Science.gov

Sample records for affecting nutrient fate

  1. Fate of Compost Nutrients as Affected by Co-Composting of Chicken and Swine Manures

    NASA Astrophysics Data System (ADS)

    Ogunwande, Gbolabo A.; Ogunjimi, Lawrence A. O.; Osunade, James A.

    2014-04-01

    Passive aeration co-composting using four mixtures of chicken manure and swine manure at 1:0, 1:1, 3:7 and 0:1 with sawdust and rice husk was carried out to study the effects of co-composting on the physicochemical properties of the organic materials. The experiment, which lasted 66 days, was carried out in bins equipped with inverted T aeration pipes. The results showed that nutrient losses decreased as the proportion of chicken manure in the mixtures decreased for saw dust and rice husk treatments. This indicates better nutrientst conservation during composting in swine than chicken manure. Manure mixtures with rice husk had higher pile temperatures (> 55°C), total carbon and total nitrogen losses, while manure mixtures with saw dust had higher total phosphorus loss and carbon to nitrogen ratio. Composts with rice husk demonstrated the ability to reach maturity faster by the rate of drop of the carbon to nitrogen ratio.

  2. SDMProjectBuilder: SWAT Setup for Nutrient Fate and Transport

    EPA Science Inventory

    This tutorial reviews some of the screens, icons, and basic functions of the SDMProjectBuilder (SDMPB) and explains how one uses SDMPB output to populate the Soil and Water Assessment Tool (SWAT) input files for nutrient fate and transport modeling in the Salt River Basin. It dem...

  3. Nutrient fate in aquacultural systems for waste treatment

    SciTech Connect

    Dontje, J.H.; Clanton, C.J.

    1999-08-01

    Twelve small, recirculating aquacultural systems were operated for livestock waste treatment to determine nutrient fate. Each system consisted of a 730-L fish tank coupled in a recirculating loop with three sand beds (serving as biofilters) in parallel. Fish (Tilapia species) were grown in the tanks while cattails, reed canary grass, and tomatoes were grown in separate sand beds. Swine waste was added to the fish tanks every other day at average rates of 50, 72, 95, and 118 kg-COD/ha/day of fish tank surface (three replications of each loading rate). Water from the fish tanks was filtered through the sand beds three times per day with 20% of the tank volume passing through the sand each day. The systems were operated in a greenhouse for eight months (21 July to 8 March). Aboveground plant matter was harvested at eight-week intervals. The fish were removed after four months and the tanks were restocked with fingerlings. Initial and final nitrogen (N), phosphorus (P), and potassium (K) contents of the system components, as well as that of the harvested plants and fish, were determined. Nutrient balance calculations revealed that 30 to 68% of added N was lost from the systems, probably via denitrification. Nutrient removal by plants was 6 to 18% for N, 8 to 21% for P, and 25 to 71% for K, with tomatoes (foliage and fruit) accounting for the majority of the removal. Plant growth was limited by growing conditions (particularly day length), not be nutrient availability. Fish growth was limited by temperature; thus nutrient extraction by the fish was minimal. Under the conditions of this experiment, the system required supplemental aeration.

  4. Nutrients affecting brain composition and behavior

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.

    1987-01-01

    This review examines the changes in brain composition and in various brain functions, including behavior, that can follow the ingestion of particular foods or nutrients. It details those that are best understood: the increases in serotonin, catecholamine, or acetylcholine synthesis that can occur subsequent to food-induced increases in brain levels of tryptophan, tyrosine, or choline; it also discusses the various processes that must intervene between the mouth and the synapse, so to speak, in order for a nutrient to affect neurotransmission, and it speculates as to additional brain chemicals that may ultimately be found to be affected by changes in the availability of their nutrient precursors. Because the brain chemicals best known to be nutrient dependent overlap with those thought to underlie the actions of most of the drugs used to treat psychiatric diseases, knowledge of this dependence may help the psychiatrist to understand some of the pathologic processes occurring in his/her patients, particularly those with appetitive symptoms. At the very least, such knowledge should provide the psychiatrist with objective criteria for judging when to take seriously assertions that particular foods or nutrients do indeed affect behavior (e.g., in hyperactive children). If the food can be shown to alter neurotransmitter release, it may be behaviorally-active; however, if it lacks a discernible neurochemical effect, the likelihood that it really alters behavior is small.

  5. Fate of Indicator Microorganisms Under Nutrient Management Plan Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management plans (NMPs) for application of wastewater from concentration animal feeding operations are designed to meet crop water and nutrient requirements, but implicitly assume that pathogenic microorganisms in the wastewater will be retained and die-off in the root zone. A NMP was impl...

  6. NUTRIENT SOUIRCES, TRANSPORT, AND FATE IN COUPLED WATERSHED-ESTUARINE SYSTEMS OF COASTAL ALABAMA

    EPA Science Inventory

    The processes regulating sources, transport, and fate of nutrients were studied in 3 coupled watershed-estuarine systems that varied mainly by differences in the dominant land use-land cover (LULC), i.e. Weeks Bay -- agriculture, Dog River -- urban, and Fowl River -- forest. Mea...

  7. Interacting Physical and Biological Processes Affecting Nutrient Transport Through Human Dominated Landscapes

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.

    2015-12-01

    Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.

  8. Factors affecting stream nutrient loads: A synthesis of regional SPARROW model results for the continental United States

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Schwarz, Gregory E.; Crawford, Charles G.

    2011-01-01

    We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models - 6 for total nitrogen and 6 for total phosphorus - all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  9. Factors Affecting Stream Nutrient Loads: A Synthesis of Regional SPARROW Model Results for the Continental United States1

    PubMed Central

    Preston, Stephen D; Alexander, Richard B; Schwarz, Gregory E; Crawford, Charles G

    2011-01-01

    Abstract We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models – 6 for total nitrogen and 6 for total phosphorus – all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. PMID:22457574

  10. Modeling the Transport and Fate of Fecal Pollution and Nutrients of Miyun Reservoir

    NASA Astrophysics Data System (ADS)

    Liu, L.; Fu, X.; Wang, G.

    2009-12-01

    Miyun Reservoir, a mountain valley reservoir, is located 100 km northeast of Beijing City. Besides the functions of flood control, irrigation and fishery for Beijing area, Miyun Reservoir is the main drinking water storage for Beijing city. The water quality is therefore of great importance. Recently, the concentration of fecal pollution and nutrients in the reservoir are constantly rising to arrest the attention of Beijing municipality. Fecal pollution from sewage is a significant public health concern due to the known presence of human viruses and parasites in these discharges. To investigate the transport and fate of the fecal pollution and nutrients at Miyun reservoir and the health risks associated with drinking and fishery, the reservoir and two tributaries, Chaohe river and Baihe river discharging into it are being examined for bacterial, nutrients and other routine pollution. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, fecal pollution, nutrients and other routine contaminants) is used. The developed models are being verified by the observed water quality data including water temperature, conductivities and dissolved oxygen from the reservoir and its tributaries. Different factors impacting the inactivation of fecal pollution and the transport of nutrients such as water temperature, sedimentation, sunlight insolation are evaluated for Miyun reservoir by a sensitivity analysis analogized from the previous research of Lake Michigan (figure 1, indicating that solar insolation dominates the inactivation of E. Coli, an indicator of fecal pollution, Liu et al. 2006). The calibrated modeling system can be used to temporally and spatially simulate and predict the variation of the concentration of fecal pollution and nutrients of Miyun reservoir. Therefore this research can provide a forecasting tool for the

  11. IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate.

    PubMed

    Mutti, Navdeep S; Dolezal, Adam G; Wolschin, Florian; Mutti, Jasdeep S; Gill, Kulvinder S; Amdam, Gro V

    2011-12-01

    Regardless of genetic makeup, a female honey bee becomes a queen or worker depending on the food she receives as a larva. For decades, it has been known that nutrition and juvenile hormone (JH) signaling determine the caste fate of the individual bee. However, it is still largely unclear how these factors are connected. To address this question, we suppressed nutrient sensing by RNA interference (RNAi)-mediated gene knockdown of IRS (insulin receptor substrate) and TOR (target of rapamycin) in larvae reared on queen diet. The treatments affected several layers of organismal organization that could play a role in the response to differential nutrition between castes. These include transcript profiles, proteomic patterns, lipid levels, DNA methylation response and morphological features. Most importantly, gene knockdown abolished a JH peak that signals queen development and resulted in a worker phenotype. Application of JH rescued the queen phenotype in either knockdown, which demonstrates that the larval response to JH remains intact and can drive normal developmental plasticity even when IRS or TOR transcript levels are reduced. We discuss our results in the context of other recent findings on honey bee caste and development and propose that IRS is an alternative substrate for the Egfr (epidermal growth factor receptor) in honey bees. Overall, our study describes how the interplay of nutritional and hormonal signals affects many levels of organismal organization to build different phenotypes from identical genotypes. PMID:22071189

  12. Environmental factors affecting pregnancy: endocrine disrupters, nutrients and metabolic pathways.

    PubMed

    Bazer, Fuller W; Wu, Guoyao; Johnson, Gregory A; Wang, Xiaoqiu

    2014-12-01

    Uterine adenogenesis, a unique post-natal event in mammals, is vulnerable to endocrine disruption by estrogens and progestins resulting in infertility or reduced prolificacy. The absence of uterine glands results in insufficient transport of nutrients into the uterine lumen to support conceptus development. Arginine, a component of histotroph, is substrate for production of nitric oxide, polyamines and agmatine and, with secreted phosphoprotein 1, it affects cytoskeletal organization of trophectoderm. Arginine is critical for development of the conceptus, pregnancy recognition signaling, implantation and placentation. Conceptuses of ungulates and cetaceans convert glucose to fructose which is metabolized via multiple pathways to support growth and development. However, high fructose corn syrup in soft drinks and foods may increase risks for metabolic disorders and increase insulin resistance in adults. Understanding endocrine disrupters and dietary substances, and novel pathways for nutrient metabolism during pregnancy can improve survival and growth, and prevent chronic metabolic diseases in offspring. PMID:25224489

  13. Understanding Nutrient Fate and Transport, Including the Importance of Hydrology in Determining Field Losses, and Potential Implications on Management Systems to Reduce Those Losses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Losses of the major nutrients, nitrogen (N) and phosphorus (P), from agricultural fields to water resources cause water quality concerns relative to the health of both humans and aquatic systems, and restrict the full use of these water resources. Understanding nutrient fate and transport in agricul...

  14. The nitrogen fate beyond the current nutrient mitigation measures: sustainability of an integrated agriculture

    NASA Astrophysics Data System (ADS)

    Thieu, V.; Billen, G. F.; Garnier, J.; Lancelot, C.; Gypens, N.

    2010-12-01

    Located in the North-Western Europe the terrestrial continuum that includes the Seine, Somme, and Scheldt River basins offers an interesting example of a transborder territory (France, Belgium, and Netherlands) with high-intensity anthropogenic pressures. It well-illustrates the rapid development of modern agriculture in industrialised countries and the resulting severe alteration of water resources and jeopardising the capacity of rural territories to produce drinking water. The corresponding nutrient loads delivered then into the Southern Bight of the North Sea, strongly affect the ecological functioning of the coastal zone. An integrated ‘river-ocean’ assessment, coupling two deterministic models - the SENEQUE RIVESTRAHLER model simulating nutrient dynamic in the drainage network and the MIRO model describing the ecological functioning coastal ecosystem - points out the relevance of current policy based measures (improvement of waste water treatment) to mitigate phosphorous emissions, while the nitrogen pollution related to agriculture will remain critical despite the implementation of classical management measure (good agricultural practices). Therefore and irrespectively of the current political agenda, a more radical alternative is established, consisting of a generalised shift to an integrated agriculture of all agricultural areas in the three basins, excluding the use of synthetically compounded fertilisers and the importation of livestock feed. Such scenario aims at evaluating whether agriculture, by essence, can conciliate (i) the demand for food and feed by local populations, (ii) a good ecological functioning of aquatic ecosystems and (iii) a balanced nutrient status for the adjacent coastal area. This scenario involves an increased livestock density in the Seine and Somme and a decrease in livestock in the Scheldt basin. It leads to a significant reduction of agricultural production that finally brings the three basins closer to autotrophy

  15. Tagging Strategies Strongly Affect the Fate of Overexpressed Caveolin-1

    PubMed Central

    Han, Bing; Tiwari, Ajit; Kenworthy, Anne K

    2015-01-01

    Caveolin-1 (Cav1) is the primary scaffolding protein of caveolae, flask-shaped invaginations of the plasma membrane thought to function in endocytosis, mechanotransduction, signaling and lipid homeostasis. A significant amount of our current knowledge about caveolins and caveolae is derived from studies of transiently overexpressed, C-terminally tagged caveolin proteins. However, how different tags affect the behavior of ectopically expressed Cav1 is still largely unknown. To address this question, we performed a comparative analysis of the subcellular distribution, oligomerization state and detergent resistance of transiently overexpressed Cav1 labeled with three different C-terminal tags (EGFP, mCherry and myc). We show that addition of fluorescent protein tags enhances the aggregation and/or degradation of both wild-type Cav1 and an oligomerization defective P132L mutant. Strikingly, complexes formed by overexpressed Cav1 fusion proteins excluded endogenous Cav1 and Cav2, and the properties of native caveolins were largely preserved even when abnormal aggregates were present in cells. These findings suggest that differences in tagging strategies may be a source of variation in previously published studies of Cav1 and that overexpressed Cav1 may exert functional effects outside of caveolae. They also highlight the need for a critical re-evaluation of current knowledge based on transient overexpression of tagged Cav1. PMID:25639341

  16. Maternal nutrient restriction affects properties of skeletal muscle in offspring

    PubMed Central

    Zhu, Mei J; Ford, Stephen P; Means, Warrie J; Hess, Bret W; Nathanielsz, Peter W; Du, Min

    2006-01-01

    Maternal nutrient restriction (NR) affects fetal development with long-term consequences on postnatal health of offspring, including predisposition to obesity and diabetes. Most studies have been conducted in fetuses in late gestation, and little information is available on the persistent impact of NR from early to mid-gestation on properties of offspring skeletal muscle, which was the aim of this study. Pregnant ewes were subjected to 50% NR from day 28–78 of gestation and allowed to deliver. The longissimus dorsi muscle was sampled from 8-month-old offspring. Maternal NR during early to mid-gestation decreased the number of myofibres in the offspring and increased the ratio of myosin IIb to other isoforms by 17.6 ± 4.9% (P < 0.05) compared with offspring of ad libitum fed ewes. Activity of carnitine palmitoyltransferase-1, a key enzyme controlling fatty acid oxidation, was reduced by 24.7 ± 4.5% (P < 0.05) in skeletal muscle of offspring of NR ewes and would contribute to increased fat accumulation observed in offspring of NR ewes. Intramuscular triglyceride content (IMTG) was increased in skeletal muscle of NR lambs, a finding which may be linked to predisposition to diabetes in offspring of NR mothers, since enhanced IMTG predisposes to insulin resistance in skeletal muscle. Proteomic analysis by two-dimensional gel electrophoresis demonstrated downregulation of several catabolic enzymes in 8-month-old offspring of NR ewes. These data demonstrate that the early to mid-gestation period is important for skeletal muscle development. Impaired muscle development during this stage of gestation affects the number and composition of fibres in offspring which may lead to long-term physiological consequences, including predisposition to obesity and diabetes. PMID:16763001

  17. Nutrient Exchange through Hyphae in Intercropping Systems Affects Yields

    ERIC Educational Resources Information Center

    Thun, Tim Von

    2013-01-01

    Arbuscular mycorrhizae fungi (AMF) play a large role in the current understanding of the soil ecosystem. They increase nutrient and water uptake, improve soil structure, and form complex hyphal networks that transfer nutrients between plants within an ecosystem. Factors such as species present, the physiological balance between the plants in the…

  18. Nutrient transport as affected by rate of overland flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is currently available concerning the effects of varying flow rate on nutrient transport by overland flow. The objective of this study was to measure the effects of overland flow rate on nutrient transport following the application of beef cattle or swine manure to plots containin...

  19. Impact of treated wastewater irrigation on heterogeneity and on the fate of salts and nutrients in the subsurface

    NASA Astrophysics Data System (ADS)

    Gomes Hochberg, C.; Furman, A.; Weisbrod, N.

    2013-12-01

    Reuse of treated wastewater (TWW) for irrigation is one of the solutions to water shortage. Not only it saves water, it also supplies organic matter (OM) and other nutrients to the soil. However, long term application of TWW can affect soil physical and chemical properties. Additionally, substances added via TWW irrigation can accentuate already existent soil heterogeneity, which may impact physical and chemical processes in soils. As more agricultural fields are being irrigated with TWW, it is crucial to understand its implications on soils. The objectives of this research are to investigate: (a) the impact of TWW irrigation on soil heterogeneity, and on hydraulic processes; and (b) the fate of salts and nutrients in the subsurface in soils irrigated with TWW vs. tap water (TP). The experiment is carried out in Lachish farm, Israel. Two trenches were dug and a sensors network of 38 tensiometers, 37 TDRs, 6 redox probes, and 38 thermocouples was installed in high resolution in each cross section (1.5 x 1.5 m). The cross sections are 13 meters apart in a vineyard irrigated for over 10 years with TP and TWW. One cross section is in a TP area while the other is in TWW area. Soil samples were collected according to visually observed heterogeneity of the soil profiles and randomly. Chemical analyses were conducted in both soil and water samples. In addition, infiltration rate, Leaf Area Index (LAI), and harvest yield were determined. For irrigation water analyses, DOM in TWW is higher than TP (average concentrations of 25.9 and 1.4 mg/L, respectively). Soil organic matter is in average 1% higher in soils irrigated with TWW in the first 10 cm, while for lower depths OM content is the same under both treatments. No repellency was detected for either soils (WDPT< 5s), probably due to high clay content (>40%). ESP, EC and pH were higher for TWW soils, but not high enough to be characterized as saline and/or sodic. However, it presented SAR and EC levels of moderate

  20. Nutrient enrichment affects the mechanical resistance of aquatic plants.

    PubMed

    Lamberti-Raverot, Barbara; Puijalon, Sara

    2012-10-01

    For many plant species, nutrient availability induces important anatomical responses, particularly the production of low-density tissues to the detriment of supporting tissues. Due to the contrasting biomechanical properties of plant tissues, these anatomical responses may induce important modifications in the biomechanical properties of plant organs. The aim of this study was to determine the effects of nutrient enrichment on the anatomical traits of two freshwater plant species and its consequences on plant biomechanical performance. Two plant species were grown under controlled conditions in low versus high nutrient levels. The anatomical and biomechanical traits of the plant stems were measured. Both species produced tissues with lower densities under nutrient-rich conditions, accompanied by modifications in the structure of the aerenchyma for one species. As expected, nutrient enrichment also led to important modifications in the biomechanical properties of the stem for both species. In particular, mechanical resistance (breaking force and strength) and stiffness of stems were significantly reduced under nutrient rich conditions. The production of weaker stem tissues as a result of nutrient enrichment may increase the risk of plants to mechanical failure, thus challenging plant maintenance in mechanically stressful or disturbed habitats. PMID:23028018

  1. From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients.

    PubMed

    Fernández, Victoria; Brown, Patrick H

    2013-01-01

    The application of agrochemical sprays to the aerial parts of crop plants is an important agricultural practice world-wide. While variable effectiveness is often seen in response to foliar treatments, there is abundant evidence showing the beneficial effect of foliar fertilizers in terms of improving the metabolism, quality, and yields of crops. This mini-review is focused on the major bottlenecks associated with the uptake and translocation of foliar-applied nutrient solutions. A better understanding of the complex scenario surrounding the ultimate delivery of foliar-applied nutrients to sink cells and organs is essential for improving the effectiveness and performance of foliar fertilizers. PMID:23914198

  2. Understanding the fate of sanitation-related nutrients in a shallow sandy aquifer below an urban slum area

    NASA Astrophysics Data System (ADS)

    Nyenje, P. M.; Havik, J. C. N.; Foppen, J. W.; Muwanga, A.; Kulabako, R.

    2014-08-01

    We hypothesized that wastewater leaching from on-site sanitation systems to alluvial aquifers underlying informal settlements (or slums) may end up contributing to high nutrient loads to surface water upon groundwater exfiltration. Hence, we conducted a hydro-geochemical study in a shallow sandy aquifer in Bwaise III parish, an urban slum area in Kampala, Uganda, to assess the geochemical processes controlling the transport and fate of dissolved nutrients (NO3, NH4 and PO4) released from on-site sanitation systems to groundwater. Groundwater was collected from 26 observation wells. The samples were analyzed for major ions (Ca, Mg, Na, Mg, Fe, Mn, Cl and SO4) and nutrients (o-PO4, NO3 and NH4). Data was also collected on soil characteristics, aquifer conductivity and hydraulic heads. Geochemical modeling using PHREEQC was used to determine the level of o-PO4 control by mineral solubility and sorption. Groundwater below the slum area was anoxic and had near neutral pH values, high values of EC (average of 1619 μS/cm) and high concentrations of Cl (3.2 mmol/L), HCO3 (11 mmol/L) and nutrients indicating the influence from wastewater leachates especially from pit latrines. Nutrients were predominantly present as NH4 (1-3 mmol/L; average of 2.23 mmol/L). The concentrations of NO3 and o-PO4 were, however, low: average of 0.2 mmol/L and 6 μmol/L respectively. We observed a contaminant plume along the direction of groundwater flow (NE-SW) characterized by decreasing values of EC and Cl, and distinct redox zones. The redox zones transited from NO3-reducing in upper flow areas to Fe-reducing in the lower flow areas. Consequently, the concentrations of NO3 decreased downgradient of the flow path due to denitrification. Ammonium leached directly into the alluvial aquifer was also partially removed because the measured concentrations were less than the potential input from pit latrines (3.2 mmol/L). We attributed this removal (about 30%) to anaerobic ammonium oxidation

  3. Understanding the fate of sanitation-related nutrients in a shallow sandy aquifer below an urban slum area.

    PubMed

    Nyenje, P M; Havik, J C N; Foppen, J W; Muwanga, A; Kulabako, R

    2014-08-01

    We hypothesized that wastewater leaching from on-site sanitation systems to alluvial aquifers underlying informal settlements (or slums) may end up contributing to high nutrient loads to surface water upon groundwater exfiltration. Hence, we conducted a hydro-geochemical study in a shallow sandy aquifer in Bwaise III parish, an urban slum area in Kampala, Uganda, to assess the geochemical processes controlling the transport and fate of dissolved nutrients (NO3, NH4 and PO4) released from on-site sanitation systems to groundwater. Groundwater was collected from 26 observation wells. The samples were analyzed for major ions (Ca, Mg, Na, Mg, Fe, Mn, Cl and SO4) and nutrients (o-PO4, NO3 and NH4). Data was also collected on soil characteristics, aquifer conductivity and hydraulic heads. Geochemical modeling using PHREEQC was used to determine the level of o-PO4 control by mineral solubility and sorption. Groundwater below the slum area was anoxic and had near neutral pH values, high values of EC (average of 1619μS/cm) and high concentrations of Cl (3.2mmol/L), HCO3 (11mmol/L) and nutrients indicating the influence from wastewater leachates especially from pit latrines. Nutrients were predominantly present as NH4 (1-3mmol/L; average of 2.23mmol/L). The concentrations of NO3 and o-PO4 were, however, low: average of 0.2mmol/L and 6μmol/L respectively. We observed a contaminant plume along the direction of groundwater flow (NE-SW) characterized by decreasing values of EC and Cl, and distinct redox zones. The redox zones transited from NO3-reducing in upper flow areas to Fe-reducing in the lower flow areas. Consequently, the concentrations of NO3 decreased downgradient of the flow path due to denitrification. Ammonium leached directly into the alluvial aquifer was also partially removed because the measured concentrations were less than the potential input from pit latrines (3.2mmol/L). We attributed this removal (about 30%) to anaerobic ammonium oxidation (anammox) given

  4. Effect of dredging on the fate of nutrients in drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dredging of drainage ditches is necessary to ensure that agricultural fields are drained adequately. The objective of this research was to quantify the potential impacts of dredging on nutrient transport within these fluvial systems. Ditch bed material was collected from ditches before and after d...

