCBP1 mRNA targets. These targets contain larger 3'- and 5'-UTRs than average and are enriched in an RNA motif consisting of the CTCCTCCTCCTCC consensus sequence. Interestingly, next to the clear presence of neuronal transcripts among the identified PCBP1 targets we identified known genes associated with hereditary peripheral neuropathies and hereditary spastic paraplegias. We therefore conclude that HSPB1 can mediate translational repression through interaction with an RNA binding protein further supporting its role in neurodegenerative disease.

  7. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies.

    PubMed

    Li, Guotian; Jain, Rashmi; Chern, Mawsheng; Pham, Nikki T; Martin, Joel A; Wei, Tong; Schackwitz, Wendy S; Lipzen, Anna M; Duong, Phat Q; Jones, Kyle C; Jiang, Liangrong; Ruan, Deling; Bauer, Diane; Peng, Yi; Barry, Kerrie W; Schmutz, Jeremy; Ronald, Pamela C

    2017-06-01

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake ( Oryza sativa ssp japonica ), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations. © 2017 American Society of Plant Biologists. All rights reserved.

  8. Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy.

    PubMed

    Miyake, Noriko; Fukai, Ryoko; Ohba, Chihiro; Chihara, Takahiro; Miura, Masayuki; Shimizu, Hiroshi; Kakita, Akiyoshi; Imagawa, Eri; Shiina, Masaaki; Ogata, Kazuhiro; Okuno-Yuguchi, Jiu; Fueki, Noboru; Ogiso, Yoshifumi; Suzumura, Hiroshi; Watabe, Yoshiyuki; Imataka, George; Leong, Huey Yin; Fattal-Valevski, Aviva; Kramer, Uri; Miyatake, Satoko; Kato, Mitsuhiro; Okamoto, Nobuhiko; Sato, Yoshinori; Mitsuhashi, Satomi; Nishino, Ichizo; Kaneko, Naofumi; Nishiyama, Akira; Tamura, Tomohiko; Mizuguchi, Takeshi; Nakashima, Mitsuko; Tanaka, Fumiaki; Saitsu, Hirotomo; Matsumoto, Naomichi

    2016-10-06

    We describe four families with affected siblings showing unique clinical features: early-onset (before 1 year of age) progressive diffuse brain atrophy with regression, postnatal microcephaly, postnatal growth retardation, muscle weakness/atrophy, and respiratory failure. By whole-exome sequencing, we identified biallelic TBCD mutations in eight affected individuals from the four families. TBCD encodes TBCD (tubulin folding co-factor D), which is one of five tubulin-specific chaperones playing a pivotal role in microtubule assembly in all cells. A total of seven mutations were found: five missense mutations, one nonsense, and one splice site mutation resulting in a frameshift. In vitro cell experiments revealed the impaired binding between most mutant TBCD proteins and ARL2, TBCE, and β-tubulin. The in vivo experiments using olfactory projection neurons in Drosophila melanogaster indicated that the TBCD mutations caused loss of function. The wide range of clinical severity seen in this neurodegenerative encephalopathy may result from the residual function of mutant TBCD proteins. Furthermore, the autopsied brain from one deceased individual showed characteristic neurodegenerative findings: cactus and somatic sprout formations in the residual Purkinje cells in the cerebellum, which are also seen in some diseases associated with mitochondrial impairment. Defects of microtubule formation caused by TBCD mutations may underlie the pathomechanism of this neurodegenerative encephalopathy. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. The Sequences of 1,504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies

    DOE PAGES

    Li, Guotian; Jain, Rashmi; Chern, Mawsheng; ...

    2017-06-02

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportionmore » of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. In conclusion, this work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations.« less

  10. Defects in the calcium-binding region drastically affect the cadherin-like domains of RET tyrosine kinase.

    PubMed

    Gao, Chunxia; Grøtli, Morten; Eriksson, Leif A

    2016-03-28

    Mutations in the rearranged during transfection (RET) tyrosine kinase gene leading to gain or loss of function have been associated with the development of several human cancers and Hirschsprung's disease (HSCR). However, to what extent these mutations affect individual bio-molecular functions remains unclear. In this article, the functionally significant mutations in the RET CLD1-4 calcium-binding site which lead to HSCR, and depletion of calcium ions in the RET CLD1-4 calcium binding site, were investigated by molecular dynamics simulations--to understand the mechanistic action of the mutations or loss of calcium ions in altering the protein kinase structure, dynamics, and stability. The mutations or loss of calcium ions change the local conformation and change the free energy landscape. Specifically, the mutations and loss of calcium ions decrease the radius of gyration of the whole structure, leading to improper protein folding and GFL-GFRα contact site reduction. Furthermore, based on the most populated conformation in the wildtype MD simulations, a pharmacophore was generated by fragment docking to identify key features of the possible inhibitors targeting the calcium binding site. Overall, the findings may provide useful structural insights into the molecular mechanism underlying RET calcium-binding site mutations and assist in development of novel drugs targeting the extracellular ligand contact site of wildtype RET.

  11. Allele-specific siRNA knockdown as a personalized treatment strategy for vascular Ehlers-Danlos syndrome in human fibroblasts.

    PubMed

    Müller, Gerd A; Hansen, Uwe; Xu, Zhi; Griswold, Benjamin; Talan, Mark I; McDonnell, Nazli B; Briest, Wilfried

    2012-02-01

    The vascular type of the Ehlers-Danlos syndrome (vEDS) is caused by dominant-negative mutations in the procollagen type III (COL3A1) gene. Patients with this autosomal dominant disorder have a shortened life expectancy due to complications from ruptured vessels or hollow organs. We tested the effectiveness of allele-specific RNA interference (RNAi) to reduce the mutated phenotype in fibroblasts. Small-interfering RNAs (siRNAs) discriminating between wild-type and mutant COL3A1 allele were identified by a luciferase reporter gene assay and in primary fibroblasts from a normal donor and a patient with vEDS. The best discriminative siRNA with the mutation at position 10 resulted in >90% silencing of the mutant allele without affecting the wild-type allele. Transmission and immunogold electron microscopy of extracted extracellular matrices from untreated fibroblasts of the patient with vEDS revealed structurally abnormal fibrils. After siRNA treatment, collagen fibrils became similar to fibrils from fibroblasts of normal and COL3A1 haploinsufficient donors. In addition, it was shown that expression of mutated COL3A1 activates the unfolded protein response and that reduction of the amount of mutated protein by siRNA reduces cellular stress. Taken together, the results provide evidence that allele-specific siRNAs are able to reduce negative effects of mutated COL3A1 proteins. Thus, the application of allele-specific RNAi may be a promising direction for future personalized therapies to reduce the severity of vEDS.

  12. Altered Substrate Specificity of Drug-Resistant Human Immunodeficiency Virus Type 1 Protease

    PubMed Central

    Dauber, Deborah S.; Ziermann, Rainer; Parkin, Neil; Maly, Dustin J.; Mahrus, Sami; Harris, Jennifer L.; Ellman, Jon A.; Petropoulos, Christos; Craik, Charles S.

    2002-01-01

    Resistance to human immunodeficiency virus type 1 protease (HIV PR) inhibitors results primarily from the selection of multiple mutations in the protease region. Because many of these mutations are selected for the ability to decrease inhibitor binding in the active site, they also affect substrate binding and potentially substrate specificity. This work investigates the substrate specificity of a panel of clinically derived protease inhibitor-resistant HIV PR variants. To compare protease specificity, we have used positional-scanning, synthetic combinatorial peptide libraries as well as a select number of individual substrates. The subsite preferences of wild-type HIV PR determined by using the substrate libraries are consistent with prior reports, validating the use of these libraries to compare specificity among a panel of HIV PR variants. Five out of seven protease variants demonstrated subtle differences in specificity that may have significant impacts on their abilities to function in viral maturation. Of these, four variants demonstrated up to fourfold changes in the preference for valine relative to alanine at position P2 when tested on individual peptide substrates. This change correlated with a common mutation in the viral NC/p1 cleavage site. These mutations may represent a mechanism by which severely compromised, drug-resistant viral strains can increase fitness levels. Understanding the altered substrate specificity of drug-resistant HIV PR should be valuable in the design of future generations of protease inhibitors as well as in elucidating the molecular basis of regulation of proteolysis in HIV. PMID:11773410

  13. De novo mutations in regulatory elements in neurodevelopmental disorders

    PubMed Central

    Short, Patrick J.; McRae, Jeremy F.; Gallone, Giuseppe; Sifrim, Alejandro; Won, Hyejung; Geschwind, Daniel H.; Wright, Caroline F.; Firth, Helen V; FitzPatrick, David R.; Barrett, Jeffrey C.; Hurles, Matthew E.

    2018-01-01

    We previously estimated that 42% of patients with severe developmental disorders carry pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory elements affecting genes associated with developmental disorders, or other genes, has been essentially unexplored. We identified de novo mutations in three classes of putative regulatory elements in almost 8,000 patients with developmental disorders. Here we show that de novo mutations in highly evolutionarily conserved fetal brain-active elements are significantly and specifically enriched in neurodevelopmental disorders. We identified a significant twofold enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our findings represent a robust estimate of the contribution of de novo mutations in regulatory elements to this genetically heterogeneous set of disorders, and emphasize the importance of combining functional and evolutionary evidence to identify regulatory causes of genetic disorders. PMID:29562236

  14. Mutation-Specific Phenotypes in hiPSC-Derived Cardiomyocytes Carrying Either Myosin-Binding Protein C Or α-Tropomyosin Mutation for Hypertrophic Cardiomyopathy

    PubMed Central

    Prajapati, Chandra; Pölönen, Risto-Pekka; Rajala, Kristiina; Pekkanen-Mattila, Mari; Rasku, Jyrki; Larsson, Kim; Aalto-Setälä, Katriina

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease, which affects the structure of heart muscle tissue. The clinical symptoms include arrhythmias, progressive heart failure, and even sudden cardiac death but the mutation carrier can also be totally asymptomatic. To date, over 1400 mutations have been linked to HCM, mostly in genes encoding for sarcomeric proteins. However, the pathophysiological mechanisms of the disease are still largely unknown. Two founder mutations for HCM in Finland are located in myosin-binding protein C (MYBPC3-Gln1061X) and α-tropomyosin (TPM1-Asp175Asn) genes. We studied the properties of HCM cardiomyocytes (CMs) derived from patient-specific human induced pluripotent stem cells (hiPSCs) carrying either MYBPC3-Gln1061X or TPM1-Asp175Asn mutation. Both types of HCM-CMs displayed pathological phenotype of HCM but, more importantly, we found differences between CMs carrying either MYBPC3-Gln1061X or TPM1-Asp175Asn gene mutation in their cellular size, Ca2+ handling, and electrophysiological properties, as well as their gene expression profiles. These findings suggest that even though the clinical phenotypes of the patients carrying either MYBPC3-Gln1061X or TPM1-Asp175Asn gene mutation are similar, the genetic background as well as the functional properties on the cellular level might be different, indicating that the pathophysiological mechanisms behind the two mutations would be divergent as well. PMID:27057166

  15. Evaluation of BRCA1 and BRCA2 mutation prevalence, risk prediction models and a multistep testing approach in French‐Canadian families with high risk of breast and ovarian cancer

    PubMed Central

    Simard, Jacques; Dumont, Martine; Moisan, Anne‐Marie; Gaborieau, Valérie; Vézina, Hélène; Durocher, Francine; Chiquette, Jocelyne; Plante, Marie; Avard, Denise; Bessette, Paul; Brousseau, Claire; Dorval, Michel; Godard, Béatrice; Houde, Louis; Joly, Yann; Lajoie, Marie‐Andrée; Leblanc, Gilles; Lépine, Jean; Lespérance, Bernard; Malouin, Hélène; Parboosingh, Jillian; Pichette, Roxane; Provencher, Louise; Rhéaume, Josée; Sinnett, Daniel; Samson, Carolle; Simard, Jean‐Claude; Tranchant, Martine; Voyer, Patricia; BRCAs, INHERIT; Easton, Douglas; Tavtigian, Sean V; Knoppers, Bartha‐Maria; Laframboise, Rachel; Bridge, Peter; Goldgar, David

    2007-01-01

    Background and objective In clinical settings with fixed resources allocated to predictive genetic testing for high‐risk cancer predisposition genes, optimal strategies for mutation screening programmes are critically important. These depend on the mutation spectrum found in the population under consideration and the frequency of mutations detected as a function of the personal and family history of cancer, which are both affected by the presence of founder mutations and demographic characteristics of the underlying population. The results of multistep genetic testing for mutations in BRCA1 or BRCA2 in a large series of families with breast cancer in the French‐Canadian population of Quebec, Canada are reported. Methods A total of 256 high‐risk families were ascertained from regional familial cancer clinics throughout the province of Quebec. Initially, families were tested for a panel of specific mutations known to occur in this population. Families in which no mutation was identified were then comprehensively tested. Three algorithms to predict the presence of mutations were evaluated, including the prevalence tables provided by Myriad Genetics Laboratories, the Manchester Scoring System and a logistic regression approach based on the data from this study. Results 8 of the 15 distinct mutations found in 62 BRCA1/BRCA2‐positive families had never been previously reported in this population, whereas 82% carried 1 of the 4 mutations currently observed in ⩾2 families. In the subset of 191 families in which at least 1 affected individual was tested, 29% carried a mutation. Of these 27 BRCA1‐positive and 29 BRCA2‐positive families, 48 (86%) were found to harbour a mutation detected by the initial test. Among the remaining 143 inconclusive families, all 8 families found to have a mutation after complete sequencing had Manchester Scores ⩾18. The logistic regression and Manchester Scores provided equal predictive power, and both were significantly better than the Myriad Genetics Laboratories prevalence tables (p<0.001). A threshold of Manchester Score ⩾18 provided an overall sensitivity of 86% and a specificity of 82%, with a positive predictive value of 66% in this population. Conclusion In this population, a testing strategy with an initial test using a panel of reported recurrent mutations, followed by full sequencing in families with Manchester Scores ⩾18, represents an efficient test in terms of overall cost and sensitivity. PMID:16905680

  16. Dramatic effect of levetiracetam in early-onset epileptic encephalopathy due to STXBP1 mutation.

    PubMed

    Dilena, Robertino; Striano, Pasquale; Traverso, Monica; Viri, Maurizio; Cristofori, Gloria; Tadini, Laura; Barbieri, Sergio; Romeo, Antonino; Zara, Federico

    2016-01-01

    Syntaxin Binding Protein 1 (STXBP1) mutations determine a central neurotransmission dysfunction through impairment of the synaptic vesicle release, thus causing a spectrum of phenotypes varying from syndromic and non-syndromic epilepsy to intellectual disability of variable degree. Among the antiepileptic drugs, levetiracetam has a unique mechanism of action binding SV2A, a glycoprotein of the synaptic vesicle release machinery. We report a 1-month-old boy manifesting an epileptic encephalopathy with clonic seizures refractory to phenobarbital, pyridoxine and phenytoin that presented a dramatic response to levetiracetam with full epilepsy control and EEG normalization. Genetic analysis identified a novel de novo heterozygous mutation (c.[922A>T]p.[Lys308(∗)]) in the STXBP1 gene that severely affects the protein. The observation of a dramatic efficacy of levetiracetam in a case of STXBP1 epileptic encephalopathy refractory to other antiepileptic drugs and considerations regarding the specific mechanism of action of levetiracetam modulating the same system affected by STXBP1 mutations support the hypothesis that this drug may be able to reverse specifically the disease epileptogenic abnormalities. Further clinical observations and laboratory studies are needed to confirm this hypothesis and eventually lead to consider levetiracetam as the first choice treatment of patients with suspected or confirmed STXBP1-related epilepsies. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.

    PubMed

    Garrity, Deborah M; Childs, Sarah; Fishman, Mark C

    2002-10-01

    Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.

  18. Dental Abnormalities Caused by Novel Compound Heterozygous CTSK Mutations.

    PubMed

    Xue, Y; Wang, L; Xia, D; Li, Q; Gao, S; Dong, M; Cai, T; Shi, S; He, L; Hu, K; Mao, T; Duan, X

    2015-05-01

    Cathepsin K (CTSK) is an important protease responsible for degrading type I collagen, osteopontin, and other bone matrix proteins. The mutations in the CTSK gene can cause pycnodysostosis (OMIM 265800), a rare autosomal recessive bone dysplasia. Patients with pycnodysostosis have been reported to present specific dental abnormalities; however, whether these dental abnormalities are related to dysfunctional CTSK has never been reported. Here we investigated the histologic changes of cementum and alveolar bone in a pycnodysostosis patient, caused by novel compound heterozygous mutations in the CTSK gene (c.87 G>A p.W29X and c.848 A>G p.Y283C). The most impressive manifestations in tooth were extensive periradicular high-density clumps with unclear periodontal space by orthopantomography examination and micro-computed tomography scanning analysis. Hematoxylin/eosin and toluidine blue staining and atomic force microscopy analysis showed that the cementum became significantly thickened, softened, and full of cementocytes. The disorganized bone structure was the main character of alveolar bone. The p.W29X mutation may represent the loss-of-function allele with an earlier termination codon in the precursor CTSK polypeptide. Residue Y283 is highly conserved among papain-like cysteine proteases. Three-dimensional structure modeling analysis found that the loss of the hydroxybenzene residue in the Y283C mutation would interrupt the hydrogen network and possibly affect the self-cleavage of the CTSK enzyme. Furthermore, p.Y283C mutation did not affect the mRNA and protein levels of overexpressed CTSK in COS-7 system but did reduce CTSK enzyme activity. In conclusion, the histologic and ultrastructural changes of cementum and alveolar bone might be affected by CTSK mutation via reduction of its enzyme activity (clinical trial registration: ChiCTR-TNC-10000876). © International & American Associations for Dental Research 2015.

  19. A novel missense mutation, Leu390Val, in the cardiac beta-myosin heavy chain associated with pronounced septal hypertrophy in two families with hypertrophic cardiomyopathy.

    PubMed

    Havndrup, O; Bundgaard, H; Andersen, P S; Larsen, L A; Vuust, J; Kjeldsen, K; Christiansen, M

    2000-12-01

    An examination of the genetic background and phenotypic presentation of familial hypertrophic cardiomyopathy (FHC) with respect to specific mutations in the MYH7-gene encoding the cardiac beta-myosin heavy chain. Two families (n = 22) from a cohort of 67 families with FHC were studied at the National University Hospital, Rigshospitalet, Copenhagen. Clinical, non-invasive examinations of all included family members followed by molecular genetic analysis including PCR-single strand conformation polymorphism/heteroduplex (SSCP/HD) analysis and sequencing of exon 3-23 of the MYH7-gene. We found FHC associated with a missense mutation in two families, i.e. a C > G transversion at position g10124 and a G > T transversion at position g10126 causing the change of a leucine residue at codon 390 to a valine residue. The mutation is located in the actin-binding region of the beta-myosin heavy chain. The leucine residue is evolutionarily conserved in vertebrate myosins. In the two families, the phenotypic presentations in the clinically affected were characterized by asymmetric septal hypertrophy (septum diameter 18.8 (5.0) mm (mean (SD)) with only minor involvement of the left ventricular free wall (posterior wall diameter 11.0 (2.2) mm). Furthermore, the left ventricular systolic and diastolic functions were well preserved, even at a high age. The symptomatic status of the clinically affected patients depended on the presence or absence of a concomitant left ventricular outflow tract gradient. We report a novel missense mutation associated with FHC caused by a double nucleotide transversion. The penetrance of the mutation was not complete, but in clinically affected patients the mutation gives rise to an echocardiographic phenotype, predominantly characterized by pronounced septal hypertrophy.

  20. RSRC1 mutation affects intellect and behaviour through aberrant splicing and transcription, downregulating IGFBP3.

    PubMed

    Perez, Yonatan; Menascu, Shay; Cohen, Idan; Kadir, Rotem; Basha, Omer; Shorer, Zamir; Romi, Hila; Meiri, Gal; Rabinski, Tatiana; Ofir, Rivka; Yeger-Lotem, Esti; Birk, Ohad S

    2018-04-01

    RSRC1, whose polymorphism is associated with altered brain function in schizophrenia, is a member of the serine and arginine rich-related protein family. Through homozygosity mapping and whole exome sequencing we show that RSRC1 mutation causes an autosomal recessive syndrome of intellectual disability, aberrant behaviour, hypotonia and mild facial dysmorphism with normal brain MRI. Further, we show that RSRC1 is ubiquitously expressed, and that the RSRC1 mutation triggers nonsense-mediated mRNA decay of the RSRC1 transcript in patients' fibroblasts. Short hairpin RNA (shRNA)-mediated lentiviral silencing and overexpression of RSRC1 in SH-SY5Y cells demonstrated that RSRC1 has a role in alternative splicing and transcription regulation. Transcriptome profiling of RSRC1-silenced cells unravelled specific differentially expressed genes previously associated with intellectual disability, hypotonia and schizophrenia, relevant to the disease phenotype. Protein-protein interaction network modelling suggested possible intermediate interactions by which RSRC1 affects gene-specific differential expression. Patient-derived induced pluripotent stem cells, differentiated into neural progenitor cells, showed expression dynamics similar to the RSRC1-silenced SH-SY5Y model. Notably, patient neural progenitor cells had 9.6-fold downregulated expression of IGFBP3, whose brain expression is affected by MECP2, aberrant in Rett syndrome. Interestingly, Igfbp3-null mice have behavioural impairment, abnormal synaptic function and monoaminergic neurotransmission, likely correlating with the disease phenotype.

  1. Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A

    PubMed Central

    Baucheron, Sylvie; Monchaux, Isabelle; Le Hello, Simon; Weill, François-Xavier; Cloeckaert, Axel

    2014-01-01

    Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e., in gyrA, gyrB, or parC) correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications. PMID:24478769

  2. Bone Dysplasia Sclerosteosis Results from Loss of the SOST Gene Product, a Novel Cystine Knot–Containing Protein

    PubMed Central

    Brunkow, Mary E.; Gardner, Jessica C.; Van Ness, Jeff; Paeper, Bryan W.; Kovacevich, Brian R.; Proll, Sean; Skonier, John E.; Zhao, L.; Sabo, P. J.; Fu, Ying-Hui; Alisch, Reid S.; Gillett, Lucille; Colbert, Trenton; Tacconi, Paolo; Galas, David; Hamersma, Herman; Beighton, Peter; Mulligan, John T.

    2001-01-01

    Sclerosteosis is an autosomal recessive sclerosing bone dysplasia characterized by progressive skeletal overgrowth. The majority of affected individuals have been reported in the Afrikaner population of South Africa, where a high incidence of the disorder occurs as a result of a founder effect. Homozygosity mapping in Afrikaner families along with analysis of historical recombinants localized sclerosteosis to an interval of ∼2 cM between the loci D17S1787 and D17S930 on chromosome 17q12-q21. Here we report two independent mutations in a novel gene, termed “SOST.” Affected Afrikaners carry a nonsense mutation near the amino terminus of the encoded protein, whereas an unrelated affected person of Senegalese origin carries a splicing mutation within the single intron of the gene. The SOST gene encodes a protein that shares similarity with a class of cystine knot–containing factors including dan, cerberus, gremlin, prdc, and caronte. The specific and progressive effect on bone formation observed in individuals affected with sclerosteosis, along with the data presented in this study, together suggest that the SOST gene encodes an important new regulator of bone homeostasis. PMID:11179006

  3. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein.

    PubMed

    Brunkow, M E; Gardner, J C; Van Ness, J; Paeper, B W; Kovacevich, B R; Proll, S; Skonier, J E; Zhao, L; Sabo, P J; Fu, Y; Alisch, R S; Gillett, L; Colbert, T; Tacconi, P; Galas, D; Hamersma, H; Beighton, P; Mulligan, J

    2001-03-01

    Sclerosteosis is an autosomal recessive sclerosing bone dysplasia characterized by progressive skeletal overgrowth. The majority of affected individuals have been reported in the Afrikaner population of South Africa, where a high incidence of the disorder occurs as a result of a founder effect. Homozygosity mapping in Afrikaner families along with analysis of historical recombinants localized sclerosteosis to an interval of approximately 2 cM between the loci D17S1787 and D17S930 on chromosome 17q12-q21. Here we report two independent mutations in a novel gene, termed "SOST." Affected Afrikaners carry a nonsense mutation near the amino terminus of the encoded protein, whereas an unrelated affected person of Senegalese origin carries a splicing mutation within the single intron of the gene. The SOST gene encodes a protein that shares similarity with a class of cystine knot-containing factors including dan, cerberus, gremlin, prdc, and caronte. The specific and progressive effect on bone formation observed in individuals affected with sclerosteosis, along with the data presented in this study, together suggest that the SOST gene encodes an important new regulator of bone homeostasis.

  4. Evidence that a burst of DNA depurination in SENCAR mouse skin induces error-prone repair and forms mutations in the H-ras gene.

    PubMed

    Chakravarti, D; Mailander, P C; Li, K M; Higginbotham, S; Zhang, H L; Gross, M L; Meza, J L; Cavalieri, E L; Rogan, E G

    2001-11-29

    Treatment of SENCAR mouse skin with dibenzo[a,l]pyrene results in abundant formation of abasic sites that undergo error-prone excision repair, forming oncogenic H-ras mutations in the early preneoplastic period. To examine whether the abundance of abasic sites causes repair infidelity, we treated SENCAR mouse skin with estradiol-3,4-quinone (E(2)-3,4-Q) and determined adduct levels 1 h after treatment, as well as mutation spectra in the H-ras gene between 6 h and 3 days after treatment. E(2)-3,4-Q formed predominantly (> or =99%) the rapidly-depurinating 4-hydroxy estradiol (4-OHE(2))-1-N3Ade adduct and the slower-depurinating 4-OHE(2)-1-N7Gua adduct. Between 6 h and 3 days, E(2)-3,4-Q induced abundant A to G mutations in H-ras DNA, frequently in the context of a 3'-G residue. Using a T.G-DNA glycosylase (TDG)-PCR assay, we determined that the early A to G mutations (6 and 12 h) were in the form of G.T heteroduplexes, suggesting misrepair at A-specific depurination sites. Since G-specific mutations were infrequent in the spectra, it appears that the slow rate of depurination of the N7Gua adducts during active repair may not generate a threshold level of G-specific abasic sites to affect repair fidelity. These results also suggest that E(2)-3,4-Q, a suspected endogenous carcinogen, is a genotoxic compound and could cause mutations.

  5. A Novel Truncating LMNA Mutation in Patients with Cardiac Conduction Disorders and Dilated Cardiomyopathy.

    PubMed

    Kawakami, Hiroshi; Ogimoto, Akiyoshi; Tokunaga, Naohito; Nishimura, Kazuhisa; Kawakami, Hideo; Higashi, Haruhiko; Iio, Chiharuko; Kono, Tamami; Aono, Jun; Uetani, Teruyoshi; Nagai, Takayuki; Inoue, Katsuji; Suzuki, Jun; Ikeda, Shuntaro; Okura, Takafumi; Ohyagi, Yasumasa; Tabara, Yasuharu; Higaki, Jitsuo

    2018-05-30

    The cardiac phenotype of laminopathies is characterized by cardiac conduction disorders (CCDs) and dilated cardiomyopathy (DCM). Although laminopathies have been considered monogenic, they exhibit a remarkable degree of clinical variability. This case series aimed to detect the causal mutation and to investigate the causes of clinical variability in a Japanese family with inherited CCD and DCM.Of the five family members investigated, four had either CCD/DCM or CCD alone, while one subject had no cardiovascular disease and acted as a normal control. We performed targeted resequencing of 174 inherited cardiovascular disease-associated genes in this family and pathological mutations were confirmed using Sanger sequencing. The degree of clinical severity and variability were also evaluated using long-term medical records. We discovered a novel heterozygous truncating lamin A/C (LMNA) mutation (c.774delG) in all four subjects with CCD. Because this mutation was predicted to cause a frameshift mutation and premature termination (p.Gln258HisfsTer222) in LMNA, we believe that this LMNA mutation was the causal mutation in this family with CCD and laminopathies. In addition, gender-specific intra-familiar clinical variability was observed in this Japanese family where affected males exhibited an earlier onset of CCD and more severe DCM compared to affected females. Using targeted resequencing, we discovered a novel truncating LMNA mutation associated with CCD and DCM in this family characterized by gender differences in clinical severity in LMNA carriers. Our results suggest that in patients with laminopathy, clinical severity may be the result of multiple factors.

  6. Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data.

    PubMed

    Haricharan, Svasti; Bainbridge, Matthew N; Scheet, Paul; Brown, Powel H

    2014-07-01

    Breast cancer is one of the most commonly diagnosed cancers in women. While there are several effective therapies for breast cancer and important single gene prognostic/predictive markers, more than 40,000 women die from this disease every year. The increasing availability of large-scale genomic datasets provides opportunities for identifying factors that influence breast cancer survival in smaller, well-defined subsets. The purpose of this study was to investigate the genomic landscape of various breast cancer subtypes and its potential associations with clinical outcomes. We used statistical analysis of sequence data generated by the Cancer Genome Atlas initiative including somatic mutation load (SML) analysis, Kaplan-Meier survival curves, gene mutational frequency, and mutational enrichment evaluation to study the genomic landscape of breast cancer. We show that ER(+), but not ER(-), tumors with high SML associate with poor overall survival (HR = 2.02). Further, these high mutation load tumors are enriched for coincident mutations in both DNA damage repair and ER signature genes. While it is known that somatic mutations in specific genes affect breast cancer survival, this study is the first to identify that SML may constitute an important global signature for a subset of ER(+) tumors prone to high mortality. Moreover, although somatic mutations in individual DNA damage genes affect clinical outcome, our results indicate that coincident mutations in DNA damage response and signature ER genes may prove more informative for ER(+) breast cancer survival. Next generation sequencing may prove an essential tool for identifying pathways underlying poor outcomes and for tailoring therapeutic strategies.

  7. Identification and characterization of a novel XK splice site mutation in a patient with McLeod syndrome.

    PubMed

    Arnaud, Lionel; Salachas, François; Lucien, Nicole; Maisonobe, Thierry; Le Pennec, Pierre-Yves; Babinet, Jérôme; Cartron, Jean-Pierre

    2009-03-01

    McLeod syndrome is a rare X-linked neuroacanthocytosis syndrome with hematologic, muscular, and neurologic manifestations. McLeod syndrome is caused by mutations in the XK gene whose product is expressed at the red blood cell (RBC) surface but whose function is currently unknown. A variety of XK mutations has been reported but no clear phenotype-genotype correlation has been found, especially for the point mutations affecting splicing sites. A man suspected of neuroacanthocytosis was evaluated by neurologic examination, electromyography, muscle biopsy, muscle computed tomography, and cerebral magnetic resonance imaging. The McLeod RBC phenotype was disclosed by blood smear and immunohematology analyses and then confirmed at the biochemical level by Western blot analysis. The responsible XK mutation was characterized at the mRNA level by reverse transcription-polymerase chain reaction (PCR), identified by genomic DNA sequencing, and verified by allele-specific PCR. A novel XK splice site mutation (IVS1-1G>A) has been identified in a McLeod patient who has developed hematologic, neuromuscular, and neurologic symptoms. This is the first reported example of a XK point mutation affecting the 3' acceptor splice site of Intron 1, and it was demonstrated that this mutation indeed induces aberrant splicing of XK RNA and lack of XK protein at the RBC membrane. The detailed characterization at the molecular biology level of this novel XK splice site mutation associated with the clinical description of the patient contributes to a better understanding of the phenotype-genotype correlation in the McLeod syndrome.

  8. The Gene of the Ubiquitin-Specific Protease 8 Is Frequently Mutated in Adenomas Causing Cushing's Disease.

    PubMed

    Perez-Rivas, Luis G; Theodoropoulou, Marily; Ferraù, Francesco; Nusser, Clara; Kawaguchi, Kohei; Stratakis, Constantine A; Faucz, Fabio Rueda; Wildemberg, Luiz E; Assié, Guillaume; Beschorner, Rudi; Dimopoulou, Christina; Buchfelder, Michael; Popovic, Vera; Berr, Christina M; Tóth, Miklós; Ardisasmita, Arif Ibrahim; Honegger, Jürgen; Bertherat, Jerôme; Gadelha, Monica R; Beuschlein, Felix; Stalla, Günter; Komada, Masayuki; Korbonits, Márta; Reincke, Martin

    2015-07-01

    We have recently reported somatic mutations in the ubiquitin-specific protease USP8 gene in a small series of adenomas of patients with Cushing's disease. To determine the prevalence of USP8 mutations and the genotype-phenotype correlation in a large series of patients diagnosed with Cushing's disease. We performed a retrospective, multicentric, genetic analysis of 134 functioning and 11 silent corticotroph adenomas using Sanger sequencing. Biochemical and clinical features were collected and examined within the context of the mutational status of USP8, and new mutations were characterized by functional studies. A total of 145 patients who underwent surgery for an ACTH-producing pituitary adenoma. Mutational status of USP8. Biochemical and clinical features included sex, age at diagnosis, tumor size, preoperative and postoperative hormonal levels, and comorbidities. We found somatic mutations in USP8 in 48 (36%) pituitary adenomas from patients with Cushing's disease but in none of 11 silent corticotropinomas. The prevalence was higher in adults than in pediatric cases (41 vs 17%) and in females than in males (43 vs 17%). Adults having USP8-mutated adenomas were diagnosed at an earlier age than those with wild-type lesions (36 vs 44 y). Mutations were primarily found in adenomas of 10 ± 7 mm and were inversely associated with the development of postoperative adrenal insufficiency. All the mutations affected the residues Ser718 or Pro720, including five new identified alterations. Mutations reduced the interaction between USP8 and 14-3-3 and enhanced USP8 activity. USP8 mutants diminished epidermal growth factor receptor ubiquitination and induced Pomc promoter activity in immortalized AtT-20 corticotropinoma cells. USP8 is frequently mutated in adenomas causing Cushing's disease, especially in those from female adult patients diagnosed at a younger age.

  9. SGCE mutations cause psychiatric disorders: clinical and genetic characterization

    PubMed Central

    Peall, Kathryn J.; Smith, Daniel J.; Kurian, Manju A.; Wardle, Mark; Waite, Adrian J.; Hedderly, Tammy; Lin, Jean-Pierre; Smith, Martin; Whone, Alan; Pall, Hardev; White, Cathy; Lux, Andrew; Jardine, Philip; Bajaj, Narinder; Lynch, Bryan; Kirov, George; O’Riordan, Sean; Samuel, Michael; Lynch, Timothy; King, Mary D.; Chinnery, Patrick F.; Warner, Thomas T.; Blake, Derek J.; Owen, Michael J.; Morris, Huw R.

    2014-01-01

    Myoclonus dystonia syndrome is a childhood onset hyperkinetic movement disorder characterized by predominant alcohol responsive upper body myoclonus and dystonia. A proportion of cases are due to mutations in the maternally imprinted SGCE gene. Previous studies have suggested that patients with SGCE mutations may have an increased rate of psychiatric disorders. We established a cohort of patients with myoclonus dystonia syndrome and SGCE mutations to determine the extent to which psychiatric disorders form part of the disease phenotype. In all, 89 patients with clinically suspected myoclonus dystonia syndrome were recruited from the UK and Ireland. SGCE was analysed using direct sequencing and for copy number variants. In those patients where no mutation was found TOR1A (GAG deletion), GCH1, THAP1 and NKX2-1 were also sequenced. SGCE mutation positive cases were systematically assessed using standardized psychiatric interviews and questionnaires and compared with a disability-matched control group of patients with alcohol responsive tremor. Nineteen (21%) probands had a SGCE mutation, five of which were novel. Recruitment of family members increased the affected SGCE mutation positive group to 27 of whom 21 (77%) had psychiatric symptoms. Obsessive–compulsive disorder was eight times more likely (P < 0.001) in mutation positive cases, compulsivity being the predominant feature (P < 0.001). Generalized anxiety disorder (P = 0.003) and alcohol dependence (P = 0.02) were five times more likely in mutation positive cases than tremor controls. SGCE mutations are associated with a specific psychiatric phenotype consisting of compulsivity, anxiety and alcoholism in addition to the characteristic motor phenotype. SGCE mutations are likely to have a pleiotropic effect in causing both motor and specific psychiatric symptoms. PMID:23365103

  10. Genetic dissection of TrkB activated signalling pathways required for specific aspects of the taste system

    PubMed Central

    2014-01-01

    Background Neurotrophin-4 (NT-4) and brain derived neurotrophic factor (BDNF) bind to the same receptor, Ntrk2/TrkB, but play distinct roles in the development of the rodent gustatory system. However, the mechanisms underlying these processes are lacking. Results Here, we demonstrate, in vivo, that single or combined point mutations in major adaptor protein docking sites on TrkB receptor affect specific aspects of the mouse gustatory development, known to be dependent on BDNF or NT-4. In particular, mice with a mutation in the TrkB-SHC docking site had reduced gustatory neuron survival at both early and later stages of development, when survival is dependent on NT-4 and BDNF, respectively. In addition, lingual innervation and taste bud morphology, both BDNF-dependent functions, were altered in these mutants. In contrast, mutation of the TrkB-PLCγ docking site alone did not affect gustatory neuron survival. Moreover, innervation to the tongue was delayed in these mutants and taste receptor expression was altered. Conclusions We have genetically dissected pathways activated downstream of the TrkB receptor that are required for specific aspects of the taste system controlled by the two neurotrophins NT-4 and BDNF. In addition, our results indicate that TrkB also regulate the expression of specific taste receptors by distinct signalling pathways. These results advance our knowledge of the biology of the taste system, one of the fundamental sensory systems crucial for an organism to relate to the environment. PMID:25256039

  11. Mutation load in melanoma is affected by MC1R genotype.

    PubMed

    Johansson, Peter A; Pritchard, Antonia L; Patch, Ann-Marie; Wilmott, James S; Pearson, John V; Waddell, Nicola; Scolyer, Richard A; Mann, Graham J; Hayward, Nicholas K

    2017-03-01

    Whole-genome sequencing of matched germline and tumour pairs in a well-characterized cohort of melanoma patients allowed investigation of associations between melanoma body site, age at melanoma onset and MC1R variant status with overall mutation burden and specific base pair changes observed in the corresponding melanoma. We observed statistically significant associations between mutation burden in melanoma and body site, age at onset and MC1R genotype, for both ultraviolet radiation (UVR) signature changes (C>T and CC>TT) and non-UVR base pair substitutions, as well as with overall variant load. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Splicing mutation in CYP21 associated with delayed presentation of salt-wasting congenital adrenal hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohn, B.; Patel, S.V.; Pelczar, J.V.

    1995-07-03

    Patients with salt-wasting congenital adrenal hyperplasia (SW-CAH) most commonly carry an A-G transition at nucleotide 656 (nt 656 A{r_arrow}G), causing abnormal splicing of exons 2 and 3 in CYP21, the gene encoding active steroid 21-hydroxylase. Affected infants are severely deficient in cortisol and aldosterone, and usually come to medical attention during the neonatal period. We report on 2 affected boys, homozygous for the nt 656 mutation, who thrived in early infancy, but suffered salt-wasting crises unusually late in infancy, at 3.5 and 5.5 months, respectively. Laboratory studies at presentation showed hyponatremia, hyperkalemia, dehydration, and acidosis; serum aldosterone was low inmore » spite of markedly elevated plasma renin activity. Basal 17-hydroxyprogesterone levels were only moderately elevated, yet the stimulated levels were more typical of severe, classic CAH due to 21-hydroxylase deficiency. Genomic DNA from the patients was analyzed. Southern blot showed no major deletions or rearrangements. CYP21-specific amplification by polymerase chain reaction, coupled with allele-specific hybridization using wild-type and mutant probes at each of 9 sites for recognized disease-causing mutations, revealed a single, homozygous mutation in each patient: nt 656 A{r_arrow}G. These results were confirmed by sequence analysis. We conclude that the common nt 656 A{r_arrow}G mutation is sometimes associated with delayed phenotypic expression of SW-CAH. We speculate that variable splicing of the mutant CYP21 may modify the clinical manifestation of this disease. 22 refs., 1 fig., 1 tab.« less

  13. Next-Generation Genotyping by Digital PCR to Detect and Quantify the BRAF V600E Mutation in Melanoma Biopsies.

    PubMed

    Lamy, Pierre-Jean; Castan, Florence; Lozano, Nicolas; Montélion, Cécile; Audran, Patricia; Bibeau, Frédéric; Roques, Sylvie; Montels, Frédéric; Laberenne, Anne-Claire

    2015-07-01

    The detection of the BRAF V600E mutation in melanoma samples is used to select patients who should respond to BRAF inhibitors. Different techniques are routinely used to determine BRAF status in clinical samples. However, low tumor cellularity and tumor heterogeneity can affect the sensitivity of somatic mutation detection. Digital PCR (dPCR) is a next-generation genotyping method that clonally amplifies nucleic acids and allows the detection and quantification of rare mutations. Our aim was to evaluate the clinical routine performance of a new dPCR-based test to detect and quantify BRAF mutation load in 47 paraffin-embedded cutaneous melanoma biopsies. We compared the results obtained by dPCR with high-resolution melting curve analysis and pyrosequencing or with one of the allele-specific PCR methods available on the market. dPCR showed the lowest limit of detection. dPCR and allele-specific amplification detected the highest number of mutated samples. For the BRAF mutation load quantification both dPCR and pyrosequencing gave similar results with strong disparities in allele frequencies in the 47 tumor samples under study (from 0.7% to 79% of BRAF V600E mutations/sample). In conclusion, the four methods showed a high degree of concordance. dPCR was the more-sensitive method to reliably and easily detect mutations. Both pyrosequencing and dPCR could quantify the mutation load in heterogeneous tumor samples. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  14. Data on cardiac defects, morbidity and mortality in patients affected by RASopathies. CARNET study results.

    PubMed

    Calcagni, Giulio; Limongelli, Giuseppe; D'Ambrosio, Angelo; Gesualdo, Francesco; Digilio, Maria Cristina; Baban, Anwar; Albanese, Sonia B; Versacci, Paolo; De Luca, Enrica; Ferrero, Giovanni B; Baldassarre, Giuseppina; Agnoletti, Gabriella; Banaudi, Elena; Marek, Jan; Kaski, Juan P; Tuo, Giulia; Russo, Maria Giovanna; Pacileo, Giuseppe; Milanesi, Ornella; Messina, Daniela; Marasini, Maurizio; Cairello, Francesca; Formigari, Roberto; Brighenti, Maurizio; Dallapiccola, Bruno; Tartaglia, Marco; Marino, Bruno

    2018-02-01

    A comprehensive description of morbidity and mortality in patients affected by mutations in genes encoding for signal transducers of the RAS-MAPK cascade (RASopathies) was performed in our study recently published in the International Journal of Cardiology. Seven European cardiac centres participating to the CArdiac Rasopathy NETwork (CARNET), collaborated in this multicentric, observational, retrospective data analysis and collection. In this study, clinical records of 371 patients with confirmed molecular diagnosis of RASopathy were reviewed. Cardiac defects, crude mortality, survival rate of patients with 1) hypertrophic cardiomyopathy (HCM) and age <2 years or young adults; 2) individuals with Noonan syndrome and pulmonary stenosis carrying PTPN11 mutations; 3) biventricular obstruction and PTPN11 mutations; 4) Costello syndrome or cardiofaciocutaneous syndrome were analysed. Mortality was described as crude mortality, cumulative survival and restricted estimated mean survival. In particular, with this Data In Brief (DIB) paper, the authors aim to report specific statistic highlights of the multivariable regression analysis that was used to assess the impact of mutated genes on number of interventions and overall prognosis.

  15. MELAS syndrome with mitochondrial tRNA(Leu(UUR)) gene mutation in a Chinese family.

    PubMed Central

    Huang, C C; Chen, R S; Chen, C M; Wang, H S; Lee, C C; Pang, C Y; Hsu, H S; Lee, H C; Wei, Y H

    1994-01-01

    The clinical features of a patient in a Chinese family with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS syndrome) are reported. The study revealed that hearing and visual impairments and miscarriages may be early clinical presentations in MELAS. A heteroplasmic A to G transition in the tRNA(Leu(UUR)) gene was noted at the nucleotide pair 3243 in the mitochondrial DNA of muscle, blood, and hair follicles of the proband and his maternal relatives. Quantitative analysis of the mutated mitochondrial DNA revealed variable proportions in different tissues and subjects of maternal lineage in the family. Muscle tissue contained a higher proportion of the mutant mitochondria than other tissues examined. The function of the reproductive system of the proband seems to be impaired. In one clinically healthy sibling, the 3243rd point mutation was found in sperm mitochondrial DNA, although sperm motility was not affected. It seems that biochemical defects in mitochondrial respiration and oxidative phosphorylation are tissue specific expressions of the 3243rd point mutation in the mitochondrial DNA of the affected target tissues. Images PMID:8201329

  16. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping.

    PubMed Central

    Lengeler, J

    1975-01-01

    Mutants of Escherichia coli K-12 unable to grow on any of the three naturally occurring hexitols D-manitol, D-glucitol, and galactitol and, among these specifically, mutants with altered transport and phosphorylating activity have been isolated. Different isolation procedures have been utilized, including suicide by D-[3H]mannitol, chemotaxis, and resistance to the toxic hexitol analogue 2-deoxy-arabino-hexitol. Mutations thus obtained have been mapped in four distinct operons. (i) Mutations affecting an enzyme II-complexmt1 activity of the phosphoenolpyruvate-dependent phosphotransferase system all map in gene mtlA. This gene has previously been shown (Solomon and Lin, 1972) to be part of an operon, mtl, located at 71 min on the E. coli linkage map containing, in addition to mtlA, the cis-dominant regulatory gene mtlC and mtlD, the structural gene for the enzyme D-mannitol-1-phosphate dehydrogenase. The gene order in this operon, induced by D-mannitol, is mtlC A D. (ii) Mutations in gene gutA affecting a second enzyme II-complexgut of the phosphotransferase system map at 51 min, clustered in operon gutC A D together with the cis-dominant regulatory gene gutC and the structural gene gutD for the enzyme D-glucitol-6-phosphate dehydrogenase. The gut operon, previously called sbl or srl, is induced by D-glucitol. (iii) Mutations affecting the transport and catabolism of galactitol are clustered in a third operon, gatC A D, located at 40.5 min. This operon again contains a cis-dominant regulatory gene, gatC, the structural gene gatD for galactitol-1-phosphate dehydrogenase, and gene gatA coding for a thrid hexitol-specific enzyme II-complexgat. Other genes coding for two additional enzymes involved in galactitol catabolism apparently are not linked to gatC A D. (iv) A fourth class of mutants pleiotropically negative for hexitol growth and transport maps in the pts operon. Triple-negative mutants (mtlA gutA gatA) do not have further transport or phosphorylating activity for any of the three hexitols. PMID:1100602

  17. Rare deleterious mutations are associated with disease in bipolar disorder families.

    PubMed

    Rao, A R; Yourshaw, M; Christensen, B; Nelson, S F; Kerner, B

    2017-07-01

    Bipolar disorder (BD) is a common, complex and heritable psychiatric disorder characterized by episodes of severe mood swings. The identification of rare, damaging genomic mutations in families with BD could inform about disease mechanisms and lead to new therapeutic interventions. To determine whether rare, damaging mutations shared identity-by-descent in families with BD could be associated with disease, exome sequencing was performed in multigenerational families of the NIMH BD Family Study followed by in silico functional prediction. Disease association and disease specificity was determined using 5090 exomes from the Sweden-Schizophrenia (SZ) Population-Based Case-Control Exome Sequencing study. We identified 14 rare and likely deleterious mutations in 14 genes that were shared identity-by-descent among affected family members. The variants were associated with BD (P<0.05 after Bonferroni's correction) and disease specificity was supported by the absence of the mutations in patients with SZ. In addition, we found rare, functional mutations in known causal genes for neuropsychiatric disorders including holoprosencephaly and epilepsy. Our results demonstrate that exome sequencing in multigenerational families with BD is effective in identifying rare genomic variants of potential clinical relevance and also disease modifiers related to coexisting medical conditions. Replication of our results and experimental validation are required before disease causation could be assumed.

  18. Complex Roads from Genotype to Phenotype in Dilated Cardiomyopathy: Scientific update from the Working Group of Myocardial Function of the European Society of Cardiology

    PubMed

    Bondue, Antoine; Arbustini, Eloisa; Bianco, Anna M; Ciccarelli, Michele; Dawson, Dana; De Rosa, Matteo; Hamdani, Nazha; Hilfiker-Kleiner, Denise; Meder, Benjamin; Leite Moreira, Adelino; Thum, Thomas; Gabriele Tocchetti, Carlo; Varricchi, Gilda; Van der Velden, Jolanda; Walsh, Roddy; Heymans, Stephane

    2018-05-23

    Dilated cardiomyopathy (DCM) frequently affects relatively young, economically and socially active adults, and is an important cause of heart failure and transplantation. DCM is a complex disease and its pathological architecture encounters many genetic determinants interacting with environmental factors. The old perspective that every pathogenic gene mutation would lead to a diseased heart, is now being replaced by the novel observation that the phenotype depends not only on the penetrance -malignancy of the mutated gene- but also on epigenetics, age, toxic factors, pregnancy and a diversity of acquired diseases. This review discusses how gene mutations will result in mutation-specific molecular alterations in the heart including increased mitochondrial oxidation (sarcomeric gene e.g. TTN), decreased calcium sensitivity (sarcomeric genes), fibrosis (e.g. LMNA and TTN) or inflammation. Therefore, getting a complete picture of the DCM patient will include genomic data, molecular assessment by preference from cardiac samples, stratification according to co-morbidities, and phenotypic description. Those data will help to better guide the heart failure and anti-arrhythmic treatment, predict response to therapy, develop novel siRNA-based gene silencing for malignant gene mutations, or intervene with mutation-specific altered gene pathways in the heart.

  19. Rapid genotyping of common MeCP2 mutations with an electronic DNA microchip using serial differential hybridization.

    PubMed

    Thistlethwaite, William A; Moses, Linda M; Hoffbuhr, Kristen C; Devaney, Joseph M; Hoffman, Eric P

    2003-05-01

    Rett syndrome is a neurodevelopmental disorder that affects females almost exclusively, and in which eight common point mutations on the X-linked MeCP2 gene are knows to cause over 70% of mutation-positive cases. We explored the use of a novel platform to detect the eight common mutations in Rett syndrome patients to expedite and simplify the process of identification of known genotypes. The Nanogen workstation consists of a two-color assay based on electric hybridization and thermal discrimination, all performed on an electronically active NanoChip. This genotyping platform was tested on 362 samples of a pre-determined genotype, which had been previously identified by a combination of DHPLC (denaturing high performance liquid chromatography) and direct sequencing. This genotyping technique proved to be rapid, facile, and displayed a specificity of 100% with 3% ambiguity. In addition, we present consecutive testing of seven mutations on a single pad of the NanoChip. This was accomplished by tagging down two amplimers together and serially hybridizing for seven different loci, allowing us to genotype samples for seven of the eight common Rett mutations on a single pad. This novel method displayed the same level of specificity and accuracy as the single amplimer reactions, and proved to be faster and more economical.

  20. Incidence of Ganciclovir Resistance in CMV-positive Renal Transplant Recipients and its Association with UL97 Gene Mutations.

    PubMed

    Aslani, Hamid Reza; Ziaie, Shadi; Salamzadeh, Jamshid; Zaheri, Sara; Samadian, Fariba; Mastoor-Tehrani, Shayan

    2017-01-01

    Human cytomegalovirus (CMV) remains the most common infection affecting organ transplant recipients. Despite advances in the prophylaxis and acute treatment of CMV, it remains an important pathogen affecting the short- and long-term clinical outcome of solid organ transplant recipient. The emergence of CMV resistance in a patient reduces the clinical efficacy of antiviral therapy, complicates therapeutic and clinical management decisions, and in some cases results in loss of the allograft and/or death of the patient. Common mechanisms of CMV resistance to ganciclovir have been described chiefly with the UL97 mutations. Here we evaluate Incidence of ganciclovir resistance in 144 CMV-positive renal transplant recipients and its association with UL97 gene mutations. Active CMV infection was monitored by viral DNA quantification in whole blood, and CMV resistance was assessed by UL97 gene sequencing. Six mutations in six patients were detected. Three patients (2.6%) of 112 patients with history of ganciclovir (GCV) treatment had clinical resistance with single UL97 mutations at loci known to be related to resistance (including mutations at codon 594, codon 460, and codon 520). three patients who were anti-CMV drug naïve had single UL97 mutations (D605E) without clinical resistance. Our results confirm and extend our earlier findings on the specific mutations in the UL97 phosphotransferase gene in loci that have established role in ganciclovir resistance and also indicate that clinical ganciclovir resistance due to UL97 gene mutations is an issue in subjects with history of with ganciclovir treatment. D605E mutations remains a controversial issue that needs further investigations.

  1. Vacuolar Protein Sorting Genes in Parkinson's Disease: A Re-appraisal of Mutations Detection Rate and Neurobiology of Disease.

    PubMed

    Gambardella, Stefano; Biagioni, Francesca; Ferese, Rosangela; Busceti, Carla L; Frati, Alessandro; Novelli, Giuseppe; Ruggieri, Stefano; Fornai, Francesco

    2016-01-01

    Mammalian retromers play a critical role in protein trans-membrane sorting from endosome to the trans-Golgi network (TGN). Recently, retromer alterations have been related to the onset of Parkinson's Disease (PD) since the variant p.Asp620Asn in VPS35 (Vacuolar Protein Sorting 35) was identified as a cause of late onset PD. This variant causes a primary defect in endosomal trafficking and retromers formation. Other mutations in VPS genes have been reported in both sporadic and familial PD. These mutations are less defined. Understanding the specific prevalence of all VPS gene mutations is key to understand the relevance of retromers impairment in the onset of PD. A number of PD-related mutations despite affecting different biochemical systems (autophagy, mitophagy, proteasome, endosomes, protein folding), all converge in producing an impairment in cell clearance. This may explain how genetic predispositions to PD may derive from slightly deleterious VPS mutations when combined with environmental agents overwhelming the clearance of the cell. This manuscript reviews genetic data produced in the last 5 years to re-define the actual prevalence of VPS gene mutations in the onset of PD. The prevalence of p.Asp620Asn mutation in VPS35 is 0.286 of familial PD. This increases up to 0.548 when considering mutations affecting all VPS genes. This configures mutations in VPS genes as the second most frequent autosomal dominant PD genotype. This high prevalence, joined with increased awareness of the role played by retromers in the neurobiology of PD, suggests environmentally-induced VPS alterations as crucial in the genesis of PD.

  2. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism.

    PubMed

    Rachakonda, P Sivaramakrishna; Hosen, Ismail; de Verdier, Petra J; Fallah, Mahdi; Heidenreich, Barbara; Ryk, Charlotta; Wiklund, N Peter; Steineck, Gunnar; Schadendorf, Dirk; Hemminki, Kari; Kumar, Rajiv

    2013-10-22

    The telomerase reverse transcriptase (TERT) promoter, an important element of telomerase expression, has emerged as a target of cancer-specific mutations. Originally described in melanoma, the mutations in TERT promoter have been shown to be common in certain other tumor types that include glioblastoma, hepatocellular carcinoma, and bladder cancer. To fully define the occurrence and effect of the TERT promoter mutations, we investigated tumors from a well-characterized series of 327 patients with urothelial cell carcinoma of bladder. The somatic mutations, mainly at positions -124 and -146 bp from ATG start site that create binding motifs for E-twenty six/ternary complex factors (Ets/TCF), affected 65.4% of the tumors, with even distribution across different stages and grades. Our data showed that a common polymorphism rs2853669, within a preexisting Ets2 binding site in the TERT promoter, acts as a modifier of the effect of the mutations on survival and tumor recurrence. The patients with the mutations showed poor survival in the absence [hazard ratio (HR) 2.19, 95% confidence interval (CI) 1.02-4.70] but not in the presence (HR 0.42, 95% CI 0.18-1.01) of the variant allele of the polymorphism. The mutations in the absence of the variant allele were highly associated with the disease recurrence in patients with Tis, Ta, and T1 tumors (HR 1.85, 95% CI 1.11-3.08). The TERT promoter mutations are the most common somatic lesions in bladder cancer with clinical implications. The association of the mutations with patient survival and disease recurrence, subject to modification by a common polymorphism, can be a unique putative marker with individualized prognostic potential.

  3. Two novel disease-causing mutations in the CLRN1 gene in patients with Usher syndrome type 3

    PubMed Central

    García-García, Gema; Aparisi, María J.; Rodrigo, Regina; Sequedo, María D.; Espinós, Carmen; Rosell, Jordi; Olea, José L.; Mendívil, M. Paz; Ramos-Arroyo, María A; Ayuso, Carmen; Jaijo, Teresa; Aller, Elena

    2012-01-01

    Purpose To identify the genetic defect in Spanish families with Usher syndrome (USH) and probable involvement of the CLRN1 gene. Methods DNA samples of the affected members of our cohort of USH families were tested using an USH genotyping array, and/or genotyped with polymorphic markers specific for the USH3A locus. Based on these previous analyses and clinical findings, CLRN1 was directly sequenced in 17 patients susceptible to carrying mutations in this gene. Results Microarray analysis revealed the previously reported mutation p.Y63X in two unrelated patients, one of them homozygous for the mutation. After CLRN1 sequencing, we found two novel mutations, p.R207X and p.I168N. Both novel mutations segregated with the phenotype. Conclusions To date, 18 mutations in CLRN1 have been reported. In this work, we report two novel mutations and a third one previously identified in the Spanish USH sample. The prevalence of CLRN1 among our patients with USH is low. PMID:23304067

  4. Pancreatic Agenesis due to Compound Heterozygosity for a Novel Enhancer and Truncating Mutation in the PTF1A Gene.

    PubMed

    Gabbay, Monica; Ellard, Sian; De Franco, Elisa; Moisés, Regina S

    2017-09-01

    Neonatal diabetes, defined as the onset of diabetes within the first six months of life, is very rarely caused by pancreatic agenesis. Homozygous truncating mutations in the PTF1A gene, which encodes a transcriptional factor, have been reported in patients with pancreatic and cerebellar agenesis, whilst mutations located in a distal pancreatic-specific enhancer cause isolated pancreatic agenesis. We report an infant, born to healthy non-consanguineous parents, with neonatal diabetes due to pancreatic agenesis. Initial genetic investigation included sequencing of KCNJ11, ABCC8 and INS genes, but no mutations were found. Following this, 22 neonatal diabetes associated genes were analyzed by a next generation sequencing assay. We found compound heterozygous mutations in the PTF1A gene: A frameshift mutation in exon 1 (c.437_462 del, p.Ala146Glyfs*116) and a mutation affecting a highly conserved nucleotide within the distal pancreatic enhancer (g.23508442A>G). Both mutations were confirmed by Sanger sequencing. Isolated pancreatic agenesis resulting from compound heterozygosity for truncating and enhancer mutations in the PTF1A gene has not been previously reported. This report broadens the spectrum of mutations causing pancreatic agenesis.

  5. Pancreatic Agenesis due to Compound Heterozygosity for a Novel Enhancer and Truncating Mutation in the PTF1A Gene

    PubMed Central

    Gabbay, Monica; Ellard, Sian; De Franco, Elisa; Moisés, Regina S.

    2017-01-01

    Neonatal diabetes, defined as the onset of diabetes within the first six months of life, is very rarely caused by pancreatic agenesis. Homozygous truncating mutations in the PTF1A gene, which encodes a transcriptional factor, have been reported in patients with pancreatic and cerebellar agenesis, whilst mutations located in a distal pancreatic-specific enhancer cause isolated pancreatic agenesis. We report an infant, born to healthy non-consanguineous parents, with neonatal diabetes due to pancreatic agenesis. Initial genetic investigation included sequencing of KCNJ11, ABCC8 and INS genes, but no mutations were found. Following this, 22 neonatal diabetes associated genes were analyzed by a next generation sequencing assay. We found compound heterozygous mutations in the PTF1A gene: A frameshift mutation in exon 1 (c.437_462 del, p.Ala146Glyfs*116) and a mutation affecting a highly conserved nucleotide within the distal pancreatic enhancer (g.23508442A>G). Both mutations were confirmed by Sanger sequencing. Isolated pancreatic agenesis resulting from compound heterozygosity for truncating and enhancer mutations in the PTF1A gene has not been previously reported. This report broadens the spectrum of mutations causing pancreatic agenesis. PMID:28663161

  6. Genetics Home Reference: Bietti crystalline dystrophy

    MedlinePlus

    ... broken down and converted into energy, but the enzyme's specific function is not well understood. CYP4V2 gene mutations that cause Bietti crystalline dystrophy impair or eliminate the function of this enzyme and are believed to affect lipid breakdown. However, ...

  7. Myosin Transducer Mutations Differentially Affect Motor Function, Myofibril Structure, and the Performance of Skeletal and Cardiac Muscles

    PubMed Central

    Cammarato, Anthony; Dambacher, Corey M.; Knowles, Aileen F.; Kronert, William A.; Bodmer, Rolf

    2008-01-01

    Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders. PMID:18045988

  8. Mutations in STT3A and STT3B cause two congenital disorders of glycosylation

    PubMed Central

    Shrimal, Shiteshu; Ng, Bobby G.; Losfeld, Marie-Estelle; Gilmore, Reid; Freeze, Hudson H.

    2013-01-01

    We describe two unreported types of congenital disorders of glycosylation (CDG) which are caused by mutations in different isoforms of the catalytic subunit of the oligosaccharyltransferase (OST). Each isoform is encoded by a different gene (STT3A or STT3B), resides in a different OST complex and has distinct donor and acceptor substrate specificities with partially overlapping functions in N-glycosylation. The two cases from unrelated consanguineous families both show neurologic abnormalities, hypotonia, intellectual disability, failure to thrive and feeding problems. A homozygous mutation (c.1877T > C) in STT3A causes a p.Val626Ala change and a homozygous intronic mutation (c.1539 + 20G > T) in STT3B causes the other disorder. Both mutations impair glycosylation of a GFP biomarker and are rescued with the corresponding cDNA. Glycosylation of STT3A- and STT3B-specific acceptors is decreased in fibroblasts carrying the corresponding mutated gene and expression of the STT3A (p.Val626Ala) allele in STT3A-deficient HeLa cells does not rescue glycosylation. No additional cases were found in our collection or in reviewing various databases. The STT3A mutation significantly impairs glycosylation of the biomarker transferrin, but the STT3B mutation only slightly affects its glycosylation. Additional cases of STT3B-CDG may be missed by transferrin analysis and will require exome or genome sequencing. PMID:23842455

  9. Selected AGXT gene mutations analysis provides a genetic diagnosis in 28% of Tunisian patients with primary hyperoxaluria

    PubMed Central

    2011-01-01

    Background Primary hyperoxaluria type I (PH1) is a rare genetic disorder characterized by allelic and clinical heterogeneity. Four mutations (G170R, 33_34insC, I244T and F152I) account for more than 50% of PH1 alleles and form the basis for diagnostic genetic screening for PH1. We aimed to analyze the prevalence of these specific mutations causing PH1, and to provide an accurate tool for diagnosis of presymptomatic patients as well as for prenatal diagnosis in the affected families. Methods Polymerase chain reaction/Restriction Fragment Length Polymorphism, were used to detect the four mutations in the AGXT gene in DNA samples from 57 patients belonging to 40 families. Results Two mutations causing PH1 were detected in 24 patients (42.1%), with a predominance of the I244T mutation (68% of patients) and 33_34insC (in the remaining 32%). In 92% of cases, mutated alleles were in homozygous state. The presented clinical features were similar for the two mutations. The age of onset was heterogeneous with a higher frequency of the pediatric age. In 58.3% of cases, the presentation corresponded to advanced renal disease which occurred early (< 5 years) in the two mutations. In adolescents, only the I244T mutation was detected (41.1%). I244T and 33_34insC mutations were observed in adult patients, with 17.6% and 12.5% respectively. Conclusion Limited mutation analysis can provide a useful first line investigation for PH1. I244T and 33_34insC presented 28.2% of identified mutations causing disease in our cohort. This identification could provide an accurate tool for prenatal diagnosis in the affected families, for genetic counselling and for detection of presymptomatic individuals. PMID:21612638

  10. A new visualization approach for identifying mutations that affect differentiation and organization of the Drosophila ommatidia.

    PubMed

    Pichaud, F; Desplan, C

    2001-03-01

    The Drosophila eye is widely used as a model system to study neuronal differentiation, survival and axon projection. Photoreceptor differentiation starts with the specification of a founder cell R8, which sequentially recruits other photoreceptor neurons to the ommatidium. The eight photoreceptors that compose each ommatidium exist in two chiral forms organized along two axes of symmetry and this pattern represents a paradigm to study tissue polarity. We have developed a method of fluoroscopy to visualize the different types of photoreceptors and the organization of the ommatidia in living animals. This allowed us to perform an F(1) genetic screen to isolate mutants affecting photoreceptor differentiation, survival or planar polarity. We illustrate the power of this detection system using known genetic backgrounds and new mutations that affect ommatidial differentiation, morphology or chirality.

  11. Whole exome sequencing is an efficient, sensitive and specific method for determining the genetic cause of short-rib thoracic dystrophies.

    PubMed

    McInerney-Leo, A M; Harris, J E; Leo, P J; Marshall, M S; Gardiner, B; Kinning, E; Leong, H Y; McKenzie, F; Ong, W P; Vodopiutz, J; Wicking, C; Brown, M A; Zankl, A; Duncan, E L

    2015-12-01

    Short-rib thoracic dystrophies (SRTDs) are congenital disorders due to defects in primary cilium function. SRTDs are recessively inherited with mutations identified in 14 genes to date (comprising 398 exons). Conventional mutation detection (usually by iterative Sanger sequencing) is inefficient and expensive, and often not undertaken. Whole exome massive parallel sequencing has been used to identify new genes for SRTD (WDR34, WDR60 and IFT172); however, the clinical utility of whole exome sequencing (WES) has not been established. WES was performed in 11 individuals with SRTDs. Compound heterozygous or homozygous mutations were identified in six confirmed SRTD genes in 10 individuals (IFT172, DYNC2H1, TTC21B, WDR60, WDR34 and NEK1), giving overall sensitivity of 90.9%. WES data from 993 unaffected individuals sequenced using similar technology showed two individuals with rare (minor allele frequency <0.005) compound heterozygous variants of unknown significance in SRTD genes (specificity >99%). Costs for consumables, laboratory processing and bioinformatic analysis were

  12. A novel DCX missense mutation in a family with X-linked lissencephaly and subcortical band heterotopia syndrome inherited from a low-level somatic mosaic mother: Genetic and functional studies.

    PubMed

    Tsai, Meng-Han; Kuo, Pei-Wen; Myers, Candace T; Li, Shih-Wen; Lin, Wei-Che; Fu, Ting-Ying; Chang, Hsin-Yun; Mefford, Heather C; Chang, Yao-Chung; Tsai, Jin-Wu

    2016-09-01

    To study the genetics and functional alteration of a family with X-linked lissencephaly and subcortical band heterotopia. Five affected patients (one male with lissencephaly, four female with subcortical band heterotopia) and their relatives were studied. Sanger sequencing of DCX gene, allele specific PCR and molecular inversion probe technique were performed. Mutant and wild type of the gene products, namely doublecortin, were expressed in cells followed by immunostaining to explore the localization of doublecortin and microtubules in cells. In vitro microtubule-binding protein spin-down assay was performed to quantify the binding ability of doublecortin to microtubules. We identified a novel DCX mutation c.785A > G, p.Asp262Gly that segregated with the affected members of the family. Allele specific PCR and molecular inversion probe technique demonstrated that the asymptomatic female carrier had an 8% mutant allele fraction in DNA derived from peripheral leukocytes. This mother had 7 children, 4 of whom were affected and all four affected siblings carried the mutation. Functional study showed that the mutant doublecortin protein had a significant reduction of its ability to bind microtubules. Low level mosaicism could be a cause of inherited risk from asymptomatic parents for DCX related lissencephaly-subcortical band heterotopia spectrum. This is particularly important in terms of genetic counselling for recurrent risk of future pregnancies. The reduced binding affinity of mutant doublecortin may contribute to developmental malformation of the cerebral cortex. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  13. Sin1, a Mutation Affecting Female Fertility in Arabidopsis, Interacts with Mod1, Its Recessive Modifier

    PubMed Central

    Lang, J. D.; Ray, S.; Ray, A.

    1994-01-01

    In Arabidopsis thaliana, a mutation in the SIN1 gene causes aberrant ovule development and female-specific sterility. The effect of the sin1 mutation is polymorphic and pleiotropic in different genetic backgrounds. The polymorphism concerns morphology of the mutant ovules. The pleiotropism involves internodal distance and inflorescence initiation time. The particular ovule phenotype and the length of internodes are dependent on an interaction of sin1 with a second recessive gene, which we term mod1. The recessive mod1 allele in a homozygous sin1 mutant plant reduces internode length and ovule integument size. The mutation sin1, but not mod1, has a demonstrable effect on ovule morphology when acting idependently. In our crosses mod1 was inseparably linked to the well known mutation erecta that is known to cause a reduction in internode and pedicel lengths. PMID:7982564

  14. The pso4-1 mutation reduces spontaneous mitotic gene conversion and reciprocal recombination in Saccharomyces cerevisiae.

    PubMed

    Meira, L B; Fonseca, M B; Averbeck, D; Schenberg, A C; Henriques, J A

    1992-11-01

    Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant. However, whereas the rad52-1 mutation specifically reduces gene conversion, the pso4-1 mutation reduces both gene conversion and reciprocal recombination. Induced mitotic recombination was also studied in pso4-1 mutant and wild-type strains after treatment with 8-methoxypsoralen plus UVA and 254 nm UV irradiation. Consistent with previous results, the pso4-1 mutation was found strongly to affect recombination induction.

  15. Risk reducing mastectomy, breast reconstruction and patient satisfaction in Norwegian BRCA1/2 mutation carriers.

    PubMed

    Hagen, Anne Irene; Mæhle, Lovise; Vedå, Nina; Vetti, Hildegunn Høberg; Stormorken, Astrid; Ludvigsen, Trond; Guntvedt, Bente; Isern, Anne Elisabeth; Schlichting, Ellen; Kleppe, Geir; Bofin, Anna; Gullestad, Hans Petter; Møller, Pål

    2014-02-01

    The aim of this study was to evaluate the outcome of risk-reducing mastectomy in BRCA1/2 mutation carriers with and without breast cancer. Uptake, methods of operation and reconstruction, complications, patient satisfaction and histopathological findings were registered at all five departments of genetics in Norway. Data from 267 affected and unaffected BRCA1/2 mutation carriers were analyzed, including a study-specific questionnaire returned by 178 mutation carriers. There was a steady increase in the uptake of risk-reducing mastectomies during the study period. Complications were observed in 106/266 (39.7%) women. Patient satisfaction was high. The majority of women expressed great relief after risk-reducing mastectomy and would have chosen the same option again. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Isolated and Syndromic Retinal Dystrophy Caused by Biallelic Mutations in RCBTB1, a Gene Implicated in Ubiquitination.