  5. Influence of tides and waves on the fate of nutrients in a nearshore aquifer: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Anwar, N.; Robinson, C.; Barry, D. A.

    2014-11-01

    A numerical investigation is presented that demonstrates the influence of tides and waves on the transport and transformation of nutrients (NO3-, NH4+, PO43-) in a homogeneous unconfined nearshore aquifer and subsequent fluxes to the sea. Simulations of an aquifer subject to semi-diurnal tides and constant waves acting on a sloping beach face were conducted using SEAWAT-2005 combined with PHT3D v2.10. Tidal amplitude (A) and wave height (Hrms) varying from 0.25 to 0.75 m and 1 to 2 m, respectively, were examined. Results show that tides and waves modify the subsurface discharge pathway of land-derived nutrients by changing the nearshore groundwater flow dynamics. More importantly, the oceanic forcing impacts nutrient cycling as it causes significant seawater exchange (along with dissolved O2 and organic matter) across the aquifer-ocean interface. Although steady wave forcing caused higher seawater influx, tides led to greater seawater-freshwater mixing in the nearshore aquifer and subsequently greater transformation of land-derived nutrients. Nutrient processing was strongly controlled by the availability and reactivity of marine dissolved organic matter (DOM) as its degradation consumed O2, released inorganic N and P, and altered redox conditions in the salt-freshwater mixing zones. For the conditions and reaction network simulated, nutrient regeneration by marine DOM degradation was independent of the seawater-freshwater mixing intensity, and therefore was greatest for the wave case due to the high seawater influx. For simulations without marine DOM considered, NO3- discharge to the sea increased by 32% for the tidal case (A = 0.5 m) compared to only 13% and 8% for the wave (Hrms = 1 m) and no oceanic forcing cases. With labile marine DOM considered, the NO3- discharge decreased by 90% relative to the land-derived flux for the tidal case (A = 0.5 m). For all simulations PO43- removal was high due to its adsorption to Fe oxide minerals. The model enables

  6. Effects of agricultural nutrient management on nitrogen fate and transport in Lancaster County, Pennsylvania

    USGS Publications Warehouse

    Hall, D.W.; Risser, D.W.

    1993-01-01

    Nitrogen inputs to, and outputs from, a 55-acre site in Lancaster County, Pennsylvania, were estimated to determine the pathways and relative magnitude of loads of nitrogen entering and leaving the site, and to compare the loads of nitrogen before and after the implementation of nutrient management. Inputs of nitrogen to the site were manure fertilizer, commercial fertilizer, nitrogen in precipitation, and nitrogen in ground-water inflow; and these sources averaged 93, 4, 2, and 1 percent of average annual nitrogen additions, respectively. Outputs of nitrogen from the site were nitrogen in harvested crops, loads of nitrogen in surface runoff, volatilization of nitrogen, and loads of nitrogen in ground-water discharge, which averaged 37, less than 1,25, and 38 percent of average annual nitrogen removals from the site, respectively. Virtually all of the nitrogen leaving the site that was not removed in harvested crops or by volatilization was discharged in the ground water. Applications of manure and fertilizer nitrogen to 47.5 acres of cropped fields decreased about 33 percent, from an average of 22,700 pounds per year (480 pounds per acre per year) before nutrient management to 15,175 pounds of nitrogen per year (320 pounds per acre per year) after the implementation of nutrient management practices. Nitrogen loads in ground-water discharged from the site decreased about 30 percent, from an average of 292 pounds of nitrogen per million gallons of ground water before nutrient management to an average of 203 pounds of nitrogen per million gallons as a result of the decreased manure and commercial fertilizer applications. Reductions in manure and commercial fertilizer applications caused a reduction of approximately 11,000 pounds (3,760 pounds per year, 70 pounds per acre per year) in the load of nitrogen discharged in ground water from the 55-acre site during the three-year period 1987-1990.

  7. Role of nutrients and illuminance in predicting the fate of fungal mediated petroleum hydrocarbon degradation and biomass production.

    PubMed

    Ali Khan, Aqib Hassan; Tanveer, Sundus; Anees, Mariam; Muhammad, Yousaf Shad; Iqbal, Mazhar; Yousaf, Sohail

    2016-07-01

    Biodegradation and biomass production are affected by numerous environmental factors including pH, oxygen availability and presence of pollutants. The present study, for the first time, elucidated the effects of nutrients and light on mycodegradation of petroleum hydrocarbons in diesel oil. Seven fungal strains (Aspergillus terreus FA3, Aspergillus niger FA5, Aspergillus terreus FA6, Penicillium chrysogenum FP4, Aspergillus terreus FP6, Aspergillus flavus FP10, and Candida sp. FG1) were used for hydrocarbon degradation under static conditions, in four combinations of nutrient media and illuminance for 45 days. Highest degradation was achieved by Aspergillus terreus FA6 and Candida sp. FG1 under both conditions of light and dark, with nutrient deprived HAF (Hydrocarbon adopted fungi) broth. Under HAF/Dark diesel oil degradation by FA6 and FG1 was 87.3% and 84.3% respectively, while under HAF/Light both FA6 and FG1 performed 84.3% biodegradation. The highest biomass was produced by Aspergillus flavus FP10 in PDB (Potato dextrose broth)/Dark (109.3 mg). Fungal degradation of petroleum hydrocarbons was negatively affected by the presence of other simpler-to-degrade carbon sources in the medium. The biomass production was enhanced by improved nutrient availability and diminished by illuminance. PMID:27039364

  8. Advances in Understanding Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface

    NASA Astrophysics Data System (ADS)

    Karapanagioti, H. K.; Werner, D.; Werth, C.

    2012-04-01

    The results of a call for a special issue that is now in press by the Journal of Contaminant Hydrology will be presented. This special issue is edited by the authors and is entitled "Sorption and Transport Processes Affecting the Fate of Environmental Pollutants in the Subsurface". A short abstract of each paper will be presented along with the most interesting results. Nine papers were accepted. Pollutants studied include: biocolloids, metals (arsenic, chromium, nickel), organic compounds such as hydrocarbons, chlorinated hydrocarbons, micropollutants (PAHs, PCBs), pesticides (glyphosate, 2,4-D). Findings presented in the papers include a modified batch reactor system to study equilibrium-reactive transport problems of metals. Column studies along with theoretical approximations evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three biocolloids. A polluted sediment remediation method is evaluated considering site-specific conditions through monitoring results and modelling. A field study points to glogging and also sorption as mechanisms affecting the effectiveness of sub-surface flow constructed wetlands. A new isotherm model combining modified traditionally used isotherms is proposed that can be used to simulate pH-dependent metal adsorption. Linear free energy relationships (LFERs) demonstrate ability to predict slight isotope shifts into the groundwater due to sorption. Possible modifications that improve the reliability of kinetic models and parameter values during the evaluation of experiments that assess the sorption of pesticides on soils are tested. Challenges in selecting groundwater pollutant fate and transport models that account for the effect of grain-scale sorption rate limitations are evaluated based on experimental results and are discussed based on the Damköhler number. Finally, a thorough review paper presents the impact of mineral micropores on the transport and fate of

  9. Ca, Sr and Ba stable isotopes reveal the fate of soil nutrients along a tropical climosequence

    USGS Publications Warehouse

    Bullen, Thomas D.; Chadwick, Oliver A.

    2016-01-01

    Nutrient biolifting is an important pedogenic process in which plant roots obtain inorganic nutrients such as phosphorus (P) and calcium (Ca) from minerals at depth and concentrate those nutrients at the surface. Here we use soil chemistry and stable isotopes of the alkaline earth elements Ca, strontium (Sr) and barium (Ba) to test the hypothesis that biolifting of P has been an important pedogenic process across a soil climosequence developed on volcanic deposits at Kohala Mountain, Hawaii. The geochemical linkage between these elements is revealed as generally positive site-specific relationships in soil mass gains and losses, particularly for P, Ba and Ca, using the ratio of immobile elements titanium and niobium (Ti/Nb) to link individual soil samples to a restricted compositional range of the chemically and isotopically diverse volcanic parent materials. At sites where P is enriched in surface soils relative to abundances in deeper soils, the isotope compositions of exchangeable Ca, Sr and Ba in the shallowest soil horizons (< 10 cm depth) are lighter than those of the volcanic parent materials and trend toward those of plants growing on fresh volcanic deposits. In contrast the isotope composition of exchangeable Ba in deeper soil horizons (> 10 cm depth) at those sites is consistently heavier than the volcanic parent materials. The isotope compositions of exchangeable Ca and Sr trend toward heavier compositions with depth more gradually, reflecting increasing leakiness from these soils in the order Ba < Sr < Ca and downward transfer of light biocycled Ca and Sr to deeper exchange sites. Given the long-term stability of ecosystem properties at the sites where P is enriched in surface soils, a simple box model demonstrates that persistence of isotopically light exchangeable Ca, Sr and Ba in the shallowest soil horizons requires that the uptake flux to plants from those near-surface layers is less than the recycling flux returned to the surface as

  10. Relating nutrient and herbicide fate with landscape features and characteristics of 15 subwatersheds in the Choptank River watershed.

    PubMed

    Hively, W Dean; Hapeman, Cathleen J; McConnell, Laura L; Fisher, Thomas R; Rice, Clifford P; McCarty, Gregory W; Sadeghi, Ali M; Whitall, David R; Downey, Peter M; Niño de Guzmán, Gabriela T; Bialek-Kalinski, Krystyna; Lang, Megan W; Gustafson, Anne B; Sutton, Adrienne J; Sefton, Kerry A; Harman Fetcho, Jennifer A

    2011-09-01

    Excess nutrients and agrochemicals from non-point sources contribute to water quality impairment in the Chesapeake Bay watershed and their loading rates are related to land use, agricultural practices, hydrology, and pollutant fate and transport processes. In this study, monthly baseflow stream samples from 15 agricultural subwatersheds of the Choptank River in Maryland USA (2005 to 2007) were characterized for nutrients, herbicides, and herbicide transformation products. High-resolution digital maps of land use and forested wetlands were derived from remote sensing imagery. Examination of landscape metrics and water quality data, partitioned according to hydrogeomorphic class, provided insight into the fate, delivery, and transport mechanisms associated with agricultural pollutants. Mean Nitrate-N concentrations (4.9 mg/L) were correlated positively with percent agriculture (R(2)=0.56) and negatively with percent forest (R(2)=0.60). Concentrations were greater (p=0.0001) in the well-drained upland (WDU) hydrogeomorphic region than in poorly drained upland (PDU), reflecting increased denitrification and reduced agricultural land use intensity in the PDU landscape due to the prevalence of hydric soils. Atrazine and metolachlor concentrations (mean 0.29 μg/L and 0.19 μg/L) were also greater (p=0.0001) in WDU subwatersheds than in PDU subwatersheds. Springtime herbicide concentrations exhibited a strong, positive correlation (R(2)=0.90) with percent forest in the WDU subwatersheds but not in the PDU subwatersheds. In addition, forested riparian stream buffers in the WDU were more prevalent than in the PDU where forested patches are typically not located near streams, suggesting an alternative delivery mechanism whereby volatilized herbicides are captured by the riparian forest canopy and subsequently washed off during rainfall. Orthophosphate, CIAT (6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine), CEAT (6-chloro-N-ethyl-1,3,5-triazine-2,4-diamine), and MESA

  11. Relating nutrient and herbicide fate with landscape features and characteristics of 15 subwatersheds in the Choptank River watershed

    USGS Publications Warehouse

    Hively, W. Dean; Hapeman, Cathleen J.; McConnell, Laura L.; Fisher, Thomas R.; Rice, Clifford P.; McCarty, Gregory W.; Sadeghi, Ali M.; Whitall, David R.; Downey, Peter M.; de Guzman, Gabriela T. Nino; Bialek-Kalinski, Krystyna; Lang, Megan W.; Gustafson, Anne B.; Sutton, Adrienne J.; Sefton, Kerry A.; Harman Fetcho, Jennifer A.

    2011-01-01

    Excess nutrients and agrochemicals from non-point sources contribute to water quality impairment in the Chesapeake Bay watershed and their loading rates are related to land use, agricultural practices, hydrology, and pollutant fate and transport processes. In this study, monthly baseflow stream samples from 15 agricultural subwatersheds of the Choptank River in Maryland USA (2005 to 2007) were characterized for nutrients, herbicides, and herbicide transformation products. High-resolution digital maps of land use and forested wetlands were derived from remote sensing imagery. Examination of landscape metrics and water quality data, partitioned according to hydrogeomorphic class, provided insight into the fate, delivery, and transport mechanisms associated with agricultural pollutants. Mean Nitrate-N concentrations (4.9 mg/L) were correlated positively with percent agriculture (R2 = 0.56) and negatively with percent forest (R2 = 0.60). Concentrations were greater (p = 0.0001) in the well-drained upland (WDU) hydrogeomorphic region than in poorly drained upland (PDU), reflecting increased denitrification and reduced agricultural land use intensity in the PDU landscape due to the prevalence of hydric soils. Atrazine and metolachlor concentrations (mean 0.29 μg/L and 0.19 μg/L) were also greater (p = 0.0001) in WDU subwatersheds than in PDU subwatersheds. Springtime herbicide concentrations exhibited a strong, positive correlation (R2 = 0.90) with percent forest in the WDU subwatersheds but not in the PDU subwatersheds. In addition, forested riparian stream buffers in the WDU were more prevalent than in the PDU where forested patches are typically not located near streams, suggesting an alternative delivery mechanism whereby volatilized herbicides are captured by the riparian forest canopy and subsequently washed off during rainfall. Orthophosphate, CIAT (6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine), CEAT (6-chloro-N-ethyl-1,3,5-triazine-2,4-diamine), and

  12. Tidal Pumping and the Fate of Wastewater Nutrients in the Florida Keys

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Kump, L.

    2003-12-01

    Nutrient-rich wastewater from injection wells in the Florida Keys has been implicated in the eutrophication of coastal waters and, through long-distance subsurface transport, the degradation of offshore coral reefs. The flowpath of such wastewater in the saline aquifer system of the Keys is determined not only by the local geology, but more significantly by the differential hydraulic head applied by the two distinct tidal signals on either side of the island chain. While the Atlantic Ocean to the south exhibits typical oceanic tides, the constrained Florida Bay tidal signal to the north is significantly damped as compared to the oceanic tide and has a higher mean value. This system of tides presumably results in a reversing groundwater flow regime in which wastewater plumes are tidally pumped across the Keys with net flow to the Atlantic Ocean \\(the "tidal pumping mechanism" of Halley et al., 1997, Develop. Sedimentol. 54: 217-248\\). We have performed a quantitative analysis of the tidal pumping mechanism using FEFLOW, a commercially available 3-dimensional finite-element model designed to simulate variable density flow and reactive contaminant transport. We find that the tidal-pumping mechanism does indeed influence the transport of wastewater plumes in the subsurface. However, the buoyancy of the low-salinity wastewater plume dominates transport when injection volumes are large, bringing wastewater to the surface in the near-vicinity of injection and discharging it to nearby canals or coastal zones. Discharging wastewaters have variably reduced nutrient loads depending on travel times (for nitrate) and pathlengths (for phosphate) because of biogeochemical transformation in the subsurface (denitrification and adsorption/precipitation, respectively). The interface between nitrate-rich wastewaters and sulfide-rich groundwaters may be supporting a chemoautotrophic bacterial community in the bedrock of the Florida Keys.

  13. Fate of nutrient enrichment on continental shelves as indicated by the C/N content of bottom sediments

    SciTech Connect

    Walsh, J.J.; Premuzic, E.T.; Whitledge, T.E.

    1980-01-01

    The trajectory and fate of particulate matter are poorly understood processes in a spatially heterogeneous coastal ocean. Parameterization of appropriate hydrodynamics for a quantitative description of these loss processes must thus await definition of the important biological time and space scales. Since the bottom sands tend to record the history of the water column, we have selected the C/N content of shelf sediments as a possible tracer of (1) sites of nutrient introduction to the shelf by various physical mechanisms, of (2) areas of subsequent downstream utilization by the phytoplankton, and of (3) where loss of particulate matter might occur from the water column. An analysis is made of the C/N patterns of bottom surface sediments in relation to the nitrogen sources from upwelling, river runoff, and tidal mixing on the Peruvian, west African, Amazonian, Gulf of Mexico, eastern US, Bering, and North Sea shelves in an initial attempt to proscribe the particle trajectories of organic matter on the continental shelf.

  14. Factors affecting plant growth in membrane nutrient delivery

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.

    1990-01-01

    The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.

  15. Fate and Transport of Agricultural Nutrients in Macro-porous Soils

    NASA Astrophysics Data System (ADS)

    Royem, A. A.; Walter, M. T.

    2010-12-01

    The major objective of this study is to address water quality problems associated with application of liquid manure to subsurface-drained agricultural lands. There are over 600 large and medium sized confined animal feeding operations (CAFOs) in New York, most of which utilize land application to manage this waste stream. Due to the regions shallow soil and humid weather, most fields have been equipped with tile drainage. The concern is that handling the manure is a liquefied state may enhance the likelihood of contamination of the tile drainage discharge and its potential impacts on downstream water quality. Laboratory studies were used to investigate how manure liquidity (percent solids) affects the transport of manure constituents through varying macropore sizes in the soil. Soil columns of 3 different macropore sizes (0, 1, 3 millimeter) were constructed, subjected to simulated rainfall over several weeks, and effluent was collected from both the soil matrix and macropores separately. Effluent samples were analyzed for soluble reactive phosphorus (SRP). As expected, the preliminary results show enhanced SRP transport through macropores with decreasing percent solids (i.e., more liquidy manure). The implications at field and watershed scales are still being investigated.

  16. Mineral-Water Interface Processes Affecting Uranium Fate in Contaminated Sediments

    NASA Astrophysics Data System (ADS)

    Catalano, J. G.

    2011-12-01

    Widespread uranium contamination of soil, sediments, and groundwater systems has resulted from mining activities, nuclear weapon production, and energy generation. The fate and transport of uranium in such systems is strongly affected by geochemical processes occurring at mineral-water interfaces. I will present a summary of the mineral-water interface processes found to affect uranium fate in example contaminated sediments at the U.S. Department of Energy's Hanford sites and in related model systems. Processes occurring under oxic conditions will be the primary focus of this talk as under these conditions uranium is most mobile and thus presents the greatest hazard. Three dominant solid-phase uranium species are observed in contaminated soil and sediments at the Hanford site: uranyl silicates, uranyl phosphates, and uranyl adsorbed to clays and iron oxides. In deep sediments, uranyl silicates are found in microfractures in feldspar grains, likely because slow diffusion in such fractures maintains a high silicate activity. Such silicates are also found in waste-impacted shallow sediments and soil; waste fluids or evaporative processes may have generated the silicate activity needed to produce such phases. Uranyl phosphates are less abundant, occurring primarily in shallow sediments exposed to P-bearing waste fluids. However, remediation approaches under consideration may produce substantial quantities of uranyl phosphates in the future. Adsorbed uranyl is dispersed throughout contaminated soils and shallow sediments and likely has the greatest potential for remobilization. Analogue studies show that precipitation of uranyl phosphates is rapid when such phases are supersaturated and that both homogeneous and heterogeneous nucleation may occur. Specific adsorption of uranyl to minerals is strongly affected by the presence of complexation anions. Carbonate suppresses uranyl adsorption but also forms uranyl-carbonate ternary surface complexes. At conditions below

  17. Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting

    PubMed Central

    Shen, Yu-I; Abaci, Hasan E.; Krupsi, Yoni; Weng, Lien-Chun; Burdick, Jason A.; Gerecht, Sharon

    2014-01-01

    Three-dimensional (3D) tissue culture models may recapitulate aspects of the tumorigenic microenvironment in vivo, enabling the study of cancer progression in vitro. Both hypoxia and matrix stiffness are known to regulate tumor growth. Using a modular culture system employing an acrylated hyaluronic acid (AHA) hydrogel, three hydrogel matrices with distinctive degrees of viscoelasticity — soft (78±16 Pa), medium (309± 57 Pa), and stiff (596± 73 Pa) — were generated using the same concentration of adhesion ligands. Oxygen levels within the hydrogel in atmospheric (21 %), hypoxic (5 %), and severely hypoxic (1 %) conditions were assessed with a mathematical model. HT1080 fibrosarcoma cells, encapsulated within the AHA hydrogels in high densities, generated nonuniform oxygen distributions, while lower cell densities resulted in more uniform oxygen distributions in the atmospheric and hypoxic environments. When we examined how varying viscoelasticity in atmospheric and hypoxic environments affects cell cycles and the expression of BNIP3 and BNIP3L (autophagy and apoptosis genes), and GLUT-1 (a glucose transport gene), we observed that HT1080 cells in 3D hydrogel adapted better to hypoxic conditions than those in a Petri dish, with no obvious correlation to matrix viscoelasticity, by recovering rapidly from possible autophagy/apoptotic events and alternating metabolism mechanisms. Further, we examined how HT1080 cells cultured in varying viscoelasticity and oxygen tension conditions affected endothelial sprouting and invasion. We observed that increased matrix stiffness reduced endothelial sprouting and invasion in atmospheric conditions; however, we observed increased endothelial sprouting and invasion under hypoxia at all levels of matrix stiffness with the upregulation of vascular endothelial growth factor (VEGF) and angiopoeitin-1 (ANG-1). Overall, HT1080 cells encapsulated in the AHA hydrogels under hypoxic stress recovered better from apoptosis and

  18. A mesocosm experiment of suspended particulate matter dynamics in nutrient- and biomass-affected waters.

    PubMed

    Tang, Fiona H M; Maggi, Federico

    2016-02-01

    An experimental study was conducted to test the hypothesis that the biomass growing after an increase in available nutrient in an aquatic ecosystem affects the flocculation dynamics of suspended particulate matter (SPM). The experiment was carried out in a settling column equipped with a turbulence generating system, a water quality monitoring system, and an automated μPIV system to acquire micro photographs of SPM. Three SPM types were tested combinatorially at five turbulence shear rates, three nutrient concentrations, and three mineral concentrations. Analyses of experimental data showed that nutrient availability together with the presence of biomass increased the SPM size by about 60% at low shear as compared to nutrient- and biomass-free conditions; a lower increase was observed at higher shears. In contrast, only 2% lower fractal (capacity) dimension and nearly invariant settling velocity were observed than in nutrient- and biomass-free conditions. Likewise, SPM size and capacity dimension were found to be insensitive to the SPM concentration. Although limited to nearly homogeneous mineral mixes (kaolinite), these experimental findings not only reject the hypothesis that SPM in natural waters can be dealt with as purely mineral systems in all instances, but also anticipate that SPM dynamics in natural waters increasingly exposed to the threat of anthropogenic nutrient discharge would lead to an increased advective flow of adsorbed chemicals and organic carbon. PMID:26641013

  19. Solubility and Plant Availability of Nutrients as Affected by Soil Drainage Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn growth is affected due to oxygen deficiency and root death in a perched water table (PWT). The study objective was to evaluate a surface application of FGD gypsum (FGDG) and glyphosate (GLY) on nutrient uptake in corn with different drainage conditions. The experiment was conducted in greenhous...

  20. Providing lipid-based nutrient supplements does not affect developmental milestones among Malawian children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective was to assess whether using lipid-based nutrient supplements (LNS) to complement the diets of infants and young children affected when they achieved selected developmental milestones. In rural Malawi, 840 6-month-old healthy infants were enrolled to a randomised trial. Control particip...

  1. Manure Injection Affects the Fate of Pirlimycin in Surface Runoff and Soil.

    PubMed

    Kulesza, Stephanie B; Maguire, Rory O; Xia, Kang; Cushman, Julia; Knowlton, Katharine; Ray, Partha

    2016-03-01

    Antibiotics used in animal agriculture are of increasing environmental concern due to the potential for increased antibiotic resistance after land application of manure. Manure application technology may affect the environmental behavior of these antibiotics. Therefore, rainfall simulations were conducted on plots receiving three manure treatments (surface application, subsurface injection, and no manure control) to determine the fate and transport of pirlimycin, an antibiotic commonly used in dairy production. Rainfall simulations were conducted immediately and 7 d after application of dairy manure spiked with 128 ng g (wet weight) pirlimycin. Soil samples were collected from all plots at two depths (0-5 and 5-20 cm). For injection plots, soil was collected from injection slits and between slits. Pirlimycin concentrations were higher in soil within the injection slits compared with surface application plots at 0 and 7 d. Pirlimycin concentrations in the 0- to 5-cm depth decreased by 30, 55, and 87% in the injection slit, between injection slits, and surface application plots 7 d after application. Pirlimycin concentrations were 106 ng g in sediment and 4.67 ng mL in water from the surface application plots, which were 21 and 32 times that of the injection plots, respectively. After 7 d, pirlimycin levels in runoff sediment and water decreased 80 to 98%. Surface application resulted in six and three times higher pirlimycin concentrations in water and sediment than injection. These results indicate that pirlimycin is most susceptible to loss immediately after manure application. Thus, injection could be considered a best management practice to prevent loss of antibiotics in surface runoff. PMID:27065398

  2. Fate of arsenic, phosphate and ammonium plumes in a coastal aquifer affected by saltwater intrusion.

    PubMed

    Colombani, N; Mastrocicco, M; Prommer, H; Sbarbati, C; Petitta, M

    2015-08-01

    A severe groundwater contamination with extensive plumes of arsenic, phosphate and ammonium was found in a coastal aquifer beneath a former fertilizer production plant. The implementation of an active groundwater remediation strategy, based on a comprehensive pump and treat scheme, now prevents the migration of the dissolved contaminants into the marine environment. However, due to the site's proximity to the coastline, a seawater wedge was induced by the pumping scheme. Additionally the groundwater flow and salinity patterns were also strongly affected by leakage from the site's sewer system and from a seawater-fed cooling canal. The objective of this study was to elucidate the fate of arsenic and its co-contaminants over the site's history under the complex, coupled hydrodynamic and geochemical conditions that prevail at the site. A detailed geochemical characterisation of samples from sediment cores and hydrochemical data provided valuable high-resolution information. The obtained data were used to develop various conceptual models and to constrain the development and calibration of a reactive transport model. The reactive transport simulations were performed for a sub-domain (two-dimensional transect) of an earlier developed three-dimensional flow and variable density solute transport model. The results suggest that in the upper sub-oxic zone the influx of oxygenated water promoted As attenuation via co-precipitation with Al and Fe oxides and copper hydroxides. In contrast, in the deeper aquifer zone, iron reduction, associated with the release of adsorbed As and the dissolution of As bearing phases, provided and still provides to date a persistent source for groundwater pollution. The presented monitoring and modelling approach could be broadly applied to coastal polluted sites by complex contaminant mixture containing As. PMID:26093106

  3. Misreporting of dietary intake affects estimated nutrient intakes in low-income Spanish-speaking women.

    PubMed

    Banna, Jinan C; Fialkowski, Marie K; Townsend, Marilyn S

    2015-07-01

    Misreporting of dietary intake affects the validity of data collected and conclusions drawn in studies exploring diet and health outcomes. One consequence of misreporting is biological implausibility. Little is known regarding how accounting for biological implausibility of reported intake affects nutrient intake estimates in Hispanics, a rapidly growing demographic in the United States. Our study explores the effect of accounting for plausibility on nutrient intake estimates in a sample of Mexican-American women in northern California in 2008. Nutrient intakes are compared with Dietary Reference Intake recommendations, and intakes of Mexican-American women in a national survey are presented as a reference. Eighty-two women provided three 24-hour recalls. Reported energy intakes were classified as biologically plausible or implausible using the reported energy intakes to total energy expenditure cutoff of <0.76 or >1.24, with low-active physical activity levels used to estimate total energy expenditure. Differences in the means of nutrient intakes between implausible (n=36) and plausible (n=46) reporters of energy intake were examined by bivariate linear regression. Estimated energy, protein, cholesterol, dietary fiber, and vitamin E intakes were significantly higher in plausible reporters than implausible. There was a significant difference between the proportions of plausible vs implausible reporters meeting recommendations for several nutrients, with a larger proportion of plausible reporters meeting recommendations. Further research related to misreporting in Hispanic populations is warranted to explore the causes and effects of misreporting in studies measuring dietary intake, as well as actions to be taken to prevent or account for this issue. PMID:25132121

  4. Misreporting of Dietary Intake Affects Estimated Nutrient Intakes in Low-Income Spanish-Speaking Women

    PubMed Central

    Banna, Jinan C.; Fialkowski, Marie K.; Townsend, Marilyn S.

    2015-01-01

    Misreporting of dietary intake affects the validity of data collected and conclusions drawn in studies exploring diet and health outcomes. One consequence of misreporting is biological implausibility. Little is known regarding how accounting for biological implausibility of reported intake affects nutrient intake estimates in Hispanics, a rapidly growing demographic in the United States. Our study explores the effect of accounting for plausibility on nutrient intake estimates in a sample of Mexican-American women in northern California in 2008. Nutrient intakes are compared with Dietary Reference Intake recommendations, and intakes of Mexican-American women in a national survey are presented as a reference. Eighty-two women provided three 24-hour recalls. Reported energy intakes were classified as biologically plausible or implausible using the reported energy intakes to total energy expenditure cutoff of <0.76 or >1.24, with low-active physical activity levels used to estimate total energy expenditure. Differences in the means of nutrient intakes between implausible (n=36) and plausible (n=46) reporters of energy intake were examined by bivariate linear regression. Estimated energy, protein, cholesterol, dietary fiber, and vitamin E intakes were significantly higher in plausible reporters than implausible. There was a significant difference between the proportions of plausible vs implausible reporters meeting recommendations for several nutrients, with a larger proportion of plausible reporters meeting recommendations. Further research related to misreporting in Hispanic populations is warranted to explore the causes and effects of misreporting in studies measuring dietary intake, as well as actions to be taken to prevent or account for this issue. PMID:25132121

  5. Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low nutrient low chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia)

    NASA Astrophysics Data System (ADS)

    Bonnet, S.; Berthelot, H.; Turk-Kubo, K.; Fawcett, S.; Rahav, E.; l'Helguen, S.; Berman-Frank, I.

    2015-12-01

    N2 fixation rates were measured daily in large (~ 50 m3) mesocosms deployed in the tropical South West Pacific coastal ocean (New Caledonia) to investigate the spatial and temporal dynamics of diazotrophy and the fate of diazotroph-derived nitrogen (DDN) in a low nutrient, low chlorophyll ecosystem. The mesocosms were intentionally fertilized with ~ 0.8 μM dissolved inorganic phosphorus (DIP) to stimulate diazotrophy. Bulk N2 fixation rates were replicable between the three mesocosms, averaged 18.5 ± 1.1 nmol N L-1 d-1 over the 23 days, and increased by a factor of two during the second half of the experiment (days 15 to 23) to reach 27.3 ± 1.0 nmol N L-1 d-1. These rates are higher than the upper range reported for the global ocean, indicating that the waters surrounding New Caledonia are particularly favourable for N2 fixation. During the 23 days of the experiment, N2 fixation rates were positively correlated with seawater temperature, primary production, bacterial production, standing stocks of particulate organic carbon, nitrogen and phosphorus, and alkaline phosphatase activity, and negatively correlated with DIP concentrations, DIP turnover time, nitrate, and dissolved organic nitrogen and phosphorus concentrations. The fate of DDN was investigated during the bloom of the unicellular diazotroph, UCYN-C, that occurred during the second half of the experiment. Quantification of diazotrophs in the sediment traps indicates that ~ 10 % of UCYN-C from the water column were exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. This export was mainly due to the aggregation of small (5.7 ± 0.8 μm) UCYN-C cells into large (100-500 μm) aggregates. During the same time period, a DDN transfer experiment based on high-resolution nanometer scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labelling revealed that 16 ± 6 % of the DDN was released to the dissolved pool

  6. Identification and Quantification of Processes Affecting the Fate of Ethanol-Blended Fuel in the Subsurface

    NASA Astrophysics Data System (ADS)

    Devries, J. M.; Mayer, K. U.

    2015-12-01

    At present, the oil and gas industry distributes gasoline with an ethanol content of up to 10% (E10) to the consumer. However, ethanol advocates are promoting gasoline blends with higher ethanol content to be introduced into the market (e.g., E20, corresponding to an ethanol content of 20%). The likelihood of unintended fuel releases with elevated ethanol concentrations through surficial spills or from underground storage systems will therefore increase. A particular concern is the increased rate of CH4 and CO2 production as the spill biodegrades, which is believed to be associated with the increased ethanol content in the fuel. Consequently, high gas generation rates associated with ethanol-blended fuels may amplify the risk of vapor intrusion of CH4 and BTEX into basements or other subsurface structures that may be nearby. A comprehensive and comparative study on the fate of higher concentration ethanol-blended fuels in the subsurface has not been conducted to date. The present study focuses on determining the fate of ethanol blended fuels in the subsurface through a series of controlled and instrumented laboratory column experiments. The experiments compare the behavior of pure gasoline with that of ethanol-blended fuels for different soil types (sand and silt) in columns 2 meters tall and 30cm in diameter. The column experiments focus on the quantification of gas generation by volatilization and biodegradation and 1-D vertical fate and transport of CO2, CH4, benzene and toluene through the vadose zone. The fuel blends have been injected into the lower third of the columns and gas composition and fluxes within the column are being monitored over time. The goal of this study is to contribute to the scientific foundation that will allow gauging the level of risk and the need for remediation at fuel spill sites with higher ethanol blends.

  7. Assessing the fate of nutrients and carbon in the bioenergy chain through the modeling of biomass growth and conversion.

    PubMed

    François, Jessica; Fortin, Mathieu; Patisson, Fabrice; Dufour, Anthony

    2014-12-01

    A forest growth model was coupled to a model of combined heat and power (CHP) production in a gasification plant developed in Aspen Plus. For a given production, this integrated forest-to-energy model made it possible to predict the annual flows in wood biomass, carbon, and nutrients, including N, S, P, and K, from the forest to the air emissions (NOx, SOx, PAH, etc.) and ash flows. We simulated the bioenergy potential of pure even-aged high-forest stands of European beech, an abundant forest type in Northeastern France. Two forest management practices were studied, a standard-rotation and a shorter-rotation scenario, along with two wood utilizations: with or without fine woody debris (FWD) harvesting. FWD harvesting tended to reduce the forested area required to supply the CHP by 15–22% since larger amounts of energy wood were available for the CHP process, especially in the short-rotation scenario. Because less biomass was harvested, the short-rotation scenario with FWD decreased the nutrient exports per hectare and year by 4–21% compared to standard practices but increased the amount of N, S, and P in the CHP process by 2–9%. This increase in the input nutrient flows had direct consequences on the inorganic air emissions, thus leading to additional NOx and SO2 emissions. This model is a valuable tool for assessing the life cycle inventories of the entire bioenergy chain. PMID:25372499

  8. Common genetic polymorphisms affect the human requirement for the nutrient choline

    PubMed Central

    da Costa, Kerry-Ann; Kozyreva, Olga G.; Song, Jiannan; Galanko, Joseph A.; Fischer, Leslie M.; Zeisel, Steven H.

    2006-01-01

    Humans eating diets deficient in the essential nutrient choline can develop organ dysfunction. We hypothesized that common single nucleotide polymorphisms (SNPs) in genes involved in choline metabolism influence the dietary requirement of this nutrient. Fifty-seven humans were fed a low choline diet until they developed organ dysfunction or for up to 42 days. We tested DNA SNPs for allelic association with susceptibility to developing organ dysfunction associated with choline deficiency. We identified an SNP in the promoter region of the phosphatidylethanolamine N-methyltransferase gene (PEMT; −744 G→C; rs12325817) for which 18 of 23 carriers of the C allele (78%) developed organ dysfunction when fed a low choline diet (odds ratio 25, P=0.002). The first of two SNPs in the coding region of the choline dehydrogenase gene (CHDH; +318 A→C; rs9001) had a protective effect on susceptibility to choline deficiency, while a second CHDH variant (+432 G→T; rs12676) was associated with increased susceptibility to choline deficiency. A SNP in the PEMT coding region (+5465 G→A; rs7946) and a betaine:homocysteine methyl-transferase (BHMT) SNP (+742 G→A; rs3733890) were not associated with susceptibility to choline deficiency. Identification of common polymorphisms that affect dietary requirements for choline could enable us to identify individuals for whom we need to assure adequate dietary choline intake.—da Costa, K.-A., Kozyreva, O. G., Song, J., Galanko, J. A., Fischer, L. M., Zeisel, S. H. Common genetic polymorphisms affect the human requirement for the nutrient choline. PMID:16816108

  9. Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo

    PubMed Central

    Onjiko, Rosemary M.; Moody, Sally A.; Nemes, Peter

    2015-01-01

    Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells. Dissection of three different cell types with distinct tissue fates from 16-cell embryos of the South African clawed frog (Xenopus laevis) and microextraction of their metabolomes enabled the identification of 40 metabolites that anchored interconnected central metabolic networks. Relative quantitation revealed that several metabolites were differentially active between the cell types in the wild-type, unperturbed embryos. Altering postfertilization cytoplasmic movements that perturb dorsal development confirmed that these three cells have characteristic small-molecular activity already at cleavage stages as a result of cell type and not differences in pigmentation, yolk content, cell size, or position in the embryo. Changing the metabolite concentration caused changes in cell movements at gastrulation that also altered the tissue fates of these cells, demonstrating that the metabolome affects cell phenotypes in the embryo. PMID:25941375

  10. Nutrient supplementation may adversely affect maternal oral health--a randomised controlled trial in rural Malawi.

    PubMed

    Harjunmaa, Ulla; Järnstedt, Jorma; Dewey, Kathryn G; Ashorn, Ulla; Maleta, Kenneth; Vosti, Stephen A; Ashorn, Per

    2016-01-01

    Nutritional supplementation during pregnancy is increasingly recommended especially in low-resource settings, but its oral health impacts have not been studied. Our aim was to examine whether supplementation with multiple micronutrients (MMN) or small-quantity lipid-based nutrient supplements affects dental caries development or periodontal health in a rural Malawian population. The study was embedded in a controlled iLiNS-DYAD trial that enrolled 1391 pregnant women <20 gestation weeks. Women were provided with one daily iron-folic acid capsule (IFA), one capsule with 18 micronutrients (MMN) or one sachet of lipid-based nutrient supplements (LNS) containing protein, carbohydrates, essential fatty acids and 21 micronutrients. Oral examination of 1024 participants was conducted and panoramic X-ray taken within 6 weeks after delivery. The supplement groups were similar at baseline in average socio-economic, nutritional and health status. At the end of the intervention, the prevalence of caries was 56.7%, 69.1% and 63.3% (P = 0.004), and periodontitis 34.9%, 29.8% and 31.2% (P = 0.338) in the IFA, MMN and LNS groups, respectively. Compared with the IFA group, women in the MMN group had 0.60 (0.18-1.02) and in the LNS group 0.59 (0.17-1.01) higher mean number of caries lesions. In the absence of baseline oral health data, firm conclusions on causality cannot be drawn. However, although not confirmatory, the findings are consistent with a possibility that provision of MMN or LNS may have increased the caries incidence in this target population. Because of the potential public health impacts, further research on the association between gestational nutrient interventions and oral health in low-income settings is needed. PMID:26194850

  11. Heat Shock Protein 70.1 (Hsp70.1) Affects Neuronal Cell Fate by Regulating Lysosomal Acid Sphingomyelinase*

    PubMed Central

    Zhu, Hong; Yoshimoto, Tanihiro; Yamashima, Tetsumori

    2014-01-01

    The inducible expression of heat shock protein 70.1 (Hsp70.1) plays cytoprotective roles in its molecular chaperone function. Binding of Hsp70 to an endolysosomal phospholipid, bis(monoacylglycero)phosphate (BMP), has been recently shown to stabilize lysosomal membranes by enhancing acid sphingomyelinase (ASM) activity in cancer cells. Using the monkey experimental paradigm, we have reported that calpain-mediated cleavage of oxidized Hsp70.1 causes neurodegeneration in the hippocampal cornu ammonis 1 (CA1), whereas expression of Hsp70.1 in the motor cortex without calpain activation contributes to neuroprotection. However, the molecular mechanisms of the lysosomal destabilization/stabilization determining neuronal cell fate have not been elucidated. To elucidate whether regulation of lysosomal ASM could affect the neuronal fate, we analyzed Hsp70.1-BMP binding and ASM activity by comparing the motor cortex and the CA1. We show that Hsp70.1 being localized at the lysosomal membrane, lysosomal lipid BMP levels, and the lipid binding domain of Hsp70.1 are crucial for Hsp70.1-BMP binding. In the postischemic motor cortex, Hsp70.1 being localized at the lysosomal membrane could bind to BMP without calpain activation and decreased BMP levels, resulting in increasing ASM activity and lysosomal stability. However, in the postischemic CA1, calpain activation and a concomitant decrease in the lysosomal membrane localization of Hsp70.1 and BMP levels may diminish Hsp70.1-BMP binding, resulting in decreased ASM activity and lysosomal rupture with leakage of cathepsin B into the cytosol. A TUNEL assay revealed the differential neuronal vulnerability between the CA1 and the motor cortex. These results suggest that regulation of ASM activation in vivo by Hsp70.1-BMP affects lysosomal stability and neuronal survival or death after ischemia/reperfusion. PMID:25074941

  12. Nutrient Deprivation Affects Salmonella Invasion and Its Interaction with the Gastrointestinal Microbiota.

    PubMed

    Yurist-Doutsch, Sophie; Arrieta, Marie-Claire; Tupin, Audrey; Valdez, Yanet; Antunes, L Caetano M; Yen, Ryan; Finlay, B Brett

    2016-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a foodborne enteric pathogen and a major cause of gastroenteritis in humans. It is known that molecules derived from the human fecal microbiota downregulate S. Typhimurium virulence gene expression and induce a starvation-like response. In this study, S. Typhimurium was cultured in minimal media to mimic starvation conditions such as that experienced by S. Typhimurium in the human intestinal tract, and the pathogen's virulence in vitro and in vivo was measured. S. Typhimurium cultured in minimal media displayed a reduced ability to invade human epithelial cells in a manner that was at least partially independent of the Salmonella Pathogenicity Island 1 (SPI-1) type III secretion system. Nutrient deprivation did not, however, alter the ability of S. Typhimurium to replicate and survive inside epithelial cells. In a murine model of S. Typhimurium-induced gastroenteritis, prior cultivation in minimal media did not alter the pathogen's ability to colonize mice, nor did it affect levels of gastrointestinal inflammation. Upon examining the post-infection fecal gastrointestinal microbiota, we found that specifically in the 129Sv/ImJ murine strain S. Typhimurium cultured in minimal media induced differential microbiota compositional shifts compared to that of S. Typhimurium cultured in rich media. Together these findings demonstrate that S. Typhimurium remains a potent pathogen even in the face of nutritional deprivation, but nevertheless that nutrient deprivation encountered in this environment elicits significant changes in the bacterium genetic programme, as well as its capacity to alter host microbiota composition. PMID:27437699

  13. Toxic metal interactions affect the bioaccumulation and dietary intake of macro- and micro-nutrients.

    PubMed

    Khan, Anwarzeb; Khan, Sardar; Alam, Mehboob; Khan, Muhammad Amjad; Aamir, Muhammad; Qamar, Zahir; Ur Rehman, Zahir; Perveen, Sajida

    2016-03-01

    The present study was conducted to evaluate the effects of heavy metals (cadmium (Cd), lead (Pb) and Cd-Pb mix) on bioaccumulation of different nutrients. Three plant species including potato, tomato and lettuce were grown in pots containing soil contaminated with Cd, Pb and Cd-Pb mix at four different levels. The edible portions of each plant were analysed for Cd, Pb and different macro- and micro-nutrients including protein, vitamin C, nitrogen (N), phosphorous (P), potassium (K), iron (Fe), manganese (Mn), calcium (Ca) and magnesium (Mg). Results indicated significant variations in selected elemental concentrations in all the three plants grown in different treatments. The projected daily dietary intake values of selected metals were significant (P < 0.001) for Fe, Mn, Ca and Mg but not significant for protein, vitamin C, N and P. The elemental contribution to Recommended Dietary Allowance (RDA) was significant for Mn. Similarly, Fe and Mg also showed substantial contribution to RDA, while Ca, N, P, K, protein and vitamin C showed the minimal contribution for different age groups. This study suggests that vegetables cultivated on Cd and Pb contaminated soil may significantly affect their quality, and the consumption of such vegetables may result in substantial negative effects on nutritional composition of the consumer body. Long term and continuous use of contaminated vegetables may result in malnutrition. PMID:26714294

  14. The fate of arsenic in sediments formed at a river confluence affected by acid mine drainage

    NASA Astrophysics Data System (ADS)

    Guerra, P. A.; Pasten, P. A.; Pizarro, G.; Simonson, K.; Escauriaza, C. R.; Gonzalez, C.; Bonilla, C.

    2012-12-01

    Fluvial confluences receiving acid mine drainage may play a critical role in a watershed as a suite of interactions between chemistry and hydrodynamics occur, determining the fate of toxic contaminants like arsenic. Solid reactive phases of iron and/or aluminum oxi-hydroxides may form or transform, ranging from iron oxide nanoparticles that aggregate and form floccules that are transported in the suspended load up to gravel and arsenic-rich rock coatings. In order to further understand the role of reactive fluvial confluences, we have studied the mixing between the Caracarani River (flow=170-640 L/s, pH 8, conductivity 1.5 mS/cm, total As<0.1 mg/L and total Fe< 5 mg/L) and the Azufre River (flow=45-245 L/s, pH<2, conductivity > 10 mS/cm, total As>2 mg/L, total Fe=35-125 mg/L), located in the Lluta watershed in northern Chile. This site is an excellent natural laboratory located in a water-scarce area, where the future construction of a dam has prompted the attention of decision makers and scientists interested in weighing the risks derived by the accumulation of arsenic-rich sediments. Suspended sediments (> 0.45 μm), riverbed sediments, and coated rocks were collected upstream and downstream from the confluence. Suspended sediments >0.45 μm and riverbed sediments were analyzed by total reflection x-ray fluorescence for metals, while coated river bed rocks were analyzed by chemical extractions and a semi-quantitative approach through portable x-ray fluorescence. Water from the Caracarani and Azufre rivers were mixed in the laboratory at different ratios and mixing velocities aiming to characterize the effect of the chemical-hydrodynamic environment where arsenic solids were formed at different locations in the confluence. Despite a wide range of iron and arsenic concentrations in the suspended sediments from the field (As=1037 ± 1372 mg/kg, Fe=21.0 ± 24.5 g/kg), we found a rather narrow As/Fe ratio, increasing from 36.5 to 55.2 mgAs/kgFe when the bulk water p

  15. Review of evidence that posttransplantation psychiatric treatment commonly affects prolactin levels and thereby influences graft fate.