    PubMed

    Coppieters, Frauke; Ascari, Giulia; Dannhausen, Katharina; Nikopoulos, Konstantinos; Peelman, Frank; Karlstetter, Marcus; Xu, Mingchu; Brachet, Cécile; Meunier, Isabelle; Tsilimbaris, Miltiadis K; Tsika, Chrysanthi; Blazaki, Styliani V; Vergult, Sarah; Farinelli, Pietro; Van Laethem, Thalia; Bauwens, Miriam; De Bruyne, Marieke; Chen, Rui; Langmann, Thomas; Sui, Ruifang; Meire, Françoise; Rivolta, Carlo; Hamel, Christian P; Leroy, Bart P; De Baere, Elfride

    2016-08-04

    Inherited retinal dystrophies (iRDs) are a group of genetically and clinically heterogeneous conditions resulting from mutations in over 250 genes. Here, homozygosity mapping and whole-exome sequencing (WES) in a consanguineous family revealed a homozygous missense mutation, c.973C>T (p.His325Tyr), in RCBTB1. In affected individuals, it was found to segregate with retinitis pigmentosa (RP), goiter, primary ovarian insufficiency, and mild intellectual disability. Subsequent analysis of WES data in different cohorts uncovered four additional homozygous missense mutations in five unrelated families in whom iRD segregates with or without syndromic features. Ocular phenotypes ranged from typical RP starting in the second decade to chorioretinal dystrophy with a later age of onset. The five missense mutations affect highly conserved residues either in the sixth repeat of the RCC1 domain or in the BTB1 domain. A founder haplotype was identified for mutation c.919G>A (p.Val307Met), occurring in two families of Mediterranean origin. We showed ubiquitous mRNA expression of RCBTB1 and demonstrated predominant RCBTB1 localization in human inner retina. RCBTB1 was very recently shown to be involved in ubiquitination, more specifically as a CUL3 substrate adaptor. Therefore, the effect on different components of the CUL3 and NFE2L2 (NRF2) pathway was assessed in affected individuals' lymphocytes, revealing decreased mRNA expression of NFE2L2 and several NFE2L2 target genes. In conclusion, our study puts forward mutations in RCBTB1 as a cause of autosomal-recessive non-syndromic and syndromic iRD. Finally, our data support a role for impaired ubiquitination in the pathogenetic mechanism of RCBTB1 mutations. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. An activating G{sub s}{alpha} mutation is present in fibrous dysplasia of bone in the McCune-Albright syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shenker, A.; Weinstein, L.S.; Spiegel, A.M.

    1994-09-01

    McCune-Albright syndrome (MAS) is a sporadic disease characterized by polyostotic fibrous dysplasia, cafe-au-lait spots, and multiple endocrinopathies. The etiology of fibrous dysplasia is unknown. Activating mutations of codon 201 in the gene encoding the {alpha}-subunit of G{sub s}, the G-protein that stimulates adenylyl cyclase, have been found in all affected MAS tissues that have been studied. Initial attempts to amplify DNA from decalcified paraffin-embedded bone specimens from frozen surgical bone specimens from five MAS patients using polymerase chain reaction and allele-specific oligonucleotide hybridization. Most of the cells in four specimens of dysplastic bone contained a heterozygous mutation encoding substitution ofmore » Arg{sup 201} of G{sub s}{alpha} with His, but the mutation was barely detectable in peripheral blood specimens from the patients. Only a small amount of mutant allele was detected in a specimen of normal cortical bone from the fifth patient, although this patients had a high proportion of mutation in other, affected tissues. The mosaic distribution of mutant alleles is consistent with an embryological somatic cell mutation of the G{sub s}{alpha} gene in MAS. The presence of an activating mutation of G{sub s}{alpha} in osteoblastic progenitor cells may cause them to exhibit increased proliferation and abnormal differentiation, thereby producing the lesions of fibrous dysplasia. 43 refs., 2 figs.« less

  18. Whole Exome Sequencing in Dominant Cataract Identifies a New Causative Factor, CRYBA2, and a Variety of Novel Alleles in Known Genes

    PubMed Central

    Reis, Linda M.; Tyler, Rebecca C.; Muheisen, Sanaa; Raggio, Victor; Salviati, Leonardo; Han, Dennis P.; Costakos, Deborah; Yonath, Hagith; Hall, Sarah; Power, Patricia; Semina, Elena V.

    2013-01-01

    Pediatric cataracts are observed in 1–15 per 10,000 births with 10–25% of cases attributed to genetic causes; autosomal dominant inheritance is the most commonly observed pattern. Since the specific cataract phenotype is not sufficient to predict which gene is mutated, whole exome sequencing (WES) was utilized to concurrently screen all known cataract genes and to examine novel candidate factors for a disease-causing mutation in probands from 23 pedigrees affected with familial dominant cataract. Review of WES data for 36 known cataract genes identified causative mutations in nine pedigrees (39%) in CRYAA, CRYBB1, CRYBB3, CRYGC (2), CRYGD, GJA8 (2), and MIP and an additional likely causative mutation in EYA1; the CRYBB3 mutation represents the first dominant allele in this gene and demonstrates incomplete penetrance. Examination of crystallin genes not yet linked to human disease identified a novel cataract gene, CRYBA2, a member of the βγ-crystallin superfamily. The p.(Val50Met) mutation in CRYBA2 cosegregated with disease phenotype in a four-generation pedigree with autosomal dominant congenital cataracts with incomplete penetrance. Expression studies detected cryba2 transcripts during early lens development in zebrafish, supporting its role in congenital disease. Our data highlight the extreme genetic heterogeneity of dominant cataract as the eleven causative/likely causative mutations affected nine different genes and the majority of mutant alleles were novel. Furthermore, these data suggest that less than half of dominant cataract can be explained by mutations in currently known genes. PMID:23508780

  19. Behavior of 10 patients with FG Syndrome (Opitz-Kaveggia Syndrome) and the p.R961W Mutation in the MED12 Gene

    PubMed Central

    Graham, John M; Visootsak, Jeannie; Dykens, Elisabeth; Huddleston, Lillie; Clark, Robin D; Jones, Kenneth L; Moeschler, John B; Opitz, John M; Morford, Jackie; Simensen, Richard; Rogers, R. Curtis; Schwartz, Charles E; Friez, Michael J; Stevenson, Roger E

    2011-01-01

    Opitz and Kaveggia [1974] reported on a family of five affected males with distinctive facial appearance, mental retardation, macrocephaly, imperforate anus and hypotonia. Risheg et al. [2007] identified an identical mutation (p.R961W) in MED12 in six families with Opitz-Kaveggia syndrome, including a surviving affected man from the family reported in 1974. The previously defined behavior phenotype of hyperactivity, affability, and excessive talkativeness is very frequent in young boys with this mutation, along with socially oriented, attention-seeking behaviors. We present case studies of two older males with FG syndrome and the p.R961W mutation to illustrate how their behavior changes with age. We also characterize the behavior of eight additional individuals with FG syndrome and this recurrent mutation in MED12 using the Vineland Adaptive Behavior Scales 2nd ed., the Reiss Profile of Fundamental Goals and Motivation Sensitivities, and the Achenbach Child Behavior Checklist. Males with this MED12 mutation had deficits in communication skills compared to their socialization and daily living skills. In addition, they were at increased risk for maladaptive behavior, with a propensity towards aggression, anxiety, and inattention. Based on the behavior phenotype in 10 males with this recurrent MED12 mutation, we offer specific recommendations and interventional strategies. Our findings reinforce the importance of testing for the p.R961W MED12 mutation in males who are suspected of having developmental and behavioral problems with a clinical phenotype that is consistent with FG syndrome. PMID:18973276

  20. Compactness of viral genomes: effect of disperse and localized random mutations

    NASA Astrophysics Data System (ADS)

    Lošdorfer Božič, Anže; Micheletti, Cristian; Podgornik, Rudolf; Tubiana, Luca

    2018-02-01

    Genomes of single-stranded RNA viruses have evolved to optimize several concurrent properties. One of them is the architecture of their genomic folds, which must not only feature precise structural elements at specific positions, but also allow for overall spatial compactness. The latter was shown to be disrupted by random synonymous mutations, a disruption which can consequently negatively affect genome encapsidation. In this study, we use three mutation schemes with different degrees of locality to mutate the genomes of phage MS2 and Brome Mosaic virus in order to understand the observed sensitivity of the global compactness of their folds. We find that mutating local stretches of their genomes’ sequence or structure is less disruptive to their compactness compared to inducing randomly-distributed mutations. Our findings are indicative of a mechanism for the conservation of compactness acting on a global scale of the genomes, and have several implications for understanding the interplay between local and global architecture of viral RNA genomes.

  1. FUS GENE MUTATIONS IN FAMILIAL AND SPORADIC AMYOTROPHIC LATERAL SCLEROSIS

    PubMed Central

    Rademakers, Rosa; Stewart, Heather; DeJesus-Hernandez, Mariely; Krieger, Charles; Graff-Radford, Neill; Fabros, Marife; Briemberg, Hannah; Cashman, Neil; Eisen, Andrew; Mackenzie, Ian R. A.

    2010-01-01

    Introduction Mutations in the fused in sarcoma (FUS) gene have recently been found to cause familial amyotrophic lateral sclerosis (FALS). Methods We screened FUS in a cohort of 200 ALS patients [32 FALS and 168 sporadic ALS (SALS)]. Results In one FALS proband, we identified a mutation (p.R521C) that was also present in her affected daughter. Their clinical phenotype was remarkably similar and atypical of classic ALS, with symmetric proximal pelvic and pectoral weakness. Distal weakness and upper motor neuron features only developed late. Neuropathological examination demonstrated FUS-immunoreactive neuronal and glial inclusions in the spinal cord and many extramotor regions, but no TDP-43 pathology. We also identified a novel mutation (p.G187S) in one SALS patient. Overall, FUS mutations accounted for 3% of our non-SOD1, non-TARDBP FALS cases and 0.6% of SALS. Discussion This study demonstrates that the phenotype with FUS mutations extends beyond classical ALS. It suggests there are specific clinicogenetic correlations and provides the first detailed neuropathological description. PMID:20544928

  2. The dominant alopecia phenotypes Bareskin, Rex-denuded, and Reduced Coat 2 are caused by mutations in gasdermin 3.

    PubMed

    Runkel, F; Marquardt, A; Stoeger, C; Kochmann, E; Simon, D; Kohnke, B; Korthaus, D; Wattler, F; Fuchs, H; Hrabé de Angelis, M; Stumm, G; Nehls, M; Wattler, S; Franz, T; Augustin, M

    2004-11-01

    Reduced Coat 2 (Rco2) is an ENU-induced mutation affecting hair follicle morphogenesis by an abnormal and protracted catagen. We describe chromosomal mapping and molecular identification of the autosomal dominant Rco2 mutation. The Rco2 critical region on mouse chromosome 11 encompasses the alopecia loci, Bareskin (Bsk), Rex-denuded (Re(den)), Recombination induced mutation 3 (Rim3), and Defolliculated (Dfl). Recently, the gasdermin (Gsdm) gene was described as predominantly expressed in skin and gastric tissues. We provide evidence for a murine-specific gene cluster consisting of Gsdm and two closely related genes which we designate as Gsdm2 and Gsdm3. We show that Gsdm3 reflects a mutation hotspot and that Gsdm3 mutations cause alopecia in Rco2, Re(den), and Bsk mice. We infer a role of Gsdm3 during the catagen to telogen transition at the end of hair follicle morphogenesis and the formation of hair follicle-associated sebaceous glands.

  3. Mitochondrial tRNAPhe mutation as a cause of end-stage renal disease in childhood

    PubMed Central

    D’Aco, Kristin E; Manno, Megan; Clarke, Colleen; Ganesh, Jaya; Meyers, Kevin EC; Sondheimer, Neal

    2012-01-01

    Background We identified a mitochondrial tRNA mutation (m.586G>A) in a patient with renal failure and symptoms consistent with a mitochondrial cytopathy. This mutation was of unclear significance because there were neither consistent reports of linkage to specific disease phenotypes nor an existing analysis of effects upon mitochondrial function. Case-Diagnosis/Treatment A 16-month-old girl with failure-to-thrive, developmental regression, persistent lactic acidosis, hypotonia, GI dysmotility, adrenal insufficiency and hematologic abnormalities developed hypertension and renal impairment with chronic tubulointerstitial fibrosis, progressing to renal failure with need for peritoneal dialysis. Evaluation of her muscle and blood identified a mutation of the mitochondrial tRNA for phenylalanine, m.586G>A. Conclusions The m.586G>A mutation is pathogenic and is a cause of end-stage renal disease in childhood. The mutation interferes with the stability of tRNAPhe and affects the translation of mitochondrial proteins and the stability of the electron transport chain. PMID:23135609

  4. Histone deacetylase inhibitor SAHA mediates mast cell death and epigenetic silencing of constitutively active D816V KIT in systemic mastocytosis.

    PubMed

    Lyberg, Katarina; Ali, Hani Abdulkadir; Grootens, Jennine; Kjellander, Matilda; Tirfing, Malin; Arock, Michel; Hägglund, Hans; Nilsson, Gunnar; Ungerstedt, Johanna

    2017-02-07

    Systemic mastocytosis (SM) is a clonal bone marrow disorder, where therapeutical options are limited. Over 90% of the patients carry the D816V point mutation in the KIT receptor that renders this receptor constitutively active. We assessed the sensitivity of primary mast cells (MC) and mast cell lines HMC1.2 (D816V mutated), ROSA (KIT WT) and ROSA (KIT D816V) cells to histone deacetylase inhibitor (HDACi) treatment. We found that of four HDACi, suberoyl anilide hydroxamic acid (SAHA) was the most effective in killing mutated MC. SAHA downregulated KIT, followed by major MC apoptosis. Primary SM patient MC cultured ex vivo were even more sensitive to SAHA than HMC1.2 cells, whereas primary MC from healthy subjects were less affected. There was a correlation between cell death and SM disease severity, where cell death was more pronounced in the case of aggressive SM, with almost 100% cell death among MC from the mast cell leukemia patient. Additionally, ROSA (KIT D816V) was more affected by HDACi than ROSA (KIT WT) cells. Using ChIP qPCR, we found that the level of active chromatin mark H3K18ac/H3 decreased significantly in the KIT region. This epigenetic silencing was seen only in the KIT region and not in control genes upstream and downstream of KIT, indicating that the downregulation of KIT is exerted by specific epigenetic silencing. In conclusion, KIT D816V mutation sensitized MC to HDACi mediated killing, and SAHA may be of value as specific treatment for SM, although the specific mechanism of action requires further investigation.

  5. Histone deacetylase inhibitor SAHA mediates mast cell death and epigenetic silencing of constitutively active D816V KIT in systemic mastocytosis

    PubMed Central

    Lyberg, Katarina; Ali, Hani Abdulkadir; Grootens, Jennine; Kjellander, Matilda; Tirfing, Malin; Arock, Michel; Hägglund, Hans

    2017-01-01

    Systemic mastocytosis (SM) is a clonal bone marrow disorder, where therapeutical options are limited. Over 90% of the patients carry the D816V point mutation in the KIT receptor that renders this receptor constitutively active. We assessed the sensitivity of primary mast cells (MC) and mast cell lines HMC1.2 (D816V mutated), ROSA (KIT WT) and ROSA (KIT D816V) cells to histone deacetylase inhibitor (HDACi) treatment. We found that of four HDACi, suberoyl anilide hydroxamic acid (SAHA) was the most effective in killing mutated MC. SAHA downregulated KIT, followed by major MC apoptosis. Primary SM patient MC cultured ex vivo were even more sensitive to SAHA than HMC1.2 cells, whereas primary MC from healthy subjects were less affected. There was a correlation between cell death and SM disease severity, where cell death was more pronounced in the case of aggressive SM, with almost 100% cell death among MC from the mast cell leukemia patient. Additionally, ROSA (KIT D816V) was more affected by HDACi than ROSA (KIT WT) cells. Using ChIP qPCR, we found that the level of active chromatin mark H3K18ac/H3 decreased significantly in the KIT region. This epigenetic silencing was seen only in the KIT region and not in control genes upstream and downstream of KIT, indicating that the downregulation of KIT is exerted by specific epigenetic silencing. In conclusion, KIT D816V mutation sensitized MC to HDACi mediated killing, and SAHA may be of value as specific treatment for SM, although the specific mechanism of action requires further investigation. PMID:28038453

  6. Fabry Disease: prevalence of affected males and heterozygotes with pathogenic GLA mutations identified by screening renal, cardiac and stroke clinics, 1995-2017.

    PubMed

    Doheny, Dana; Srinivasan, Ram; Pagant, Silvere; Chen, Brenden; Yasuda, Makiko; Desnick, Robert J

    2018-04-01

    Fabry Disease (FD), an X linked lysosomal storage disease due to pathogenic α-galactosidase A ( GLA ) mutations, results in two major subtypes, the early-onset Type 1 'Classic' and the Type 2 'Later-Onset' phenotypes. To identify previously unrecognised patients, investigators screened cardiac, renal and stroke clinics by enzyme assays. However, some screening studies did not perform confirmatory GLA mutation analyses, and many included recently recognised 'benign/likely-benign' variants, thereby inflating prevalence estimates. Online databases were searched for all FD screening studies in high-risk clinics (1995-2017). Studies reporting GLA mutations were re-analysed for pathogenic mutations, sex and phenotype. Phenotype-specific and sex-specific prevalence rates were determined. Of 67 studies, 63 that screened 51363patients (33943M and 17420F) and provided GLA mutations were reanalysed for disease-causing mutations. Of reported GLA mutations, benign variants occurred in 47.9% of males and 74.1% of females. The following were the revised prevalence estimates: among 36820 (23954M and 12866F) haemodialysis screenees, 0.21% males and 0.15% females; among 3074 (2031M and 1043F) renal transplant screenees, 0.25% males and no females; among 5491 (4054M and 1437F) cardiac screenees, 0.94% males and 0.90% females; and among 5978 (3904M and 2074F) stroke screenees, 0.13% males and 0.14% females. Among male and female screenees with pathogenic mutations, the type 1 Classic phenotype was predominant (~60%), except more male cardiac patients (75%) had type 2 Later-Onset phenotype. Compared with previous findings, reanalysis of 63 studies increased the screenee numbers (~3.4-fold), eliminated 20 benign/likely benign variants, and provided more accurate sex-specific and phenotype-specific prevalence estimates, ranging from ~0.13% of stroke to ~0.9% of cardiac male or female screenees. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Phenotype, penetrance, and treatment of 133 CTLA-4-insufficient individuals.

    PubMed

    Schwab, Charlotte; Gabrysch, Annemarie; Olbrich, Peter; Patiño, Virginia; Warnatz, Klaus; Wolff, Daniel; Hoshino, Akihiro; Kobayashi, Masao; Imai, Kohsuke; Takagi, Masatoshi; Dybedal, Ingunn; Haddock, Jamanda A; Sansom, David; Lucena, Jose M; Seidl, Maximilian; Schmitt-Gräff, Annette; Reiser, Veronika; Emmerich, Florian; Frede, Natalie; Bulashevska, Alla; Salzer, Ulrich; Schubert, Desirée; Hayakawa, Seiichi; Okada, Satoshi; Kanariou, Maria; Kucuk, Zeynep Yesim; Chapdelaine, Hugo; Petruzelkova, Lenka; Sumnik, Zdenek; Sediva, Anna; Slatter, Mary; Arkwright, Peter D; Cant, Andrew; Lorenz, Hanns-Martin; Giese, Thomas; Lougaris, Vassilios; Plebani, Alessandro; Price, Christina; Sullivan, Kathleen E; Moutschen, Michel; Litzman, Jiri; Freiberger, Tomas; van de Veerdonk, Frank L; Recher, Mike; Albert, Michael H; Hauck, Fabian; Seneviratne, Suranjith; Schmid, Jana Pachlopnik; Kolios, Antonios; Unglik, Gary; Klemann, Christian; Speckmann, Carsten; Ehl, Stephan; Leichtner, Alan; Blumberg, Richard; Franke, Andre; Snapper, Scott; Zeissig, Sebastian; Cunningham-Rundles, Charlotte; Giulino-Roth, Lisa; Elemento, Olivier; Dückers, Gregor; Niehues, Tim; Fronkova, Eva; Kanderová, Veronika; Platt, Craig D; Chou, Janet; Chatila, Talal; Geha, Raif; McDermott, Elizabeth; Bunn, Su; Kurzai, Monika; Schulz, Ansgar; Alsina, Laia; Casals, Ferran; Deyà-Martinez, Angela; Hambleton, Sophie; Kanegane, Hirokazu; Taskén, Kjetil; Neth, Olaf; Grimbacher, Bodo

    2018-05-04

    Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4) is a negative immune regulator. Heterozygous CTLA4 germline mutations can cause a complex immune dysregulation syndrome in humans. To characterize the penetrance, the clinical features and the best treatment options in 133 CTLA4 mutation carriers. Genetics, clinical features, laboratory values, and outcome of treatment options were assessed in a worldwide cohort of CTLA4 mutation carriers. We identified 133 individuals from 54 unrelated families carrying 45 different heterozygous CTLA4 mutations, including 28 previously undescribed mutations. Ninety mutation carriers were considered affected, suggesting the clinical penetrance of at least 67%; median age of onset was 11 years, and mortality rate within affected mutation carriers was 16% (n=15). Main clinical manifestations included hypogammaglobulinemia (84%), lymphoproliferation (73%), autoimmune cytopenia (62%), respiratory- (68%), gastrointestinal- (59%), or neurological features (29%). Eight affected mutation carriers developed lymphoma, three gastric cancer. An EBV association was found in six malignancies. CTLA4 mutations were associated with lymphopenia and decreased T-, B-, and NK-cell counts. Successful targeted therapies included the application of CTLA-4-fusion-proteins, mTOR-inhibitors, and hematopoietic stem cell transplantation. EBV reactivation occurred in two affected mutation carriers under immunosuppression. Affected mutation carriers with CTLA-4 insufficiency may present in any medical specialty. Family members should be counseled, as disease manifestation may occur as late as age 50. EBV- and CMV-associated complications must be closely monitored. Treatment interventions should be coordinated in clinical trials. This large cohort of affected CTLA4 mutation carriers gives first insights into different possible treatment options and presents available clinical information on treatment response and survival. With this knowledge, affected mutation carriers will benefit from an individualized management. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  8. Mutations in PRPF31 Inhibit Pre-mRNA Splicing of Rhodopsin Gene and Cause Apoptosis of Retinal Cells

    PubMed Central

    Yuan, Liya; Kawada, Mariko; Havlioglu, Necat; Tang, Hao; Wu, Jane Y.

    2007-01-01

    Mutations in human PRPF31 gene have been identified in patients with autosomal dominant retinitis pigmentosa (adRP). To begin to understand mechanisms by which defects in this general splicing factor cause retinal degeneration, we examined the relationship between PRPF31 and pre-mRNA splicing of photoreceptor-specific genes. We used a specific anti-PRPF31 antibody to immunoprecipitate splicing complexes from retinal cells and identified the transcript of rhodopsin gene (RHO) among RNA species associated with PRPF31-containing complexes. Mutant PRPF31 proteins significantly inhibited pre-mRNA splicing of intron 3 in RHO gene. In primary retinal cell cultures, expression of the mutant PRPF31 proteins reduced rhodopsin expression and caused apoptosis of rhodopsin-positive retinal cells. This primary retinal culture assay provides an in vitro model to study photoreceptor cell death caused by PRPF31 mutations. Our results demonstrate that mutations in PRPF31 gene affect RHO pre-mRNA splicing and reveal a link between PRPF31 and RHO, two major adRP genes. PMID:15659613

  9. Metabolic synthetic lethality in cancer therapy.

    PubMed

    Zecchini, Vincent; Frezza, Christian

    2017-08-01

    Our understanding of cancer has recently seen a major paradigm shift resulting in it being viewed as a metabolic disorder, and altered cellular metabolism being recognised as a hallmark of cancer. This concept was spurred by the findings that the oncogenic mutations driving tumorigenesis induce a reprogramming of cancer cell metabolism that is required for unrestrained growth and proliferation. The recent discovery that mutations in key mitochondrial enzymes play a causal role in tumorigenesis suggested that dysregulation of metabolism could also be a driver of tumorigenesis. These mutations induce profound adaptive metabolic alterations that are a prerequisite for the survival of the mutated cells. Because these metabolic events are specific to cancer cells, they offer an opportunity to develop new therapies that specifically target tumour cells without affecting healthy tissue. Here, we will describe recent developments in metabolism-based cancer therapy, in particular focusing on the concept of metabolic synthetic lethality. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development

    PubMed Central

    Ortega-Molina, Ana; Boss, Isaac W.; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W.; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A.; Gascoyne, Randy D.; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M.; Wendel, Hans-Guido

    2015-01-01

    The lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma (FL) and diffuse large B cell lymphoma (DLBCL). However, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center (GC) involution, impedes B cell differentiation and class switch recombination (CSR). Integrative genomic analyses indicate that KMT2D affects H3K4 methylation and expression of a specific set of genes including those in the CD40, JAK-STAT, Toll-like receptor, and B cell receptor pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3, and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell activating pathways. PMID:26366710

  11. Control of calcitonin/calcitonin gene-related peptide pre-mRNA processing by constitutive intron and exon elements.

    PubMed Central

    Yeakley, J M; Hedjran, F; Morfin, J P; Merillat, N; Rosenfeld, M G; Emeson, R B

    1993-01-01

    The calcitonin/calcitonin gene-related peptide (CGRP) primary transcript is alternatively spliced in thyroid C cells and neurons, resulting in the tissue-specific production of calcitonin and CGRP mRNAs. Analyses of mutated calcitonin/CGRP transcription units in permanently transfected cell lines have indicated that alternative splicing is regulated by a differential capacity to utilize the calcitonin-specific splice acceptor. The analysis of an extensive series of mutations suggests that tissue-specific regulation of calcitonin mRNA production does not depend on the presence of a single, unique cis-active element but instead appears to be a consequence of suboptimal constitutive splicing signals. While only those mutations that altered constitutive splicing signals affected splice choices, the action of multiple regulatory sequences cannot be formally excluded. Further, we have identified a 13-nucleotide purine-rich element from a constitutive exon that, when placed in exon 4, entirely switches splice site usage in CGRP-producing cells. These data suggest that specific exon recruitment sequences, in combination with other constitutive elements, serve an important function in exon recognition. These results are consistent with the hypothesis that tissue-specific alternative splicing of the calcitonin/CGRP primary transcript is mediated by cell-specific differences in components of the constitutive splicing machinery. Images PMID:8413203

  12. Impact, Characterization, and Rescue of Pre-mRNA Splicing Mutations in Lysosomal Storage Disorders.

    PubMed

    Dardis, Andrea; Buratti, Emanuele

    2018-02-06

    Lysosomal storage disorders (LSDs) represent a group of more than 50 severe metabolic diseases caused by the deficiency of specific lysosomal hydrolases, activators, carriers, or lysosomal integral membrane proteins, leading to the abnormal accumulation of substrates within the lysosomes. Numerous mutations have been described in each disease-causing gene; among them, about 5-19% affect the pre-mRNA splicing process. In the last decade, several strategies to rescue/increase normal splicing of mutated transcripts have been developed and LSDs represent excellent candidates for this type of approach: (i) most of them are inherited in an autosomic recessive manner and patients affected by late-onset (LO) phenotypes often retain a fair amount of residual enzymatic activity; thus, even a small recovery of normal splicing may be beneficial in clinical settings; (ii) most LSDs still lack effective treatments or are currently treated with extremely expensive approaches; (iii) in few LSDs, a single splicing mutation accounts for up to 40-70% of pathogenic alleles. At present, numerous preclinical studies support the feasibility of reverting the pathological phenotype by partially rescuing splicing defects in LSDs. This review provides an overview of the impact of splicing mutations in LSDs and the related therapeutic approaches currently under investigation in these disorders.

  13. Human mitochondrial disease-like symptoms caused by a reduced tRNA aminoacylation activity in flies

    PubMed Central

    Guitart, Tanit; Picchioni, Daria; Piñeyro, David; Ribas de Pouplana, Lluís

    2013-01-01

    The translation of genes encoded in the mitochondrial genome requires specific machinery that functions in the organelle. Among the many mutations linked to human disease that affect mitochondrial translation, several are localized to nuclear genes coding for mitochondrial aminoacyl-transfer RNA synthetases. The molecular significance of these mutations is poorly understood, but it is expected to be similar to that of the mutations affecting mitochondrial transfer RNAs. To better understand the molecular features of diseases caused by these mutations, and to improve their diagnosis and therapeutics, we have constructed a Drosophila melanogaster model disrupting the mitochondrial seryl-tRNA synthetase by RNA interference. At the molecular level, the knockdown generates a reduction in transfer RNA serylation, which correlates with the severity of the phenotype observed. The silencing compromises viability, longevity, motility and tissue development. At the cellular level, the knockdown alters mitochondrial morphology, biogenesis and function, and induces lactic acidosis and reactive oxygen species accumulation. We report that administration of antioxidant compounds has a palliative effect of some of these phenotypes. In conclusion, the fly model generated in this work reproduces typical characteristics of pathologies caused by mutations in the mitochondrial aminoacylation system, and can be useful to assess therapeutic approaches. PMID:23677612

  14. Molecular analysis reveals a high mutation frequency in the first untranslated exon of the PPOX gene and largely excludes variegate porphyria in a subset of clinically affected Afrikaner families.

    PubMed

    Kotze, M J; De Villiers, J N; Groenewald, J Z; Rooney, R N; Loubser, O; Thiart, R; Oosthuizen, C J; van Niekerk, M M; Groenewald, I M; Retief, A E; Warnich, L

    1998-10-01

    A subset of probands from 11 South African families with clinical and/or biochemical features of variegate porphyria (VP), but without the known protoporphyrinogen oxidase (PPOX) gene defects identified previously in the South African population, were subjected to mutation analysis. Disease-related mutation(s) could not be identified after screening virtually the entire PPOX gene by heteroduplex single-strand conformation polymorphism analysis (HEX-SSCP), although three new sequence variants were detected in exon 1 of the gene in three normal controls. The presence of these single base changes at nucleotide positions 22 (C/G), 27 (C/A) and 127 (C/A), in addition to the known exon 1 polymorphisms I-26 and I-150, indicates that this untranslated region of the PPOX gene is particularly mutation-prone. Furthermore, microsatellite markers flanking the PPOX and alpha-1 antitrypsin (PI) gene, on chromosomes 1 and 14, respectively, were used to assess the probability of involvement of these loci in disease presentation. Common alleles transmitted from affected parent to affected child were determined where possible in the mutation-negative index cases. Allelic frequencies of these alleles were compared to findings in the normal population, but no predominant disease-associated allele could be identified. Co-segregation of a specific haplotype with the disease phenotype could also not be demonstrated in a large Afrikaner family. It is concluded that further studies are warranted to determine the genetic factor(s) underlying the autosomal dominant pattern of inheritance in molecularly uncharacterized cases showing clinical symptoms of an acute porphyria. Copyright 1998 Academic Press.

  15. Genetic evaluations of Chinese patients with odontohypophosphatasia resulting from heterozygosity for mutations in the tissue-non-specific alkaline phosphatase gene.

    PubMed

    Wan, Jia; Zhang, Li; Liu, Tang; Wang, Yewei

    2017-08-01

    Hypophosphatasia is a rare heritable metabolic disorder characterized by defective bone and tooth mineralization accompanied by a deficiency of tissue-non-specific (liver/bone/kidney) isoenzyme of alkaline phosphatase activity, caused by a number of loss-of-function mutations in the alkaline phosphatase liver type gene. We seek to explore the clinical manifestations and identify the mutations associated with the disease in a Chinese odonto- hypophosphatasia family. The proband and his younger brother affected with premature loss of primary teeth at their 2-year-old. They have mild abnormal serum alkaline phosphatase and 25-hydroxy vitamin D values, but the serum alkaline phosphatase activity of their father, mother and grandmother, who showed no clinical symptoms of hypophosphatasia, was exhibited significant decreased. In addition to premature loss of primary teeth, the proband and his younger brother showed low bone mineral density, X-rays showed that they had slight metaphyseal osteoporosis changes, but no additional skeletal abnormalities. Deoxyribonucleic acid sequencing and analysis revealed a single nucleotide polymorphism c.787T>C (p.Y263H) in exon 7 and/or a novel mutation c.-92C>T located at 5'UTR were found in the affected individuals. We examined all individuals of an odonto- hypophosphatasia family by clinical and radiographic examinations as well as laboratory assays. Furthermore, all 12 exons and the exon-intron boundaries of the alkaline phosphatase liver type gene were amplified and directly sequenced for further analysis and screened for mutations. Our present findings suggest the single nucleotide polymorphism c.787T>C and c.-92C>T should be responsible for the odonto- hypophosphatasia disorders in this family.

  16. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes

    PubMed Central

    Maher, Geoffrey J.; McGowan, Simon J.; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O. M.

    2016-01-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39–90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones. PMID:26858415

  17. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes.

    PubMed

    Maher, Geoffrey J; McGowan, Simon J; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O M

    2016-03-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones.

  18. Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2) defects predicts differential effects on aminoacylation

    PubMed Central

    Euro, Liliya; Konovalova, Svetlana; Asin-Cayuela, Jorge; Tulinius, Már; Griffin, Helen; Horvath, Rita; Taylor, Robert W.; Chinnery, Patrick F.; Schara, Ulrike; Thorburn, David R.; Suomalainen, Anu; Chihade, Joseph; Tyynismaa, Henna

    2015-01-01

    The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs) and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19) is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS) have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations. The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes. PMID:25705216

  19. tRNA nuclear export in saccharomyces cerevisiae: in situ hybridization analysis.

    PubMed

    Sarkar, S; Hopper, A K

    1998-11-01

    To understand the factors specifically affecting tRNA nuclear export, we adapted in situ hybridization procedures to locate endogenous levels of individual tRNA families in wild-type and mutant yeast cells. Our studies of tRNAs encoded by genes lacking introns show that nucleoporin Nup116p affects both poly(A) RNA and tRNA export, whereas Nup159p affects only poly(A) RNA export. Los1p is similar to exportin-t, which facilitates vertebrate tRNA export. A los1 deletion mutation affects tRNA but not poly(A) RNA export. The data support the notion that Los1p and exportin-t are functional homologues. Because LOS1 is nonessential, tRNA export in vertebrate and yeast cells likely involves factors in addition to exportin-t. Mutation of RNA1, which encodes RanGAP, causes nuclear accumulation of tRNAs and poly(A) RNA. Many yeast mutants, including those with the rna1-1 mutation, affect both pre-tRNA splicing and RNA export. Our studies of the location of intron-containing pre-tRNAs in the rna1-1 mutant rule out the possibility that this results from tRNA export occurring before splicing. Our results also argue against inappropriate subnuclear compartmentalization causing defects in pre-tRNA splicing. Rather, the data support "feedback" of nucleus/cytosol exchange to the pre-tRNA splicing machinery.

  20. tRNA Nuclear Export in Saccharomyces cerevisiae: In Situ Hybridization Analysis

    PubMed Central

    Sarkar, Srimonti; Hopper, Anita K.

    1998-01-01

    To understand the factors specifically affecting tRNA nuclear export, we adapted in situ hybridization procedures to locate endogenous levels of individual tRNA families in wild-type and mutant yeast cells. Our studies of tRNAs encoded by genes lacking introns show that nucleoporin Nup116p affects both poly(A) RNA and tRNA export, whereas Nup159p affects only poly(A) RNA export. Los1p is similar to exportin-t, which facilitates vertebrate tRNA export. A los1 deletion mutation affects tRNA but not poly(A) RNA export. The data support the notion that Los1p and exportin-t are functional homologues. Because LOS1 is nonessential, tRNA export in vertebrate and yeast cells likely involves factors in addition to exportin-t. Mutation of RNA1, which encodes RanGAP, causes nuclear accumulation of tRNAs and poly(A) RNA. Many yeast mutants, including those with the rna1-1 mutation, affect both pre-tRNA splicing and RNA export. Our studies of the location of intron-containing pre-tRNAs in the rna1-1 mutant rule out the possibility that this results from tRNA export occurring before splicing. Our results also argue against inappropriate subnuclear compartmentalization causing defects in pre-tRNA splicing. Rather, the data support “feedback” of nucleus/cytosol exchange to the pre-tRNA splicing machinery. PMID:9802895

  1. Detection of steroid 21-hydroxylase alleles using gene-specific PCR and a multiplexed ligation detection reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, D.J.; Barany, F.; Speiser, P.W.

    Steroid 21-hydroxylase deficiency is the most common cause of congenital adrenal hyperplasia, an inherited inability to synthesize cortisol that occurs in 1 in 10,000-15,000 births. Affected females are born with ambiguous genitalia, a condition that can be ameliorated by administering dexamethasone to the mother for most of gestation. Prenatal diagnosis is required for accurate treatment of affected females as well as for genetic counseling purposes. Approximately 95% of mutations causing this disorder result from recombinations between the gene encoding the 21-hydroxylase enzyme (CYP21) and a linked, highly homologous pseudogene (CYP21P). Approximately 20% of these mutations are gene deletions, and themore » remainder are gene conversions that transfer any of nine deleterious mutations from the CYP21P pseudogene to CYP21. We describe a methodology for genetic diagnosis of 21-hydroxylase deficiency that utilizes gene-specific PCR amplification in conjunction with thermostable DNA ligase to discriminate single nucleotide variations in a multiplexed ligation detection assay. The assay has been designed to be used with either fluorescent or radioactive detection of ligation products by electrophoresis on denaturing acrylamide gels and is readily adaptable for use in other disease systems. 30 refs., 5 figs.« less

  2. Structural, Functional, and Clinical Characterization of a Novel PTPN11 Mutation Cluster Underlying Noonan Syndrome.

    PubMed

    Pannone, Luca; Bocchinfuso, Gianfranco; Flex, Elisabetta; Rossi, Cesare; Baldassarre, Giuseppina; Lissewski, Christina; Pantaleoni, Francesca; Consoli, Federica; Lepri, Francesca; Magliozzi, Monia; Anselmi, Massimiliano; Delle Vigne, Silvia; Sorge, Giovanni; Karaer, Kadri; Cuturilo, Goran; Sartorio, Alessandro; Tinschert, Sigrid; Accadia, Maria; Digilio, Maria C; Zampino, Giuseppe; De Luca, Alessandro; Cavé, Hélène; Zenker, Martin; Gelb, Bruce D; Dallapiccola, Bruno; Stella, Lorenzo; Ferrero, Giovanni B; Martinelli, Simone; Tartaglia, Marco

    2017-04-01

    Germline mutations in PTPN11, the gene encoding the Src-homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP2), cause Noonan syndrome (NS), a relatively common, clinically variable, multisystem disorder. Here, we report on the identification of five different PTPN11 missense changes affecting residues Leu 261 , Leu 262 , and Arg 265 in 16 unrelated individuals with clinical diagnosis of NS or with features suggestive for this disorder, specifying a novel disease-causing mutation cluster. Expression of the mutant proteins in HEK293T cells documented their activating role on MAPK signaling. Structural data predicted a gain-of-function role of substitutions at residues Leu 262 and Arg 265 exerted by disruption of the N-SH2/PTP autoinhibitory interaction. Molecular dynamics simulations suggested a more complex behavior for changes affecting Leu 261 , with possible impact on SHP2's catalytic activity/selectivity and proper interaction of the PTP domain with the regulatory SH2 domains. Consistent with that, biochemical data indicated that substitutions at codons 262 and 265 increased the catalytic activity of the phosphatase, while those affecting codon 261 were only moderately activating but impacted substrate specificity. Remarkably, these mutations underlie a relatively mild form of NS characterized by low prevalence of cardiac defects, short stature, and cognitive and behavioral issues, as well as less evident typical facial features. © 2017 WILEY PERIODICALS, INC.

  3. Whole-Exome Sequencing to Decipher the Genetic Heterogeneity of Hearing Loss in a Chinese Family with Deaf by Deaf Mating

    PubMed Central

    Qing, Jie; Yan, Denise; Zhou, Yuan; Liu, Qiong; Wu, Weijing; Xiao, Zian; Liu, Yuyuan; Liu, Jia; Du, Lilin; Xie, Dinghua; Liu, Xue Zhong

    2014-01-01

    Inherited deafness has been shown to have high genetic heterogeneity. For many decades, linkage analysis and candidate gene approaches have been the main tools to elucidate the genetics of hearing loss. However, this associated study design is costly, time-consuming, and unsuitable for small families. This is mainly due to the inadequate numbers of available affected individuals, locus heterogeneity, and assortative mating. Exome sequencing has now become technically feasible and a cost-effective method for detection of disease variants underlying Mendelian disorders due to the recent advances in next-generation sequencing (NGS) technologies. In the present study, we have combined both the Deafness Gene Mutation Detection Array and exome sequencing to identify deafness causative variants in a large Chinese composite family with deaf by deaf mating. The simultaneous screening of the 9 common deafness mutations using the allele-specific PCR based universal array, resulted in the identification of the 1555A>G in the mitochondrial DNA (mtDNA) 12S rRNA in affected individuals in one branch of the family. We then subjected the mutation-negative cases to exome sequencing and identified novel causative variants in the MYH14 and WFS1 genes. This report confirms the effective use of a NGS technique to detect pathogenic mutations in affected individuals who were not candidates for classical genetic studies. PMID:25289672

  4. Li-Fraumeni syndrome: cancer risk assessment and clinical management.

    PubMed

    McBride, Kate A; Ballinger, Mandy L; Killick, Emma; Kirk, Judy; Tattersall, Martin H N; Eeles, Rosalind A; Thomas, David M; Mitchell, Gillian

    2014-05-01

    Carriers of germline mutations in the TP53 gene, encoding the cell-cycle regulator and tumour suppressor p53, have a markedly increased risk of cancer-related morbidity and mortality during both childhood and adulthood, and thus require appropriate and effective cancer risk management. However, the predisposition of such patients to multiorgan tumorigenesis presents a specific challenge for cancer risk management programmes. Herein, we review the clinical implications of germline mutations in TP53 and the evidence for cancer screening and prevention strategies in individuals carrying such mutations, as well as examining the potential psychosocial implications of lifelong management for a ubiquitous cancer risk. In addition, we propose an evidence-based framework for the clinical management of TP53 mutation carriers and provide a platform for addressing the management of other cancer predisposition syndromes that can affect multiple organs.

  5. Cerebro-costo-mandibular syndrome: Clinical, radiological, and genetic findings.

    PubMed

    Tooley, Madeleine; Lynch, Danielle; Bernier, Francois; Parboosingh, Jillian; Bhoj, Elizabeth; Zackai, Elaine; Calder, Alistair; Itasaki, Nobue; Wakeling, Emma; Scott, Richard; Lees, Melissa; Clayton-Smith, Jill; Blyth, Moira; Morton, Jenny; Shears, Debbie; Kini, Usha; Homfray, Tessa; Clarke, Angus; Barnicoat, Angela; Wallis, Colin; Hewitson, Rebecca; Offiah, Amaka; Saunders, Michael; Langton-Hewer, Simon; Hilliard, Tom; Davis, Peter; Smithson, Sarah

    2016-05-01

    Cerebro-Costo-Mandibular syndrome (CCMS) is a rare autosomal dominant condition comprising branchial arch-derivative malformations with striking rib-gaps. Affected patients often have respiratory difficulties, associated with upper airway obstruction, reduced thoracic capacity, and scoliosis. We describe a series of 12 sporadic and 4 familial patients including 13 infants/children and 3 adults. Severe micrognathia and reduced numbers of ribs with gaps are consistent findings. Cleft palate, feeding difficulties, respiratory distress, tracheostomy requirement, and scoliosis are common. Additional malformations such as horseshoe kidney, hypospadias, and septal heart defect may occur. Microcephaly and significant developmental delay are present in a small minority of patients. Key radiological findings are of a narrow thorax, multiple posterior rib gaps and abnormal costo-transverse articulation. A novel finding in 2 patients is bilateral accessory ossicles arising from the hyoid bone. Recently, specific mutations in SNRPB, which encodes components of the major spliceosome, have been found to cause CCMS. These mutations cluster in an alternatively spliced regulatory exon and result in altered SNRPB expression. DNA was available from 14 patients and SNRPB mutations were identified in 12 (4 previously reported). Eleven had recurrent mutations previously described in patients with CCMS and one had a novel mutation in the alternative exon. These results confirm the specificity of SNRPB mutations in CCMS and provide further evidence for the role of spliceosomal proteins in craniofacial and thoracic development. © 2016 Wiley Periodicals, Inc.

  6. ATR-X mutations cause impaired nuclear location and altered DNA binding properties of the XNP/ATR-X protein.

    PubMed

    Cardoso, C; Lutz, Y; Mignon, C; Compe, E; Depetris, D; Mattei, M G; Fontes, M; Colleaux, L

    2000-10-01

    Mutations in the XNP/ATR-X gene, located in Xq13.3, are associated with several X linked mental retardation syndromes, the best known being alpha thalassaemia with mental retardation (ATR-X). The XNP/ATR-X protein belongs to the family of SWI/SNF DNA helicases and contains three C2-C2 type zinc fingers of unknown function. Previous studies have shown that 65% of mutations of XNP have been found within the zinc finger domain (encoded by exons 7, 8, and the beginning of exon 9) while 35% of the mutations have been found in the helicase domain extending over 3 kb at the C-terminus of the protein. Although different types of mutations have been identified, no specific genotype-phenotype correlation has been found, suggesting that gene alteration leads to a loss of function irrespective of mutation type. Our aims were to understand the function of the XNP/ATR-X protein better, with specific attention to the functional consequences of mutations to the zinc finger domain. We used monoclonal antibodies directed against the XNP/ATR-X protein and performed immunocytochemical and western blot analyses, which showed altered or absent XNP/ATR-X expression in cells of affected patients. In addition, we used in vitro experiments to show that the zinc finger domain can mediate double stranded DNA binding and found that the DNA binding capacity of mutant forms in ATR-X patients is severely reduced. These data provide insights into the understanding of the functional significance of XNP/ATR-X mutations.

  7. Development of breast tumors in CHEK2, NBN/NBS1 and BLM mutation carriers does not commonly involve somatic inactivation of the wild-type allele.

    PubMed

    Suspitsin, Evgeny N; Yanus, Grigory A; Sokolenko, Anna P; Yatsuk, Olga S; Zaitseva, Olga A; Bessonov, Alexandr A; Ivantsov, Alexandr O; Heinstein, Valeria A; Klimashevskiy, Valery F; Togo, Alexandr V; Imyanitov, Evgeny N

    2014-02-01

    Somatic inactivation of the remaining allele is a characteristic feature of cancers arising in BRCA1 and BRCA2 mutation carriers, which determines their unprecedented sensitivity to some DNA-damaging agents. Data on tumor-specific status of the involved gene in novel varieties of hereditary breast cancer (BC) remain incomplete. We analyzed 32 tumors obtained from 30 patients with non-BRCA1/2 BC-associated germ-line mutations: 25 women were single mutation carriers (7 BLM, 15 CHEK2 and 3 NBN/NBS1) and 5 were double mutation carriers (2 BLM/BRCA1, 1 CHEK2/BLM, 1 CHEK2/BRCA1 and 1 NBN/BLM). Losses of heterozygosity affecting the wild-type allele were detected in none of the tumors from BLM mutation carriers, 3/18 (17 %) CHEK2-associated BC and 1/4 (25 %) NBN/NBS1-driven tumors. The remaining 28 BC were subjected to the sequence analysis of entire coding region of the involved gene; no somatic mutations were identified. We conclude that the tumor-specific loss of the wild-type allele is not characteristic for BC arising in CHEK2, NBN/NBS1 and BLM mutation carriers. Rarity of "second-hit" inactivation of the involved gene in CHEK2-, NBN/NBS1- and BLM-associated BC demonstrates their substantial biological difference from BRCA1/2-driven cancers and makes them poorly suitable for the clinical trials with cisplatin and PARP inhibitors.

  8. Mutational analysis of STE5 in the yeast Saccharomyces cerevisiae: Application of a differential interaction trap assay for examining protein-protein interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inouye, C.; Dhillon, N.; Durfee, T.

    1997-10-01

    Ste5 is essential for the yeast mating pheromone response pathway and is thought to function as a scaffold that organized the components of the mitogen-activated protein kinase (MAKP) cascade. A new method was developed to isolate missense mutations in Ste5 that differentially affect the ability of Ste5 to interact with either of two MAPK cascade constituents, the MEKK (Ste11) and the MEK (Ste7). Mutations that affect association with Ste7 or with Ste11 delineate discrete regions of Ste5 that are critical for each interaction. Co-immunoprecipitation analysis, examining the binding in vitro of Ste5 to Ste11, Ste7, Ste4 (G protein {beta} subunit),more » and Fus3 (MAPK), confirmed that each mutation specifically affects the interaction of Ste5 with only one protein. When expressed in a ste5{delta} cell, mutant Ste5 proteins that are defective in their ability to interact with either Ste11 or Ste7 result in a markedly reduced mating proficiency. One mutation that clearly weakened (but did not eliminate) interaction of Ste5 with Ste7 permitted mating at wild-type efficiency, indicating that an efficacious signal is generated even when Ste5 associates with only a small fraction of (or only transiently with) Ste7. Ste5 mutants defective in association with Ste11 or Ste7 showed strong interallelic complementation when co-expressed, suggesting that the functional form of Ste5 in vivo is an oligomer. 69 refs., 6 figs., 3 tabs.« less

  9. Exome sequencing identifies variants in two genes encoding the LIM-proteins NRAP and FHL1 in an Italian patient with BAG3 myofibrillar myopathy.

    PubMed

    D'Avila, Francesca; Meregalli, Mirella; Lupoli, Sara; Barcella, Matteo; Orro, Alessandro; De Santis, Francesca; Sitzia, Clementina; Farini, Andrea; D'Ursi, Pasqualina; Erratico, Silvia; Cristofani, Riccardo; Milanesi, Luciano; Braga, Daniele; Cusi, Daniele; Poletti, Angelo; Barlassina, Cristina; Torrente, Yvan

    2016-06-01

    Myofibrillar myopathies (MFMs) are genetically heterogeneous dystrophies characterized by the disintegration of Z-disks and myofibrils and are associated with mutations in genes encoding Z-disk or Z-disk-related proteins. The c.626 C > T (p.P209L) mutation in the BAG3 gene has been described as causative of a subtype of MFM. We report a sporadic case of a 26-year-old Italian woman, affected by MFM with axonal neuropathy, cardiomyopathy, rigid spine, who carries the c.626 C > T mutation in the BAG3 gene. The patient and her non-consanguineous healthy parents and brother were studied with whole exome sequencing (WES) to further investigate the genetic basis of this complex phenotype. In the patient, we found that the BAG3 mutation is associated with variants in the NRAP and FHL1 genes that encode muscle-specific, LIM domain containing proteins. Quantitative real time PCR, immunohistochemistry and Western blot analysis of the patient's muscular biopsy showed the absence of NRAP expression and FHL1 accumulation in aggregates in the affected skeletal muscle tissue. Molecular dynamic analysis of the mutated FHL1 domain showed a modification in its surface charge, which could affect its capability to bind its target proteins. To our knowledge this is the first study reporting, in a BAG3 MFM, the simultaneous presence of genetic variants in the BAG3 and FHL1 genes (previously described as independently associated with MFMs) and linking the NRAP gene to MFM for the first time.

  10. Alzheimer disease-like clinical phenotype in a family with FTDP-17 caused by a MAPT R406W mutation.

    PubMed

    Lindquist, S G; Holm, I E; Schwartz, M; Law, I; Stokholm, J; Batbayli, M; Waldemar, G; Nielsen, J E

    2008-04-01

    We report clinical, molecular, neuroimaging and neuropathological features of a Danish family with autosomal dominant inherited dementia, a clinical phenotype resembling Alzheimer's disease and a pathogenic mutation (R406W) in the microtubule associated protein tau (MAPT) gene. Pre-symptomatic and affected family members underwent multidisciplinary (clinical, molecular, neuroimaging and neuropathological) examinations. Treatment with memantine in a family member with early symptoms, based on the clinical phenotype and the lack of specific treatment, appears to stabilize the disease course and increase the glucose metabolism in cortical and subcortical areas, as determined by serial [F(18)]FDG-PET scanning before and after initiation of treatment. Neuropathological examination of a second affected and mutation-positive family member showed moderate atrophy of the temporal lobes including the hippocampi. Microscopy revealed abundant numbers of tau-positive neurofibrillary tangles in all cortical areas and in some brainstem nuclei corresponding to a diagnosis of frontotemporal lobe degeneration on the basis of a MAPT mutation. The clinical and genetic heterogeneity of autosomal dominant inherited dementia must be taken into account in the genetic counselling and genetic testing of families with autosomal dominantly inherited dementia in general.

  11. Glucose-6-phosphate dehydrogenase (G6PD) mutations database: review of the "old" and update of the new mutations.

    PubMed

    Minucci, Angelo; Moradkhani, Kamran; Hwang, Ming Jing; Zuppi, Cecilia; Giardina, Bruno; Capoluongo, Ettore

    2012-03-15

    In the present paper we have updated the G6PD mutations database, including all the last discovered G6PD genetic variants. We underline that the last database has been published by Vulliamy et al. [1] who analytically reported 140 G6PD mutations: along with Vulliamy's database, there are two main sites, such as http://202.120.189.88/mutdb/ and www.LOVD.nl/MR, where almost all G6PD mutations can be found. Compared to the previous mutation reports, in our paper we have included for each mutation some additional information, such as: the secondary structure and the enzyme 3D position involving by mutation, the creation or abolition of a restriction site (with the enzyme involved) and the conservation score associated with each amino acid position. The mutations reported in the present tab have been divided according to the gene's region involved (coding and non-coding) and mutations affecting the coding region in: single, multiple (at least with two bases involved) and deletion. We underline that for the listed mutations, reported in italic, literature doesn't provide all the biochemical or bio-molecular information or the research data. Finally, for the "old" mutations, we tried to verify features previously reported and, when subsequently modified, we updated the specific information using the latest literature data. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. The Gene of the Ubiquitin-Specific Protease 8 Is Frequently Mutated in Adenomas Causing Cushing's Disease

    PubMed Central

    Perez-Rivas, Luis G.; Theodoropoulou, Marily; Ferraù, Francesco; Nusser, Clara; Kawaguchi, Kohei; Stratakis, Constantine A.; Faucz, Fabio Rueda; Wildemberg, Luiz E.; Assié, Guillaume; Beschorner, Rudi; Dimopoulou, Christina; Buchfelder, Michael; Popovic, Vera; Berr, Christina M.; Tóth, Miklós; Ardisasmita, Arif Ibrahim; Honegger, Jürgen; Bertherat, Jerôme; Gadelha, Monica R.; Beuschlein, Felix; Stalla, Günter; Komada, Masayuki; Korbonits, Márta

    2015-01-01

    Context: We have recently reported somatic mutations in the ubiquitin-specific protease USP8 gene in a small series of adenomas of patients with Cushing's disease. Objective: To determine the prevalence of USP8 mutations and the genotype-phenotype correlation in a large series of patients diagnosed with Cushing's disease. Design: We performed a retrospective, multicentric, genetic analysis of 134 functioning and 11 silent corticotroph adenomas using Sanger sequencing. Biochemical and clinical features were collected and examined within the context of the mutational status of USP8, and new mutations were characterized by functional studies. Patients: A total of 145 patients who underwent surgery for an ACTH-producing pituitary adenoma. Main Outcomes Measures: Mutational status of USP8. Biochemical and clinical features included sex, age at diagnosis, tumor size, preoperative and postoperative hormonal levels, and comorbidities. Results: We found somatic mutations in USP8 in 48 (36%) pituitary adenomas from patients with Cushing's disease but in none of 11 silent corticotropinomas. The prevalence was higher in adults than in pediatric cases (41 vs 17%) and in females than in males (43 vs 17%). Adults having USP8-mutated adenomas were diagnosed at an earlier age than those with wild-type lesions (36 vs 44 y). Mutations were primarily found in adenomas of 10 ± 7 mm and were inversely associated with the development of postoperative adrenal insufficiency. All the mutations affected the residues Ser718 or Pro720, including five new identified alterations. Mutations reduced the interaction between USP8 and 14-3-3 and enhanced USP8 activity. USP8 mutants diminished epidermal growth factor receptor ubiquitination and induced Pomc promoter activity in immortalized AtT-20 corticotropinoma cells. Conclusions: USP8 is frequently mutated in adenomas causing Cushing's disease, especially in those from female adult patients diagnosed at a younger age. PMID:25942478

  13. Importance of DNA repair in tumor suppression

    NASA Astrophysics Data System (ADS)

    Brumer, Yisroel; Shakhnovich, Eugene I.

    2004-12-01

    The transition from a normal to cancerous cell requires a number of highly specific mutations that affect cell cycle regulation, apoptosis, differentiation, and many other cell functions. One hallmark of cancerous genomes is genomic instability, with mutation rates far greater than those of normal cells. In microsatellite instability (MIN tumors), these are often caused by damage to mismatch repair genes, allowing further mutation of the genome and tumor progression. These mutation rates may lie near the error catastrophe found in the quasispecies model of adaptive RNA genomes, suggesting that further increasing mutation rates will destroy cancerous genomes. However, recent results have demonstrated that DNA genomes exhibit an error threshold at mutation rates far lower than their conservative counterparts. Furthermore, while the maximum viable mutation rate in conservative systems increases indefinitely with increasing master sequence fitness, the semiconservative threshold plateaus at a relatively low value. This implies a paradox, wherein inaccessible mutation rates are found in viable tumor cells. In this paper, we address this paradox, demonstrating an isomorphism between the conservatively replicating (RNA) quasispecies model and the semiconservative (DNA) model with post-methylation DNA repair mechanisms impaired. Thus, as DNA repair becomes inactivated, the maximum viable mutation rate increases smoothly to that of a conservatively replicating system on a transformed landscape, with an upper bound that is dependent on replication rates. On a specific single fitness peak landscape, the repair-free semiconservative system is shown to mimic a conservative system exactly. We postulate that inactivation of post-methylation repair mechanisms is fundamental to the progression of a tumor cell and hence these mechanisms act as a method for the prevention and destruction of cancerous genomes.

  14. Toward a mtDNA locus-specific mutation database using the LOVD platform.

    PubMed

    Elson, Joanna L; Sweeney, Mary G; Procaccio, Vincent; Yarham, John W; Salas, Antonio; Kong, Qing-Peng; van der Westhuizen, Francois H; Pitceathly, Robert D S; Thorburn, David R; Lott, Marie T; Wallace, Douglas C; Taylor, Robert W; McFarland, Robert

    2012-09-01

    The Human Variome Project (HVP) is a global effort to collect and curate all human genetic variation affecting health. Mutations of mitochondrial DNA (mtDNA) are an important cause of neurogenetic disease in humans; however, identification of the pathogenic mutations responsible can be problematic. In this article, we provide explanations as to why and suggest how such difficulties might be overcome. We put forward a case in support of a new Locus Specific Mutation Database (LSDB) implemented using the Leiden Open-source Variation Database (LOVD) system that will not only list primary mutations, but also present the evidence supporting their role in disease. Critically, we feel that this new database should have the capacity to store information on the observed phenotypes alongside the genetic variation, thereby facilitating our understanding of the complex and variable presentation of mtDNA disease. LOVD supports fast queries of both seen and hidden data and allows storage of sequence variants from high-throughput sequence analysis. The LOVD platform will allow construction of a secure mtDNA database; one that can fully utilize currently available data, as well as that being generated by high-throughput sequencing, to link genotype with phenotype enhancing our understanding of mitochondrial disease, with a view to providing better prognostic information. © 2012 Wiley Periodicals, Inc.

  15. Toward a mtDNA Locus-Specific Mutation Database Using the LOVD Platform

    PubMed Central

    Elson, Joanna L.; Sweeney, Mary G.; Procaccio, Vincent; Yarham, John W.; Salas, Antonio; Kong, Qing-Peng; van der Westhuizen, Francois H.; Pitceathly, Robert D.S.; Thorburn, David R.; Lott, Marie T.; Wallace, Douglas C.; Taylor, Robert W.; McFarland, Robert

    2015-01-01

    The Human Variome Project (HVP) is a global effort to collect and curate all human genetic variation affecting health. Mutations of mitochondrial DNA (mtDNA) are an important cause of neurogenetic disease in humans; however, identification of the pathogenic mutations responsible can be problematic. In this article, we provide explanations as to why and suggest how such difficulties might be overcome. We put forward a case in support of a new Locus Specific Mutation Database (LSDB) implemented using the Leiden Open-source Variation Database (LOVD) system that will not only list primary mutations, but also present the evidence supporting their role in disease. Critically, we feel that this new database should have the capacity to store information on the observed phenotypes alongside the genetic variation, thereby facilitating our understanding of the complex and variable presentation of mtDNA disease. LOVD supports fast queries of both seen and hidden data and allows storage of sequence variants from high-throughput sequence analysis. The LOVD platform will allow construction of a secure mtDNA database; one that can fully utilize currently available data, as well as that being generated by high-throughput sequencing, to link genotype with phenotype enhancing our understanding of mitochondrial disease, with a view to providing better prognostic information. PMID:22581690

  16. Type and Level of RMRP Functional Impairment Predicts Phenotype in the Cartilage Hair Hypoplasia–Anauxetic Dysplasia Spectrum

    PubMed Central

    Thiel, Christian T. ; Mortier, Geert ; Kaitila, Ilkka ; Reis, André ; Rauch, Anita 

    2007-01-01

    Mutations in the RMRP gene lead to a wide spectrum of autosomal recessive skeletal dysplasias, ranging from the milder phenotypes metaphyseal dysplasia without hypotrichosis and cartilage hair hypoplasia (CHH) to the severe anauxetic dysplasia (AD). This clinical spectrum includes different degrees of short stature, hair hypoplasia, defective erythrogenesis, and immunodeficiency. The RMRP gene encodes the untranslated RNA component of the mitochondrial RNA–processing ribonuclease, RNase MRP. We recently demonstrated that mutations may affect both messenger RNA (mRNA) and ribosomal RNA (rRNA) cleavage and thus cell-cycle regulation and protein synthesis. To investigate the genotype-phenotype correlation, we analyzed the position and the functional effect of 13 mutations in patients with variable features of the CHH-AD spectrum. Those at the end of the spectrum include a novel patient with anauxetic dysplasia who was compound heterozygous for the null mutation g.254_263delCTCAGCGCGG and the mutation g.195C→T, which was previously described in patients with milder phenotypes. Mapping of nucleotide conservation to the two-dimensional structure of the RMRP gene revealed that disease-causing mutations either affect evolutionarily conserved nucleotides or are likely to alter secondary structure through mispairing in stem regions. In vitro testing of RNase MRP multiprotein-specific mRNA and rRNA cleavage of different mutations revealed a strong correlation between the decrease in rRNA cleavage in ribosomal assembly and the degree of bone dysplasia, whereas reduced mRNA cleavage, and thus cell-cycle impairment, predicts the presence of hair hypoplasia, immunodeficiency, and hematological abnormalities and thus increased cancer risk. PMID:17701897

  17. Conservative mutation Met8 --> Leu affects the folding process and structural stability of squash trypsin inhibitor CMTI-I.

    PubMed Central

    Zhukov, I.; Jaroszewski, L.; Bierzyński, A.

    2000-01-01

    Protein molecules can accommodate a large number of mutations without noticeable effects on their stability and folding kinetics. On the other hand, some mutations can have quite strong effects on protein conformational properties. Such mutations either destabilize secondary structures, e.g., alpha-helices, are incompatible with close packing of protein hydrophobic cores, or lead to disruption of some specific interactions such as disulfide cross links, salt bridges, hydrogen bonds, or aromatic-aromatic contacts. The Met8 --> Leu mutation in CMTI-I results in significant destabilization of the protein structure. This effect could hardly be expected since the mutation is highly conservative, and the side chain of residue 8 is situated on the protein surface. We show that the protein destabilization is caused by rearrangement of a hydrophobic cluster formed by side chains of residues 8, Ile6, and Leu17 that leads to partial breaking of a hydrogen bond formed by the amide group of Leu17 with water and to a reduction of a hydrophobic surface buried within the cluster. The mutation perturbs also the protein folding. In aerobic conditions the reduced wild-type protein folds effectively into its native structure, whereas more then 75% of the mutant molecules are trapped in various misfolded species. The main conclusion of this work is that conservative mutations of hydrophobic residues can destabilize a protein structure even if these residues are situated on the protein surface and partially accessible to water. Structural rearrangement of small hydrophobic clusters formed by such residues can lead to local changes in protein hydration, and consequently, can affect considerably protein stability and folding process. PMID:10716179

  18. Targets for therapy in sarcomeric cardiomyopathies

    PubMed Central

    Tardiff, Jil C.; Carrier, Lucie; Bers, Donald M.; Poggesi, Corrado; Ferrantini, Cecilia; Coppini, Raffaele; Maier, Lars S.; Ashrafian, Houman; Huke, Sabine; van der Velden, Jolanda

    2015-01-01

    To date, no compounds or interventions exist that treat or prevent sarcomeric cardiomyopathies. Established therapies currently improve the outcome, but novel therapies may be able to more fundamentally affect the disease process and course. Investigations of the pathomechanisms are generating molecular insights that can be useful for the design of novel specific drugs suitable for clinical use. As perturbations in the heart are stage-specific, proper timing of drug treatment is essential to prevent initiation and progression of cardiac disease in mutation carrier individuals. In this review, we emphasize potential novel therapies which may prevent, delay, or even reverse hypertrophic cardiomyopathy caused by sarcomeric gene mutations. These include corrections of genetic defects, altered sarcomere function, perturbations in intracellular ion homeostasis, and impaired myocardial energetics. PMID:25634554

  19. Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive

    PubMed Central

    Newton, Chad A.; Batra, Kiran; Torrealba, Jose; Kozlitina, Julia; Glazer, Craig S.; Aravena, Carlos; Meyer, Keith; Raghu, Ganesh; Collard, Harold R.; Garcia, Christine Kim

    2017-01-01

    Heterozygous mutations in four telomere-related genes have been linked to pulmonary fibrosis, but little is known about similarities or differences of affected individuals. 115 patients with mutations in telomerase reverse transcriptase (TERT) (n=75), telomerase RNA component (TERC) (n=7), regulator of telomere elongation helicase 1 (RTEL1) (n=14) and poly(A)-specific ribonuclease (PARN) (n=19) were identified and clinical data were analysed. Approximately one-half (46%) had a multidisciplinary diagnosis of idiopathic pulmonary fibrosis (IPF); others had unclassifiable lung fibrosis (20%), chronic hypersensitivity pneumonitis (12%), pleuroparenchymal fibroelastosis (10%), interstitial pneumonia with autoimmune features (7%), an idiopathic interstitial pneumonia (4%) and connective tissue disease-related interstitial fibrosis (3%). Discordant interstitial lung disease diagnoses were found in affected individuals from 80% of families. Patients with TERC mutations were diagnosed at an earlier age than those with PARN mutations (51±11 years versus 64±8 years; p=0.03) and had a higher incidence of haematological comorbidities. The mean rate of forced vital capacity decline was 300 mL·year−1 and the median time to death or transplant was 2.87 years. There was no significant difference in time to death or transplant for patients across gene mutation groups or for patients with a diagnosis of IPF versus a non-IPF diagnosis. Genetic mutations in telomere related genes lead to a variety of interstitial lung disease (ILD) diagnoses that are universally progressive. PMID:27540018

  20. Telomere-related lung fibrosis is diagnostically heterogeneous but uniformly progressive.

    PubMed

    Newton, Chad A; Batra, Kiran; Torrealba, Jose; Kozlitina, Julia; Glazer, Craig S; Aravena, Carlos; Meyer, Keith; Raghu, Ganesh; Collard, Harold R; Garcia, Christine Kim

    2016-12-01

    Heterozygous mutations in four telomere-related genes have been linked to pulmonary fibrosis, but little is known about similarities or differences of affected individuals.115 patients with mutations in telomerase reverse transcriptase (TERT) (n=75), telomerase RNA component (TERC) (n=7), regulator of telomere elongation helicase 1 (RTEL1) (n=14) and poly(A)-specific ribonuclease (PARN) (n=19) were identified and clinical data were analysed.Approximately one-half (46%) had a multidisciplinary diagnosis of idiopathic pulmonary fibrosis (IPF); others had unclassifiable lung fibrosis (20%), chronic hypersensitivity pneumonitis (12%), pleuroparenchymal fibroelastosis (10%), interstitial pneumonia with autoimmune features (7%), an idiopathic interstitial pneumonia (4%) and connective tissue disease-related interstitial fibrosis (3%). Discordant interstitial lung disease diagnoses were found in affected individuals from 80% of families. Patients with TERC mutations were diagnosed at an earlier age than those with PARN mutations (51±11 years versus 64±8 years; p=0.03) and had a higher incidence of haematological comorbidities. The mean rate of forced vital capacity decline was 300 mL·year -1 and the median time to death or transplant was 2.87 years. There was no significant difference in time to death or transplant for patients across gene mutation groups or for patients with a diagnosis of IPF versus a non-IPF diagnosis.Genetic mutations in telomere related genes lead to a variety of interstitial lung disease (ILD) diagnoses that are universally progressive. Copyright ©ERS 2016.

  1. Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ping; Swanson, Kurt A.; Leser, George P.