    PubMed

    Foley, Kevin F; Kast, Richard E

    2006-01-01

    Delirium, depression and other psychiatric difficulties are commonly encountered by posttransplantation patients, and antipsychotic medicines are frequently used to treat these difficulties. This article reviews previous research data concerning the immunological effects of these medicines, with particular focus on the consequences of prolactin elevation. Unproven but of concern is that these effects may influence graft fate. Older antipsychotic medicines such as haloperidol and chlorpromazine have a high likelihood of elevating prolactin. Prolactin is an immunologically active molecule generally promoting bone marrow function. This may be of benefit post-stem-cell transplant, helping engraftment, but could further rejection of solid-organ transplants. Elevated prolactin is implicated in the facilitation of graft-versus-host disease. Aripiprazole is the antipsychotic medicine least likely to increase prolactin (and may actually decrease prolactin); risperidone, the most likely to increase prolactin. Olanzapine, quetiapine and ziprazadone are antipsychotic medicines with a lower likelihood of elevating prolactin. Older ("neuroleptic") antipsychotics, such as chlorpromazine, droperidol and haloperidol, perphenazine and many others, are likely to elevate serum prolactin. Among antidepressants, most serotonin reuptake inhibitors, with the exception of sertraline, can slightly elevate prolactin. The atypical (i.e., alone in their class) antidepressants bupropion and mirtazapine are prolactin neutral. The immunological consequences of psychiatric medicines should be considered when treating transplant patients for delirium, depression and thought disorders; in addition, if elevation of prolactin is thought to be of immunological importance during psychiatric treatment, then it should be monitored and treated. The dopamine agonists used to treat Parkinson's disease--bromocriptine, pergolide, pramipexole, ropinerole--usually reverse antipsychotic-induced prolactin

  16. Processes affecting the fate of monoaromatic hydrocarbons in an aquifer contaminated by crude oil

    USGS Publications Warehouse

    Eganhouse, R.P.; Dorsey, T.F.; Phinney, C.S.; Westcott, A.M.

    1996-01-01

    Crude oil spilled from a subsurface pipeline in north-central Minnesota has dissolved in the groundwater, resulting in the formation of a plume of aliphatic, aromatic, and alicyclic hydrocarbons. Comparison of paired oil and groundwater samples collected along the central axis of the residual oil body shows that the trailing edge of the oil is depleted in the more soluble aromatic hydrocarbons (e.g., benzene, toluene, etc.) when compared with the leading edge. At the same time, concentrations of monoaromatic hydrocarbons in groundwater beneath the oil increase as the water moves toward the leading edge of the oil. Immediately downgradient from the leading edge of the oil body, certain aromatic hydrocarbons (e.g., benzene) are found at concentrations near those expected of a system at equilibrium, and the concentrations exhibit little variation over time (???8-20%). Other compounds (e.g., toluene) appear to be undersaturated, and their concentrations show considerably more temporal variation (???20-130%). The former are persistent within the anoxic zone downgradient from the oil, whereas concentrations of the latter decrease rapidly. Together, these observations suggest that the volatile hydrocarbon composition of the anoxic groundwater near the oil body is controlled by a balance between dissolution and removal rates with only the most persistent compounds reaching saturation. Examination of the distributions of homologous series and isomeric assemblages of alkylbenzenes reveals that microbial degradation is the dominant process controlling the fate of these compounds once groundwater moves away from the oil. For all but the most persistent compounds, the distal boundary of the plume at the water table extends no more than 10-15 m down-gradient from the oxic/anoxic transition zone. Thus, transport of the monoaromatic hydrocarbons is limited by redox conditions that are tightly coupled to biological degradation processes.

  17. Fate of dissolved toluene during steady infiltration throughout unsaturated soil: II. Biotransformation under nutrient-limited conditions

    SciTech Connect

    Allen-King, R.M.; Gillham, R.W.; Barker, J.F.; Sudicky, E.A.

    1996-03-01

    Biotransformation rates for dissolved toluene in unsaturated sandy soil were determined in dynamic column infiltration experiments. Transformation rates under N-limited conditions and in the presence of sufficient oxygen were 8 to 35 mg (kg d){sup {minus}1} and appeared to follow zero order kinetics. Toluene-degrading microoganisms were demonstrated to increase significantly in both activity and numbers with exposure to toluene. Relatively low CO{sub 2} production to oxygen consumption ratios were observed during these experiments suggesting incomplete toluene mineralization. Over the ranges tested, water flux (20-80 cm d{sup {minus}1}) and toluene concentration (4-46 mg L{sup {minus}1}) appeared to have a secondary control on rate relative to nutrient and/or oxygen limitations. Under conditions where the oxygen concentration was near zero due to removal of toluene degradation in the soil columns, the transformation rate was sufficiently low to be insignificant relative to column residence time. 32 refs., 5 figs., 4 tabs.

  18. Dietary phosphate affects food selection, post-ingestive phosphorus fate, and performance of a polyphagous herbivore.

    PubMed

    Cease, Arianne J; Fay, Michelle; Elser, James J; Harrison, Jon F

    2016-01-01

    Comparisons of the carbon, nitrogen and phosphorus (P) content of plants and insect herbivores suggests that P limitation and herbivore foraging to balance P intake could be common. However, the lack of synthetic diets for testing the effects of lower ranges of dietary P has been a major impediment to experimental assessment of the ecological importance of, and physiological responses to, P limitation for terrestrial herbivores. We manipulated dietary P content (%P) over its observed range in terrestrial foliage using artificial diets containing near-optimal content of other nutrients for the grasshopper Schistocerca americana. Over much of the ecologically relevant range, when consuming single diets over a lifetime, higher P stimulated growth rates and increased survival, with an optimal dietary %P of 0.25-0.50% when measured throughout development. Excessive dietary P (1%) reduced growth and survival. However, with only short-term (3 day) confinement to single diets, dietary P had no effect on food consumption or growth rates. During these short exposures, fifth (but not third) instar hoppers increased the proportion of P excreted relative to P assimilated as dietary P increased. Target experiments demonstrated that, when given a choice, grasshoppers select among foods to attain a P intake target of 0.6%. These data suggest that P limitation could be common for terrestrial insect herbivores and that they can exhibit ingestive and post-ingestive mechanisms to attain sufficient but not excessive P. PMID:26567345

  19. A single-nucleotide variation in a p53-binding site affects nutrient-sensitive human SIRT1 expression

    PubMed Central

    Naqvi, Asma; Hoffman, Timothy A.; DeRicco, Jeremy; Kumar, Ajay; Kim, Cuk-Seong; Jung, Saet-Byel; Yamamori, Tohru; Kim, Young-Rae; Mehdi, Fardeen; Kumar, Santosh; Rankinen, Tuomo; Ravussin, Eric; Irani, Kaikobad

    2010-01-01

    The SIRTUIN1 (SIRT1) deacetylase responds to changes in nutrient availability and regulates mammalian physiology and metabolism. Human and mouse SIRT1 are transcriptionally repressed by p53 via p53 response elements in their proximal promoters. Here, we identify a novel p53-binding sequence in the distal human SIRT1 promoter that is required for nutrient-sensitive SIRT1 transcription. In addition, we show that a common single-nucleotide (C/T) variation in this sequence affects nutrient deprivation-induced SIRT1 transcription, and calorie restriction-induced SIRT1 expression. The p53-binding sequence lies in a region of the SIRT1 promoter that also binds the transcriptional repressor Hypermethylated-In-Cancer-1 (HIC1). Nutrient deprivation increases occupancy by p53, while decreasing occupancy by HIC1, of this region of the promoter. HIC1 and p53 compete with each other for promoter occupancy. In comparison with the T variation, the C variation disrupts the mirror image symmetry of the p53-binding sequence, resulting in decreased binding to p53, decreased nutrient sensitivity of the promoter and impaired calorie restriction-stimulated tissue expression of SIRT1 and SIRT1 target genes AMPKα2 and PGC-1β. Thus, a common SNP in a novel p53-binding sequence in the human SIRT1 promoter affects nutrient-sensitive SIRT1 expression, and could have a significant impact on calorie restriction-induced, SIRT1-mediated, changes in human metabolism and physiology. PMID:20693263

  20. Nutrient Deprivation Affects Salmonella Invasion and Its Interaction with the Gastrointestinal Microbiota

    PubMed Central

    Yurist-Doutsch, Sophie; Arrieta, Marie-Claire; Tupin, Audrey; Valdez, Yanet; Antunes, L. Caetano M.; Yen, Ryan; Finlay, B. Brett

    2016-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a foodborne enteric pathogen and a major cause of gastroenteritis in humans. It is known that molecules derived from the human fecal microbiota downregulate S. Typhimurium virulence gene expression and induce a starvation-like response. In this study, S. Typhimurium was cultured in minimal media to mimic starvation conditions such as that experienced by S. Typhimurium in the human intestinal tract, and the pathogen’s virulence in vitro and in vivo was measured. S. Typhimurium cultured in minimal media displayed a reduced ability to invade human epithelial cells in a manner that was at least partially independent of the Salmonella Pathogenicity Island 1 (SPI-1) type III secretion system. Nutrient deprivation did not, however, alter the ability of S. Typhimurium to replicate and survive inside epithelial cells. In a murine model of S. Typhimurium-induced gastroenteritis, prior cultivation in minimal media did not alter the pathogen’s ability to colonize mice, nor did it affect levels of gastrointestinal inflammation. Upon examining the post-infection fecal gastrointestinal microbiota, we found that specifically in the 129Sv/ImJ murine strain S. Typhimurium cultured in minimal media induced differential microbiota compositional shifts compared to that of S. Typhimurium cultured in rich media. Together these findings demonstrate that S. Typhimurium remains a potent pathogen even in the face of nutritional deprivation, but nevertheless that nutrient deprivation encountered in this environment elicits significant changes in the bacterium genetic programme, as well as its capacity to alter host microbiota composition. PMID:27437699

  1. Factors Affecting Spatial and Temporal Variability in Nutrient and Pesticide Concentrations in the Surficial Aquifer on the Delmarva Peninsula

    USGS Publications Warehouse

    Debrewer, Linda M.; Ator, Scott W.; Denver, Judith M.

    2007-01-01

    Water quality in the unconfined, unconsolidated surficial aquifer on the Delmarva Peninsula is influenced by the availability of soluble ions from natural and human sources, and by geochemical factors that affect the mobility and fate of these ions within the aquifer. Ground-water samples were collected from 60 wells completed in the surficial aquifer of the peninsula in 2001 and analyzed for major ions, nutrients, and selected pesticides and degradation products. Analytical results were compared to similar data from a subset of sampled wells in 1988, as well as to land use, soils, geology, depth, and other potential explanatory variables to demonstrate the effects of natural and human factors on water quality in the unconfined surficial aquifer. This study was conducted as part of the National Water-Quality Assessment Program of the U.S. Geological Survey, which is designed (in part) to describe the status and trends in ground-water quality and to provide an understanding of natural and human factors that affect ground-water chemistry in different parts of the United States. Results of this study may be useful for water-resources managers tasked with addressing water-quality issues of local and regional importance because the surficial aquifer on the Delmarva Peninsula is a major source of water for domestic and public supply and provides the majority of flow in local streams. Human impacts are apparent in ground-water quality throughout the surficial aquifer. The surficial aquifer on the Delmarva Peninsula is generally sandy and very permeable with well-oxygenated ground water. Dissolved constituents found throughout various depths of the unconfined aquifer are likely derived from the predominantly agricultural practices on the peninsula, although effects of road salt, mineral dissolution, and other natural and human influences are also apparent in some areas. Nitrate occurred at concentrations exceeding natural levels in many areas, and commonly exceeded 10

  2. Lipocalin produced by myelofibrosis cells affects the fate of both hematopoietic and marrow microenvironmental cells.

    PubMed

    Lu, Min; Xia, Lijuan; Liu, Yen-Chun; Hochman, Tsivia; Bizzari, Laetizia; Aruch, Daniel; Lew, Jane; Weinberg, Rona; Goldberg, Judith D; Hoffman, Ronald

    2015-08-20

    Myelofibrosis (MF) is characterized by cytopenias, constitutional symptoms, splenomegaly, and marrow histopathological abnormalities (fibrosis, increased microvessel density, and osteosclerosis). The microenvironmental abnormalities are likely a consequence of the elaboration of a variety of inflammatory cytokines generated by malignant megakaryocytes and monocytes. We observed that levels of a specific inflammatory cytokine, lipocalin-2 (LCN2), were elevated in the plasmas of patients with myeloproliferative neoplasms (MF > polycythemia vera or essential thrombocythemia) and that LCN2 was elaborated by MF myeloid cells. LCN2 generates increased reactive oxygen species, leading to increased DNA strand breaks and apoptosis of normal, but not MF, CD34(+) cells. Furthermore, incubation of marrow adherent cells or mesenchymal stem cells with LCN2 increased the generation of osteoblasts and fibroblasts, but not adipocytes. LCN2 priming of mesenchymal stem cells resulted in the upregulation of RUNX2 gene as well as other genes that are capable of further affecting osteoblastogenesis, angiogenesis, and the deposition of matrix proteins. These data indicate that LCN2 is an additional MF inflammatory cytokine that likely contributes to the creation of a cascade of events that results in not only a predominance of the MF clone but also a dysfunctional microenvironment. PMID:26022238

  3. Recent (2008-10) water quality in the Barton Springs segment of the Edwards aquifer and its contributing zone, central Texas, with emphasis on factors affecting nutrients and bacteria

    USGS Publications Warehouse

    Mahler, Barbara J.; Musgrove, MaryLynn; Sample, Thomas L.; Wong, Corinne I.

    2011-01-01

    The Barton Springs zone, which comprises the Barton Springs segment of the Edwards aquifer and the watersheds to the west that contribute to its recharge, is in south-central Texas, an area with rapid growth in population and increasing amounts of land area affected by development. During November 2008-March 2010, an investigation of factors affecting the fate and transport of nutrients and bacteria in the Barton Springs zone was conducted by the U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality. The primary objectives of the study were to characterize occurrence of nutrients and bacteria in the Barton Springs zone under a range of flow conditions; to improve understanding of the interaction between surface-water quality and groundwater quality; and to evaluate how factors such as streamflow variability and dilution affect the fate and transport of nutrients and bacteria in the Barton Springs zone. The USGS collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge and Buda), and the main orifice of Barton Springs in Austin, Texas. During the period of the study, during which the hydrologic conditions transitioned from exceptional drought to wetter than normal, water samples were collected routinely (every 3 to 4 weeks) from the streams, wells, and spring and, in response to storms, from the streams and spring. All samples were analyzed for major ions, nutrients, the bacterium Escherichia coli, and suspended sediment. During the dry period, the geochemistry of groundwater at the two wells and at Barton Springs was dominated by flow from the aquifer matrix and was relatively similar and unchanging at the three sites. At the onset of the wet period, when the streams began to flow, the geochemistry of groundwater samples from the Marbridge well and Barton Springs changed rapidly, and concentrations of most major ions and nutrients and

  4. Stealth filaments: polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X

    PubMed Central

    Lee, Karin L.; Shukla, Sourabh; Wu, Mengzhi; Ayat, Nadia R.; El Sanadi, Caroline E.; Wen, Amy M.; Edelbrock, John F.; Pokorski, Jonathan K.; Commandeur, Ulrich; Dubyak, George R.

    2015-01-01

    Nanoparticles hold great promise for delivering medical cargos to cancerous tissues to enhance contrast and sensitivity of imaging agents or to increase specificity and efficacy of therapeutics. A growing body of data suggests that nanoparticle shape, in combination with surface chemistry, affects their in vivo fates, with elongated filaments showing enhanced tumor targeting and tissue penetration, while promoting immune evasion. The synthesis of high aspect ratio filamentous materials at the nanoscale remains challenging using synthetic routes; therefore we turned toward nature’s materials, developing and studying the filamentous structures formed by the plant virus potato virus X (PVX). We recently demonstrated that PVX shows enhanced tumor homing in various preclinical models. Like other nanoparticle systems, the proteinaceous platform is cleared from circulation and tissues by the mononuclear phagocyte system (MPS). To increase bioavailability we set out to develop PEGylated stealth filaments and evaluate the effects of PEG chain length and conformation on pharmacokinetics, biodistribution, as well as potential immune and inflammatory responses. We demonstrate that PEGylation effectively reduces immune recognition while increasing pharmacokinetic profiles. Stealth filaments show biodistribution consistent with MPS clearance mechanisms; the protein:polymer hybrids are cleared from the body indicating biodegradability and biocompatibility. Tissue compatibility is indicated with no apparent inflammatory signaling in vivo. Tailoring PEG chain length and conformation (brush vs. mushroom) allows tuning of the pharmacokinetics, yielding long-circulating stealth filaments for applications in nanomedicine. PMID:25769228

  5. Stealth filaments: Polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X.

    PubMed

    Lee, Karin L; Shukla, Sourabh; Wu, Mengzhi; Ayat, Nadia R; El Sanadi, Caroline E; Wen, Amy M; Edelbrock, John F; Pokorski, Jonathan K; Commandeur, Ulrich; Dubyak, George R; Steinmetz, Nicole F

    2015-06-01

    Nanoparticles hold great promise for delivering medical cargos to cancerous tissues to enhance contrast and sensitivity of imaging agents or to increase specificity and efficacy of therapeutics. A growing body of data suggests that nanoparticle shape, in combination with surface chemistry, affects their in vivo fates, with elongated filaments showing enhanced tumor targeting and tissue penetration, while promoting immune evasion. The synthesis of high aspect ratio filamentous materials at the nanoscale remains challenging using synthetic routes; therefore we turned toward nature's materials, developing and studying the filamentous structures formed by the plant virus potato virus X (PVX). We recently demonstrated that PVX shows enhanced tumor homing in various preclinical models. Like other nanoparticle systems, the proteinaceous platform is cleared from circulation and tissues by the mononuclear phagocyte system (MPS). To increase bioavailability we set out to develop PEGylated stealth filaments and evaluate the effects of PEG chain length and conformation on pharmacokinetics, biodistribution, as well as potential immune and inflammatory responses. We demonstrate that PEGylation effectively reduces immune recognition while increasing pharmacokinetic profiles. Stealth filaments show reduced interaction with cells of the MPS; the protein:polymer hybrids are cleared from the body tissues within hours to days indicating biodegradability and biocompatibility. Tissue compatibility is indicated with no apparent inflammatory signaling in vivo. Tailoring PEG chain length and conformation (brush vs. mushroom) allows tuning of the pharmacokinetics, yielding long-circulating stealth filaments for applications in nanomedicine. PMID:25769228

  6. Soil pH, soil type and replant disease affect growth and nutrient absorption in apple rootstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rootstocks are the foundation of a healthy and productive orchard. They are the interface between the scion and the soil, providing anchorage, water, nutrients, and disease protection that ultimately affect the productivity and sustainability of the orchard. Recent advances in the science of genet...

  7. Nutrient transport in runoff as affected by diet, tillage and manure application rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Including distillers grains in feedlot finishing diets may increase feedlot profitability. However the nutrient content of by-products are concentrated about three during the distillation process. Manure can be applied to meet single or multiple year crop nutrient requirements. The water quality eff...

  8. Nutrient loads and sediment losses in sprinkler irrigation runoff affected by compost and manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High water application rates beneath the outer spans of center pivot sprinkler systems can cause runoff, erosion, and nutrient losses, particularly from sloping fields. This study determined runoff, sediment losses, and loads of nutrients (dissolved organic C, Nitrate-N, ammonium-N, total phosphoru...

  9. Management practices affect soil nutrients and bacterial populations in backgrounding beef feedlot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminants associated with manure in animal production sites are of significant concern. Unless properly managed, high soil nutrient concentrations in feedlots can deteriorate soil and water quality. This three year study tested a nutrient management strategy with three sequentially imposed manage...

  10. Fate and transport of oil sand process-affected water into the underlying clay till: a field study.

    PubMed

    Abolfazlzadehdoshanbehbazari, Mostafa; Birks, S Jean; Moncur, Michael C; Ulrich, Ania C

    2013-08-01

    The South Tailings Pond (STP) is a ~2300-ha tailing pond operated by Suncor Energy Inc. that has received oil sand process-affected (PA) water and mature fine tailings since 2006. The STP is underlain by a clay till, which is in turn underlain by the Wood Creek Sand Channel (WCSC). The sandy deposits of the WCSC provide greater geotechnical stability but could act as a potential flow pathway for PA water to migrate off site and into the Athabasca River. Preliminary modeling of the STP suggests that PA water from the pond will infiltrate into the underlying sand channel, but the extent and development of this impact is still poorly understood. Suncor Energy Inc. built interception wells and a cut-off-wall to control any potential seepage. Here we present the results of an investigation of the fate and transport of PA water in clay till underlying a 10 m × 10 m infiltration pond that was constructed on the southeastern portion of the STP. The geochemistry of pore water in the till underlying the infiltration pond was determined prior to filling with process-affected water (2008) and two years after the infiltration pond was filled with PA waters (2010). Pore water was analyzed for metals, cations, anions, and isotopes ((2)H and (18)O). The distribution of conservative tracers ((18)O and chloride) indicated migration of the PA waters to approximately 0.9 m, but the migrations of major ions and metals were significantly delayed relative to this depth. Uptake of Na and Mo and release of Ca, Mg, Mn, Ba, and Sr suggest that adsorption and ion exchange reactions are the foremost attenuation processes controlling inorganic solutes transport. PMID:23752067

  11. Nutrient demand interacts with forage family to affect digestion responses in dairy cows.

    PubMed

    Kammes, K L; Allen, M S

    2012-06-01

    Effects of forage family on dry matter intake (DMI), milk production, ruminal pool sizes, digestion and passage kinetics, and chewing activity and the relationship of these effects with preliminary DMI (pDMI), an index of nutrient demand, were evaluated using 13 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 18-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 19.6 to 29.5 kg/d (mean=25.9 kg/d) and 3.5% fat-corrected milk yield ranged from 24.3 to 60.3 kg/d (mean=42.1 kg/d). Experimental treatments were diets containing either a) alfalfa silage (AL) or b) orchardgrass silage (OG) as the sole forage. Alfalfa and orchardgrass contained 42.3 and 58.2% neutral detergent fiber (NDF) and 22.5 and 11.4% crude protein, respectively. Forage:concentrate ratios were 60:40 and 43:57 for AL and OG, respectively; both diets contained approximately 25% forage NDF and 30% total NDF. Preliminary DMI was determined during the last 4 d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of forage family and their interaction with pDMI were tested by ANOVA. Forage family and its interaction with pDMI did not affect feed intake, milk yield, or milk composition. The AL diet increased indigestible NDF (iNDF) intake and decreased potentially digestible NDF (pdNDF) intake compared with OG. The AL diet increased ruminal pH, digestion rates of pdNDF and starch, and passage rates of pdNDF and iNDF compared with OG, which affected ruminal digestibility. Passage rate of iNDF was related to pDMI; AL increased iNDF passage rate and OG decreased it as pDMI increased. The AL diet decreased ruminal pool sizes of pdNDF, starch, organic matter, dry matter, and rumen digesta wet weight and volume compared with OG. The AL diet decreased ruminating time per unit of forage NDF consumed compared with OG, indicating that alfalfa provided less physically effective

  12. Upland disturbance affects headwater stream nutrients and suspended sediments during baseflow and stormflow

    SciTech Connect

    Houser, Jeffrey N

    2006-01-01

    Because catchment characteristics determine sediment and nutrient inputs to streams, upland disturbance can affect stream chemistry. Catchments at the Fort Benning Military Installation (near Columbus, Georgia) experience a range of upland disturbance intensities due to spatial variability in the intensity of military training. We used this disturbance gradient to investigate the effects of upland soil and vegetation disturbance on stream chemistry. During baseflow, mean total suspended sediment (TSS) concentration and mean inorganic suspended sediment (ISS) concentration increased with catchment disturbance intensity (TSS: R 2 = 0.7, p = 0.005, range = 4.0-10.1 mg L-1; ISS: R 2 = 0.71, p = 0.004, range = 2.04-7.3 mg L-1); dissolved organic carbon (DOC) concentration (R 2 = 0.79, p = 0.001, range = 1.5-4.1 mg L-1) and soluble reactive phosphorus (SRP) concentration (R 2 = 0.75, p = 0.008, range = 1.9-6.2 {micro}g L-1) decreased with increasing disturbance intensity; and ammonia (NH4 +), nitrate (NO3 -), and dissolved inorganic nitrogen (DIN) concentrations were unrelated to disturbance intensity. The increase in TSS and ISS during storms was positively correlated with disturbance (R 2 = 0.78 and 0.78, p = 0.01 and 0.01, respectively); mean maximum change in SRP during storms increased with disturbance (r = 0.7, p = 0.04); and mean maximum change in NO3 - during storms was marginally correlated with disturbance (r = 0.58, p = 0.06). Soil characteristics were significant predictors of baseflow DOC, SRP, and Ca2+, but were not correlated with suspended sediment fractions, any nitrogen species, or pH. Despite the largely intact riparian zones of these headwater streams, upland soil and vegetation disturbances had clear effects on stream chemistry during baseflow and stormflow conditions.

  13. Nutrient Enrichment and Food Web Composition Affect Ecosystem Metabolism in an Experimental Seagrass Habitat

    PubMed Central

    Spivak, Amanda C.; Canuel, Elizabeth A.; Duffy, J. Emmett; Richardson, J. Paul

    2009-01-01

    Background Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these interactions are poorly understood. Methodology/Principal Findings Using an experimental seagrass mesocosm system, we factorially manipulated water column nutrient concentrations, food chain length, and diversity of crustacean grazers to address two questions: (1) Does food web composition modulate the effects of nutrient enrichment on plant and grazer biomasses and stoichiometry? (2) Do ecosystem fluxes of dissolved oxygen and nutrients more closely reflect above-ground biomass and community structure or sediment processes? Nutrient enrichment and grazer presence generally had strong effects on biomass accumulation, stoichiometry, and ecosystem fluxes, whereas predator effects were weaker or absent. Nutrient enrichment had little effect on producer biomass or net ecosystem production but strongly increased seagrass nutrient content, ecosystem flux rates, and grazer secondary production, suggesting that enhanced production was efficiently transferred from producers to herbivores. Gross ecosystem production (oxygen evolution) correlated positively with above-ground plant biomass, whereas inorganic nutrient fluxes were unrelated to plant or grazer biomasses, suggesting dominance by sediment microbial processes. Finally, grazer richness significantly stabilized ecosystem processes, as predators decreased ecosystem production and respiration only in the zero- and one- species grazer treatments. Conclusions/Significance Overall, our results indicate that consumer presence and species composition strongly influence ecosystem responses to nutrient enrichment, and that increasing

  14. CO₂ and inorganic nutrient enrichment affect the performance of a calcifying green alga and its noncalcifying epiphyte.

    PubMed

    Hofmann, Laurie C; Bischof, Kai; Baggini, Cecilia; Johnson, Andrew; Koop-Jakobsen, Ketil; Teichberg, Mirta

    2015-04-01

    Ocean acidification studies in the past decade have greatly improved our knowledge of how calcifying organisms respond to increased surface ocean CO2 levels. It has become evident that, for many organisms, nutrient availability is an important factor that influences their physiological responses and competitive interactions with other species. Therefore, we tested how simulated ocean acidification and eutrophication (nitrate and phosphate enrichment) interact to affect the physiology and ecology of a calcifying chlorophyte macroalga (Halimeda opuntia (L.) J.V. Lamouroux) and its common noncalcifying epiphyte (Dictyota sp.) in a 4-week fully crossed multifactorial experiment. Inorganic nutrient enrichment (+NP) had a strong influence on all responses measured with the exception of net calcification. Elevated CO2 alone significantly decreased electron transport rates of the photosynthetic apparatus and resulted in phosphorus limitation in both species, but had no effect on oxygen production or respiration. The combination of CO2 and +NP significantly increased electron transport rates in both species. While +NP alone stimulated H. opuntia growth rates, Dictyota growth was significantly stimulated by nutrient enrichment only at elevated CO2, which led to the highest biomass ratios of Dictyota to Halimeda. Our results suggest that inorganic nutrient enrichment alone stimulates several aspects of H. opuntia physiology, but nutrient enrichment at a CO2 concentration predicted for the end of the century benefits Dictyota sp. and hinders its calcifying basibiont H. opuntia. PMID:25648647

  15. Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams

    USGS Publications Warehouse

    Choi, J.; Harvey, J.W.; Conklin, M.H.

    2000-01-01

    The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single-storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (> 90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (t(s) ratio > 5.0) and when the dominance of

  16. Dairy manure and plant nutrient management issues affecting water quality and the dairy industry.

    PubMed

    Lanyon, L E

    1994-07-01

    Specific requirements for dairy manure management to protect water quality from nutrient pollution depend on the organization of individual farms. Further, the management requirements and options are different for point (farmstead) and nonpoint (field-applied) sources of pollution from farms. A formal management process can guide decisions about existing crop nutrient utilization potential, provide a framework for tracking nutrients supplied to crops, and identify future requirements for dairy manure management to protect water quality. Farm managers can use the process to plan daily activities, to assess annual nutrient management performance, and to chart future requirements as herd size increases. Agronomic measures of nutrient balance and tracking of inputs and outputs for various farm management units can provide the quantitative basis for management to allocate better manure to fields, to modify dairy rations, or to develop alternatives to on-farm manure application. Changes in agricultural production since World War II have contributed to a shift from land-based dairy production to a reliance on capital factors of production supplied by the dairy industry. Meanwhile, management of dairy manure to meet increasingly stringent water quality protection requirements is still a land-based activity. Involving the dairy industry and off-farm stakeholders as participants in the management process for field, farm, and regional dairy production can be the basis for decision-making to reconcile the sometimes conflicting demands of production and water quality protection. PMID:7929961

  17. Nutrient demand interacts with legume maturity to affect rumen pool sizes in dairy cows.

    PubMed

    Kammes, K L; Ying, Y; Allen, M S

    2012-05-01

    Effects of legume maturity on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, and digestion and passage kinetics, and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 16 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 17-d treatment periods. During the preliminary period, the pDMI of individual cows ranged from 22.9 to 30.0 kg/d (mean=25.9 kg/d) and the 3.5% fat-corrected milk yield ranged from 34.1 to 68.2 kg/d (mean=43.7 kg/d). Experimental treatments were diets containing alfalfa silage harvested either a) early-cut, less mature (EC) or b) late-cut, more mature (LC) as the sole forage. Early- and late-cut alfalfa contained 40.8 and 53.1% neutral detergent fiber (NDF) and 23.7 and 18.1% crude protein, respectively. Forage:concentrate ratios were 53:47 and 42:58 for EC and LC, respectively; both diets contained approximately 22% forage NDF and 27% total NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of alfalfa maturity and their interaction with pDMI were tested by ANOVA. Alfalfa maturity and its interaction with pDMI did not affect milk yield but EC increased DMI compared with LC; thus, EC had lower efficiency of milk production than LC. The EC diet decreased milk fat concentration more per kilogram of pDMI increase than the LC diet, but milk fat yield was not affected. The lower concentration and faster passage rate of indigestible NDF for EC resulted in lower rumen pools of indigestible NDF, total NDF, and dry matter than did LC, which EC increased at a slower rate than did LC as pDMI increased. The EC diet decreased starch intake and increased ruminal pH compared with the LC diet. The rate of ruminal starch digestion was related to level of intake, but this did not affect ruminal or postruminal starch

  18. Runoff nutrient transport as affected by land application method, swine growth stage, and runoff rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to measure the effects of slurry application method, swine growth stage, and flow rate on runoff nutrient transport. Swine slurry was obtained from production units containing grower pigs, finisher pigs, or sows and gilts. The swine slurry was applied using broadcast, disk, ...

  19. Runoff nutrient loads as affected by residue cover, manure application rate, and flow rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure is applied to cropland areas with varying surface cover to meet single- or multiple-year crop nutrient requirements. The objectives of this field study were to (1) examine runoff water quality characteristics following land application of manure to sites with and without wheat residue, (2) co...

  20. Nutrient concentrations of runoff as affected by the diameter of unconsolidated material from feedlot surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cattle feedlots contain unconsolidated material that accumulates on the feedlot surface during a feeding cycle. This study was conducted to measure the effects of varying diameters of unconsolidated surface material and varying flow rates on nutrient concentrations in runoff. Unconsolidated sur...

  1. Carrot, Corn, Lettuce and Soybean Nutrient Contents are Affected by Biochar

    EPA Science Inventory

    Biochar, the carbon-rich material remaining after pyrolysis of cellulosic and manure feedstocks, has the potential as a soil amendment to sequester carbon and to improve soil water-holding and nutrient properties- thereby enhancing plant growth. However, biochar produced from so...

  2. Relationships Among Watershed Condition, Nutrients, and Algae in New England Streams Affected by Urbanization

    EPA Science Inventory

    We examined algal metrics as indicators of altered watershed land cover and nutrients to inform their potential use in monitoring programs. Multiple regression models, in which impervious cover explained the most variation, indicated concentrations <0.202 mg/l NO3 and <0.015 mg/l...

  3. Nutrient Transport in Runoff from Feedlots as Affected by Wet Distiller's Grain Diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Distiller's byproducts can serve as valuable sources of protein and energy for beef cattle. When the characteristics of materials entering and exiting the plant are compared, the nutrients in distiller's byproducts are concentrated about three times. The objectives of this study were to: a) measure ...

  4. Hydroperiod affects nutrient accumulation in tree islands of the Florida Everglades: a stable isotope study

    NASA Astrophysics Data System (ADS)

    Wang, X.; Sternberg, L. O.; Engel, V.; Ross, M. S.

    2009-12-01

    Tree islands are important and unique components of wetland ecosystems. In many cases they are the end product of self organizing vegetation systems, which are often characterized by uneven soil nutrient distributions. Tree islands in the Everglades are phosphorus rich in contrast to the phosphorus-poor surrounding vegetation matrix. Everglades tree islands occur in the ridge-slough habitat of Shark River Slough, which is characterized by deep organic soils, multi-year hydroperiods, and maximum water depths of ~ 1 m. Tree islands are also found in the drier marl prairie habitat of the Everglades, characterized by marl soils, shallow water (< 0.5 m) and short (< 180 day) hydroperiods. In this study we used stable isotopes to investigate dry season water limitation and soil and foliar nutrient status in upland hammock communities of 18 different tree islands located in the Shark River Slough and adjacent prairie landscapes. We observed that prairie tree islands suffer greater drought stress during the dry season than slough tree islands by examining shifts in foliar δ13C values. We also found that slough tree islands have higher soil total phosphorus concentration and lower foliar N/P ratio than prairie tree islands. Foliar δ15N values, which often increase with greater P availability, was also found to be higher in slough tree islands than in prairie tree islands. Both the elemental N and P and foliar δ15N results indicate that the upland hammock plant communities in slough tree islands have higher amount of P available than those in prairie tree islands. Our findings are consistent with the transpiration driven nutrient harvesting chemohydrodynamic model. Tree islands without drought stress hypothetically transpire more and harvest more P than tree islands that have drought stress during the dry season. These findings suggest that hydroperiod is important to nutrient accumulation of tree island habitats and to the self-organization of the Everglades landscape.

  5. Differential seed handling by two African primates affects seed fate and establishment of large-seeded trees

    NASA Astrophysics Data System (ADS)

    Gross-Camp, Nicole D.; Kaplin, Beth A.

    2011-11-01

    We examined the influence of seed handling by two semi-terrestrial African forest primates, chimpanzees ( Pan troglodytes) and l'Hoest's monkeys ( Cercopithecus lhoesti), on the fate of large-seeded tree species in an afromontane forest. Chimpanzees and l'Hoest's monkeys dispersed eleven seed species over one year, with quantity and quality of dispersal varying through time. Primates differed in their seed handling behaviors with chimpanzees defecating large seeds (>0.5 cm) significantly more than l'Hoest's. Furthermore, they exhibited different oral-processing techniques with chimpanzees discarding wadges containing many seeds and l'Hoest's monkeys spitting single seeds. A PCA examined the relationship between microhabitat characteristics and the site where primates deposited seeds. The first two components explained almost half of the observed variation. Microhabitat characteristics associated with sites where seeds were defecated had little overlap with those characteristics describing where spit seeds arrived, suggesting that seed handling in part determines the location where seeds are deposited. We monitored a total of 552 seed depositions through time, recording seed persistence, germination, and establishment. Defecations were deposited significantly farther from an adult conspecific than orally-discarded seeds where they experienced the greatest persistence but poorest establishment. In contrast, spit seeds were deposited closest to an adult conspecific but experienced the highest seed establishment rates. We used experimental plots to examine the relationship between seed handling, deposition site, and seed fate. We found a significant difference in seed handling and fate, with undispersed seeds in whole fruits experiencing the lowest establishment rates. Seed germination differed by habitat type with open forest experiencing the highest rates of germination. Our results highlight the relationship between primate seed handling and deposition site and seed

  6. Land use and nutrient inputs affect priming in Andosols of Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Mganga, Kevin; Kuzyakov, Yakov

    2015-04-01

    Organic C and nutrients additions in soil can accelerate mineralisation of soil organic matter i.e. priming effects. However, only very few studies have been conducted to investigate the priming effects phenomenon in tropical Andosols. Nutrients (N, P, N+P) and 14C labelled glucose were added to Andosols from six natural and intensively used ecosystems at Mt. Kilimanjaro i.e. (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) Chagga homegardens. Carbon-dioxide emissions were monitored over a 60 days incubation period. Mineralisation of glucose to 14CO2 was highest in coffee plantation and lowest in Chagga homegarden soils. Maximal and minimal mineralisation rates immediately after glucose additions were observed in lower montane forest with N+P fertilisation (9.1% ± 0.83 d -1) and in savannah with N fertilisation (0.9% ± 0.17 d -1), respectively. Glucose and nutrient additions accelerated native soil organic matter mineralisation i.e. positive priming. Chagga homegarden soils had the lowest 14CO2 emissions and incorporated the highest percent of glucose into microbial biomass. 50-60% of the 14C input was retained in soil. We attribute this mainly to the high surface area of non-crystalline constituents i.e. allophanes, present in Andosols and having very high sorption capacity for organic C. The allophanic nature of Andosols of Mt. Kilimanjaro especially under traditional Chagga homegarden agroforestry system shows great potential for providing essential environmental services, notably C sequestration. Key words: Priming Effects, Andosols, Land Use Changes, Mt. Kilimanjaro, Allophanes, Tropical Agroforestry

  7. Testing an agent-based model of bacterial cell motility: How nutrient concentration affects speed distribution

    NASA Astrophysics Data System (ADS)

    Garcia, V.; Birbaumer, M.; Schweitzer, F.

    2011-08-01

    We revisit a recently proposed agent-based model of active biological motion and compare its predictions with own experimental findings for the speed distribution of bacterial cells, Salmonella typhimurium. Agents move according to a stochastic dynamics and use energy stored in an internal depot for metabolism and active motion. We discuss different assumptions of how the conversion from internal to kinetic energy d( v) may depend on the actual speed, to conclude that d 2 v ξ with either ξ = 2 or 1 < ξ < 2 are promising hypotheses. To test these, we compare the model's prediction with the speed distribution of bacteria which were obtained in media of different nutrient concentration and at different times. We find that both hypotheses are in line with the experimental observations, with ξ between 1.67 and 2.0. Regarding the influence of a higher nutrient concentration, we conclude that the take-up of energy by bacterial cells is indeed increased. But this energy is not used to increase the speed, with 40 μm/s as the most probable value of the speed distribution, but is rather spend on metabolism and growth.

  8. Biochar amendment affects leaching potential of copper and nutrient release behavior in contaminated sandy soils.

    PubMed

    Bakshi, Santanu; He, Zhenli L; Harris, Willie G

    2014-11-01

    Copper (Cu) contamination to soil and water is a worldwide concern. Biochar has been suggested to remediate degraded soils. In this study, column leaching and chemical characterization were conducted to assess effects of biochar amendment on Cu immobilization and subsequent nutrient release in Cu-contaminated Alfisol and Spodosol. The results indicate that biochar is effective in binding Cu (30 and 41%, respectively, for Alfisol with and without spiked Cu; 36 and 43% for Spodosol) and reducing Cu leaching loss (from ∼47 to 10% for the Cu-spiked Alfisol and from 48 to 9% for the Cu-spiked Spodosol). Copper was likely retained on biochar surfaces through complexation, as suggested by Fourier-transform infrared spectra. Biochar amendment converts a portion of Cu from available pool to more stable forms, thus resulting in decreased activities of free Cu and increased activity of organic Cu complexes in leachate. Reduction of >0.45-μm solids and nanoparticles concentrations in leachate was also observed. In addition, biochar application rate was correlated negatively with P, Ca, Mg, Zn, Mn, and NH-N concentration ( < 0.05) but positively with K and Na concentration ( < 0.05) in leachates. These results documented the potential of biochar as an effective amendment for Cu immobilization and mitigation of leaching risk for some nutrients. PMID:25602206

  9. NUTRIENT TRANSPORT IN HUMAN ANNULUS FIBROSUS IS AFFECTED BY COMPRESSIVE STRAIN AND ANISOTROPY

    PubMed Central

    Jackson, Alicia R.; Yuan, Tai-Yi; Huang, Chun-Yuh; Brown, Mark D.; Gu, Wei Yong

    2012-01-01

    The avascular intervertebral disc (IVD) receives nutrition via transport from surrounding vasculature; poor nutrition is believed to be a main cause of disc degeneration. In this study, we investigated the effects of mechanical deformation and anisotropy on the transport of two important nutrients – oxygen and glucose – in human annulus fibrosus (AF). The diffusivities of oxygen and glucose were measured under three levels of uniaxial confined compression – 0%, 10%, and 20% – and in three directions – axial, circumferential, and radial. The glucose partition coefficient was also measured at three compression levels. Results for glucose and oxygen diffusivity in AF ranged from 4.46×10−7 to 9.77×10−6 cm2/s and were comparable to previous studies; the glucose partition coefficient ranged from 0.71 to 0.82 and was also similar to previous results. Transport properties were found to decrease with increasing deformation, likely caused by fluid exudation during tissue compression and reduction in pore size. Furthermore, diffusivity in the radial direction was lower than in the axial or circumferential directions, indicating that nutrient transport in human AF is anisotropic. This behavior is likely a consequence of the layered structure and unique collagen architecture of AF tissue. These findings are important for better understanding nutritional supply in IVD and related disc degeneration. PMID:22669503

  10. Changing nutrient stoichiometry affects phytoplankton production, DOP accumulation and dinitrogen fixation - a mesocosm experiment in the eastern tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Löscher, C. R.; Neulinger, S. C.; Reichel, A. F.; Loginova, A.; Borchard, C.; Schmitz, R. A.; Hauss, H.; Kiko, R.; Riebesell, U.

    2016-02-01

    Ocean deoxygenation due to climate change may alter redox-sensitive nutrient cycles in the marine environment. The productive eastern tropical North Atlantic (ETNA) upwelling region may be particularly affected when the relatively moderate oxygen minimum zone (OMZ) deoxygenates further and microbially driven nitrogen (N) loss processes are promoted. Consequently, water masses with a low nitrogen to phosphorus (N : P) ratio could reach the euphotic layer, possibly influencing primary production in those waters. Previous mesocosm studies in the oligotrophic Atlantic Ocean identified nitrate availability as a control of primary production, while a possible co-limitation of nitrate and phosphate could not be ruled out. To better understand the impact of changing N : P ratios on primary production and N2 fixation in the ETNA surface ocean, we conducted land-based mesocosm experiments with natural plankton communities and applied a broad range of N : P ratios (2.67-48). Silicic acid was supplied at 15 µmol L-1 in all mesocosms. We monitored nutrient drawdown, biomass accumulation and nitrogen fixation in response to variable nutrient stoichiometry. Our results confirmed nitrate to be the key factor determining primary production. We found that excess phosphate was channeled through particulate organic matter (POP) into the dissolved organic matter (DOP) pool. In mesocosms with low inorganic phosphate availability, DOP was utilized while N2 fixation increased, suggesting a link between those two processes. Interestingly this observation was most pronounced in mesocosms where nitrate was still available, indicating that bioavailable N does not necessarily suppress N2 fixation. We observed a shift from a mixed cyanobacteria-proteobacteria dominated active diazotrophic community towards a diatom-diazotrophic association of the Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in nutrient stoichiometry in the ETNA might lead to a general shift within

  11. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo.

    PubMed

    Paoli, Gary D; Curran, Lisa M; Slik, J W F

    2008-03-01

    Studies on the relationship between soil fertility and aboveground biomass in lowland tropical forests have yielded conflicting results, reporting positive, negative and no effect of soil nutrients on aboveground biomass. Here, we quantify the impact of soil variation on the stand structure of mature Bornean forest throughout a lowland watershed (8-196 m a.s.l.) with uniform climate and heterogeneous soils. Categorical and bivariate methods were used to quantify the effects of (1) parent material differing in nutrient content (alluvium > sedimentary > granite) and (2) 27 soil parameters on tree density, size distribution, basal area and aboveground biomass. Trees > or =10 cm (diameter at breast height, dbh) were enumerated in 30 (0.16 ha) plots (sample area = 4.8 ha). Six soil samples (0-20 cm) per plot were analyzed for physiochemical properties. Aboveground biomass was estimated using allometric equations. Across all plots, stem density averaged 521 +/- 13 stems ha(-1), basal area 39.6 +/- 1.4 m(2) ha(-1) and aboveground biomass 518 +/- 28 Mg ha(-1) (mean +/- SE). Adjusted forest-wide aboveground biomass to account for apparent overestimation of large tree density (based on 69 0.3-ha transects; sample area = 20.7 ha) was 430 +/- 25 Mg ha(-1). Stand structure did not vary significantly among substrates, but it did show a clear trend toward larger stature on nutrient-rich alluvium, with a higher density and larger maximum size of emergent trees. Across all plots, surface soil phosphorus (P), potassium, magnesium and percentage sand content were significantly related to stem density and/or aboveground biomass (R (Pearson) = 0.368-0.416). In multiple linear regression, extractable P and percentage sand combined explained 31% of the aboveground biomass variance. Regression analyses on size classes showed that the abundance of emergent trees >120 cm dbh was positively related to soil P and exchangeable bases, whereas trees 60-90 cm dbh were negatively related to these

  12. Nutrient availability affects pigment production but not growth in lichens of biological soil crusts

    USGS Publications Warehouse

    Bowker, M.A.; Koch, G.W.; Belnap, J.; Johnson, N.C.