    2014-10-02

    The paramyxovirus hemagglutinin-neuraminidase (HN) protein plays multiple roles in viral entry and egress, including binding to sialic acid receptors, activating the fusion (F) protein to activate membrane fusion and viral entry, and cleaving sialic acid from carbohydrate chains. HN is an oligomeric integral membrane protein consisting of an N-terminal transmembrane domain, a stalk region, and an enzymatically active neuraminidase (NA) domain. Structures of the HN NA domains have been solved previously; however, the structure of the stalk region has remained elusive. The stalk region contains specificity determinants for F interactions and activation, underlying the requirement for homotypic F and HNmore » interactions in viral entry. Mutations of the Newcastle disease virus HN stalk region have been shown to affect both F activation and NA activities, but a structural basis for understanding these dual affects on HN functions has been lacking. Here, we report the structure of the Newcastle disease virus HN ectodomain, revealing dimers of NA domain dimers flanking the N-terminal stalk domain. The stalk forms a parallel tetrameric coiled-coil bundle (4HB) that allows classification of extensive mutational data, providing insight into the functional roles of the stalk region. Mutations that affect both F activation and NA activities map predominantly to the 4HB hydrophobic core, whereas mutations that affect only F-protein activation map primarily to the 4HB surface. Two of four NA domains interact with the 4HB stalk, and residues at this interface in both the stalk and NA domain have been implicated in HN function.« less

  2. The open for business model of the bithorax complex in Drosophila.

    PubMed

    Maeda, Robert K; Karch, François

    2015-09-01

    After nearly 30 years of effort, Ed Lewis published his 1978 landmark paper in which he described the analysis of a series of mutations that affect the identity of the segments that form along the anterior-posterior (AP) axis of the fly (Lewis 1978). The mutations behaved in a non-canonical fashion in complementation tests, forming what Ed Lewis called a "pseudo-allelic" series. Because of this, he never thought that the mutations represented segment-specific genes. As all of these mutations were grouped to a particular area of the Drosophila third chromosome, the locus became known of as the bithorax complex (BX-C). One of the key findings of Lewis' article was that it revealed for the first time, to a wide scientific audience, that there was a remarkable correlation between the order of the segment-specific mutations along the chromosome and the order of the segments they affected along the AP axis. In Ed Lewis' eyes, the mutants he discovered affected "segment-specific functions" that were sequentially activated along the chromosome as one moves from anterior to posterior along the body axis (the colinearity concept now cited in elementary biology textbooks). The nature of the "segment-specific functions" started to become clear when the BX-C was cloned through the pioneering chromosomal walk initiated in the mid 1980s by the Hogness and Bender laboratories (Bender et al. 1983a; Karch et al. 1985). Through this molecular biology effort, and along with genetic characterizations performed by Gines Morata's group in Madrid (Sanchez-Herrero et al. 1985) and Robert Whittle's in Sussex (Tiong et al. 1985), it soon became clear that the whole BX-C encoded only three protein-coding genes (Ubx, abd-A, and Abd-B). Later, immunostaining against the Ubx protein hinted that the segment-specific functions could, in fact, be cis-regulatory elements regulating the expression of the three protein-coding genes. In 1987, Peifer, Karch, and Bender proposed a comprehensive model of the functioning of the BX-C, in which the "segment-specific functions" appear as segment-specific enhancers regulating, Ubx, abd-A, or Abd-B (Peifer et al. 1987). Key to their model was that the segmental address of these enhancers was not an inherent ability of the enhancers themselves, but was determined by the chromosomal location in which they lay. In their view, the sequential activation of the segment-specific functions resulted from the sequential opening of chromatin domains along the chromosome as one moves from anterior to posterior. This model soon became known of as the open for business model. While the open for business model is quite easy to visualize at a conceptual level, molecular evidence to validate this model has been missing for almost 30 years. The recent publication describing the outstanding, joint effort from the Bender and Kingston laboratories now provides the missing proof to support this model (Bowman et al. 2014). The purpose of this article is to review the open for business model and take the reader through the genetic arguments that led to its elaboration.

  3. Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion.

    PubMed

    Hakonen, Anna H; Isohanni, Pirjo; Paetau, Anders; Herva, Riitta; Suomalainen, Anu; Lönnqvist, Tuula

    2007-11-01

    Twinkle is a mitochondrial replicative helicase, the mutations of which have been associated with autosomal dominant progressive external ophthalmoplegia (adPEO), and recessively inherited infantile onset spinocerebellar ataxia (IOSCA). We report here a new phenotype in two siblings with compound heterozygous Twinkle mutations (A318T and Y508C), characterized by severe early onset encephalopathy and signs of liver involvement. The clinical manifestations included hypotonia, athetosis, sensory neuropathy, ataxia, hearing deficit, ophthalmoplegia, intractable epilepsy and elevation of serum transaminases. The liver showed mtDNA depletion, whereas the muscle mtDNA was only slightly affected. Alpers-Huttenlocher syndrome has previously been associated with mutations of polymerase gamma, a replicative polymerase of mtDNA. We show here that recessive mutations of the close functional partner of the polymerase, the Twinkle helicase, can also manifest as early encephalopathy with liver involvement, a phenotype reminiscent of Alpers syndrome, and are a new genetic cause underlying tissue-specific mtDNA depletion.

  4. Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression.

    PubMed

    Rocha, Nuno; Bulger, David A; Frontini, Andrea; Titheradge, Hannah; Gribsholt, Sigrid Bjerge; Knox, Rachel; Page, Matthew; Harris, Julie; Payne, Felicity; Adams, Claire; Sleigh, Alison; Crawford, John; Gjesing, Anette Prior; Bork-Jensen, Jette; Pedersen, Oluf; Barroso, Inês; Hansen, Torben; Cox, Helen; Reilly, Mary; Rossor, Alex; Brown, Rebecca J; Taylor, Simeon I; McHale, Duncan; Armstrong, Martin; Oral, Elif A; Saudek, Vladimir; O'Rahilly, Stephen; Maher, Eamonn R; Richelsen, Bjørn; Savage, David B; Semple, Robert K

    2017-04-19

    MFN2 encodes mitofusin 2, a membrane-bound mediator of mitochondrial membrane fusion and inter-organelle communication. MFN2 mutations cause axonal neuropathy, with associated lipodystrophy only occasionally noted, however homozygosity for the p.Arg707Trp mutation was recently associated with upper body adipose overgrowth. We describe similar massive adipose overgrowth with suppressed leptin expression in four further patients with biallelic MFN2 mutations and at least one p.Arg707Trp allele. Overgrown tissue was composed of normal-sized, UCP1-negative unilocular adipocytes, with mitochondrial network fragmentation, disorganised cristae, and increased autophagosomes. There was strong transcriptional evidence of mitochondrial stress signalling, increased protein synthesis, and suppression of signatures of cell death in affected tissue, whereas mitochondrial morphology and gene expression were normal in skin fibroblasts. These findings suggest that specific MFN2 mutations cause tissue-selective mitochondrial dysfunction with increased adipocyte proliferation and survival, confirm a novel form of excess adiposity with paradoxical suppression of leptin expression, and suggest potential targeted therapies.

  5. Mutation status among patients with sinonasal mucosal melanoma and its impact on survival.

    PubMed

    Amit, Moran; Tam, Samantha; Abdelmeguid, Ahmed S; Roberts, Dianna B; Takahashi, Yoko; Raza, Shaan M; Su, Shirley Y; Kupferman, Michael E; DeMonte, Franco; Hanna, Ehab Y

    2017-06-06

    Sinonasal mucosal melanoma (SNMM) comprises <1% of all melanomas and lacks well-characterised molecular markers. Our aim was to determine the frequencies of common mutations and examine their utility as molecular markers in a large series of primary SNMMs. SNMM patients seen at our institution from August 1991 through July 2016 were identified. Genomic DNA was extracted from 66 formalin-fixed paraffin-embedded tumours and screened for mutations by direct sequencing. We investigated the association of mutations with clinicopathological features and survival outcomes. Overall, 41% (27 out of 66) of the SNMMs harboured mutations. BRAF and KIT mutations were identified in 8% (five patients) and 5% (three patients) of SNMMs, respectively, whereas NRAS mutations were detected in 30% (20 patients) of SNMMs. Mutation rates in these oncogenes were similar between SNMMs located in the paranasal sinuses and those in the nasal cavity (30% and 13%, respectively, P=0.09). In a multivariate analysis, patients with negative margins had significantly better overall survival (hazard ratio 5.43, 95% confidence interval 1.44-21.85, P=0.01) and disease-specific survival (hazard ratio 21.9, 95% confidence interval 3.71-180, P=0.0004). The mutation status of the tumours showed no association with survival outcomes. In SNNM, mutation status does not affect survival outcomes, but NRAS mutations are relatively frequent and could be targeted in this disease by MEK inhibitors.

  6. Mutation spectrum of primary hyperoxaluria type 1 in Tunisia: implication for diagnosis in North Africa.

    PubMed

    Nagara, Majdi; Tiar, Afaf; Ben Halim, Nizar; Ben Rhouma, Faten; Messaoud, Olfa; Bouyacoub, Yosra; Kefi, Rym; Hassayoun, Saida; Zouari, Noura; Ben Ammar, Mohamed Slim; Abdelhak, Sonia; Chemli, Jalel

    2013-09-15

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive inherited metabolic disease, characterized by progressive kidney failure due to renal deposition of calcium oxalate. Mutations in the AGXT gene, encoding the liver-specific enzyme alanine glyoxylate aminotransferase, are responsible for the disease. We aimed to determine the mutational spectrum causing PH1 and to provide an accurate tool for diagnosis as well as for prenatal diagnosis in the affected families. Direct sequencing was used to detect mutations in the AGXT gene in DNA samples from 13 patients belonging to 12 Tunisian families. Molecular analysis revealed five mutations causing PH1 in Tunisia. The mutations were identified along exons 1, 2, 4, 5 and 7. The most predominant mutations were the Maghrebian "p.I244T" and the Arabic "p.G190R". Furthermore, three other mutations characteristic of different ethnic groups were found in our study population. These results confirm the mutational heterogeneity related to PH1 in Tunisian population. All the mutations are in a homozygous state, reflecting the high impact of endogamy in our population. Mutation analysis through DNA sequencing can provide a useful first line investigation for PH1. This identification could provide an accurate tool for prenatal diagnosis, genetic counseling and screen for potential presymptomatic individuals. © 2013 Elsevier B.V. All rights reserved.

  7. The mutation-drift balance in spatially structured populations.

    PubMed

    Schneider, David M; Martins, Ayana B; de Aguiar, Marcus A M

    2016-08-07

    In finite populations the action of neutral mutations is balanced by genetic drift, leading to a stationary distribution of alleles that displays a transition between two different behaviors. For small mutation rates most individuals will carry the same allele at equilibrium, whereas for high mutation rates of the alleles will be randomly distributed with frequencies close to one half for a biallelic gene. For well-mixed haploid populations the mutation threshold is μc=1/2N, where N is the population size. In this paper we study how spatial structure affects this mutation threshold. Specifically, we study the stationary allele distribution for populations placed on regular networks where connected nodes represent potential mating partners. We show that the mutation threshold is sensitive to spatial structure only if the number of potential mates is very small. In this limit, the mutation threshold decreases substantially, increasing the diversity of the population at considerably low mutation rates. Defining kc as the degree of the network for which the mutation threshold drops to half of its value in well-mixed populations we show that kc grows slowly as a function of the population size, following a power law. Our calculations and simulations are based on the Moran model and on a mapping between the Moran model with mutations and the voter model with opinion makers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Polycythaemia-inducing mutations in the erythropoietin receptor (EPOR): mechanism and function as elucidated by epidermal growth factor receptor-EPOR chimeras.

    PubMed

    Gross, Mor; Ben-Califa, Nathalie; McMullin, Mary F; Percy, Melanie J; Bento, Celeste; Cario, Holger; Minkov, Milen; Neumann, Drorit

    2014-05-01

    Primary familial and congenital polycythaemia (PFCP) is a disease characterized by increased red blood cell mass, and can be associated with mutations in the intracellular region of the erythropoietin (EPO) receptor (EPOR). Here we explore the mechanisms by which EPOR mutations induce PFCP, using an experimental system based on chimeric receptors between epidermal growth factor receptor (EGFR) and EPOR. The design of the chimeras enabled EPOR signalling to be triggered by EGF binding. Using this system we analysed three novel EPOR mutations discovered in PFCP patients: a deletion mutation (Del1377-1411), a nonsense mutation (C1370A) and a missense mutation (G1445A). Three different chimeras, bearing these mutations in the cytosolic, EPOR region were generated; Hence, the differences in the chimera-related effects are specifically attributed to the mutations. The results show that the different mutations affect various aspects related to the signalling and metabolism of the chimeric receptors. These include slower degradation rate, higher levels of glycan-mature chimeric receptors, increased sensitivity to low levels of EGF (replacing EPO in this system) and extended signalling cascades. This study provides a novel experimental system to study polycythaemia-inducing mutations in the EPOR, and sheds new light on underlying mechanisms of EPOR over-activation in PFCP patients. © 2014 John Wiley & Sons Ltd.

  9. Epigenetic Guardian: A Review of the DNA Methyltransferase DNMT3A in Acute Myeloid Leukaemia and Clonal Haematopoiesis.

    PubMed

    Chaudry, Sabah F; Chevassut, Timothy J T

    2017-01-01

    Acute myeloid leukaemia (AML) is a haematological malignancy characterized by clonal stem cell proliferation and aberrant block in differentiation. Dysfunction of epigenetic modifiers contributes significantly to the pathogenesis of AML. One frequently mutated gene involved in epigenetic modification is DNMT3A (DNA methyltransferase-3-alpha), a DNA methyltransferase that alters gene expression by de novo methylation of cytosine bases at CpG dinucleotides. Approximately 22% of AML and 36% of cytogenetically normal AML cases carry DNMT3A mutations and around 60% of these mutations affect the R882 codon. These mutations have been associated with poor prognosis and adverse survival outcomes for AML patients. Advances in whole-exome sequencing techniques have recently identified a large number of DNMT3A mutations present in clonal cells in normal elderly individuals with no features of haematological malignancy. Categorically distinct from other preleukaemic conditions, this disorder has been termed clonal haematopoiesis of indeterminate potential (CHIP). Further insight into the mutational landscape of CHIP may illustrate the consequence of particular mutations found in DNMT3A and identify specific "founder" mutations responsible for clonal expansion that may contribute to leukaemogenesis. This review will focus on current research and understanding of DNMT3A mutations in both AML and CHIP.

  10. Primary hyperoxaluria type I: a model for multiple mutations in a monogenic disease within a distinct ethnic group.

    PubMed

    Rinat, C; Wanders, R J; Drukker, A; Halle, D; Frishberg, Y

    1999-11-01

    Primary hyperoxaluria type 1 is an autosomal recessive inherited metabolic disease in which excessive oxalates are formed by the liver and excreted by the kidneys, causing a wide spectrum of phenotypes ranging from renal failure in infancy to mere renal stones in late adulthood. Mutations in the AGXT gene, encoding the liver-specific enzyme alanine:glyoxylate aminotransferase, are responsible for the disease. Seven mutations were detected in eight families in Israel. Four of these mutations are novel and three occur in children living in single-clan villages. The mutations are scattered along various exons (1, 4, 5, 7, 9, 10), and on different alleles comprising at least five different haplotypes. All but one of the mutations are in a homozygous pattern, reflecting the high rate of consanguinity in our patient population. Two affected brothers are homozygous for two different mutations expressed on the same allele. The patients comprise a distinct ethnic group (Israeli Arabs) residing in a confined geographic area. These results, which are supported by previous data, suggest for the first time that the phenomenon of multiple mutations in a relatively closed isolate is common and almost exclusive to the Israeli-Arab population. Potential mechanisms including selective advantage to heterozygotes, digenic inheritance, and the recent emergence of multiple mutations are discussed.

  11. A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glodzik, Dominik; Morganella, Sandro; Davies, Helen

    Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. Furthermore, the transcriptomicmore » consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.« less

  12. A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers

    DOE PAGES

    Glodzik, Dominik; Morganella, Sandro; Davies, Helen; ...

    2017-01-23

    Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. Furthermore, the transcriptomicmore » consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.« less

  13. A specific collagen type II gene (COL2A1) mutation presenting as spondyloperipheral dysplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabel, B.; Hilbert, K.; Spranger, J.

    1996-05-03

    We report on a patient with a skeletal dysplasia characterized by short stature, spondylo-epiphyseal involvement, and brachydactyly E-like changes. This condition has been described as spondyloperipheral dysplasia and the few published cases suggest autosomal dominant inheritance with considerable clinical variability. We found our sporadic case to be due to a collagen type II defect resulting from a specific COL2A1 mutation. This mutation is the first to be located at the C-terminal outside the helical domain of COL2A1. A frameshift as consequence of a 5 bp duplication in exon 51 leads to a stop codon. The resulting truncated C-propeptide region seemsmore » to affect helix formation and produces changes of chondrocyte morphology, collagen type II fibril structure and cartilage matrix composition. Our case with its distinct phenotype adds another chondrodysplasia to the clinical spectrum of type II collagenopathies. 16 refs., 4 figs.« less

  14. The Hemimelic extra toes mouse mutant: Historical perspective on unraveling mechanisms of dysmorphogenesis

    EPA Science Inventory

    Hemimelic extra toes (Hx) arose spontaneously as a dominant mutation in B10.D2/nSnJ mice in 1967. It specifically affects the appendicular skeleton, causing variable foreshortening of the tibia (radius) and preaxial polydactylism. Early anatomical studies revealed anterior overgr...

  15. Transforming Growth Factor-B Receptors in Human Breast Cancer.

    DTIC Science & Technology

    1998-05-01

    I., Polyak, K., Iavarone, A., and Massagud, J. Kip/ Cip and Ink4 cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-ß. Genes Dev...specimens. Thirdly, we have developped transient transfection assays to determine how specific TßR mutations affect affect receptor function. Using...Growth Factor-ß (TGFß) is the most potent known inhibitor of cell cycle progression of normal mammary epithelial cells; in addition, it causes cells

  16. The genetic basis of female reproductive disorders: Etiology and clinical testing ☆

    PubMed Central

    Layman, Lawrence C.

    2013-01-01

    With the advent of improved molecular biology techniques, the genetic basis of an increasing number of reproductive disorders has been elucidated. Mutations in at least 20 genes cause hypogonadotropic hypogonadism including Kallmann syndrome in about 35–40% of patients. The two most commonly involved genes are FGFR1 and CHD7. When combined pituitary hormone deficiency includes hypogonadotropic hypogonadism as a feature, PROP1 mutations are the most common of the six genes involved. For hypergonadotropic hypogonadism, mutations in 14 genes cause gonadal failure in 15% of affected females, most commonly in FMR1. In eugonadal disorders, activating FSHR mutations have been identified for spontaneous ovarian hyperstimulation syndrome; and WNT4 mutations have been described in mullerian aplasia. For other eugonadal disorders, such as endometriosis, polycystic ovary syndrome, and leiomyomata, specific germline gene mutations have not been identified, but some chromosomal regions are associated with the corresponding phenotype. Practical genetic testing is possible to perform in both hypogonadotropic and hypergonadotropic hypogonadism and spontaneous ovarian hyperstimulation syndrome. However, clinical testing for endometriosis, polycystic ovary syndrome, and leiomyomata is not currently practical for the clinician. PMID:23499866

  17. ADAR RNA editing in human disease; more to it than meets the I.

    PubMed

    Gallo, Angela; Vukic, Dragana; Michalík, David; O'Connell, Mary A; Keegan, Liam P

    2017-09-01

    We review the structures and functions of ADARs and their involvements in human diseases. ADAR1 is widely expressed, particularly in the myeloid component of the blood system, and plays a prominent role in promiscuous editing of long dsRNA. Missense mutations that change ADAR1 residues and reduce RNA editing activity cause Aicardi-Goutières Syndrome, a childhood encephalitis and interferonopathy that mimics viral infection and resembles an extreme form of Systemic Lupus Erythmatosus (SLE). In Adar1 mouse mutant models aberrant interferon expression is prevented by eliminating interferon activation signaling from cytoplasmic dsRNA sensors, indicating that unedited cytoplasmic dsRNA drives the immune induction. On the other hand, upregulation of ADAR1 with widespread promiscuous RNA editing is a prominent feature of many cancers and particular site-specific RNA editing events are also affected. ADAR2 is most highly expressed in brain and is primarily required for site-specific editing of CNS transcripts; recent findings indicate that ADAR2 editing is regulated by neuronal excitation for synaptic scaling of glutamate receptors. ADAR2 is also linked to the circadian clock and to sleep. Mutations in ADAR2 could contribute to excitability syndromes such as epilepsy, to seizures, to diseases involving neuronal plasticity defects, such as autism and Fragile-X Syndrome, to neurodegenerations such as ALS, or to astrocytomas or glioblastomas in which reduced ADAR2 activity is required for oncogenic cell behavior. The range of human disease associated with ADAR1 mutations may extend further to include other inflammatory conditions while ADAR2 mutations may affect psychiatric conditions.

  18. The R882H DNMT3A Mutation Associated with AML Dominantly Inhibits WT DNMT3A by Blocking its Ability to Form Active Tetramers

    PubMed Central

    Russler-Germain, David A.; Spencer, David H.; Young, Margaret A.; Lamprecht, Tamara L.; Miller, Christopher A.; Fulton, Robert; Meyer, Matthew R.; Erdmann-Gilmore, Petra; Townsend, R. Reid; Wilson, Richard K.; Ley, Timothy J.

    2014-01-01

    Summary Somatic mutations in DNMT3A, which encodes a de novo DNA methyltransferase, are found in ~30% of normal karyotype acute myeloid leukemia (AML) cases. Most mutations are heterozygous and alter R882 within the catalytic domain (most commonly R882H), suggesting the possibility of dominant negative consequences. The methyltransferase activity of R882H DNMT3A is reduced by ~80% compared to the WT enzyme. In vitro mixing of WT and R882H DNMT3A does not affect the WT activity but co-expression of the two proteins in cells profoundly inhibits the WT enzyme by disrupting its ability to homotetramerize. AML cells with the R882H mutation have severely reduced de novo methyltransferase activity and focal hypomethylation at specific CpGs throughout AML cell genomes. PMID:24656771

  19. [The role of remodeling complexes CHD1 and ISWI in spontaneous and UV-induced mutagenesis control in yeast Saccharomyces cerevisiae].

    PubMed

    Evstiukhina, T A; Alekseeva, E A; Fedorov, D V; Peshekhonov, V T; Korolev, V G

    2017-02-01

    Chromatin remodulators are special multiprotein machines capable of transforming the structure, constitution, and positioning of nucleosomes on DNA. Biochemical activities of remodeling complexes CHD1 and ISWI from the SWI2/SNF2 family are well established. They ensure correct positioning of nucleosomes along the genome, which is probably critical for genome stability, in particular, after action of polymerases, repair enzymes, and transcription. In this paper, we show that single mutations in genes ISW1, ISW2, and CHD1 weakly affect repair and mutagenic processes in yeast cells. At the same time, there are differences in the effect of these mutations on spontaneous mutation levels, which indicates certain specificity of action of protein complexes ISW1, ISW2, and CHD1 on expression of different genes that control repair and mutation processes in yeast.

  20. Targeting RNA Splicing for Disease Therapy

    PubMed Central

    Havens, Mallory A.; Duelli, Dominik M.

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. PMID:23512601

  1. Targeting RNA splicing for disease therapy.

    PubMed

    Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. Copyright © 2013 John Wiley & Sons, Ltd.

  2. An engineered tale-transcription factor rescues transcription of factor VII impaired by promoter mutations and enhances its endogenous expression in hepatocytes.

    PubMed

    Barbon, Elena; Pignani, Silvia; Branchini, Alessio; Bernardi, Francesco; Pinotti, Mirko; Bovolenta, Matteo

    2016-06-24

    Tailored approaches to restore defective transcription responsible for severe diseases have been poorly explored. We tested transcription activator-like effectors fused to an activation domain (TALE-TFs) in a coagulation factor VII (FVII) deficiency model. In this model, the deficiency is caused by the -94C > G or -61T > G mutation, which abrogate the binding of Sp1 or HNF-4 transcription factors. Reporter assays in hepatoma HepG2 cells naturally expressing FVII identified a single TALE-TF (TF4) that, by targeting the region between mutations, specifically trans-activated both the variant (>100-fold) and wild-type (20-40-fold) F7 promoters. Importantly, in the genomic context of transfected HepG2 and transduced primary hepatocytes, TF4 increased F7 mRNA and protein levels (2- to 3-fold) without detectable off-target effects, even for the homologous F10 gene. The ectopic F7 expression in renal HEK293 cells was modestly affected by TF4 or by TALE-TF combinations. These results provide experimental evidence for TALE-TFs as gene-specific tools useful to counteract disease-causing promoter mutations.

  3. Specific phospholipid binding to Na,K-ATPase at two distinct sites.

    PubMed

    Habeck, Michael; Kapri-Pardes, Einat; Sharon, Michal; Karlish, Steven J D

    2017-03-14

    Membrane protein function can be affected by the physical state of the lipid bilayer and specific lipid-protein interactions. For Na,K-ATPase, bilayer properties can modulate pump activity, and, as observed in crystal structures, several lipids are bound within the transmembrane domain. Furthermore, Na,K-ATPase activity depends on phosphatidylserine (PS) and cholesterol, which stabilize the protein, and polyunsaturated phosphatidylcholine (PC) or phosphatidylethanolamine (PE), known to stimulate Na,K-ATPase activity. Based on lipid structural specificity and kinetic mechanisms, specific interactions of both PS and PC/PE have been inferred. Nevertheless, specific binding sites have not been identified definitively. We address this question with native mass spectrometry (MS) and site-directed mutagenesis. Native MS shows directly that one molecule each of 18:0/18:1 PS and 18:0/20:4 PC can bind specifically to purified human Na,K-ATPase (α 1 β 1 ). By replacing lysine residues at proposed phospholipid-binding sites with glutamines, the two sites have been identified. Mutations in the cytoplasmic αL8-9 loop destabilize the protein but do not affect Na,K-ATPase activity, whereas mutations in transmembrane helices (TM), αTM2 and αTM4, abolish the stimulation of activity by 18:0/20:4 PC but do not affect stability. When these data are linked to crystal structures, the underlying mechanism of PS and PC/PE effects emerges. PS (and cholesterol) bind between αTM 8, 9, 10, near the FXYD subunit, and maintain topological integrity of the labile C terminus of the α subunit (site A). PC/PE binds between αTM2, 4, 6, and 9 and accelerates the rate-limiting E 1 P-E 2 P conformational transition (site B). We discuss the potential physiological implications.

  4. Genetic and Molecular Characterization of the Caenorhabditis Elegans Spermatogenesis-Defective Gene Spe-17

    PubMed Central

    L'Hernault, S. W.; Benian, G. M.; Emmons, R. B.

    1993-01-01

    Two self-sterile mutations that define the spermatogenesis-defective gene spe-17 have been analyzed. These mutations affect unc-22 and fail to complement each other for both Unc-22 and spermatogenesis defects. Both of these mutations are deficiencies (hcDf1 and hDf13) that affect more than one transcription unit. Genomic DNA adjacent to and including the region deleted by the smaller deficiency (hcDf1) has been sequenced and four mRNAs (including unc-22) have been localized to this sequenced region. The three non unc-22 mRNAs are shown to be sex-specific: a 1.2-kb mRNA that can be detected in sperm-free hermaphrodites and 1.2- and 0.56-kb mRNAs found in males. hDf13 deletes at least 55 kb of chromosome IV, including all of unc-22, both male-specific mRNAs and at least part of the female-specific mRNA. hcDf1, which is approximately 15.6 kb, deletes only the 5' end of unc-22 and the gene that encodes the 0.56-kb male-specific mRNA. The common defect that apparently accounts for the defective sperm in hcDf1 and hDf13 homozygotes is deletion of the spe-17 gene, which encodes the 0.56-kb mRNA. Strains carrying two copies of either deletion are self-fertile when they are transgenic for any of four extrachromosomal array that include spe-17. We have sequenced two spe-17 cDNAs, and the deduced 142 amino acid protein sequence is highly charged and rich in serine and threonine, but shows no significant homology to any previously determined protein sequence. PMID:8349108

  5. Diversity of glycosphingolipid GM2 and cholesterol accumulation in NPC1 patient-specific iPSC-derived neurons.

    PubMed

    Trilck, Michaela; Peter, Franziska; Zheng, Chaonan; Frank, Marcus; Dobrenis, Kostantin; Mascher, Hermann; Rolfs, Arndt; Frech, Moritz J

    2017-02-15

    Niemann-Pick disease Type C1 (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene. On the cellular level NPC1 mutations lead to an accumulation of cholesterol and gangliosides. As a thorough analysis of the severely affected neuronal cells is unfeasible in NPC1 patients, we recently described the cellular phenotype of neuronal cells derived from NPC1 patient iPSCs carrying the compound heterozygous mutation c.1836A>C/c.1628delC. Here we expanded the analysis to cell lines carrying the prevalent mutation c.3182T>C and the novel mutation c.1180T>C, as well as to the determination of GM2 and GM3 gangliosides in NPC1 patient-specific iPSC-derived neurons and glia cells. Immunocytochemical detection of GM2 revealed punctated staining pattern predominantly localized in neurons. Detection of cholesterol by filipin staining showed a comparable staining pattern, colocalized with GM2, indicating a deposit of GM2 and cholesterol in the same cellular compartments. Accumulations were not only restricted to cell bodies, but were also found in the neuronal extensions. A quantification of the GM2 amount by HPLC-MS/MS confirmed significantly higher amounts in neurons carrying a mutation. Additionally, these cells displayed a lowered activity of the catabolic enzyme Hex A, but not B4GALNT1. Molecular docking simulations indicated binding of cholesterol to Hex A, suggesting cholesterol influences the GM2 degradation pathway and, subsequently, leading to the accumulation of GM2. Taken together, this is the first study showing an accumulation of GM2 in neuronal derivatives of patient-specific iPSCs and thus proving further disease-specific hallmarks in this human in vitro model of NPC1. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mutagenic frequencies of site-specifically located O6-methylguanine in wild-type Escherichia coli and in a strain deficient in ada-methyltransferase.

    PubMed

    Rossi, S C; Topal, M D

    1991-02-01

    The adaptive response of Escherichia coli involves protection of the cells against the toxic and mutagenic consequences of exposure to high doses of a methylating agent by prior exposure to low doses of the agent. Ada protein, a major repair activity for O6-methylguanine, is activated to positively control the adaptive response; O6-methylguanine is one of the major mutagenic lesions produced by methylating agents. We investigated the mutation frequency of wild-type Escherichia coli and strains containing the ada-5 mutation in response to site-specifically synthesized O6-methylguanine under conditions in which the adaptive response was not induced. Site-directed mutagenesis and oligonucleotide self-selection techniques were used to isolate the progeny of M13mp18 DNAs constructed to contain O6-methylguanine at any of eight different positions. The progeny were isolated from E. coli strains isogeneic except for deficiency in Ada-methyltransferase repair, UvrABC excision repair, or both. The resulting O6-methylguanine mutation levels at each position were determined by using differential oligonucleotide hybridization. We found that the wild type had up to a 2.6-fold higher mutation frequency than ada-5 mutants. In addition, the mutation frequency varied with the position of the O6-methylguanine in the DNA in the wild type but not in ada-5 mutants; O6-methylguanine lesions at the 5' ends of runs of consecutive guanines gave the highest mutation frequencies. Determination of the mutation frequency of O6-methylguanine in wild-type and mutS cells showed that mismatch repair can affect O6-methylguanine mutation levels.

  7. Exome Sequencing Identifies Mitochondrial Alanyl-tRNA Synthetase Mutations in Infantile Mitochondrial Cardiomyopathy

    PubMed Central

    Götz, Alexandra; Tyynismaa, Henna; Euro, Liliya; Ellonen, Pekka; Hyötyläinen, Tuulia; Ojala, Tiina; Hämäläinen, Riikka H.; Tommiska, Johanna; Raivio, Taneli; Oresic, Matej; Karikoski, Riitta; Tammela, Outi; Simola, Kalle O.J.; Paetau, Anders; Tyni, Tiina; Suomalainen, Anu

    2011-01-01

    Infantile cardiomyopathies are devastating fatal disorders of the neonatal period or the first year of life. Mitochondrial dysfunction is a common cause of this group of diseases, but the underlying gene defects have been characterized in only a minority of cases, because tissue specificity of the manifestation hampers functional cloning and the heterogeneity of causative factors hinders collection of informative family materials. We sequenced the exome of a patient who died at the age of 10 months of hypertrophic mitochondrial cardiomyopathy with combined cardiac respiratory chain complex I and IV deficiency. Rigorous data analysis allowed us to identify a homozygous missense mutation in AARS2, which we showed to encode the mitochondrial alanyl-tRNA synthetase (mtAlaRS). Two siblings from another family, both of whom died perinatally of hypertrophic cardiomyopathy, had the same mutation, compound heterozygous with another missense mutation. Protein structure modeling of mtAlaRS suggested that one of the mutations affected a unique tRNA recognition site in the editing domain, leading to incorrect tRNA aminoacylation, whereas the second mutation severely disturbed the catalytic function, preventing tRNA aminoacylation. We show here that mutations in AARS2 cause perinatal or infantile cardiomyopathy with near-total combined mitochondrial respiratory chain deficiency in the heart. Our results indicate that exome sequencing is a powerful tool for identifying mutations in single patients and allows recognition of the genetic background in single-gene disorders of variable clinical manifestation and tissue-specific disease. Furthermore, we show that mitochondrial disorders extend to prenatal life and are an important cause of early infantile cardiac failure. PMID:21549344

  8. Dynamic of mutational events in variable number tandem repeats of Escherichia coli O157:H7.

    PubMed

    Bustamante, A V; Sanso, A M; Segura, D O; Parma, A E; Lucchesi, P M A

    2013-01-01

    VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10(-05) to 1.8 × 10(-03) mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10(-03) mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study.

  9. Site-directed mutagenesis of lysine 193 in Escherichia coli isocitrate lyase by use of unique restriction enzyme site elimination.

    PubMed Central

    Diehl, P; McFadden, B A

    1993-01-01

    By a newly developed double-stranded mutagenesis technique, histidine (H), glutamate (E), arginine (R) and leucine (L) have been substituted for the lysyl 193 residue (K-193) in isocitrate lyase from Escherichia coli. The substitutions for this residue, which is present in a highly conserved, cationic region, significantly affect both the Km for Ds-isocitrate and the apparent kcat of isocitrate lyase. Specifically, the conservative substitutions, K-193-->H (K193H) and K193R, reduce catalytic activity by ca. 50- and 14-fold, respectively, and the nonconservative changes, K193E and K193L, result in assembled tetrameric protein that is completely inactive. The K193H and K193R mutations also increase the Km of the enzyme by five- and twofold, respectively. These results indicate that the cationic and/or acid-base character of K193 is essential for isocitrate lyase activity. In addition to the noted effects on enzyme activity, the effects of the mutations on growth of JE10, an E. coli strain which does not express isocitrate lyase, were observed. Active isocitrate lyase is necessary for E. coli to grow on acetate as the sole carbon source. It was found that a mutation affecting the activity of isocitrate lyase similarly affects the growth of E. coli JE10 on acetate when the mutated plasmid is expressed in this organism. Specifically, the lag time before growth increases over sevenfold and almost twofold for E. coli JE10 expressing the K193H and K193R isocitrate lyase variants, respectively. In addition, the rate of growth decreases by almost 40-fold for E. coli JE10 cells expressing form K193H and ca. 2-fold for those expressing the K193R variants. Thus, the onset and rate of E. coli growth on acetate appears to depend on isocitrate lyase activity. Images PMID:8385665

  10. Canine MPV17 truncation without clinical manifestations

    PubMed Central

    Hänninen, Reetta L.; Ahonen, Saija; Màrquez, Merce; Myöhänen, Maarit J.; Hytönen, Marjo K.; Lohi, Hannes

    2015-01-01

    ABSTRACT Mitochondrial DNA depletion syndromes (MDS) are often serious autosomal recessively inherited disorders characterized by tissue-specific mtDNA copy number reduction. Many genes, including MPV17, are associated with the hepatocerebral form of MDS. MPV17 encodes for a mitochondrial inner membrane protein with a poorly characterized function. Several MPV17 mutations have been reported in association with a heterogeneous group of early-onset manifestations, including liver disease and neurological problems. Mpv17-deficient mice present renal and hearing defects. We describe here a MPV17 truncation mutation in dogs. We found a 1-bp insertion in exon 4 of the MPV17 gene, resulting in a frameshift and early truncation of the encoded protein. The mutation halves MPV17 expression in the lymphocytes of the homozygous dogs and the truncated protein is not translated in transfected cells. The insertion mutation is recurrent and exists in many unrelated breeds, although is highly enriched in the Boxer breed. Unexpectedly, despite the truncation of MPV17, we could not find any common phenotypes in the genetically affected dogs. The lack of observable phenotype could be due to a late onset, mild symptoms or potential tissue-specific compensatory mechanisms. This study suggests species-specific differences in the manifestation of the MPV17 defects and establishes a novel large animal model to further study MPV17 function and role in mitochondrial biology. PMID:26353863

  11. A novel method for objective vision testing in canine models of inherited retinal disease.

    PubMed

    Gearhart, Patricia M; Gearhart, Chris C; Petersen-Jones, Simon M

    2008-08-01

    The use of canine models of retinal disease in the development of therapeutic strategies for inherited retinal disorders is a growing area of research. To evaluate accurately the success of potential vision-enhancing treatments, reliable methods for objectively assessing visual function in canine models is necessary. A simple vision-testing device was constructed that consisted of a junction box with four exit tunnels. Dogs were placed in the junction box and given one vision-based choice for exit. The first-choice tunnel and time to exit were recorded and analyzed. Two canine models of retinal disease with distinct molecular defects, a null mutation in the gene encoding the alpha subunit of rod cyclic GMP phosphodiesterase (PDE6A), and a null mutation in the gene encoding a retinal pigment epithelium-specific protein (RPE65) were tested and compared to those in unaffected dogs. With the use of bright light versus dim red light, the test differentiated between unaffected dogs and dogs affected with either mutation with a high degree of certainty. The white-light intensity series showed a significantly different performance between the unaffected and affected dogs. A significant difference in performance was detected between the dogs with each mutation. The results indicate that this novel canine vision-testing method is an accurate and sensitive means of distinguishing between unaffected dogs and dogs affected with two different forms of inherited retinal disease and should be useful as a means of assessing response to therapy in future studies.

  12. Insights into the beaded filament of the eye lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perng, M.-D.; Zhang Qingjiong; Quinlan, Roy A.

    2007-06-10

    Filensin (BFSP1) and CP49 (BFSP2) represent two members of the IF protein superfamily that are thus far exclusively expressed in the eye lens. Mutations in both proteins cause lens cataract and careful consideration of the detail of these cataract phenotypes alerts us to several interesting features concerning the function of filensin (BFSP1) and CP49 (BFSP2) in the lens. With the first filensin (BFSP1) mutation now having been reported to cause a recessive cataract phenotype, there is the suggestion that the mutation could predispose heterozygote carriers to the early onset of age-related nuclear cataract. In the case of CP49 (BFSP2), theremore » are now three unrelated families who have been identified with a common E233{delta} mutation. Very interestingly this is linked to myopia in one family. Despite the apparent phenotypic differences of the filensin (BFSP1) and CP49 (BFSP2) mutations, the data are still consistent with the beaded filament proteins being essential for lens function and specifically contributing to the optical properties of the lens. The fact that none of the mutations thus far reported affect either the conserved LNDR or TYRKLLEGE motifs that flank the central rod domain supports the view that this pair of IF proteins have unusual structural features and a distinctive assembly mechanism. The multiple sequence divergences suggest these proteins have been adapted to the specific functional requirements of lens fibre cells, a function that can be traced from squid to man.« less

  13. NR2E3 mutations in enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), clumped pigmentary retinal degeneration (CPRD), and retinitis pigmentosa (RP).

    PubMed

    Schorderet, Daniel F; Escher, Pascal

    2009-11-01

    NR2E3, also called photoreceptor-specific nuclear receptor (PNR), is a transcription factor of the nuclear hormone receptor superfamily whose expression is uniquely restricted to photoreceptors. There, its physiological activity is essential for proper rod and cone photoreceptor development and maintenance. Thirty-two different mutations in NR2E3 have been identified in either homozygous or compound heterozygous state in the recessively inherited enhanced S-cone sensitivity syndrome (ESCS), Goldmann-Favre syndrome (GFS), and clumped pigmentary retinal degeneration (CPRD). The clinical phenotype common to all these patients is night blindness, rudimental or absent rod function, and hyperfunction of the "blue" S-cones. A single p.G56R mutation is inherited in a dominant manner and causes retinitis pigmentosa (RP). We have established a new locus-specific database for NR2E3 (www.LOVD.nl/eye), containing all reported mutations, polymorphisms, and unclassified sequence variants, including novel ones. A high proportion of mutations are located in the evolutionarily-conserved DNA-binding domains (DBDs) and ligand-binding domains (LBDs) of NR2E3. Based on homology modeling of these NR2E3 domains, we propose a structural localization of mutated residues. The high variability of clinical phenotypes observed in patients affected by NR2E3-linked retinal degenerations may be caused by different disease mechanisms, including absence of DNA-binding, altered interactions with transcriptional coregulators, and differential activity of modifier genes.

  14. Deep Sequencing Reveals Spatially Distributed Distinct Hot Spot Mutations in DICER1-Related Multinodular Goiter.

    PubMed

    de Kock, Leanne; Bah, Ismaël; Revil, Timothée; Bérubé, Pierre; Wu, Mona K; Sabbaghian, Nelly; Priest, John R; Ragoussis, Jiannis; Foulkes, William D

    2016-10-01

    Nontoxic multinodular goiter (MNG) occurs frequently, but its genetic etiology is not well established. Familial MNG and MNG occurring with ovarian Sertoli-Leydig cell tumor are associated with germline DICER1 mutations. We recently identified second somatic DICER1 ribonuclease (RNase) IIIb mutations in two MNGs. The objective of the study was to investigate the occurrence of somatic DICER1 mutations and mutational clonality in MNG. MNGs from 15 patients (10 with and five without germline DICER1 mutations) were selected based on tissue availability. Core biopsies/scrapings (n = 70) were obtained, sampling areas of follicular hyperplasia, hyperplasia within colloid pools, unremarkable thyroid parenchyma, and areas of thyroid parenchyma, not classified. After capture with a Fluidigm access array, the coding sequence of DICER1 was deep sequenced using DNA from each core/scraping. All germline DICER1-mutated cases were found to harbor at least one RNase III mutation. Specifically, we identified 12 individually distinct DICER1 RNase IIIb hot spot mutations in 32 of the follicular hyperplasia or hyperplasia within colloid pools cores/scrapings. These mutations are predicted to affect the metal-ion binding residues at positions p.Glu1705, p.Asp1709, p.Gly1809, p.Asp1810, and p.Glu1813. Somatic RNase IIIb mutations were identified in the 10 DICER1 germline mutated MNGs as follows: two cases contained one somatic mutation, five cases contained two mutations, and three cases contained three distinct somatic hot spot mutations. No RNase IIIb mutations were identified in the MNGs from individuals without germline DICER1 mutations. This study demonstrates that nodules within MNG occurring in DICER1 syndrome are associated with spatially distributed somatic DICER1 RNase IIIb mutations.

  15. Homozygous Mutations in WEE2 Cause Fertilization Failure and Female Infertility.

    PubMed

    Sang, Qing; Li, Bin; Kuang, Yanping; Wang, Xueqian; Zhang, Zhihua; Chen, Biaobang; Wu, Ling; Lyu, Qifeng; Fu, Yonglun; Yan, Zheng; Mao, Xiaoyan; Xu, Yao; Mu, Jian; Li, Qiaoli; Jin, Li; He, Lin; Wang, Lei

    2018-04-05

    Fertilization is a fundamental process of development and is a prerequisite for successful human reproduction. In mice, although several receptor proteins have been shown to play important roles in the process of fertilization, only three genes have been shown to cause fertilization failure and infertility when deleted in vivo. In clinical practice, some infertility case subjects suffer from recurrent failure of in vitro fertilization and intracytoplasmic sperm injection attempts due to fertilization failure, but the genetic basis of fertilization failure in humans remains largely unknown. Wee2 is a key oocyte-specific kinase involved in the control of meiotic arrest in mice, but WEE2 has not been associated with any diseases in humans. In this study, we identified homozygous mutations in WEE2 that are responsible for fertilization failure in humans. All four independent affected individuals had homozygous loss-of-function missense mutations or homozygous frameshift protein-truncating mutations, and the phenotype of fertilization failure was shown to follow a Mendelian recessive inheritance pattern. All four mutations significantly decreased the amount of WEE2 protein in vitro and in affected individuals' oocytes in vivo, and they all led to abnormal serine phosphorylation of WEE2 and reduced tyrosine 15 phosphorylation of Cdc2 in vitro. In addition, injection of WEE2 cRNA into affected individuals' oocytes rescued the fertilization failure phenotype and led to the formation of blastocysts in vitro. This work presents a novel gene responsible for human fertilization failure and has implications for future therapeutic treatments for infertility cases. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA

    PubMed Central

    Ashenberg, Orr; Padmakumar, Jai

    2017-01-01

    The innate-immune restriction factor MxA inhibits influenza replication by targeting the viral nucleoprotein (NP). Human influenza virus is more resistant than avian influenza virus to inhibition by human MxA, and prior work has compared human and avian viral strains to identify amino-acid differences in NP that affect sensitivity to MxA. However, this strategy is limited to identifying sites in NP where mutations that affect MxA sensitivity have fixed during the small number of documented zoonotic transmissions of influenza to humans. Here we use an unbiased deep mutational scanning approach to quantify how all single amino-acid mutations to NP affect MxA sensitivity in the context of replication-competent virus. We both identify new sites in NP where mutations affect MxA resistance and re-identify mutations known to have increased MxA resistance during historical adaptations of influenza to humans. Most of the sites where mutations have the greatest effect are almost completely conserved across all influenza A viruses, and the amino acids at these sites confer relatively high resistance to MxA. These sites cluster in regions of NP that appear to be important for its recognition by MxA. Overall, our work systematically identifies the sites in influenza nucleoprotein where mutations affect sensitivity to MxA. We also demonstrate a powerful new strategy for identifying regions of viral proteins that affect inhibition by host factors. PMID:28346537

  17. The c.429_452 duplication of the ARX gene: a unique developmental-model of limb kinetic apraxia.

    PubMed

    Curie, Aurore; Nazir, Tatjana; Brun, Amandine; Paulignan, Yves; Reboul, Anne; Delange, Karine; Cheylus, Anne; Bertrand, Sophie; Rochefort, Fanny; Bussy, Gérald; Marignier, Stéphanie; Lacombe, Didier; Chiron, Catherine; Cossée, Mireille; Leheup, Bruno; Philippe, Christophe; Laugel, Vincent; De Saint Martin, Anne; Sacco, Silvia; Poirier, Karine; Bienvenu, Thierry; Souville, Isabelle; Gilbert-Dussardier, Brigitte; Bieth, Eric; Kauffmann, Didier; Briot, Philippe; de Fréminville, Bénédicte; Prieur, Fabienne; Till, Michel; Rooryck-Thambo, Caroline; Mortemousque, Isabelle; Bobillier-Chaumont, Isabelle; Toutain, Annick; Touraine, Renaud; Sanlaville, Damien; Chelly, Jamel; Freeman, Sonya; Kong, Jian; Hadjikhani, Nouchine; Gollub, Randy L; Roy, Alice; des Portes, Vincent

    2014-02-14

    The c.429_452dup24 of the ARX gene is a rare genetic anomaly, leading to X-Linked Intellectual Disability without brain malformation. While in certain cases c.429_452dup24 has been associated with specific clinical patterns such as Partington syndrome, the consequence of this mutation has been also often classified as "non-specific Intellectual Disability". The present work aims at a more precise description of the clinical features linked to the c.429_452dup24 mutation. We clinically reviewed all affected patients identified in France over a five-year period, i.e. 27 patients from 12 different families. Detailed cognitive, behavioural, and motor evaluation, as well as standardized videotaped assessments of oro-lingual and gestural praxis, were performed. In a sub-group of 13 ARX patients, kinematic and MRI studies were further accomplished to better characterize the motor impairment prevalent in the ARX patients group. To ensure that data were specific to the ARX gene mutation and did not result from low-cognitive functioning per se, a group of 27 age- and IQ-matched Down syndrome patients served as control. Neuropsychological and motor assessment indicated that the c.429_452dup24 mutation constitutes a recognizable clinical syndrome: ARX patients exhibiting Intellectual Disability, without primary motor impairment, but with a very specific upper limb distal motor apraxia associated with a pathognomonic hand-grip. Patients affected with the so-called Partington syndrome, which involves major hand dystonia and orolingual apraxia, exhibit the most severe symptoms of the disorder. The particular "reach and grip" impairment which was observed in all ARX patients, but not in Down syndrome patients, was further characterized by the kinematic data: (i) loss of preference for the index finger when gripping an object, (ii) major impairment of fourth finger deftness, and (iii) a lack of pronation movements. This lack of distal movement coordination exhibited by ARX patients is associated with the loss of independent digital dexterity and is similar to the distortion of individual finger movements and posture observed in Limb Kinetic Apraxia. These findings suggest that the ARX c.429_452dup24 mutation may be a developmental model for Limb Kinetic Apraxia.

  18. A Restricted Repertoire of De Novo Mutations in ITPR1 Cause Gillespie Syndrome with Evidence for Dominant-Negative Effect

    PubMed Central

    McEntagart, Meriel; Williamson, Kathleen A.; Rainger, Jacqueline K.; Wheeler, Ann; Seawright, Anne; De Baere, Elfride; Verdin, Hannah; Bergendahl, L. Therese; Quigley, Alan; Rainger, Joe; Dixit, Abhijit; Sarkar, Ajoy; López Laso, Eduardo; Sanchez-Carpintero, Rocio; Barrio, Jesus; Bitoun, Pierre; Prescott, Trine; Riise, Ruth; McKee, Shane; Cook, Jackie; McKie, Lisa; Ceulemans, Berten; Meire, Françoise; Temple, I. Karen; Prieur, Fabienne; Williams, Jonathan; Clouston, Penny; Németh, Andrea H.; Banka, Siddharth; Bengani, Hemant; Handley, Mark; Freyer, Elisabeth; Ross, Allyson; van Heyningen, Veronica; Marsh, Joseph A.; Elmslie, Frances; FitzPatrick, David R.

    2016-01-01

    Gillespie syndrome (GS) is characterized by bilateral iris hypoplasia, congenital hypotonia, non-progressive ataxia, and progressive cerebellar atrophy. Trio-based exome sequencing identified de novo mutations in ITPR1 in three unrelated individuals with GS recruited to the Deciphering Developmental Disorders study. Whole-exome or targeted sequence analysis identified plausible disease-causing ITPR1 mutations in 10/10 additional GS-affected individuals. These ultra-rare protein-altering variants affected only three residues in ITPR1: Glu2094 missense (one de novo, one co-segregating), Gly2539 missense (five de novo, one inheritance uncertain), and Lys2596 in-frame deletion (four de novo). No clinical or radiological differences were evident between individuals with different mutations. ITPR1 encodes an inositol 1,4,5-triphosphate-responsive calcium channel. The homo-tetrameric structure has been solved by cryoelectron microscopy. Using estimations of the degree of structural change induced by known recessive- and dominant-negative mutations in other disease-associated multimeric channels, we developed a generalizable computational approach to indicate the likely mutational mechanism. This analysis supports a dominant-negative mechanism for GS variants in ITPR1. In GS-derived lymphoblastoid cell lines (LCLs), the proportion of ITPR1-positive cells using immunofluorescence was significantly higher in mutant than control LCLs, consistent with an abnormality of nuclear calcium signaling feedback control. Super-resolution imaging supports the existence of an ITPR1-lined nucleoplasmic reticulum. Mice with Itpr1 heterozygous null mutations showed no major iris defects. Purkinje cells of the cerebellum appear to be the most sensitive to impaired ITPR1 function in humans. Iris hypoplasia is likely to result from either complete loss of ITPR1 activity or structure-specific disruption of multimeric interactions. PMID:27108798

  19. Electrocardiogram changes and atrial arrhythmias in individuals carrying sodium channel SCN5A D1275N mutation.

    PubMed

    Vanninen, Sari U M; Nikus, Kjell; Aalto-Setälä, Katriina

    2017-09-01

    The cardiac sodium channel SCN5A regulates atrioventricular and ventricular depolarization as well as cardiac conduction. Patients with cardiac electrical abnormalities have an increased risk of sudden cardiac death (SCD) and cardio-embolic stroke. Optimal management of cardiac disease includes the understanding of association between the causative mutations and the clinical phenotype. A 12-lead electrocardiogram (ECG) is an easy and inexpensive tool for finding risk patients. A blood sample for DNA extraction was obtained in a Finnish family with 43 members; systematic 12-lead ECG analysis was performed in 13 of the family members carrying an SCN5A D1275N mutation. Conduction defects and supraventricular arrhythmias, including atrial fibrillation/flutter, atrioventricular nodal re-entry tachycardia (AVNRT) and junctional rhythm were searched for. Five (38%) mutation carriers had fascicular or bundle branch block, 10 had atrial arrhythmias; no ventricular arrhythmias were found. Notching of the R- and S waves - including initial QRS fragmentation - and prolonged S-wave upstroke were present in all the affected family members. Notably, four (31%) affected family members had a stroke before the age of 31 and two experienced premature death. A 12-lead ECG can be used to predict arrhythmias in SCN5A D1275N mutation carriers. Key messages The 12-lead ECG may reveal cardiac abnormalities even before clinical symptoms occur. Specific ECG findings - initial QRS fragmentation, prolonged S-wave upstroke as well as supraventricular arrhythmias - were frequently encountered in all SCN5A D1257N mutation carriers. ECG follow-up is recommended for all SCN5A D1275N mutation carriers.

  20. PHENOTYPIC VARIABILITY IN INDIVIDUALS WITH TYPE V OSTEOGENESIS IMPERFECTA WITH IDENTICAL IFITM5 MUTATIONS

    PubMed Central

    Fitzgerald, Jamie; Holden, Paul; Wright, Hollis; Wilmot, Beth; Hata, Abigail; Steiner, Robert D.; Basel, Don

    2016-01-01

    Background Osteogenesis imperfecta (OI) type V is a dominantly inherited skeletal dysplasia characterized by fractures and progressive deformity of long bones. In addition, patients often present with radial head dislocation, hyperplastic callus, and calcification of the forearm interosseous membrane. Recently, a specific mutation in the IFITM5 gene was found to be responsible for OI type V. This mutation, a C to T transition 14 nucleotides upstream from the endogenous start codon, creates a new start methionine that appears to be preferentially used by the translational machinery. However, the mechanism by which the lengthened protein results in a dominant type of OI is unknown. Methods and Results We report 7 ethnically diverse (African-American, Caucasian, Hispanic, and African) individuals with OI type V from 2 families and 2 sporadic cases. Exome sequencing failed to identify a causative mutation. Using Sanger sequencing, we found that all affected individuals in our cohort possess the c.−14 IFITM5 variant, further supporting the notion that OI type V is caused by a single, discrete mutation. Our patient cohort demonstrated inter-and intrafamilial phenotypic variability, including a father with classic OI type V whose daughter had a phenotype similar to OI type I. This clinical variability suggests that modifier genes influence the OI type V phenotype. We also confirm that the mutation creates an aberrant IFITM5 protein containing an additional 5 amino acids at the N-terminus. Conclusions The variable clinical signs in these cases illustrate the significant variability of the OI type V phenotype caused by the c.−14 IFITM5 mutation. The affected individuals are more ethnically diverse than previously reported. PMID:28824928

  1. Novel mutations in GALNT3 causing hyperphosphatemic familial tumoral calcinosis.

    PubMed

    Yancovitch, Alan; Hershkovitz, Dov; Indelman, Margareta; Galloway, Peter; Whiteford, Margo; Sprecher, Eli; Kılıç, Esra

    2011-09-01

    Hyperphosphatemic familial tumoral calcinosis (HFTC) is known to be caused by mutations in at least three genes: FGF23, GALNT3 and KL. Two families with two affected members suffering from HFTC were scrutinized for mutations in these candidate genes. We identified in both families homozygous missense mutations affecting highly conserved amino acids in GALNT3. One of the mutations is a novel mutation, whereas the second mutation was reported before in a compound heterozygous state. Our data expand the spectrum of known mutations in GALNT3 and contribute to a better understanding of the phenotypic manifestations of mutations in this gene.

  2. Depletion of a Drosophila homolog of yeast Sup35p disrupts spindle assembly, chromosome segregation, and cytokinesis during male meiosis.

    PubMed

    Basu, J; Williams, B C; Li, Z; Williams, E V; Goldberg, M L

    1998-01-01

    In the course of a genetic screen for male-sterile mutations in Drosophila affecting chromosome segregation during the meiotic divisions in spermatocytes, we identified the mutation dsup35(63D). Examination of mutant testes showed that chromosome misbehavior was a consequence of major disruptions in meiotic spindle assembly. These perturbations included problems in aster formation, separation, and migration around the nuclear envelope; aberrations in spindle organization and integrity; and disappearance of the ana/telophase central spindle, which in turn disrupts cytokinesis. The dsup35(63D) mutation is caused by a P element insertion that affects, specifically in the testis, the expression of a gene (dsup35) encoding the Drosophila homolog of the yeast Sup35p and Xenopus eRF3 proteins. These proteins are involved in the termination of polypeptide synthesis on ribosomes, but previous studies have suggested that Sup35p and closely related proteins of the same family also interact directly with microtubules. An affinity-purified antibody directed against the product of the dsup35 gene was prepared; interestingly, this antibody specifically labels primary spermatocytes in one or two discrete foci of unknown structure within the nucleoplasm. We discuss how depletion of the dsup35 gene product in spermatocytes might lead to the global disruptions in meiotic spindle assembly seen in mutant spermatocytes.

  3. Juvenile retinoschisis: a model for molecular diagnostic testing of X-linked ophthalmic disease.

    PubMed

    Sieving, P A; Yashar, B M; Ayyagari, R

    1999-01-01

    X-linked juvenile retinoschisis (RS) provides a starting point to define clinical paradigms and understand the limitations of diagnostic molecular testing. The RS phenotype is specific, but the broad severity range is clinically confusing. Molecular diagnostic testing obviates unnecessary examinations for boys at-risk and identifies carrier females who otherwise show no clinical signs. The XLRS1 gene has 6 exons of 26-196 base-pair size. Each exon is amplified by a single polymerase chain reaction and then sequenced, starting with exons 4 through 6, which contain mutation "hot spots." The 6 XLRS1 exons are sequenced serially. If alterations are found, they are compared with mutations in our > 120 XLRS families and with the > 300 mutations reported worldwide. Point mutations, small deletions, or rearrangements are identified in nearly 90% of males with a clinical diagnosis of RS. XLRS1 has very few sequence polymorphisms. Carrier-state testing produces 1 of 3 results: (1) positive, in which the woman has the same mutation as an affected male relative or known in other RS families; (2) negative, in which she lacks the mutation of her affected male relative; and (3) uninformative, in which no known mutation is identified or no information exists about the familial mutation. Molecular RS screening is an effective diagnostic tool that complements the clinician's skills for early detection of at-risk males. Useful outcomes of carrier testing depend on several factors: (1) a male relative with a clear clinical diagnosis; (2) a well-defined inheritance pattern; (3) high disease penetrance; (4) size and organization of the gene; and (5) the types of disease-associated mutations. Ethical questions include molecular diagnostic testing of young at-risk females before the age of consent, the impact of this information on the emotional health of the patient and family, and issues of employability and insurance coverage.

  4. Juvenile retinoschisis: a model for molecular diagnostic testing of X-linked ophthalmic disease.

    PubMed Central

    Sieving, P A; Yashar, B M; Ayyagari, R

    1999-01-01

    BACKGROUND AND PURPOSE: X-linked juvenile retinoschisis (RS) provides a starting point to define clinical paradigms and understand the limitations of diagnostic molecular testing. The RS phenotype is specific, but the broad severity range is clinically confusing. Molecular diagnostic testing obviates unnecessary examinations for boys at-risk and identifies carrier females who otherwise show no clinical signs. METHODS: The XLRS1 gene has 6 exons of 26-196 base-pair size. Each exon is amplified by a single polymerase chain reaction and then sequenced, starting with exons 4 through 6, which contain mutation "hot spots." RESULTS: The 6 XLRS1 exons are sequenced serially. If alterations are found, they are compared with mutations in our > 120 XLRS families and with the > 300 mutations reported worldwide. Point mutations, small deletions, or rearrangements are identified in nearly 90% of males with a clinical diagnosis of RS. XLRS1 has very few sequence polymorphisms. Carrier-state testing produces 1 of 3 results: (1) positive, in which the woman has the same mutation as an affected male relative or known in other RS families; (2) negative, in which she lacks the mutation of her affected male relative; and (3) uninformative, in which no known mutation is identified or no information exists about the familial mutation. CONCLUSIONS: Molecular RS screening is an effective diagnostic tool that complements the clinician's skills for early detection of at-risk males. Useful outcomes of carrier testing depend on several factors: (1) a male relative with a clear clinical diagnosis; (2) a well-defined inheritance pattern; (3) high disease penetrance; (4) size and organization of the gene; and (5) the types of disease-associated mutations. Ethical questions include molecular diagnostic testing of young at-risk females before the age of consent, the impact of this information on the emotional health of the patient and family, and issues of employability and insurance coverage. Images FIGURE 2A FIGURE 2B PMID:10703138

  5. Identification and in silico characterization of p.G380R substitution in FGFR3, associated with achondroplasia in a non-consanguineous Pakistani family.

    PubMed

    Ajmal, Muhammad; Mir, Asif; Shoaib, Muhammad; Malik, Salman Akbar; Nasir, Muhammad

    2017-07-05

    The dimerization efficiency of FGFR3 transmembrane domain plays a critical role in the formation of a normal skeleton through the negative regulation of bone development. Recently, gain-of-function mutations in the transmembrane domain of FGFR3 has been described associated with an aberrant negative regulation, leading to the development of achondroplasia-group disorders, including achondroplasia (ACH), hypochondroplasia (HCH) and thanatophoric dysplasia (TD). Here, we describe a non-consanguineous Pakistani family with achondroplasia to explain hereditary basis of the disease. PCR-based linkage analysis using microsatellite markers was employed to localize the disease gene. Gene specific intronic primers were used to amplify the genomic DNA from all affected as well as phenotypically healthy individuals. Amplified PCR products were then subjected to Sanger sequencing and RFLP analysis to identify a potentially pathogenic mutation. The impact of identified mutation on FGFR3 protein's structure and stability was highlighted through different bioinformatics tools. Genetic screening of the family revealed a previously reported heterozygous c.1138 G > A (p.G380R) mutation in the coding exon 8 of FGFR3 gene. Identified genetic variation was confirmed in all affected individuals while healthy individuals and controls were found genotypically normal. The results were further validated by RFLP analysis as c.1138 G > A substitution generates a unique recognition site for SfcI endonuclease. Following SfcI digestion, the electrophoretic pattern of three bands/DNA fragments for each patient is indicative of heterozygous status of the disease allele. In silico studies of the mutant FGFR3 protein predicted to adversely affect the stability of FGFR3 protein. Mutation in the transmembrane domain may adversely affect the dimerization efficiency and overall stability of the FGFR3, leading to a constitutively active protein. As a result, an uncontrolled intracellular signaling or negative bone growth regulation leads to achondroplasia. Our findings support the fact that p.G380R is a common mutation among diverse population of the world and like other countries, can be used as a molecular diagnosis marker for achondroplasia in Pakistan.

  6. FOXG1 Is Responsible for the Congenital Variant of Rett Syndrome

    PubMed Central

    Ariani, Francesca; Hayek, Giuseppe; Rondinella, Dalila; Artuso, Rosangela; Mencarelli, Maria Antonietta; Spanhol-Rosseto, Ariele; Pollazzon, Marzia; Buoni, Sabrina; Spiga, Ottavia; Ricciardi, Sara; Meloni, Ilaria; Longo, Ilaria; Mari, Francesca; Broccoli, Vania; Zappella, Michele; Renieri, Alessandra

    2008-01-01

    Rett syndrome is a severe neurodevelopmental disease caused by mutations in the X-linked gene encoding for the methyl-CpG-binding protein MeCP2. Here, we report the identification of FOXG1-truncating mutations in two patients affected by the congenital variant of Rett syndrome. FOXG1 encodes a brain-specific transcriptional repressor that is essential for early development of the telencephalon. Molecular analysis revealed that Foxg1 might also share common molecular mechanisms with MeCP2 during neuronal development, exhibiting partially overlapping expression domain in postnatal cortex and neuronal subnuclear localization. PMID:18571142

  7. Primary Ciliary Dyskinesia Caused by Homozygous Mutation in DNAL1, Encoding Dynein Light Chain 1

    PubMed Central

    Mazor, Masha; Alkrinawi, Soliman; Chalifa-Caspi, Vered; Manor, Esther; Sheffield, Val C.; Aviram, Micha; Parvari, Ruti

    2011-01-01

    In primary ciliary dyskinesia (PCD), genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility. The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Although it has long been suspected that mutations in DNAL1 encoding the ODA light chain1 might cause PCD such mutations were not found. We demonstrate here that a homozygous point mutation in this gene is associated with PCD with absent or markedly shortened ODA. The mutation (NM_031427.3: c.449A>G; p.Asn150Ser) changes the Asn at position150, which is critical for the proper tight turn between the β strand and the α helix of the leucine-rich repeat in the hydrophobic face that connects to the dynein heavy chain. The mutation reduces the stability of the axonemal dynein light chain 1 and damages its interactions with dynein heavy chain and with tubulin. This study adds another important component to understanding the types of mutations that cause PCD and provides clinical information regarding a specific mutation in a gene not yet known to be associated with PCD. PMID:21496787

  8. World distribution of the T833C/844INS68 CBS in cis double mutation: a reliable anthropological marker.

    PubMed

    Pepe, G; Vanegas, O C; Rickards, O; Giusti, B; Comeglio, P; Brunelli, T; Marcucci, R; Prisco, D; Gensini, G F; Abbate, R

    1999-02-01

    Mild hyperhomocysteinemia is associated to mutations either in cystathionine beta-synthase (CBS) or in 5,10-methylenetetrahydrofolate reductase (MTHFR) genes. In 1995, Sebastio et al. characterized a 68 bp insertion in cis with the most common CBS mutation (T833C) detected in homocystinuric patients. Recently, this double mutation has been detected in Italian and North-American controls. Compared to a group of patients affected by coronary artery disease, North-American controls showed not statistically significant difference. Moreover, Italian controls displayed a microheterogeneity in the mutant allele frequency distribution depending on their geographical origin (North or South of Italy). Aim of our study was to evaluate the prevalence of the double in cis mutation in different populations. We studied 377 healthy subjects belonging to various human groups. Genomic DNA, extracted from peripheral blood samples, was amplified using specific primers; PCR fragments were digested with Bsr I restriction enzyme to detect the double mutation. Our data show a significant heterogeneity among the populations studied, therefore this mutation turned out to be a reliable anthropogenetic marker. The distribution of the double mutation will contribute, with other DNA polymorphisms, to evaluate the genetic admixture of mixed populations such as Afro-Americans.

  9. Loss of function mutations in EPHB4 are responsible for vein of Galen aneurysmal malformation.

    PubMed

    Vivanti, Alexandre; Ozanne, Augustin; Grondin, Cynthia; Saliou, Guillaume; Quevarec, Loic; Maurey, Helène; Aubourg, Patrick; Benachi, Alexandra; Gut, Marta; Gut, Ivo; Martinovic, Jelena; Sénat, Marie Victoire; Tawk, Marcel; Melki, Judith

    2018-04-01

    See Meschia (doi:10.1093/brain/awy066) for a scientific commentary on this article.Vein of Galen aneurysmal malformation is a congenital anomaly of the cerebral vasculature representing 30% of all paediatric vascular malformations. We conducted whole exome sequencing in 19 unrelated patients presenting this malformation and subsequently screened candidate genes in a cohort of 32 additional patients using either targeted exome or Sanger sequencing. In a cohort of 51 patients, we found five affected individuals with heterozygous mutations in EPHB4 including de novo frameshift (p.His191Alafs*32) or inherited deleterious splice or missense mutations predicted to be pathogenic by in silico tools. Knockdown of ephb4 in zebrafish embryos leads to specific anomalies of dorsal cranial vessels including the dorsal longitudinal vein, which is the orthologue of the median prosencephalic vein and the embryonic precursor of the vein of Galen. This model allowed us to investigate EPHB4 loss-of-function mutations in this disease by the ability to rescue the brain vascular defect in knockdown zebrafish co-injected with wild-type, but not truncated EPHB4, mimicking the p.His191Alafs mutation. Our data showed that in both species, loss of function mutations of EPHB4 result in specific and similar brain vascular development anomalies. Recently, EPHB4 germline mutations have been reported in non-immune hydrops fetalis and in cutaneous capillary malformation-arteriovenous malformation. Here, we show that EPHB4 mutations are also responsible for vein of Galen aneurysmal malformation, indicating that heterozygous germline mutations of EPHB4 result in a large clinical spectrum. The identification of EPHB4 pathogenic mutations in patients presenting capillary malformation or vein of Galen aneurysmal malformation should lead to careful follow-up of pregnancy of carriers for early detection of anomaly of the cerebral vasculature in order to propose optimal neonatal care. Endovascular embolization indeed greatly improved the prognosis of patients.

  10. Identifying pathways affected by cancer mutations.

    PubMed

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Roles of s3 site residues of nattokinase on its activity and substrate specificity.

    PubMed

    Wu, Shuming; Feng, Chi; Zhong, Jin; Huan, Liandong

    2007-09-01

    Nattokinase (Subtilisin NAT, NK) is a bacterial serine protease with high fibrinolytic activity. To probe their roles on protease activity and substrate specificity, three residues of S3 site (Gly(100), Ser(101) and Leu(126)) were mutated by site-directed mutagenesis. Kinetics parameters of 20 mutants were measured using tetrapeptides as substrates, and their fibrinolytic activities were determined by fibrin plate method. Results of mutation analysis showed that Gly(100) and Ser(101) had reverse steric and electrostatic effects. Residues with bulky or positively charged side chains at position 100 decreased the substrate binding and catalytic activity drastically, while residues with the same characters at position 101 could obviously enhance protease and fibrinolytic activity of NK. Mutation of Leu(126) might impair the structure of the active cleft and drastically decreased the activity of NK. Kinetics studies of the mutants showed that S3 residues were crucial to keep protease activity while they moderately affected substrate specificity of NK. The present study provided some original insight into the P3-S3 interaction in NK and other subtilisins, as well as showed successful protein engineering cases to improve NK as a potential therapeutic agent.

  12. CDCA7L and Mechanisms of Increased Male Bias in Glioma

    DTIC Science & Technology

    2016-05-01

    interested in whether NF1 mutations affect the molecular function of CDCA7L and whether sex -specific treatments may be more effective for treating these...astrocyte phenotypes, and catecholamine levels. 2. Keywords Neurofibromatosis type 1 CDCA7L astrocytoma glioblastoma MAO catecholamines sex ...2015 NF Research Symposium as described under (6) Products. We are revising a manuscript based on his findings so far on the sex -specific activity

  13. In vivo preservation of steroid specificity in CWR22 xenografts having a mutated androgen receptor.

    PubMed

    Shao, Tsang C; Li, Huiling; Eid, Wael; Ittmann, Michael; Unni, Emmanual; Cunningham, Glenn R

    2003-09-15

    In vitro studies of CWR22 tumor cells lack steroid specificity. We sought to determine if CWR22 xenografts also lack steroid specificity. We injected castrated nude mice with CWR22 tumor cells (6 x 10(6) cells) and implanted Alzet osmotic pumps that delivered approximately 1 mg steroid/kg body weight/day. Serum PSA levels were detectable in intact mice and castrated mice treated with testosterone (T), but not in those treated with estradiol (E(2)), progesterone (P), or flutamide (F). T maintained mean tumor weight similar to that in intact mice (P = NS). We observed no tumors in castrated mice or mice treated with E(2), P, or F, and tumor histology was consistent with weights. The mutation of the androgen receptor (H874Y) that occurs in the CWR22 xenograft model of human prostate cancer does not significantly affect in vivo steroid specificity for E(2), P, or F. Copyright 2003 Wiley-Liss, Inc.

  14. Strain of Escherichia coli with a temperature-sensitive mutation affecting ribosomal ribonucleic acid accumulation.

    PubMed Central

    Frey, T; Newlin, L L; Atherly, A G

    1975-01-01

    A mutant of Escherichia coli has been isolated that has a temperature-sensitive mutation that results in specific loss of ribosomal ribonucleic acid (RNA) synthesis and some reduction in messenger RNA synthesis. When the strain was grown in glucose medium at a restrictive temperature, RNA accumulation ceased, but both messenger RNA and protein synthesis continued for an extended time. Because carbon metabolism was slowed drastically when strain AA-157 was placed at the restrictive temperature, this phenotype can be compared with carbon depletion conditions present during diauxic lag. However, the phenotype of mutant AA-157 differs from shift-down conditions in that guanosine-3',5'-tetraphosphate levels are unaffected; therefore, a different site is affected. This mutant strain (AA-157) thus shows many characteristics similar to an aldolase mutant previously reported (Böck and Neidhardt, 1966). However, the mutation occurred in a different position on the E. coli genetic map, and furthermore, aldolase was not temperature sensitive in strain AA-157. In this paper we present a study of macromolecular biosynthesis in this mutant. PMID:1090609

  15. Multiple Acyl-CoA Dehydrogenation Deficiency (Glutaric Aciduria Type II) with a Novel Mutation of Electron Transfer Flavoprotein-Dehydrogenase in a Cat.

    PubMed

    Wakitani, Shoichi; Torisu, Shidow; Yoshino, Taiki; Hattanda, Kazuhisa; Yamato, Osamu; Tasaki, Ryuji; Fujita, Haruo; Nishino, Koichiro

    2014-01-01

    Multiple acyl-CoA dehydrogenation deficiency (MADD; also known as glutaric aciduria type II) is a human autosomal recessive disease classified as one of the mitochondrial fatty-acid oxidation disorders. MADD is caused by a defect in the electron transfer flavoprotein (ETF) or ETF dehydrogenase (ETFDH) molecule, but as yet, inherited MADD has not been reported in animals. Here we present the first report of MADD in a cat. The affected animal presented with symptoms characteristic of MADD including hypoglycemia, hyperammonemia, vomiting, diagnostic organic aciduria, and accumulation of medium- and long-chain fatty acids in plasma. Treatment with riboflavin and L-carnitine ameliorated the symptoms. To detect the gene mutation responsible for MADD in this case, we determined the complete cDNA sequences of feline ETFα, ETFβ, and ETFDH. Finally, we identified the feline patient-specific mutation, c.692T>G (p.F231C) in ETFDH. The affected animal only carries mutant alleles of ETFDH. p.F231 in feline ETFDH is completely conserved in eukaryotes, and is located on the apical surface of ETFDH, receiving electrons from ETF. This study thus identified the mutation strongly suspected to have been the cause of MADD in this cat.

  16. Loss-of-Function Mutations in CAST Cause Peeling Skin, Leukonychia, Acral Punctate Keratoses, Cheilitis, and Knuckle Pads

    PubMed Central

    Lin, Zhimiao; Zhao, Jiahui; Nitoiu, Daniela; Scott, Claire A.; Plagnol, Vincent; Smith, Frances J.D.; Wilson, Neil J.; Cole, Christian; Schwartz, Mary E.; McLean, W.H. Irwin; Wang, Huijun; Feng, Cheng; Duo, Lina; Zhou, Eray Yihui; Ren, Yali; Dai, Lanlan; Chen, Yulan; Zhang, Jianguo; Xu, Xun; O’Toole, Edel A.; Kelsell, David P.; Yang, Yong

    2015-01-01

    Calpastatin is an endogenous specific inhibitor of calpain, a calcium-dependent cysteine protease. Here we show that loss-of-function mutations in calpastatin (CAST) are the genetic causes of an autosomal-recessive condition characterized by generalized peeling skin, leukonychia, acral punctate keratoses, cheilitis, and knuckle pads, which we propose to be given the acronym PLACK syndrome. In affected individuals with PLACK syndrome from three families of different ethnicities, we identified homozygous mutations (c.607dup, c.424A>T, and c.1750delG) in CAST, all of which were predicted to encode truncated proteins (p.Ile203Asnfs∗8, p.Lys142∗, and p.Val584Trpfs∗37). Immunohistochemistry shows that staining of calpastatin is reduced in skin from affected individuals. Transmission electron microscopy revealed widening of intercellular spaces with chromatin condensation and margination in the upper stratum spinosum in lesional skin, suggesting impaired intercellular adhesion as well as keratinocyte apoptosis. A significant increase of apoptotic keratinocytes was also observed in TUNEL assays. In vitro studies utilizing siRNA-mediated CAST knockdown revealed a role for calpastatin in keratinocyte adhesion. In summary, we describe PLACK syndrome, as a clinical entity of defective epidermal adhesion, caused by loss-of-function mutations in CAST. PMID:25683118

  17. Nonspecific Symbiosis Between Sophora flavescens and Different Rhizobia.

    PubMed

    Liu, Yuan Hui; Jiao, Yin Shan; Liu, Li Xue; Wang, Dan; Tian, Chang Fu; Wang, En Tao; Wang, Lei; Chen, Wen Xin; Wu, Shang Ying; Guo, Bao Lin; Guan, Zha Gen; Poinsot, Véréna; Chen, Wen Feng

    2018-02-01

    We explored the genetic basis of the promiscuous symbiosis of Sophora flavescens with diverse rhizobia. To determine the impact of Nod factors (NFs) on the symbiosis of S. flavescens, nodulation-related gene mutants of representative rhizobial strains were generated. Strains with mutations in common nodulation genes (nodC, nodM, and nodE) failed to nodulate S. flavescens, indicating that the promiscuous nodulation of this plant is strictly dependent on the basic NF structure. Mutations of the NF decoration genes nodH, nodS, nodZ, and noeI did not affect the nodulation of S. flavescens, but these mutations affected the nitrogen-fixation efficiency of nodules. Wild-type Bradyrhizobium diazoefficiens USDA110 cannot nodulate S. flavescens, but we obtained 14 Tn5 mutants of B. diazoefficiens that nodulated S. flavescens. This suggested that the mutations had disrupted a negative regulator that prevents nodulation of S. flavescens, leading to nonspecific nodulation. For Ensifer fredii CCBAU 45436 mutants, the minimal NF structure was sufficient for nodulation of soybean and S. flavescens. In summary, the mechanism of promiscuous symbiosis of S. flavescens with rhizobia might be related to its nonspecific recognition of NF structures, and the host specificity of rhizobia may also be controlled by currently unknown nodulation-related genes.

  18. A CNGB1 Frameshift Mutation in Papillon and Phalène Dogs with Progressive Retinal Atrophy

    PubMed Central

    Ahonen, Saija J.; Arumilli, Meharji; Lohi, Hannes

    2013-01-01

    Progressive retinal degenerations are the most common causes of complete blindness both in human and in dogs. Canine progressive retinal atrophy (PRA) or degeneration resembles human retinitis pigmentosa (RP) and is characterized by a progressive loss of rod photoreceptor cells followed by a loss of cone function. The primary clinical signs are detected as vision impairment in a dim light. Although several genes have been associated with PRAs, there are still PRAs of unknown genetic cause in many breeds, including Papillons and Phalènes. We have performed a genome wide association and linkage studies in cohort of 6 affected Papillons and Phalènes and 14 healthy control dogs to map a novel PRA locus on canine chromosome 2, with a 1.9 Mb shared homozygous region in the affected dogs. Parallel exome sequencing of a trio identified an indel mutation, including a 1-bp deletion, followed by a 6-bp insertion in the CNGB1 gene. This mutation causes a frameshift and premature stop codon leading to probable nonsense mediated decay (NMD) of the CNGB1 mRNA. The mutation segregated with the disease and was confirmed in a larger cohort of 145 Papillons and Phalènes (PFisher = 1.4×10−8) with a carrier frequency of 17.2 %. This breed specific mutation was not present in 334 healthy dogs from 10 other breeds or 121 PRA affected dogs from 44 other breeds. CNGB1 is important for the photoreceptor cell function its defects have been previously associated with retinal degeneration in both human and mouse. Our study indicates that a frameshift mutation in CNGB1 is a cause of PRA in Papillons and Phalènes and establishes the breed as a large functional animal model for further characterization of retinal CNGB1 biology and possible retinal gene therapy trials. This study enables also the development of a genetic test for breeding purposes. PMID:24015210

  19. Rapid assays for lectin toxicity and binding changes that reflect altered glycosylation in mammalian cells.

    PubMed

    Stanley, Pamela; Sundaram, Subha

    2014-06-03

    Glycosylation engineering is used to generate glycoproteins, glycolipids, or proteoglycans with a more defined complement of glycans on their glycoconjugates. For example, a mammalian cell glycosylation mutant lacking a specific glycosyltransferase generates glycoproteins, and/or glycolipids, and/or proteoglycans with truncated glycans missing the sugar transferred by that glycosyltransferase, as well as those sugars that would be added subsequently. In some cases, an alternative glycosyltransferase may then use the truncated glycans as acceptors, thereby generating a new or different glycan subset in the mutant cell. Another type of glycosylation mutant arises from gain-of-function mutations that, for example, activate a silent glycosyltransferase gene. In this case, glycoconjugates will have glycans with additional sugar(s) that are more elaborate than the glycans of wild type cells. Mutations in other genes that affect glycosylation, such as nucleotide sugar synthases or transporters, will alter the glycan complement in more general ways that usually affect several types of glycoconjugates. There are now many strategies for generating a precise mutation in a glycosylation gene in a mammalian cell. Large-volume cultures of mammalian cells may also generate spontaneous mutants in glycosylation pathways. This article will focus on how to rapidly characterize mammalian cells with an altered glycosylation activity. The key reagents for the protocols described are plant lectins that bind mammalian glycans with varying avidities, depending on the specific structure of those glycans. Cells with altered glycosylation generally become resistant or hypersensitive to lectin toxicity, and have reduced or increased lectin or antibody binding. Here we describe rapid assays to compare the cytotoxicity of lectins in a lectin resistance test, and the binding of lectins or antibodies by flow cytometry in a glycan-binding assay. Based on these tests, glycosylation changes expressed by a cell can be revealed, and glycosylation mutants classified into phenotypic groups that may reflect a loss-of-function or gain-of-function mutation in a specific gene involved in glycan synthesis. Copyright © 2014 John Wiley & Sons, Inc.

  20. Novel compound heterozygous mutations in CNGA1in a Chinese family affected with autosomal recessive retinitis pigmentosa by targeted sequencing.

    PubMed

    Wang, Min; Gan, Dekang; Huang, Xin; Xu, Gezhi

    2016-07-08

    About 37 genes have been reported to be involved in autosomal recessive retinitis pigmentosa, a hereditary retinal disease. However, causative genes remain unclear in a lot of cases. Two sibs of a Chinese family with ocular disease were diagnosed in Eye and ENT Hospital of Fudan University. Targeted sequencing performed on proband to screen pathogenic mutations. PCR combined Sanger sequencing then performed on eight family members including two affected and six unaffected individuals to determine whether mutations cosegregate with disease. Two affected members exhibited clinical features that fit the criteria of autosomal recessive retinitis pigmentosa. Two heterozygous mutations (NM000087, p.Y82X and p.L89fs) in CNGA1 were revealed on proband. Affected members were compound heterozygotes for the two mutations whereas unaffected members either had no mutation or were heterozygote carriers for only one of the two mutations. That is, these mutations cosegregate with autosomal recessive retinitis pigmentosa. Compound heterozygous mutations (NM000087, p.Y82X and p.L89fs) in exon 6 of CNGA1are pathogenic mutations in this Chinese family. Of which, p.Y82X is firstly reported in patient with autosomal recessive retinitis pigmentosa.

  1. A targeted mutation within the feline leukemia virus (FeLV) envelope protein immunosuppressive domain to improve a canarypox virus-vectored FeLV vaccine.

    PubMed

    Schlecht-Louf, Géraldine; Mangeney, Marianne; El-Garch, Hanane; Lacombe, Valérie; Poulet, Hervé; Heidmann, Thierry

    2014-01-01

    We previously delineated a highly conserved immunosuppressive (IS) domain within murine and primate retroviral envelope proteins that is critical for virus propagation in vivo. The envelope-mediated immunosuppression was assessed by the ability of the proteins, when expressed by allogeneic tumor cells normally rejected by engrafted mice, to allow these cells to escape, at least transiently, immune rejection. Using this approach, we identified key residues whose mutation (i) specifically abolishes immunosuppressive activity without affecting the "mechanical" function of the envelope protein and (ii) significantly enhances humoral and cellular immune responses elicited against the virus. The objective of this work was to study the immunosuppressive activity of the envelope protein (p15E) of feline leukemia virus (FeLV) and evaluate the effect of its abolition on the efficacy of a vaccine against FeLV. Here we demonstrate that the FeLV envelope protein is immunosuppressive in vivo and that this immunosuppressive activity can be "switched off" by targeted mutation of a specific amino acid. As a result of the introduction of the mutated envelope sequence into a previously well characterized canarypox virus-vectored vaccine (ALVAC-FeLV), the frequency of vaccine-induced FeLV-specific gamma interferon (IFN-γ)-producing cells was increased, whereas conversely, the frequency of vaccine-induced FeLV-specific interleukin-10 (IL-10)-producing cells was reduced. This shift in the IFN-γ/IL-10 response was associated with a higher efficacy of ALVAC-FeLV against FeLV infection. This study demonstrates that FeLV p15E is immunosuppressive in vivo, that the immunosuppressive domain of p15E can modulate the FeLV-specific immune response, and that the efficacy of FeLV vaccines can be enhanced by inhibiting the immunosuppressive activity of the IS domain through an appropriate mutation.

  2. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    PubMed

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Twenty years of audiology in a patient with Norrie disease.

    PubMed

    Halpin, Chris; Sims, Katherine

    2008-11-01

    To describe disease progression and treatment outcomes over a 20-year period (ages 5-25) in a young man with Norrie disease (occuloacousticocerebral dysplasia), ND; OMIM #310600. Affected individuals are born blind and develop progressive sensory loss with onset in adolescence. This disease is X-linked and has been associated with mutations of the NDP gene (Xp11.4). The patient was followed using repeated audiograms, as well as reports of educational progress and hearing aid use. The specific mutation was found by molecular analysis. The patient demonstrated progressive sensory loss with good preservation of word recognition. The loss was initially high frequency and asymmetric in adolescence and became more severe, more symmetric and affected practically all frequencies by the end of childhood. Educational progress was affected by the cognitive effects of the syndrome, and hearing aid use was very effective. A bilateral progressive sensory loss with good preservation of word recognition was documented in detail. The residual word recognition supported good use of hearing aids in this case.

  4. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing

    PubMed Central

    Foster, Patricia L.; Lee, Heewook; Popodi, Ellen; Townes, Jesse P.; Tang, Haixu

    2015-01-01

    A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1–2 × 10−3 mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3′ base can affect the mutability of a purine by oxidative damage by as much as eightfold. PMID:26460006

  5. Benzo[a]pyrene, Aflatoxine B1 and Acetaldehyde Mutational Patterns in TP53 Gene Using a Functional Assay: Relevance to Human Cancer Aetiology

    PubMed Central

    Paget, Vincent; Lechevrel, Mathilde; André, Véronique; Le Goff, Jérémie; Pottier, Didier; Billet, Sylvain; Garçon, Guillaume; Shirali, Pirouz; Sichel, François

    2012-01-01

    Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B1 exposure. Likewise G>T transversions in codons 157 and 158 have been related to tobacco exposure in human lung cancers. However, controversies remain about the interpretation of TP53 mutational pattern in tumours as the fingerprint of genotoxin exposure. By using a functional assay, the Functional Analysis of Separated Alleles in Yeast (FASAY), the present study depicts the mutational pattern of TP53 in normal human fibroblasts after in vitro exposure to well-known carcinogens: benzo[a]pyrene, aflatoxin B1 and acetaldehyde. These in vitro patterns of mutations were then compared to those found in human tumours by using the IARC database of TP53 mutations. The results show that the TP53 mutational patterns found in human tumours can be only partly ascribed to genotoxin exposure. A complex interplay between the functional impact of the mutations on p53 phenotype and the cancer natural history may affect these patterns. However, our results strongly support that genotoxins exposure plays a major role in the aetiology of the considered cancers. PMID:22319594

  6. Effects on interaction kinetics of mutations at the VH-VL interface of Fabs depend on the structural context.

    PubMed

    Khalifa, M B; Weidenhaupt, M; Choulier, L; Chatellier, J; Rauffer-Bruyère, N; Altschuh, D; Vernet, T

    2000-01-01

    The influence of framework residues belonging to VH and VL modules of antibody molecules on antigen binding remains poorly understood. To investigate the functional role of such residues, we have performed semi-conservative amino acid replacements at the VH-VL interface. This work was carried out with (i) variants of the same antibody and (ii) with antibodies of different specificities (Fab fragments 145P and 1F1h), in order to check if functional effects are additive and/or similar for the two antibodies. Interaction kinetics of Fab mutants with peptide and protein antigens were measured using a BIACORE instrument. The substitutions introduced at the VH-VL interface had no significant effects on k(a) but showed small, significant effects on k(d). Mutations in the VH module affected k(d) not only for the two different antibodies but also for variants of the same antibody. These effects varied both in direction and in magnitude. In the VL module, the double mutation F(L37)L-Q(L38)L, alone or in combination with other mutations, consistently decreased k(d) about two-fold in Fab 145P. Other mutations in the VL module had no effect on k(d) in 145P, but always decreased k(d) in 1F1h. Moreover, in both systems, small-magnitude non-additive effects on k(d) were observed, but affinity variations seemed to be limited by a threshold. When comparing functional effects in antibodies of different specificity, no general rules could be established. In addition, no clear relationship could be pointed out between the nature of the amino acid change and the observed functional effect. Our results show that binding kinetics are affected by alteration of framework residues remote from the binding site, although these effects are unpredictable for most of the studied changes. Copyright 2000 John Wiley & Sons, Ltd.

  7. Dynamic of Mutational Events in Variable Number Tandem Repeats of Escherichia coli O157:H7

    PubMed Central

    Bustamante, A. V.; Sanso, A. M.; Segura, D. O.; Parma, A. E.; Lucchesi, P. M. A.

    2013-01-01

    VNTRs regions have been successfully used for bacterial subtyping; however, the hypervariability in VNTR loci is problematic when trying to predict the relationships among isolates. Since few studies have examined the mutation rate of these markers, our aim was to estimate mutation rates of VNTRs specific for verotoxigenic E. coli O157:H7. The knowledge of VNTR mutational rates and the factors affecting them would make MLVA more effective for epidemiological or microbial forensic investigations. For this purpose, we analyzed nine loci performing parallel, serial passage experiments (PSPEs) on 9 O157:H7 strains. The combined 9 PSPE population rates for the 8 mutating loci ranged from 4.4 × 10−05 to 1.8 × 10−03 mutations/generation, and the combined 8-loci mutation rate was of 2.5 × 10−03 mutations/generation. Mutations involved complete repeat units, with only one point mutation detected. A similar proportion between single and multiple repeat changes was detected. Of the 56 repeat mutations, 59% were insertions and 41% were deletions, and 72% of the mutation events corresponded to O157-10 locus. For alleles with up to 13 UR, a constant and low mutation rate was observed; meanwhile longer alleles were associated with higher and variable mutation rates. Our results are useful to interpret data from microevolution and population epidemiology studies and particularly point out that the inclusion or not of O157-10 locus or, alternatively, a differential weighting data according to the mutation rates of loci must be evaluated in relation with the objectives of the proposed study. PMID:24093095

  8. The Importance of a Gatekeeper Residue on the Aggregation of Transthyretin

    PubMed Central

    Sant'Anna, Ricardo; Braga, Carolina; Varejão, Nathalia; Pimenta, Karinne M.; Graña-Montes, Ricardo; Alves, Aline; Cortines, Juliana; Cordeiro, Yraima; Ventura, Salvador; Foguel, Debora

    2014-01-01

    Protein aggregation into β-sheet-enriched amyloid fibrils is associated with an increasing number of human disorders. The adoption of such amyloid conformations seems to constitute a generic property of polypeptide chains. Therefore, during evolution, proteins have adopted negative design strategies to diminish their intrinsic propensity to aggregate, including enrichment of gatekeeper charged residues at the flanks of hydrophobic aggregation-prone segments. Wild type transthyretin (TTR) is responsible for senile systemic amyloidosis, and more than 100 mutations in the TTR gene are involved in familial amyloid polyneuropathy. The TTR 26–57 segment bears many of these aggressive amyloidogenic mutations as well as the binding site for heparin. We demonstrate here that Lys-35 acts as a gatekeeper residue in TTR, strongly decreasing its amyloidogenic potential. This protective effect is sequence-specific because Lys-48 does not affect TTR aggregation. Lys-35 is part of the TTR basic heparin-binding motif. This glycosaminoglycan blocks the protective effect of Lys-35, probably by neutralization of its side chain positive charge. A K35L mutation emulates this effect and results in the rapid self-assembly of the TTR 26–57 region into amyloid fibrils. This mutation does not affect the tetrameric protein stability, but it strongly increases its aggregation propensity. Overall, we illustrate how TTR is yet another amyloidogenic protein exploiting negative design to prevent its massive aggregation, and we show how blockage of conserved protective features by endogenous factors or mutations might result in increased disease susceptibility. PMID:25086037

  9. Rare missense mutations in P2RY11 in narcolepsy with cataplexy.

    PubMed

    Degn, Matilda; Dauvilliers, Yves; Dreisig, Karin; Lopez, Régis; Pfister, Corinne; Pradervand, Sylvain; Rahbek Kornum, Birgitte; Tafti, Mehdi

    2017-06-01

    The sleep disorder narcolepsy with cataplexy is characterized by a highly specific loss of hypocretin (orexin) neurons, leading to the hypothesis that the condition is caused by an immune or autoimmune mechanism. All genetic variants associated with narcolepsy are immune-related. Among these are single nucleotide polymorphisms in the P2RY11-EIF3G locus. It is unknown how these genetic variants affect narcolepsy pathogenesis and whether the effect is directly related to P2Y11 signalling or EIF3G function. Exome sequencing in 18 families with at least two affected narcolepsy with cataplexy subjects revealed non-synonymous mutations in the second exon of P2RY11 in two families, and P2RY11 re-sequencing in 250 non-familial cases and 135 healthy control subjects revealed further six different non-synonymous mutations in the second exon of P2RY11 in seven patients. No mutations were found in healthy controls. Six of the eight narcolepsy-associated P2Y11 mutations resulted in significant functional deficits in P2Y11 signalling through both Ca2+ and cAMP signalling pathways. In conclusion, our data show that decreased P2Y11 signalling plays an important role in the development of narcolepsy with cataplexy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Mutations of CDKL5 Cause a Severe Neurodevelopmental Disorder with Infantile Spasms and Mental Retardation

    PubMed Central

    Weaving, Linda S.; Christodoulou, John; Williamson, Sarah L.; Friend, Kathie L.; McKenzie, Olivia L. D.; Archer, Hayley; Evans, Julie; Clarke, Angus; Pelka, Gregory J.; Tam, Patrick P. L.; Watson, Catherine; Lahooti, Hooshang; Ellaway, Carolyn J.; Bennetts, Bruce; Leonard, Helen; Gécz, Jozef

    2004-01-01

    Rett syndrome (RTT) is a severe neurodevelopmental disorder caused, in most classic cases, by mutations in the X-linked methyl-CpG-binding protein 2 gene (MECP2). A large degree of phenotypic variation has been observed in patients with RTT, both those with and without MECP2 mutations. We describe a family consisting of a proband with a phenotype that showed considerable overlap with that of RTT, her identical twin sister with autistic disorder and mild-to-moderate intellectual disability, and a brother with profound intellectual disability and seizures. No pathogenic MECP2 mutations were found in this family, and the Xq28 region that contains the MECP2 gene was not shared by the affected siblings. Three other candidate regions were identified by microsatellite mapping, including 10.3 Mb at Xp22.31-pter between Xpter and DXS1135, 19.7 Mb at Xp22.12-p22.11 between DXS1135 and DXS1214, and 16.4 Mb at Xq21.33 between DXS1196 and DXS1191. The ARX and CDKL5 genes, both of which are located within the Xp22 region, were sequenced in the affected family members, and a deletion of nucleotide 183 of the coding sequence (c.183delT) was identified in CDKL5 in the affected family members. In a screen of 44 RTT cases, a single splice-site mutation, IVS13-1G→A, was identified in a girl with a severe phenotype overlapping RTT. In the mouse brain, Cdkl5 expression overlaps—but is not identical to—that of Mecp2, and its expression is unaffected by the loss of Mecp2. These findings confirm CDKL5 as another locus associated with epilepsy and X-linked mental retardation. These results also suggest that mutations in CDKL5 can lead to a clinical phenotype that overlaps RTT. However, it remains to be determined whether CDKL5 mutations are more prevalent in specific clinical subgroups of RTT or in other clinical presentations. PMID:15492925

  11. Expressivity of hearing loss in cases with Usher syndrome type IIA.

    PubMed

    Sadeghi, André M; Cohn, Edward S; Kimberling, William J; Halvarsson, Glenn; Möller, Claes

    2013-12-01

    The purpose of this study was to compare the genotype/phenotype relationship between siblings with identical USH2A pathologic mutations and the consequent audiologic phenotypes, in particular degree of hearing loss (HL). Decade audiograms were also compared among two groups of affected subjects with different mutations of USH2A. DNA samples from patients with Usher syndrome type II were analysed. The audiological features of patients and affected siblings with USH2A mutations were also examined to identify genotype-phenotype correlations. Genetic and audiometric examinations were performed in 18 subjects from nine families with Usher syndrome type IIA. Three different USH2A mutations were identified in the affected subjects. Both similarities and differences of the auditory phenotype were seen in families with several affected siblings. A variable degree of hearing loss, ranging from mild to profound, was observed among affected subjects. No significant differences in hearing thresholds were found the group of affected subjects with different pathological mutations. Our results indicate that mutations in the USH2A gene and the resulting phenotype are probably modulated by other variables, such as modifying genes, epigenetics or environmental factors which may be of importance for better understanding the etiology of Usher syndrome.

  12. Two truncating USH3A mutations, including one novel, in a German family with Usher syndrome.

    PubMed

    Ebermann, Inga; Wilke, Robert; Lauhoff, Thomas; Lübben, Dirk; Zrenner, Eberhart; Bolz, Hanno Jörn

    2007-08-30

    To identify the genetic defect in a German family with Usher syndrome (USH) and linkage to the USH3A locus. DNA samples of five family members (both parents and the three patients) were genotyped with polymorphic microsatellite markers specific for eight USH genes. Three affected family members underwent detailed ocular and audiologic characterization. Symptoms in the patients were compatible with Usher syndrome and show intrafamilial variation, for both hearing loss (ranging from severe to profound with non-linear progression) and vision. Genotyping of microsatellite markers for the different USH loci was in line with a defect in the USH3A gene on chromosome 3q25. Sequence analysis of the USH3A gene revealed two truncating mutations; c.149_152delCAGGinsTGTCCAAT, which has been described previously, and a novel mutation, c.502_503insA, segregating with the phenotype. To date, only 11 USH3A mutations have been described. This is the first description of a German family with USH due to USH3A mutations, including one novel. Our findings indicate that also in the Central European population, USH3A mutations should be considered in cases of USH.

  13. Autosomal-dominant Meesmann epithelial corneal dystrophy without an exon mutation in the keratin-3 or keratin-12 gene in a Chinese family.

    PubMed

    Cao, Wei; Yan, Ming; Hao, QianYun; Wang, ShuLin; Wu, LiHua; Liu, Qing; Li, MingYan; Biddle, Fred G; Wu, Wei

    2013-04-01

    Meesmann epithelial corneal dystrophy (MECD) is a dominantly inherited disorder, characterized by fragility of the anterior corneal epithelium and formation of intraepithelial microcysts. It has been described in a number of different ancestral groups. To date, all reported cases of MECD have been associated with either a single mutation in one exon of the keratin-3 gene (KRT3) or a single mutation in one of two exons of the keratin-12 gene (KRT12). Each mutation leads to a predicted amino acid change in the respective keratin-3 or keratin-12 proteins that combine to form the corneal-specific heterodimeric intermediate filament protein. This case report describes a four-generation Chinese kindred with typical autosomal-dominant MECD. Exon sequencing of KRT3 and KRT12 in six affected and eight unaffected individuals (including two spouses) did not detect any mutations or nucleotide sequence variants. This kindred demonstrates that single mis-sense mutations may be sufficient but are not required in all individuals with the MECD phenotype. It provides a unique opportunity to investigate further genomic and functional heterogeneity in MECD.

  14. Multiple endocrine neoplasia type 1 (MEN1): An update of 208 new germline variants reported in the last nine years.

    PubMed

    Concolino, Paola; Costella, Alessandra; Capoluongo, Ettore

    2016-01-01

    This review will focus on the germline MEN1 mutations that have been reported in patients with MEN1 and other hereditary endocrine disorders from 2007 to September 2015. A comprehensive review regarding the analysis of 1336 MEN1 mutations reported in the first decade following the gene's identification was performed by Lemos and Thakker in 2008. No other similar papers are available in literature apart from these data. We also checked for the list of Locus-Specific DataBases (LSDBs) and we found five MEN1 free-online mutational databases. 151 articles from the NCBI PubMed literature database were read and evaluated and a total of 75 MEN1 variants were found. On the contrary, 67, 22 and 44 novel MEN1 variants were obtained from ClinVar, MEN1 at Café Variome and HGMD (The Human Gene Mutation Database) databases respectively. A final careful analysis of MEN1 mutations affecting the coding region was performed. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A Recurrent Mutation in PARK2 Is Associated with Familial Lung Cancer

    PubMed Central

    Xiong, Donghai; Wang, Yian; Kupert, Elena; Simpson, Claire; Pinney, Susan M.; Gaba, Colette R.; Mandal, Diptasri; Schwartz, Ann G.; Yang, Ping; de Andrade, Mariza; Pikielny, Claudio; Byun, Jinyoung; Li, Yafang; Stambolian, Dwight; Spitz, Margaret R.; Liu, Yanhong; Amos, Christopher I.; Bailey-Wilson, Joan E.; Anderson, Marshall; You, Ming

    2015-01-01

    PARK2, a gene associated with Parkinson disease, is a tumor suppressor in human malignancies. Here, we show that c.823C>T (p.Arg275Trp), a germline mutation in PARK2, is present in a family with eight cases of lung cancer. The resulting amino acid change, p.Arg275Trp, is located in the highly conserved RING finger 1 domain of PARK2, which encodes an E3 ubiquitin ligase. Upon further analysis, the c.823C>T mutation was detected in three additional families affected by lung cancer. The effect size for PARK2 c.823C>T (odds ratio = 5.24) in white individuals was larger than those reported for variants from lung cancer genome-wide association studies. These data implicate this PARK2 germline mutation as a genetic susceptibility factor for lung cancer. Our results provide a rationale for further investigations of this specific mutation and gene for evaluation of the possibility of developing targeted therapies against lung cancer in individuals with PARK2 variants by compensating for the loss-of-function effect caused by the associated variation. PMID:25640678

  16. A novel gene for Usher syndrome type 2: mutations in the long isoform of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss.

    PubMed

    Ebermann, Inga; Scholl, Hendrik P N; Charbel Issa, Peter; Becirovic, Elvir; Lamprecht, Jürgen; Jurklies, Bernhard; Millán, José M; Aller, Elena; Mitter, Diana; Bolz, Hanno

    2007-04-01

    Usher syndrome is an autosomal recessive condition characterized by sensorineural hearing loss, variable vestibular dysfunction, and visual impairment due to retinitis pigmentosa (RP). The seven proteins that have been identified for Usher syndrome type 1 (USH1) and type 2 (USH2) may interact in a large protein complex. In order to identify novel USH genes, we followed a candidate strategy, assuming that mutations in proteins interacting with this "USH network" may cause Usher syndrome as well. The DFNB31 gene encodes whirlin, a PDZ scaffold protein with expression in both hair cell stereocilia and retinal photoreceptor cells. Whirlin represents an excellent candidate for USH2 because it binds to Usherin (USH2A) and VLGR1b (USH2C). Genotyping of microsatellite markers specific for the DFNB31 gene locus on chromosome 9q32 was performed in a German USH2 family that had been excluded for all known USH loci. Patients showed common haplotypes. Sequence analysis of DFNB31 revealed compound heterozygosity for a nonsense mutation, p.Q103X, in exon 1, and a mutation in the splice donor site of exon 2, c.837+1G>A. DFNB31 mutations appear to be a rare cause of Usher syndrome, since no mutations were identified in an additional 96 USH2 patients. While mutations in the C-terminal half of whirlin have previously been reported in non-syndromic deafness (DFNB31), both alterations identified in our USH2 family affect the long protein isoform. We propose that mutations causing Usher syndrome are probably restricted to exons 1-6 that are specific for the long isoform and probably crucial for retinal function. We describe a novel genetic subtype for Usher syndrome, which we named USH2D and which is caused by mutations in whirlin. Moreover, this is the first case of USH2 that is allelic to non-syndromic deafness.

  17. Brain Region and Isoform-Specific Phosphorylation Alters Kalirin SH2 Domain Interaction Sites and Calpain Sensitivity

    PubMed Central

    Miller, Megan B.; Yan, Yan; Machida, Kazuya; Kiraly, Drew D.; Levy, Aaron D.; Wu, Yi I.; Lam, TuKiet T.; Abbott, Thomas; Koleske, Anthony J.; Eipper, Betty A.; Mains, Richard E.

    2017-01-01

    Kalirin7 (Kal7), a postsynaptic Rho GDP/GTP exchange factor (RhoGEF), plays a crucial role in long term potentiation and in the effects of cocaine on behavior and spine morphology. The KALRN gene has been linked to schizophrenia and other disorders of synaptic function. Mass spectrometry was used to quantify phosphorylation at 26 sites in Kal7 from individual adult rat nucleus accumbens and prefrontal cortex before and after exposure to acute or chronic cocaine. Region- and isoform-specific phosphorylation was observed along with region-specific effects of cocaine on Kal7 phosphorylation. Evaluation of the functional significance of multi-site phosphorylation in a complex protein like Kalirin is difficult. With the identification of five tyrosine phosphorylation (pY) sites, a panel of 71 SH2 domains was screened, identifying subsets that interacted with multiple pY sites in Kal7. In addition to this type of reversible interaction, endoproteolytic cleavage by calpain plays an essential role in long-term potentiation. Calpain cleaved Kal7 at two sites, separating the N-terminal domain, which affects spine length, and the PDZ binding motif from the GEF domain. Mutations preventing phosphorylation did not affect calpain sensitivity or GEF activity; phosphomimetic mutations at specific sites altered protein stability, increased calpain sensitivity and reduced GEF activity. PMID:28418645

  18. Novel hypomorphic mutation in IKBKG impairs NEMO-ubiquitylation causing ectodermal dysplasia, immunodeficiency, incontinentia pigmenti, and immune thrombocytopenic purpura.

    PubMed

    Ramírez-Alejo, Noé; Alcántara-Montiel, Julio C; Yamazaki-Nakashimada, Marco; Duran-McKinster, Carola; Valenzuela-León, Paola; Rivas-Larrauri, Francisco; Cedillo-Barrón, Leticia; Hernández-Rivas, Rosaura; Santos-Argumedo, Leopoldo

    2015-10-01

    NF-κB essential modulator (NEMO) is a component of the IKK complex, which participates in the activation of the NF-κB pathway. Hypomorphic mutations in the IKBKG gene result in different forms of anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) in males without affecting carrier females. Here, we describe a hypomorphic and missense mutation, designated c.916G>A (p.D306N), which affects our patient, his mother, and his sister. This mutation did not affect NEMO expression; however, an immunoprecipitation assay revealed reduced ubiquitylation upon CD40-stimulation in the patient's cells. Functional studies have demonstrated reduced phosphorylation and degradation of IκBα, affecting NF-κB recruitment into the nucleus. The patient presented with clinical features of ectodermal dysplasia, immunodeficiency, and immune thrombocytopenic purpura, the latter of which has not been previously reported in a patient with NEMO deficiency. His mother and sister displayed incontinentia pigmenti indicating that, in addition to amorphic mutations, hypomorphic mutations in NEMO can affect females. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence.

    PubMed

    Sakthivel, Srinivasan; Zatkova, Andrea; Nemethova, Martina; Surovy, Milan; Kadasi, Ludevit; Saravanan, Madurai P

    2014-05-01

    Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU-causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin. © 2014 John Wiley & Sons Ltd/University College London.

  20. Congenital nephrogenic diabetes insipidus with a novel mutation in the aquaporin 2 gene.

    PubMed

    Park, Youn Jong; Baik, Haing Woon; Cheong, Hae Il; Kang, Ju Hyung

    2014-07-01

    Congenital nephrogenic diabetes insipidus (CNDI) is a rare disorder caused by mutations of the arginine vasopressin (AVP) V2 receptor or aquaporin 2 ( AQP2 ) genes. The current study presented the case of CNDI in a 1-month-old male with a novel mutation in the AQP2 gene. The patient was referred due to the occurrence of hypernatremia and mild-intermittent fever since birth. An AVP stimulation test was compatible with CNDI as there was no significant response to desmopressin. Molecular genetic analysis demonstrated two mutations in exon 1 of the AQP2 gene: C to T transition, which resulted in a missense mutation of 108 Thr (ACG) to Met (ATG); and a 127, 128 delCA, which resulted in a deletion mutation of glutamine in position 43 at codon CAG as the first affected amino acid, with the new reading frame endign in a termination codon at position 62. The molecular genetic analysis of the parents showed that the missense mutation was inherited maternally and the deletion mutation was inherited paternally. The parents showed no signs or symptoms of CNDI, indicating autosomal recessive inheritance. The 108 Thr (ACG) to Met (ATG) mutation was confirmed as a novel mutation. Therefore, the molecular identification of the AQP2 gene has clinical significance, as early recognition of CNDI in infants that show only non-specific symptoms, can be facilitated. Thus, repeated episodes of dehydration, which may cause physical and mental retardation can be avoided.

  1. Congenital nephrogenic diabetes insipidus with a novel mutation in the aquaporin 2 gene

    PubMed Central

    PARK, YOUN JONG; BAIK, HAING WOON; CHEONG, HAE IL; KANG, JU HYUNG

    2014-01-01

    Congenital nephrogenic diabetes insipidus (CNDI) is a rare disorder caused by mutations of the arginine vasopressin (AVP) V2 receptor or aquaporin 2 (AQP2) genes. The current study presented the case of CNDI in a 1-month-old male with a novel mutation in the AQP2 gene. The patient was referred due to the occurrence of hypernatremia and mild-intermittent fever since birth. An AVP stimulation test was compatible with CNDI as there was no significant response to desmopressin. Molecular genetic analysis demonstrated two mutations in exon 1 of the AQP2 gene: C to T transition, which resulted in a missense mutation of 108Thr (ACG) to Met (ATG); and a 127, 128 delCA, which resulted in a deletion mutation of glutamine in position 43 at codon CAG as the first affected amino acid, with the new reading frame endign in a termination codon at position 62. The molecular genetic analysis of the parents showed that the missense mutation was inherited maternally and the deletion mutation was inherited paternally. The parents showed no signs or symptoms of CNDI, indicating autosomal recessive inheritance. The 108Thr (ACG) to Met (ATG) mutation was confirmed as a novel mutation. Therefore, the molecular identification of the AQP2 gene has clinical significance, as early recognition of CNDI in infants that show only non-specific symptoms, can be facilitated. Thus, repeated episodes of dehydration, which may cause physical and mental retardation can be avoided. PMID:24944815

  2. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth.

    PubMed

    Loveday, Chey; Tatton-Brown, Katrina; Clarke, Matthew; Westwood, Isaac; Renwick, Anthony; Ramsay, Emma; Nemeth, Andrea; Campbell, Jennifer; Joss, Shelagh; Gardner, McKinlay; Zachariou, Anna; Elliott, Anna; Ruark, Elise; van Montfort, Rob; Rahman, Nazneen

    2015-09-01

    Overgrowth syndromes comprise a group of heterogeneous disorders characterised by excessive growth parameters, often in association with intellectual disability. To identify new causes of human overgrowth, we have been undertaking trio-based exome sequencing studies in overgrowth patients and their unaffected parents. Prioritisation of functionally relevant genes with multiple unique de novo mutations revealed four mutations in protein phosphatase 2A (PP2A) regulatory subunit B family genes protein phosphatase 2, regulatory Subunit B', beta (PPP2R5B); protein phosphatase 2, regulatory Subunit B', gamma (PPP2R5C); and protein phosphatase 2, regulatory Subunit B', delta (PPP2R5D). This observation in 3 related genes in 111 individuals with a similar phenotype is greatly in excess of the expected number, as determined from gene-specific de novo mutation rates (P = 1.43 × 10(-10)). Analysis of exome-sequencing data from a follow-up series of overgrowth probands identified a further pathogenic mutation, bringing the total number of affected individuals to 5. Heterozygotes shared similar phenotypic features including increased height, increased head circumference and intellectual disability. The mutations clustered within a region of nine amino acid residues in the aligned protein sequences (P = 1.6 × 10(-5)). We mapped the mutations onto the crystal structure of the PP2A holoenzyme complex to predict their molecular and functional consequences. These studies suggest that the mutations may affect substrate binding, thus perturbing the ability of PP2A to dephosphorylate particular protein substrates. PP2A is a major negative regulator of v-akt murine thymoma viral oncogene homolog 1 (AKT). Thus, our data further expand the list of genes encoding components of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signalling cascade that are disrupted in human overgrowth conditions. © The Author 2015. Published by Oxford University Press.

  3. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.

    PubMed

    Mazhab-Jafari, Mohammad T; Marshall, Christopher B; Smith, Matthew J; Gasmi-Seabrook, Geneviève M C; Stathopulos, Peter B; Inagaki, Fuyuhiko; Kay, Lewis E; Neel, Benjamin G; Ikura, Mitsuhiko

    2015-05-26

    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery.

  4. High-resolution melting analysis for detection of MYH9 mutations.

    PubMed

    Provaznikova, Dana; Kumstyrova, Tereza; Kotlin, Roman; Salaj, Peter; Matoska, Vaclav; Hrachovinova, Ingrid; Rittich, Simon

    2008-09-01

    May-Hegglin anomaly (MHA), Sebastian (SBS), Fechtner (FTNS) and Epstein (EPS) syndromes are rare autosomal dominant disorders with giant platelets and thrombocytopenia. Other manifestations of these disorders are combinations of the presence of granulocyte inclusions and deafness, cataracts and renal failure. Currently, MHA, SBS, FTNS and EPS are considered to be distinct clinical manifestation of a single illness caused by mutations of the MYH9 gene encoding the heavy chain of non-muscle myosin IIA (NMMHC-IIA). As the MYH9 gene has a high number of exons, it takes much time and material to use this method for the detection of MYH9 mutations. Recently, a new method has been introduced for scanning DNA mutations without the need for direct sequencing: high-resolution melting analysis (HRMA). Mutation detection with HRMA relies on the intercalation of the specific dye (LC Green plus) in double-strand DNA and fluorescence monitoring of PCR product melting profiles. In our study, we optimized the conditions and used HRMA for rapid screening of mutations in all MYH9 exons in seven affected individuals from four unrelated families with suspected MYH9 disorders. Samples identified by HRMA as positive for the mutation were analysed by direct sequencing. HRMA saved us over 85% of redundant sequencing.

  5. Estimate of within population incremental selection through branch imbalance in lineage trees

    PubMed Central

    Liberman, Gilad; Benichou, Jennifer I.C.; Maman, Yaakov; Glanville, Jacob; Alter, Idan; Louzoun, Yoram

    2016-01-01

    Incremental selection within a population, defined as limited fitness changes following mutation, is an important aspect of many evolutionary processes. Strongly advantageous or deleterious mutations are detected using the synonymous to non-synonymous mutations ratio. However, there are currently no precise methods to estimate incremental selection. We here provide for the first time such a detailed method and show its precision in multiple cases of micro-evolution. The proposed method is a novel mixed lineage tree/sequence based method to detect within population selection as defined by the effect of mutations on the average number of offspring. Specifically, we propose to measure the log of the ratio between the number of leaves in lineage trees branches following synonymous and non-synonymous mutations. The method requires a high enough number of sequences, and a large enough number of independent mutations. It assumes that all mutations are independent events. It does not require of a baseline model and is practically not affected by sampling biases. We show the method's wide applicability by testing it on multiple cases of micro-evolution. We show that it can detect genes and inter-genic regions using the selection rate and detect selection pressures in viral proteins and in the immune response to pathogens. PMID:26586802

  6. Identification of Lethal Mutations in Yeast Threonyl-tRNA Synthetase Revealing Critical Residues in Its Human Homolog*

    PubMed Central

    Ruan, Zhi-Rong; Fang, Zhi-Peng; Ye, Qing; Lei, Hui-Yan; Eriani, Gilbert; Zhou, Xiao-Long; Wang, En-Duo

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs. PMID:25416776

  7. Correlation of genetic and clinical findings in Spanish patients with X-linked juvenile retinoschisis.

    PubMed

    Riveiro-Alvarez, Rosa; Trujillo-Tiebas, Maria-Jose; Gimenez-Pardo, Ascension; Garcia-Hoyos, Maria; Lopez-Martinez, Miguel-Angel; Aguirre-Lamban, Jana; Garcia-Sandoval, Blanca; Vazquez-Fernandez del Pozo, Silvia; Cantalapiedra, Diego; Avila-Fernandez, Almudena; Baiget, Montserrat; Ramos, Carmen; Ayuso, Carmen

    2009-09-01

    X-linked juvenile retinoschisis (XLRS) is one of the most common causes of juvenile macular degeneration in males, characterized by microcystic changes, splitting within the inner retinal layer (schisis), and the presence of vitreous veils. This study was conducted to describe and further correlate specific genetic variation in Spanish patients with XLRS with clinical characteristics and additional ophthalmic complications. The study was performed in 34 Spanish families with XLRS, comprising 51 affected males. Thorough clinical ophthalmic and electrophysiological examinations were performed. The coding regions of the RS1 gene were amplified by polymerase chain reaction and directly sequenced. Haplotype analyses were also performed. Twenty different mutations were identified. Ten of the 20 were novel and 3 were de novo mutational events. The most common mutation (p.Gln154Arg; 6/20) presented a common haplotype. RS1 variants did not correlate with ophthalmic findings and were not associated with additional ophthalmic complications. The prevalent p.Gln154Arg mutation is first reported in this work and presents a common origin in Spanish patients with XLRS. In addition, de novo mutations mainly occur in CG dinucleotides. Despite the large mutational spectrum and variable phenotypes, no genotype-phenotype correlations were found. Identifying the causative mutation is helpful in confirming diagnosis and counseling, but cannot provide a prognosis.

  8. Parkinsonism in a pair of monozygotic CADASIL twins sharing the R1006C mutation: a transcranial sonography study.

    PubMed

    Ragno, Michele; Sanguigni, Sandro; Manca, Antonio; Pianese, Luigi; Paci, Cristina; Berbellini, Alfonso; Cozzolino, Valeria; Gobbato, Roberto; Peluso, Silvio; De Michele, Giuseppe

    2016-06-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common hereditary cerebral small vessel disease, is caused by mutations in the NOTCH3 gene on chromosome 19. Clinical manifestations of CADASIL include recurrent transient ischemic attacks, strokes, cognitive defects, epilepsy, migraine and psychiatric symptoms. Parkinsonian features have variably been reported in CADASIL patients, but only a few patients showed a clear parkinsonian syndrome. We studied two patients, a pair of monozygotic twins, carrying the R1006C mutation of the NOTCH3 gene and affected by a parkinsonian syndrome. For the first time in CADASIL patients, we used transcranial sonography (TCS) to assess basal ganglia abnormalities. TCS showed a bilateral hyperechogenic pattern of substantia nigra in one twin, and a right hyperechogenic pattern in the other. In both patients, lenticular nuclei showed a bilateral hyperechogenic pattern, and the width of the third ventricle was slightly increased. The TCS pattern found in our CADASIL patients is characteristic neither for Parkinson's disease, nor for vascular parkinsonism and seems to be specific and related to the disease-specific pathological features.

  9. egl-17 encodes an invertebrate fibroblast growth factor family member required specifically for sex myoblast migration in Caenorhabditis elegans

    PubMed Central

    Burdine, Rebecca D.; Chen, Estella B.; Kwok, Shing F.; Stern, Michael J.

    1997-01-01

    The proper guidance of the Caenorhabditis elegans hermaphrodite sex myoblasts (SMs) requires the genes egl-15 and egl-17. egl-15 has been shown to encode the C. elegans orthologue of the fibroblast growth factor receptor (FGFR). Here we clone egl-17 and show it to be a member of the fibroblast growth factor (FGF) family, one of the first functional invertebrate FGFs known. egl-17 shares homology with other FGF members, conserving the key residues required to form the distinctive tertiary structure common to FGFs. Genetic and molecular evidence demonstrates that the SM migration defect seen in egl-17 mutant animals represents complete loss of egl-17 function. While mutations in egl-17 affect only SM migration, mutations in egl-15 can result in larval arrest, scrawny body morphology, and the ability to suppress mutations in clr-1. We propose that EGL-17 (FGF) acts as a ligand for EGL-15 (FGFR) specifically during SM migration and that another ligand(s) activates EGL-15 for its other functions. PMID:9122212

  10. The contribution of de novo coding mutations to autism spectrum disorder

    PubMed Central

    Iossifov, Ivan; O’Roak, Brian J.; Sanders, Stephan J.; Ronemus, Michael; Krumm, Niklas; Levy, Dan; Stessman, Holly A.; Witherspoon, Kali; Vives, Laura; Patterson, Karynne E.; Smith, Joshua D.; Paeper, Bryan; Nickerson, Deborah A.; Dea, Jeanselle; Dong, Shan; Gonzalez, Luis E.; Mandell, Jefferey D.; Mane, Shrikant M.; Murtha, Michael T.; Sullivan, Catherine A.; Walker, Michael F.; Waqar, Zainulabedin; Wei, Liping; Willsey, A. Jeremy; Yamrom, Boris; Lee, Yoon-ha; Grabowska, Ewa; Dalkic, Ertugrul; Wang, Zihua; Marks, Steven; Andrews, Peter; Leotta, Anthony; Kendall, Jude; Hakker, Inessa; Rosenbaum, Julie; Ma, Beicong; Rodgers, Linda; Troge, Jennifer; Narzisi, Giuseppe; Yoon, Seungtai; Schatz, Michael C.; Ye, Kenny; McCombie, W. Richard; Shendure, Jay; Eichler, Evan E.; State, Matthew W.; Wigler, Michael

    2015-01-01

    We sequenced exomes from more than 2,500 simplex families each having a child with an autistic spectrum disorder (ASD). By comparing affected to unaffected siblings, we estimate that 13% of de novo (DN) missense mutations and 42% of DN likely gene-disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding DN mutations contribute to about 30% of all simplex and 45% of female diagnoses. Virtually all LGD mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower IQ, but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to causative missense mutation. LGD targets in the joint class overlap with published targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes. Virtually all significance for the latter comes from affected females. PMID:25363768

  11. Epidermolysis bullosa with congenital pyloric atresia: novel mutations in the beta 4 integrin gene (ITGB4) and genotype/phenotype correlations.

    PubMed

    Nakano, A; Pulkkinen, L; Murrell, D; Rico, J; Lucky, A W; Garzon, M; Stevens, C A; Robertson, S; Pfendner, E; Uitto, J

    2001-05-01

    Epidermolysis bullosa with pyloric atresia (EB-PA: OMIM 226730), also known as Carmi syndrome, is a rare autosomal recessive genodermatosis that manifests with neonatal mucocutaneous fragility associated with congenital pyloric atresia. The disease is frequently lethal within the first year, but nonlethal cases have been reported. Mutations in the genes encoding subunit polypeptides of the alpha 6 beta 4 integrin (ITGA6 and ITGB4) have been demonstrated in EB-PA patients. To extend the repertoire of mutations and to identify genotype-phenotype correlations, we examined seven new EB-PA families, four with lethal and three with nonlethal disease variants. DNA from patients was screened for mutations using heteroduplex analysis followed by nucleotide sequencing of PCR products spanning all beta 4 integrin-coding sequences. Mutation analysis disclosed 12 distinct mutations, 11 of them novel. Four mutations predicted a premature termination codon as a result of nonsense mutations or small out-of-frame insertions or deletions, whereas seven were missense mutations. This brings the total number of distinct ITGB4 mutations to 33. The mutation database indicates that premature termination codons are associated predominantly with the lethal EB-PA variants, whereas missense mutations are more prevalent in nonlethal forms. However, the consequences of the missense mutations are position dependent, and substitutions of highly conserved amino acids may have lethal consequences. In general, indirect immunofluorescence studies of affected skin revealed negative staining for beta 4 integrin in lethal cases and positive, but attenuated, staining in nonlethal cases and correlated with clinical phenotype. The data on specific mutations in EB-PA patients allows prenatal testing and preimplantation genetic diagnosis in families at risk.

  12. Multiple endocrine neoplasia type 1: analysis of germline MEN1 mutations in the Italian multicenter MEN1 patient database.

    PubMed

    Marini, Francesca; Giusti, Francesca; Fossi, Caterina; Cioppi, Federica; Cianferotti, Luisella; Masi, Laura; Boaretto, Francesca; Zovato, Stefania; Cetani, Filomena; Colao, Annamaria; Davì, Maria Vittoria; Faggiano, Antongiulio; Fanciulli, Giuseppe; Ferolla, Piero; Ferone, Diego; Loli, Paola; Mantero, Franco; Marcocci, Claudio; Opocher, Giuseppe; Beck-Peccoz, Paolo; Persani, Luca; Scillitani, Alfredo; Guizzardi, Fabiana; Spada, Anna; Tomassetti, Paola; Tonelli, Francesco; Brandi, Maria Luisa

    2018-03-01

    Multiple endocrine neoplasia type 1 (MEN1) is caused by germline inactivating mutations of the MEN1 gene. Currently, no direct genotype-phenotype correlation is identified. We aim to analyze MEN1 mutation site and features, and possible correlations between the mutation type and/or the affected menin functional domain and clinical presentation in patients from the Italian multicenter MEN1 database, one of the largest worldwide MEN1 mutation series published to date. The study included the analysis of MEN1 mutation profile in 410 MEN1 patients [370 familial cases from 123 different pedigrees (48 still asymptomatic at the time of this study) and 40 single cases]. We identified 99 different mutations: 41 frameshift [small intra-exon deletions (28) or insertions (13)], 13 nonsense, 26 missense and 11 splicing site mutations, 4 in-frame small deletions, and 4 intragenic large deletions spanning more than one exon. One family had two different inactivating MEN1 mutations on the same allele. Gastro-entero-pancreatic tumors resulted more frequent in patients with a nonsense mutation, and thoracic neuroendocrine tumors in individuals bearing a splicing-site mutation. Our data regarding mutation type frequency and distribution are in accordance with previously published data: MEN1 mutations are scattered through the entire coding region, and truncating mutations are the most common in MEN1 syndrome. A specific direct correlation between MEN1 genotype and clinical phenotype was not found in all our families, and wide intra-familial clinical variability and variable disease penetrance were both confirmed, suggesting a role for modifying, still undetermined, factors, explaining the variable MEN1 tumorigenesis.

  13. Synaptic vesicle glycoprotein 2A (SV2A) regulates kindling epileptogenesis via GABAergic neurotransmission

    PubMed Central

    Tokudome, Kentaro; Okumura, Takahiro; Shimizu, Saki; Mashimo, Tomoji; Takizawa, Akiko; Serikawa, Tadao; Terada, Ryo; Ishihara, Shizuka; Kunisawa, Naofumi; Sasa, Masashi; Ohno, Yukihiro

    2016-01-01

    Synaptic vesicle glycoprotein 2A (SV2A) is a prototype synaptic vesicle protein regulating action potential-dependent neurotransmitters release. SV2A also serves as a specific binding site for certain antiepileptics and is implicated in the treatment of epilepsy. Here, to elucidate the role of SV2A in modulating epileptogenesis, we generated a novel rat model (Sv2aL174Q rat) carrying a Sv2a-targeted missense mutation (L174Q) and analyzed its susceptibilities to kindling development. Although animals homozygous for the Sv2aL174Q mutation exhibited normal appearance and development, they are susceptible to pentylenetetrazole (PTZ) seizures. In addition, development of kindling associated with repeated PTZ treatments or focal stimulation of the amygdala was markedly facilitated by the Sv2aL174Q mutation. Neurochemical studies revealed that the Sv2aL174Q mutation specifically reduced depolarization-induced GABA, but not glutamate, release in the hippocampus without affecting basal release or the SV2A expression level in GABAergic neurons. In addition, the Sv2aL174Q mutation selectively reduced the synaptotagmin1 (Syt1) level among the exocytosis-related proteins examined. The present results demonstrate that dysfunction of SV2A due to the Sv2aL174Q mutation impairs the synaptic GABA release by reducing the Syt1 level and facilitates the kindling development, illustrating the crucial role of SV2A-GABA system in modulating kindling epileptogenesis. PMID:27265781

  14. Phenotype-genotype correlation in potential female carriers of X-linked developmental cataract (Nance-Horan syndrome).

    PubMed

    Khan, Arif O; Aldahmesh, Mohammed A; Mohamed, Jawahir Y; Alkuraya, Fowzan S

    2012-06-01

    To correlate clinical examination with underlying genotype in asymptomatic females who are potential carriers of X-linked developmental cataract (Nance-Horan syndrome). An ophthalmologist blind to the pedigree performed comprehensive ophthalmic examination for 16 available family members (two affected and six asymptomatic females, five affected and three asymptomatic males). Facial features were also noted. Venous blood was collected for sequencing of the gene NHS. All seven affected family members had congenital or infantile cataract and facial dysmorphism (long face, bulbous nose, abnormal dentition). The six asymptomatic females ranged in age from 4-35 years old. Four had posterior Y-suture centered lens opacities; these four also exhibited the facial dysmorphism of the seven affected family members. The fifth asymptomatic girl had scattered fine punctate lens opacities (not centered on the Y-suture) while the sixth had clear lenses, and neither exhibited the facial dysmorphism. A novel NHS mutation (p.Lys744AsnfsX15 [c.2232delG]) was found in the seven patients with congenital or infantile cataract. This mutation was also present in the four asymptomatic girls with Y-centered lens opacities but not in the other two asymptomatic girls or in the three asymptomatic males (who had clear lenses). Lens opacities centered around the posterior Y-suture in the context of certain facial features were sensitive and specific clinical signs of carrier status for NHS mutation in asymptomatic females. Lens opacities that did not have this characteristic morphology in a suspected female carrier were not a carrier sign, even in the context of her affected family members.

  15. Do males pay for sex? Sex-specific selection coefficients suggest not.

    PubMed

    Prokop, Zofia M; Prus, Monika A; Gaczorek, Tomasz S; Sychta, Karolina; Palka, Joanna K; Plesnar-Bielak, Agata; Skarboń, Magdalena

    2017-03-01

    Selection acting on males can reduce mutation load of sexual relative to asexual populations, thus mitigating the twofold cost of sex, provided that it seeks and destroys the same mutations as selection acting on females, but with higher efficiency. This could happen due to sexual selection-a potent evolutionary force that in most systems predominantly affects males. We used replicate populations of red flour beetles (Tribolium castaneum) to study sex-specific selection against deleterious mutations introduced with ionizing radiation. We found no evidence for selection being stronger in males than in females; in fact, we observed a nonsignificant trend in the opposite direction. This suggests that selection on males does not reduce mutation load below the level expected under the (hypothetical) scenario of asexual reproduction. Additionally, we employed a novel approach, based on a simple model, to quantify the relative contributions of sexual and offspring viability selection to the overall selection observed in males. We found them to be similar in magnitude; however, only the offspring viability component was statistically significant. In summary, we found no support for the hypothesis that selection on males in general, and sexual selection in particular, contributes to the evolutionary maintenance of sex. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  16. Competitive amplification of differentially melting amplicons (CADMA) enables sensitive and direct detection of all mutation types by high-resolution melting analysis.

    PubMed

    Kristensen, Lasse S; Andersen, Gitte B; Hager, Henrik; Hansen, Lise Lotte

    2012-01-01

    Sensitive and specific mutation detection is of particular importance in cancer diagnostics, prognostics, and individualized patient treatment. However, the majority of molecular methodologies that have been developed with the aim of increasing the sensitivity of mutation testing have drawbacks in terms of specificity, convenience, or costs. Here, we have established a new method, Competitive Amplification of Differentially Melting Amplicons (CADMA), which allows very sensitive and specific detection of all mutation types. The principle of the method is to amplify wild-type and mutated sequences simultaneously using a three-primer system. A mutation-specific primer is designed to introduce melting temperature decreasing mutations in the resulting mutated amplicon, while a second overlapping primer is designed to amplify both wild-type and mutated sequences. When combined with a third common primer very sensitive mutation detection becomes possible, when using high-resolution melting (HRM) as detection platform. The introduction of melting temperature decreasing mutations in the mutated amplicon also allows for further mutation enrichment by fast coamplification at lower denaturation temperature PCR (COLD-PCR). For proof-of-concept, we have designed CADMA assays for clinically relevant BRAF, EGFR, KRAS, and PIK3CA mutations, which are sensitive to, between 0.025% and 0.25%, mutated alleles in a wild-type background. In conclusion, CADMA enables highly sensitive and specific mutation detection by HRM analysis. © 2011 Wiley Periodicals, Inc.

  17. Three new PAX6 mutations including one causing an unusual ophthalmic phenotype associated with neurodevelopmental abnormalities.

    PubMed

    Dansault, Anouk; David, Gabriel; Schwartz, Claire; Jaliffa, Carolina; Vieira, Véronique; de la Houssaye, Guillaume; Bigot, Karine; Catin, Françise; Tattu, Laurent; Chopin, Catherine; Halimi, Philippe; Roche, Olivier; Van Regemorter, Nicole; Munier, Francis; Schorderet, Daniel; Dufier, Jean-Louis; Marsac, Cécile; Ricquier, Daniel; Menasche, Maurice; Penfornis, Alfred; Abitbol, Marc

    2007-04-02

    The PAX6 gene was first described as a candidate for human aniridia. However, PAX6 expression is not restricted to the eye and it appears to be crucial for brain development. We studied PAX6 mutations in a large spectrum of patients who presented with aniridia phenotypes, Peters' anomaly, and anterior segment malformations associated or not with neurological anomalies. Patients and related families were ophthalmologically phenotyped, and in some cases neurologically and endocrinologically examined. We screened the PAX6 gene by direct sequencing in three groups of patients: those affected by aniridia; those with diverse ocular manifestations; and those with Peters' anomaly. Two mutations were investigated by generating crystallographic representations of the amino acid changes. Three novel heterozygous mutations affecting three unrelated families were identified: the g.572T>C nucleotide change, located in exon 5, and corresponding to the Leucine 46 Proline amino-acid mutation (L46P); the g.655A>G nucleotide change, located in exon 6, and corresponding to the Serine 74 Glycine amino-acid mutation (S74G); and the nucleotide deletion 579delG del, located in exon 6, which induces a frameshift mutation leading to a stop codon (V48fsX53). The L46P mutation was identified in affected patients presenting bilateral microphthalmia, cataracts, and nystagmus. The S74G mutation was found in a large family that had congenital ocular abnormalities, diverse neurological manifestations, and variable cognitive impairments. The 579delG deletion (V48fsX53) caused in the affected members of the same family bilateral aniridia associated with congenital cataract, foveal hypolasia, and nystagmus. We also detected a novel intronic nucleotide change, IVS2+9G>A (very likely a mutation) in an apparently isolated patient affected by a complex ocular phenotype, characterized primarily by a bilateral microphthalmia. Whether this nucleotide change is indeed pathogenic remains to be demonstrated. Two previously known heterozygous mutations of the PAX6 gene sequence were also detected in patients affected by aniridia: a de novo previously known nucleotide change, g.972C>T (Q179X), in exon 8, leading to a stop codon and a heterozygous g.555C>A (C40X) recurrent nonsense mutation in exon 5. No mutations were found in patients with Peters' anomaly. We identified three mutations associated with aniridia phenotypes (Q179X, C40X, and V48fsX53). The three other mutations reported here cause non-aniridia ocular phenotypes associated in some cases with neurological anomalies. The IVS2+9G>A nucleotide change was detected in a patient with a microphthalmia phenotype. The L46P mutation was detected in a family with microphthalmia, cataract, and nystagmus. This mutation is located in the DNA-binding paired-domain and the crystallographic representations of this mutation show that this mutation may affect the helix-turn-helix motif, and as a consequence the DNA-binding properties of the resulting mutated protein. Ser74 is located in the PAX6 PD linker region, essential for DNA recognition and DNA binding, and the side chain of the Ser74 contributes to DNA recognition by the linker domain through direct contacts. Crystallographic representations show that the S74G mutation results in no side chain and therefore perturbs the DNA-binding properties of PAX6. This study highlights the severity and diversity of the consequences of PAX6 mutations that appeared to result from the complexity of the PAX6 gene structure, and the numerous possibilities for DNA binding. This study emphasizes the fact that neurodevelopmental abnormalities may be caused by PAX6 mutations. The neuro-developmental abnormalities caused by PAX6 mutations are probably still overlooked in the current clinical examinations performed throughout the world in patients affected by PAX6 mutations.

  18. Three new PAX6 mutations including one causing an unusual ophthalmic phenotype associated with neurodevelopmental abnormalities

    PubMed Central

    Dansault, Anouk; David, Gabriel; Schwartz, Claire; Jaliffa, Carolina; Vieira, Véronique; de la Houssaye, Guillaume; Bigot, Karine; Catin, Françise; Tattu, Laurent; Chopin, Catherine; Halimi, Philippe; Roche, Olivier; Van Regemorter, Nicole; Munier, Francis; Schorderet, Daniel; Dufier, Jean-Louis; Marsac, Cécile; Ricquier, Daniel; Menasche, Maurice; Penfornis, Alfred

    2007-01-01

    Purpose The PAX6 gene was first described as a candidate for human aniridia. However, PAX6 expression is not restricted to the eye and it appears to be crucial for brain development. We studied PAX6 mutations in a large spectrum of patients who presented with aniridia phenotypes, Peters' anomaly, and anterior segment malformations associated or not with neurological anomalies. Methods Patients and related families were ophthalmologically phenotyped, and in some cases neurologically and endocrinologically examined. We screened the PAX6 gene by direct sequencing in three groups of patients: those affected by aniridia; those with diverse ocular manifestations; and those with Peters' anomaly. Two mutations were investigated by generating crystallographic representations of the amino acid changes. Results Three novel heterozygous mutations affecting three unrelated families were identified: the g.572T>C nucleotide change, located in exon 5, and corresponding to the Leucine 46 Proline amino-acid mutation (L46P); the g.655A>G nucleotide change, located in exon 6, and corresponding to the Serine 74 Glycine amino-acid mutation (S74G); and the nucleotide deletion 579delG del, located in exon 6, which induces a frameshift mutation leading to a stop codon (V48fsX53). The L46P mutation was identified in affected patients presenting bilateral microphthalmia, cataracts, and nystagmus. The S74G mutation was found in a large family that had congenital ocular abnormalities, diverse neurological manifestations, and variable cognitive impairments. The 579delG deletion (V48fsX53) caused in the affected members of the same family bilateral aniridia associated with congenital cataract, foveal hypolasia, and nystagmus. We also detected a novel intronic nucleotide change, IVS2+9G>A (very likely a mutation) in an apparently isolated patient affected by a complex ocular phenotype, characterized primarily by a bilateral microphthalmia. Whether this nucleotide change is indeed pathogenic remains to be demonstrated. Two previously known heterozygous mutations of the PAX6 gene sequence were also detected in patients affected by aniridia: a de novo previously known nucleotide change, g.972C>T (Q179X), in exon 8, leading to a stop codon and a heterozygous g.555C>A (C40X) recurrent nonsense mutation in exon 5. No mutations were found in patients with Peters' anomaly. Conclusions We identified three mutations associated with aniridia phenotypes (Q179X, C40X, and V48fsX53). The three other mutations reported here cause non-aniridia ocular phenotypes associated in some cases with neurological anomalies. The IVS2+9G>A nucleotide change was detected in a patient with a microphthalmia phenotype. The L46P mutation was detected in a family with microphthalmia, cataract, and nystagmus. This mutation is located in the DNA-binding paired-domain and the crystallographic representations of this mutation show that this mutation may affect the helix-turn-helix motif, and as a consequence the DNA-binding properties of the resulting mutated protein. Ser74 is located in the PAX6 PD linker region, essential for DNA recognition and DNA binding, and the side chain of the Ser74 contributes to DNA recognition by the linker domain through direct contacts. Crystallographic representations show that the S74G mutation results in no side chain and therefore perturbs the DNA-binding properties of PAX6. This study highlights the severity and diversity of the consequences of PAX6 mutations that appeared to result from the complexity of the PAX6 gene structure, and the numerous possibilities for DNA binding. This study emphasizes the fact that neurodevelopmental abnormalities may be caused by PAX6 mutations. The neuro-developmental abnormalities caused by PAX6 mutations are probably still overlooked in the current clinical examinations performed throughout the world in patients affected by PAX6 mutations. PMID:17417613

  19. Investigation of Poor Academic Achievement in Children with Duchenne Muscular Dystrophy

    ERIC Educational Resources Information Center

    Hinton, V. J.; De Vivo, D. C.; Fee, R.; Goldstein, E.; Stern, Y.