    2008-01-01

    Recent research suggests that micronutrients such as Mn may limit growth of slow-growing biological soil crusts (BSCs) in some of the drylands of the world. These soil surface communities contribute strongly to arid ecosystem function and are easily degraded, creating a need for new restoration tools. The possibility that Mn fertilization could be used as a restoration tool for BSCs has not been tested previously. We used microcosms in a controlled greenhouse setting to investigate the hypothesis that Mn may limit photosynthesis and consequently growth in Collema tenax, a dominant N-fixing lichen found in BSCs worldwide. We found no evidence to support our hypothesis; furthermore, addition of other nutrients (primarily P, K, and Zn) had a suppressive effect on gross photosynthesis (P = 0.05). We also monitored the growth and physiological status of our microcosms and found that other nutrients increased the production of scytonemin, an important sunscreen pigment, but only when not added with Mn (P = 0.01). A structural equation model indicated that this effect was independent of any photosynthesis-related variable. We propose two alternative hypotheses to account for this pattern: (1) Mn suppresses processes needed to produce scytonemin; and (2) Mn is required to suppress scytonemin production at low light, when it is an unnecessary photosynthate sink. Although Mn fertilization does not appear likely to increase photosynthesis or growth of Collema, it could have a role in survivorship during environmentally stressful periods due to modification of scytonemin production. Thus, Mn enrichment should be studied further for its potential to facilitate BSC rehabilitation. ?? 2008 Elsevier Ltd.

  13. Do breakfast skipping and breakfast type affect energy intake, nutrient intake, nutrient adequacy, and diet quality in young adults? NHANES 1999-2002

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to assess the impact of breakfast skipping and type of breakfast consumed on energy/nutrient intake, nutrient adequacy, and diet quality using a cross-sectional design. The setting was The National Health and Nutrition Examination Survey (NHANES), 1999-2002. The sub...

  14. Collagen Substrate Stiffness Anisotropy Affects Cellular Elongation, Nuclear Shape, and Stem Cell Fate toward Anisotropic Tissue Lineage.

    PubMed

    Islam, Anowarul; Younesi, Mousa; Mbimba, Thomas; Akkus, Ozan

    2016-09-01

    Rigidity of substrates plays an important role in stem cell fate. Studies are commonly carried out on isotropically stiff substrate or substrates with unidirectional stiffness gradients. However, many native tissues are anisotropically stiff and it is unknown whether controlled presentation of stiff and compliant material axes on the same substrate governs cytoskeletal and nuclear morphology, as well as stem cell differentiation. In this study, electrocompacted collagen sheets are stretched to varying degrees to tune the stiffness anisotropy (SA) in the range of 1 to 8, resulting in stiff and compliant material axes orthogonal to each other. The cytoskeletal aspect ratio increased with increasing SA by about fourfold. Such elongation was absent on cellulose acetate replicas of aligned collagen surfaces indicating that the elongation was not driven by surface topography. Mesenchymal stem cells (MSCs) seeded on varying anisotropy sheets displayed a dose-dependent upregulation of tendon-related markers such as Mohawk and Scleraxis. After 21 d of culture, highly anisotropic sheets induced greater levels of production of type-I, type-III collagen, and thrombospondin-4. Therefore, SA has direct effects on MSC differentiation. These findings may also have ramifications of stem cell fate on other anisotropically stiff tissues, such as skeletal/cardiac muscles, ligaments, and bone. PMID:27377355

  15. High levels of inorganic nutrients affect fertilization kinetics, early development and settlement of the scleractinian coral Platygyra acuta

    NASA Astrophysics Data System (ADS)

    Lam, E. K. Y.; Chui, A. P. Y.; Kwok, C. K.; Ip, A. H. P.; Chan, S. W.; Leung, H. N.; Yeung, L. C.; Ang, P. O.

    2015-09-01

    Dose-response experiments were conducted to investigate the effects of ammonia nitrogen (NH3/NH4 +) and orthophosphate (PO4 3-) on four stages of larval development in Platygyra acuta, including fertilization, embryonic development and the survival, motility, and settlement of planula larvae. Fertilization success was reduced significantly under 200 μM NH3/NH4 + or PO4 3-. These high doses of NH3/NH4 + and PO4 - affected egg viability (or sperm viability and polyspermic block simultaneously) and polyspermic block, respectively. These results provide the first evidence to indicate the mechanisms of how inorganic nutrients might affect coral fertilization processes. For embryonic development, NH3/NH4 + at 25-200 μM caused delay in cell division after 2-h exposure and NH3/NH4 + at 100-200 μM resulted in larval death after 72 h. However, no significant differences were observed in the mobility and survivorship of either planula or competent larvae under different levels of NH3/NH4 + or PO4 3-. There was a significant (~30 %) drop in the settlement of competent larvae under the combined effect of 100 μM NH3/NH4 + and PO4 3-. The effects of elevated nutrients appeared to become more significant only on gametes or larvae undergoing active cellular activities at fertilization, early development, and settlement.

  16. Factors affecting population of filamentous bacteria in wastewater treatment plants with nutrients removal.

    PubMed

    Miłobędzka, Aleksandra; Witeska, Anna; Muszyński, Adam

    2016-01-01

    Filamentous population in activated sludge and key operational parameters of full-scale municipal wastewater treatment plants (WWTPs) with bulking problems representative for Poland were investigated with quantitative fluorescence in situ hybridization. Statistical analyses revealed few relationships between operational parameters and biovolume of filamentous bacteria. Sludge age was not only positively correlated with abundance of Chloroflexi (parametric correlation and principal component analysis (PCA)), but also differentiated Microthrix population (analysis of variance (ANOVA)). Phylum Chloroflexi and pH presented a negative relation during the study (PCA). ANOVA showed that pH of influent and sludge volume index (SVI) differentiated abundance of types 0803 and 1851 of Chloroflexi and candidate division TM7. SVI increased along with higher abundance of Microthrix (positive parametric and non-parametric correlations and positive relation in PCA). Biovolumes of morphotypes 0803 and 1851 of Chloroflexi were differentiated by organic matter in influent, also by nutrients in the case of Chloroflexi type 1851. Chemical and biological oxygen demands (COD and BOD5, respectively) were negatively correlated with Microthrix. COD also differentiated the abundance of Haliscomenobacter hydrossis. Results of the study can be used to prevent WWTPs from excessive proliferation of filamentous bacteria and operational problems caused by them--bulking and foaming of activated sludge. PMID:26901721

  17. Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases.

    PubMed

    Carter, Laura J; Williams, Mike; Böttcher, Christine; Kookana, Rai S

    2015-10-20

    The detection of a range of active pharmaceutical ingredients (APIs) in the soil environment has led to a number of publications demonstrating uptake by crops, however very few studies have explored the potential for impacts on plant development as a result of API uptake. This study investigated the effect of carbamazepine and verapamil (0.005-10 mg/kg) on a range of plant responses in zucchini (Cucurbita pepo). Uptake increased in a dose-dependent manner, with maximum leaf concentrations of 821.9 and 2.2 mg/kg for carbamazepine and verapamil, respectively. Increased carbamazepine uptake by zucchini resulted in a decrease in above (<60%) and below (<30%) ground biomass compared to the controls (p < 0.05). At soil concentrations >4 mg/kg the mature leaves suffered from burnt edges and white spots as well as a reduction in photosynthetic pigments but no such effects were seen for verapamil. For both APIs, further investigations revealed significant differences in the concentrations of selected plant hormones (auxins, cytokinins, abscisic acid and jasmonates), and in the nutrient composition of the leaves in comparison to the controls (p < 0.05). This is some of the first research to demonstrate that the exposure of plants to APIs is likely to cause impacts on plant development with unknown implications. PMID:26418514

  18. Dynamics of N2 fixation and fate of diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll ecosystem: results from the VAHINE mesocosm experiment (New Caledonia)

    NASA Astrophysics Data System (ADS)

    Bonnet, Sophie; Berthelot, Hugo; Turk-Kubo, Kendra; Fawcett, Sarah; Rahav, Eyal; L'Helguen, Stéphane; Berman-Frank, Ilana

    2016-05-01

    N2 fixation rates were measured daily in large (˜ 50 m3) mesocosms deployed in the tropical southwest Pacific coastal ocean (New Caledonia) to investigate the temporal variability in N2 fixation rates in relation with environmental parameters and study the fate of diazotroph-derived nitrogen (DDN) in a low-nutrient, low-chlorophyll ecosystem. The mesocosms were fertilized with ˜ 0.8 µM dissolved inorganic phosphorus (DIP) to stimulate diazotrophy. Bulk N2 fixation rates were replicable between the three mesocosms, averaged 18.5 ± 1.1 nmol N L-1 d-1 over the 23 days, and increased by a factor of 2 during the second half of the experiment (days 15 to 23) to reach 27.3 ± 1.0 nmol N L-1 d-1. These later rates measured after the DIP fertilization are higher than the upper range reported for the global ocean. During the 23 days of the experiment, N2 fixation rates were positively correlated with seawater temperature, primary production, bacterial production, standing stocks of particulate organic carbon (POC), nitrogen (PON) and phosphorus (POP), and alkaline phosphatase activity, and negatively correlated with DIP concentrations, DIP turnover time, nitrate, and dissolved organic nitrogen and phosphorus concentrations. The fate of DDN was investigated during a bloom of the unicellular diazotroph UCYN-C that occurred during the second half of the experiment. Quantification of diazotrophs in the sediment traps indicates that ˜ 10 % of UCYN-C from the water column was exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. This export was mainly due to the aggregation of small (5.7 ± 0.8 µm) UCYN-C cells into large (100-500 µm) aggregates. During the same time period, a DDN transfer experiment based on high-resolution nanometer-scale secondary ion mass spectrometry (nanoSIMS) coupled with 15N2 isotopic labeling revealed that 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4

  19. Shade, irrigation, and nutrients affect flavanoid concentration and yield in American Skullcap.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    American skullcap (Scutellaria lateriflora L.) is valued for its sedative properties that are associated with flavonoids. Information on how growing conditions affect flavonoid content is lacking. A 2x2x3 factorial experiment was conducted in a randomized complete block design (r = 4) with a split ...

  20. Processes Affecting Nutrients and Other Chemicals in Shallow Ground Waters of the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Nolan, B. T.

    2001-05-01

    Principal components analysis (PCA) was performed with water-quality data from studies conducted during 1993-1995 to explore processes influencing concentrations of selected nutrients, major ions, and trace elements in shallow ground waters of the southeastern United States. Results indicate that nitrate reduction is an important attenuation process in selected areas of the Southeast. A "nitrate-reduction" component explains 23% of the total variance in the data and indicates that nitrate and dissolved oxygen are inversely related to ammonium, iron, manganese, and dissolved organic carbon. Additional components extracted by PCA include "calcite dissolution" (18% of variance explained) and "phosphate dissolution" (9% of variance explained). Reducing conditions in ground waters of the region influence nitrate behavior through bacterially mediated reduction in the presence of organic matter, and by inhibition of nitrate formation in anoxic ground water beneath forested areas. Component scores are consistent with observed water-quality conditions in the region. For example, median nitrate concentration in ground-water samples from the Albemarle-Pamlico Coastal Plain is <0.05 mg/L, median dissolved organic carbon concentration is 4.2 mg/L, and median dissolved oxygen (DO) concentration is 2.1 mg/L, consistent with denitrification. Nitrate reduction, however, does not occur uniformly throughout the Southeast. Median DO concentrations in ground-water samples from the Apalachicola-Chattahoochee-Flint River Basin are 6.2-7.1 mg/L, and median nitrate concentrations are 0.61-2.2 mg/L, inconsistent with denitrification. Similarly, median DO concentration in samples from the Georgia-Florida Coastal Plain is 6.0 mg/L and median nitrate concentration is 5.8 mg/L.

  1. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.

    PubMed

    Åkerström, Anette M; Mortensen, Leiv M; Rusten, Bjørn; Gislerød, Hans Ragnar

    2014-11-01

    The use of microalgae for biomass production and nutrient removal from the reject water produced in the dewatering process of anaerobically digested sludge, sludge liquor, was investigated. The sludge liquor was characterized by a high content of total suspended solids (1590 mg L(-1)), a high nitrogen concentration (1210 mg L(-1)), and a low phosphorus concentration (28 mg L(-1)). Chlorella sp. was grown in sludge liquor diluted with wastewater treatment plant effluent water to different concentrations (12, 25, 40, 50, 70, and 100%) using batch mode. The environmental conditions were 25 °C, a continuous lightning of 115 μmol m(-2) s(-1), and a CO2 concentration of 3.0%. The highest biomass production (0.42-0.45 g dry weight L(-1) Day(-1)) was achieved at 40-50% sludge liquor, which was comparable to the production of the control culture grown with an artificial fertilizer. The biomass production was 0.12 and 0.26 g dry weight L(-1) Day(-1) at 12% and 100% sludge liquor, respectively. The percentage of nitrogen in the algal biomass increased from 3.6% in 12% sludge liquor and reached a saturation of ∼10% in concentrations with 50% sludge liquor and higher. The phosphorus content in the biomass increased linearly from 0.2 to 1.5% with increasing sludge liquor concentrations. The highest nitrogen removal rates by algal biosynthesis were 33.6-42.6 mg TN L(-1) Day(-1) at 40-70% sludge liquor, while the highest phosphorus removal rates were 3.1-4.1 mg TP L(-1) Day(-1) at 50-100% sludge liquor. PMID:24935023

  2. Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia (L.) J.V. Lamouroux to low pH.

    PubMed

    Hofmann, Laurie C; Heiden, Jasmin; Bischof, Kai; Teichberg, Mirta

    2014-01-01

    Atmospheric carbon dioxide emissions cause a decrease in the pH and aragonite saturation state of surface ocean water. As a result, calcifying organisms are expected to suffer under future ocean conditions, but their physiological responses may depend on their nutrient status. Because many coral reefs experience high inorganic nutrient loads or seasonal changes in nutrient availability, reef organisms in localized areas will have to cope with elevated carbon dioxide and changes in inorganic nutrients. Halimeda opuntia is a dominant calcifying primary producer on coral reefs that contributes to coral reef accretion. Therefore, we investigated the carbon and nutrient balance of H. opuntia exposed to elevated carbon dioxide and inorganic nutrients. We measured tissue nitrogen, phosphorus and carbon content as well as the activity of enzymes involved in inorganic carbon uptake and nitrogen assimilation (external carbonic anhydrase and nitrate reductase, respectively). Inorganic carbon content was lower in algae exposed to high CO₂, but calcification rates were not significantly affected by CO₂ or inorganic nutrients. Organic carbon was positively correlated to external carbonic anhydrase activity, while inorganic carbon showed the opposite correlation. Carbon dioxide had a significant effect on tissue nitrogen and organic carbon content, while inorganic nutrients affected tissue phosphorus and N:P ratios. Nitrate reductase activity was highest in algae grown under elevated CO₂ and inorganic nutrient conditions and lowest when phosphate was limiting. In general, we found that enzymatic responses were strongly influenced by nutrient availability, indicating its important role in dictating the local responses of the calcifying primary producer H. opuntia to ocean acidification. PMID:24158465

  3. Factors affecting the sorption of cesium in a nutrient-poor boreal bog.

    PubMed

    Lusa, M; Bomberg, M; Virtanen, S; Lempinen, J; Aromaa, H; Knuutinen, J; Lehto, J

    2015-09-01

    (135)Cs is among the most important radionuclides in the long-term safety assessments of spent nuclear fuel, due to its long half-life of 2.3 My and large inventory in spent nuclear fuel. Batch sorption experiments were conducted to evaluate the sorption behavior of radiocesium ((134)Cs) in the surface moss, peat, gyttja, and clay layers of 7-m-deep profiles taken from a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of radiocesium increased as a function of sampling depth. The highest Kd values, with a geometric mean of 3200 L/kg dry weight (DW), were observed in the bottom clay layer and the lowest in the 0.5-1.0 m peat layer (50 L/kg DW). The maximum sorption in all studied layers was observed at a pH between 7 and 9.5. The in situ Kd values of (133)Cs in surface Sphagnum moss, peat and gyttja samples were one order of magnitude higher than the Kd values obtained using the batch method. The highest in situ Kd values (9040 L/kg DW) were recorded for the surface moss layer. The sterilization of fresh surface moss, peat, gyttja and clay samples decreased the sorption of radiocesium by 38%, although the difference was not statistically significant. However, bacteria belonging to the genera Pseudomonas, Paenibacillus, Rhodococcus and Burkholderia isolated from the bog were found to remove radiocesium from the solution under laboratory conditions. The highest biosorption was observed for Paenibacillus sp. V0-1-LW and Pseudomonas sp. PS-0-L isolates. When isolated bacteria were added to sterilized bog samples, the removal of radiocesium from the solution increased by an average of 50% compared to the removal recorded for pure sterilized peat. Our results demonstrate that the sorption of radiocesium in the bog environment is dependent on pH and the type of the bog layer and that common environmental bacteria prevailing in the bog can remove cesium from the solution phase. PMID:26010098

  4. Ischemic preconditioning affects long-term cell fate through DNA damage-related molecular signaling and altered proliferation.

    PubMed

    Kapoor, Sorabh; Berishvili, Ekaterine; Bandi, Sriram; Gupta, Sanjeev

    2014-10-01

    Despite the potential of ischemic preconditioning for organ protection, long-term effects in terms of molecular processes and cell fates are ill defined. We determined consequences of hepatic ischemic preconditioning in rats, including cell transplantation assays. Ischemic preconditioning induced persistent alterations; for example, after 5 days liver histology was normal, but γ-glutamyl transpeptidase expression was observed, with altered antioxidant enzyme content, lipid peroxidation, and oxidative DNA adducts. Nonetheless, ischemic preconditioning partially protected from toxic liver injury. Similarly, primary hepatocytes from donor livers preconditioned with ischemia exhibited undesirably altered antioxidant enzyme content and lipid peroxidation, but better withstood insults. However, donor hepatocytes from livers preconditioned with ischemia did not engraft better than hepatocytes from control livers. Moreover, proliferation of hepatocytes from donor livers preconditioned with ischemia decreased under liver repopulation conditions. Hepatocytes from donor livers preconditioned with ischemia showed oxidative DNA damage with expression of genes involved in MAPK signaling that impose G1/S and G2/M checkpoint restrictions, including p38 MAPK-regulated or ERK-1/2-regulated cell-cycle genes such as FOS, MAPK8, MYC, various cyclins, CDKN2A, CDKN2B, TP53, and RB1. Thus, although ischemic preconditioning allowed hepatocytes to better withstand secondary insults, accompanying DNA damage and molecular events simultaneously impaired their proliferation capacity over the long term. Mitigation of ischemic preconditioning-induced DNA damage and deleterious molecular perturbations holds promise for advancing clinical applications. PMID:25128377

  5. Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease.

    PubMed

    Uranga, José Antonio; López-Miranda, Visitación; Lombó, Felipe; Abalo, Raquel

    2016-08-01

    Inflammatory bowel diseases (ulcerative colitis; Crohn's disease) are debilitating relapsing inflammatory disorders affecting the gastrointestinal tract, with deleterious effect on quality of life, and increasing incidence and prevalence. Mucosal inflammation, due to altered microbiota, increased intestinal permeability and immune system dysfunction underlies the symptoms and may be caused in susceptible individuals by different factors (or a combination of them), including dietary habits and components. In this review we describe the influence of the Western diet, obesity, and different nutraceuticals/functional foods (bioactive peptides, phytochemicals, omega 3-polyunsaturated fatty acids, vitamin D, probiotics and prebiotics) on the course of IBD, and provide some hints that could be useful for nutritional guidance. Hopefully, research will soon offer enough reliable data to slow down the spread of the disease and to make diet a cornerstone in IBD therapy. PMID:27267792

  6. FATE OF FENTHION IN SALT-MARSH ENVIRONMENTS: 1. FACTORS AFFECTING BIOTIC AND ABIOTIC DEGRADATION RATES IN WATER AND SEDIMENT

    EPA Science Inventory

    Fenthion (Baytex), an organophosphate insecticide, is frequently applied to salt-marsh environments to control mosquitoes. hake-flask tests were used to study rates of abiotic and biotic degradation of fenthion and the environmental parameters that affect these rates. Water or wa...

  7. Dietary potassium diformate did not affect growth and survival but did reduce nutrient digestibility of Pacific white shrimp cultured under clean water conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effect of a dietary supplement potassium diformate (PDF) on growth performance, survival and nutrient digestibility of Pacific white shrimp cultured under clean water conditions. We found that weight gain was not significantly (P>0.05) affected by the different levels of ...

  8. Adaptive contraction of diet breadth affects sexual maturation and specific nutrient consumption in an extreme generalist omnivore.

    PubMed

    Jensen, K; Schal, C; Silverman, J

    2015-04-01

    Animals balance their intake of specific nutrients, but little is known about how they do so when foraging in an environment with toxic resources and whether toxic foods promote adaptations that affect life history traits. In German cockroach (Blattella germanica) populations, glucose aversion has evolved in response to glucose-containing insecticidal baits. We restricted newly eclosed glucose-averse (GA) and wild-type (WT) female cockroaches to nutritionally defined diets varying in protein-to-carbohydrate (P : C) ratio (3 : 1, 1 : 1, or 1 : 3) or gave them free choice of the 3 : 1 and 1 : 3 diets, with either glucose or fructose as the sole carbohydrate source. We measured consumption of each diet over 6 days and then dissected the females to measure the length of basal oocytes in their ovaries. Our results showed significantly lower consumption by GA compared to WT cockroaches when restricted to glucose-containing diets, but also lower fructose intake by GA compared to WT cockroaches when restricted to high fructose diets or given choice of fructose-containing diets. Protein intake was regulated tightly regardless of carbohydrate intake, except by GA cockroaches restricted to glucose-containing diets. Oocyte growth was completely suppressed in GA females restricted to glucose-containing diets, but also significantly slower in GA than in WT females restricted to fructose-containing diets. Our findings suggest that GA cockroaches have adapted to reduced diet breadth through endocrine adjustments which reduce requirements for energetic fuels. Our study illustrates how an evolutionary change in the chemosensory system may affect the evolution of other traits that govern animal life histories. PMID:25765134

  9. Amelioration of bauxite residue sand by intermittent additions of nitrogen fertiliser and leaching fractions: The effect on growth of kikuyu grass and fate of applied nutrients.