    2004-01-01

    Duchenne Muscular Dystrophy (DMD) is a neurogenetic developmental disorder that presents with progressive muscular weakness. It is caused by a mutation in a gene that results in the absence of specific products that normally localize to muscle cells and the central nervous system (CNS). The majority of affected individuals have IQs within the…

  20. Prevalence of GJB2 Mutations in Affected Individuals from United Arab Emirates with Autosomal Recessive Nonsyndromic Hearing Loss.

    PubMed

    Tlili, Abdelaziz; Al Mutery, Abdullah; Kamal Eddine Ahmad Mohamed, Walaa; Mahfood, Mona; Hadj Kacem, Hassen

    2017-11-01

    Mutations in the gap junction protein beta 2 (GJB2) gene are responsible for more cases of nonsyndromic recessive hearing loss than any other gene. The purpose of our study was to evaluate the prevalence of GJB2 mutations among affected individuals from United Arab Emirates (UAE). There were 50 individuals diagnosed with hereditary hearing loss and 120 healthy individuals enrolled in the study. The Sanger sequencing method was used to screen the GJB2 coding region in all affected individuals. The c.-1G>A variant was determined by the polymerase chain reaction-restriction fragment length polymorphism method in normal individuals. Nine cases with bi-allelic mutations and three cases with mono-allelic mutations were detected in 12 out of 50 patients (24%). The homozygous mutation c.35delG was identified as the cause of hearing loss in six participants (12%). The mutation c.506G>A was identified in three affected individuals (6%). The allelic frequency (14%) and low percentage of individuals that were homozygous (2%) for the c.35delG mutation suggest that there are other genes responsible for nonsyndromic deafness in the UAE population. The results reported here are a preliminary step in collecting epidemiological data regarding autosomal recessive nonsyndromic hearing loss related to GJB2 gene mutations among the UAE population. The c.35delG mutation of the GJB2 gene is the most frequently seen causative mutation in the UAE and is followed by the p.Cys169Tyr mutation.

  1. Analysis of human MutS homolog 2 missense mutations in patients with colorectal cancer.

    PubMed

    Zhang, Xiaomei; Chen, Senqing; Yu, Jun; Zhang, Yuanying; Lv, Min; Zhu, Ming

    2018-05-01

    Germline mutations of DNA mismatch repair gene human MutS homolog 2 ( hMSH2 ) are associated with hereditary nonpolyposis colorectal cancer (HNPCC). A total of one-third of these mutations are missense mutations. Several hMSH2 missense mutations have been identified in patients in East Asia, although their function has not been evaluated. In the present study, the role of ten hMSH2 missense mutations in the pathogenesis of colorectal cancer was examined. The hMSH2/hMSH6 protein interaction system was established using yeast two-hybrid screening. Next, the missense mutations were analyzed for their ability to affect the protein interaction of hMSH2 with its partner hMSH6. Additionally, the Sorting Intolerant from Tolerant tool was applied to predict the effects of different amino acid substitutions. The results demonstrated that certain hMSH2 mutations (L173R and C199R) caused a significant functional change in the human hMutSα complex and were identified to be pathological mutations. The Y408C, D603Y, P696L and S703Y mutations partially affected interaction and partly affected the function of hMSH2. The remaining four variants, T8M, I169V, A370T and Q419K, may be non-functional polymorphisms or could affect protein function through other molecular mechanisms. The present study evaluated the functional consequences of previously unknown missense mutations in hMSH2 , and may contribute to improved clinical diagnosis and mutation screening of HNPCC.

  2. Familial dysautonomia: History, genotype, phenotype and translational research.

    PubMed

    Norcliffe-Kaufmann, Lucy; Slaugenhaupt, Susan A; Kaufmann, Horacio

    2017-05-01

    Familial dysautonomia (FD) is a rare neurological disorder caused by a splice mutation in the IKBKAP gene. The mutation arose in the 1500s within the small Jewish founder population in Eastern Europe and became prevalent during the period of rapid population expansion within the Pale of Settlement. The carrier rate is 1:32 in Jews descending from this region. The mutation results in a tissue-specific deficiency in IKAP, a protein involved in the development and survival of neurons. Patients homozygous for the mutations are born with multiple lesions affecting mostly sensory (afferent) fibers, which leads to widespread organ dysfunction and increased mortality. Neurodegenerative features of the disease include progressive optic atrophy and worsening gait ataxia. Here we review the progress made in the last decade to better understand the genotype and phenotype. We also discuss the challenges of conducting controlled clinical trials in this rare medically fragile population. Meanwhile, the search for better treatments as well as a neuroprotective agent is ongoing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Identification of a novel NHS mutation in a Chinese family with Nance-Horan syndrome.

    PubMed

    Li, Aijun; Li, Bingzhen; Wu, Lemeng; Yang, Liping; Chen, Ningning; Ma, Zhizhong

    2015-04-01

    To identiy the disease causing mutation in a Chinese family presenting with early-onset cataract and dental anomalies. A specific Hereditary Eye Disease Enrichment Panel (HEDEP) (personalized customization by MyGenostics, Baltimore, MD) based on targeted exome capture technology was used to collect the protein coding regions of 30 early-onset cataract associated genes, and high throughput sequencing was done with Illumina HiSeq 2000 platform. The identified variant was confirmed with Sanger sequencing. A novel deletion in exon 4 (c.852delG) of NHS gene was identified; the identified 1 bp deletion altered the reading frame and was predicted to result in a premature stop codon after the addition of twelve novel amino acid (p.S285PfsX13). This mutation co-segregated in affected males and obligate female carriers, but was absent in 100 matched controls. Our findings broaden the spectrum of NHS mutations causing Nance-Horan syndrome and phenotypic spectrum of the disease in Chinese patients.

  4. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or ‘classical’ congenital myopathy

    PubMed Central

    Zaharieva, Irina T.; Thor, Michael G.; Oates, Emily C.; van Karnebeek, Clara; Hendson, Glenda; Blom, Eveline; Witting, Nanna; Rasmussen, Magnhild; Gabbett, Michael T.; Ravenscroft, Gianina; Sframeli, Maria; Suetterlin, Karen; Sarkozy, Anna; D’Argenzio, Luigi; Hartley, Louise; Matthews, Emma; Pitt, Matthew; Vissing, John; Ballegaard, Martin; Krarup, Christian; Slørdahl, Andreas; Halvorsen, Hanne; Ye, Xin Cynthia; Zhang, Lin-Hua; Løkken, Nicoline; Werlauff, Ulla; Abdelsayed, Mena; Davis, Mark R.; Feng, Lucy; Phadke, Rahul; Sewry, Caroline A.; Morgan, Jennifer E.; Laing, Nigel G.; Vallance, Hilary; Ruben, Peter; Hanna, Michael G.; Lewis, Suzanne; Kamsteeg, Erik-Jan; Männikkö, Roope

    2016-01-01

    Abstract See Cannon (doi: 10.1093/brain/awv400 ) for a scientific commentary on this article. Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in in utero or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders. SCN4A encodes the α-subunit of the skeletal muscle voltage-gated sodium channel (Na v 1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant SCN4A gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous SCN4A mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed in utero - or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without myotonia. In vitro functional assessment in HEK293 cells of the impact of the identified SCN4A mutations showed loss-of-function of the mutant Na v 1.4 channels. All, apart from one, of the mutations either caused fully non-functional channels, or resulted in a reduced channel activity. Each of the affected cases carried at least one full loss-of-function mutation. In five out of six families, a second loss-of-function mutation was present on the trans allele. These functional results provide convincing evidence for the pathogenicity of the identified mutations and suggest that different degrees of loss-of-function in mutant Na v 1.4 channels are associated with attenuation of the skeletal muscle action potential amplitude to a level insufficient to support normal muscle function. The results demonstrate that recessive loss-of-function SCN4A mutations should be considered in patients with a congenital myopathy. PMID:26700687

  5. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or 'classical' congenital myopathy.

    PubMed

    Zaharieva, Irina T; Thor, Michael G; Oates, Emily C; van Karnebeek, Clara; Hendson, Glenda; Blom, Eveline; Witting, Nanna; Rasmussen, Magnhild; Gabbett, Michael T; Ravenscroft, Gianina; Sframeli, Maria; Suetterlin, Karen; Sarkozy, Anna; D'Argenzio, Luigi; Hartley, Louise; Matthews, Emma; Pitt, Matthew; Vissing, John; Ballegaard, Martin; Krarup, Christian; Slørdahl, Andreas; Halvorsen, Hanne; Ye, Xin Cynthia; Zhang, Lin-Hua; Løkken, Nicoline; Werlauff, Ulla; Abdelsayed, Mena; Davis, Mark R; Feng, Lucy; Phadke, Rahul; Sewry, Caroline A; Morgan, Jennifer E; Laing, Nigel G; Vallance, Hilary; Ruben, Peter; Hanna, Michael G; Lewis, Suzanne; Kamsteeg, Erik-Jan; Männikkö, Roope; Muntoni, Francesco

    2016-03-01

    Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in in utero or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders. SCN4A encodes the α-subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant SCN4A gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous SCN4A mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed in utero- or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without myotonia. In vitro functional assessment in HEK293 cells of the impact of the identified SCN4A mutations showed loss-of-function of the mutant Nav1.4 channels. All, apart from one, of the mutations either caused fully non-functional channels, or resulted in a reduced channel activity. Each of the affected cases carried at least one full loss-of-function mutation. In five out of six families, a second loss-of-function mutation was present on the trans allele. These functional results provide convincing evidence for the pathogenicity of the identified mutations and suggest that different degrees of loss-of-function in mutant Nav1.4 channels are associated with attenuation of the skeletal muscle action potential amplitude to a level insufficient to support normal muscle function. The results demonstrate that recessive loss-of-function SCN4A mutations should be considered in patients with a congenital myopathy. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  6. Carcinogen-induced mutations in the mouse c-Ha-ras gene provide evidence of multiple pathways for tumor progression.

    PubMed Central

    Brown, K; Buchmann, A; Balmain, A

    1990-01-01

    A number of mouse skin tumors initiated by the carcinogens N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), methylnitrosourea (MNU), 3-methylcholanthrene (MCA), and 7,12-dimethylbenz[a]anthracene (DMBA) have been shown to contain activated Ha-ras genes. In each case, the point mutations responsible for activation have been characterized. Results presented demonstrate the carcinogen-specific nature of these ras mutations. For each initiating agent, a distinct spectrum of mutations is observed. Most importantly, the distribution of ras gene mutations is found to differ between benign papillomas and carcinomas, suggesting that molecular events occurring at the time of initiation influence the probability with which papillomas progress to malignancy. This study provides molecular evidence in support of the existence of subsets of papillomas with differing progression frequencies. Thus, the alkylating agents MNNG and MNU induced exclusively G ---- A transitions at codon 12, with this mutation being found predominantly in papillomas. MCA initiation produced both codon 13 G ---- T and codon 61 A ---- T transversions in papillomas; only the G ---- T mutation, however, was found in carcinomas. These findings provide strong evidence that the mutational activation of Ha-ras occurs as a result of the initiation process and that the nature of the initiating event can affect the probability of progression to malignancy. Images PMID:2105486

  7. NLRP3 A439V Mutation in a Large Family with Cryopyrin-associated Periodic Syndrome: Description of Ophthalmologic Symptoms in Correlation with Other Organ Symptoms.

    PubMed

    Sobolewska, Bianka; Angermair, Eva; Deuter, Christoph; Doycheva, Deshka; Kuemmerle-Deschner, Jasmin; Zierhut, Manfred

    2016-06-01

    Cryopyrin-associated periodic syndrome (CAPS) is a group of inherited autoinflammatory disorders caused by mutations in the NLRP3 gene resulting in the overproduction of interleukin 1β. NLRP3 mutations cause a broad clinical phenotype of CAPS. The aims of the study were to evaluate clinical, laboratory, and genetic features of a 5-generation family with CAPS focusing in detail on ocular symptoms. In a retrospective observational cohort study, consecutive family members were screened for the presence of the NLRP3 mutation. Patients underwent standardized clinical, laboratory, and ophthalmological assessments. The genotype-specific risk of ophthalmological findings and other organ symptoms was determined. Twenty-nine patients were clinically affected. The A439V mutation encoded by exon 3 of the NLRP3 gene was found in 15 of 37 family members (41%). The most common clinical features were musculoskeletal symptoms, headaches, and ophthalmological symptoms. The mutation-positive patients were characterized by more frequent skin rashes, ocular symptoms, arthralgia, arthritis, and severe Muckle-Wells syndrome (MWS) Disease Activity Score. Rosacea was diagnosed in 8 patients. The NLRP3 mutation A439V is associated with a heterogeneous clinical spectrum of familial cold autoinflammatory syndrome/MWS-overlap syndrome. Skin rash and eye diseases, such as conjunctivitis and uveitis, were positively correlated with this mutation.

  8. Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons.

    PubMed

    Boczonadi, Veronika; Meyer, Kathrin; Gonczarowska-Jorge, Humberto; Griffin, Helen; Roos, Andreas; Bartsakoulia, Marina; Bansagi, Boglarka; Ricci, Giulia; Palinkas, Fanni; Zahedi, René P; Bruni, Francesco; Kaspar, Brian; Lochmüller, Hanns; Boycott, Kym M; Müller, Juliane S; Horvath, Rita

    2018-06-15

    The nuclear-encoded glycyl-tRNA synthetase gene (GARS) is essential for protein translation in both cytoplasm and mitochondria. In contrast, different genes encode the mitochondrial and cytosolic forms of most other tRNA synthetases. Dominant GARS mutations were described in inherited neuropathies, while recessive mutations cause severe childhood-onset disorders affecting skeletal muscle and heart. The downstream events explaining tissue-specific phenotype-genotype relations remained unclear. We investigated the mitochondrial function of GARS in human cell lines and in the GarsC210R mouse model. Human-induced neuronal progenitor cells (iNPCs) carrying dominant and recessive GARS mutations showed alterations of mitochondrial proteins, which were more prominent in iNPCs with dominant, neuropathy-causing mutations. Although comparative proteomic analysis of iNPCs showed significant changes in mitochondrial respiratory chain complex subunits, assembly genes, Krebs cycle enzymes and transport proteins in both recessive and dominant mutations, proteins involved in fatty acid oxidation were only altered by recessive mutations causing mitochondrial cardiomyopathy. In contrast, significant alterations of the vesicle-associated membrane protein-associated protein B (VAPB) and its downstream pathways such as mitochondrial calcium uptake and autophagy were detected in dominant GARS mutations. The role of VAPB has been supported by similar results in the GarsC210R mice. Our data suggest that altered mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) may be important disease mechanisms leading to neuropathy in this condition.

  9. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1.

    PubMed

    Mazor, Masha; Alkrinawi, Soliman; Chalifa-Caspi, Vered; Manor, Esther; Sheffield, Val C; Aviram, Micha; Parvari, Ruti

    2011-05-13

    In primary ciliary dyskinesia (PCD), genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility. The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Although it has long been suspected that mutations in DNAL1 encoding the ODA light chain1 might cause PCD such mutations were not found. We demonstrate here that a homozygous point mutation in this gene is associated with PCD with absent or markedly shortened ODA. The mutation (NM_031427.3: c.449A>G; p.Asn150Ser) changes the Asn at position150, which is critical for the proper tight turn between the β strand and the α helix of the leucine-rich repeat in the hydrophobic face that connects to the dynein heavy chain. The mutation reduces the stability of the axonemal dynein light chain 1 and damages its interactions with dynein heavy chain and with tubulin. This study adds another important component to understanding the types of mutations that cause PCD and provides clinical information regarding a specific mutation in a gene not yet known to be associated with PCD. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peltomaeki, Paeivi, E-mail: Paivi.Peltomaki@Helsinki.Fi

    Cancer is traditionally viewed as a disease of abnormal cell proliferation controlled by a series of mutations. Mutations typically affect oncogenes or tumor suppressor genes thereby conferring growth advantage. Genomic instability facilitates mutation accumulation. Recent findings demonstrate that activation of oncogenes and inactivation of tumor suppressor genes, as well as genomic instability, can be achieved by epigenetic mechanisms as well. Unlike genetic mutations, epimutations do not change the base sequence of DNA and are potentially reversible. Similar to genetic mutations, epimutations are associated with specific patterns of gene expression that are heritable through cell divisions. Knudson's hypothesis postulates that inactivationmore » of tumor suppressor genes requires two hits, with the first hit occurring either in somatic cells (sporadic cancer) or in the germline (hereditary cancer) and the second one always being somatic. Studies on hereditary and sporadic forms of colorectal carcinoma have made it evident that, apart from genetic mutations, epimutations may serve as either hit or both. Furthermore, recent next-generation sequencing studies show that epigenetic genes, such as those encoding histone modifying enzymes and subunits for chromatin remodeling systems, are themselves frequent targets of somatic mutations in cancer and can act like tumor suppressor genes or oncogenes. This review discusses genetic vs. epigenetic origin of cancer, including cancer susceptibility, in light of recent discoveries. Situations in which mutations and epimutations occur to serve analogous purposes are highlighted.« less

  11. Mutation of the C/EBP binding sites in the Rous sarcoma virus long terminal repeat and gag enhancers.

    PubMed Central

    Ryden, T A; de Mars, M; Beemon, K

    1993-01-01

    Several C/EBP binding sites within the Rous sarcoma virus (RSV) long terminal repeat (LTR) and gag enhancers were mutated, and the effect of these mutations on viral gene expression was assessed. Minimal site-specific mutations in each of three adjacent C/EBP binding sites in the LTR reduced steady-state viral RNA levels. Double mutation of the two 5' proximal LTR binding sites resulted in production of 30% of wild-type levels of virus. DNase I footprinting analysis of mutant DNAs indicated that the mutations blocked C/EBP binding at the affected sites. Additional C/EBP binding sites were identified upstream of the 3' LTR and within the 5' end of the LTRs. Point mutations in the RSV gag intragenic enhancer region, which blocked binding of C/EBP at two of three adjacent C/EBP sites, also reduced virus production significantly. Nuclear extracts prepared from both chicken embryo fibroblasts (CEFs) and chicken muscle contained proteins binding to the same RSV DNA sites as did C/EBP, and mutations that prevented C/EBP binding also blocked binding of these chicken proteins. It appears that CEFs and chicken muscle contain distinct proteins binding to these RSV DNA sites; the CEF binding protein was heat stable, as is C/EBP, while the chicken muscle protein was heat sensitive. Images PMID:8386280

  12. PMS2 monoallelic mutation carriers: the known unknown

    PubMed Central

    Goodenberger, McKinsey L.; Thomas, Brittany C.; Riegert-Johnson, Douglas; Boland, C. Richard; Plon, Sharon E.; Clendenning, Mark; Ko Win, Aung; Senter, Leigha; Lipkin, Steven M.; Stadler, Zsofia K.; Macrae, Finlay A.; Lynch, Henry T.; Weitzel, Jeffrey N.; de la Chapelle, Albert; Syngal, Sapna; Lynch, Patrick; Parry, Susan; Jenkins, Mark A.; Gallinger, Steven; Holter, Spring; Aronson, Melyssa; Newcomb, Polly A.; Burnett, Terrilea; Le Marchand, Loïc; Pichurin, Pavel; Hampel, Heather; Terdiman, Jonathan P.; Lu, Karen H.; Thibodeau, Stephen; Lindor, Noralane M.

    2016-01-01

    Germline mutations in MLH1, MSH2, MSH6 and PMS2 have been shown to cause Lynch syndrome. The penetrance for cancer and tumor spectrum has been repeatedly studied and multiple professional societies have proposed clinical management guidelines for affected individuals. Several studies have demonstrated a reduced penetrance for monoallelic carriers of PMS2 mutations compared to the other mismatch repair (MMR) genes, but clinical management guidelines have largely proposed the same screening recommendations for all MMR gene carriers. The authors considered whether enough evidence existed to propose new screening guidelines specific to PMS2 mutation carriers with regard to age of onset and frequency of colonic screening. Published reports of PMS2 germline mutations were combined with unpublished cases from the authors’ research registries and clinical practices, and a discussion of potential modification of cancer screening guidelines was pursued. A total of 234 monoallelic PMS2 mutation carriers from 170 families were included. Approximately 8% of those with CRC were diagnosed under age 30 and each of these tumors presented on the left-side of the colon. As it is currently unknown what causes the early-onset of CRC in some families with monoallelic PMS2 germline mutations, the authors recommend against reducing cancer surveillance guidelines in families found having monoallelic PMS2 mutations in spite of the documented reduced penetrance. PMID:25856668

  13. PMS2 monoallelic mutation carriers: the known unknown.

    PubMed

    Goodenberger, McKinsey L; Thomas, Brittany C; Riegert-Johnson, Douglas; Boland, C Richard; Plon, Sharon E; Clendenning, Mark; Win, Aung Ko; Senter, Leigha; Lipkin, Steven M; Stadler, Zsofia K; Macrae, Finlay A; Lynch, Henry T; Weitzel, Jeffrey N; de la Chapelle, Albert; Syngal, Sapna; Lynch, Patrick; Parry, Susan; Jenkins, Mark A; Gallinger, Steven; Holter, Spring; Aronson, Melyssa; Newcomb, Polly A; Burnett, Terrilea; Le Marchand, Loïc; Pichurin, Pavel; Hampel, Heather; Terdiman, Jonathan P; Lu, Karen H; Thibodeau, Stephen; Lindor, Noralane M

    2016-01-01

    Germ-line mutations in MLH1, MSH2, MSH6, and PMS2 have been shown to cause Lynch syndrome. The penetrance of the cancer and tumor spectrum has been repeatedly studied, and multiple professional societies have proposed clinical management guidelines for affected individuals. Several studies have demonstrated a reduced penetrance for monoallelic carriers of PMS2 mutations compared with the other mismatch repair (MMR) genes, but clinical management guidelines have largely proposed the same screening recommendations for all MMR gene carriers. The authors considered whether enough evidence existed to propose new screening guidelines specific to PMS2 mutation carriers with regard to age at onset and frequency of colonic screening. Published reports of PMS2 germ-line mutations were combined with unpublished cases from the authors' research registries and clinical practices, and a discussion of potential modification of cancer screening guidelines was pursued. A total of 234 monoallelic PMS2 mutation carriers from 170 families were included. Approximately 8% of those with colorectal cancer (CRC) were diagnosed before age 30, and each of these tumors presented on the left side of the colon. As it is currently unknown what causes the early onset of CRC in some families with monoallelic PMS2 germline mutations, the authors recommend against reducing cancer surveillance guidelines in families found having monoallelic PMS2 mutations in spite of the reduced penetrance.Genet Med 18 1, 13-19.

  14. Protein Domain-Level Landscape of Cancer-Type-Specific Somatic Mutations

    PubMed Central

    Yang, Fan; Petsalaki, Evangelia; Rolland, Thomas; Hill, David E.; Vidal, Marc; Roth, Frederick P.

    2015-01-01

    Identifying driver mutations and their functional consequences is critical to our understanding of cancer. Towards this goal, and because domains are the functional units of a protein, we explored the protein domain-level landscape of cancer-type-specific somatic mutations. Specifically, we systematically examined tumor genomes from 21 cancer types to identify domains with high mutational density in specific tissues, the positions of mutational hotspots within these domains, and the functional and structural context where possible. While hotspots corresponding to specific gain-of-function mutations are expected for oncoproteins, we found that tumor suppressor proteins also exhibit strong biases toward being mutated in particular domains. Within domains, however, we observed the expected patterns of mutation, with recurrently mutated positions for oncogenes and evenly distributed mutations for tumor suppressors. For example, we identified both known and new endometrial cancer hotspots in the tyrosine kinase domain of the FGFR2 protein, one of which is also a hotspot in breast cancer, and found new two hotspots in the Immunoglobulin I-set domain in colon cancer. Thus, to prioritize cancer mutations for further functional studies aimed at more precise cancer treatments, we have systematically correlated mutations and cancer types at the protein domain level. PMID:25794154

  15. Resolving a genetic paradox throughout preimplantation genetic diagnosis for autosomal dominant severe congenital neutropenia.

    PubMed

    Malcov, Mira; Reches, Adi; Ben-Yosef, Dalit; Cohen, Tania; Amit, Ami; Dgany, Orly; Tamary, Hannah; Yaron, Yuval

    2010-03-01

    Severe congenital neutropenia is an inherited disease characterized by low peripheral blood neutrophils, amenable to bone marrow transplantation. Genetic analysis in the family here described detected a ELA2 splice-site mutation in the affected child and also in his asymptomatic father. The parents requested preimplantation genetic diagnosis (PGD), coupled with HLA matching, to obtain a suitable bone marrow donor for the affected child. A PGD protocol was developed, based on multiplex nested PCR for direct analysis of the ELA2 mutation, flanking polymorphic markers and HLA typing. The amplification efficiency of the mutation was > 90% in single leukocytes from the affected child but only 67% in the father. Analysis of single haploid sperm cells from the father demonstrated three different sperm-cell populations: (1) sperm cells harboring the ELA2 mutation on the 'affected' haplotype, (2) sperm cells without the ELA2 mutation on the 'normal' haplotype, and (3) sperm cells without the ELA2 mutation on the 'affected' haplotype. These data demonstrate that the ELA2 mutation in the father occurred de novo during his embryonic development, resulting in somatic as well as germ-line mosaicism. This conclusion was also taken into consideration when PGD was performed. Copyright (c) 2010 John Wiley & Sons, Ltd.

  16. Irregular chiasm-C-roughest, a member of the immunoglobulin superfamily, affects sense organ spacing on the Drosophila antenna by influencing the positioning of founder cells on the disc ectoderm.

    PubMed

    Venugopala Reddy, G; Reiter, C; Shanbhag, S; Fischbach, K F; Rodrigues, V

    1999-10-01

    We describe a role for Irregular chiasmC-roughest (IrreC-rst), an immunoglobulin (Ig) superfamily member, in patterning sense organs on the Drosophila antenna. IrreC-rst protein is initially expressed homogeneously on apical profiles of ectodermal cells in regions of the antennal disc. During specification of founder cells (FCs), the intracellular protein distribution changes and becomes concentrated in regions where specific intercellular contacts presumably occur. Loss of function mutations as well as misexpression of irreC-rst results in an altered arrangement of FCs within the disc compared to wildtype. Sense organ development occurs normally, although spacing is affected. Unlike its role in interommatidial spacing, irreC-rst does not affect apoptosis during antennal development. We propose that IrreC-rst affects the spatial relationship between sensory and ectodermal cells during FC delamination.

  17. Modeling Treatment Response for Lamin A/C Related Dilated Cardiomyopathy in Human Induced Pluripotent Stem Cells.

    PubMed

    Lee, Yee-Ki; Lau, Yee-Man; Cai, Zhu-Jun; Lai, Wing-Hon; Wong, Lai-Yung; Tse, Hung-Fat; Ng, Kwong-Man; Siu, Chung-Wah

    2017-07-28

    Precision medicine is an emerging approach to disease treatment and prevention that takes into account individual variability in the environment, lifestyle, and genetic makeup of patients. Patient-specific human induced pluripotent stem cells hold promise to transform precision medicine into real-life clinical practice. Lamin A/C (LMNA)-related cardiomyopathy is the most common inherited cardiomyopathy in which a substantial proportion of mutations in the LMNA gene are of nonsense mutation. PTC124 induces translational read-through over the premature stop codon and restores production of the full-length proteins from the affected genes. In this study we generated human induced pluripotent stem cells-derived cardiomyocytes from patients who harbored different LMNA mutations (nonsense and frameshift) to evaluate the potential therapeutic effects of PTC124 in LMNA -related cardiomyopathy. We generated human induced pluripotent stem cells lines from 3 patients who carried distinctive mutations (R225X, Q354X, and T518fs) in the LMNA gene. The cardiomyocytes derived from these human induced pluripotent stem cells lines reproduced the pathophysiological hallmarks of LMNA -related cardiomyopathy. Interestingly, PTC124 treatment increased the production of full-length LMNA proteins in only the R225X mutant, not in other mutations. Functional evaluation experiments on the R225X mutant further demonstrated that PTC124 treatment not only reduced nuclear blebbing and electrical stress-induced apoptosis but also improved the excitation-contraction coupling of the affected cardiomyocytes. Using cardiomyocytes derived from human induced pluripotent stem cells carrying different LMNA mutations, we demonstrated that the effect of PTC124 is codon selective. A premature stop codon UGA appeared to be most responsive to PTC124 treatment. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  18. Loss of fibulin-4 disrupts collagen synthesis and maturation: implications for pathology resulting from EFEMP2 mutations

    PubMed Central

    Papke, Christina L.; Tsunezumi, Jun; Ringuette, Léa-Jeanne; Nagaoka, Hideaki; Terajima, Masahiko; Yamashiro, Yoshito; Urquhart, Greg; Yamauchi, Mitsuo; Davis, Elaine C.; Yanagisawa, Hiromi

    2015-01-01

    Homozygous recessive mutations in either EFEMP2 (encoding fibulin-4) or FBLN5 (encoding fibulin-5), critical genes for elastogenesis, lead to autosomal recessive cutis laxa types 1B and 1A, respectively. Previously, fibulin-4 was shown to bind lysyl oxidase (LOX), an elastin/collagen cross-linking enzyme, in vitro. Consistently, reported defects in humans with EFEMP2 mutations are more severe and broad in range than those due to FBLN5 mutations and encompass both elastin-rich and collagen-rich tissues. However, the underlying disease mechanism in EFEMP2 mutations has not been fully addressed. Here, we show that fibulin-4 is important for the integrity of aortic collagen in addition to elastin. Smooth muscle-specific Efemp2 loss in mouse (termed SMKO) resulted in altered fibrillar collagen localization with larger, poorly organized fibrils. LOX activity was decreased in Efemp2-null cells, and collagen cross-linking was diminished in SMKO aortas; however, elastin cross-linking was unaffected and the level of mature LOX was maintained to that of wild-type aortas. Proteomic screening identified multiple proteins involved in procollagen processing and maturation as potential fibulin-4-binding partners. We showed that fibulin-4 binds procollagen C-endopeptidase enhancer 1 (Pcolce), which enhances proteolytic cleavage of the procollagen C-terminal propeptide during procollagen processing. Interestingly, however, procollagen cleavage was not affected by the presence or absence of fibulin-4 in vitro. Thus, our data indicate that fibulin-4 serves as a potential scaffolding protein during collagen maturation in the extracellular space. Analysis of collagen in other tissues affected by fibulin-4 loss should further increase our understanding of underlying pathologic mechanisms in patients with EFEMP2 mutations. PMID:26220971

  19. Mutations in the GIGYF2 (TNRC15) Gene at the PARK11 Locus in Familial Parkinson Disease

    PubMed Central

    Lautier, Corinne; Goldwurm, Stefano; Dürr, Alexandra; Giovannone, Barbara; Tsiaras, William G.; Pezzoli, Gianni; Brice, Alexis; Smith, Robert J.

    2008-01-01

    The genetic basis for association of the PARK11 region of chromosome 2 with familial Parkinson disease (PD) is unknown. This study examined the GIGYF2 (Grb10-Interacting GYF Protein-2) (TNRC15) gene, which contains the PARK11 microsatellite marker with the highest linkage score (D2S206, LOD 5.14). The 27 coding exons of the GIGYF2 gene were sequenced in 123 Italian and 126 French patients with familial PD, plus 131 Italian and 96 French controls. A total of seven different GIGYF2 missense mutations resulting in single amino acid substitutions were present in 12 unrelated PD index patients (4.8%) and not in controls. Three amino acid insertions or deletions were found in four other index patients and absent in controls. Specific exon sequencing showed that these ten sequence changes were absent from a further 91 controls. In four families with amino acid substitutions in which at least one other PD case was available, the GIGYF2 mutations (Asn56Ser, Thr112Ala, and Asp606Glu) segregated with PD. There were, however, two unaffected carriers in one family, suggesting age-dependent or incomplete penetrance. One index case (PD onset age 33) inherited a GIGYF2 mutation (Ile278Val) from her affected father (PD onset age 66) and a previously described PD-linked mutation in the LRRK2 gene (Ile1371Val) from her affected mother (PD onset age 61). The earlier onset and severe clinical course in the index patient suggest additive effects of the GIGYF2 and LRRK2 mutations. These data strongly support GIGYF2 as a PARK11 gene with a causal role in familial PD. PMID:18358451

  20. Metabolomic profiles indicate distinct physiological pathways affected by two loci with major divergent effect on Bos taurus growth and lipid deposition.

    PubMed

    Weikard, Rosemarie; Altmaier, Elisabeth; Suhre, Karsten; Weinberger, Klaus M; Hammon, Harald M; Albrecht, Elke; Setoguchi, Kouji; Takasuga, Akiko; Kühn, Christa

    2010-10-01

    Identifying trait-associated genetic variation offers new prospects to reveal novel physiological pathways modulating complex traits. Taking advantage of a unique animal model, we identified the I442M mutation in the non-SMC condensin I complex, subunit G (NCAPG) gene and the Q204X mutation in the growth differentiation factor 8 (GDF8) gene as substantial modulators of pre- and/or postnatal growth in cattle. In a combined metabolomic and genotype association approach, which is the first respective study in livestock, we surveyed the specific physiological background of the effects of both loci on body-mass gain and lipid deposition. Our data provided confirming evidence from two historically and geographically distant cattle populations that the onset of puberty is the key interval of divergent growth. The locus-specific metabolic patterns obtained from monitoring 201 plasma metabolites at puberty mirror the particular NCAPG I442M and GDF8 Q204X effects and represent biosignatures of divergent physiological pathways potentially modulating effects on proportional and disproportional growth, respectively. While the NCAPG I442M mutation affected the arginine metabolism, the 204X allele in the GDF8 gene predominantly raised the carnitine level and had concordant effects on glycerophosphatidylcholines and sphingomyelins. Our study provides a conclusive link between the well-described growth-regulating functions of arginine metabolism and the previously unknown specific physiological role of the NCAPG protein in mammalian metabolism. Owing to the confirmed effect of the NCAPG/LCORL locus on human height in genome-wide association studies, the results obtained for bovine NCAPG might add valuable, comparative information on the physiological background of genetically determined divergent mammalian growth.

  1. Analysis of TSC1 mutation spectrum in mucosal melanoma.

    PubMed

    Ma, Meng; Dai, Jie; Xu, Tianxiao; Yu, Sifan; Yu, Huan; Tang, Huan; Yan, Junya; Wu, Xiaowen; Yu, Jiayi; Chi, Zhihong; Si, Lu; Cui, Chuanliang; Sheng, Xinan; Kong, Yan; Guo, Jun

    2018-02-01

    Mucosal melanoma is a relatively rare subtype of melanoma for which no clearly established therapeutic strategy exists. The genes of the mTOR signalling pathway have drawn great attention as key targets for cancer treatment, including melanoma. In this study, we aimed to investigate the mutation status of the upstream mTOR regulator TSC1 and evaluated its correlation with the clinicopathological features of mucosal melanoma. We collected 91 mucosal melanoma samples for detecting TSC1 mutations. All the coding exons of TSC1 were amplified by PCR and subjected to Sanger sequencing. Expression level of TSC1 encoding protein (hamartin) was detected by immunohistochemistry. The activation of mTOR pathway was determined by evaluating the phosphorylation status of S6RP and 4E-BP1. The overall mutation frequency of TSC1 was found to be 17.6% (16/91 patients). TSC1 mutations were more inclined to occur in advanced mucosal melanoma (stages III and IV). In the 16 patients with TSC1 mutations, 14 different mutations were detected, affecting 11 different exons. TSC1 mutations were correlated with upregulation of S6RP phosphorylation but were unrelated to 4E-BP1 phosphorylation or hamartin expression. Mucosal melanoma patients with TSC1 mutations had a worse outcome than patients without TSC1 mutations (24.0 versus 34.0 months, P = 0.007). Our findings suggest that TSC1 mutations are frequent in mucosal melanoma. TSC1 mutations can activate the mTOR pathway through phospho-S6RP and might be a poor prognostic predictor of mucosal melanoma. Our data implicate the potential significance of TSC1 mutations for effective and specific drug therapy for mucosal melanoma.

  2. Analysis of Hungarian patients with Rett syndrome phenotype for MECP2, CDKL5 and FOXG1 gene mutations.

    PubMed

    Hadzsiev, Kinga; Polgar, Noemi; Bene, Judit; Komlosi, Katalin; Karteszi, Judit; Hollody, Katalin; Kosztolanyi, Gyorgy; Renieri, Alessandra; Melegh, Bela

    2011-03-01

    Rett syndrome (RTT) is characterized by a relatively specific clinical phenotype. We screened 152 individuals with RTT phenotype. A total of 22 different known MECP2 mutations were identified in 42 subjects (27.6%). Of the 22 mutations, we identified 7 (31.8%) frameshift-causing deletions, 4 (18.2%) nonsense, 10 (45.5%) missense mutations and one insertion (4.5%). The most frequent pathologic changes were: p.Thr158Met (14.2%) and p.Arg133Cys (11.9%) missense, and p.Arg255Stop (9.5%) and p.Arg294Stop (9.5%) nonsense mutations. We also detected the c.925C >T (p.Arg309Trp) mutation in an affected patient, whose role in RTT pathogenesis is still unknown. Patients without detectable MECP2 defects were screened for mutations of cyclin-dependent kinase-like 5 (CDKL5) gene, responsible for the early-onset variant of RTT. We discovered two novel mutations: c.607G >T resulting in a termination codon at aa203, disrupting the catalytic domain, and c.1708G >T leading to a stop at aa570 of the C terminus. Both patients with CDKL5 mutation presented therapy-resistant epilepsy and a phenotype fitting with the diagnosis of early-onset variant of RTT. No FOXG1 mutation was detected in any of the remaining patients. A total of 110 (72.5%) patients remained without molecular genetic diagnosis that necessitates further search for novel gene mutations in this phenotype. Our results also suggest the need of screening for CDKL5 mutations in patients with Rett phenotype tested negative for MECP2 mutations.

  3. Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations

    PubMed Central

    Schafernak, Kristian T.; Geyer, Julia T.; Kovach, Alexandra E.; Ghandi, Mahmoud; Gratzinger, Dita; Roth, Christine G.; Paxton, Christian N.; Kim, Sunhee; Namgyal, Chungdak; Morin, Ryan; Morgan, Elizabeth A.; Neuberg, Donna S.; South, Sarah T.; Harris, Marian H.; Hasserjian, Robert P.; Hochberg, Ephraim P.; Garraway, Levi A.; Harris, Nancy Lee; Weinstock, David M.

    2016-01-01

    Pediatric-type nodal follicular lymphoma (PTNFL) is a variant of follicular lymphoma (FL) characterized by limited-stage presentation and invariably benign behavior despite often high-grade histological appearance. It is important to distinguish PTNFL from typical FL in order to avoid unnecessary treatment; however, this distinction relies solely on clinical and pathological criteria, which may be variably applied. To define the genetic landscape of PTNFL, we performed copy number analysis and exome and/or targeted sequencing of 26 PTNFLs (16 pediatric and 10 adult). The most commonly mutated gene in PTNFL was MAP2K1, encoding MEK1, with a mutation frequency of 43%. All MAP2K1 mutations were activating missense mutations localized to exons 2 and 3, which encode negative regulatory and catalytic domains, respectively. Missense mutations in MAPK1 (2/22) and RRAS (1/22) were identified in cases that lacked MAP2K1 mutations. The second most commonly mutated gene in PTNFL was TNFRSF14, with a mutation frequency of 29%, similar to that seen in limited-stage typical FL (P = .35). PTNFL was otherwise genomically bland and specifically lacked recurrent mutations in epigenetic modifiers (eg, CREBBP, KMT2D). Copy number aberrations affected a mean of only 0.5% of PTNFL genomes, compared with 10% of limited-stage typical FL genomes (P < .02). Importantly, the mutational profiles of PTNFLs in children and adults were highly similar. Together, these findings define PTNFL as a biologically and clinically distinct indolent lymphoma of children and adults characterized by a high prevalence of MAPK pathway mutations and a near absence of mutations in epigenetic modifiers. PMID:27325104

  4. Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations.

    PubMed

    Louissaint, Abner; Schafernak, Kristian T; Geyer, Julia T; Kovach, Alexandra E; Ghandi, Mahmoud; Gratzinger, Dita; Roth, Christine G; Paxton, Christian N; Kim, Sunhee; Namgyal, Chungdak; Morin, Ryan; Morgan, Elizabeth A; Neuberg, Donna S; South, Sarah T; Harris, Marian H; Hasserjian, Robert P; Hochberg, Ephraim P; Garraway, Levi A; Harris, Nancy Lee; Weinstock, David M

    2016-08-25

    Pediatric-type nodal follicular lymphoma (PTNFL) is a variant of follicular lymphoma (FL) characterized by limited-stage presentation and invariably benign behavior despite often high-grade histological appearance. It is important to distinguish PTNFL from typical FL in order to avoid unnecessary treatment; however, this distinction relies solely on clinical and pathological criteria, which may be variably applied. To define the genetic landscape of PTNFL, we performed copy number analysis and exome and/or targeted sequencing of 26 PTNFLs (16 pediatric and 10 adult). The most commonly mutated gene in PTNFL was MAP2K1, encoding MEK1, with a mutation frequency of 43%. All MAP2K1 mutations were activating missense mutations localized to exons 2 and 3, which encode negative regulatory and catalytic domains, respectively. Missense mutations in MAPK1 (2/22) and RRAS (1/22) were identified in cases that lacked MAP2K1 mutations. The second most commonly mutated gene in PTNFL was TNFRSF14, with a mutation frequency of 29%, similar to that seen in limited-stage typical FL (P = .35). PTNFL was otherwise genomically bland and specifically lacked recurrent mutations in epigenetic modifiers (eg, CREBBP, KMT2D). Copy number aberrations affected a mean of only 0.5% of PTNFL genomes, compared with 10% of limited-stage typical FL genomes (P < .02). Importantly, the mutational profiles of PTNFLs in children and adults were highly similar. Together, these findings define PTNFL as a biologically and clinically distinct indolent lymphoma of children and adults characterized by a high prevalence of MAPK pathway mutations and a near absence of mutations in epigenetic modifiers. © 2016 by The American Society of Hematology.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Mika Kato; Molecular Tumor Marker Research Team, Global COE Program, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585; Morita, Shunpei

    Highlights: ► IDH1/2 mutations are early and frequent genetic alterations in gliomas. ► We established anti-mutated IDH2-specific mAbs KMab-1 and MMab-1. ► KMab-1 or MMab-1 specifically reacted with mutated IDH2 in ELISA. ► MMab-1 specifically stained IDH2-R172M-expressing CHO cells in ICC. ► MMab-1 specifically stained IDH2-R172M-expressing gliomas in IHC. - Abstract: Isocitrate dehydrogenase 1/2 (IDH1/2) mutations have been detected in gliomas, cartilaginous tumors, and leukemias. IDH1/2 mutations are early and frequent genetic alterations, are specific to a single codon in the conserved and functionally important Arginine 132 (R132) in IDH1 and Arginine 172 (R172) in IDH2. We previously established severalmore » monoclonal antibodies (mAbs), which are specific for IDH1 mutations: clones IMab-1 or HMab-1 against IDH1-R132H or clone SMab-1 against IDH1-R132S. However, specific mAbs against IDH2 mutations have not been reported. To establish IDH2-mutation-specific mAbs, we immunized mice or rats with each mutation-containing IDH2 peptides including IDH2-R172K and IDH2-R172M. After cell fusion, IDH2 mutation-specific mAbs were screened in Enzyme-Linked Immunosorbent Assay (ELISA). Established mAbs KMab-1 and MMab-1 reacted with the IDH2-R172K and IDH2-R172M peptides, respectively, but not with IDH2-wild type (WT) in ELISA. Western-blot analysis also showed that KMab-1 and MMab-1 reacted with the IDH2-R172K and IDH2-R172M recombinant proteins, respectively, not with IDH2-WT or other IDH2 mutants, indicating that KMab-1 and MMab-1 are IDH2-mutation-specific. Furthermore, MMab-1 specifically stained the IDH2-R172M-expressing cells in immunocytochemistry, but did not stain IDH2-WT and other IDH2-mutation-containing cells. In immunohistochemical analysis, MMab-1 specifically stained IDH2-R172M-expressing glioma. This is the first report to establish anti-IDH2-mutation-specific mAbs, which could be useful in diagnosis of mutation-bearing tumors.« less

  6. Comprehensive CFTR gene analysis of the French cystic fibrosis screened newborn cohort: implications for diagnosis, genetic counseling, and mutation-specific therapy.

    PubMed

    Audrézet, Marie Pierre; Munck, Anne; Scotet, Virginie; Claustres, Mireille; Roussey, Michel; Delmas, Dominique; Férec, Claude; Desgeorges, Marie

    2015-02-01

    Newborn screening (NBS) for cystic fibrosis (CF) was implemented throughout France in 2002. It involves a four-tiered procedure: immunoreactive trypsin (IRT)/DNA/IRT/sweat test [corrected] was implemented throughout France in 2002. The aim of this study was to assess the performance of molecular CFTR gene analysis from the French NBS cohort, to evaluate CF incidence, mutation detection rate, and allelic heterogeneity. During the 8-year period, 5,947,148 newborns were screened for cystic fibrosis. The data were collected by the Association Française pour le Dépistage et la Prévention des Handicaps de l'Enfant. The mutations identified were classified into four groups based on their potential for causing disease, and a diagnostic algorithm was proposed. Combining the genetic and sweat test results, 1,160 neonates were diagnosed as having cystic fibrosis. The corresponding incidence, including both the meconium ileus (MI) and false-negative cases, was calculated at 1 in 4,726 live births. The CF30 kit, completed with a comprehensive CFTR gene analysis, provides an excellent detection rate of 99.77% for the mutated alleles, enabling the identification of a complete genotype in 99.55% of affected neonates. With more than 200 different mutations characterized, we confirmed the French allelic heterogeneity. The very good sensitivity, specificity, and positive predictive value obtained suggest that the four-tiered IRT/DNA/IRT/sweat test procedure may provide an effective strategy for newborn screening for cystic fibrosis.

  7. Antisense-based RNA therapy of factor V deficiency: in vitro and ex vivo rescue of a F5 deep-intronic splicing mutation.

    PubMed

    Nuzzo, Francesca; Radu, Claudia; Baralle, Marco; Spiezia, Luca; Hackeng, Tilman M; Simioni, Paolo; Castoldi, Elisabetta

    2013-11-28

    Antisense molecules are emerging as a powerful tool to correct splicing defects. Recently, we identified a homozygous deep-intronic mutation (F5 c.1296+268A>G) activating a cryptic donor splice site in a patient with severe coagulation factor V (FV) deficiency and life-threatening bleeding episodes. Here, we assessed the ability of 2 mutation-specific antisense molecules (a morpholino oligonucleotide [MO] and an engineered U7 small nuclear RNA [snRNA]) to correct this splicing defect. COS-1 and HepG2 cells transfected with a F5 minigene construct containing the patient's mutation expressed aberrant messenger RNA (mRNA) in excess of normal mRNA. Treatment with mutation-specific antisense MO (1-5 µM) or a construct expressing antisense U7snRNA (0.25-2 µg) dose-dependently increased the relative amount of correctly spliced mRNA by 1 to 2 orders of magnitude, whereas control MO and U7snRNA were ineffective. Patient-derived megakaryocytes obtained by differentiation of circulating progenitor cells did not express FV, but became positive for FV at immunofluorescence staining after administration of antisense MO or U7snRNA. However, treatment adversely affected cell viability, mainly because of the transfection reagents used to deliver the antisense molecules. Our data provide in vitro and ex vivo proof of principle for the efficacy of RNA therapy in severe FV deficiency, but additional cytotoxicity studies are warranted.

  8. Detection of IDH1 R132H mutation in acute myeloid leukemia by mutation-specific immunohistochemistry.

    PubMed

    Byers, Richard; Hornick, Jason L; Tholouli, Eleni; Kutok, Jeffery; Rodig, Scott J

    2012-01-01

    IDH1 mutations are present but are uncommon in acute myeloid leukemia (AML) and although prognostically favorable in gliomas their clinical significance in AML is unclear. Some have associated IDH1 mutations with inferior outcome, whereas others found no association with prognosis. Complicating these analyses is the need to sequence IDH1 from leukemic blasts, which is technically challenging and not yet routine. Mutation-specific antibodies enable robust, cost-effective detection of mutations in routine biopsy samples. Immunohistochemistry for the R132H mutation-specific antibody was performed in a tissue microarray containing 159 cases of AML, detecting the R132H mutation in 7 cases (4.4%). Positivity was associated with intermediate risk cytogenetics. Our results demonstrate an association between the R132H IDH1 mutation and intermediate risk cytogenetics in AML, suggesting that R132H IDH1 mutation may be associated with improved clinical outcome and demonstrate the feasibility of using mutation-specific antibodies to genotype and subclassify AML.

  9. Computer Simulations Reveal Substrate Specificity of Glycosidic Bond Cleavage in Native and Mutant Human Purine Nucleoside Phosphorylase.

    PubMed

    Isaksen, Geir Villy; Hopmann, Kathrin Helen; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-04-12

    Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine ribonucleosides and 2'-deoxyribonucleosides, yielding the purine base and (2'-deoxy)ribose 1-phosphate as products. While this enzyme has been extensively studied, several questions with respect to the catalytic mechanism have remained largely unanswered. The role of the phosphate and key amino acid residues in the catalytic reaction as well as the purine ring protonation state is elucidated using density functional theory calculations and extensive empirical valence bond (EVB) simulations. Free energy surfaces for adenosine, inosine, and guanosine are fitted to ab initio data and yield quantitative agreement with experimental data when the surfaces are used to model the corresponding enzymatic reactions. The cognate substrates 6-aminopurines (inosine and guanosine) interact with PNP through extensive hydrogen bonding, but the substrate specificity is found to be a direct result of the electrostatic preorganization energy along the reaction coordinate. Asn243 has previously been identified as a key residue providing substrate specificity. Mutation of Asn243 to Asp has dramatic effects on the substrate specificity, making 6-amino- and 6-oxopurines equally good as substrates. The principal effect of this particular mutation is the change in the electrostatic preorganization energy between the native enzyme and the Asn243Asp mutant, clearly favoring adenosine over inosine and guanosine. Thus, the EVB simulations show that this particular mutation affects the electrostatic preorganization of the active site, which in turn can explain the substrate specificity.

  10. Expanding the clinical and mutational spectrum of B4GALT7-spondylodysplastic Ehlers-Danlos syndrome.

    PubMed

    Ritelli, Marco; Dordoni, Chiara; Cinquina, Valeria; Venturini, Marina; Calzavara-Pinton, Piergiacomo; Colombi, Marina

    2017-09-07

    Spondylodysplastic EDS (spEDS) is a rare connective tissue disorder that groups the phenotypes caused by biallelic B4GALT7, B3GALT6, and SLC39A13 mutations. In the 2017 EDS nosology, minimal criteria (general and gene-specific) for a clinical suspicion of spEDS have been proposed, but molecular analysis is required to reach a definite diagnosis. The majority of spEDS patients presented with short stature, skin hyperextensibility, facial dysmorphisms, peculiar radiological findings, muscle hypotonia and joint laxity and/or its complications. To date only 7 patients with β4GALT7-deficiency (spEDS-B4GALT7) have been described and their clinical data suggested that, in addition to short stature and muscle hypotonia, radioulnar synostosis, hypermetropia, and delayed cognitive development might be a hallmark of this specific type of spEDS. Additional 22 patients affected with an overlapping phenotype, i.e., Larsen of Reunion Island syndrome, all carrying a homozygous B4GALT7 mutation, are also recognized. Herein, we report on a 30-year-old Moroccan woman who fitted the minimal criteria to suspect spEDS, but lacked radioulnar synostosis and intellectual disability and presented with neurosensorial hearing loss and limb edema of lymphatic origin. Sanger sequencing of B4GALT7 was performed since the evaluation of the spEDS gene-specific minor criteria suggested this specific subtype. Mutational screening revealed the homozygous c.829G>T, p.Glu277* pathogenetic variant leading to aberrant splicing. Our findings expand both the clinical and mutational spectrum of this ultrarare connective tissue disorder. The comparison of the patient's features with those of the other spEDS and Larsen of Reunion Island syndrome patients reported up to now offers future perspectives for spEDS nosology and clinical research in this field.

  11. Two Desmin Gene Mutations Associated with Myofibrillar Myopathies in Polish Families

    PubMed Central

    Berdynski, Mariusz; Sikorska, Agata; Filipek, Slawomir; Redowicz, Maria Jolanta; Kaminska, Anna; Zekanowski, Cezary

    2014-01-01

    Desmin is a muscle-specific intermediate filament protein which forms a network connecting the sarcomere, T tubules, sarcolemma, nuclear membrane, mitochondria and other organelles. Mutations in the gene coding for desmin (DES) cause skeletal myopathies often combined with cardiomyopathy, or isolated cardiomyopathies. The molecular pathomechanisms of the disease remain ambiguous. Here, we describe and comprehensively characterize two DES mutations found in Polish patients with a clinical diagnosis of desminopathy. The study group comprised 16 individuals representing three families. Two mutations were identified: a novel missense mutation (Q348P) and a small deletion of nine nucleotides (A357_E359del), previously described by us in the Polish population. A common ancestry of all the families bearing the A357_E359del mutation was confirmed. Both mutations were predicted to be pathogenic using a bioinformatics approach, including molecular dynamics simulations which helped to rationalize abnormal behavior at molecular level. To test the impact of the mutations on DES expression and the intracellular distribution of desmin muscle biopsies were investigated. Elevated desmin levels as well as its atypical localization in muscle fibers were observed. Additional staining for M-cadherin, α-actinin, and myosin heavy chains confirmed severe disruption of myofibrill organization. The abnormalities were more prominent in the Q348P muscle, where both small atrophic fibers as well large fibers with centrally localized nuclei were observed. We propose that the mutations affect desmin structure and cause its aberrant folding and subsequent aggregation, triggering disruption of myofibrils organization. PMID:25541946

  12. Gene Mutation Profiles in Primary Diffuse Large B Cell Lymphoma of Central Nervous System: Next Generation Sequencing Analyses

    PubMed Central

    Todorovic Balint, Milena; Jelicic, Jelena; Mihaljevic, Biljana; Kostic, Jelena; Stanic, Bojana; Balint, Bela; Pejanovic, Nadja; Lucic, Bojana; Tosic, Natasa; Marjanovic, Irena; Stojiljkovic, Maja; Karan-Djurasevic, Teodora; Perisic, Ognjen; Rakocevic, Goran; Popovic, Milos; Raicevic, Sava; Bila, Jelena; Antic, Darko; Andjelic, Bosko; Pavlovic, Sonja

    2016-01-01

    The existence of a potential primary central nervous system lymphoma-specific genomic signature that differs from the systemic form of diffuse large B cell lymphoma (DLBCL) has been suggested, but is still controversial. We investigated 19 patients with primary DLBCL of central nervous system (DLBCL CNS) using the TruSeq Amplicon Cancer Panel (TSACP) for 48 cancer-related genes. Next generation sequencing (NGS) analyses have revealed that over 80% of potentially protein-changing mutations were located in eight genes (CTNNB1, PIK3CA, PTEN, ATM, KRAS, PTPN11, TP53 and JAK3), pointing to the potential role of these genes in lymphomagenesis. TP53 was the only gene harboring mutations in all 19 patients. In addition, the presence of mutated TP53 and ATM genes correlated with a higher total number of mutations in other analyzed genes. Furthermore, the presence of mutated ATM correlated with poorer event-free survival (EFS) (p = 0.036). The presence of the mutated SMO gene correlated with earlier disease relapse (p = 0.023), inferior event-free survival (p = 0.011) and overall survival (OS) (p = 0.017), while mutations in the PTEN gene were associated with inferior OS (p = 0.048). Our findings suggest that the TP53 and ATM genes could be involved in the molecular pathophysiology of primary DLBCL CNS, whereas mutations in the PTEN and SMO genes could affect survival regardless of the initial treatment approach. PMID:27164089

  13. Rare Noncoding Mutations Extend the Mutational Spectrum in the PGAP3 Subtype of Hyperphosphatasia with Mental Retardation Syndrome

    PubMed Central

    Knaus, Alexej; Awaya, Tomonari; Helbig, Ingo; Afawi, Zaid; Pendziwiat, Manuela; Abu‐Rachma, Jubran; Thompson, Miles D.; Cole, David E.; Skinner, Steve; Annese, Fran; Canham, Natalie; Schweiger, Michal R.; Robinson, Peter N.; Mundlos, Stefan; Kinoshita, Taroh; Munnich, Arnold

    2016-01-01

    ABSTRACT HPMRS or Mabry syndrome is a heterogeneous glycosylphosphatidylinositol (GPI) anchor deficiency that is caused by an impairment of synthesis or maturation of the GPI‐anchor. The expressivity of the clinical features in HPMRS varies from severe syndromic forms with multiple organ malformations to mild nonsyndromic intellectual disability. In about half of the patients with the clinical diagnosis of HPMRS, pathogenic mutations can be identified in the coding region in one of the six genes, one among them is PGAP3. In this work, we describe a screening approach with sequence specific baits for transcripts of genes of the GPI pathway that allows the detection of functionally relevant mutations also including introns and the 5′ and 3′ UTR. By this means, we also identified pathogenic noncoding mutations, which increases the diagnostic yield for HPMRS on the basis of intellectual disability and elevated serum alkaline phosphatase. In eight affected individuals from different ethnicities, we found seven novel pathogenic mutations in PGAP3. Besides five missense mutations, we identified an intronic mutation, c.558‐10G>A, that causes an aberrant splice product and a mutation in the 3′UTR, c.*559C>T, that is associated with substantially lower mRNA levels. We show that our novel screening approach is a useful rapid detection tool for alterations in genes coding for key components of the GPI pathway. PMID:27120253

  14. GATA2 null mutation associated with incomplete penetrance in a family with Emberger syndrome.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; García-Ortiz, José Elías; Brouillard, Pascal; Nguyen, Ha-Long; Vikkula, Miikka; Ríos-González, Blanca Estela; Sandoval-Muñiz, Roberto de Jesús; Sandoval-Talamantes, Ana Karen; Bobadilla-Morales, Lucina; Corona-Rivera, Jorge Román; Arnaud-Lopez, Lisette

    2017-09-01

    GATA2 mutations are associated with several conditions, including Emberger syndrome which is the association of primary lymphedema with hematological anomalies and an increased risk for myelodysplasia and leukemia. To describe a family with Emberger syndrome with incomplete penetrance. A DNA sequencing of GATA2 gene was performed in the parents and offspring (five individuals in total). The family consisted of 5 individuals with a GATA2 null mutation (c.130G>T, p.Glu44*); three of them were affected (two of which were deceased) while two remained unaffected at the age of 40 and 13 years old. The three affected siblings (two boys and one girl) presented with lymphedema of the lower limbs, recurrent warts, epistaxis and recurrent infections. Two died due to hematological abnormalities (AML and pancytopenia). In contrast, the two other family members who carry the same mutation (the mother and one brother) have not presented any symptoms and their blood tests remain normal. Incomplete penetrance may indicate that GATA2 haploinsufficiency is not enough to produce the phenotype of Emberger syndrome. It could be useful to perform whole exome or genome sequencing, in cases where incomplete penetrance or high variable expressivity is described, in order to probably identify specific gene interactions that drastically modify the phenotype. In addition, skewed gene expression by an epigenetic mechanism of gene regulation should also be considered.

  15. Loss-of-function mutations in CAST cause peeling skin, leukonychia, acral punctate keratoses, cheilitis, and knuckle pads.

    PubMed

    Lin, Zhimiao; Zhao, Jiahui; Nitoiu, Daniela; Scott, Claire A; Plagnol, Vincent; Smith, Frances J D; Wilson, Neil J; Cole, Christian; Schwartz, Mary E; McLean, W H Irwin; Wang, Huijun; Feng, Cheng; Duo, Lina; Zhou, Eray Yihui; Ren, Yali; Dai, Lanlan; Chen, Yulan; Zhang, Jianguo; Xu, Xun; O'Toole, Edel A; Kelsell, David P; Yang, Yong

    2015-03-05

    Calpastatin is an endogenous specific inhibitor of calpain, a calcium-dependent cysteine protease. Here we show that loss-of-function mutations in calpastatin (CAST) are the genetic causes of an autosomal-recessive condition characterized by generalized peeling skin, leukonychia, acral punctate keratoses, cheilitis, and knuckle pads, which we propose to be given the acronym PLACK syndrome. In affected individuals with PLACK syndrome from three families of different ethnicities, we identified homozygous mutations (c.607dup, c.424A>T, and c.1750delG) in CAST, all of which were predicted to encode truncated proteins (p.Ile203Asnfs∗8, p.Lys142∗, and p.Val584Trpfs∗37). Immunohistochemistry shows that staining of calpastatin is reduced in skin from affected individuals. Transmission electron microscopy revealed widening of intercellular spaces with chromatin condensation and margination in the upper stratum spinosum in lesional skin, suggesting impaired intercellular adhesion as well as keratinocyte apoptosis. A significant increase of apoptotic keratinocytes was also observed in TUNEL assays. In vitro studies utilizing siRNA-mediated CAST knockdown revealed a role for calpastatin in keratinocyte adhesion. In summary, we describe PLACK syndrome, as a clinical entity of defective epidermal adhesion, caused by loss-of-function mutations in CAST. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Antigen-specific primed cytotoxic T cells eliminate tumour cells in vivo and prevent tumour development, regardless of the presence of anti-apoptotic mutations conferring drug resistance.

    PubMed

    Jaime-Sánchez, Paula; Catalán, Elena; Uranga-Murillo, Iratxe; Aguiló, Nacho; Santiago, Llipsy; M Lanuza, Pilar; de Miguel, Diego; A Arias, Maykel; Pardo, Julián

    2018-05-09

    Cytotoxic CD8 + T (Tc) cells are the main executors of transformed and cancer cells during cancer immunotherapy. The latest clinical results evidence a high efficacy of novel immunotherapy agents that modulate Tc cell activity against bad prognosis cancers. However, it has not been determined yet whether the efficacy of these treatments can be affected by selection of tumoural cells with mutations in the cell death machinery, known to promote drug resistance and cancer recurrence. Here, using a model of prophylactic tumour vaccination based on the LCMV-gp33 antigen and the mouse EL4 T lymphoma, we analysed the molecular mechanism employed by Tc cells to eliminate cancer cells in vivo and the impact of mutations in the apoptotic machinery on tumour development. First of all, we found that Tc cells, and perf and gzmB are required to efficiently eliminate EL4.gp33 cells after LCMV immunisation during short-term assays (1-4 h), and to prevent tumour development in the long term. Furthermore, we show that antigen-pulsed chemoresistant EL4 cells overexpressing Bcl-X L or a dominant negative form of caspase-3 are specifically eliminated from the peritoneum of infected animals, as fast as parental EL4 cells. Notably, antigen-specific Tc cells control the tumour growth of the mutated cells, as efficiently as in the case of parental cells. Altogether, expression of the anti-apoptotic mutations does not confer any advantage for tumour cells neither in the short-term survival nor in long-term tumour formation. Although the mechanism involved in the elimination of the apoptosis-resistant tumour cells is not completely elucidated, neither necroptosis nor pyroptosis seem to be involved. Our results provide the first experimental proof that chemoresistant cancer cells with mutations in the main cell death pathways are efficiently eliminated by Ag-specific Tc cells in vivo during immunotherapy and, thus, provide the molecular basis to treat chemoresistant cancer cells with CD8 Tc-based immunotherapy.

  17. Infantile Alexander Disease: Spectrum of GFAP Mutations and Genotype-Phenotype Correlation

    PubMed Central

    Rodriguez, Diana; Gauthier, Fernande; Bertini, Enrico; Bugiani, Marianna; Brenner, Michael; N'guyen, Sylvie; Goizet, Cyril; Gelot, Antoinette; Surtees, Robert; Pedespan, Jean-Michel; Hernandorena, Xavier; Troncoso, Monica; Uziel, Graziela; Messing, Albee; Ponsot, Gérard; Pham-Dinh, Danielle; Dautigny, André; Boespflug-Tanguy, Odile

    2001-01-01

    Heterozygous, de novo mutations in the glial fibrillary acidic protein (GFAP) gene have recently been reported in 12 patients affected by neuropathologically proved Alexander disease. We searched for GFAP mutations in a series of patients who had heterogeneous clinical symptoms but were candidates for Alexander disease on the basis of suggestive neuroimaging abnormalities. Missense, heterozygous, de novo GFAP mutations were found in exons 1 or 4 for 14 of the 15 patients analyzed, including patients without macrocephaly. Nine patients carried arginine mutations (four had R79H; four had R239C; and one had R239H) that have been described elsewhere, whereas the other five had one of four novel mutations, of which two affect arginine (2R88C and 1R88S) and two affect nonarginine residues (1L76F and 1N77Y). All mutations were located in the rod domain of GFAP, and there is a correlation between clinical severity and the affected amino acid. These results confirm that GFAP mutations are a reliable molecular marker for the diagnosis of infantile Alexander disease, and they also form a basis for the recommendation of GFAP analysis for prenatal diagnosis to detect potential cases of germinal mosaicism. PMID:11567214

  18. Site-directed mutagenesis of GH10 xylanase A from Penicillium canescens for determining factors affecting the enzyme thermostability.

    PubMed

    Denisenko, Yury A; Gusakov, Alexander V; Rozhkova, Aleksandra M; Osipov, Dmitry O; Zorov, Ivan N; Matys, Veronika Yu; Uporov, Igor V; Sinitsyn, Arkady P

    2017-11-01

    In order to investigate factors affecting the thermostability of GH10 xylanase A from Penicillium canescens (PcXylA) and to obtain its more stable variant, the wild-type (wt) enzyme and its mutant forms, carrying single amino acid substitutions, were cloned and expressed in Penicillium verruculosum B1-537 (niaD-) auxotrophic strain under the control of the cbh1 gene promoter. The recombinant PcXylA-wt and I6V, I6L, L18F, N77D, Y125R, H191R, S246P, A293P mutants were successfully expressed and purified for characterization. The mutations did not affect the enzyme specific activity against xylan from wheat as well as its pH-optimum of activity. One mutant (L18F) displayed a higher thermostability relative to the wild-type enzyme; its half-life time at 50-60°C was 2-2.5-fold longer than that for the PcXylA-wt, and the melting temperature was 60.0 and 56.1°C, respectively. Most of other mutations led to decrease in the enzyme thermostability. This study, together with data of other researchers, suggests that multiple mutations should be introduced into GH10 xylanases in order to dramatically improve their stability. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate

    PubMed Central

    Chen, Jun; Shen, Jing; Ingvar Hellgren, Lars; Ruhdal Jensen, Peter; Solem, Christian

    2015-01-01

    Lactococcus lactis is essential for most cheese making, and this mesophilic bacterium has its growth optimum around 30 °C. We have, through adaptive evolution, isolated a mutant TM29 that grows well up to 39 °C, and continuous growth at 40 °C is possible if pre-incubated at a slightly lower temperature. At the maximal permissive temperature for the wild-type, 38 °C, TM29 grows 33% faster and has a 12% higher specific lactate production rate than its parent MG1363, which results in fast lactate accumulation. Genome sequencing was used to reveal the mutations accumulated, most of which were shown to affect thermal tolerance. Of the mutations with more pronounced effects, two affected expression of single proteins (chaperone; riboflavin transporter), two had pleiotropic effects (RNA polymerase) which changed the gene expression profile, and one resulted in a change in the coding sequence of CDP-diglyceride synthase. A large deletion containing 10 genes was also found to affect thermal tolerance significantly. With this study we demonstrate a simple approach to obtain non-GMO derivatives of the important L. lactis that possess properties desirable by the industry, e.g. thermal robustness and increased rate of acidification. The mutations we have identified provide a genetic basis for further investigation of thermal tolerance. PMID:26388459

  20. Presence of a consensus DNA motif at nearby DNA sequence of the mutation susceptible CG nucleotides.

    PubMed

    Chowdhury, Kaushik; Kumar, Suresh; Sharma, Tanu; Sharma, Ankit; Bhagat, Meenakshi; Kamai, Asangla; Ford, Bridget M; Asthana, Shailendra; Mandal, Chandi C

    2018-01-10

    Complexity in tissues affected by cancer arises from somatic mutations and epigenetic modifications in the genome. The mutation susceptible hotspots present within the genome indicate a non-random nature and/or a position specific selection of mutation. An association exists between the occurrence of mutations and epigenetic DNA methylation. This study is primarily aimed at determining mutation status, and identifying a signature for predicting mutation prone zones of tumor suppressor (TS) genes. Nearby sequences from the top five positions having a higher mutation frequency in each gene of 42 TS genes were selected from a cosmic database and were considered as mutation prone zones. The conserved motifs present in the mutation prone DNA fragments were identified. Molecular docking studies were done to determine putative interactions between the identified conserved motifs and enzyme methyltransferase DNMT1. Collective analysis of 42 TS genes found GC as the most commonly replaced and AT as the most commonly formed residues after mutation. Analysis of the top 5 mutated positions of each gene (210 DNA segments for 42 TS genes) identified that CG nucleotides of the amino acid codons (e.g., Arginine) are most susceptible to mutation, and found a consensus DNA "T/AGC/GAGGA/TG" sequence present in these mutation prone DNA segments. Similar to TS genes, analysis of 54 oncogenes not only found CG nucleotides of the amino acid Arg as the most susceptible to mutation, but also identified the presence of similar consensus DNA motifs in the mutation prone DNA fragments (270 DNA segments for 54 oncogenes) of oncogenes. Docking studies depicted that, upon binding of DNMT1 methylates to this consensus DNA motif (C residues of CpG islands), mutation was likely to occur. Thus, this study proposes that DNMT1 mediated methylation in chromosomal DNA may decrease if a foreign DNA segment containing this consensus sequence along with CG nucleotides is exogenously introduced to dividing cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Comparison of next-generation sequencing mutation profiling with BRAF and IDH1 mutation-specific immunohistochemistry.

    PubMed

    Jabbar, Kausar J; Luthra, Rajalakshmi; Patel, Keyur P; Singh, Rajesh R; Goswami, Rashmi; Aldape, Ken D; Medeiros, L Jeffrey; Routbort, Mark J

    2015-04-01

    Mutation-specific antibodies for BRAF V600E and IDH1 R132H offer convenient immunohistochemical (IHC) assays to detect these mutations in tumors. Previous studies using these antibodies have shown high sensitivity and specificity, but use in routine diagnosis with qualitative assessment has not been well studied. In this retrospective study, we reviewed BRAF and IDH1 mutation-specific IHC results compared with separately obtained clinical next-generation sequencing results. For 67 tumors with combined IDH1 IHC and mutation data, IHC was unequivocally reported as positive or negative in all cases. Sensitivity of IHC for IDH1 R132H was 98% and specificity was 100% compared with mutation status. Four IHC-negative samples showed non-R132H IDH1 mutations including R132C, R132G, and P127T. For 128 tumors with combined BRAF IHC and mutation data, IHC was positive in 33, negative in 82, and equivocal in 13 tumors. The sensitivity of IHC was 97% and specificity was 99% when including only unequivocally positive or negative results. If equivocal IHC cases were included in the analysis as negative, sensitivity fell to 81%. If equivocal cases were classified as positive, specificity dropped to 91%. Eight IHC-negative samples showed non-V600E BRAF mutations including V600K, N581I, V600M, and K601E. We conclude that IHC for BRAF V600E and IDH1 R132H is relatively sensitive and specific, but there is a discordance rate that is not trivial. In addition, a significant proportion of patients harbor BRAF non-V600E or IDH1 non-R132H mutations not detectable by IHC, potentially limiting utility of IHC screening for BRAF and IDH1 mutations.

  2. The contribution of de novo coding mutations to autism spectrum disorder.

    PubMed

    Iossifov, Ivan; O'Roak, Brian J; Sanders, Stephan J; Ronemus, Michael; Krumm, Niklas; Levy, Dan; Stessman, Holly A; Witherspoon, Kali T; Vives, Laura; Patterson, Karynne E; Smith, Joshua D; Paeper, Bryan; Nickerson, Deborah A; Dea, Jeanselle; Dong, Shan; Gonzalez, Luis E; Mandell, Jeffrey D; Mane, Shrikant M; Murtha, Michael T; Sullivan, Catherine A; Walker, Michael F; Waqar, Zainulabedin; Wei, Liping; Willsey, A Jeremy; Yamrom, Boris; Lee, Yoon-ha; Grabowska, Ewa; Dalkic, Ertugrul; Wang, Zihua; Marks, Steven; Andrews, Peter; Leotta, Anthony; Kendall, Jude; Hakker, Inessa; Rosenbaum, Julie; Ma, Beicong; Rodgers, Linda; Troge, Jennifer; Narzisi, Giuseppe; Yoon, Seungtai; Schatz, Michael C; Ye, Kenny; McCombie, W Richard; Shendure, Jay; Eichler, Evan E; State, Matthew W; Wigler, Michael

    2014-11-13

    Whole exome sequencing has proven to be a powerful tool for understanding the genetic architecture of human disease. Here we apply it to more than 2,500 simplex families, each having a child with an autistic spectrum disorder. By comparing affected to unaffected siblings, we show that 13% of de novo missense mutations and 43% of de novo likely gene-disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding de novo mutations contribute to about 30% of all simplex and 45% of female diagnoses. Almost all LGD mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower intelligence quotient (IQ), but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to contributory missense mutation. LGD targets in the joint class overlap with published targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes. Most of the significance for the latter comes from affected females.

  3. Non-coding variants contribute to the clinical heterogeneity of TTR amyloidosis.

    PubMed

    Iorio, Andrea; De Lillo, Antonella; De Angelis, Flavio; Di Girolamo, Marco; Luigetti, Marco; Sabatelli, Mario; Pradotto, Luca; Mauro, Alessandro; Mazzeo, Anna; Stancanelli, Claudia; Perfetto, Federico; Frusconi, Sabrina; My, Filomena; Manfellotto, Dario; Fuciarelli, Maria; Polimanti, Renato

    2017-09-01

    Coding mutations in TTR gene cause a rare hereditary form of systemic amyloidosis, which has a complex genotype-phenotype correlation. We investigated the role of non-coding variants in regulating TTR gene expression and consequently amyloidosis symptoms. We evaluated the genotype-phenotype correlation considering the clinical information of 129 Italian patients with TTR amyloidosis. Then, we conducted a re-sequencing of TTR gene to investigate how non-coding variants affect TTR expression and, consequently, phenotypic presentation in carriers of amyloidogenic mutations. Polygenic scores for genetically determined TTR expression were constructed using data from our re-sequencing analysis and the GTEx (Genotype-Tissue Expression) project. We confirmed a strong phenotypic heterogeneity across coding mutations causing TTR amyloidosis. Considering the effects of non-coding variants on TTR expression, we identified three patient clusters with specific expression patterns associated with certain phenotypic presentations, including late onset, autonomic neurological involvement, and gastrointestinal symptoms. This study provides novel data regarding the role of non-coding variation and the gene expression profiles in patients affected by TTR amyloidosis, also putting forth an approach that could be used to investigate the mechanisms at the basis of the genotype-phenotype correlation of the disease.

  4. A genetic screen for zygotic embryonic lethal mutations affecting cuticular morphology in the wasp Nasonia vitripennis.

    PubMed Central

    Pultz, M A; Zimmerman, K K; Alto, N M; Kaeberlein, M; Lange, S K; Pitt, J N; Reeves, N L; Zehrung, D L

    2000-01-01

    We have screened for zygotic embryonic lethal mutations affecting cuticular morphology in Nasonia vitripennis (Hymenoptera; Chalcidoidea). Our broad goal was to investigate the use of Nasonia for genetically surveying conservation and change in regulatory gene systems, as a means to understand the diversity of developmental strategies that have arisen during the course of evolution. Specifically, we aim to compare anteroposterior patterning gene functions in two long germ band insects, Nasonia and Drosophila. In Nasonia, unfertilized eggs develop as haploid males while fertilized eggs develop as diploid females, so the entire genome can be screened for recessive zygotic mutations by examining the progeny of F1 females. We describe 74 of >100 lines with embryonic cuticular mutant phenotypes, including representatives of coordinate, gap, pair-rule, segment polarity, homeotic, and Polycomb group functions, as well as mutants with novel phenotypes not directly comparable to those of known Drosophila genes. We conclude that Nasonia is a tractable experimental organism for comparative developmental genetic study. The mutants isolated here have begun to outline the extent of conservation and change in the genetic programs controlling embryonic patterning in Nasonia and Drosophila. PMID:10866651

  5. Emerging genetic therapies to treat Duchenne muscular dystrophy

    PubMed Central

    Nelson, Stanley F.; Crosbie, Rachelle H.; Miceli, M. Carrie; Spencer, Melissa J.

    2010-01-01

    Purpose of review Duchenne muscular dystrophy is a progressive muscle degenerative disease caused by dystrophin mutations. The purpose of this review is to highlight two emerging therapies designed to repair the primary genetic defect, called `exon skipping' and `nonsense codon suppression'. Recent findings A drug, PTC124, was identified that suppresses nonsense codon translation termination. PTC124 can lead to restoration of some dystrophin expression in human Duchenne muscular dystrophy muscles with mutations resulting in premature stops. Two drugs developed for exon skipping, PRO051 and AVI-4658, result in the exclusion of exon 51 from mature mRNA. They can restore the translational reading frame to dystrophin transcripts from patients with a particular subset of dystrophin gene deletions and lead to some restoration of dystrophin expression in affected boys' muscle in vivo. Both approaches have concluded phase I trials with no serious adverse events. Summary These novel therapies that act to correct the primary genetic defect of dystrophin deficiency are among the first generation of therapies tailored to correct specific mutations in humans. Thus, they represent paradigm forming approaches to personalized medicine with the potential to lead to life changing treatment for those affected by Duchenne muscular dystrophy. PMID:19745732

  6. Lack of association of the Norrie disease gene with retinoschisis phenotype.

    PubMed

    Shastry, B S; Hiraoka, M; Trese, M T

    2000-01-01

    It has been reported recently that mice carrying a disrupted Norrie disease gene produced alterations in the murine eye that are similar to congenital retinoschisis. Therefore, it was of interest to determine whether mutations in the Norrie disease gene can account for the disease in families with retinoschisis that do not carry mutations in the retinoschisis gene. The patient set comprised 5 cases of retinoschisis (1 familial and 4 sporadic), all unrelated to each other. Fundus examination of affected individuals showed foveal and peripheral schisis, and the visual acuity range was 20/40-20/60. Peripheral blood specimens were collected from affected and unaffected family members. DNA was extracted and amplified by polymerase chain reaction amplification of exons of the Norrie disease gene. The amplified products were sequenced by the dideoxy chain termination method. The data revealed no disease-specific sequence alterations in the Norrie disease gene. Although we cannot completely exclude the possibility of the Norrie disease gene as a candidate gene, the above results suggest that the structural and functional changes in the Norrie disease gene are not associated with clinically typical retinoschisis families that do not contain mutations in the coding regions and splice sites of the retinoschisis gene.

  7. Positional cloning of the PIS mutation in goats and its impact on understanding mammalian sex-differentiation

    PubMed Central

    2005-01-01

    In goats, the PIS (polled intersex syndrome) mutation is responsible for both the absence of horns in males and females and sex-reversal affecting exclusively XX individuals. The mode of inheritance is dominant for the polled trait and recessive for sex-reversal. In XX PIS-/- mutants, the expression of testis-specific genes is observed very precociously during gonad development. Nevertheless, a delay of 4–5 days is observed in comparison with normal testis differentiation in XY males. By positional cloning, we demonstrate that the PIS mutation is an 11.7-kb regulatory-deletion affecting the expression of two genes, PISRT1 and FOXL2 which could act synergistically to promote ovarian differentiation. The transcriptional extinction of these two genes leads, very early, to testis-formation in XX homozygous PIS-/- mutants. According to their expression profiles and bibliographic data, we propose that FOXL2 may be an ovary-differentiating gene, and the non-coding RNA PISRT1, an anti-testis factor repressing SOX9, a key regulator of testis differentiation. Under this hypothesis, SRY, the testis-determining factor would inhibit these two genes in the gonads of XY males, to ensure testis differentiation. PMID:15601595

  8. Positional cloning of the PIS mutation in goats and its impact on understanding mammalian sex-differentiation.

    PubMed

    Pailhoux, Eric; Vigier, Bernard; Schibler, Laurent; Cribiu, Edmond P; Cotinot, Corinne; Vaiman, Daniel

    2005-01-01

    In goats, the PIS (polled intersex syndrome) mutation is responsible for both the absence of horns in males and females and sex-reversal affecting exclusively XX individuals. The mode of inheritance is dominant for the polled trait and recessive for sex-reversal. In XX PIS-/- mutants, the expression of testis-specific genes is observed very precociously during gonad development. Nevertheless, a delay of 4-5 days is observed in comparison with normal testis differentiation in XY males. By positional cloning, we demonstrate that the PIS mutation is an 11.7-kb regulatory-deletion affecting the expression of two genes, PISRT1 and FOXL2 which could act synergistically to promote ovarian differentiation. The transcriptional extinction of these two genes leads, very early, to testis-formation in XX homozygous PIS-/- mutants. According to their expression profiles and bibliographic data, we propose that FOXL2 may be an ovary-differentiating gene, and the non-coding RNA PISRT1, an anti-testis factor repressing SOX9, a key regulator of testis differentiation. Under this hypothesis, SRY, the testis-determining factor would inhibit these two genes in the gonads of XY males, to ensure testis differentiation.

  9. New and emerging targeted therapies for cystic fibrosis

    PubMed Central

    Rowe, Steven M

    2016-01-01

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder that affects about 70 000 people worldwide. The clinical manifestations of the disease are caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The discovery of the CFTR gene in 1989 has led to a sophisticated understanding of how thousands of mutations in the CFTR gene affect the structure and function of the CFTR protein. Much progress has been made over the past decade with the development of orally bioavailable small molecule drugs that target defective CFTR proteins caused by specific mutations. Furthermore, there is considerable optimism about the prospect of gene replacement or editing therapies to correct all mutations in cystic fibrosis. The recent approvals of ivacaftor and lumacaftor represent the genesis of a new era of precision medicine in the treatment of this condition. These drugs are having a positive impact on the lives of people with cystic fibrosis and are potentially disease modifying. This review provides an update on advances in our understanding of the structure and function of the CFTR, with a focus on state of the art targeted drugs that are in development. PMID:27030675

  10. Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct

    PubMed Central

    Lee, Kayoung; Goh, Grace Ying Shyen; Wong, Marcus Andrew; Klassen, Tara Leah

    2016-01-01

    Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In sum, our findings indicate that the three nhr-49 gof alleles are non-equivalent, and highlight the conserved V411 residue affected by et13 as critical for gene activation and repression alike. PMID:27618178

  11. Role of specific DNA mutations in the peripheral blood of colorectal cancer patients for the assessment of tumor stage and residual disease following tumor resection

    PubMed Central

    Norcic, Gregor; Jelenc, Franc; Cerkovnik, Petra; Stegel, Vida; Novakovic, Srdjan

    2016-01-01

    In the present study, the detection of tumor-specific KRAS proto-oncogene, GTPase (KRAS) and B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations in the peripheral blood of colorectal cancer (CRC) patients at all stages and adenomas was used for the estimation of disease stage prior to surgery and for residual disease following surgery. A total of 65 CRC patients were enrolled. The primary tumor tested positive for the specific mutations (KRAS mutations in codons 12, 13, 61, 117 or 146 and BRAF mutations in codon 600) in 35 patients. In all these patients, the specimen of normal bowel resected with the tumor was also tested for the presence of the same mutations in order to exclude the germ-line mutations. Only patients who tested positive for the specific mutation in the primary tumor were included in further analysis for the presence of tumor-specific mutation in the peripheral blood. No statistically significant differences were found between the detection rates of tumor mutations in the blood and different tumor stages (P=0.491). However, statistically significant differences in the proportions of patients with detected tumor-specific DNA mutations in the peripheral blood were found when comparing the groups of patients with R0 and R2 resections (P=0.038). Tumor-specific DNA mutations in the peripheral blood were more frequently detected in the patients with an incomplete surgical clearance of the tumor due to macroscopic residual disease (R2 resections). Therefore, the study concludes that the follow-up of somatic KRAS- and BRAF-mutated DNA in the peripheral blood of CRC patients may be useful in assessing the surgical clearance of the disease. PMID:27900004

  12. Triclosan-Induced Aminoglycoside-Tolerant Listeria monocytogenes Isolates Can Appear as Small-Colony Variants

    PubMed Central

    Kastbjerg, Vicky G.; Hein-Kristensen, Line

    2014-01-01

    Exposure of the human food-borne pathogen Listeria monocytogenes to sublethal concentrations of triclosan can cause resistance to several aminoglycosides. Aminoglycoside-resistant isolates exhibit two colony morphologies: normal-size and pinpoint colonies. The purposes of the present study were to characterize the small colonies of L. monocytogenes and to determine if specific genetic changes could explain the triclosan-induced aminoglycoside resistance in both pinpoint and normal-size isolates. Isolates from the pinpoint colonies grew poorly under aerated conditions, but growth was restored by addition of antibiotics. Pinpoint isolates had decreased hemolytic activity under stagnant conditions and a changed spectrum of carbohydrate utilization compared to the wild type and isolates from normal-size colonies. Genome sequence comparison revealed that all seven pinpoint isolates had a mutation in a heme gene, and addition of heme caused the pinpoint isolates to revert to normal colony size. Triclosan-induced gentamicin-resistant isolates had mutations in several different genes, and it cannot be directly concluded how the different mutations caused gentamicin resistance. However, since many of the mutations affected proteins involved in respiration, it seems likely that the mutations affected the active transport of the antibiotic and thereby caused resistance by decreasing the amount of aminoglycoside that enters the bacterial cell. Our study emphasizes that triclosan likely has more targets than just fabI and that exposure to triclosan can cause resistance to antibiotics that enters the cell via active transport. Further studies are needed to elucidate if L. monocytogenes pinpoint isolates could have any clinical impact, e.g., in persistent infections. PMID:24637686

  13. A Biallelic Mutation in the Homologous Recombination Repair Gene SPIDR Is Associated With Human Gonadal Dysgenesis.

    PubMed

    Smirin-Yosef, Pola; Zuckerman-Levin, Nehama; Tzur, Shay; Granot, Yaron; Cohen, Lior; Sachsenweger, Juliane; Borck, Guntram; Lagovsky, Irina; Salmon-Divon, Mali; Wiesmüller, Lisa; Basel-Vanagaite, Lina

    2017-02-01

    Primary ovarian insufficiency (POI) is caused by ovarian follicle depletion or follicle dysfunction, characterized by amenorrhea with elevated gonadotropin levels. The disorder presents as absence of normal progression of puberty. To elucidate the cause of ovarian dysfunction in a family with POI. We performed whole-exome sequencing in 2 affected individuals. To evaluate whether DNA double-strand break (DSB) repair activities are altered in biallelic mutation carriers, we applied an enhanced green fluorescent protein-based assay for the detection of specific DSB repair pathways in blood-derived cells. Diagnoses were made at the Pediatric Endocrine Clinic, Clalit Health Services, Sharon-Shomron District, Israel. Genetic counseling and sample collection were performed at the Pediatric Genetics Unit, Schneider Children's Medical Center Israel, Petah Tikva, Israel. Two sisters born to consanguineous parents of Israeli Muslim Arab ancestry presented with a lack of normal progression of puberty, high gonadotropin levels, and hypoplastic or absent ovaries on ultrasound. Blood samples for DNA extraction were obtained from all family members. Exome analysis to elucidate the cause of POI in 2 affected sisters. Analysis revealed a stop-gain homozygous mutation in the SPIDR gene (KIAA0146) c.839G>A, p.W280*. This mutation altered SPIDR activity in homologous recombination, resulting in the accumulation of 53BP1-labeled DSBs postionizing radiation and γH2AX-labeled damage during unperturbed growth. SPIDR is important for ovarian function in humans. A biallelic mutation in this gene may be associated with ovarian dysgenesis in cases of autosomal recessive inheritance. Copyright © 2017 by the Endocrine Society

  14. Identification of a novel FAM83H mutation and microhardness of an affected molar in autosomal dominant hypocalcified amelogenesis imperfecta.

    PubMed

    Hyun, H-K; Lee, S-K; Lee, K-E; Kang, H-Y; Kim, E-J; Choung, P-H; Kim, J-W

    2009-11-01

    To determine the underlying molecular genetic aetiology of a family with the hypocalcified form of amelogenesis imperfecta and to investigate the hardness of the enamel and dentine of a known FAM83H mutation. Mutational screening of the FAM83H on the basis of candidate gene approach was performed. All exons and exon-intron boundaries was amplified and sequenced. A microhardness test was performed to measure the Vickers microhardness value. A novel nonsense mutation (c.1354C>T, p.Q452X) was identified in the last exon of FAM83H, which resulted in soft, uncalcified enamel. The affected enamel was extremely soft (about 17% of the normal control), but the underlying dentine was as hard as the normal control. Mutational analysis revealed a novel mutation in FAM83H gene. Hardness of dentine was not affected by the mutation, whilst the enamel was extremely soft.

  15. Mutant Potential Ubiquitination Sites in Dur3p Enhance the Urea and Ethyl Carbamate Reduction in a Model Rice Wine System.

    PubMed

    Zhang, Peng; Du, Guocheng; Zou, Huijun; Xie, Guangfa; Chen, Jian; Shi, Zhongping; Zhou, Jingwen

    2017-03-01

    Ubiquitination can significantly affect the endocytosis and degradation of plasma membrane proteins. Here, the ubiquitination of a Saccharomyces cerevisiae urea plasma membrane transporter (Dur3p) was altered. Two potential ubiquitination sites, lysine residues K556 and K571, of Dur3p were predicted and replaced by arginine, and the effects of these mutations on urea utilization and formation under different nitrogen conditions were investigated. Compared with Dur3p, the Dur3p K556R mutant showed a 20.1% decrease in ubiquitination level in yeast nitrogen base medium containing urea and glutamine. It also exhibited a >75.8% decrease in urea formation in yeast extract-peptone-dextrose medium and 41.3 and 55.4% decreases in urea and ethyl carbamate formation (a known carcinogen), respectively, in a model rice wine system. The results presented here show that the mutation of Dur3p ubiquitination sites could significantly affect urea utilization and formation. Modifying the ubiquitination of specific transporters might have promising applications in rationally engineering S. cerevisiae strains to efficiently use specific nitrogen sources.

  16. High Prevalence of Posterior Polymorphous Corneal Dystrophy in the Czech Republic; Linkage Disequilibrium Mapping and Dating an Ancestral Mutation

    PubMed Central

    Filipec, Martin; Jirsova, Katerina; Reinstein Merjava, Stanislava; Deloukas, Panos; Webb, Tom R.; Bhattacharya, Shomi S.; Ebenezer, Neil D.; Morris, Alex G.; Hardcastle, Alison J.

    2012-01-01

    Posterior polymorphous corneal dystrophy (PPCD) is a rare autosomal dominant genetically heterogeneous disorder. Nineteen Czech PPCD pedigrees with 113 affected family members were identified, and 17 of these kindreds were genotyped for markers on chromosome 20p12.1- 20q12. Comparison of haplotypes in 81 affected members, 20 unaffected first degree relatives and 13 spouses, as well as 55 unrelated controls, supported the hypothesis of a shared ancestor in 12 families originating from one geographic location. In 38 affected individuals from nine of these pedigrees, a common haplotype was observed between D20S48 and D20S107 spanning approximately 23 Mb, demonstrating segregation of disease with the PPCD1 locus. This haplotype was not detected in 110 ethnically matched control chromosomes. Within the common founder haplotype, a core mini-haplotype was detected for D20S605, D20S182 and M189K2 in all 67 affected members from families 1–12, however alleles representing the core mini-haplotype were also detected in population matched controls. The most likely location of the responsible gene within the disease interval, and estimated mutational age, were inferred by linkage disequilibrium mapping (DMLE+2.3). The appearance of a disease-causing mutation was dated between 64–133 generations. The inferred ancestral locus carrying a PPCD1 disease-causing variant within the disease interval spans 60 Kb on 20p11.23, which contains a single known protein coding gene, ZNF133. However, direct sequence analysis of coding and untranslated exons did not reveal a potential pathogenic mutation. Microdeletion or duplication was also excluded by comparative genomic hybridization using a dense chromosome 20 specific array. Geographical origin, haplotype and statistical analysis suggest that in 14 unrelated families an as yet undiscovered mutation on 20p11.23 was inherited from a common ancestor. Prevalence of PPCD in the Czech Republic appears to be the highest worldwide and our data suggests that at least one other novel locus for PPCD also exists. PMID:23049806

  17. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene.

    PubMed

    Kalmár, Lajos; Hegedüs, Tamás; Farkas, Henriette; Nagy, Melinda; Tordai, Attila

    2005-01-01

    Hereditary angioneurotic edema (HAE) is an autosomal dominant disorder characterized by episodic local subcutaneous and submucosal edema and is caused by the deficiency of the activated C1 esterase inhibitor protein (C1-INH or C1INH; approved gene symbol SERPING1). Published C1-INH mutations are represented in large universal databases (e.g., OMIM, HGMD), but these databases update their data rather infrequently, they are not interactive, and they do not allow searches according to different criteria. The HAEdb, a C1-INH gene mutation database (http://hae.biomembrane.hu) was created to contribute to the following expectations: 1) help the comprehensive collection of information on genetic alterations of the C1-INH gene; 2) create a database in which data can be searched and compared according to several flexible criteria; and 3) provide additional help in new mutation identification. The website uses MySQL, an open-source, multithreaded, relational database management system. The user-friendly graphical interface was written in the PHP web programming language. The website consists of two main parts, the freely browsable search function, and the password-protected data deposition function. Mutations of the C1-INH gene are divided in two parts: gross mutations involving DNA fragments >1 kb, and micro mutations encompassing all non-gross mutations. Several attributes (e.g., affected exon, molecular consequence, family history) are collected for each mutation in a standardized form. This database may facilitate future comprehensive analyses of C1-INH mutations and also provide regular help for molecular diagnostic testing of HAE patients in different centers.

  18. Adjusting for background mutation frequency biases improves the identification of cancer driver genes.

    PubMed

    Evans, Perry; Avey, Stefan; Kong, Yong; Krauthammer, Michael

    2013-09-01

    A common goal of tumor sequencing projects is finding genes whose mutations are selected for during tumor development. This is accomplished by choosing genes that have more non-synonymous mutations than expected from an estimated background mutation frequency. While this background frequency is unknown, it can be estimated using both the observed synonymous mutation frequency and the non-synonymous to synonymous mutation ratio. The synonymous mutation frequency can be determined across all genes or in a gene-specific manner. This choice introduces an interesting trade-off. A gene-specific frequency adjusts for an underlying mutation bias, but is difficult to estimate given missing synonymous mutation counts. Using a genome-wide synonymous frequency is more robust, but is less suited for adjusting biases. Studying four evaluation criteria for identifying genes with high non-synonymous mutation burden (reflecting preferential selection of expressed genes, genes with mutations in conserved bases, genes with many protein interactions, and genes that show loss of heterozygosity), we find that the gene-specific synonymous frequency is superior in the gene expression and protein interaction tests. In conclusion, the use of the gene-specific synonymous mutation frequency is well suited for assessing a gene's non-synonymous mutation burden.

  19. Surfaces modulate beta-amyloid peptide aggregation associated with Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Yates, Elizabeth Anne

    A hallmark of Alzheimer's disease, a late onset neurodegenerative disease, is the presence of neuritic amyloid plaques deposited within the brain composed of beta-amyloid (Abeta) peptide aggregates. Abeta can aggregate into a variety of polymorphic aggregate structures under different chemical environments, specifically affected by the presence of differing surfaces. There are several point mutations clustered around the central hydrophobic core of Abeta (E22G Arctic mutation, E22K Italian mutation, D23N Iowa mutation, and A21G Flemish mutation). These mutations are associated with hereditary diseases ranging from almost pure cerebral amyloid angiopathy to typical Alzheimer's disease pathology with both plaques and tangles. To determine how these different point mutations, which modify both peptide charge and hydrophobic character, altered Abeta aggregation and morphology under free solution conditions, at an anionic surface/liquid interface and in the presence of supported lipid bilayers, atomic force microscopy was used. Additionally, the non-native conformation of Abeta leads to the formation of nanoscale, toxic aggregates which have been shown to strongly interact with supported lipid bilayers, which may represent a key step in potential toxic mechanisms. Understanding how specific regions of Abeta regulate its aggregation in the absence and presence of surfaces can provide insight into the fundamental interaction of Abeta with cellular surfaces. Specific fragments of Abeta (Abeta1-11, Abeta 1-28, Abeta10-26, Abeta12-24, Abeta 16-22, Abeta22-35, and Abeta1-40), represent a variety of chemically unique regions along Abeta, i.e., the extracellular domain, the central hydrophobic core, and transmembrane domain. Using various scanning probe microscopic techniques, the interaction of these Abeta sequences with lipid membranes was shown to alter aggregate morphology and induce mechanical changes of lipid bilayers compared to aggregates formed under free solution conditions. Lastly, in order to determine how chemical environment can lead to distinct polymorph fibril formation influencing disease pathology, various peptide preparation and fibril growth conditions of Abeta were studied in free solution and with a model lipid membrane.

  20. Discovery of Genomic Breakpoints Affecting Breast Cancer Progression and Prognosis

    DTIC Science & Technology

    2010-10-01

    mutations compared to those detected by the 5Kbp method alone. Fosmid diTag method also reveals much higher proportion of gene fusions and truncations...observed highly similar structural mutational spectra affecting different sets of genes , pointing to similar histories of genomic instability against... mutations have been identified in non-BRCA1/2 multiethnic breast cancer cases (45,46), no truncating mutation of the RAP80 gene in breast cancer has

  1. Molecular genetic analysis of the F11 gene in 14 Turkish patients with factor XI deficiency: identification of novel and recurrent mutations and their inheritance within families.

    PubMed

    Colakoglu, Seyma; Bayhan, Turan; Tavil, Betül; Keskin, Ebru Yılmaz; Cakir, Volkan; Gümrük, Fatma; Çetin, Mualla; Aytaç, Selin; Berber, Ergul

    2018-01-01

    Factor XI (FXI) deficiency is an autosomal bleeding disease associated with genetic defects in the F11 gene which cause decreased FXI levels or impaired FXI function. An increasing number of mutations has been reported in the FXI mutation database, most of which affect the serine protease domain of the protein. FXI is a heterogeneous disorder associated with a variable bleeding tendency and a variety of causative F11 gene mutations. The molecular basis of FXI deficiency in 14 patients from ten unrelated families in Turkey was analysed to establish genotype-phenotype correlations and inheritance of the mutations in the patients' families. Fourteen index cases with a diagnosis of FXI deficiency and family members of these patients were enrolled into the study. The patients' F11 genes were amplified by polymerase chain reaction and subjected to direct DNA sequencing analysis. The findings were analysed statistically using bivariate correlations, Pearson's correlation coefficient and the nonparametric Mann-Whitney test. Direct DNA sequencing analysis of the F11 genes revealed that all of the 14 patients had a F11 gene mutation. Eight different mutations were identified in the apple 1, apple 2 or serine protease domains, except one which was a splice site mutation. Six of the mutations were recurrent. Two of the mutations were novel missense mutations, p.Val522Gly and p.Cys581Arg, within the catalytic domain. The p.Trp519Stop mutation was observed in two families whereas all the other mutations were specific to a single family. Identification of mutations confirmed the genetic heterogeneity of FXI deficiency. Most of the patients with mutations did not have any bleeding complications, whereas some had severe bleeding symptoms. Genetic screening for F11 gene mutations is important to decrease the mortality and morbidity rate associated with FXI deficiency, which can be life-threatening if bleeding occurs in tissues with high fibrinolytic activity.

  2. Screening for primary creatine deficiencies in French patients with unexplained neurological symptoms

    PubMed Central

    2012-01-01

    A population of patients with unexplained neurological symptoms from six major French university hospitals was screened over a 28-month period for primary creatine disorder (PCD). Urine guanidinoacetate (GAA) and creatine:creatinine ratios were measured in a cohort of 6,353 subjects to identify PCD patients and compile their clinical, 1H-MRS, biochemical and molecular data. Six GAMT [N-guanidinoacetatemethyltransferase (EC 2.1.1.2)] and 10 X-linked creatine transporter (SLC6A8) but no AGAT (GATM) [L-arginine/glycine amidinotransferase (EC 2.1.4.1)] deficient patients were identified in this manner. Three additional affected sibs were further identified after familial inquiry (1 brother with GAMT deficiency and 2 brothers with SLC6A8 deficiency in two different families). The prevalence of PCD in this population was 0.25% (0.09% and 0.16% for GAMT and SLC6A8 deficiencies, respectively). Seven new PCD-causing mutations were discovered (2 nonsense [c.577C > T and c.289C > T] and 1 splicing [c.391 + 15G > T] mutations for the GAMT gene and, 2 missense [c.1208C > A and c.926C > A], 1 frameshift [c.930delG] and 1 splicing [c.1393-1G > A] mutations for the SLC6A8 gene). No hot spot mutations were observed in these genes, as all the mutations were distributed throughout the entire gene sequences and were essentially patient/family specific. Approximately one fifth of the mutations of SLC6A8, but not GAMT, were attributed to neo-mutation, germinal or somatic mosaicism events. The only SLC6A8-deficient female patient in our series presented with the severe phenotype usually characterizing affected male patients, an observation in agreement with recent evidence that is in support of the fact that this X-linked disorder might be more frequent than expected in the female population with intellectual disability. PMID:23234264

  3. Screening for primary creatine deficiencies in French patients with unexplained neurological symptoms.

    PubMed

    Cheillan, David; Joncquel-Chevalier Curt, Marie; Briand, Gilbert; Salomons, Gajja S; Mention-Mulliez, Karine; Dobbelaere, Dries; Cuisset, Jean-Marie; Lion-François, Laurence; Portes, Vincent Des; Chabli, Allel; Valayannopoulos, Vassili; Benoist, Jean-François; Pinard, Jean-Marc; Simard, Gilles; Douay, Olivier; Deiva, Kumaran; Afenjar, Alexandra; Héron, Delphine; Rivier, François; Chabrol, Brigitte; Prieur, Fabienne; Cartault, François; Pitelet, Gaëlle; Goldenberg, Alice; Bekri, Soumeya; Gerard, Marion; Delorme, Richard; Tardieu, Marc; Porchet, Nicole; Vianey-Saban, Christine; Vamecq, Joseph

    2012-12-13

    A population of patients with unexplained neurological symptoms from six major French university hospitals was screened over a 28-month period for primary creatine disorder (PCD). Urine guanidinoacetate (GAA) and creatine:creatinine ratios were measured in a cohort of 6,353 subjects to identify PCD patients and compile their clinical, 1H-MRS, biochemical and molecular data. Six GAMT [N-guanidinoacetatemethyltransferase (EC 2.1.1.2)] and 10 X-linked creatine transporter (SLC6A8) but no AGAT (GATM) [L-arginine/glycine amidinotransferase (EC 2.1.4.1)] deficient patients were identified in this manner. Three additional affected sibs were further identified after familial inquiry (1 brother with GAMT deficiency and 2 brothers with SLC6A8 deficiency in two different families). The prevalence of PCD in this population was 0.25% (0.09% and 0.16% for GAMT and SLC6A8 deficiencies, respectively). Seven new PCD-causing mutations were discovered (2 nonsense [c.577C > T and c.289C > T] and 1 splicing [c.391 + 15G > T] mutations for the GAMT gene and, 2 missense [c.1208C > A and c.926C > A], 1 frameshift [c.930delG] and 1 splicing [c.1393-1G > A] mutations for the SLC6A8 gene). No hot spot mutations were observed in these genes, as all the mutations were distributed throughout the entire gene sequences and were essentially patient/family specific. Approximately one fifth of the mutations of SLC6A8, but not GAMT, were attributed to neo-mutation, germinal or somatic mosaicism events. The only SLC6A8-deficient female patient in our series presented with the severe phenotype usually characterizing affected male patients, an observation in agreement with recent evidence that is in support of the fact that this X-linked disorder might be more frequent than expected in the female population with intellectual disability.

  4. Inefficient coupling between proton transport and ATP synthesis may be the pathogenic mechanism for NARP and Leigh syndrome resulting from the T8993G mutation in mtDNA.

    PubMed

    Sgarbi, Gianluca; Baracca, Alessandra; Lenaz, Giorgio; Valentino, Lucia M; Carelli, Valerio; Solaini, Giancarlo

    2006-05-01

    Mutations in the ATP6 gene of mtDNA (mitochondrial DNA) have been shown to cause several different neurological disorders. The product of this gene is ATPase 6, an essential component of the F1F0-ATPase. In the present study we show that the function of the F1F0-ATPase is impaired in lymphocytes from ten individuals harbouring the mtDNA T8993G point mutation associated with NARP (neuropathy, ataxia and retinitis pigmentosa) and Leigh syndrome. We show that the impaired function of both the ATP synthase and the proton transport activity of the enzyme correlates with the amount of the mtDNA that is mutated, ranging from 13-94%. The fluorescent dye RH-123 (Rhodamine-123) was used as a probe to determine whether or not passive proton flux (i.e. from the intermembrane space to the matrix) is affected by the mutation. Under state 3 respiratory conditions, a slight difference in RH-123 fluorescence quenching kinetics was observed between mutant and control mitochondria that suggests a marginally lower F0 proton flux capacity in cells from patients. Moreover, independent of the cellular mutant load the specific inhibitor oligomycin induced a marked enhancement of the RH-123 quenching rate, which is associated with a block in proton conductivity through F0 [Linnett and Beechey (1979) Inhibitors of the ATP synthethase system. Methods Enzymol. 55, 472-518]. Overall, the results rule out the previously proposed proton block as the basis of the pathogenicity of the mtDNA T8993G mutation. Since the ATP synthesis rate was decreased by 70% in NARP patients compared with controls, we suggest that the T8993G mutation affects the coupling between proton translocation through F0 and ATP synthesis on F1. We discuss our findings in view of the current knowledge regarding the rotary mechanism of catalysis of the enzyme.

  5. A partially inactivating mutation in the sodium-dependent lysophosphatidylcholine transporter MFSD2A causes a non-lethal microcephaly syndrome.

    PubMed

    Alakbarzade, Vafa; Hameed, Abdul; Quek, Debra Q Y; Chioza, Barry A; Baple, Emma L; Cazenave-Gassiot, Amaury; Nguyen, Long N; Wenk, Markus R; Ahmad, Arshia Q; Sreekantan-Nair, Ajith; Weedon, Michael N; Rich, Phil; Patton, Michael A; Warner, Thomas T; Silver, David L; Crosby, Andrew H

    2015-07-01

    The major pathway by which the brain obtains essential omega-3 fatty acids from the circulation is through a sodium-dependent lysophosphatidylcholine (LPC) transporter (MFSD2A), expressed in the endothelium of the blood-brain barrier. Here we show that a homozygous mutation affecting a highly conserved MFSD2A residue (p.Ser339Leu) is associated with a progressive microcephaly syndrome characterized by intellectual disability, spasticity and absent speech. We show that the p.Ser339Leu alteration does not affect protein or cell surface expression but rather significantly reduces, although not completely abolishes, transporter activity. Notably, affected individuals displayed significantly increased plasma concentrations of LPCs containing mono- and polyunsaturated fatty acyl chains, indicative of reduced brain uptake, confirming the specificity of MFSD2A for LPCs having mono- and polyunsaturated fatty acyl chains. Together, these findings indicate an essential role for LPCs in human brain development and function and provide the first description of disease associated with aberrant brain LPC transport in humans.

  6. A Single Amino Acid Change in the Marburg Virus Matrix Protein VP40 Provides a Replicative Advantage in a Species-Specific Manner

    PubMed Central

    Koehler, Alexander; Kolesnikova, Larissa; Welzel, Ulla; Schudt, Gordian; Herwig, Astrid

    2015-01-01

    ABSTRACT Marburg virus (MARV) induces severe hemorrhagic fever in humans and nonhuman primates but only transient nonlethal disease in rodents. However, sequential passages of MARV in rodents boosts infection leading to lethal disease. Guinea pig-adapted MARV contains one mutation in the viral matrix protein VP40 at position 184 (VP40D184N). The contribution of the D184N mutation to the efficacy of replication in a new host is unknown. In the present study, we demonstrated that recombinant MARV containing the D184N mutation in VP40 [rMARVVP40(D184N)] grew to higher titers than wild-type recombinant MARV (rMARVWT) in guinea pig cells. Moreover, rMARVVP40(D184N) displayed higher infectivity in guinea pig cells. Comparative analysis of VP40 functions indicated that neither the interferon (IFN)-antagonistic function nor the membrane binding capabilities of VP40 were affected by the D184N mutation. However, the production of VP40-induced virus-like particles (VLPs) and the recruitment of other viral proteins to the budding site was improved by the D184N mutation in guinea pig cells, which resulted in the higher infectivity of VP40D184N-induced infectious VLPs (iVLPs) compared to that of VP40-induced iVLPs. In addition, the function of VP40 in suppressing viral RNA synthesis was influenced by the D184N mutation specifically in guinea pig cells, thus allowing greater rates of transcription and replication. Our results showed that the improved viral fitness of rMARVVP40(D184N) in guinea pig cells was due to the better viral assembly function of VP40D184N and its lower inhibitory effect on viral transcription and replication rather than modulation of the VP40-mediated suppression of IFN signaling. IMPORTANCE The increased virulence achieved by virus passaging in a new host was accompanied by mutations in the viral genome. Analyzing how these mutations affect the functions of viral proteins and the ability of the virus to grow within new host cells helps in the understanding of the molecular mechanisms increasing virulence. Using a reverse genetics approach, we demonstrated that a single mutation in MARV VP40 detected in a guinea pig-adapted MARV provided a replicative advantage of rMARVVP40(D184N) in guinea pig cells. Our studies show that this replicative advantage of rMARV VP40D184N was based on the improved functions of VP40 in iVLP assembly and in the regulation of transcription and replication rather than on the ability of VP40 to combat the host innate immunity. PMID:26581998

  7. Mutations in C8ORF37 cause Bardet Biedl syndrome (BBS21)

    PubMed Central

    Heon, Elise; Kim, Gunhee; Qin, Sophie; Garrison, Janelle E.; Tavares, Erika; Vincent, Ajoy; Nuangchamnong, Nina; Scott, C. Anthony; Slusarski, Diane C.; Sheffield, Val C.

    2016-01-01

    Bardet Biedl syndrome (BBS) is a multisystem genetically heterogeneous ciliopathy that most commonly leads to obesity, photoreceptor degeneration, digit anomalies, genito-urinary abnormalities, as well as cognitive impairment with autism, among other features. Sequencing of a DNA sample from a 17-year-old female affected with BBS did not identify any mutation in the known BBS genes. Whole-genome sequencing identified a novel loss-of-function disease-causing homozygous mutation (K102*) in C8ORF37, a gene coding for a cilia protein. The proband was overweight (body mass index 29.1) with a slowly progressive rod-cone dystrophy, a mild learning difficulty, high myopia, three limb post-axial polydactyly, horseshoe kidney, abnormally positioned uterus and elevated liver enzymes. Mutations in C8ORF37 were previously associated with severe autosomal recessive retinal dystrophies (retinitis pigmentosa RP64 and cone-rod dystrophy CORD16) but not BBS. To elucidate the functional role of C8ORF37 in a vertebrate system, we performed gene knockdown in Danio rerio and assessed the cardinal features of BBS and visual function. Knockdown of c8orf37 resulted in impaired visual behavior and BBS-related phenotypes, specifically, defects in the formation of Kupffer’s vesicle and delays in retrograde transport. Specificity of these phenotypes to BBS knockdown was shown with rescue experiments. Over-expression of human missense mutations in zebrafish also resulted in impaired visual behavior and BBS-related phenotypes. This is the first functional validation and association of C8ORF37 mutations with the BBS phenotype, which identifies BBS21. The zebrafish studies hereby show that C8ORF37 variants underlie clinically diagnosed BBS-related phenotypes as well as isolated retinal degeneration. PMID:27008867

  8. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies.

    PubMed

    Signorelli, Sara; Santini, Simona; Yamada, Tohru; Bizzarri, Anna Rita; Beattie, Craig W; Cannistraro, Salvatore

    2017-04-01

    Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Amniotic fluid digestive enzyme analysis is useful for identifying CFTR gene mutations of unclear significance.

    PubMed

    Oca, Florine; Dreux, Sophie; Gérard, Bénédicte; Simon-Bouy, Brigitte; de Becdelièvre, Alix; Ferec, Claude; Girodon, Emmanuelle; Muller, Françoise

    2009-12-01

    The large number of CFTR [cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7)] mutations and the existence of variants of unclear significance complicate the prenatal diagnosis of cystic fibrosis (CF). The aim of this study was to determine whether the pattern of amniotic fluid digestive enzymes (AF-DEs) could be correlated with the severity of CFTR mutations. The AF-DE pattern (gamma-glutamyltranspeptidase, aminopeptidase M, and the intestinal isoform of alkaline phosphatase) was retrospectively analyzed in 43 AF samples. All fetuses presented 2 CFTR mutations, which were classified according to the severity of the disease: CF/CF (n = 38); CF/CFTR-related disorders (n = 1); and CF/unknown variant (n = 4). The relationships between clinical CF status, CFTR mutations, and AF-DE pattern were studied. Of 38 severely affected CF fetuses, an "obstructive" AF-DE pattern was observed in 15 of 15 samples collected before 22 weeks, irrespective of the CFTR mutation (diagnostic sensitivity, 100%; diagnostic specificity, 99.8%). In the 23 fetuses evaluated after 22 weeks, the AF-DE pattern was abnormal in 7 cases and noncontributive in 16 (diagnostic sensitivity, 30.4%; diagnostic specificity, 99.8%). Of the 5 questionable cases (F508del/N1224K, F508del/L73F, 3849+10kbC>T/G1127E, F508del/S1235R, F508del/G622D), all were CF symptom free at 2-4 years of follow-up. The AF-DE pattern (<22 weeks) was typical in 3 cases but abnormal in the last 2 cases. AF-DE analysis is of value for prenatal CF diagnosis in classic forms of CF and could be helpful in nonclassic CF.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick, N.; Miyakawa, F.; Hunt, J.A.

    The distribution of {beta}-thalassemia [{beta}{sup Th}] mutations is unique to each ethnic group. Most mutations affect one or a few bases; large deletions have been rare. Among families screened in Hawaii, [{beta}{sup Th}] heterozygotes were diagnosed by microcytosis, absence of abnormal hemoglobins on isoelectric focusing, and raised Hb A{sub 2} by chromatography. Gene frequency for {beta}{sup Th} was 0.02 in Filipinos. In Filipinos, polymerase chain reaction [PCR] with denaturing gradient gel electrophoresis for {beta}{sup Th} mutations detected a mutation in only 6 of 42 {beta}{sup Th} heterozygotes; an IVS2-666 C/T polymorphism showed non-heterozygosity in 37 and heterozygosity in only 5more » of these {beta}{sup Th} heterozygotes. One {beta}{sup Th}/{beta}{sup Th} major patient and his mother had no mutation detected by allele-specific oligomer hybridization; PCR failed to amplify any DNA from his {beta}-globin gene. After a total {beta}-globin gene deletion [{beta}{sup Del}] was found in a Filipino family in Ontario, specific PCR amplification for {beta}{sup Del} detected this in 43 of 53 {beta}{sup Th} Filipino samples tested; the above {beta}{sup Th}/{beta}{sup Th} patient was a ({beta}{sup Del}/{beta}{sup Del}) homozygote. The {beta}{sup Del} may account for over 60% of all {beta}{sup Th} alleles in Filipinos; this is the highest proportion of a deletion {beta}{sup Th} mutation reported from any population. Most but not all {beta}{sup Del} heterozygotes had high Hb F [5.13 {plus_minus} 3.94 mean {plus_minus} 1 s.d.] compared to the codon 41/42 four base deletion common in Chinese [2.30 {plus_minus} 0.86], or to {beta}{sup Th} heterozygotes with normal {alpha}-globin genes [2.23 {plus_minus} 0.80].« less

  11. A CTG Clade Candida Yeast Genetically Engineered for the Genotype-Phenotype Characterization of Azole Antifungal Resistance in Human-Pathogenic Yeasts.

    PubMed

    Accoceberry, Isabelle; Rougeron, Amandine; Biteau, Nicolas; Chevrel, Pauline; Fitton-Ouhabi, Valérie; Noël, Thierry

    2018-01-01

    A strain of the opportunistic pathogenic yeast Candida lusitaniae was genetically modified for use as a cellular model for assessing by allele replacement the impact of lanosterol C14α-demethylase ERG11 mutations on azole resistance. Candida lusitaniae was chosen because it is susceptible to azole antifungals, it belongs to the CTG clade of yeast, which includes most of the Candida species pathogenic for humans, and it is haploid and easily amenable to genetic transformation and molecular modeling. In this work, allelic replacement is targeted at the ERG11 locus by the reconstitution of a functional auxotrophic marker in the 3' intergenic region of ERG11 Homologous and heterologous ERG11 alleles are expressed from the resident ERG11 promoter of C. lusitaniae , allowing accurate comparison of the phenotypic change in azole susceptibility. As a proof of concept, we successfully expressed in C. lusitaniae different ERG11 alleles, either bearing or not bearing mutations retrieved from a clinical context, from two phylogenetically distant yeasts, C. albicans and Kluyveromyces marxianus Candida lusitaniae constitutes a high-fidelity expression system, giving specific Erg11p-dependent fluconazole MICs very close to those observed with the ERG11 donor strain. This work led us to characterize the phenotypic effect of two kinds of mutation: mutation conferring decreased fluconazole susceptibility in a species-specific manner and mutation conferring fluconazole resistance in several yeast species. In particular, a missense mutation affecting amino acid K143 of Erg11p in Candida species, and the equivalent position K151 in K. marxianus , plays a critical role in fluconazole resistance. Copyright © 2017 American Society for Microbiology.

  12. Live-cell imaging of retrograde transport initiation in primary neurons.

    PubMed

    Nirschl, Jeffrey J; Holzbaur, Erika L F

    2016-01-01

    Axonal transport is an essential function in neurons, as mutations in either motor proteins or their adaptors cause neurodegeneration. While some mutations cause a complete block in axonal transport, other mutations affect transport more subtly. This is especially true of mutations identified in human patients, many of which impair but do not block motor function in the cell. Dissecting the pathogenic mechanisms of these more subtle mutations requires assays that can tease apart the distinct phases of axonal transport, including transport initiation, sustained/regulated motility, and cargo-specific sorting or delivery. Here, we describe a live-cell photobleaching assay to assess retrograde flux from the distal axon tip, a measure for distal transport initiation. We have previously used this method to show that the CAP-Gly domain of DCTN1 is required for efficient retrograde transport initiation in the distal axon, but it is not required to maintain retrograde flux along the mid-axon (Moughamian & Holzbaur, 2012). This approach has allowed us to examine the effects of disease-causing mutations in the axonal transport machinery, and in combination with other assays, will be useful in determining the mechanisms and regulation of axonal transport in normal and diseased conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A Mental Retardation-linked Nonsense Mutation in Cereblon Is Rescued by Proteasome Inhibition*

    PubMed Central

    Xu, Guoqiang; Jiang, Xiaogang; Jaffrey, Samie R.

    2013-01-01

    A nonsense mutation in cereblon (CRBN) causes autosomal recessive nonsyndromic mental retardation. Cereblon is a substrate receptor for the Cullin-RING E3 ligase complex and couples the ubiquitin ligase to specific ubiquitination targets. The CRBN nonsense mutation (R419X) results in a protein lacking 24 amino acids at its C terminus. Although this mutation has been linked to mild mental retardation, the mechanism by which the mutation affects CRBN function is unknown. Here, we used biochemical and mass spectrometric approaches to explore the function of this mutant. We show that the protein retains its ability to assemble into a Cullin-RING E3 ligase complex and catalyzes the ubiquitination of CRBN-target proteins. However, we find that this mutant exhibits markedly increased levels of autoubiquitination and is more readily degraded by the proteasome than the wild type protein. We also show that the level of the mutant protein can be restored by a treatment of cells with a clinically utilized proteasome inhibitor, suggesting that this agent may be useful for the treatment of mental retardation associated with the CRBN R419X mutation. These data demonstrate that enhanced autoubiquitination and degradation account for the defect in CRBN activity that leads to mental retardation. PMID:23983124

  14. Genes that regulate both development and longevity in Caenorhabditis elegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, P.L.; Albert, P.S.; Riddle, D.L.

    1995-04-01

    The nematode Caenorhabditis elegans responds to conditions of overcrowding and limited food by arresting development as a dauer larva. Genetic analysis of mutations that alter dauer larva formation (daf mutations) is presented along with an updated genetic pathway for dauer vs. nondauer development. Mutations in the daf-2 and daf-23 genes double adult life span, whereas mutations in four other dauer-constitutive genes positioned in a separate branch of this pathway (daf-1, daf-4, daf-7 and daf-8) do not. The increased life spans are suppressed completely by a daf-16 mutation and partially in a daf-2; daf-18 double mutant. A genetic pathway for determinationmore » of adult life span is presented based on the same strains and growth conditions used to characterize Daf phenotypes. Both dauer larva formation and adult life span are affected in daf-2; daf-12 double mutants in an allele-specific manner. Mutations in daf-12 do not extend adult life span, but certain combinations of daf-2 and daf-12 mutant alleles nearly quadruple it. This synergistic effect, which does not equivalently extend the fertile period, is the largest genetic extension of life span yet observed in a metazoan. 47 refs., 7 figs., 5 tabs.« less

  15. Mutations in chromatin regulators functionally link Cornelia de Lange syndrome and clinically overlapping phenotypes.

    PubMed

    Parenti, Ilaria; Teresa-Rodrigo, María E; Pozojevic, Jelena; Ruiz Gil, Sara; Bader, Ingrid; Braunholz, Diana; Bramswig, Nuria C; Gervasini, Cristina; Larizza, Lidia; Pfeiffer, Lutz; Ozkinay, Ferda; Ramos, Feliciano; Reiz, Benedikt; Rittinger, Olaf; Strom, Tim M; Watrin, Erwan; Wendt, Kerstin; Wieczorek, Dagmar; Wollnik, Bernd; Baquero-Montoya, Carolina; Pié, Juan; Deardorff, Matthew A; Gillessen-Kaesbach, Gabriele; Kaiser, Frank J

    2017-03-01

    The coordinated tissue-specific regulation of gene expression is essential for the proper development of all organisms. Mutations in multiple transcriptional regulators cause a group of neurodevelopmental disorders termed "transcriptomopathies" that share core phenotypical features including growth retardation, developmental delay, intellectual disability and facial dysmorphism. Cornelia de Lange syndrome (CdLS) belongs to this class of disorders and is caused by mutations in different subunits or regulators of the cohesin complex. Herein, we report on the clinical and molecular characterization of seven patients with features overlapping with CdLS who were found to carry mutations in chromatin regulators previously associated to other neurodevelopmental disorders that are frequently considered in the differential diagnosis of CdLS. The identified mutations affect the methyltransferase-encoding genes KMT2A and SETD5 and different subunits of the SWI/SNF chromatin-remodeling complex. Complementary to this, a patient with Coffin-Siris syndrome was found to carry a missense substitution in NIPBL. Our findings indicate that mutations in a variety of chromatin-associated factors result in overlapping clinical phenotypes, underscoring the genetic heterogeneity that should be considered when assessing the clinical and molecular diagnosis of neurodevelopmental syndromes. It is clear that emerging molecular mechanisms of chromatin dysregulation are central to understanding the pathogenesis of these clinically overlapping genetic disorders.

  16. TET2 Mutations Are Associated with Specific 5-Methylcytosine and 5-Hydroxymethylcytosine Profiles in Patients with Chronic Myelomonocytic Leukemia

    PubMed Central

    Pérez, Cristina; Martínez-Calle, Nicolas; Martín-Subero, José Ignacio; Segura, Victor; Delabesse, Eric; Fernandez-Mercado, Marta; Garate, Leire; Alvarez, Sara; Rifon, José; Varea, Sara; Boultwood, Jacqueline; Wainscoat, James S.; Cigudosa, Juan Cruz; Calasanz, María José; Cross, Nicholas C. P.

    2012-01-01

    Chronic myelomonocytic leukemia (CMML) has recently been associated with a high incidence of diverse mutations in genes such as TET2 or EZH2 that are implicated in epigenetic mechanisms. We have performed genome-wide DNA methylation arrays and mutational analysis of TET2, IDH1, IDH2, EZH2 and JAK2 in a group of 24 patients with CMML. 249 genes were differentially methylated between CMML patients and controls. Using Ingenuity pathway analysis, we identified enrichment in a gene network centered around PLC, JNK and ERK suggesting that these pathways, whose deregulation has beenrecently described in CMML, are affected by epigenetic mechanisms. Mutations of TET2, JAK2 and EZH2 were found in 15 patients (65%), 4 patients (17%) and 1 patient (4%) respectively while no mutations in the IDH1 and IDH2 genes were identified. Interestingly, patients with wild type TET2 clustered separately from patients with TET2 mutations, showed a higher degree of hypermethylation and were associated with higher risk karyotypes. Our results demonstrate the presence of aberrant DNA methylation in CMML and identifies TET2 mutant CMML as a biologically distinct disease subtype with a different epigenetic profile. PMID:22328940

  17. Novel population genetics in ciliates due to life cycle and nuclear dimorphism.

    PubMed

    Morgens, David W; Stutz, Timothy C; Cavalcanti, Andre R O

    2014-08-01

    Our understanding of population genetics comes primarily from studies of organisms with canonical life cycles and nuclear organization, either haploid or diploid, sexual, or asexual. Although this template yields satisfactory results for the study of animals and plants, the wide variety of genomic organizations and life cycles of unicellular eukaryotes can make these organisms behave differently in response to mutation, selection, and drift than predicted by traditional population genetic models. In this study, we show how each of these unique features of ciliates affects their evolutionary parameters in mutation-selection, selection-drift, and mutation-selection-drift situations. In general, ciliates are less efficient in eliminating deleterious mutations-these mutations linger longer and at higher frequencies in ciliate populations than in sexual populations--and more efficient in selecting beneficial mutations. Approaching this problem via analytical techniques and simulation allows us to make specific predictions about the nature of ciliate evolution, and we discuss the implications of these results with respect to the high levels of polymorphism and high rate of protein evolution reported for ciliates. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Novel homozygous VHL mutation in exon 2 is associated with congenital polycythemia but not with cancer.

    PubMed

    Lanikova, Lucie; Lorenzo, Felipe; Yang, Chunzhang; Vankayalapati, Hari; Drachtman, Richard; Divoky, Vladimir; Prchal, Josef T

    2013-05-09

    Germline von Hippel-Lindau (VHL) gene mutations underlie dominantly inherited familial VHL tumor syndrome comprising a predisposition for renal cell carcinoma, pheochromocytoma/paraganglioma, cerebral hemangioblastoma, and endolymphatic sac tumors. However, recessively inherited congenital polycythemia, exemplified by Chuvash polycythemia, has been associated with 2 separate 3' VHL gene mutations in exon 3. It was proposed that different positions of loss-of-function VHL mutations are associated with VHL syndrome cancer predisposition and only C-terminal domain-encoding VHL mutations would cause polycythemia. However, now we describe a new homozygous VHL exon 2 mutation of the VHL gene:(c.413C>T):P138L, which is associated in the affected homozygote with congenital polycythemia but not in her, or her-heterozygous relatives, with cancer or other VHL syndrome tumors. We show that VHL(P138L) has perturbed interaction with hypoxia-inducible transcription factor (HIF)1α. Further, VHL(P138L) protein has decreased stability in vitro. Similarly to what was reported in Chuvash polycythemia and some other instances of HIFs upregulation, VHL(P138L) erythroid progenitors are hypersensitive to erythropoietin. Interestingly, the level of RUNX1/AML1 and NF-E2 transcripts that are specifically upregulated in acquired polycythemia vera were also upregulated in VHL(P138L) granulocytes.

  19. Laboratoire de Chimie Bactérienne C.N.R.S., Marsielle, France.

    PubMed

    Chippaux, M; Giudici, D; Abou-Jaoudé, A; Casse, F; Pascal, M C

    1978-04-06

    Mutants of E. coli, completely devoid of nitrite reductase activity with glucose or formate as donor were studied. Biochemical analysis indicates that they are simultaneously affected in nitrate reductase, nitrite reductase, fumarate reductase and hydrogenase activities as well as in cytochrome C552 biosynthesis. The use of an antiserum specific for nitrate reductase shows that the nitrate reductase protein is probably missing. A single mutation is responsible for this phenotype: the gene affected, nir R, is located close to tyr R i.e. at 29 min on the chromosomal map.

  20. Autosomal Dominant Cataract: Intrafamilial Phenotypic Variability, Interocular Asymmetry, and Variable Progression in Four Chilean Families

    PubMed Central

    Shafie, Suraiya M.; Barria von-Bischhoffshausen, Fernando R.; Bateman, J. Bronwyn

    2006-01-01

    PURPOSE To document intrafamilial and interocular phenotypic variability of autosomal dominant cataract (ADC). DESIGN Prospective observational case series. METHODS We performed ophthalmologic examination in four Chilean ADC families. RESULTS The families exhibited variability with respect to morphology, location with the lens, color and density of cataracts among affected members. We documented asymmetry between eyes in the morphology, location within the lens, color and density of cataracts, and a variable rate of progression. CONCLUSIONS The cataracts in these families exhibit wide intrafamilial and interocular phenotypic variability, supporting the premise that the mutated genes are expressed differentially in individuals and between eyes; other genes or environmental factors may be the bases for this variability. Marked progression among some family members underscores the variable clinical course of a common mutation within a family. Like retinitis pigmentosa, classification of ADC will be most useful if based on the gene and specific mutation. PMID:16564818

  1. Structural hot spots for the solubility of globular proteins

    PubMed Central

    Ganesan, Ashok; Siekierska, Aleksandra; Beerten, Jacinte; Brams, Marijke; Van Durme, Joost; De Baets, Greet; Van der Kant, Rob; Gallardo, Rodrigo; Ramakers, Meine; Langenberg, Tobias; Wilkinson, Hannah; De Smet, Frederik; Ulens, Chris; Rousseau, Frederic; Schymkowitz, Joost

    2016-01-01

    Natural selection shapes protein solubility to physiological requirements and recombinant applications that require higher protein concentrations are often problematic. This raises the question whether the solubility of natural protein sequences can be improved. We here show an anti-correlation between the number of aggregation prone regions (APRs) in a protein sequence and its solubility, suggesting that mutational suppression of APRs provides a simple strategy to increase protein solubility. We show that mutations at specific positions within a protein structure can act as APR suppressors without affecting protein stability. These hot spots for protein solubility are both structure and sequence dependent but can be computationally predicted. We demonstrate this by reducing the aggregation of human α-galactosidase and protective antigen of Bacillus anthracis through mutation. Our results indicate that many proteins possess hot spots allowing to adapt protein solubility independently of structure and function. PMID:26905391

  2. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus

    PubMed Central

    Shuda, Masahiro; Feng, Huichen; Kwun, Hyun Jin; Rosen, Steven T.; Gjoerup, Ole; Moore, Patrick S.; Chang, Yuan

    2008-01-01

    Merkel cell polyomavirus (MCV) is a virus discovered in our laboratory at the University of Pittsburgh that is monoclonally integrated into the genome of ≈80% of human Merkel cell carcinomas (MCCs). Transcript mapping was performed to show that MCV expresses transcripts in MCCs similar to large T (LT), small T (ST), and 17kT transcripts of SV40. Nine MCC tumor-derived LT genomic sequences have been examined, and all were found to harbor mutations prematurely truncating the MCV LT helicase. In contrast, four presumed episomal viruses from nontumor sources did not possess this T antigen signature mutation. Using coimmunoprecipitation and origin replication assays, we show that tumor-derived virus mutations do not affect retinoblastoma tumor suppressor protein (Rb) binding by LT but do eliminate viral DNA replication capacity. Identification of an MCC cell line (MKL-1) having monoclonal MCV integration and the signature LT mutation allowed us to functionally test both tumor-derived and wild type (WT) T antigens. Only WT LT expression activates replication of integrated MCV DNA in MKL-1 cells. Our findings suggest that MCV-positive MCC tumor cells undergo selection for LT mutations to prevent autoactivation of integrated virus replication that would be detrimental to cell survival. Because these mutations render the virus replication-incompetent, MCV is not a “passenger virus” that secondarily infects MCC tumors. PMID:18812503

  3. Clinical and functional characterization of a patient carrying a compound heterozygous pericentrin mutation and a heterozygous IGF1 receptor mutation.

    PubMed

    Müller, Eva; Dunstheimer, Desiree; Klammt, Jürgen; Friebe, Daniela; Kiess, Wieland; Kratzsch, Jürgen; Kruis, Tassilo; Laue, Sandy; Pfäffle, Roland; Wallborn, Tillmann; Heidemann, Peter H

    2012-01-01

    Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration.

  4. Clinical and Functional Characterization of a Patient Carrying a Compound Heterozygous Pericentrin Mutation and a Heterozygous IGF1 Receptor Mutation

    PubMed Central

    Klammt, Jürgen; Friebe, Daniela; Kiess, Wieland; Kratzsch, Jürgen; Kruis, Tassilo; Laue, Sandy; Pfäffle, Roland; Wallborn, Tillmann; Heidemann, Peter H.

    2012-01-01

    Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration. PMID:22693602

  5. Phenotype and genotype in 17 patients with Goltz-Gorlin syndrome.

    PubMed

    Maas, S M; Lombardi, M P; van Essen, A J; Wakeling, E L; Castle, B; Temple, I K; Kumar, V K A; Writzl, K; Hennekam, Raoul C M

    2009-10-01

    Goltz-Gorlin syndrome or focal dermal hypoplasia is a highly variable, X-linked dominant syndrome with abnormalities of ectodermal and mesodermal origin. In 2007, mutations in the PORCN gene were found to be causative in Goltz-Gorlin syndrome. A series of 17 patients with Goltz-Gorlin syndrome is reported on, and their phenotype and genotype are described. In 14 patients (13 females and one male), a PORCN mutation was found. Mutations included nonsense (n = 5), frameshift (n = 2), aberrant splicing (n = 2) and missense (n = 5) mutations. No genotype-phenotype correlation was found. All patients with the classical features of the syndrome had a detectable mutation. In three females with atypical signs, no mutation was found. The male patient had classical features and showed mosaicism for a PORCN nonsense mutation in fibroblasts. Two affected sisters had a mutation not detectable in their parents, supporting germline mosaicism. Their father had undergone radiation for testicular cancer in the past. Two classically affected females had three severely affected female fetuses which all had midline thoracic and abdominal wall defects, resembling the pentalogy of Cantrell and the limb-body wall complex. Thoracic and abdominal wall defects were also present in two surviving patients. PORCN mutations can possibly cause pentalogy of Cantrell and limb-body wall complexes as well. Therefore, particularly in cases with limb defects, it seems useful to search for these. PORCN mutations can be found in all classically affected cases of Goltz-Gorlin syndrome, including males. Somatic and germline mosaicism occur. There is no evident genotype-phenotype correlation.

  6. Identification of novel mutations of the CHST6 gene in Vietnamese families affected with macular corneal dystrophy in two generations.

    PubMed

    Ha, Nguyen Thanh; Chau, Hoang Minh; Cung, Le Xuan; Thanh, Ton Kim; Fujiki, Keiko; Murakami, Akira; Hiratsuka, Yoshimune; Hasegawa, Nobuko; Kanai, Atsushi

    2003-08-01

    To report the clinical and genetic findings of Vietnamese families affected with macular corneal dystrophy (MCD) in 2 generations. Two families, including 7 patients and 3 unaffected members, were examined clinically. Blood samples were collected. Fifty normal Vietnamese individuals were used as controls. Genomic DNA was extracted from leukocytes. Analysis of the carbohydrate sulfotransferase (CHST6) gene was performed using polymerase chain reaction and direct sequencing. The typical form of MCD was recognized in family B, in which sequencing of CHST6 gene revealed an nt 1067-1068ins(GGCCGTG) mutation (frameshift after 125V) homozygously in MCD patients and heterozygously in the unaffected members. Family N also showed clinical features of MCD, moderate in the mother but severe in the affected son. Sequencing revealed a single heterozygous Arg211Gln in the mother, compound heterozygous Arg211Gln+ Gln82Stop in the affected son, and heterozygous Arg211Gln mutation in the unaffected members. The identified mutations in these pedigrees were excluded from normal controls. The novel frameshift and compound heterozygous mutations might be responsible for MCD in the families studied. The phenotypic variation between affected parents and offspring was unclear. In family N, severe MCD phenotype seen in the affected son may be due the fact that he had an early stop codon mutation (Gln82Stop).

  7. Law-medicine interfacing: patenting of human genes and mutations.

    PubMed

    Fialho, Arsenio M; Chakrabarty, Ananda M

    2011-08-01

    Mutations, Single Nucleotide Polymorphisms (SNPs), deletions and genetic rearrangements in specific genes in the human genome account for not only our physical characteristics and behavior, but can lead to many in-born and acquired diseases. Such changes in the genome can also predispose people to cancers, as well as significantly affect the metabolism and efficacy of many drugs, resulting in some cases in acute toxicity to the drug. The testing of the presence of such genetic mutations and rearrangements is of great practical and commercial value, leading many of these genes and their mutations/deletions and genetic rearrangements to be patented. A recent decision by a judge in the Federal District Court in the Southern District of New York, has created major uncertainties, based on the revocation of BRCA1 and BRCA2 gene patents, in the eligibility of all human and presumably other gene patents. This article argues that while patents on BRCA1 and BRCA2 genes could be challenged based on a lack of utility, the patenting of the mutations and genetic rearrangements is of great importance to further development and commercialization of genetic tests that can save human lives and prevent suffering, and should be allowed.

  8. Mutation analysis of the APC gene in Taiwanese FAP families: low incidence of APC germline mutation in a distinct subgroup of FAP families.

    PubMed

    Chiang, J M; Chen, H W; Tang, R P; Chen, J S; Changchien, C R; Hsieh, P S; Wang, J Y

    2010-06-01

    Familial adenomatous polyposis (FAP) is an autosomal-dominant disease caused by germline mutations in the adenomatous polyposis coli (APC) gene. The affected individuals develop colorectal polyposis and show various extra-colonic manifestations. In this study, we aimed to investigate the genetic and clinical characteristics of FAP in Taiwanese families and analyze the genotype-phenotype correlations. Blood samples were obtained from 66 FAP patients registered in the hereditary colorectal cancer database. Then, germline mutations in the APC genes of these 66 polyposis patients from 47 unrelated FAP families were analyzed. The germline-mutation-negative cases were analyzed by performing multiplex ligation-dependent probe amplification (MLPA) and single-strand conformation polymorphism (SSCP) analysis of the MUTYH gene. Among the analyzed families, 79% (37/47) of the families showed 28 APC mutations, including 19 frameshift mutations, 4 nonsense mutations, 3 genomic deletion mutations, 1 missense mutation, and 1 splice-site mutation. In addition, we identified 15 novel mutations in 32% (15/47) of the families. The cases in which APC mutations were not identified showed significantly lower incidence of profuse polyposis (P = 0.034) and gastroduodenal polyps (P = 0.027). Furthermore, FAP families in which some affected individuals had less than 100 polyps showed significant association with low incidence of APC germline mutations (P = 0.002). We have added the APC germline-mutation data for Taiwanese FAP patients and indicated the presence of an FAP subgroup comprising affected individuals with nonadenomatous polyps or less than 100 adenomatous polyps; this form of FAP is less frequently caused by germline mutations of the APC gene.

  9. A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.

    PubMed

    Bertl, Johanna; Guo, Qianyun; Juul, Malene; Besenbacher, Søren; Nielsen, Morten Muhlig; Hornshøj, Henrik; Pedersen, Jakob Skou; Hobolth, Asger

    2018-04-19

    Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation rate differs between cancer types, between patients and along the genome depending on the genetic and epigenetic context. Therefore, methods that predict the number of different types of mutations in regions or specific genomic elements must consider local genomic explanatory variables. A major drawback of most methods is the need to average the explanatory variables across the entire region or genomic element. This procedure is particularly problematic if the explanatory variable varies dramatically in the element under consideration. To take into account the fine scale of the explanatory variables, we model the probabilities of different types of mutations for each position in the genome by multinomial logistic regression. We analyse 505 cancer genomes from 14 different cancer types and compare the performance in predicting mutation rate for both regional based models and site-specific models. We show that for 1000 randomly selected genomic positions, the site-specific model predicts the mutation rate much better than regional based models. We use a forward selection procedure to identify the most important explanatory variables. The procedure identifies site-specific conservation (phyloP), replication timing, and expression level as the best predictors for the mutation rate. Finally, our model confirms and quantifies certain well-known mutational signatures. We find that our site-specific multinomial regression model outperforms the regional based models. The possibility of including genomic variables on different scales and patient specific variables makes it a versatile framework for studying different mutational mechanisms. Our model can serve as the neutral null model for the mutational process; regions that deviate from the null model are candidates for elements that drive cancer development.