    PubMed

    Kaur, Navjot; Phillips, Ian; Fey, Martin V

    2016-04-15

    Bauxite residue, a waste product of aluminium processing operations is characterised by high pH, salinity and exchangeable sodium which hinders sustainable plant growth. The aim of this study was to investigate the uptake form, optimum application rate and timing of nitrogen fertiliser to improve bauxite residue characteristics for plant growth. Kikuyu grass was grown in plastic columns filled with residue sand/carbonated residue mud mixture (20:1) previously amended with gypsum, phosphoric acid and basal nutrients. The experiment was set up as a 4×4 factorial design comprising four levels of applied nitrogen (N) fertiliser (0, 3, 6 and 12mgNkg(-1) residue) and four frequencies of leaching (16, 8 and 4day intervals). We hypothesised that the use of ammonium sulfate fertiliser would increase retention of N within the rhizosphere thereby encouraging more efficient fertiliser use. We found that N uptake by kikuyu grass was enhanced due to leaching of excess salts and alkalinity from the residue profile. It was also concluded that biomass production and associated N uptake by kikuyu grass grown in residue is dependent on the type of fertiliser used. PMID:26824271

  10. Modelling combined effects of nutrients and toxicants in a branch of the Rhine Delta

    SciTech Connect

    Kramer, P.R.G.; Nijs, A.C.M. de; Aldenberg, T.

    1995-12-31

    A model is presented in which fate and effects of both nutrients and toxicants are combined at the level of phytoplankton and zooplankton in a river system including its sedimentation area. Within water quality modelling emphasis has been on either eutrophication or on toxic fates. Eutrophication research mainly focuses on the relationship between nutrients and water quality parameters. Ecotoxicological studies on the other hand aim either at describing fate of toxic substances or estimating biological effects on or below organism level on the basis of dose-effect experiments. However, an integrated approach linking fate and effects of nutrients and toxic substances on the ecosystem level is demanded to understand the behavior of natural systems exposed to a mix of compounds. The model describes a branch of the river Rhine, the river IJssel, with its sedimentation areas, lake Ketelmeer and lake IJsselmeer, which have suffered severely from high inputs of both nutrients and heavy metals in the past. Only from the seventies onward international sanitation programs have significantly improved the situation. Despite the improvements further actions are required because the problems of high chlorophyll levels as well as high loading of metals remain. It is shown that nutrients may induce an increase in phytoplankton biomass due to less efficient zooplankton grazing. Model results show that in order to change the present state of eutrophication also the input of xenobiotic substances affecting the zooplankton must be decreased.

  11. Water treatment by H2O2 and/or UV affects carbon nanotube (CNT) properties and fate in water and tannic acid solution.

    PubMed

    Czech, Bożena; Oleszczuk, Patryk; Wiącek, Agnieszka Ewa; Barczak, Mariusz

    2015-12-01

    The objective of the study was to estimate how water treatment (stimulation of real conditions) by H2O2 and/or UV affects carbon nanotube (CNT) properties and fate (stability/aggregation) in water and tannic acid solution. The processes studied had only a slight effect on SBET, porosity, and surface composition of CNTs. There was a change in the morphology of CNTs. After H2O2 and/or UV treatment, CNTs underwent shortening, opening up of their ends, and exfoliation. Treatment with H2O2 increased the content of oxygen in CNTs. A decrease was observed in the surface charge and in the mobility of CNTs, which caused an increase in their stability. UV irradiation of CNTs led to an increased incidence of defects that were manifested by both an increase of zeta potential and an increased mobility of CNT, whereas the presence of H2O2 during UV irradiation had only a slight effect on the parameters of the porous structure of nanotubes. PMID:26304806

  12. The light: nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process.

    PubMed

    Sterner, R W; Elser, J J; Fee, E J; Guildford, S J; Chrzanowski, T H

    1997-12-01

    The amounts of solar energy and materials are two of the chief factors determining ecosystem structure and process. Here, we examine the relative balance of light and phosphorus in a set of freshwater pelagic ecosystems. We calculated a ratio of light: phosphorus by putting mixed-layer mean light in the numerator and total P concentration in the denominator. This light: phosphorus ratio was a good predictor of the C:P ratio of particulate matter (seston), with a positive correlation demonstrated between these two ratios. We argue that the balance between light and nutrients controls "nutrient use efficiency" at the base of the food web in lakes. Thus, when light energy is high relative to nutrient availability, the base of the food web is carbon rich and phosphorus poor. In the opposite case, where light is relatively less available compared to nutrients, the base of the food web is relatively P rich. The significance of this relationship lies in the fact that the composition of sestonic material is known to influence a large number of ecosystem processes such as secondary production, nutrient cycling, and (we hypothesize) the relative strength of microbial versus grazing processes. Using the central result of increased C:P ratio with an increased light: phosphorus ratio, we make specific predictions of how ecosystem structure and process should vary with light and nutrient balance. Among these predictions, we suggest that lake ecosystems with low light: phosphorus ratios should have several trophic levels simultaneously carbon or energy limited, while ecosystems with high light: phosphorus ratios should have several trophic levels simultaneously limited by phosphorus. Our results provide an alternative perspective to the question of what determines nutrient use efficiency in ecosystems. PMID:18811330

  13. The effects of weed-crop competition on nutrient uptake as affected by crop rotation and fertilizers.

    PubMed

    Mohammaddoust-E-Chamanabad, Hamid Reza; Asghari, Ali; Tulikov, Aleksander Mikhailovic

    2007-11-15

    A field study at the Agricultural University of Timiriazev, Moscow, was conducted to determine the effect of crop rotation and Long-term fertilizer application on differences in the competitive ability of spring barley and weeds to nutrient uptake in 2004 and 2005. Spring barley was cultivated in continuous and in crop rotation with winter rye, potato, clover, flax and fallow, with and without NPK application since 1912. Spring barley, especially in no fertilizer plots grown in crop rotation has greater dry mass than spring barley grown in continuous. While dry weed mass markedly decreased in crop rotation. Decrease dry weeds mass was greater when NPK had applied. The statistical analyses show that when spring barley grew in competition with weeds in the no fertilizer plots, crop rotation significantly increased nutrient content in spring barley, but when fertilizer applied the content of N, P2O5 and K2O in barley did not change. Lowest weeds nutrient content observed where soil fertility was increased by crop rotation and NPK application. Crop rotation significantly increased total nutrient uptake of soils by spring barley, but decreased total nutrient uptake by weeds. PMID:19090292

  14. Comparison of two methods for estimating discharge and nutrient loads from Tidally affected reaches of the Myakka and Peace Rivers, West-Central Florida

    USGS Publications Warehouse

    Levesque, V.A.; Hammett, K.M.

    1997-01-01

    The Myakka and Peace River Basins constitute more than 60 percent of the total inflow area and contribute more than half the total tributary inflow to the Charlotte Harbor estuarine system. Water discharge and nutrient enrichment have been identified as significant concerns in the estuary, and consequently, it is important to accurately estimate the magnitude of discharges and nutrient loads transported by inflows from both rivers. Two methods for estimating discharge and nutrient loads from tidally affected reaches of the Myakka and Peace Rivers were compared. The first method was a tidal-estimation method, in which discharge and nutrient loads were estimated based on stage, water-velocity, discharge, and water-quality data collected near the mouths of the rivers. The second method was a traditional basin-ratio method in which discharge and nutrient loads at the mouths were estimated from discharge and loads measured at upstream stations. Stage and water-velocity data were collected near the river mouths by submersible instruments, deployed in situ, and discharge measurements were made with an acoustic Doppler current profiler. The data collected near the mouths of the Myakka River and Peace River were filtered, using a low-pass filter, to remove daily mixed-tide effects with periods less than about 2 days. The filtered data from near the river mouths were used to calculate daily mean discharge and nutrient loads. These tidal-estimation-method values were then compared to the basin-ratio-method values. Four separate 30-day periods of differing streamflow conditions were chosen for monitoring and comparison. Discharge and nutrient load estimates computed from the tidal-estimation and basin-ratio methods were most similar during high-flow periods. However, during high flow, the values computed from the tidal-estimation method for the Myakka and Peace Rivers were consistently lower than the values computed from the basin-ratio method. There were substantial

  15. Nutrient demand interacts with legume particle length to affect digestion responses and rumen pool sizes in dairy cows.

    PubMed

    Kammes, K L; Ying, Y; Allen, M S

    2012-05-01

    Effects of legume particle length on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, and digestion and passage kinetics, and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 13 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 19-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 22.8 to 32.4 kg/d (mean=26.5 kg/d) and 3.5% fat-corrected milk yield ranged from 22.9 to 62.4 kg/d (mean=35.1 kg/d). Experimental treatments were diets containing alfalfa silage chopped to (1) 19 mm (long cut, LC) or (2) 10 mm (short cut, SC) theoretical length of cut as the sole forage. Alfalfa silages contained approximately 43% neutral detergent fiber (NDF); diets contained approximately 47% forage and 20% forage NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4 d of the preliminary period, when cows were fed a common diet, and used as a covariate. Main effects of legume particle length and their interaction with pDMI were tested by ANOVA. Alfalfa particle length and its interaction with pDMI did not affect milk yield or rumen pH. The LC diet decreased milk fat concentration more per kilogram of pDMI increase than the SC diet and increased yields of milk fat and fat-corrected milk less per kilogram of pDMI increase than the SC diet, resulting in a greater benefit for LC at low pDMI and for SC at high pDMI. The LC diet tended to decrease DMI compared with the SC diet. Ruminal digestion and passage rates of feed fractions did not differ between LC and SC and were not related to level of intake. The LC diet tended to decrease the rate of ruminal turnover for NDF but increased NDF rumen pools at a slower rate than the SC diet as pDMI increased. This indicated that the faster NDF turnover rate did not counterbalance the higher DMI for SC, resulting in larger NDF rumen pools for SC than LC. As p

  16. Ready To Eat Cereal (RTEC) Consumption Positively Affects Total Daily Nutrient Intakes in Hispanic Children and Adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To examine the impact of breakfast meal pattern on nutrient intake status of Hispanic children and adolescents (N=3220), we compared breakfast skippers (S), RTEC, and other breakfast consumers using 24-hour recall data from the 1999-2002 National Health and Nutrition Examination Survey. Our data ind...

  17. Composting of biochars improves their sorption properties, retains nutrients during composting and affects greenhouse gas emissions after soil application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar application to soils has been suggested to elevate nutrient sorption, improve soil fertility and reduce net greenhouse gas (GHG) emissions. We examined the impact of composting biochar together with a biologically active substrate (i.e., livestock manure-straw mixture). We hypothesized that ...

  18. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007-2010.

    PubMed

    Cifelli, Christopher J; Houchins, Jenny A; Demmer, Elieke; Fulgoni, Victor L

    2016-01-01

    Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 for persons two years and older (n = 17,387) were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i) plant-based foods; (ii) protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy); and (iii) milk, cheese and yogurt. Scenarios (i) and (ii) had commensurate reductions in animal product intake. In both children (2-18 years) and adults (≥19 years), the percent not meeting the Estimated Average Requirement (EAR) decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that increasing plant

  19. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007–2010

    PubMed Central

    Cifelli, Christopher J.; Houchins, Jenny A.; Demmer, Elieke; Fulgoni, Victor L.

    2016-01-01

    Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES) 2007–2010 for persons two years and older (n = 17,387) were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i) plant-based foods; (ii) protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy); and (iii) milk, cheese and yogurt. Scenarios (i) and (ii) had commensurate reductions in animal product intake. In both children (2–18 years) and adults (≥19 years), the percent not meeting the Estimated Average Requirement (EAR) decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that increasing plant

  20. Assessment of Water and Nitrate-N deep percolation fluxes in soil as affected by irrigation and nutrient management practices

    NASA Astrophysics Data System (ADS)

    Tsehaye, Habte; Ceglie, Francesco; Mimiola, Giancarlo; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2015-04-01

    Many farming practices can result in contamination of groundwater, due to the downward migration of fertilizers and pesticides through the soil profile. The detrimental effects of this contamination are not limited to deterioration of chemical and physical properties of soils and waters, but also constitute a real risk to human and ecosystem health. Groundwater contamination may come from a very large array of chemicals. Nevertheless, on a global scale the main cause of pollution is a high nitrate concentration in the aquifer water. Nitrate concentrations of groundwater have constantly increased during the last decades, and the widespread use of commercial N fertilizers has been implicated as the main causative factor. It is often claimed that nutrient management in organic farming is more environmentally sustainable than its conventional counterpart. It is commonly presumed that organic agriculture causes only minimal environmental pollution. There is scientific evidence that organic management may enhance some soil physical and biological properties. In particular, soil fertility management strategies can affect soil properties and the related hydrological processes. It is thus crucial to quantify and predict management effects on soil properties in order to evaluate the effects of soil type, natural processes such as decomposition of organic matter, irrigation applications and preferential flow on the deep percolation fluxes of water and nitrates to the groundwater. In this study, we measured the water fluxes and the quality of water percolating below the root zone, underlying organic agriculture systems in greenhouse. Specifically, the aim was to examine the effects of application time and type of organic matter in the soil on the nitrate-N deep percolation fluxes under the following three organic soil fertility strategies in greenhouse tomato experiment: i. Organic input Substitution (which will be hereafter denoted SUBST) is represented as typical

  1. Composting of waste paint sludge containing melamine resin as affected by nutrients and gypsum addition and microbial inoculation.

    PubMed

    Tian, Yongqiang; Chen, Liming; Gao, Lihong; Michel, Frederick C; Wan, Caixia; Li, Yebo; Dick, Warren A

    2012-03-01

    Melamine formaldehyde resins have hard and durable properties and are found in many products, including automobile paints. These resins contain high concentrations of nitrogen and, if properly composted, can yield valuable products. We evaluated the effects of starter compost, nutrients, gypsum and microbial inoculation on composting of paint sludge containing melamine resin. A bench-scale composting experiment was conducted at 55 °C for 91 days and then at 30 °C for an additional 56 days. After 91 days, the composts were inoculated with a mixed population of melamine-degrading microorganisms. Melamine resin degradation after the entire 147 days of composting varied between 73 and 95% for the treatments with inoculation of microorganisms compared to 55-74% for the treatments without inoculation. Degradation was also enhanced by nutrients and gypsum additions. Our results infer that large scale composting of melamine resins in paint sludge is possible. PMID:22243857

  2. Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability

    USGS Publications Warehouse

    Lorenzen, B.; Brix, H.; Mendelssohn, I.A.; McKee, K.L.; Miao, S.L.

    2001-01-01

    The effects of phosphorus (P) and oxygen availability on growth, biomass allocation and nutrient use efficiency in Cladium jamaicense Crantz and Typha domingensis Pers. were studied in a growth facility equipped with steady-state hydroponic rhizotrons. The treatments included four P concentrations (10, 40, 80 and 500 ??g I-1) and two oxygen concentration (8.0 and <0.5 mg O2 I-1) in the culture solutions. In Cladium, no clear relationship was found between P availability and growth rate (19-37 mg g-1 d-1), the above to below ground biomass ratio (A/B) (mean = 4.6), or nitrogen use efficiency (NUE) (mean = 72 g dry weight g-1 N). However, the ratio between root supported tissue (leaves, rhizomes and ramets) and root biomass (S/R) (5.6-8) increased with P availability. In contrast, the growth rate (48-89 mg g-1 d-1) and the biomass ratios A/B (2.4-6.1) and S/R (5.4-10.3) of Typha increased with P availability, while NUE (71-30 g dry weight g-1 N) decreased. The proportion of root laterals was similar in the two species, but Typha had thinner root laterals (diameter = 186 ??m) than Cladium (diameter = 438 ??m) indicating a larger root surface area in Typha. The two species had a similar P use efficiency (PUE) at 10 ??g PI-1 (mean = 1134 g dry weight g-1 P) and at 40 and 80 ??g PI-1 (mean = 482 dry weight g-1 P) but the N/P ratio indicated imbalances in nutrient uptake at a higher P concentration (40 ??g PI-1) in Typha than in Cladium (10 ??g PI-1). The two species had similar root specific P accumulation rate at the two lowest P levels, whereas Typha had 3-13-fold higher P uptake rates at the two highest P levels, indicating a higher nutrient uptake capacity in Typha. The experimental oxygen concentration in the rhizosphere had only limited effect on the growth of the two species and had little effect on biomass partitioning and nutrient use efficiency. The aerenchyma in these species was probably sufficient to maintain adequate root oxygenation under partially oxygen

  3. Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects

    PubMed Central

    2012-01-01

    Background Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects. Results Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity. Conclusions Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration. PMID:23006315

  4. Growing environment and nutrient availability affect the content of some phenolic compounds in Echinacea purpurea and Echinacea angustifolia.

    PubMed

    Zheng, Youbin; Dixon, Mike; Saxena, Praveen K

    2006-12-01

    Medicinal plant production is different from other agricultural production systems in that the plants are grown for the production of specific phytochemical(s) for human use. To address this need, a Good Manufacturing Practice (GMP)-compliant, controlled-environment production system was developed for production of Echinacea purpurea and Echinacea angustifolia. Within the prototype facility, the growing systems, nutrient availability, water and physical environment were highly controlled. The current study was designed to evaluate the effects of different hydroponic systems, nutrient solution NO (3)(-)/NH (4)(+) ratios and mild water stress on the content of some phenolic compounds in Echinacea plants. The deep-flow solution culture system in which the plant roots were continuously immersed in the nutrient solutions was optimum for the growth of E. purpurea. Higher concentrations of caftaric acid, cynarin and echinacoside were produced in E. angustifolia plants grown in the soil-based growing media while the plants grown in the deep-flow solution system had higher levels of cichoric acid. Altering the NO (3)(-)/NH (4)(+) ratio or limited water stress did not have any significant effect on the phytochemical content of Echinacea plants. Echinacea plants grown in the controlled environment systems had higher or similar amounts of cynarin, caftaric acid, echinacoside and cichoric acid as previously reported in the literature for both field-cultivated and wild-harvested Echinacea plants. This growing system offers the advantages of year-round crop production with minimal contamination by environmental pollutants and common microbes. PMID:17054043

  5. Shoot ionome to predict the synergism and antagonism between nutrients as affected by substrate and physiological status.

    PubMed

    Pii, Youry; Cesco, Stefano; Mimmo, Tanja

    2015-09-01

    The elemental composition of a tissue or organism is defined as ionome. However, the combined effects on the shoot ionome determined by the taxonomic character, the nutrient status and different substrates have not been investigated. This study tests the hypothesis that phylogenetic variation of monocots and dicots grown in iron deficiency can be distinguished by the shoot ionome. We analyzed 18 elements in barley, cucumber and tomato and in two substrates (hydroponic vs soil) with different nutritional regimes. Multivariate analysis evidenced a clear separation between the species. In hydroponic conditions the main drivers separating the species are non essential-nutrients as Ti, Al, Na and Li, which were positively correlated with macro- (P, K) and micronutrients (Fe, Zn, Mo, B). The separation between species is confirmed when plants are grown on soil, but the distribution is determined especially by macronutrients (S, P, K, Ca, Mg) and micronutrients (B). A number of macro (Mg, Ca, S, P, K) and micronutrients (Fe, Mn, Zn, Cu, Mo, B) contribute to plant growth and several other important physiological and metabolic plant activities. The results reported here confirmed that the synergism and antagonism between them and other non-essential elements (Ti, Al, Si, Na) define the plant taxonomic character. The ionome profile might thus be exploited as a tool for the diagnosis of plants physiological/nutritional status but also in defining biofortification strategies to optimize both mineral enrichment of staple food crops and the nutrient input as fertilizers. PMID:26004913

  6. Nutrient-based ecological consideration of a temporary river catchment affected by a reservoir operation to facilitate efficient management.

    PubMed

    Tzoraki, Ourania A; Dörflinger, Gerald; Kathijotes, Nicholas; Kontou, Artemis

    2014-01-01

    The water quality status of the Kouris river in Cyprus was examined in order to fulfil the requirements for ecological quality as defined by the Water Framework Directive-2000/60/EC. Nitrate concentration (mean value) was increased in the Limnatis (2.8 mg L(-1)) tributary in comparison with the Kryos (2.1 mg L(-1)) and Kouris (1.0 mg L(-1)) tributaries depicting the influence of anthropogenic activities. The total maximum daily nutrients loads (TMDLs) based on the flow duration curves approach, showed that nutrients loads exceeded threshold values (33.3-75.6% in all hydrologic condition classes in the Kouris tributary, and 65-78% in the Limnatis tributary) especially under low flow conditions. The TMDL graph is intended to guide the temporal schedule for chemical sampling in all hydrologic classes. Kouris reservoir is an oligotrophic system, strongly influenced by the river's flash-flood character but also by the implemented management practices. Kouris river outflow, which was reduced to one-tenth in the post dam period altered the wetland hydrologic network and contributed to the decrease of aquifer thickness. Continuous evaluation and update of the River Basin Management Plans will be the basis for the sustainable development of the Kouris basin. PMID:24569286

  7. Phosphorus availability and elevated CO2 affect biological nitrogen fixation and nutrient fluxes in a clover-dominated sward.

    PubMed

    Edwards, Everard J; McCaffery, Stephanie; Evans, John R

    2006-01-01

    The response of biological nitrogen fixation (BNF) to elevated CO(2) was examined in white clover (Trifolium repens)-dominated swards under both high and low phosphorus availability. Mixed swards of clover and buffalo grass (Stenotaphrum secundatum) were grown for 15 months in 0.2 m2 sand-filled mesocosms under two CO2 treatments (ambient and twice ambient) and three nutrient treatments [no N, and either low or high P (5 or 134 kg P ha(-1)); the third nutrient treatment was supplied with high P and N (240 kg N ha(-1))]. Under ambient CO2, high P increased BNF from 410 to 900 kg ha(-1). Elevated CO2 further increased BNF to 1180 kg ha(-1) with high P, but there was no effect of CO2 on BNF with low P. Allocation of N belowground increased by approx. 50% under elevated CO2 irrespective of supplied P. The results suggest that where soil P availability is low, elevated CO2 will not increase BNF, and pasture quality could decrease because of a reduction in aboveground N. PMID:16390427

  8. Nutrient limitation leads to penetrative growth into agar and affects aroma formation in Pichia fabianii, P. kudriavzevii and Saccharomyces cerevisiae.

    PubMed

    van Rijswijck, Irma M H; Dijksterhuis, Jan; Wolkers-Rooijackers, Judith C M; Abee, Tjakko; Smid, Eddy J

    2015-01-01

    Among fermentative yeast species, Saccharomyces cerevisiae is most frequently used as a model organism, although other yeast species may have special features that make them interesting candidates to apply in food-fermentation processes. In this study, we used three yeast species isolated from fermented masau (Ziziphus mauritiana) fruit, S. cerevisiae 131, Pichia fabianii 65 and Pichia kudriavzevii 129, and determined the impact of nitrogen and/or glucose limitation on surface growth mode and the production of volatile organic compounds (VOCs). All three species displayed significant changes in growth mode in all nutrient-limited conditions, signified by the formation of metafilaments or pseudohyphae. The timing of the transition was found to be species-specific. Transition in growth mode is suggested to be linked to the production of certain fusel alcohols, such as phenylethyl alcohol, which serve as quorum-sensing molecules. Interestingly, we did not observe concomitant increased production of phenylethyl alcohol and filamentous growth. Notably, a broader range of esters was found only for the Pichia spp. grown on nitrogen-limited agar for 21 days compared to nutrient-rich agar, and when grown on glucose- and glucose- plus nitrogen-limited agar. Our data suggest that for the Pichia spp., the formation of esters may play an important role in the switch in growth mode upon nitrogen limitation. Further biological or ecological implications of ester formation are discussed. PMID:25308873

  9. FATE, THE ENVIRONMENTAL FATE CONSTANTS INFORMATION DATABASE

    EPA Science Inventory

    An online database, FATE, has been developed for the interactive retrieval of kinetic and equilibrium constants that are needed for assessing the fate of chemicals in the environment. he database contains values for up to 12 parameters for each chemical. s of December 1991, FATE ...