  10. COL4A3 founder mutations in Greek-Cypriot families with thin basement membrane nephropathy and focal segmental glomerulosclerosis dating from around 18th century.

    PubMed

    Voskarides, Konstantinos; Patsias, Charalampos; Pierides, Alkis; Deltas, Constantinos

    2008-06-01

    Mutations in the COL4A3/COL4A4 genes of type IV collagen account for about 40% of cases of thin basement membrane nephropathy, a condition that is estimated to affect 1% or more of the general population. We recently described 10 Cypriot families with familial hematuria and thin basement membrane nephropathy in the presence of focal segmental glomerulosclerosis, with founder mutations on COL4A3 gene. Seven of the families carried mutation G1334E on haplotype K, and another three carried mutation G871C on haplotype Ky. In this report we performed extension of the haplotypes with additional polymorphic markers, 12 for haplotype K and 22 for haplotype Ky, to estimate the linkage disequilibrium value between the mutation and flanking noncommon markers. Haplotype Ky extended to 13.71 Mb, but we did not attempt further analysis owing to the small number of chromosomes. Haplotype K extended to 3.83 Mb, thereby suggesting that it was a much older event compared to mutation G871C. Mutation G1334E was calculated to be about 5-10 generations old with a possible origin between 1693 and 1818 AD, during the Ottoman ruling of the island. Both mutations are clustered in specific geographic regions with apparently formerly isolated populations, although mutation G1334E has been detected elsewhere on the island. The identification of founder mutations in large families with microscopic hematuria greatly facilitates presymptomatic diagnosis and provides useful information on the history of the population, while it may also assist in association studies in search for disease modifier genes.

  11. Lynch Syndrome in high risk Ashkenazi Jews in Israel.

    PubMed

    Goldberg, Yael; Kedar, Inbal; Kariiv, Revital; Halpern, Naama; Plesser, Morasha; Hubert, Ayala; Kaduri, Luna; Sagi, Michal; Lerer, Israela; Abeliovich, Dvorah; Hamburger, Tamar; Nissan, Aviram; Goldshmidt, Hanoch; Solar, Irit; Geva, Ravit; Strul, Hana; Rosner, Guy; Baris, Hagit; Levi, Zohar; Peretz, Tamar

    2014-03-01

    Lynch Syndrome is caused by mutations in DNA mismatch repair genes. Diagnosis is not always trivial and may be costly. Information regarding incidence, genotype-phenotype correlation, spectrum of mutations and genes involved in specific populations facilitate the diagnostic process and contribute to clinical work-up. To report gene distribution, mutations detected and co-occurrence of related syndromes in a cohort of Ashkenazi Jews in Israel. Patients were identified in dedicated high risk clinics in 3 medical centers in Israel. Diagnostic process followed a multi-step scheme. It included testing for founder mutations, tumor testing, gene sequencing and MLPA. Lynch Syndrome was defined either by positive mutation testing, or by clinical criteria and positive tumor analysis. We report a cohort of 75 Ashkenazi families suspected of Lynch Syndrome. Mutations were identified in 51/75 (68%) families: 38 in MSH2, 9 in MSH6, and 4 in MLH1. 37/51 (73%) of these families carried one of the 3 'Ashkenazi' founder mutations in MSH2 or MSH6. Each of the other 14 families carried a private mutation. 3 (6%) were large deletions. Only 20/51 (39%) families were Amsterdam Criteria positive; 42 (82%) were positive for the Bethesda guidelines and 9 (18%) did not fulfill any Lynch Syndrome criteria. We report C-MMRD and co-occurrence of BRCA and Lynch Syndrome in our cohort. Mutation spectra and gene distribution among Ashkenazi Jews are unique. Three founder Lynch Syndrome mutations are found in 73% families with known mutations. Among the three, MSH2 and MSH6 are the most common. These features affect the phenotype, the diagnostic process, risk estimation, and genetic counseling.

  12. Somatic USP8 Gene Mutations Are a Common Cause of Pediatric Cushing Disease.

    PubMed

    Faucz, Fabio R; Tirosh, Amit; Tatsi, Christina; Berthon, Annabel; Hernández-Ramírez, Laura C; Settas, Nikolaos; Angelousi, Anna; Correa, Ricardo; Papadakis, Georgios Z; Chittiboina, Prashant; Quezado, Martha; Pankratz, Nathan; Lane, John; Dimopoulos, Aggeliki; Mills, James L; Lodish, Maya; Stratakis, Constantine A

    2017-08-01

    Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have been recently identified as the most common genetic alteration in patients with Cushing disease (CD). However, the frequency of these mutations in the pediatric population has not been extensively assessed. We investigated the status of the USP8 gene at the somatic level in a cohort of pediatric patients with corticotroph adenomas. The USP8 gene was fully sequenced in both germline and tumor DNA samples from 42 pediatric patients with CD. Clinical, biochemical, and imaging data were compared between patients with and without somatic USP8 mutations. Five different USP8 mutations (three missense, one frameshift, and one in-frame deletion) were identified in 13 patients (31%), all of them located in exon 14 at the previously described mutational hotspot, affecting the 14-3-3 binding motif of the protein. Patients with somatic mutations were older at disease presentation [mean 5.1 ± 2.1 standard deviation (SD) vs 13.1 ± 3.6 years, P = 0.03]. Levels of urinary free cortisol, midnight serum cortisol, and adrenocorticotropic hormone, as well as tumor size and frequency of invasion of the cavernous sinus, were not significantly different between the two groups. However, patients harboring somatic USP8 mutations had a higher likelihood of recurrence compared with patients without mutations (46.2% vs 10.3%, P = 0.009). Somatic USP8 gene mutations are a common cause of pediatric CD. Patients harboring a somatic mutation had a higher likelihood of tumor recurrence, highlighting the potential importance of this molecular defect for the disease prognosis and the development of targeted therapeutic options. Copyright © 2017 Endocrine Society

  13. Screening for ATM Mutations in an African-American Population to Identify a Predictor of Breast Cancer Susceptibility

    DTIC Science & Technology

    2006-07-01

    ATM genetic variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for each mutation examined. 15. SUBJECT...women without breast cancer. An additional objective is to determine the functional impact upon the protein encoded by the ATM gene for each mutation ...each ATM variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for mutations identified. Body STATEMENT

  14. Novel inborn error of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband.

    PubMed

    Watkins, David; Schwartzentruber, Jeremy A; Ganesh, Jaya; Orange, Jordan S; Kaplan, Bernard S; Nunez, Laura Dempsey; Majewski, Jacek; Rosenblatt, David S

    2011-09-01

    An infant was investigated because of megaloblastic anaemia, atypical hemolytic uraemic syndrome, severe combined immune deficiency, elevated blood levels of homocysteine and methylmalonic acid, and a selective decreased synthesis of methylcobalamin in cultured fibroblasts. Exome sequencing was performed on patient genomic DNA. Two mutations were identified in the MTHFD1 gene, which encodes a protein that catalyses three reactions involved in cellular folate metabolism. This protein is essential for the generation of formyltetrahydrofolate and methylenetetrahydrofolate and important for nucleotide and homocysteine metabolism. One mutation (c.727+1G>A) affects the splice acceptor site of intron 8. The second mutation, c.517C>T (p.R173C), changes a critical arginine residue in the NADP-binding site of the protein. Mutations affecting this arginine have previously been shown to affect enzyme activity. Both parents carry a single mutation and an unaffected sibling carries neither mutation. The combination of two mutations in the MTHFRD1 gene, predicted to have severe consequences, in the patient and their absence in the unaffected sibling, supports causality. This patient represents the first case of an inborn error of folate metabolism affecting the trifunctional MTHFD1 protein. This report reinforces the power of exome capture and sequencing for the discovery of novel genes, even when only a single proband is available for study.

  15. New and recurrent gain-of-function STAT1 mutations in patients with chronic mucocutaneous candidiasis from Eastern and Central Europe.

    PubMed

    Soltész, Beáta; Tóth, Beáta; Shabashova, Nadejda; Bondarenko, Anastasia; Okada, Satoshi; Cypowyj, Sophie; Abhyankar, Avinash; Csorba, Gabriella; Taskó, Szilvia; Sarkadi, Adrien Katalin; Méhes, Leonóra; Rozsíval, Pavel; Neumann, David; Chernyshova, Liudmyla; Tulassay, Zsolt; Puel, Anne; Casanova, Jean-Laurent; Sediva, Anna; Litzman, Jiri; Maródi, László

    2013-09-01

    Chronic mucocutaneous candidiasis disease (CMCD) may result from various inborn errors of interleukin (IL)-17-mediated immunity. Twelve of the 13 causal mutations described to date affect the coiled-coil domain (CCD) of STAT1. Several mutations, including R274W in particular, are recurrent, but the underlying mechanism is unclear. To investigate and describe nine patients with CMCD in Eastern and Central Europe, to assess the biochemical impact of STAT1 mutations, to determine cytokines in supernatants of Candida-exposed blood cells, to determine IL-17-producing T cell subsets and to determine STAT1 haplotypes in a family with the c.820C>T (R274W) mutation. The novel c.537C>A (N179K) STAT1 mutation was gain-of-function (GOF) for γ-activated factor (GAF)-dependent cellular responses. In a Russian patient, the cause of CMCD was the newly identified c.854 A>G (Q285R) STAT1 mutation, which was also GOF for GAF-dependent responses. The c.1154C>T (T385M) mutation affecting the DNA-binding domain (DBD) resulted in a gain of STAT1 phosphorylation in a Ukrainian patient. Impaired Candida-induced IL-17A and IL-22 secretion by leucocytes and lower levels of intracellular IL-17 and IL-22 production by T cells were found in several patients. Haplotype studies indicated that the c.820C>T (R274W) mutation was recurrent due to a hotspot rather than a founder effect. Severe clinical phenotypes, including intracranial aneurysm, are presented. The c.537C>A and c.854A>G mutations affecting the CCD and the c.1154C>T mutation affecting the DBD of STAT1 are GOF. The c.820C>T mutation of STAT1 in patients with CMCD is recurrent due to a hotspot. Patients carrying GOF mutations of STAT1 may develop multiple intracranial aneurysms by hitherto unknown mechanisms.

  16. Muscular dystrophy in the Japanese Spitz: an inversion disrupts the DMD and RPGR genes.

    PubMed

    Atencia-Fernandez, Sabela; Shiel, Robert E; Mooney, Carmel T; Nolan, Catherine M

    2015-04-01

    An X-linked muscular dystrophy, with deficiency of full-length dystrophin and expression of a low molecular weight dystrophin-related protein, has been described in Japanese Spitz dogs. The aim of this study was to identify the causative mutation and develop a specific test to identify affected cases and carrier animals. Gene expression studies in skeletal muscle of an affected animal indicated aberrant expression of the Duchenne muscular dystrophy (dystrophin) gene and an anomaly in intron 19 of the gene. Genome-walking experiments revealed an inversion that interrupts two genes on the X chromosome, the Duchenne muscular dystrophy gene and the retinitis pigmentosa GTPase regulator gene. All clinically affected dogs and obligate carriers that were tested had the mutant chromosome, and it is concluded that the inversion is the causative mutation for X-linked muscular dystrophy in the Japanese Spitz breed. A PCR assay that amplifies mutant and wild-type alleles was developed and proved capable of identifying affected and carrier individuals. Unexpectedly, a 7-year-old male animal, which had not previously come to clinical attention, was shown to possess the mutant allele and to have a relatively mild form of the disease. This observation indicates phenotypic heterogeneity in Japanese Spitz muscular dystrophy, a feature described previously in humans and Golden Retrievers. With the availability of a simple, fast and accurate test for Japanese Spitz muscular dystrophy, detection of carrier animals and selected breeding should help eliminate the mutation from the breed. © 2015 Stichting International Foundation for Animal Genetics.

  17. Adjacent DNA sequences modulate Sox9 transcriptional activation at paired Sox sites in three chondrocyte-specific enhancer elements

    PubMed Central

    Bridgewater, Laura C.; Walker, Marlan D.; Miller, Gwen C.; Ellison, Trevor A.; Holsinger, L. Daniel; Potter, Jennifer L.; Jackson, Todd L.; Chen, Reuben K.; Winkel, Vicki L.; Zhang, Zhaoping; McKinney, Sandra; de Crombrugghe, Benoit

    2003-01-01

    Expression of the type XI collagen gene Col11a2 is directed to cartilage by at least three chondrocyte-specific enhancer elements, two in the 5′ region and one in the first intron of the gene. The three enhancers each contain two heptameric sites with homology to the Sox protein-binding consensus sequence. The two sites are separated by 3 or 4 bp and arranged in opposite orientation to each other. Targeted mutational analyses of these three enhancers showed that in the intronic enhancer, as in the other two enhancers, both Sox sites in a pair are essential for enhancer activity. The transcription factor Sox9 binds as a dimer at the paired sites, and the introduction of insertion mutations between the sites demonstrated that physical interactions between the adjacently bound proteins are essential for enhancer activity. Additional mutational analyses demonstrated that although Sox9 binding at the paired Sox sites is necessary for enhancer activity, it alone is not sufficient. Adjacent DNA sequences in each enhancer are also required, and mutation of those sequences can eliminate enhancer activity without preventing Sox9 binding. The data suggest a new model in which adjacently bound proteins affect the DNA bend angle produced by Sox9, which in turn determines whether an active transcriptional enhancer complex is assembled. PMID:12595563

  18. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication

    PubMed Central

    Shinbrot, Eve; Henninger, Erin E.; Weinhold, Nils; Covington, Kyle R.; Göksenin, A. Yasemin; Schultz, Nikolaus; Chao, Hsu; Doddapaneni, HarshaVardhan; Muzny, Donna M.; Gibbs, Richard A.; Sander, Chris; Pursell, Zachary F.

    2014-01-01

    Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication. PMID:25228659

  19. Autosomal dominant optic neuropathy and sensorineual hearing loss associated with a novel mutation of WFS1

    PubMed Central

    Pennings, Ronald J.E.; Hol, Frans A.; Kunst, Henricus P.M.; Hoefsloot, Elisabeth H.; Cruysberg, Johannes R.M.; Cremers, Cor W.R.J.

    2010-01-01

    Purpose To describe the phenotype of a novel Wolframin (WFS1) mutation in a family with autosomal dominant optic neuropathy and deafness. The study is designed as a retrospective observational case series. Methods Seven members of a Dutch family underwent ophthalmological, otological, and genetical examinations in one institution. Fasting serum glucose was assessed in the affected family members. Results All affected individuals showed loss of neuroretinal rim of the optic nerve at fundoscopy with enlarged blind spots at perimetry. They showed a red-green color vision defect at color vision tests and deviations at visually evoked response tests. The audiograms of the affected individuals showed hearing loss and were relatively flat. The unaffected individuals showed no visual deviations or hearing impairment. The affected family members had no glucose intolerance. Leber hereditary optic neuropathy (LHON) mitochondrial mutations and mutations in the Optic atrophy-1 gene (OPA1) were excluded. In the affected individuals, a novel missense mutation c.2508G>C (p.Lys836Asn) in exon 8 of WFS1 was identified. Conclusions This study describes the phenotype of a family with autosomal dominant optic neuropathy and hearing impairment associated with a novel missense mutation in WFS1. PMID:20069065

  20. Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome

    PubMed Central

    Abdi, Samia; Bahloul, Amel; Behlouli, Asma; Hardelin, Jean-Pierre; Makrelouf, Mohamed; Boudjelida, Kamel; Louha, Malek; Cheknene, Ahmed; Belouni, Rachid; Rous, Yahia; Merad, Zahida; Selmane, Djamel; Hasbelaoui, Mokhtar; Bonnet, Crystel; Zenati, Akila; Petit, Christine

    2016-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by a dual sensory impairment affecting hearing and vision. USH is clinically and genetically heterogeneous. Ten different causal genes have been reported. We studied the molecular bases of the disease in 18 unrelated Algerian patients by targeted-exome sequencing, and identified the causal biallelic mutations in all of them: 16 patients carried the mutations at the homozygous state and 2 at the compound heterozygous state. Nine of the 17 different mutations detected in MYO7A (1 of 5 mutations), CDH23 (4 of 7 mutations), PCDH15 (1 mutation), USH1C (1 mutation), USH1G (1 mutation), and USH2A (1 of 2 mutations), had not been previously reported. The deleterious consequences of a missense mutation of CDH23 (p.Asp1501Asn) and the in-frame single codon deletion in USH1G (p.Ala397del) on the corresponding proteins were predicted from the solved 3D-structures of extracellular cadherin (EC) domains of cadherin-23 and the sterile alpha motif (SAM) domain of USH1G/sans, respectively. In addition, we were able to show that the USH1G mutation is likely to affect the binding interface between the SAM domain and USH1C/harmonin. This should spur the use of 3D-structures, not only of isolated protein domains, but also of protein-protein interaction interfaces, to predict the functional impact of mutations detected in the USH genes. PMID:27583663

  1. Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome.

    PubMed

    Abdi, Samia; Bahloul, Amel; Behlouli, Asma; Hardelin, Jean-Pierre; Makrelouf, Mohamed; Boudjelida, Kamel; Louha, Malek; Cheknene, Ahmed; Belouni, Rachid; Rous, Yahia; Merad, Zahida; Selmane, Djamel; Hasbelaoui, Mokhtar; Bonnet, Crystel; Zenati, Akila; Petit, Christine

    2016-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by a dual sensory impairment affecting hearing and vision. USH is clinically and genetically heterogeneous. Ten different causal genes have been reported. We studied the molecular bases of the disease in 18 unrelated Algerian patients by targeted-exome sequencing, and identified the causal biallelic mutations in all of them: 16 patients carried the mutations at the homozygous state and 2 at the compound heterozygous state. Nine of the 17 different mutations detected in MYO7A (1 of 5 mutations), CDH23 (4 of 7 mutations), PCDH15 (1 mutation), USH1C (1 mutation), USH1G (1 mutation), and USH2A (1 of 2 mutations), had not been previously reported. The deleterious consequences of a missense mutation of CDH23 (p.Asp1501Asn) and the in-frame single codon deletion in USH1G (p.Ala397del) on the corresponding proteins were predicted from the solved 3D-structures of extracellular cadherin (EC) domains of cadherin-23 and the sterile alpha motif (SAM) domain of USH1G/sans, respectively. In addition, we were able to show that the USH1G mutation is likely to affect the binding interface between the SAM domain and USH1C/harmonin. This should spur the use of 3D-structures, not only of isolated protein domains, but also of protein-protein interaction interfaces, to predict the functional impact of mutations detected in the USH genes.

  2. ramR mutations affecting fluoroquinolone susceptibility in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198

    PubMed Central

    Baucheron, Sylvie; Le Hello, Simon; Doublet, Benoît; Giraud, Etienne; Weill, François-Xavier; Cloeckaert, Axel

    2013-01-01

    A screening for non-target mutations affecting fluoroquinolone susceptibility was conducted in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Among a panel of representative isolates (n = 27), covering the epidemic, only three showed distinct mutations in ramR resulting in enhanced expression of genes encoding the AcrAB-TolC efflux system and low increase in ciprofloxacin MIC. No mutations were detected in other regulatory regions of this efflux system. Ciprofloxacin resistance in serovar Kentucky ST198 is thus currently mainly due to multiple target gene mutations. PMID:23914184

  3. NLGN3/NLGN4 gene mutations are not responsible for autism in the Quebec population.

    PubMed

    Gauthier, Julie; Bonnel, Anna; St-Onge, Judith; Karemera, Liliane; Laurent, Sandra; Mottron, Laurent; Fombonne, Eric; Joober, Ridha; Rouleau, Guy A

    2005-01-05

    Jamain [2003: Nat Genet 34:27-29] recently reported mutations in two neuroligin genes in sib-pairs affected with autism. In order to confirm these causative mutations in our autistic population and to determine their frequency we screened 96 individuals affected with autism. We found no mutations in these X-linked genes. These results indicate that mutations in NLGN3 and NLGN4 genes are responsible for at most a small fraction of autism cases and additional screenings in other autistic populations are needed to better determine the frequency with which mutations in NLGN3 and NLGN4 occur in autism. Copyright 2004 Wiley-Liss, Inc.

  4. The photoreceptor cell-specific nuclear receptor gene (PNR) accounts for retinitis pigmentosa in the Crypto-Jews from Portugal (Marranos), survivors from the Spanish Inquisition.

    PubMed

    Gerber, S; Rozet, J M; Takezawa, S I; dos Santos, L C; Lopes, L; Gribouval, O; Penet, C; Perrault, I; Ducroq, D; Souied, E; Jeanpierre, M; Romana, S; Frézal, J; Ferraz, F; Yu-Umesono, R; Munnich, A; Kaplan, J

    2000-09-01

    The last Crypto-Jews (Marranos) are the survivors of Spanish Jews who were persecuted in the late fifteenth century, escaped to Portugal and were forced to convert to save their lives. Isolated groups still exist in mountainous areas such as Belmonte in the Beira-Baixa province of Portugal. We report here the genetic study of a highly consanguineous endogamic population of Crypto-Jews of Belmonte affected with autosomal recessive retinitis pigmentosa (RP). A genome-wide search for homozygosity allowed us to localize the disease gene to chromosome 15q22-q24 (Zmax=2.95 at theta=0 at the D15S131 locus). Interestingly, the photoreceptor cell-specific nuclear receptor (PNR) gene, the expression of which is restricted to the outer nuclear layer of retinal photoreceptor cells, was found to map to the YAC contig encompassing the disease locus. A search for mutations allowed us to ascribe the RP of Crypto-Jews of Belmonte to a homozygous missense mutation in the PNR gene. Preliminary haplotype studies support the view that this mutation is relatively ancient but probably occurred after the population settled in Belmonte.

  5. Thrombocytosis and thrombosis.

    PubMed

    Vannucchi, Alessandro M; Barbui, Tiziano

    2007-01-01

    The aim of this review is to discuss current diagnostic approaches to, and classification of, patients presenting with thrombocytosis, in light of novel information derived from the discovery of specific molecular abnormalities in chronic myeloproliferative disorders (CMPD), which represent the most common cause of primary thrombocytosis. The JAK2V617F and the MPLW515L/K mutations have been found in patients with essential thrombocythemia, polycythemia vera, and primary myelofibrosis, and less frequently in other myeloproliferative disorders complicated by thrombocytosis. However, neither mutation is disease specific nor is it universally present in patients with elevated platelet counts due to a CMPD; therefore, distinguishing between reactive and primary forms of thrombocytosis, as well as among the different clinical entities that constitute the CMPD, still requires a multifaceted diagnostic approach that includes as a key step the accurate evaluation of bone marrow histology. The role of elevated platelet counts in thrombosis, which represent the predominant complication of CMPD,significantly affecting prognosis and quality of life as well as, paradoxically, in the pathogenesis of the hemorrhagic manifestations, will be discussed. Established and novel potential risk factors for thrombosis, including the clinical relevance of the JAK2V617F mutation, and current management strategies for thrombocytosis are also briefly discussed.

  6. Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk

    PubMed Central

    Vijai, Joseph; Klein, Robert J.; Kirchhoff, Tomas; McGuffog, Lesley; Barrowdale, Daniel; Dunning, Alison M.; Lee, Andrew; Dennis, Joe; Healey, Sue; Dicks, Ed; Soucy, Penny; Sinilnikova, Olga M.; Pankratz, Vernon S.; Wang, Xianshu; Eldridge, Ronald C.; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Hogervorst, Frans B. L.; Peock, Susan; Stoppa-Lyonnet, Dominique; Peterlongo, Paolo; Schmutzler, Rita K.; Nathanson, Katherine L.; Piedmonte, Marion; Singer, Christian F.; Thomassen, Mads; Hansen, Thomas v. O.; Neuhausen, Susan L.; Blanco, Ignacio; Greene, Mark H.; Garber, Judith; Weitzel, Jeffrey N.; Andrulis, Irene L.; Goldgar, David E.; D'Andrea, Emma; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; van Rensburg, Elizabeth J.; Arason, Adalgeir; Rennert, Gad; van den Ouweland, Ans M. W.; van der Hout, Annemarie H.; Kets, Carolien M.; Aalfs, Cora M.; Wijnen, Juul T.; Ausems, Margreet G. E. M.; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D. Gareth; Jacobs, Chris; Adlard, Julian; Tischkowitz, Marc; Porteous, Mary E.; Damiola, Francesca; Golmard, Lisa; Barjhoux, Laure; Longy, Michel; Belotti, Muriel; Ferrer, Sandra Fert; Mazoyer, Sylvie; Spurdle, Amanda B.; Manoukian, Siranoush; Barile, Monica; Genuardi, Maurizio; Arnold, Norbert; Meindl, Alfons; Sutter, Christian; Wappenschmidt, Barbara; Domchek, Susan M.; Pfeiler, Georg; Friedman, Eitan; Jensen, Uffe Birk; Robson, Mark; Shah, Sohela; Lazaro, Conxi; Mai, Phuong L.; Benitez, Javier; Southey, Melissa C.; Schmidt, Marjanka K.; Fasching, Peter A.; Peto, Julian; Humphreys, Manjeet K.; Wang, Qin; Michailidou, Kyriaki; Sawyer, Elinor J.; Burwinkel, Barbara; Guénel, Pascal; Bojesen, Stig E.; Milne, Roger L.; Brenner, Hermann; Lochmann, Magdalena; Aittomäki, Kristiina; Dörk, Thilo; Margolin, Sara; Mannermaa, Arto; Lambrechts, Diether; Chang-Claude, Jenny; Radice, Paolo; Giles, Graham G.; Haiman, Christopher A.; Winqvist, Robert; Devillee, Peter; García-Closas, Montserrat; Schoof, Nils; Hooning, Maartje J.; Cox, Angela; Pharoah, Paul D. P.; Jakubowska, Anna; Orr, Nick; González-Neira, Anna; Pita, Guillermo; Alonso, M. Rosario; Hall, Per; Couch, Fergus J.; Simard, Jacques; Altshuler, David; Easton, Douglas F.; Chenevix-Trench, Georgia; Antoniou, Antonis C.; Offit, Kenneth

    2013-01-01

    Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80–0.90, P = 3.9×10−8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer. PMID:23544012

  7. Joint analysis of quantitative trait loci and major-effect causative mutations affecting meat quality and carcass composition traits in pigs.

    PubMed

    Cherel, Pierre; Pires, José; Glénisson, Jérôme; Milan, Denis; Iannuccelli, Nathalie; Hérault, Frédéric; Damon, Marie; Le Roy, Pascale

    2011-08-29

    Detection of quantitative trait loci (QTLs) affecting meat quality traits in pigs is crucial for the design of efficient marker-assisted selection programs and to initiate efforts toward the identification of underlying polymorphisms. The RYR1 and PRKAG3 causative mutations, originally identified from major effects on meat characteristics, can be used both as controls for an overall QTL detection strategy for diversely affected traits and as a scale for detected QTL effects. We report on a microsatellite-based QTL detection scan including all autosomes for pig meat quality and carcass composition traits in an F2 population of 1,000 females and barrows resulting from an intercross between a Pietrain and a Large White-Hampshire-Duroc synthetic sire line. Our QTL detection design allowed side-by-side comparison of the RYR1 and PRKAG3 mutation effects seen as QTLs when segregating at low frequencies (0.03-0.08), with independent QTL effects detected from most of the same population, excluding any carrier of these mutations. Large QTL effects were detected in the absence of the RYR1 and PRKGA3 mutations, accounting for 12.7% of phenotypic variation in loin colour redness CIE-a* on SSC6 and 15% of phenotypic variation in glycolytic potential on SSC1. We detected 8 significant QTLs with effects on meat quality traits and 20 significant QTLs for carcass composition and growth traits under these conditions. In control analyses including mutation carriers, RYR1 and PRKAG3 mutations were detected as QTLs, from highly significant to suggestive, and explained 53% to 5% of the phenotypic variance according to the trait. Our results suggest that part of muscle development and backfat thickness effects commonly attributed to the RYR1 mutation may be a consequence of linkage with independent QTLs affecting those traits. The proportion of variation explained by the most significant QTLs detected in this work is close to the influence of major-effect mutations on the least affected traits, but is one order of magnitude lower than effect on variance of traits primarily affected by these causative mutations. This suggests that uncovering physiological traits directly affected by genetic polymorphisms would be an appropriate approach for further characterization of QTLs.

  8. Joint analysis of quantitative trait loci and major-effect causative mutations affecting meat quality and carcass composition traits in pigs

    PubMed Central

    2011-01-01

    Background Detection of quantitative trait loci (QTLs) affecting meat quality traits in pigs is crucial for the design of efficient marker-assisted selection programs and to initiate efforts toward the identification of underlying polymorphisms. The RYR1 and PRKAG3 causative mutations, originally identified from major effects on meat characteristics, can be used both as controls for an overall QTL detection strategy for diversely affected traits and as a scale for detected QTL effects. We report on a microsatellite-based QTL detection scan including all autosomes for pig meat quality and carcass composition traits in an F2 population of 1,000 females and barrows resulting from an intercross between a Pietrain and a Large White-Hampshire-Duroc synthetic sire line. Our QTL detection design allowed side-by-side comparison of the RYR1 and PRKAG3 mutation effects seen as QTLs when segregating at low frequencies (0.03-0.08), with independent QTL effects detected from most of the same population, excluding any carrier of these mutations. Results Large QTL effects were detected in the absence of the RYR1 and PRKGA3 mutations, accounting for 12.7% of phenotypic variation in loin colour redness CIE-a* on SSC6 and 15% of phenotypic variation in glycolytic potential on SSC1. We detected 8 significant QTLs with effects on meat quality traits and 20 significant QTLs for carcass composition and growth traits under these conditions. In control analyses including mutation carriers, RYR1 and PRKAG3 mutations were detected as QTLs, from highly significant to suggestive, and explained 53% to 5% of the phenotypic variance according to the trait. Conclusions Our results suggest that part of muscle development and backfat thickness effects commonly attributed to the RYR1 mutation may be a consequence of linkage with independent QTLs affecting those traits. The proportion of variation explained by the most significant QTLs detected in this work is close to the influence of major-effect mutations on the least affected traits, but is one order of magnitude lower than effect on variance of traits primarily affected by these causative mutations. This suggests that uncovering physiological traits directly affected by genetic polymorphisms would be an appropriate approach for further characterization of QTLs. PMID:21875434

  9. Mutational analysis of the RB1 gene and the inheritance patterns of retinoblastoma in Jordan.

    PubMed

    Yousef, Yacoub A; Tbakhi, Abdelghani; Al-Hussaini, Maysa; AlNawaiseh, Ibrahim; Saab, Ala; Afifi, Amal; Naji, Maysa; Mohammad, Mona; Deebajah, Rasha; Jaradat, Imad; Sultan, Iyad; Mehyar, Mustafa

    2018-04-01

    Retinoblastoma (RB) is a childhood cancer developing in the retina due to RB1 pathologic variant. Herein we are evaluating the oncogenic mutations in the RB1 gene and the inheritance patterns of RB in the Jordanian patients. In this prospective study, the peripheral blood of 50 retinoblastoma patients was collected, genomic DNA was extracted, mutations were identified using Quantitative multiplex PCR (QM-PCR), Allele-specific PCR, Next Generation Sequencing analysis, and Sanger sequencing. In this cohort of 50 patients, 20(40%) patients had unilateral RB and 30(60%) were males. Overall, 36(72%) patients had germline disease, 17(47%) of whom had the same RB1 pathologic variant detected in one of the parents (inherited disease). In the bilateral group, all (100%) patients had germline disease; 13(43%) of them had inherited mutation. In the unilateral group, 6(30%) had germline disease, 4(20%) of them had inherited mutation. Nonsense mutation generating a stop codon and producing a truncated non-functional protein was the most frequent detected type of mutations (n = 15/36, 42%). Only one (2%) of the patients had mosaic mutation, and of the 17 inherited cases, 16(94%) had an unaffected carrier parent. In conclusion, in addition to all bilateral RB patients in our cohort, 30% of unilateral cases showed germline mutation. Almost half (47%) of germline cases had inherited disease from affected (6%) parent or unaffected carrier (94%). Therefore molecular screening is critical for the genetic counseling regarding the risk for inherited RB in both unilateral and bilateral cases including those with no family history.

  10. The ABCA4 2588G>C Stargardt mutation: single origin and increasing frequency from South-West to North-East Europe.

    PubMed

    Maugeri, Alessandra; Flothmann, Kris; Hemmrich, Nadine; Ingvast, Sofie; Jorge, Paula; Paloma, Eva; Patel, Reshma; Rozet, Jean-Michel; Tammur, Jaana; Testa, Francesco; Balcells, Susana; Bird, Alan C; Brunner, Han G; Hoyng, Carel B; Metspalu, Andres; Simonelli, Francesca; Allikmets, Rando; Bhattacharya, Shomi S; D'Urso, Michele; Gonzàlez-Duarte, Roser; Kaplan, Josseline; te Meerman, Gerard J; Santos, Rosário; Schwartz, Marianne; Van Camp, Guy; Wadelius, Claes; Weber, Bernhard H F; Cremers, Frans P M

    2002-03-01

    Inherited retinal dystrophies represent the most important cause of vision impairment in adolescence, affecting approximately 1 out of 3000 individuals. Mutations of the photoreceptor-specific gene ABCA4 (ABCR) are a common cause of retinal dystrophy. A number of mutations have been repeatedly reported for this gene, notably the 2588G>C mutation which is frequent in both patients and controls. Here we ascertained the frequency of the 2588G>C mutation in a total of 2343 unrelated random control individuals from 11 European countries and 241 control individuals from the US, as well as in 614 patients with STGD both from Europe and the US. We found an overall carrier frequency of 1 out of 54 in Europe, compared with 1 out of 121 in the US, confirming that the 2588G>C ABCA4 mutation is one of the most frequent autosomal recessive mutations in the European population. Carrier frequencies show an increasing gradient in Europe from South-West to North-East. The lowest carrier frequency, 0 out of 199 (0%), was found in Portugal; the highest, 11 out of 197 (5.5%), was found in Sweden. Haplotype analysis in 16 families segregating the 2588G>C mutation showed four intragenic polymorphisms invariably present in all 16 disease chromosomes and sharing of the same allele for several markers flanking the ABCA4 locus in most of the disease chromosomes. These results indicate a single origin of the 2588G>C mutation which, to our best estimate, occurred between 2400 and 3000 years ago.

  11. SHP2 sails from physiology to pathology.

    PubMed

    Tajan, Mylène; de Rocca Serra, Audrey; Valet, Philippe; Edouard, Thomas; Yart, Armelle

    2015-10-01

    Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2's structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. A cAMP-specific phosphodiesterase (PDE8B) that is mutated in adrenal hyperplasia is expressed widely in human and mouse tissues: a novel PDE8B isoform in human adrenal cortex

    PubMed Central

    Horvath, Anelia; Giatzakis, Christoforos; Tsang, Kitman; Greene, Elizabeth; Osorio, Paulo; Boikos, Sosipatros; Libè, Rossella; Patronas, Yianna; Robinson-White, Audrey; Remmers, Elaine; Bertherat, Jerôme; Nesterova, Maria; Stratakis, Constantine A.

    2009-01-01

    Bilateral adrenocortical hyperplasia (BAH) is the second most common cause of corticotropin-independent Cushing syndrome (CS). Genetic forms of BAH have been associated with complex syndromes such as Carney Complex and McCune Albright syndrome or may present as isolated micronodular adrenocortical disease (iMAD) usually in children and young adults with CS. A genome-wide association study identified inactivating phosphodiesterase (PDE) 11A (PDE11A) sequencing defects as low-penetrance predisposing factors for iMAD and related abnormalities; we also described a mutation (c.914A>C/H305P) in cAMP-specific PDE8B, in a patient with iMAD. In this study we further characterize this mutation; we also found a novel PDE8B isoform, highly expressed in the adrenal gland. This mutation is shown to significantly affect the ability of the protein to degrade cAMP in vitro. Tumor tissues from patients with iMAD and no mutations in the coding PDE8B sequence or any other related genes (PRKAR1A, PDE11A) showed down-regulated PDE8B expression (compared to normal adrenal cortex). Pde8b is detectable in the adrenal gland of newborn mice and is widely expressed in other mouse tissues. We conclude that PDE8B is another PDE gene linked to iMAD; it is a candidate causative gene for other adrenocortical lesions linked to the cAMP-signaling pathway, and possibly for tumors in other tissues. PMID:18431404

  13. Androgen Receptor Functional Analyses by High Throughput Imaging: Determination of Ligand, Cell Cycle, and Mutation-Specific Effects

    PubMed Central

    Szafran, Adam T.; Szwarc, Maria; Marcelli, Marco; Mancini, Michael A.

    2008-01-01

    Background Understanding how androgen receptor (AR) function is modulated by exposure to steroids, growth factors or small molecules can have important mechanistic implications for AR-related disease therapies (e.g., prostate cancer, androgen insensitivity syndrome, AIS), and in the analysis of environmental endocrine disruptors. Methodology/Principal Findings We report the development of a high throughput (HT) image-based assay that quantifies AR subcellular and subnuclear distribution, and transcriptional reporter gene activity on a cell-by-cell basis. Furthermore, simultaneous analysis of DNA content allowed determination of cell cycle position and permitted the analysis of cell cycle dependent changes in AR function in unsynchronized cell populations. Assay quality for EC50 coefficients of variation were 5–24%, with Z' values reaching 0.91. This was achieved by the selective analysis of cells expressing physiological levels of AR, important because minor over-expression resulted in elevated nuclear speckling and decreased transcriptional reporter gene activity. A small screen of AR-binding ligands, including known agonists, antagonists, and endocrine disruptors, demonstrated that nuclear translocation and nuclear “speckling” were linked with transcriptional output, and specific ligands were noted to differentially affect measurements for wild type versus mutant AR, suggesting differing mechanisms of action. HT imaging of patient-derived AIS mutations demonstrated a proof-of-principle personalized medicine approach to rapidly identify ligands capable of restoring multiple AR functions. Conclusions/Significance HT imaging-based multiplex screening will provide a rapid, systems-level analysis of compounds/RNAi that may differentially affect wild type AR or clinically relevant AR mutations. PMID:18978937

  14. In the Thick of It: HCM-Causing Mutations in Myosin Binding Proteins of the Thick Filament

    PubMed Central

    Harris, Samantha P.; Lyons, Ross G.; Bezold, Kristina L.

    2010-01-01

    In the 20 yrs since the discovery of the first mutation linked to familial hypertrophic cardiomyopathy (HCM) an astonishing number of mutations affecting numerous sarcomeric proteins have been described. Among the most prevalent of these are mutations that affect thick filament binding proteins including the myosin essential and regulatory light chains and cardiac myosin binding protein-C (cMyBP-C). However, despite the frequency with which myosin binding proteins, especially cMyBP-C, have been linked to inherited cardiomyopathies, the functional consequences of mutations in these proteins and the mechanisms by which they cause disease are still only partly understood. The purpose of this review is to summarize the known disease-causing mutations that affect the major thick filament binding proteins and to relate these mutations to protein function. Conclusions emphasize the impact that discovery of HCM causing mutations has had on fueling insights into the basic biology of thick filament proteins and reinforce the idea that myosin binding proteins are dynamic regulators of the activation state of the thick filament that contribute to the speed and force of myosin driven muscle contraction. Additional work is still needed to determine the mechanisms by which individual mutations induce hypertrophic phenotypes. PMID:21415409

  15. [Identification of a HPGD mutation in three families affected with primary hypertrophic osteoarthropathy].

    PubMed

    Zhang, Wanying; Wang, Tao; Huang, Shuaiwu; Zhao, Xiuli

    2018-04-10

    To detect mutation of HPGD gene among three pedigrees affected with primary hypertrophic osteoarthropathy (PHO) by DNA sequencing and high-resolution melting (HRM) analysis. Genomic DNA was extracted from peripheral blood samples collected from the pedigrees. PCR and direct sequencing were carried out to identify potential mutations of the HPGD gene. Amplicons containing the mutation spot were generated by nested PCR. The products were then subjected to HRM analysis using the HR-1 instrument. Direct sequencing was carried out in family members and healthy individuals to confirm the result of HRM analysis. A homozygous mutation c.310_311delCT was detected in 2 affected probands, while a heterozygous mutation c.310_311delCT was detected in the third proband. HRM analysis of the fragments encompassing HPGD exon 3 showed 3 curve patterns representing three different genotypes, i.e., the wild type, the c.310_311delCT homozygote, and the c.310_311delCT heterozygote. Result of DNA sequencing was consistent with that of the HRM analysis and phenotype of the subjects. The c.310_311delCT mutation may be the most prevalent mutation among Chinese population. HRM analysis has provided an optimized method for genetic testing of HPGD mutation for its simplicity, rapid turnover and high sensitivity.

  16. Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics.

    PubMed

    Cheng, Wei; Tian, Jing; Burgunder, Jean-Marc; Hunziker, Walter; Eng, How-Lung

    2014-01-01

    Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1). Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita.

  17. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development.

    PubMed

    Ortega-Molina, Ana; Boss, Isaac W; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A; Gascoyne, Randy D; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M; Wendel, Hans-Guido

    2015-10-01

    The gene encoding the lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma and diffuse large B cell lymphoma; however, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center involution and impedes B cell differentiation and class switch recombination. Integrative genomic analyses indicate that KMT2D affects methylation of lysine 4 on histone H3 (H3K4) and expression of a set of genes, including those in the CD40, JAK-STAT, Toll-like receptor and B cell receptor signaling pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3 and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell-activating pathways.

  18. Mutations in the inositol polyphosphate-5-phosphatase E gene link phosphatidyl inositol signaling to the ciliopathies

    PubMed Central

    Bielas, Stephanie L.; Silhavy, Jennifer L.; Brancati, Francesco; Kisseleva, Marina V.; Al-Gazali, Lihadh; Sztriha, Laszlo; Bayoumi, Riad A.; Zaki, Maha S.; Abdel-Aleem, Alice; Rosti, Ozgur; Kayserili, Hulya; Swistun, Dominika; Scott, Lesley C.; Bertini, Enrico; Boltshauser, Eugen; Fazzi, Elisa; Travaglini, Lorena; Field, Seth J.; Gayral, Stephanie; Jacoby, Monique; Schurmans, Stephane; Dallapiccola, Bruno; Majerus, Philip W.; Valente, Enza Maria; Gleeson, Joseph G.

    2009-01-01

    Phosphotidylinositol (PtdIns) signaling is tightly regulated, both spatially and temporally, by subcellularly localized PtdIns kinases and phosphatases that dynamically alter downstream signaling events 1. Joubert Syndrome (JS) characterized by a specific midbrain-hindbrain malformation (“molar tooth sign”) and variably associated retinal dystrophy, nephronophthisis, liver fibrosis and polydactyly 2, and is included in the newly emerging group of “ciliopathies”. In patients linking to JBTS1, we identified mutations in the INPP5E gene, encoding inositol polyphosphate-5-phosphatase E, which hydrolyzes the 5-phosphate of PtdIns(3,4,5)P3 and PtdIns(4,5)P2. Mutations clustered in the phosphatase domain and impaired 5-phosphatase activity, resulting in altered cellular PtdIns ratios. INPP5E localized to cilia in major organs affected in JS, and mutations promoted premature destabilization of cilia in response to stimulation. Thus, these data links PtdIns signaling to the primary cilium, a cellular structure that is becoming increasingly appreciated for its role in mediating cell signals and neuronal function. PMID:19668216

  19. Myotonia Congenita-Associated Mutations in Chloride Channel-1 Affect Zebrafish Body Wave Swimming Kinematics

    PubMed Central

    Cheng, Wei; Tian, Jing; Burgunder, Jean-Marc; Hunziker, Walter; Eng, How-Lung

    2014-01-01

    Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1). Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita. PMID:25083883

  20. Whole-genome landscapes of major melanoma subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayward, Nicholas K.; Wilmott, James S.; Waddell, Nicola

    Melanoma of the skin is a common cancer only in Europeans, whereas it arises in internal body surfaces (mucosal sites) and on the hands and feet (acral sites) in people throughout the world. We report analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma. The heavily mutated landscape of coding and non-coding mutations in cutaneous melanoma resolved novel signatures of mutagenesis attributable to ultraviolet radiation. But, acral and mucosal melanomas were dominated by structural changes and mutation signatures of unknown aetiology, not previously identified in melanoma. The number of genes affected by recurrent mutations disrupting non-coding sequencesmore » was similar to that affected by recurrent mutations to coding sequences. Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in mucosal melanoma. Mutations affecting the TERT promoter were the most frequent of all; however, neither they nor ATRX mutations, which correlate with alternative telomere lengthening, were associated with greater telomere length. In most cases, melanomas had potentially actionable mutations, most in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways. The whole-genome mutation landscape of melanoma reveals diverse carcinogenic processes across its subtypes, some unrelated to sun exposure, and extends potential involvement of the non-coding genome in its pathogenesis.« less

  1. Whole-genome landscapes of major melanoma subtypes

    DOE PAGES

    Hayward, Nicholas K.; Wilmott, James S.; Waddell, Nicola; ...

    2017-05-03

    Melanoma of the skin is a common cancer only in Europeans, whereas it arises in internal body surfaces (mucosal sites) and on the hands and feet (acral sites) in people throughout the world. We report analysis of whole-genome sequences from cutaneous, acral and mucosal subtypes of melanoma. The heavily mutated landscape of coding and non-coding mutations in cutaneous melanoma resolved novel signatures of mutagenesis attributable to ultraviolet radiation. But, acral and mucosal melanomas were dominated by structural changes and mutation signatures of unknown aetiology, not previously identified in melanoma. The number of genes affected by recurrent mutations disrupting non-coding sequencesmore » was similar to that affected by recurrent mutations to coding sequences. Significantly mutated genes included BRAF, CDKN2A, NRAS and TP53 in cutaneous melanoma, BRAF, NRAS and NF1 in acral melanoma and SF3B1 in mucosal melanoma. Mutations affecting the TERT promoter were the most frequent of all; however, neither they nor ATRX mutations, which correlate with alternative telomere lengthening, were associated with greater telomere length. In most cases, melanomas had potentially actionable mutations, most in components of the mitogen-activated protein kinase and phosphoinositol kinase pathways. The whole-genome mutation landscape of melanoma reveals diverse carcinogenic processes across its subtypes, some unrelated to sun exposure, and extends potential involvement of the non-coding genome in its pathogenesis.« less

  2. A Mutation of COX6A1 Causes a Recessive Axonal or Mixed Form of Charcot-Marie-Tooth Disease

    PubMed Central

    Tamiya, Gen; Makino, Satoshi; Hayashi, Makiko; Abe, Akiko; Numakura, Chikahiko; Ueki, Masao; Tanaka, Atsushi; Ito, Chizuru; Toshimori, Kiyotaka; Ogawa, Nobuhiro; Terashima, Tomoya; Maegawa, Hiroshi; Yanagisawa, Daijiro; Tooyama, Ikuo; Tada, Masayoshi; Onodera, Osamu; Hayasaka, Kiyoshi

    2014-01-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy characterized by clinical and genetic heterogeneity. Although more than 30 loci harboring CMT-causing mutations have been identified, many other genes still remain to be discovered for many affected individuals. For two consanguineous families with CMT (axonal and mixed phenotypes), a parametric linkage analysis using genome-wide SNP chip identified a 4.3 Mb region on 12q24 showing a maximum multipoint LOD score of 4.23. Subsequent whole-genome sequencing study in one of the probands, followed by mutation screening in the two families, revealed a disease-specific 5 bp deletion (c.247−10_247−6delCACTC) in a splicing element (pyrimidine tract) of intron 2 adjacent to the third exon of cytochrome c oxidase subunit VIa polypeptide 1 (COX6A1), which is a component of mitochondrial respiratory complex IV (cytochrome c oxidase [COX]), within the autozygous linkage region. Functional analysis showed that expression of COX6A1 in peripheral white blood cells from the affected individuals and COX activity in their EB-virus-transformed lymphoblastoid cell lines were significantly reduced. In addition, Cox6a1-null mice showed significantly reduced COX activity and neurogenic muscular atrophy leading to a difficulty in walking. Those data indicated that COX6A1 mutation causes the autosomal-recessive axonal or mixed CMT. PMID:25152455

  3. HCM and DCM cardiomyopathy-linked α-tropomyosin mutations influence off-state stability and crossbridge interaction on thin filaments.

    PubMed

    Farman, Gerrie P; Rynkiewicz, Michael J; Orzechowski, Marek; Lehman, William; Moore, Jeffrey R

    2018-06-01

    Calcium regulation of cardiac muscle contraction is controlled by the thin-filament proteins troponin and tropomyosin bound to actin. In the absence of calcium, troponin-tropomyosin inhibits myosin-interactions on actin and induces muscle relaxation, whereas the addition of calcium relieves the inhibitory constraint to initiate contraction. Many mutations in thin filament proteins linked to cardiomyopathy appear to disrupt this regulatory switching. Here, we tested perturbations caused by mutant tropomyosins (E40K, DCM; and E62Q, HCM) on intra-filament interactions affecting acto-myosin interactions including those induced further by myosin association. Comparison of wild-type and mutant human α-tropomyosin (Tpm1.1) behavior was carried out using in vitro motility assays and molecular dynamics simulations. Our results show that E62Q tropomyosin destabilizes thin filament off-state function by increasing calcium-sensitivity, but without apparent affect on global tropomyosin structure by modifying coiled-coil rigidity. In contrast, the E40K mutant tropomyosin appears to stabilize the off-state, demonstrates increased tropomyosin flexibility, while also decreasing calcium-sensitivity. In addition, the E40K mutation reduces thin filament velocity at low myosin concentration while the E62Q mutant tropomyosin increases velocity. Corresponding molecular dynamics simulations indicate specific residue interactions that are likely to redefine underlying molecular regulatory mechanisms, which we propose explain the altered contractility evoked by the disease-causing mutations. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Somatic mutations in cancer: Stochastic versus predictable.

    PubMed

    Gold, Barry

    2017-02-01

    The origins of human cancers remain unclear except for a limited number of potent environmental mutagens, such as tobacco and UV light, and in rare cases, familial germ line mutations that affect tumor suppressor genes or oncogenes. A significant component of cancer etiology has been deemed stochastic and correlated with the number of stem cells in a tissue, the number of times the stem cells divide and a low incidence of random DNA polymerase errors that occur during each cell division. While somatic mutations occur during each round of DNA replication, mutations in cancer driver genes are not stochastic. Out of a total of 2843 codons, 1031 can be changed to stop codons by a single base substitution in the tumor suppressor APC gene, which is mutated in 76% of colorectal cancers (CRC). However, the nonsense mutations, which comprise 65% of all the APC driver mutations in CRC, are not random: 43% occur at Arg CGA codons, although they represent <3% of the codons. In TP53, CGA codons comprise <3% of the total 393 codons but they account for 72% and 39% of the mutations in CRC and ovarian cancer OVC, respectively. This mutation pattern is consistent with the kinetically slow, but not stochastic, hydrolytic deamination of 5-methylcytosine residues at specific methylated CpG sites to afford T·G mismatches that lead to C→T transitions and stop codons at CGA. Analysis of nonsense mutations in CRC, OVC and a number of other cancers indicates the need to expand the predictable risk factors for cancer to include, in addition to random polymerase errors, the methylation status of gene body CGA codons in tumor suppressor genes. Copyright © 2017. Published by Elsevier B.V.

  5. A novel mutation MT-COIII m.9267G>C and MT-COI m.5913G>A mutation in mitochondrial genes in a Tunisian family with maternally inherited diabetes and deafness (MIDD) associated with severe nephropathy.

    PubMed

    Tabebi, Mouna; Mkaouar-Rebai, Emna; Mnif, Mouna; Kallabi, Fakhri; Ben Mahmoud, Afif; Ben Saad, Wafa; Charfi, Nadia; Keskes-Ammar, Leila; Kamoun, Hassen; Abid, Mohamed; Fakhfakh, Faiza

    2015-04-10

    Mitochondrial diabetes (MD) is a heterogeneous disorder characterized by a chronic hyperglycemia, maternal transmission and its association with a bilateral hearing impairment. Several studies reported mutations in mitochondrial genes as potentially pathogenic for diabetes, since mitochondrial oxidative phosphorylation plays an important role in glucose-stimulated insulin secretion from beta cells. In the present report, we studied a Tunisian family with mitochondrial diabetes (MD) and deafness associated with nephropathy. The mutational analysis screening revealed the presence of a novel heteroplasmic mutation m.9276G>C in the mitochondrial COIII gene, detected in mtDNA extracted from leukocytes of a mother and her two daughters indicating that this mutation is maternally transmitted and suggest its implication in the observed phenotype. Bioinformatic tools showed that m.9267G>C mutation (p.A21P) is « deleterious » and it can modify the function and the stability of the MT-COIII protein by affecting the assembly of mitochondrial COX subunits and the translocation of protons then reducing the activity of the respective OXPHOS complexes of ATP synthesis. The nonsynonymous mutation (p.A21P) has not been reported before, it is the first mutation described in the COXIII gene which is related to insulin dependent mitochondrial diabetes and deafness and could be specific to the Tunisian population. The m.9267G>C mutation was present with a nonsynonymous inherited mitochondrial homoplasmic variation MT-COI m.5913 G>A (D4N) responsible of high blood pressure, a clinical feature detected in all explored patients. Copyright © 2015. Published by Elsevier Inc.

  6. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data

    NASA Astrophysics Data System (ADS)

    Sinha, Subarna; Thomas, Daniel; Chan, Steven; Gao, Yang; Brunen, Diede; Torabi, Damoun; Reinisch, Andreas; Hernandez, David; Chan, Andy; Rankin, Erinn B.; Bernards, Rene; Majeti, Ravindra; Dill, David L.

    2017-05-01

    Two genes are synthetically lethal (SL) when defects in both are lethal to a cell but a single defect is non-lethal. SL partners of cancer mutations are of great interest as pharmacological targets; however, identifying them by cell line-based methods is challenging. Here we develop MiSL (Mining Synthetic Lethals), an algorithm that mines pan-cancer human primary tumour data to identify mutation-specific SL partners for specific cancers. We apply MiSL to 12 different cancers and predict 145,891 SL partners for 3,120 mutations, including known mutation-specific SL partners. Comparisons with functional screens show that MiSL predictions are enriched for SLs in multiple cancers. We extensively validate a SL interaction identified by MiSL between the IDH1 mutation and ACACA in leukaemia using gene targeting and patient-derived xenografts. Furthermore, we apply MiSL to pinpoint genetic biomarkers for drug sensitivity. These results demonstrate that MiSL can accelerate precision oncology by identifying mutation-specific targets and biomarkers.

  7. Null missense ABCR (ABCA4) mutations in a family with stargardt disease and retinitis pigmentosa.

    PubMed

    Shroyer, N F; Lewis, R A; Yatsenko, A N; Lupski, J R

    2001-11-01

    To determine the type of ABCR mutations that segregate in a family that manifests both Stargardt disease (STGD) and retinitis pigmentosa (RP), and the functional consequences of the underlying mutations. Direct sequencing of all 50 exons and flanking intronic regions of ABCR was performed for the STGD- and RP-affected relatives. RNA hybridization, Western blot analysis, and azido-adenosine triphosphate (ATP) labeling was used to determine the effect of disease-associated ABCR mutations in an in vitro assay system. Compound heterozygous missense mutations were identified in patients with STGD and RP. STGD-affected individual AR682-03 was compound heterozygous for the mutation 2588G-->C and a complex allele, [W1408R; R1640W]. RP-affected individuals AR682-04 and-05 were compound heterozygous for the complex allele [W1408R; R1640W] and the missense mutation V767D. Functional analysis of the mutation V767D by Western blot and ATP binding revealed a severe reduction in protein expression. In vitro analysis of ABCR protein with the mutations W1408R and R1640W showed a moderate effect of these individual mutations on expression and ATP-binding; the complex allele [W1408R; R1640W] caused a severe reduction in protein expression. These data reveal that missense ABCR mutations may be associated with RP. Functional analysis reveals that the RP-associated missense ABCR mutations are likely to be functionally null. These studies of the complex allele W1408R; R1640W suggest a synergistic effect of the individual mutations. These data are congruent with a model in which RP is associated with homozygous null mutations and with the notion that severity of retinal disease is inversely related to residual ABCR activity.

  8. [Study of a family with epidermolysis bullosa simplex resulting from a novel mutation of KRT14 gene].

    PubMed

    Meng, Lanlan; Du, Juan; Li, Wen; Lu, Guangxiu; Tan, Yueqiu

    2017-08-10

    To determine the molecular etiology for a Chinese pedigree affected with epidermolysis bullosa simplex (EBS). Target region sequencing using a hereditary epidermolysis bullosa capture array combined with Sanger sequencing and bioinformatics analysis were used. Mutation taster, PolyPhen-2, Provean, and SIFT software and NCBI online were employed to assess the pathogenicity and conservation of detected mutations. One hundred healthy unrelated individuals were used as controls. Target region sequencing showed that the proband has carried a unreported heterozygous c.1234A>G (p.Ile412Val) mutation of the KRT14 gene, which was confirmed by Sanger sequencing in other 8 affected individuals but not among healthy members of the pedigree. Bioinformatics analysis indicated that the mutation is highly pathogenic. Remarkably, 3 members of the family (2 affected and 1 unaffected) have carried a heterozygous c.1237G>A (p.Ala413Thr) mutation of the KRT14 gene, which was collected in Human Gene Mutation Database (HGMD). Bioinformatics analysis indicated that the mutation may not be pathogenic. Both mutations were not detected among the 100 healthy controls. The novel c.1234A>G(p.Ile412Val) mutation of the KRT14 gene is probably responsible for the disease, while c.1237G>A (p.Ala413Thr) mutation of KRT14 gene may be a polymorphism. Compared with Sanger sequencing, target region capture sequencing is more efficient and can significantly reduce the cost of genetic testing for EBS.

  9. Insight into the substrate specificity change caused by the Y227H mutation of α-glucosidase III from the European honeybee (Apis mellifera) through molecular dynamics simulations.

    PubMed

    Na Ayutthaya, Pratchaya Pramoj; Chanchao, Chanpen; Chunsrivirot, Surasak

    2018-01-01

    Honey from the European honeybee, Apis mellifera, is produced by α-glucosidases (HBGases) and is widely used in food, pharmaceutical, and cosmetic industries. Categorized by their substrate specificities, HBGases have three isoforms: HBGase I, II and III. Previous experimental investigations showed that wild-type HBGase III from Apis mellifera (WT) preferred sucrose to maltose as a substrate, while the Y227H mutant (MT) preferred maltose to sucrose. This mutant can potentially be used for malt hydrolysis because it can efficiently hydrolyze maltose. In this work, to elucidate important factors contributing to substrate specificity of this enzyme and gain insight into how the Y227H mutation causes substrate specificity change, WT and MT homology models were constructed, and sucrose/maltose was docked into active sites of the WT and MT. AMBER14 was employed to perform three independent molecular dynamics runs for these four complexes. Based on the relative binding free energies calculated by the MM-GBSA method, sucrose is better than maltose for WT binding, while maltose is better than sucrose for MT binding. These rankings support the experimentally observed substrate specificity that WT preferred sucrose to maltose as a substrate, while MT preferred maltose to sucrose, suggesting the importance of binding affinity for substrate specificity. We also found that the Y227H mutation caused changes in the proximities between the atoms necessary for sucrose/maltose hydrolysis that may affect enzyme efficiency in the hydrolysis of sucrose/maltose. Moreover, the per-residue binding free energy decomposition results show that Y227/H227 may be a key residue for preference binding of sucrose/maltose in the WT/MT active site. Our study provides important and novel insight into the binding of sucrose/maltose in the active site of Apis mellifera HBGase III and into how the Y227H mutation leads to the substrate specificity change at the molecular level. This knowledge could be beneficial in the design of this enzyme for increased production of desired products.

  10. Analytical validation of BRAF mutation testing from circulating free DNA using the amplification refractory mutation testing system.

    PubMed

    Aung, Kyaw L; Donald, Emma; Ellison, Gillian; Bujac, Sarah; Fletcher, Lynn; Cantarini, Mireille; Brady, Ged; Orr, Maria; Clack, Glen; Ranson, Malcolm; Dive, Caroline; Hughes, Andrew

    2014-05-01

    BRAF mutation testing from circulating free DNA (cfDNA) using the amplification refractory mutation testing system (ARMS) holds potential as a surrogate for tumor mutation testing. Robust assay validation is needed to establish the optimal clinical matrix for measurement and cfDNA-specific mutation calling criteria. Plasma- and serum-derived cfDNA samples from 221 advanced melanoma patients were analyzed for BRAF c.1799T>A (p.V600E) mutation using ARMS in two stages in a blinded fashion. cfDNA-specific mutation calling criteria were defined in stage 1 and validated in stage 2. cfDNA concentrations in serum and plasma, and the sensitivities and specificities of BRAF mutation detection in these two clinical matrices were compared. Sensitivity of BRAF c.1799T>A (p.V600E) mutation detection in cfDNA was increased by using mutation calling criteria optimized for cfDNA (these criteria were adjusted from those used for archival tumor biopsies) without compromising specificity. Sensitivity of BRAF mutation detection in serum was 44% (95% CI, 35% to 53%) and in plasma 52% (95% CI, 43% to 61%). Specificity was 96% (95% CI, 90% to 99%) in both matrices. Serum contains significantly higher total cfDNA than plasma, whereas the proportion of tumor-derived mutant DNA was significantly higher in plasma. Using mutation calling criteria optimized for cfDNA improves sensitivity of BRAF c.1799T>A (p.V600E) mutation detection. The proportion of tumor-derived cfDNA in plasma was significantly higher than in serum. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  11. Mutations in TUBB8 and Human Oocyte Meiotic Arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Ruizhi; Sang, Qing; Kuang, Yanping

    BACKGROUND: We present that human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to the arrest of human oocyte maturation are unknown. METHODS: We sequenced the exomes of five members of a four-generation family, three of whom had infertility due to oocyte meiosis I arrest. We performed Sanger sequencing of a candidate gene, TUBB8, in DNA samples from these members, additional family members, and members of 23 other affected families. The expression of TUBB8 and all other β-tubulin isotypes was assessed in human oocytes, earlymore » embryos, sperm cells, and several somatic tissues by means of a quantitative reverse- transcriptase-polymerase-chain-reaction assay. We evaluated the effect of the TUBB8 mutations on the assembly of the heterodimer consisting of one α-tubulin polypeptide and one β-tubulin polypeptide (α/β-tubulin heterodimer) in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes. RESULTSL: We identified seven mutations in the primate-specific gene TUBB8 that were responsible for oocyte meiosis I arrest in 7 of the 24 families. TUBB8 expression is unique to oocytes and the early embryo, in which this gene accounts for almost all the expressed β-tubulin. The mutations affect chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, disrupt microtubule behavior on expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle-assembly defects and maturation arrest on expression in mouse and human oocytes. CONCLUSIONS: Lastly, TUBB8 mutations have dominant-negative effects that disrupt microtubule behavior and oocyte meiotic spindle assembly and maturation, causing female infertility.« less

  12. Mutations in TUBB8 and Human Oocyte Meiotic Arrest

    DOE PAGES

    Feng, Ruizhi; Sang, Qing; Kuang, Yanping; ...

    2016-01-21

    BACKGROUND: We present that human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to the arrest of human oocyte maturation are unknown. METHODS: We sequenced the exomes of five members of a four-generation family, three of whom had infertility due to oocyte meiosis I arrest. We performed Sanger sequencing of a candidate gene, TUBB8, in DNA samples from these members, additional family members, and members of 23 other affected families. The expression of TUBB8 and all other β-tubulin isotypes was assessed in human oocytes, earlymore » embryos, sperm cells, and several somatic tissues by means of a quantitative reverse- transcriptase-polymerase-chain-reaction assay. We evaluated the effect of the TUBB8 mutations on the assembly of the heterodimer consisting of one α-tubulin polypeptide and one β-tubulin polypeptide (α/β-tubulin heterodimer) in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes. RESULTSL: We identified seven mutations in the primate-specific gene TUBB8 that were responsible for oocyte meiosis I arrest in 7 of the 24 families. TUBB8 expression is unique to oocytes and the early embryo, in which this gene accounts for almost all the expressed β-tubulin. The mutations affect chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, disrupt microtubule behavior on expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle-assembly defects and maturation arrest on expression in mouse and human oocytes. CONCLUSIONS: Lastly, TUBB8 mutations have dominant-negative effects that disrupt microtubule behavior and oocyte meiotic spindle assembly and maturation, causing female infertility.« less

  13. Mutational Analysis of Influenza A Virus Nucleoprotein: Identification of Mutations That Affect RNA Replication

    PubMed Central

    Mena, Ignacio; Jambrina, Enrique; Albo, Carmen; Perales, Beatriz; Ortín, Juan; Arrese, Marta; Vallejo, Dolores; Portela, Agustín

    1999-01-01

    The influenza A virus nucleoprotein (NP) is a multifunctional polypeptide which plays a pivotal role in virus replication. To get information on the domains and specific residues involved in the different NP activities, we describe here the preparation and characterization of 20 influenza A virus mutant NPs. The mutations, mostly single-amino-acid substitutions, were introduced in a cDNA copy of the A/Victoria/3/75 NP gene and, in most cases, affected residues located in regions that were highly conserved across the NPs of influenza A, B, and C viruses. The mutant NPs were characterized (i) in vivo (cell culture) by analyzing their intracellular localization and their functionality in replication, transcription, and expression of model RNA templates; and (ii) in vitro by analyzing their RNA-binding and sedimentation properties. The results obtained allowed us to identify both a mutant protein that accumulated in the cytoplasm and mutations that altered the functionality and/or the oligomerization state of the NP polypeptide. Among the mutations that reduced the NP capability to express chloramphenicol acetyltransferase protein from a model viral RNA (vRNA) template, some displayed a temperature-sensitive phenotype. Interestingly, four mutant NPs, which showed a reduced functionality in synthesizing cRNA molecules from a vRNA template, were fully competent to reconstitute complementary ribonucleoproteins (cRNPs) capable of synthesizing vRNAs, which in turn yielded mRNA molecules. Based on the phenotype of these mutants and on previously published observations, it is proposed that these mutant NPs have a reduced capability to interact with the polymerase complex and that this NP-polymerase interaction is responsible for making vRNPs switch from mRNA to cRNA synthesis. PMID:9882320

  14. Control of Glucose- and NaCl-Induced Biofilm Formation by rbf in Staphylococcus aureus

    PubMed Central

    Lim, Yong; Jana, Malabendu; Luong, Thanh T.; Lee, Chia Y.

    2004-01-01

    Both Staphylococcus aureus and S. epidermidis are capable of forming biofilm on biomaterials. We used Tn917 mutagenesis to identify a gene, rbf, affecting biofilm formation in S. aureus NCTC8325-4. Sequencing revealed that Rbf contained a consensus region signature of the AraC/XylS family of regulators, suggesting that Rbf is a transcriptional regulator. Insertional duplication inactivation of the rbf gene confirmed that the gene was involved in biofilm formation on polystyrene and glass. Phenotypic analysis of the wild type and the mutant suggested that the rbf gene mediates the biofilm formation of S. aureus at the multicellular aggregation stage rather than at initial attachment. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis demonstrated that the mutation resulted in the loss of an ∼190-kDa protein. Biofilm production by the mutant could be restored by complementation with a 2.5-kb DNA fragment containing the rbf gene. The rbf-specific mutation affected the induction of biofilm formation by glucose and a high concentration of NaCl but not by ethanol. The mutation did not affect the transcription of the ica genes previously shown to be required for biofilm formation. Taken together, our results suggest that the rbf gene is involved in the regulation of the multicellular aggregation step of S. aureus biofilm formation in response to glucose and salt and that this regulation may be mediated through the 190-kDa protein. PMID:14729698

  15. Muscle-specific accumulation of Drosophila myosin heavy chains: a splicing mutation in an alternative exon results in an isoform substitution.

    PubMed Central

    Kronert, W A; Edwards, K A; Roche, E S; Wells, L; Bernstein, S I

    1991-01-01

    We show that the molecular lesions in two homozygousviable mutants of the Drosophila muscle myosin heavy chain gene affect an alternative exon (exon 9a) which encodes a portion of the myosin head that is highly conserved among both cytoplasmic and muscle myosins of all organisms. In situ hybridization and Northern blotting analysis in wild-type organisms indicates that exon 9a is used in indirect flight muscles whereas both exons 9a and 9b are utilized in jump muscles. Alternative exons 9b and 9c are used in other larval and adult muscles. One of the mutations in exon 9a is a nonsense allele that greatly reduces myosin RNA stability. It prevents thick filament accumulation in indirect flight muscles and severely reduces the number of thick filaments in a subset of cells of the jump muscles. The second mutation affects the 5' splice site of exon 9a. This results in production of an aberrantly spliced transcript in indirect flight muscles, which prevents thick filament accumulation. Jump muscles of this mutant substitute exon 9b for exon 9a and consequently have normal levels of thick filaments in this muscle type. This isoform substitution does not obviously affect the ultrastructure or function of the jump muscle. Analysis of this mutant illustrates that indirect flight muscles and jump muscles utilize different mechanisms for alternative RNA splicing. Images PMID:1907912

  16. Recessive HYDIN Mutations Cause Primary Ciliary Dyskinesia without Randomization of Left-Right Body Asymmetry

    PubMed Central

    Olbrich, Heike; Schmidts, Miriam; Werner, Claudius; Onoufriadis, Alexandros; Loges, Niki T.; Raidt, Johanna; Banki, Nora Fanni; Shoemark, Amelia; Burgoyne, Tom; Al Turki, Saeed; Hurles, Matthew E.; Köhler, Gabriele; Schroeder, Josef; Nürnberg, Gudrun; Nürnberg, Peter; Chung, Eddie M.K.; Reinhardt, Richard; Marthin, June K.; Nielsen, Kim G.; Mitchison, Hannah M.; Omran, Heymut

    2012-01-01

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder characterized by defective cilia and flagella motility. Chronic destructive-airway disease is caused by abnormal respiratory-tract mucociliary clearance. Abnormal propulsion of sperm flagella contributes to male infertility. Genetic defects in most individuals affected by PCD cause randomization of left-right body asymmetry; approximately half show situs inversus or situs ambiguous. Almost 70 years after the hy3 mouse possessing Hydin mutations was described as a recessive hydrocephalus model, we report HYDIN mutations in PCD-affected persons without hydrocephalus. By homozygosity mapping, we identified a PCD-associated locus, chromosomal region 16q21-q23, which contains HYDIN. However, a nearly identical 360 kb paralogous segment (HYDIN2) in chromosomal region 1q21.1 complicated mutational analysis. In three affected German siblings linked to HYDIN, we identified homozygous c.3985G>T mutations that affect an evolutionary conserved splice acceptor site and that subsequently cause aberrantly spliced transcripts predicting premature protein termination in respiratory cells. Parallel whole-exome sequencing identified a homozygous nonsense HYDIN mutation, c.922A>T (p.Lys307∗), in six individuals from three Faroe Island PCD-affected families that all carried an 8.8 Mb shared haplotype across HYDIN, indicating an ancestral founder mutation in this isolated population. We demonstrate by electron microscopy tomography that, consistent with the effects of loss-of-function mutations, HYDIN mutant respiratory cilia lack the C2b projection of the central pair (CP) apparatus; similar findings were reported in Hydin-deficient Chlamydomonas and mice. High-speed videomicroscopy demonstrated markedly reduced beating amplitudes of respiratory cilia and stiff sperm flagella. Like the hy3 mouse model, all nine PCD-affected persons had normal body composition because nodal cilia function is apparently not dependent on the function of the CP apparatus. PMID:23022101

  17. A host-specific biological control of grape crown gall by Agrobacterium vitis strain F2/5: its regulation and population dynamics.

    PubMed

    Kaewnum, Supaporn; Zheng, Desen; Reid, Cheryl L; Johnson, Kameka L; Gee, Jodi C; Burr, Thomas J

    2013-05-01

    Nontumorigenic Agrobacterium vitis strain F2/5 is able to prevent crown gall caused by tumorigenic A. vitis on grape but not on other plant species such as tobacco. Mutations in a quorum-sensing transcription factor, aviR, and in caseinolytic protease (clp) component genes clpA and clpP1 resulted in reduced or loss of biological control. All mutants were complemented; however, restoration of biological control by complemented clpA and clpP1 mutants was dependent on the copy number of vector that was used as well as timing of application of the complemented mutants to grape wounds in relation to inoculation with pathogen. Mutations in other quorum-sensing and clp genes and in a gene associated with polyketide synthesis did not affect biological control. It was determined that, although F2/5 inhibits transformation by tumorigenic A. vitis strains on grape, it does not affect growth of the pathogen in wounded grape tissue over time.

  18. Mouse models of mitochondrial DNA defects and their relevance for human disease

    PubMed Central

    Tyynismaa, Henna; Suomalainen, Anu

    2009-01-01

    Qualitative and quantitative changes in mitochondrial DNA (mtDNA) have been shown to be common causes of inherited neurodegenerative and muscular diseases, and have also been implicated in ageing. These diseases can be caused by primary mtDNA mutations, or by defects in nuclear-encoded mtDNA maintenance proteins that cause secondary mtDNA mutagenesis or instability. Furthermore, it has been proposed that mtDNA copy number affects cellular tolerance to environmental stress. However, the mechanisms that regulate mtDNA copy number and the tissue-specific consequences of mtDNA mutations are largely unknown. As post-mitotic tissues differ greatly from proliferating cultured cells in their need for mtDNA maintenance, and as most mitochondrial diseases affect post-mitotic cell types, the mouse is an important model in which to study mtDNA defects. Here, we review recently developed mouse models, and their contribution to our knowledge of mtDNA maintenance and its role in disease. PMID:19148224

  19. Molecular dynamics simulations show how the FMRP Ile304Asn mutation destabilizes the KH2 domain structure and affects its function.

    PubMed

    Di Marino, Daniele; Achsel, Tilmann; Lacoux, Caroline; Falconi, Mattia; Bagni, Claudia

    2014-01-01

    Mutations or deletions of FMRP, involved in the regulation of mRNA metabolism in brain, lead to the Fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. A severe manifestation of the disease has been associated with the Ile304Asn mutation, located on the KH2 domain of the protein. Several hypotheses have been proposed to explain the possible molecular mechanism responsible for the drastic effect of this mutation in humans. Here, we performed a molecular dynamics simulation and show that the Ile304Asn mutation destabilizes the hydrophobic core producing a partial unfolding of two α-helices and a displacement of a third one. The affected regions show increased residue flexibility and motion. Molecular docking analysis revealed strongly reduced binding to a model single-stranded nucleic acid in agreement with known data that the two partially unfolded helices form the RNA-binding surface. The third helix, which we show here to be also affected, is involved in the PAK1 protein interaction. These two functional binding sites on the KH2 domain do not overlap spatially, and therefore, they can simultaneously bind their targets. Since the Ile304Asn mutation affects both binding sites, this may justify the severe clinical manifestation observed in the patient in which both mRNA metabolism activity and cytoskeleton remodeling would be affected.

  20. [Mutation analysis for a pedigree affected with keratitis-ichthyosis-deafness syndrome].

    PubMed

    Li, Lulu; Li, Yuan; Lin, Wei; Zhao, Xiuli

    2017-10-10

    To identify mutation of GJB2 gene and provide genetic counseling for a family affected with keratitis-ichthyosis-deafness (KID) syndrome. Genomic DNA was extracted from peripheral blood samples with a standard phenol-chloroform method. PCR and Sanger sequencing were used to analyze potential mutation in the proband. Suspected mutation was verified with a PCR-high-resolution melting (PCR-HRM) method. T-clone sequencing was applied to determine the parental origin of the mutation. A heterozygous mutation, c.148G>A (p.Asp50Asn), which is located in the exon 1 of the GJB2 gene, was found in the proband. The results was confirmed by HRM analysis. Cloning sequencing suggested that the mutation was derived from the father's germline. The hot-spot mutation c.148G>A (p.Asp50Asn) in the GJB2 gene probably underlies the KID syndrome in this Chinese family. A PCR-HRM method has been established to rapidly detect common mutations associated with this disease.

  1. Progranulin mutation causes frontotemporal dementia in the Swedish Karolinska family.

    PubMed

    Chiang, Huei-Hsin; Rosvall, Lina; Brohede, Jesper; Axelman, Karin; Björk, Behnosh F; Nennesmo, Inger; Robins, Tiina; Graff, Caroline

    2008-11-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease characterized by cognitive impairment, language dysfunction, and/or changes in personality. Recently it has been shown that progranulin (GRN) mutations can cause FTD as well as other neurodegenerative phenotypes. DNA from 30 family members, of whom seven were diagnosed with FTD, in the Karolinska family was available for GRN sequencing. Fibroblast cell mRNA from one affected family member and six control individuals was available for relative quantitative real-time polymerase chain reaction to investigate the effect of the mutation. Furthermore, the cDNA of an affected individual was sequenced. Clinical and neuropathologic findings of a previously undescribed family branch are presented. A frameshift mutation in GRN (g.102delC) was detected in all affected family members and absent in four unaffected family members older than 70 years. Real-time polymerase chain reaction data showed an approximately 50% reduction of GRN fibroblast mRNA in an affected individual. The mutated mRNA transcripts were undetectable by cDNA sequencing. Segregation and RNA analyses showed that the g.102delC mutation, previously reported, causes FTD in the Karolinska family. Our findings add further support to the significance of GRN in FTD etiology and the presence of modifying genes, which emphasize the need for further studies into the mechanisms of clinical heterogeneity. However, the results already call for attention to the complexity of predictive genetic testing of GRN mutations.

  2. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells.

    PubMed

    Liang, Yang; Tebaldi, Toma; Rejeski, Kai; Joshi, Poorval; Stefani, Giovanni; Taylor, Ashley; Song, Yuanbin; Vasic, Radovan; Maziarz, Jamie; Balasubramanian, Kunthavai; Ardasheva, Anastasia; Ding, Alicia; Quattrone, Alessandro; Halene, Stephanie

    2018-06-01

    Recurrent mutations in the splicing factor SRSF2 are associated with poor clinical outcomes in myelodysplastic syndromes (MDS). Their high frequency suggests these mutations drive oncogenesis, yet the molecular explanation for this process is unclear. SRSF2 mutations could directly affect pre-mRNA splicing of a vital gene product; alternatively, a whole network of gene products could be affected. Here we determine how SRSF2 mutations globally affect RNA binding and splicing in vivo using HITS-CLIP. Remarkably, the majority of differential binding events do not translate into alternative splicing of exons with SRSF2 P95H binding sites. Alternative splice alterations appear to be dominated by indirect effects. Importantly, SRSF2 P95H targets are enriched in RNA processing and splicing genes, including several members of the hnRNP and SR families of proteins, suggesting a "splicing-cascade" phenotype wherein mutation of a single splicing factor leads to widespread modifications in multiple RNA processing and splicing proteins. We show that splice alteration of HNRNPA2B1, a splicing factor differentially bound and spliced by SRSF2 P95H , impairs hematopoietic differentiation in vivo. Our data suggests a model whereby the recurrent mutations in splicing factors set off a cascade of gene regulatory events that together affect hematopoiesis and drive cancer.

  3. Molecular analysis of the XLRS1 gene in 4 females affected with X-linked juvenile retinoschisis.

    PubMed

    Saleheen, Danish; Ali, Azam; Khanum, Shaheen; Ozair, Mohammad Z; Zaidi, Moazzam; Sethi, Muhammad J; Khan, Nadir; Frossard, Philippe

    2008-10-01

    X-linked juvenile retinoschisis (XLRS) is the most common cause of juvenile macular degeneration in males. Because of its X-linked mode of transmission, the disease is rare in females. In this article, we describe a mutation screen conducted on a family in which 4 female patients affected with XLRS presented with an unusually severe phenotype. DNA was extracted from peripheral blood, and the XLRS1 gene was amplified on DNA samples of all the available family members. The mutation screen was conducted by performing direct DNA sequencing using an MJ Research PTC-225 Peltier Thermal Cycler. A novel mutation, 588-593ins.C, was identified in exon 6 of the gene. The affected father was found to be heterozygous for the mutation, whereas all the female patients were homozygous for this mutation. The homozygosity of the mutation in the affected females led to severe phenotypes. The defective allele was expressed in infancy in 1 patient, whereas the disease manifested itself at variable ages in the other patients, reflecting a variation in the phenotype. This report describes a novel mutation in a family in which consanguinity has led to XLRS in 4 females. A variation in the phenotype of the disease is consistent with the published literature and suggests the involvement of genetic modifiers or environmental factors in influencing the clinical severity of the disease.

  4. NS1 Protein Mutation I64T Affects Interferon Responses and Virulence of Circulating H3N2 Human Influenza A Viruses

    PubMed Central

    DeDiego, Marta L.; Nogales, Aitor; Lambert-Emo, Kris; Martinez-Sobrido, Luis

    2016-01-01

    ABSTRACT Influenza NS1 protein is the main viral protein counteracting host innate immune responses, allowing the virus to efficiently replicate in interferon (IFN)-competent systems. In this study, we analyzed NS1 protein variability within influenza A (IAV) H3N2 viruses infecting humans during the 2012-2013 season. We also evaluated the impact of the mutations on the ability of NS1 proteins to inhibit host innate immune responses and general gene expression. Surprisingly, a previously unidentified mutation in the double-stranded RNA (dsRNA)-binding domain (I64T) decreased NS1-mediated general inhibition of host protein synthesis by decreasing its interaction with cleavage and polyadenylation specificity factor 30 (CPSF30), leading to increased innate immune responses after viral infection. Notably, a recombinant A/Puerto Rico/8/34 H1N1 virus encoding the H3N2 NS1-T64 protein was highly attenuated in mice, most likely because of its ability to induce higher antiviral IFN responses at early times after infection and because this virus is highly sensitive to the IFN-induced antiviral state. Interestingly, using peripheral blood mononuclear cells (PBMCs) collected at the acute visit (2 to 3 days after infection), we show that the subject infected with the NS1-T64 attenuated virus has diminished responses to interferon and to interferon induction, suggesting why this subject could be infected with this highly IFN-sensitive virus. These data demonstrate the importance of influenza virus surveillance in identifying new mutations in the NS1 protein, affecting its ability to inhibit innate immune responses and, as a consequence, the pathogenicity of the virus. IMPORTANCE Influenza A and B viruses are one of the most common causes of respiratory infections in humans, causing 1 billion infections and between 300,000 and 500,000 deaths annually. Influenza virus surveillance to identify new mutations in the NS1 protein affecting innate immune responses and, as a consequence, the pathogenicity of the circulating viruses is highly relevant. Here, we analyzed amino acid variability in the NS1 proteins from human seasonal viruses and the effect of the mutations in innate immune responses and virus pathogenesis. A previously unidentified mutation in the dsRNA-binding domain decreased NS1-mediated general inhibition of host protein synthesis and the interaction of the protein with CPSF30. This mutation led to increased innate immune responses after viral infection, augmented IFN sensitivity, and virus attenuation in mice. Interestingly, using PBMCs, the subject infected with the virus encoding the attenuating mutation induced decreased antiviral responses, suggesting why this subject could be infected with this virus. PMID:27535054

  5. NS1 Protein Mutation I64T Affects Interferon Responses and Virulence of Circulating H3N2 Human Influenza A Viruses.

    PubMed

    DeDiego, Marta L; Nogales, Aitor; Lambert-Emo, Kris; Martinez-Sobrido, Luis; Topham, David J

    2016-11-01

    Influenza NS1 protein is the main viral protein counteracting host innate immune responses, allowing the virus to efficiently replicate in interferon (IFN)-competent systems. In this study, we analyzed NS1 protein variability within influenza A (IAV) H3N2 viruses infecting humans during the 2012-2013 season. We also evaluated the impact of the mutations on the ability of NS1 proteins to inhibit host innate immune responses and general gene expression. Surprisingly, a previously unidentified mutation in the double-stranded RNA (dsRNA)-binding domain (I64T) decreased NS1-mediated general inhibition of host protein synthesis by decreasing its interaction with cleavage and polyadenylation specificity factor 30 (CPSF30), leading to increased innate immune responses after viral infection. Notably, a recombinant A/Puerto Rico/8/34 H1N1 virus encoding the H3N2 NS1-T64 protein was highly attenuated in mice, most likely because of its ability to induce higher antiviral IFN responses at early times after infection and because this virus is highly sensitive to the IFN-induced antiviral state. Interestingly, using peripheral blood mononuclear cells (PBMCs) collected at the acute visit (2 to 3 days after infection), we show that the subject infected with the NS1-T64 attenuated virus has diminished responses to interferon and to interferon induction, suggesting why this subject could be infected with this highly IFN-sensitive virus. These data demonstrate the importance of influenza virus surveillance in identifying new mutations in the NS1 protein, affecting its ability to inhibit innate immune responses and, as a consequence, the pathogenicity of the virus. Influenza A and B viruses are one of the most common causes of respiratory infections in humans, causing 1 billion infections and between 300,000 and 500,000 deaths annually. Influenza virus surveillance to identify new mutations in the NS1 protein affecting innate immune responses and, as a consequence, the pathogenicity of the circulating viruses is highly relevant. Here, we analyzed amino acid variability in the NS1 proteins from human seasonal viruses and the effect of the mutations in innate immune responses and virus pathogenesis. A previously unidentified mutation in the dsRNA-binding domain decreased NS1-mediated general inhibition of host protein synthesis and the interaction of the protein with CPSF30. This mutation led to increased innate immune responses after viral infection, augmented IFN sensitivity, and virus attenuation in mice. Interestingly, using PBMCs, the subject infected with the virus encoding the attenuating mutation induced decreased antiviral responses, suggesting why this subject could be infected with this virus. Copyright © 2016 DeDiego et al.

  6. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development.

    PubMed

    Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D

    2009-05-15

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.

  7. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development

    PubMed Central

    Covassin, L. D.; Siekmann, A. F.; Kacergis, M. C.; Laver, E.; Moore, J. C.; Villefranc, J. A.; Weinstein, B. M.; Lawson, N. D.

    2009-01-01

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development. PMID:19269286

  8. New and emerging targeted therapies for cystic fibrosis.

    PubMed

    Quon, Bradley S; Rowe, Steven M

    2016-03-30

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder that affects about 70,000 people worldwide. The clinical manifestations of the disease are caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The discovery of the CFTR gene in 1989 has led to a sophisticated understanding of how thousands of mutations in the CFTR gene affect the structure and function of the CFTR protein. Much progress has been made over the past decade with the development of orally bioavailable small molecule drugs that target defective CFTR proteins caused by specific mutations. Furthermore, there is considerable optimism about the prospect of gene replacement or editing therapies to correct all mutations in cystic fibrosis. The recent approvals of ivacaftor and lumacaftor represent the genesis of a new era of precision medicine in the treatment of this condition. These drugs are having a positive impact on the lives of people with cystic fibrosis and are potentially disease modifying. This review provides an update on advances in our understanding of the structure and function of the CFTR, with a focus on state of the art targeted drugs that are in development. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Effects of pollen availability and the mutation bias on the fixation of mutations disabling the male specificity of self-incompatibility.

    PubMed

    Tsuchimatsu, T; Shimizu, K K

    2013-10-01

    The evolution of self-compatibility (SC) by the loss of self-incompatibility (SI) is regarded as one of the most frequent transitions in flowering plants. SI systems are generally characterized by specific interactions between the male and female specificity genes encoded at the S-locus. Recent empirical studies have revealed that the evolution of SC is often driven by male SC-conferring mutations at the S-locus rather than by female mutations. In this study, using a forward simulation model, we compared the fixation probabilities of male vs. female SC-conferring mutations at the S-locus. We explicitly considered the effects of pollen availability in the population and bias in the occurrence of SC-conferring mutations on the male and female specificity genes. We found that male SC-conferring mutations were indeed more likely to be fixed than were female SC-conferring mutations in a wide range of parameters. This pattern was particularly strong when pollen availability was relatively high. Under such a condition, even if the occurrence of mutations was biased strongly towards the female specificity gene, male SC-conferring mutations were much more often fixed. Our study demonstrates that fixation probabilities of those two types of mutation vary strongly depending on ecological and genetic conditions, although both types result in the same evolutionary consequence-the loss of SI. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  10. Unusual phenotypic expression of an XLRS1 mutation in X-linked juvenile retinoschisis.

    PubMed

    Dodds, Jodi A; Srivastava, Anand K; Holden, Kenton R

    2006-04-01

    X-linked juvenile retinoschisis is a rare progressive vitreoretinal degenerative process that appears in early childhood, results in decreased visual acuity and blindness (if severe), and is caused by various mutations within the XLRS1 gene at Xp22.2. We report an affected family of Western European ancestry with X-linked juvenile retinoschisis. The family was found to carry a 304C-->T substitution in exon 4 of the XLRS1 gene, resulting in an Arg102Trp amino acid substitution. Two of the four available clinical cases in this family were found to carry the mutation. All available mothers of affected males were found to be unaffected carriers of the mutation, a typical feature of X-linked diseases. Two new female carriers, sisters of affected males, were identified and counseled accordingly. Questionnaires on visual functioning were given to the affected family members to examine the psychologic and sociologic impact of X-linked juvenile retinoschisis, which documented an associated stigma even when affected with a "mild" phenotype.

  11. Insights into the binding specificity of wild type and mutated wheat germ agglutinin towards Neu5Acα(2-3)Gal: a study by in silico mutations and molecular dynamics simulations.

    PubMed

    Parasuraman, Ponnusamy; Murugan, Veeramani; Selvin, Jeyasigamani F A; Gromiha, M Michael; Fukui, Kazuhiko; Veluraja, Kasinadar

    2014-08-01

    Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM-PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Molecular Analysis, Pathogenic Mechanisms, and Readthrough Therapy on a Large Cohort of Kabuki Syndrome Patients

    PubMed Central

    Micale, Lucia; Augello, Bartolomeo; Maffeo, Claudia; Selicorni, Angelo; Zucchetti, Federica; Fusco, Carmela; De Nittis, Pasquelena; Pellico, Maria Teresa; Mandriani, Barbara; Fischetto, Rita; Boccone, Loredana; Silengo, Margherita; Biamino, Elisa; Perria, Chiara; Sotgiu, Stefano; Serra, Gigliola; Lapi, Elisabetta; Neri, Marcella; Ferlini, Alessandra; Cavaliere, Maria Luigia; Chiurazzi, Pietro; Monica, Matteo Della; Scarano, Gioacchino; Faravelli, Francesca; Ferrari, Paola; Mazzanti, Laura; Pilotta, Alba; Patricelli, Maria Grazia; Bedeschi, Maria Francesca; Benedicenti, Francesco; Prontera, Paolo; Toschi, Benedetta; Salviati, Leonardo; Melis, Daniela; Di Battista, Eliana; Vancini, Alessandra; Garavelli, Livia; Zelante, Leopoldo; Merla, Giuseppe

    2014-01-01

    Kabuki syndrome (KS) is a multiple congenital anomalies syndrome characterized by characteristic facial features and varying degrees of mental retardation, caused by mutations in KMT2D/MLL2 and KDM6A/UTX genes. In this study, we performed a mutational screening on 303 Kabuki patients by direct sequencing, MLPA, and quantitative PCR identifying 133 KMT2D, 62 never described before, and four KDM6A mutations, three of them are novel. We found that a number of KMT2D truncating mutations result in mRNA degradation through the nonsense-mediated mRNA decay, contributing to protein haploinsufficiency. Furthermore, we demonstrated that the reduction of KMT2D protein level in patients’ lymphoblastoid and skin fibroblast cell lines carrying KMT2D-truncating mutations affects the expression levels of known KMT2D target genes. Finally, we hypothesized that the KS patients may benefit from a readthrough therapy to restore physiological levels of KMT2D and KDM6A proteins. To assess this, we performed a proof-of-principle study on 14 KMT2D and two KDM6A nonsense mutations using specific compounds that mediate translational readthrough and thereby stimulate the re-expression of full-length functional proteins. Our experimental data showed that both KMT2D and KDM6A nonsense mutations displayed high levels of readthrough in response to gentamicin treatment, paving the way to further studies aimed at eventually treating some Kabuki patients with readthrough inducers. PMID:24633898

  13. Molecular characterization demonstrates that the Zea mays gene sugary2 codes for the starch synthase isoform SSIIa.

    PubMed

    Zhang, Xiaoli; Colleoni, Christophe; Ratushna, Vlada; Sirghie-Colleoni, Mirella; James, Martha G; Myers, Alan M

    2004-04-01

    Mutations in the maize gene sugary2 ( su2 ) affect starch structure and its resultant physiochemical properties in useful ways, although the gene has not been characterized previously at the molecular level. This study tested the hypothesis that su2 codes for starch synthase IIa (SSIIa). Two independent mutations of the su2 locus, su2-2279 and su2-5178 , were identified in a Mutator -active maize population. The nucleotide sequence of the genomic locus that codes for SSIIa was compared between wild type plants and those homozygous for either novel mutation. Plants bearing su2-2279 invariably contained a Mutator transposon in exon 3 of the SSIIa gene, and su2-5178 mutants always contained a small retrotransposon-like insertion in exon 10. Six allelic su2 (-) mutations conditioned loss or reduction in abundance of the SSIIa protein detected by immunoblot. These data indicate that su2 codes for SSIIa and that deficiency in this isoform is ultimately responsible for the altered physiochemical properties of su2 (-) mutant starches. A specific starch synthase isoform among several identified in soluble endosperm extracts was absent in su2-2279 or su2-5178 mutants, indicating that SSIIa is active in the soluble phase during kernel development. The immediate structural effect of the su2 (-) mutations was shown to be increased abundance of short glucan chains in amylopectin and a proportional decrease in intermediate length chains, similar to the effects of SSII deficiency in other species.

  14. Increasing Nucleosome Occupancy Is Correlated with an Increasing Mutation Rate so Long as DNA Repair Machinery Is Intact

    PubMed Central

    Taylor, Jared F.; Khattab, Omar S.; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E.; Wang, Ping H.

    2015-01-01

    Deciphering the multitude of epigenomic and genomic factors that influence the mutation rate is an area of great interest in modern biology. Recently, chromatin has been shown to play a part in this process. To elucidate this relationship further, we integrated our own ultra-deep sequenced human nucleosomal DNA data set with a host of published human genomic and cancer genomic data sets. Our results revealed, that differences in nucleosome occupancy are associated with changes in base-specific mutation rates. Increasing nucleosome occupancy is associated with an increasing transition to transversion ratio and an increased germline mutation rate within the human genome. Additionally, cancer single nucleotide variants and microindels are enriched within nucleosomes and both the coding and non-coding cancer mutation rate increases with increasing nucleosome occupancy. There is an enrichment of cancer indels at the theoretical start (74 bp) and end (115 bp) of linker DNA between two nucleosomes. We then hypothesized that increasing nucleosome occupancy decreases access to DNA by DNA repair machinery and could account for the increasing mutation rate. Such a relationship should not exist in DNA repair knockouts, and we thus repeated our analysis in DNA repair machinery knockouts to test our hypothesis. Indeed, our results revealed no correlation between increasing nucleosome occupancy and increasing mutation rate in DNA repair knockouts. Our findings emphasize the linkage of the genome and epigenome through the nucleosome whose properties can affect genome evolution and genetic aberrations such as cancer. PMID:26308346

  15. New mutations in the Notch3 gene in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL).

    PubMed

    Abramycheva, Natalya; Stepanova, Maria; Kalashnikova, Lyudmila; Zakharova, Maria; Maximova, Marina; Tanashyan, Marine; Lagoda, Olga; Fedotova, Ekaterina; Klyushnikov, Sergey; Konovalov, Rodion; Sakharova, Alla; Illarioshkin, Sergey

    2015-02-15

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) is a cerebrovascular small-vessel disease caused by stereotyped mutations in the Notch3 gene altering the number of cysteine residues. We directly sequenced exons 2-23 of the Notch3 gene in 30 unrelated Russian patients with clinical/neuroimaging picture suggestive of CADASIL. To confirm the pathogenicity of new nucleotide variants, we used the standard bioinformatics tools and screened 200 ethnically matched individuals as controls. We identified 16 different point mutations in the Notch3 gene in 18 unrelated patients, including 4 new missense mutations (C194G, V252M, C338F, and C484G). All but two mutations affected the cysteine residue. The non-cysteine change V322M was shown to be associated with CADASIL-specific deposits of granular osmiophilic material in the vascular smooth-muscle cells, which confirmed the pathogenicity of this Notch3 variant. Two patients were shown to be compound-heterozygotes carrying two pathogenic Notch3 mutations. The disease was characterized by marked clinical variability, without evident phenotype-genotype correlations. In our sample, 60% of Russian patients with 'clinically suspected' CADASIL received the definitive molecularly proven diagnosis. Careful assessment of genealogical, clinical, and neuroimaging data in patients with lacunar stroke can help selecting patients with a high probability of finding mutations on genetic screening. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Identification of a Novel GLA Gene Mutation, p.Ile239Met, in Fabry Disease With a Predominant Cardiac Phenotype.

    PubMed

    Csányi, Beáta; Hategan, Lidia; Nagy, Viktória; Obál, Izabella; Varga, Edina T; Borbás, János; Tringer, Annamária; Eichler, Sabrina; Forster, Tamás; Rolfs, Arndt; Sepp, Róbert

    2017-05-31

    Fabry disease (FD) is an X-linked inherited lysosomal storage disorder caused by mutations in the GLA gene, encoding for the enzyme α-galactosidase A. Although hundreds of mutations in the GLA gene have been described, many of them are variants of unknown significance. Here we report a novel GLA mutation, p.Ile239Met, identified in a large Hungarian three-generation family with FD. A 69 year-old female index patient with a clinical history of renal failure, hypertrophic cardiomyopathy, and 2nd degree AV block was screened for mutation in the GLA gene. Genetic screening identified a previously unreported heterozygous mutation in exon 5 of the GLA gene (c.717A>G; p.Ile239Met). Family screening indicated that altogether 6 family members carried the mutation (5 females, 1 male, average age: 55 ± 16 years). Three family members, including the index patient, manifested the cardiac phenotype of hypertrophic cardiomyopathy, while two other family members were diagnosed with left ventricular hypertrophy. Taking affection status as the presence of hypertrophic cardiomyopathy, left ventricular hypertrophy or elevated lyso-Gb3 levels, all affected family members carried the mutation. Linkage analysis of the family gave a two-point LOD score of 2.01 between the affection status and the p.Ile239Met GLA mutation. Lyso-Gb3 levels were elevated in all carrier family members (range: 2.4-13.8 ng/mL; upper limit of normal +2STD: ≤ 1.8 ng/mL). The GLA enzyme level was markedly reduced in the affected male family member (< 0.2 µmol/L/hour; upper limit of normal ± 2STD: ≥ 2.6 µmol/L/hour). We conclude that the p. Ile239Met GLA mutation is a pathogenic mutation for FD associated with predominant cardiac phenotype.

  17. Narrowing the wingless-2 mutation to a 227 kb candidate region on chicken chromosome 12

    PubMed Central

    Webb, A E; Youngworth, I A; Kaya, M; Gitter, C L; O’Hare, E A; May, B; Cheng, H H; Delany, M E

    2018-01-01

    ABSTRACT Wingless-2 (wg-2) is an autosomal recessive mutation in chicken that results in an embryonic lethal condition. Affected individuals exhibit a multisystem syndrome characterized by absent wings, truncated legs, and craniofacial, kidney, and feather malformations. Previously, work focused on phenotype description, establishing the autosomal recessive pattern of Mendelian inheritance and placing the mutation on an inbred genetic background to create the congenic line UCD Wingless-2.331. The research described in this paper employed the complementary tools of breeding, genetics, and genomics to map the chromosomal location of the mutation and successively narrow the size of the region for analysis of the causative element. Specifically, the wg-2 mutation was initially mapped to a 7 Mb region of chromosome 12 using an Illumina 3 K SNP array. Subsequent SNP genotyping and exon sequencing combined with analysis from improved genome assemblies narrowed the region of interest to a maximum size of 227 kb. Within this region, 3 validated and 3 predicted candidate genes are found, and these are described. The wg-2 mutation is a valuable resource to contribute to an improved understanding of the developmental pathways involved in chicken and avian limb development as well as serving as a model for human development, as the resulting syndrome shares features with human congenital disorders. PMID:29562287

  18. Common pathological mutations in PQBP1 induce nonsense-mediated mRNA decay and enhance exclusion of the mutant exon.

    PubMed

    Musante, Luciana; Kunde, Stella-Amrei; Sulistio, Tina O; Fischer, Ute; Grimme, Astrid; Frints, Suzanna G M; Schwartz, Charles E; Martínez, Francisco; Romano, Corrado; Ropers, Hans-Hilger; Kalscheuer, Vera M

    2010-01-01

    The polyglutamine binding protein 1 (PQBP1) gene plays an important role in X-linked mental retardation (XLMR). Nine of the thirteen PQBP1 mutations known to date affect the AG hexamer in exon 4 and cause frameshifts introducing premature termination codons (PTCs). However, the phenotype in this group of patients is variable. To investigate the pathology of these PQBP1 mutations, we evaluated their consequences on mRNA and protein expression. RT-PCRs revealed mutation-specific reduction of PQBP1 mRNAs carrying the PTCs that can be partially restored by blocking translation, thus indicating a role for the nonsense-mediated mRNA decay pathway. In addition, these mutations resulted in altered levels of PQBP1 transcripts that skipped exon 4, probably as a result of altering important splicing motifs via nonsense-associated altered splicing (NAS). This hypothesis is supported by transfection experiments using wild-type and mutant PQBP1 minigenes. Moreover, we show that a truncated PQBP1 protein is indeed present in the patients. Remarkably, patients with insertion/deletion mutations in the AG hexamer express significantly increased levels of a PQBP1 isoform, which is very likely encoded by the transcripts without exon 4, confirming the findings at the mRNA level. Our study provides significant insight into the early events contributing to the pathogenesis of the PQBP1 related XLMR disease.

  19. A novel heterozygous intronic mutation in POU1F1 is associated with combined pituitary hormone deficiency.

    PubMed

    Takagi, Masaki; Kamasaki, Hotaka; Yagi, Hiroko; Fukuzawa, Ryuji; Narumi, Satoshi; Hasegawa, Tomonobu

    2017-02-27

    POU class 1 homeobox 1 (POU1F1) regulates pituitary cell-specific gene expression of somatotropes, lactotropes, and thyrotropes. In humans, two POU1F1 isoforms (long and short isoform), which are generated by the alternative use of the splice acceptor site for exon 2, have been identified. To date, more than 30 POU1F1 mutations in patients with combined pituitary hormone deficiency (CPHD) have been described. All POU1F1 variants reported to date affect both the short and long isoforms of the POU1F1 protein; therefore, it is unclear at present whether a decrease in the function of only one of these two isoforms is sufficient for disease onset in humans. Here, we described a sibling case of CPHD carrying a heterozygous mutation in intron 1 of POU1F1. In vitro experiments showed that this mutation resulted in exon 2-skipping of only in the short isoform of POU1F1, while the long isoform remained intact. This result strongly suggests the possibility, for the first time, that isolated mutations in the short isoform of POU1F1 could be sufficient for induction of POU1F1-related CPHD. This finding improves our understanding of the molecular mechanisms, and developmental course associated with mutations in POU1F1.

  20. KRAS Testing

    PubMed Central

    Shackelford, Rodney E.; Whitling, Nicholas A.; McNab, Patricia; Japa, Shanker

    2012-01-01

    Activating point mutations in codons 12, 13, and 61 of the KRAS proto-oncogene are common in colorectal, non–small cell lung, pancreatic, and thyroid cancers. Constitutively activated KRAS mutations are strongly associated with a resistance to anti–epidermal growth factor receptor (EGFR) therapies, such as panitumumab and cetuximab used for treating metastatic colorectal carcinoma and EGFR tyrosine inhibitors used for advanced non–small cell lung cancers. Since anti-EGFR therapies are costly and may exert deleterious effects on individuals without activating mutations, KRAS mutation testing is recommended prior to the initiation of anti-EGFR therapy for these malignancies. The goal of this review is to summarize the KRAS mutation testing methods. Testing is now routinely requested in the clinical practice to provide data to assign the most appropriate anticancer chemotherapy for each given patient. Review of the most relevant literature was performed. Several areas were considered: ordering of the test, selection of the sample to be tested, and review of the testing methodologies. We found that several different methods are used for clinical KRAS mutation testing. Each of the methodologies is described, and information is provided about their performance, cost, turnaround times, detection limits, sensitivities, and specificities. We also provided “tips” for the appropriate selection and preparation of the sample to be tested. This is an important aspect of KRAS testing for clinical use, as the results of the test will affect clinical decisions with consequences for the patient. PMID:23264846

  1. A mutation in the Gardos channel is associated with hereditary xerocytosis.

    PubMed

    Rapetti-Mauss, Raphael; Lacoste, Caroline; Picard, Véronique; Guitton, Corinne; Lombard, Elise; Loosveld, Marie; Nivaggioni, Vanessa; Dasilva, Nathalie; Salgado, David; Desvignes, Jean-Pierre; Béroud, Christophe; Viout, Patrick; Bernard, Monique; Soriani, Olivier; Vinti, Henri; Lacroze, Valérie; Feneant-Thibault, Madeleine; Thuret, Isabelle; Guizouarn, Hélène; Badens, Catherine

    2015-09-10

    The Gardos channel is a Ca(2+)-sensitive, intermediate conductance, potassium selective channel expressed in several tissues including erythrocytes and pancreas. In normal erythrocytes, it is involved in cell volume modification. Here, we report the identification of a dominantly inherited mutation in the Gardos channel in 2 unrelated families and its association with chronic hemolysis and dehydrated cells, also referred to as hereditary xerocytosis (HX). The affected individuals present chronic anemia that varies in severity. Their red cells exhibit a panel of various shape abnormalities such as elliptocytes, hemighosts, schizocytes, and very rare stomatocytic cells. The missense mutation concerns a highly conserved residue among species, located in the region interacting with Calmodulin and responsible for the channel opening and the K(+) efflux. Using 2-microelectrode experiments on Xenopus oocytes and patch-clamp electrophysiology on HEK293 cells, we demonstrated that the mutated channel exhibits a higher activity and a higher Ca(2+) sensitivity compared with the wild-type (WT) channel. The mutated channel remains sensitive to inhibition suggesting that treatment of this type of HX by a specific inhibitor of the Gardos channel could be considered. The identification of a KCNN4 mutation associated with chronic hemolysis constitutes the first report of a human disease caused by a defect of the Gardos channel. © 2015 by The American Society of Hematology.

  2. The clinical spectrum of the m.10191T>C mutation in complex I-deficient Leigh syndrome.

    PubMed

    Nesbitt, Victoria; Morrison, Patrick J; Crushell, Ellen; Donnelly, Deirdre E; Alston, Charlotte L; He, Langping; McFarland, Robert; Taylor, Robert W

    2012-06-01

    Mitochondrial respiratory chain diseases represent one of the most common inherited neurometabolic disorders of childhood, affecting a minimum of 1 in 7500 live births. The marked clinical, biochemical, and genetic heterogeneity means that accurate genetic counselling relies heavily upon the identification of the underlying causative mutation in the individual and determination of carrier status in the parents. Isolated complex I deficiency is the most common respiratory chain defect observed in children, resulting in organ-specific or multisystem disease, but most often presenting as Leigh syndrome, for which mitochondrial DNA mutations are important causes. Several recurrent, pathogenic point mutations in the MTND3 gene - including m.10191T>C (p.Ser45Pro) - have been previously identified. In this short clinical review we evaluate the case reports of the m.10191T>C mutation causing complex I-deficient Leigh syndrome described in the literature, in addition to two new ones diagnosed in our laboratory. Both of these appear to have arisen de novo without transmission of the mutation from mother to offspring, illustrating the importance not only of fully characterizing the mitochondrial genome as part of the investigation of children with complex I-deficient Leigh syndrome but also of assessing maternal samples to provide crucial genetic advice for families. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  3. New and recurrent gain-of-function STAT1 mutations in patients with chronic mucocutaneous candidiasis from Eastern and Central Europe

    PubMed Central

    Soltész, Beáta; Tóth, Beáta; Shabashova, Nadejda; Bondarenko, Anastasia; Okada, Satoshi; Cypowyj, Sophie; Abhyankar, Avinash; Csorba, Gabriella; Taskó, Szilvia; Sarkadi, Adrien Katalin; Méhes, Leonóra; Rozsíval, Pavel; Neumann, David; Chernyshova, Liudmyla; Tulassay, Zsolt; Puel, Anne; Casanova, Jean-Laurent; Sediva, Anna; Litzman, Jiri; Maródi, László

    2013-01-01

    Background Chronic mucocutaneous candidiasis disease (CMCD) may result from various inborn errors of interleukin (IL)-17-mediated immunity. Twelve of the 13 causal mutations described to date affect the coiled-coil domain (CCD) of STAT1. Several mutations, including R274W in particular, are recurrent, but the underlying mechanism is unclear. Objective To investigate and describe nine patients with CMCD in Eastern and Central Europe, to assess the biochemical impact of STAT1 mutations, to determine cytokines in supernatants of Candida-exposed blood cells, to determine IL-17-producing T cell subsets and to determine STAT1 haplotypes in a family with the c.820C>T (R274W) mutation. Results The novel c.537C>A (N179K) STAT1 mutation was gain-of-function (GOF) for γ-activated factor (GAF)-dependent cellular responses. In a Russian patient, the cause of CMCD was the newly identified c.854 A>G (Q285R) STAT1 mutation, which was also GOF for GAF-dependent responses. The c.1154C>T (T385M) mutation affecting the DNA-binding domain (DBD) resulted in a gain of STAT1 phosphorylation in a Ukrainian patient. Impaired Candida-induced IL-17A and IL-22 secretion by leucocytes and lower levels of intracellular IL-17 and IL-22 production by T cells were found in several patients. Haplotype studies indicated that the c.820C>T (R274W) mutation was recurrent due to a hotspot rather than a founder effect. Severe clinical phenotypes, including intracranial aneurysm, are presented. Conclusions The c.537C>A and c.854A>G mutations affecting the CCD and the c.1154C>T mutation affecting the DBD of STAT1 are GOF. The c.820C>T mutation of STAT1 in patients with CMCD is recurrent due to a hotspot. Patients carrying GOF mutations of STAT1 may develop multiple intracranial aneurysms by hitherto unknown mechanisms. PMID:23709754

  4. [Numeric alterations in the dys gene and their association with clinical features].

    PubMed

    Mampel, Alejandra; Echeverría, María Inés; Vargas, Ana Lía; Roque, María

    2011-01-01

    The Duchenne/Becker muscular dystrophy is a hereditary miopathy with a recessive sex-linked pattern. The related gene is called DYS and the coded protein plays a crucial role in the anchorage between the cytoskeleton and the cellular membrane in muscle cells. Different clinical manifestations are observed depending on the impact of the genetic alteration on the protein. The global register of mutations reveals an enhanced frequency for deletions/duplications of one or more exons affecting the DYS gene. In the present work, numeric alterations have been studied in the 79 exons of the DYS gene. The study has been performed on 59 individuals, including 31 independent cases and 28 cases with a familial link. The applied methodology was Multiplex Ligation Dependent Probe Amplification (MLPA). In the 31 independent cases clinical data were established: i.e. the clinical score, the Raven test percentiles, and the creatininphosphokinase (CPK) blood values. Our results reveal a 61.3% frequency of numeric alterations affecting the DYS gene in our population, provoking all of them a reading frame shift. The rate for de novo mutations was identified as 35.2%. Alterations involving a specific region of one exon were observed with high frequency, affecting a specific region. A significant association was found between numeric alterations and a low percentile for the Raven test. These data contribute to the local knowledge of genetic alterations and their phenotypic impact for the Duchenne/Becker disease.

  5. Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses.

    PubMed

    Navarro-González, Carmen; Moukadiri, Ismaïl; Villarroya, Magda; López-Pascual, Ernesto; Tuck, Simon; Armengod, M-Eugenia

    2017-07-01

    Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of the diseases and why mutations in the different genes lead to such different clinical symptoms is poorly understood. Here we use Caenorhabditis elegans as a model organism to investigate how defects in the TRMU, GTPBP3 and MTO1 orthologues (designated as mttu-1, mtcu-1, and mtcu-2, respectively) exert their effects. We found that whereas the inactivation of each C. elegans gene is associated with a mild OXPHOS dysfunction, mutations in mtcu-1 or mtcu-2 cause changes in the expression of metabolic and mitochondrial stress response genes that are quite different from those caused by mttu-1 mutations. Our data suggest that retrograde signaling promotes defect-specific metabolic reprogramming, which is able to rescue the OXPHOS dysfunction in the single mutants by stimulating the oxidative tricarboxylic acid cycle flux through complex II. This adaptive response, however, appears to be associated with a biological cost since the single mutant worms exhibit thermosensitivity and decreased fertility and, in the case of mttu-1, longer reproductive cycle. Notably, mttu-1 worms also exhibit increased lifespan. We further show that mtcu-1; mttu-1 and mtcu-2; mttu-1 double mutants display severe growth defects and sterility. The animal models presented here support the idea that the pathological states in humans may initially develop not as a direct consequence of a bioenergetic defect, but from the cell's maladaptive response to the hypomodification status of mt-tRNAs. Our work highlights the important association of the defect-specific metabolic rewiring with the pathological phenotype, which must be taken into consideration in exploring specific therapeutic interventions.

  6. FGFR1 actionable mutations, molecular specificities, and outcome of adult midline gliomas.

    PubMed

    Picca, Alberto; Berzero, Giulia; Bielle, Franck; Touat, Mehdi; Savatovsky, Julien; Polivka, Marc; Trisolini, Elena; Meunier, Sheida; Schmitt, Yohann; Idbaih, Ahmed; Hoang-Xuan, Khe; Delattre, Jean-Yves; Mokhtari, Karima; Di Stefano, Anna Luisa; Sanson, Marc

    2018-06-05

    To characterize the prevalence and prognostic significance of major driver molecular alterations in adult midline diffuse gliomas (MLG). Adults with histologically proven MLG diagnosed between 1996 and 2017 were identified from our tumor bank, systematically reviewed, and reclassified according to WHO 2016. Targeted sequencing was performed, including determination of H3F3A , HIST1H3B , TERTp , IDH1/2 , FGFR1 , p16/CDKN2A , and EGFR status. A total of 116 adult patients (M/F 71/45, median age 46.5 years) with MLG (17 cerebellar, 8 spinal, 30 brainstem, 57 thalamic, and 4 diencephalic nonthalamic) were identified. Most patients had high-grade disease at presentation (grade II: 11%, grade III: 15%, grade IV: 75%). Median overall survival was 17.3 months (14.5-23.8 months). Main molecular alterations observed were TERT promoter, H3F3A , and hotspot FGFR1 (N546 and K656) mutations, in 37%, 34%, and 18% of patients, respectively. IDH1 mutations only affected brainstem gliomas (6/24 vs 0/78; p = 7.5 × 10 -5 ), were mostly non-R132H (contrasting with hemispheric gliomas, p = 0.0001), and were associated with longer survival (54 vs 12 months). TERT promoter mutation (9.1 vs 24.2 months), CDKN2A deletion (9.9 vs 23.8 months), and EGFR amplification (4.3 vs 23.8 months) were associated with shorter survival. Of interest, in contrast with pediatric MLG, H3K27M mutations were not associated with worse prognosis (23 vs 15 months). Patients with adult MLG present with unique clinical and molecular characteristics, differing from their pediatric counterparts. The identification of potentially actionable FGFR1 mutations in a subset of adult MLG highlights the importance of comprehensive genomic analysis in this rare affection. © 2018 American Academy of Neurology.

  7. The effects of sex-biased gene expression and X-linkage on rates of sequence evolution in Drosophila.

    PubMed

    Campos, José Luis; Johnston, Keira; Charlesworth, Brian

    2017-12-08

    A faster rate of adaptive evolution of X-linked genes compared with autosomal genes (the faster-X effect) can be caused by the fixation of recessive or partially recessive advantageous mutations. This effect should be largest for advantageous mutations that affect only male fitness, and least for mutations that affect only female fitness. We tested these predictions in Drosophila melanogaster by using coding and functionally significant non-coding sequences of genes with different levels of sex-biased expression. Consistent with theory, nonsynonymous substitutions in most male-biased and unbiased genes show faster adaptive evolution on the X. However, genes with very low recombination rates do not show such an effect, possibly as a consequence of Hill-Robertson interference. Contrary to expectation, there was a substantial faster-X effect for female-biased genes. After correcting for recombination rate differences, however, female-biased genes did not show a faster X-effect. Similar analyses of non-coding UTRs and long introns showed a faster-X effect for all groups of genes, other than introns of female-biased genes. Given the strong evidence that deleterious mutations are mostly recessive or partially recessive, we would expect a slower rate of evolution of X-linked genes for slightly deleterious mutations that become fixed by genetic drift. Surprisingly, we found little evidence for this after correcting for recombination rate, implying that weakly deleterious mutations are mostly close to being semidominant. This is consistent with evidence from polymorphism data, which we use to test how models of selection that assume semidominance with no sex-specific fitness effects may bias estimates of purifying selection. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Biallelic Mutations in MRPS34 Lead to Instability of the Small Mitoribosomal Subunit and Leigh Syndrome.

    PubMed

    Lake, Nicole J; Webb, Bryn D; Stroud, David A; Richman, Tara R; Ruzzenente, Benedetta; Compton, Alison G; Mountford, Hayley S; Pulman, Juliette; Zangarelli, Coralie; Rio, Marlene; Boddaert, Nathalie; Assouline, Zahra; Sherpa, Mingma D; Schadt, Eric E; Houten, Sander M; Byrnes, James; McCormick, Elizabeth M; Zolkipli-Cunningham, Zarazuela; Haude, Katrina; Zhang, Zhancheng; Retterer, Kyle; Bai, Renkui; Calvo, Sarah E; Mootha, Vamsi K; Christodoulou, John; Rötig, Agnes; Filipovska, Aleksandra; Cristian, Ingrid; Falk, Marni J; Metodiev, Metodi D; Thorburn, David R

    2017-08-03

    The synthesis of all 13 mitochondrial DNA (mtDNA)-encoded protein subunits of the human oxidative phosphorylation (OXPHOS) system is carried out by mitochondrial ribosomes (mitoribosomes). Defects in the stability of mitoribosomal proteins or mitoribosome assembly impair mitochondrial protein translation, causing combined OXPHOS enzyme deficiency and clinical disease. Here we report four autosomal-recessive pathogenic mutations in the gene encoding the small mitoribosomal subunit protein, MRPS34, in six subjects from four unrelated families with Leigh syndrome and combined OXPHOS defects. Whole-exome sequencing was used to independently identify all variants. Two splice-site mutations were identified, including homozygous c.321+1G>T in a subject of Italian ancestry and homozygous c.322-10G>A in affected sibling pairs from two unrelated families of Puerto Rican descent. In addition, compound heterozygous MRPS34 mutations were identified in a proband of French ancestry; a missense (c.37G>A [p.Glu13Lys]) and a nonsense (c.94C>T [p.Gln32 ∗ ]) variant. We demonstrated that these mutations reduce MRPS34 protein levels and the synthesis of OXPHOS subunits encoded by mtDNA. Examination of the mitoribosome profile and quantitative proteomics showed that the mitochondrial translation defect was caused by destabilization of the small mitoribosomal subunit and impaired monosome assembly. Lentiviral-mediated expression of wild-type MRPS34 rescued the defect in mitochondrial translation observed in skin fibroblasts from affected subjects, confirming the pathogenicity of MRPS34 mutations. Our data establish that MRPS34 is required for normal function of the mitoribosome in humans and furthermore demonstrate the power of quantitative proteomic analysis to identify signatures of defects in specific cellular pathways in fibroblasts from subjects with inherited disease. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Novel GNE mutations in Italian families with autosomal recessive hereditary inclusion-body myopathy.

    PubMed

    Broccolini, Aldobrando; Ricci, Enzo; Cassandrini, Denise; Gliubizzi, Carla; Bruno, Claudio; Tonoli, Emmanuel; Silvestri, Gabriella; Pescatori, Mario; Rodolico, Carmelo; Sinicropi, Stefano; Servidei, Serenella; Zara, Federico; Minetti, Carlo; Tonali, Pietro A; Mirabella, Massimiliano

    2004-06-01

    The most common form of autosomal recessive (AR) hereditary inclusion-body myopathy (HIBM), originally described in Persian-Jewish families, is characterized by onset in early adult life with weakness and atrophy of distal lower limb muscles, which progress proximally and relatively spare the quadriceps. AR HIBM is associated with mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene (GNE) on chromosome 9p12-13. In the present study we have identified seven novel GNE mutations in patients from five unrelated Italian families with clinical and pathologic features indicative of AR HIBM. Four were missense mutations (c.1556A>G [p.N519S], c.79C>T [p.P27S], c.1798G>A [p.A600T] and c.616G>A [p.G206S]), two consisted in a single-base deletion (c.616delG [p.G206fsX4] and c.1130delT [p.I377fsX16]) and one in an intronic single-base insertion (c.1070+2dupT). These latter findings further extend the type of GNE mutations associated with HIBM. Furthermore, in one patient we also identified the c.737G>A [p.R246Q] missense mutation that corresponds to the one previously reported in a family from the Bahamas. Interestingly, in two of our families distinct mutations affected nucleotide c.616 in exon 3 (c.616delG and c.616G>A). The possibility of specific portions of the gene being more prone to mutations remains to be elucidated. Copyright 2004 Wiley-Liss, Inc.

  10. Missense Mutations in the N-Terminal Domain of Human Phenylalanine Hydroxylase Interfere with Binding of Regulatory Phenylalanine

    PubMed Central

    Gjetting, Torben; Petersen, Marie; Guldberg, Per; Güttler, Flemming

    2001-01-01

    Hyperphenylalaninemia due to a deficiency of phenylalanine hydroxylase (PAH) is an autosomal recessive disorder caused by >400 mutations in the PAH gene. Recent work has suggested that the majority of PAH missense mutations impair enzyme activity by causing increased protein instability and aggregation. In this study, we describe an alternative mechanism by which some PAH mutations may render PAH defective. Database searches were used to identify regions in the N-terminal domain of PAH with homology to the regulatory domain of prephenate dehydratase (PDH), the rate-limiting enzyme in the bacterial phenylalanine biosynthesis pathway. Naturally occurring N-terminal PAH mutations are distributed in a nonrandom pattern and cluster within residues 46–48 (GAL) and 65–69 (IESRP), two motifs highly conserved in PDH. To examine whether N-terminal PAH mutations affect the ability of PAH to bind phenylalanine at the regulatory domain, wild-type and five mutant (G46S, A47V, T63P/H64N, I65T, and R68S) forms of the N-terminal domain (residues 2–120) of human PAH were expressed as fusion proteins in Escherichia coli. Binding studies showed that the wild-type form of this domain specifically binds phenylalanine, whereas all mutations abolished or significantly reduced this phenylalanine-binding capacity. Our data suggest that impairment of phenylalanine-mediated activation of PAH may be an important disease-causing mechanism of some N-terminal PAH mutations, which may explain some well-documented genotype-phenotype discrepancies in PAH deficiency. PMID:11326337

  11. Mutation profile of all 49 exons of the human myosin VIIA gene, and haplotype analysis, in Usher 1B families from diverse origins.

    PubMed

    Adato, A; Weil, D; Kalinski, H; Pel-Or, Y; Ayadi, H; Petit, C; Korostishevsky, M; Bonne-Tamir, B

    1997-10-01

    Usher syndrome types I (USH1A-USH1E) are a group of autosomal recessive diseases characterized by profound congenital hearing loss, vestibular areflexia, and progressive visual loss due to retinitis pigmentosa. The human myosin VIIA gene, located on 11q14, has been shown to be responsible for Usher syndrome type 1B (USH1B). Haplotypes were constructed in 28 USH1 families by use of the following polymorphic markers spanning the USH1B locus: D11S787, D11S527, D11S1789, D11S906, D11S4186, and OMP. Affected individuals and members of their families from 12 different ethnic origins were screened for the presence of mutations in all 49 exons of the myosin VIIA gene. In 15 families myosin VIIA mutations were detected, verifying their classification as USH1B. All these mutations are novel, including three missense mutations, one premature stop codon, two splicing mutations, one frameshift, and one deletion of >2 kb comprising exons 47 and 48, a part of exon 49, and the introns between them. Three mutations were shared by more than one family, consistent with haplotype similarities. Altogether, 16 USH1B haplotypes were observed in the 15 families; most haplotypes were population specific. Several exonic and intronic polymorphisms were also detected. None of the 20 known USH1B mutations reported so far in other world populations were identified in our families.

  12. Comparison of immunohistochemistry, DNA sequencing and allele-specific PCR for the detection of IDH1 mutations in gliomas.

    PubMed

    Loussouarn, Delphine; Le Loupp, Anne-Gaëlle; Frenel, Jean-Sébastien; Leclair, François; Von Deimling, Andreas; Aumont, Maud; Martin, Stéphane; Campone, Mario; Denis, Marc G

    2012-06-01

    Previous studies have identified mutations of the isocitrate dehydrogenase 1 (IDH1) gene in more than 70% of World Health Organization (WHO) grade II and III gliomas. The most frequent mutation leads to a specific amino acid change from arginine to histidine at codon 132 (c.395G>A, p.R132H). IDH1 mutated tumors have a better prognosis than IDH1 non-mutated tumors. The aim of our study was to evaluate and compare the methods of mIDH1 R132H immunohistochemistry, allele-specific PCR and DNA sequencing for determination of IDH1 status. We performed a retrospective study of 91 patients with WHO grade II (n=43) and III (n=48) oligodendrogliomas. A fragment of exon 4 spanning the sequence encoding the catalytic domain of IDH1, including codon 132, was amplified and sequenced using standard conditions. Allele-specific amplification was performed using two forward primers with variations in their 3' nucleotides such that each was specific for the wild-type or the mutated variant, and one reverse primer. Immunohistochemistry was performed with mouse monoclonal mIDH1 R132H. DNA was extracted from FFPE sections following macrodissection. IDH1 mutations were found in 55/90 patients (61.1%) by direct sequencing. R132H mutations were found in 47/55 patients (85.4%). The results of the allele-specific PCR positively correlated with those from DNA sequencing. Other mutations (p.R132C, p.R132S and pR132G) were found by DNA sequencing in 3, 3 and 2 tumors, respectively (8/55 patients, 14.6%). mIDH1 R132H immunostaining was found in the 47 patients presenting the R132H mutation (sensitivity 47/47, 100% for this mutation). None of the tumors presenting a wild-type IDH1 gene were stained (specificity 35/35, 100%). Our results demonstrate that immunohistochemistry using the mIDH1 R132H antibody and allele-specific amplification are highly sensitive techniques to detect the most frequent mutation of the IDH1 gene.

  13. Activating mutations affecting the Dbl homology domain of SOS2 cause Noonan syndrome

    PubMed Central

    Cordeddu, Viviana; Yin, Jiani C.; Gunnarsson, Cecilia; Virtanen, Carl; Drunat, Séverine; Lepri, Francesca; De Luca, Alessandro; Rossi, Cesare; Ciolfi, Andrea; Pugh, Trevor J.; Bruselles, Alessandro; Priest, James R.; Pennacchio, Len A.; Lu, Zhibin; Danesh, Arnavaz; Quevedo, Rene; Hamid, Alaa; Martinelli, Simone; Pantaleoni, Francesca; Gnazzo, Maria; Daniele, Paola; Lissewski, Christina; Bocchinfuso, Gianfranco; Stella, Lorenzo; Odent, Sylvie; Philip, Nicole; Faivre, Laurence; Vlckova, Marketa; Seemanova, Eva; Digilio, Cristina; Zenker, Martin; Zampino, Giuseppe; Verloes, Alain; Dallapiccola, Bruno; Roberts, Amy E.; Cavé, Hélène; Gelb, Bruce D.; Neel, Benjamin G.; Tartaglia, Marco

    2015-01-01

    The RASopathies constitute a family of autosomal dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering son of sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its auto-inhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the Dbl homology domain. PMID:26173643

  14. A novel IMPDH1 mutation (Arg231Pro) in a family with a severe form of autosomal dominant retinitis pigmentosa.

    PubMed

    Grover, Sandeep; Fishman, Gerald A; Stone, Edwin M

    2004-10-01

    To define ophthalmic findings in a family with autosomal dominant retinitis pigmentosa and a novel IMPDH1 gene mutation. Genetic and observational family study. Sixteen affected members of a family with autosomal dominant retinitis pigmentosa. Ophthalmic examination, including best-corrected visual acuity (VA), slit-lamp biomicroscopy, direct and indirect ophthalmoscopy, Goldmann kinetic perimetry, and electroretinography were performed. Deoxyribonucleic acid single-strand conformation polymorphism (SSCP) analysis was done. Abnormal polymerase chain reaction products identified by SSCP analysis were sequenced bidirectionally. All affected patients had the onset of night blindness within the first decade of life. Ocular findings were characterized by diffuse retinal pigmentary degenerative changes, marked restriction of peripheral visual fields, severe loss of VA, nondetectable electroretinography amplitudes, and a high frequency of posterior subcapsular lens opacities. Affected members were observed to harbor a novel IMPDH1 gene mutation. A novel IMPDH1 gene mutation (Arg231Pro) was associated with a severe form of autosomal dominant retinitis pigmentosa. Families affected with a severe form of this genetic subtype should be investigated for a mutation in the IMPDH1 gene.

  15. Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844-848.

    PubMed

    Koczkowska, Magdalena; Chen, Yunjia; Callens, Tom; Gomes, Alicia; Sharp, Angela; Johnson, Sherrell; Hsiao, Meng-Chang; Chen, Zhenbin; Balasubramanian, Meena; Barnett, Christopher P; Becker, Troy A; Ben-Shachar, Shay; Bertola, Debora R; Blakeley, Jaishri O; Burkitt-Wright, Emma M M; Callaway, Alison; Crenshaw, Melissa; Cunha, Karin S; Cunningham, Mitch; D'Agostino, Maria D; Dahan, Karin; De Luca, Alessandro; Destrée, Anne; Dhamija, Radhika; Eoli, Marica; Evans, D Gareth R; Galvin-Parton, Patricia; George-Abraham, Jaya K; Gripp, Karen W; Guevara-Campos, Jose; Hanchard, Neil A; Hernández-Chico, Concepcion; Immken, LaDonna; Janssens, Sandra; Jones, Kristi J; Keena, Beth A; Kochhar, Aaina; Liebelt, Jan; Martir-Negron, Arelis; Mahoney, Maurice J; Maystadt, Isabelle; McDougall, Carey; McEntagart, Meriel; Mendelsohn, Nancy; Miller, David T; Mortier, Geert; Morton, Jenny; Pappas, John; Plotkin, Scott R; Pond, Dinel; Rosenbaum, Kenneth; Rubin, Karol; Russell, Laura; Rutledge, Lane S; Saletti, Veronica; Schonberg, Rhonda; Schreiber, Allison; Seidel, Meredith; Siqveland, Elizabeth; Stockton, David W; Trevisson, Eva; Ullrich, Nicole J; Upadhyaya, Meena; van Minkelen, Rick; Verhelst, Helene; Wallace, Margaret R; Yap, Yoon-Sim; Zackai, Elaine; Zonana, Jonathan; Zurcher, Vickie; Claes, Kathleen; Martin, Yolanda; Korf, Bruce R; Legius, Eric; Messiaen, Ludwine M

    2018-01-04

    Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Virions at the gates: receptors and the host-virus arms race.

    PubMed

    Coffin, John M

    2013-01-01

    All viruses need to bind to specific receptor molecules on the surface of target cells to initiate infection. Virus-receptor binding is highly specific, and this specificity determines both the species and the cell type that can be infected by a given virus. In some well-studied cases, the virus-binding region on the receptor has been found to be unrelated to the receptor's normal cellular function. Resistance to virus infection can thus evolve by selection of mutations that alter amino acids in the binding region with minimal effect on normal function. This sort of positive selection can be used to infer the history of the host-virus "arms race" during their coevolution. In a new study, Demogines et al. use a combination of phylogenetic, structural, and virological analysis to infer the history and significance of positive selection on the transferrin receptor TfR1, a housekeeping protein required for iron uptake and the cell surface receptor for at least three different types of virus. The authors show that only two parts of the rodent TfR1 molecule have been subject to positive selection and that these correspond to the binding sites for two of these viruses-the mouse mammary tumor virus (a retrovirus) and Machupo virus (an arenavirus). They confirmed this result by introducing the inferred binding site mutations into the wild-type protein and testing for receptor function. Related arenaviruses are beginning to spread in human populations in South America as the cause of often fatal hemorrhagic fevers, and, although Demogines et al. could find no evidence of TfR1 mutations in this region that might have been selected as a consequence of human infection, the authors identified one such mutation in Asian populations that affects infection with these viruses.

  17. Tyr120Asp mutation alters domain flexibility and dynamics of MeCP2 DNA binding domain leading to impaired DNA interaction: Atomistic characterization of a Rett syndrome causing mutation.

    PubMed

    D'Annessa, Ilda; Gandaglia, Anna; Brivio, Elena; Stefanelli, Gilda; Frasca, Angelisa; Landsberger, Nicoletta; Di Marino, Daniele

    2018-05-01

    Mutations in the X-linked MECP2 gene represent the main origin of Rett syndrome, causing a profound intellectual disability in females. MeCP2 is an epigenetic transcriptional regulator containing two main functional domains: a methyl-CpG binding domain (MBD) and a transcription repression domain (TRD). Over 600 pathogenic mutations were reported to affect the whole protein; almost half of missense mutations affect the MBD. Understanding the impact of these mutations on the MBD structure and interaction with DNA will foster the comprehension of their pathogenicity and possibly genotype/phenotype correlation studies. Herein, we use molecular dynamics simulations to obtain a detailed view of the dynamics of WT and mutated MBD in the presence and absence of DNA. The pathogenic mutation Y120D is used as paradigm for our studies. Further, since the Y120 residue was previously found to be a phosphorylation site, we characterize the dynamic profile of the MBD also in the presence of Y120 phosphorylation (pY120). We found that addition of a phosphate group to Y120 or mutation in aspartic acid affect domain mobility that samples an alternative conformational space with respect to the WT, leading to impaired ability to interact with DNA. Experimental assays showing a significant reduction in the binding affinity between the mutated MBD and the DNA confirmed our predictions. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Mutations in CTC1, Encoding the CTS Telomere Maintenance Complex Component 1, Cause Cerebroretinal Microangiopathy with Calcifications and Cysts

    PubMed Central

    Polvi, Anne; Linnankivi, Tarja; Kivelä, Tero; Herva, Riitta; Keating, James P.; Mäkitie, Outi; Pareyson, Davide; Vainionpää, Leena; Lahtinen, Jenni; Hovatta, Iiris; Pihko, Helena; Lehesjoki, Anna-Elina

    2012-01-01

    Cerebroretinal microangiopathy with calcifications and cysts (CRMCC) is a rare multisystem disorder characterized by extensive intracranial calcifications and cysts, leukoencephalopathy, and retinal vascular abnormalities. Additional features include poor growth, skeletal and hematological abnormalities, and recurrent gastrointestinal bleedings. Autosomal-recessive inheritance has been postulated. The pathogenesis of CRMCC is unknown, but its phenotype has key similarities with Revesz syndrome, which is caused by mutations in TINF2, a gene encoding a member of the telomere protecting shelterin complex. After a whole-exome sequencing approach in four unrelated individuals with CRMCC, we observed four recessively inherited compound heterozygous mutations in CTC1, which encodes the CTS telomere maintenance complex component 1. Sanger sequencing revealed seven more compound heterozygous mutations in eight more unrelated affected individuals. Two individuals who displayed late-onset cerebral findings, a normal fundus appearance, and no systemic findings did not have CTC1 mutations, implying that systemic findings are an important indication for CTC1 sequencing. Of the 11 mutations identified, four were missense, one was nonsense, two resulted in in-frame amino acid deletions, and four were short frameshift-creating deletions. All but two affected individuals were compound heterozygous for a missense mutation and a frameshift or nonsense mutation. No individuals with two frameshift or nonsense mutations were identified, which implies that severe disturbance of CTC1 function from both alleles might not be compatible with survival. Our preliminary functional experiments did not show evidence of severely affected telomere integrity in the affected individuals. Therefore, determining the underlying pathomechanisms associated with deficient CTC1 function will require further studies. PMID:22387016

  19. Mutations in GNA11 in Uveal Melanoma

    PubMed Central

    Van Raamsdonk, Catherine D.; Griewank, Klaus G.; Crosby, Michelle B.; Garrido, Maria C.; Vemula, Swapna; Wiesner, Thomas; Obenauf, Anna C.; Wackernagel, Werner; Green, Gary; Bouvier, Nancy; Sozen, M. Mert; Baimukanova, Gail; Roy, Ritu; Heguy, Adriana; Dolgalev, Igor; Khanin, Raya; Busam, Klaus; Speicher, Michael R.; O’Brien, Joan; Bastian, Boris C.

    2011-01-01

    BACKGROUND Uveal melanoma is the most common intraocular cancer. There are no effective therapies for metastatic disease. Mutations in GNAQ, the gene encoding an alpha subunit of heterotrimeric G proteins, are found in 40% of uveal melanomas. METHODS We sequenced exon 5 of GNAQ and GNA11, a paralogue of GNAQ, in 713 melanocytic neoplasms of different types (186 uveal melanomas, 139 blue nevi, 106 other nevi, and 282 other melanomas). We sequenced exon 4 of GNAQ and GNA11 in 453 of these samples and in all coding exons of GNAQ and GNA11 in 97 uveal melanomas and 45 blue nevi. RESULTS We found somatic mutations in exon 5 (affecting Q209) and in exon 4 (affecting R183) in both GNA11 and GNAQ, in a mutually exclusive pattern. Mutations affecting Q209 in GNA11 were present in 7% of blue nevi, 32% of primary uveal melanomas, and 57% of uveal melanoma metastases. In contrast, we observed Q209 mutations in GNAQ in 55% of blue nevi, 45% of uveal melanomas, and 22% of uveal melanoma metastases. Mutations affecting R183 in either GNAQ or GNA11 were less prevalent (2% of blue nevi and 6% of uveal melanomas) than the Q209 mutations. Mutations in GNA11 induced spontaneously metastasizing tumors in a mouse model and activated the mitogen-activated protein kinase pathway. CONCLUSIONS Of the uveal melanomas we analyzed, 83% had somatic mutations in GNAQ or GNA11. Constitutive activation of the pathway involving these two genes appears to be a major contributor to the development of uveal melanoma. (Funded by the National Institutes of Health and others.) PMID:21083380

  20. Molecular genetic analysis of the F11 gene in 14 Turkish patients with factor XI deficiency: identification of novel and recurrent mutations and their inheritance within families

    PubMed Central

    Colakoglu, Seyma; Bayhan, Turan; Tavil, Betül; Keskin, Ebru Yılmaz; Cakir, Volkan; Gümrük, Fatma; Çetin, Mualla; Aytaç, Selin; Berber, Ergul

    2018-01-01

    Background Factor XI (FXI) deficiency is an autosomal bleeding disease associated with genetic defects in the F11 gene which cause decreased FXI levels or impaired FXI function. An increasing number of mutations has been reported in the FXI mutation database, most of which affect the serine protease domain of the protein. FXI is a heterogeneous disorder associated with a variable bleeding tendency and a variety of causative F11 gene mutations. The molecular basis of FXI deficiency in 14 patients from ten unrelated families in Turkey was analysed to establish genotype-phenotype correlations and inheritance of the mutations in the patients’ families. Material and methods Fourteen index cases with a diagnosis of FXI deficiency and family members of these patients were enrolled into the study. The patients’ F11 genes were amplified by polymerase chain reaction and subjected to direct DNA sequencing analysis. The findings were analysed statistically using bivariate correlations, Pearson’s correlation coefficient and the nonparametric Mann-Whitney test. Results Direct DNA sequencing analysis of the F11 genes revealed that all of the 14 patients had a F11 gene mutation. Eight different mutations were identified in the apple 1, apple 2 or serine protease domains, except one which was a splice site mutation. Six of the mutations were recurrent. Two of the mutations were novel missense mutations, p.Val522Gly and p.Cys581Arg, within the catalytic domain. The p.Trp519Stop mutation was observed in two families whereas all the other mutations were specific to a single family. Discussion Identification of mutations confirmed the genetic heterogeneity of FXI deficiency. Most of the patients with mutations did not have any bleeding complications, whereas some had severe bleeding symptoms. Genetic screening for F11 gene mutations is important to decrease the mortality and morbidity rate associated with FXI deficiency, which can be life-threatening if bleeding occurs in tissues with high fibrinolytic activity. PMID:27723456

Top