  10. Changing nutrient stoichiometry affects phytoplankton production, DOP build up and dinitrogen fixation - a mesocosm experiment in the eastern tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Löscher, C. R.; Neulinger, S. C.; Reichel, A. F.; Loginova, A.; Borchard, C.; Schmitz, R. A.; Hauss, H.; Kiko, R.; Riebesell, U.

    2015-07-01

    Ocean deoxygenation due to climate change may alter redox-sensitive nutrient cycles in the marine environment. The productive eastern tropical North Atlantic (ETNA) upwelling region may be particularly affected when the relatively moderate oxygen minimum zone (OMZ) deoxygenates further and microbially-driven nitrogen (N) loss processes are promoted. Consequently, water masses with a low N : P ratio could reach the euphotic layer, possibly influencing primary production in those waters. Previous mesocosm studies in the oligotrophic Atlantic Ocean identified N availability as controlling of primary production, while a possible co-limitation of nitrate and phosphate (P) could not be ruled out. To better understand the impact of changing N : P ratios on primary production and on N2 fixation in the ETNA surface ocean, we conducted land-based mesocosm experiments with natural plankton communities and applied a broad range of N : P ratios (2.67-48). Silicate was supplied at 15 μmol L-1 in all mesocosms. We monitored nutrient drawdown, bloom formation, biomass build up and diazotrophic feedback in response to variable nutrient stoichiometry. Our results confirmed N to be limiting to primary production. We found that excess P was channeled through particulate organic matter (POP) into the dissolved organic matter (DOP) pool. In mesocosms with low P availability, DOP was utilized while N2 fixation increased, suggesting a link between those two processes. Interestingly this observation was most pronounced in mesocosms where inorganic N was still available, indicating that bioavailable N does not necessarily has to have a negative impact on N2 fixation. We observed a shift from a mixed cyanobacterial/proteobacterial dominated active diazotrophic community towards diazotrophic diatom symbionts of the Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in nutrient stoichiometry in the ETNA might lead to a general shift within the diazotrophic community

  11. Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem.

    PubMed

    Marcilhac, Cyril; Sialve, Bruno; Pourcher, Anne-Marie; Ziebal, Christine; Bernet, Nicolas; Béline, Fabrice

    2014-11-01

    During anaerobic digestion, nutrients are mineralized and may require post-treatment for optimum valorization. The cultivation of autotrophic microalgae using the digestate supernatant is a promising solution; however the dark color of the influent poses a serious problem. First, the color of the digestates was studied and the results obtained using three different digestates demonstrated a strong heterogeneity although their color remained rather constant over time. The digestates absorbed light over the whole visible spectrum and remained colored even after a ten-fold dilution. Secondly, the impact of light and of substrate color on the growth of Scenedesmus sp. and on nitrogen removal were assessed. These experiments led to the construction of a model for predicting the impact of influent color and light intensity on N removal. Maximum N removal (8.5 mgN- [Formula: see text]  L(-1) d(-1)) was observed with an initial optical density of 0.221 and 244 μmolE m(-)² s(-1) light and the model allows to determine N removal between 15.9 and 22.7 mgN- [Formula: see text]  L(-1) d(-1) in real conditions according to the dilution level of the influent and related color. Changes in the microalgae community were monitored and revealed the advantage of Chlorella over Scenedesmus under light-limitation. Additionally microalgae outcompeted nitrifying bacteria and experiments showed how microalgae become better competitors for nutrients when phosphorus is limiting. Furthermore, nitrification was limited by microalgae growth, even when P was not limiting. PMID:25078443

  12. Inclusion of sainfoin (Onobrychis viciifolia) silage in dairy cow rations affects nutrient digestibility, nitrogen utilization, energy balance, and methane emissions.

    PubMed

    Huyen, N T; Desrues, O; Alferink, S J J; Zandstra, T; Verstegen, M W A; Hendriks, W H; Pellikaan, W F

    2016-05-01

    Sainfoin (Onobrychis viciifolia) is a tanniniferous legume forage that has potential nutritional and health benefits preventing bloating, reducing nematode larval establishment, improving N utilization, and reducing greenhouse gas emissions. However, the use of sainfoin as a fodder crop in dairy cow rations in northwestern Europe is still relatively unknown. The objective of this study was to evaluate the effect of sainfoin silage on nutrient digestibility, animal performance, energy and N utilization, and CH4 production. Six rumen-cannulated, lactating dairy cows with a metabolic body weight (BW(0.75)) of 132.5±3.6kg were randomly assigned to either a control (CON) or a sainfoin (SAIN)-based diet over 2 experimental periods of 25 d each in a crossover design. The CON diet was a mixture of grass silage, corn silage, concentrate, and linseed. In the SAIN diet, 50% of grass silage dry matter (DM) of the CON diet was exchanged for sainfoin silage. The cows were adapted to 95% of ad libitum feed intake for a 21-d period before being housed in climate-controlled respiration chambers for 4 d, during which time feed intake, apparent total-tract digestibility, N and energy balance, and CH4 production was determined. Data were analyzed using a mixed model procedure. Total daily DM, organic matter, and neutral detergent fiber intake did not differ between the 2 diets. The apparent digestibility of DM, organic matter, neutral detergent fiber, and acid detergent fiber were, respectively, 5.7, 4.0, 15.7, and 14.8% lower for the SAIN diet. Methane production per kilogram of DM intake was lowest for the SAIN diet, CH4 production as a percentage of gross energy intake tended to be lower, and milk yield was greater for the SAIN diet. Nitrogen intake, N retention, and energy retained in body protein were greater for the SAIN than for the CON diet. Nitrogen retention as a percentage of N intake tended to be greater for the SAIN diet. These results suggest that inclusion of sainfoin

  13. Tomato growth as affected by root-zone temperature and the addition of gibberellic acid and kinetin to nutrient solutions

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; White, J. W.; Salisbury, F. B. (Principal Investigator)

    1984-01-01

    The effect of root-zone temperature on young tomato plants (Lycopersicon esculentum Mill. cv. Heinz 1350) was evaluated in controlled environments using a recirculating solution culture system. Growth rates were measured at root-zone temperatures of 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in a near optimum foliar environment. Optimum growth occurred at 25 degrees to 30 degrees during the first 4 weeks of growth and 20 degrees to 25 degrees during the 5th and 6th weeks. Growth was severely restricted at 15 degrees. Four concentrations of gibberellic acid (GA3) and kinetin were added to the nutrient solution in a separate trial; root-zone temperature was maintained at 15 degrees and 25 degrees. Addition of 15 micromoles GA3 to solutions increased specific leaf area, total leaf area, and dry weight production of plants in both temperature treatments. GA3-induced growth stimulation was greater at 15 degrees than at 25 degrees. GA3 may promote growth by increasing leaf area, enhancing photosynthesis per unit leaf area, or both. Kinetic was not useful in promoting growth at either temperature.

  14. Nanosilver and Nano Zero-Valent Iron Exposure Affects Nutrient Exchange Across the Sediment-Water Interface.

    PubMed

    Buchkowski, Robert W; Williams, Clayton J; Kelly, Joel; Veinot, Jonathan G C; Xenopoulos, Marguerite A

    2016-01-01

    To examine how nanoparticles influence biogeochemical cycles in streams, we studied the acute impact of nanosilver (nAg) and nanoparticulate zero-valent iron (nZVI) exposure on nutrient and oxygen exchange across the sediment-water interface of two streams (agricultural canal and wetland) that differed in their water quality and sediment characteristics. At the agricultural site, nAg increased oxygen consumption and decreased N2 flux rates from that observed in control incubations. nZVI caused sediment-water systems from both streams to go hypoxic within 1.5 h of exposure. N2 flux rates were at least an order of magnitude higher in nZVI treatments as compared to control. Water column nitrate and nitrite concentrations were not impacted by nZVI exposure but total dissolved phosphorus concentrations were higher in cores treated with nZVI. nAg and nZVI exposure to surface water ecosystems can disrupt ecological function across the sediment-water interface. PMID:26611367

  15. Dietary antioxidants and flight exercise in female birds affect allocation of nutrients to eggs: how carry-over effects work.

    PubMed

    Skrip, Megan M; Seeram, Navindra P; Yuan, Tao; Ma, Hang; McWilliams, Scott R

    2016-09-01

    Physiological challenges during one part of the annual cycle can carry over and affect performance at a subsequent phase, and antioxidants could be one mediator of trade-offs between phases. We performed a controlled experiment with zebra finches to examine how songbirds use nutrition to manage trade-offs in antioxidant allocation between endurance flight and subsequent reproduction. Our treatment groups included (1) a non-supplemented, non-exercised group (control group) fed a standard diet with no exercise beyond that experienced during normal activity in an aviary; (2) a supplemented non-exercised group fed a water- and lipid-soluble antioxidant-supplemented diet with no exercise; (3) a non-supplemented exercised group fed a standard diet and trained to perform daily endurance flight for 6 weeks; and (4) a supplemented exercised group fed an antioxidant-supplemented diet and trained to perform daily flight for 6 weeks. After flight training, birds were paired within treatment groups for breeding. We analyzed eggs for lutein and vitamin E concentrations and the plasma of parents throughout the experiment for non-enzymatic antioxidant capacity and oxidative damage. Exercised birds had higher oxidative damage levels than non-exercised birds after flight training, despite supplementation with dietary antioxidants. Supplementation with water-soluble antioxidants decreased the deposition of lipid-soluble antioxidants into eggs and decreased yolk size. Flight exercise also lowered deposition of lutein, but not vitamin E, to eggs. These findings have important implications for future studies of wild birds during migration and other oxidative challenges. PMID:27582563

  16. Body condition score at calving affects systemic and hepatic transcriptome indicators of inflammation and nutrient metabolism in grazing dairy cows.

    PubMed

    Akbar, H; Grala, T M; Vailati Riboni, M; Cardoso, F C; Verkerk, G; McGowan, J; Macdonald, K; Webster, J; Schutz, K; Meier, S; Matthews, L; Roche, J R; Loor, J J

    2015-02-01

    , STAT3, HP, and SAA3 coupled with the increase in ALB on wk 3 in MBCS cows were consistent with blood measures. Overall, results suggest that the greater milk production of cows with higher calving BCS is associated with a proinflammatory response without negatively affecting expression of genes related to metabolism and the growth hormone/insulin-like growth factor-1 axis. Results highlight the sensitivity of indicators of metabolic health and inflammatory state to subtle changes in calving BCS and, collectively, indicate a suboptimal health status in cows calving at either BCS 3.5 or 5.5 relative to BCS 4.5. PMID:25497809

  17. Caenorhabditis elegans vulval cell fate patterning

    NASA Astrophysics Data System (ADS)

    Félix, Marie-Anne

    2012-08-01

    The spatial patterning of three cell fates in a row of competent cells is exemplified by vulva development in the nematode Caenorhabditis elegans. The intercellular signaling network that underlies fate specification is well understood, yet quantitative aspects remain to be elucidated. Quantitative models of the network allow us to test the effect of parameter variation on the cell fate pattern output. Among the parameter sets that allow us to reach the wild-type pattern, two general developmental patterning mechanisms of the three fates can be found: sequential inductions and morphogen-based induction, the former being more robust to parameter variation. Experimentally, the vulval cell fate pattern is robust to stochastic and environmental challenges, and minor variants can be detected. The exception is the fate of the anterior cell, P3.p, which is sensitive to stochastic variation and spontaneous mutation, and is also evolving the fastest. Other vulval precursor cell fates can be affected by mutation, yet little natural variation can be found, suggesting stabilizing selection. Despite this fate pattern conservation, different Caenorhabditis species respond differently to perturbations of the system. In the quantitative models, different parameter sets can reconstitute their response to perturbation, suggesting that network variation among Caenorhabditis species may be quantitative. Network rewiring likely occurred at longer evolutionary scales.

  18. Fate and toxic effects of environmental stressors: environmental control.

    PubMed

    Zhuang, Jie; Yu, Han-Qing; Henry, Theodore B; Sayler, Gary S

    2015-12-01

    The potential for toxicants to harm organisms in the environment is influenced by the physicochemistry of the substances and their environmental behaviors and transformation within ecosystems. This special issue is composed of 20 papers that report on studies which have investigated the fate and toxicity of various toxicants including engineered nanoparticles, pharmaceuticals and personal care products, antibiotics, pathogens, heavy metals, and agricultural nutrients. The environmental transformations of these substances and how these processes affect their toxicity are emphasized. This paper highlights the important findings and perspectives of the selected papers in this special edition, with an aim of providing insights into full-scale evaluation on the toxicity of various contaminants that exist in ecosystems. General suggestions are provided for the future directions of toxicological research. PMID:26497020

  19. Lizards and LINEs: Selection and Demography Affect the Fate of L1 Retrotransposons in the Genome of the Green Anole (Anolis carolinensis)

    PubMed Central

    Tollis, Marc; Boissinot, Stéphane

    2013-01-01

    Autonomous retrotransposons lacking long terminal repeats (LTR) account for much of the variation in genome size and structure among vertebrates. Mammalian genomes contain hundreds of thousands of non-LTR retrotransposon copies, mostly resulting from the amplification of a single clade known as L1. The genomes of teleost fish and squamate reptiles contain a much more diverse array of non-LTR retrotransposon families, whereas copy number is relatively low. The majority of non-LTR retrotransposon insertions in nonmammalian vertebrates also appear to be very recent, suggesting strong purifying selection limits the accumulation of non-LTR retrotransposon copies. It is however unclear whether this turnover model, originally proposed in Drosophila, applies to nonmammalian vertebrates. Here, we studied the population dynamics of L1 in the green anole lizard (Anolis carolinensis). We found that although most L1 elements are recent in this genome, truncated insertions accumulate readily, and many are fixed at both the population and species level. In contrast, full-length L1 insertions are found at lower population frequencies, suggesting that the turnover model only applies to longer L1 elements in Anolis. We also found that full-length L1 inserts are more likely to be fixed in populations of small effective size, suggesting that the strength of purifying selection against deleterious alleles is highly dependent on host demographic history. Similar mechanisms seem to be controlling the fate of non-LTR retrotransposons in both Anolis and teleostean fish, which suggests that mammals have considerably diverged from the ancestral vertebrate in terms of how they interact with their intragenomic parasites. PMID:24013105

  20. Factors affecting the fate and transport of glyphosate and AMPA into surface waters of agricultural watersheds in the United States and Europe

    NASA Astrophysics Data System (ADS)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2012-04-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used extensively in almost all agricultural and urban areas of the United States and Europe. Although, glyphosate is used widely throughout the world in the production of many crops, it is predominately used in the United States on soybeans, corn, potatoes, and cotton that have been genetically modified to be tolerant to glyphosate. From 1992 to 2007, the agricultural use of glyphosate has increased from less than 10,000 Mg to more than 80,000 Mg, respectively. The greatest areal use is in the midwestern United States where glyphosate is applied on transgenic corn and soybeans. Because of the difficulty and expense in analyzing for glyphosate and AMPA (aminomethylphosphonic acid, a primary glyphosate degradate) in water, there have been only small scale studies on the fate and transport of glyphosate. The characterization of the transport of glyphosate and AMPA on a watershed scale is lacking. Glyphosate and AMPA were frequently detected in the surface waters of 4 agricultural watersheds in studies conducted by the U.S. Geological Survey in the United States and at the Laboratory of Hydrology and Geochemistry of Strasbourg. Two of these basins were located in the midwestern United States where the major crops are corn and soybean, the third is located the lower Mississippi River Basin where the major crops are soybean, corn, rice, and cotton, and the fourth was located near Strasbourg, France where the use of glyphosate was on a vineyard. The load as a percent of use ranged from 0.009 to 0.86 percent and could be related to 3 factors: source strength, hydrology, and flowpath. Glyphosate use in a watershed results in some occurrence in surface water at the part per billion level; however, those watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  1. Dietary patterns in pregnancy and effects on nutrient intake in the Mid-South: the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) study.

    PubMed

    Völgyi, Eszter; Carroll, Kecia N; Hare, Marion E; Ringwald-Smith, Karen; Piyathilake, Chandrika; Yoo, Wonsuk; Tylavsky, Frances A

    2013-05-01

    Dietary patterns are sensitive to differences across socio-economic strata or cultural habits and may impact programing of diseases in later life. The purpose of this study was to identify distinct dietary patterns during pregnancy in the Mid-South using factor analysis. Furthermore, we aimed to analyze the differences in the food groups and in macro- and micronutrients among the different food patterns. The study was a cross-sectional analysis of 1155 pregnant women (mean age 26.5 ± 5.4 years; 62% African American, 35% Caucasian, 3% Other; and pre-pregnancy BMI 27.6 ± 7.5 kg/m(2)). Using food frequency questionnaire data collected from participants in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) study between 16 and 28 weeks of gestation, dietary patterns were identified using factor analysis. Three major dietary patterns, namely, Healthy, Processed, and US Southern were identified among pregnant women from the Mid-South. Further analysis of the three main patterns revealed four mixed dietary patterns, i.e., Healthy-Processed, Healthy-US Southern, Processed-US Southern, and overall Mixed. These dietary patterns were different (p < 0.001) from each other in almost all the food items, macro- and micro nutrients and aligned across socioeconomic and racial groups. Our study describes unique dietary patterns in the Mid-South, consumed by a cohort of women enrolled in a prospective study examining the association of maternal nutritional factors during pregnancy that are known to affect brain and cognitive development by age 3. PMID:23645026

  2. Dietary Patterns in Pregnancy and Effects on Nutrient Intake in the Mid-South: The Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) Study

    PubMed Central

    Völgyi, Eszter; Carroll, Kecia N.; Hare, Marion E.; Ringwald-Smith, Karen; Piyathilake, Chandrika; Yoo, Wonsuk; Tylavsky, Frances A.

    2013-01-01

    Dietary patterns are sensitive to differences across socio-economic strata or cultural habits and may impact programing of diseases in later life. The purpose of this study was to identify distinct dietary patterns during pregnancy in the Mid-South using factor analysis. Furthermore, we aimed to analyze the differences in the food groups and in macro- and micronutrients among the different food patterns. The study was a cross-sectional analysis of 1155 pregnant women (mean age 26.5 ± 5.4 years; 62% African American, 35% Caucasian, 3% Other; and pre-pregnancy BMI 27.6 ± 7.5 kg/m2). Using food frequency questionnaire data collected from participants in the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) study between 16 and 28 weeks of gestation, dietary patterns were identified using factor analysis. Three major dietary patterns, namely, Healthy, Processed, and US Southern were identified among pregnant women from the Mid-South. Further analysis of the three main patterns revealed four mixed dietary patterns, i.e., Healthy-Processed, Healthy-US Southern, Processed-US Southern, and overall Mixed. These dietary patterns were different (p < 0.001) from each other in almost all the food items, macro- and micro nutrients and aligned across socioeconomic and racial groups. Our study describes unique dietary patterns in the Mid-South, consumed by a cohort of women enrolled in a prospective study examining the association of maternal nutritional factors during pregnancy that are known to affect brain and cognitive development by age 3. PMID:23645026

  3. Metabolic fate (absorption, β-oxidation and deposition) of long-chain n-3 fatty acids is affected by sex and by the oil source (krill oil or fish oil) in the rat.

    PubMed

    Ghasemifard, Samaneh; Hermon, Karen; Turchini, Giovanni M; Sinclair, Andrew J

    2015-09-14

    The effects of krill oil as an alternative source of n-3 long-chain PUFA have been investigated recently. There are conflicting results from the few available studies comparing fish oil and krill oil. The aim of this study was to compare the bioavailability and metabolic fate (absorption, β-oxidation and tissue deposition) of n-3 fatty acids originating from krill oil (phospholipid-rich) or fish oil (TAG-rich) in rats of both sexes using the whole-body fatty acid balance method. Sprague-Dawley rats (thirty-six male, thirty-six female) were randomly assigned to be fed either a krill oil diet (EPA+DHA+DPA=1·38 mg/g of diet) or a fish oil diet (EPA+DHA+DPA=1·61 mg/g of diet) to constant ration for 6 weeks. The faeces, whole body and individual tissues were analysed for fatty acid content. Absorption of fatty acids was significantly greater in female rats and was only minimally affected by the oil type. It was estimated that most of EPA (>90 %) and more than half of DHA (>60 %) were β-oxidised in both diet groups. Most of the DPA was β-oxidised (57 and 67 % for female and male rats, respectively) in the fish oil group; however, for the krill oil group, the majority of DPA was deposited (82-83 %). There was a significantly greater deposition of DPA and DHA in rats fed krill oil compared with those fed fish oil, not due to a difference in bioavailability (absorption) but rather due to a difference in metabolic fate (anabolism v. catabolism). PMID:26234617

  4. Ocean nutrients

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.; Hurd, Catriona L.

    Nutrients provide the chemical life-support system for phytoplankton in the ocean. Together with the carbon fixed during photosynthesis, nutrients provide the other elements, such as N and P, needed to synthesize macromolecules to build cellular constituents such as ribosomes. The makeup of these various biochemicals, such as proteins, pigments, and nucleic acids, together determine the elemental stoichiometry of an individual phytoplankton cell. The stoichiometry of different phytoplankton species or groups will vary depending on the proportions of distinct cellular machinery, such as for growth or resource acquisition, they require for their life strategies. The uptake of nutrients by phytoplankton helps to set the primary productivity, and drives the biological pump, of the global ocean. In the case of nitrogen, the supply of nutrients is categorized as either new or regenerated. The supply of new nitrogen, such as nitrate upwelled from the ocean' interior or biological nitrogen fixation, is equal to the vertical export of particular organic matter from the upper ocean on a timescale of years. Nutrients such as silica can also play a structural role in some phytoplankton groups, such as diatoms, where they are used to synthesize a siliceous frustule that offers some mechanical protection from grazers. In this chapter, we also explore nutrient uptake kinetics, patterns in nutrient distributions in space and time, the biogeochemical cycle of nitrogen, the atmospheric supply of nutrients, departures from the Redfield ratio, and whether nutrient distributions and cycling will be altered in the future

  5. Nutrient Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  6. Nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  7. Nutrient cycling.

    PubMed

    Bormann, F H; Likens, G E

    1967-01-27

    The small-watershed approach to problems of nutrient cycling has these advantages. (i) The small watershed is a natural unit of suitable size for intensive study of nutrient cycling at the ecosystem level. (ii) It provides a means of reducing to a minimum, or virtually eliminating, the effect of the difficult-to-measure variables of geologic input and nutrient losses in deep seepage. Control of these variables makes possible accurate measurement of nutrient input and output (erosion) and therefore establishes the relationship of the smaller ecosystem to the larger biospheric cycles. (iii) The small-watershed approach provides a method whereby such important parameters as nutrient release from minerals (weathering) and annual nutrient budgets may be calculated. (iv) It provides a means of studying the interrelationships between the biota and the hydrologic cycle, various nutrient cycles, and energy flow in a single system. (v) Finally, with the small-watershed system we can test the effect of various land-management practices or environmental pollutants on nutrient cycling in natural systems. PMID:17737551

  8. Agricultural Nutrient Cycling at the Strawberry Creek Watershed: Insights Into Processes Using Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Thuss, E.; English, M. C.; Spoelstra, J.

    2009-05-01

    When nitrogen availability exceeds biological demand, excess nitrogen, especially nitrate, may subsequently pollute ground and surface water. Agricultural practices in Southern Ontario typically supplement soils with organic and inorganic nutrients to aid in crop development, and employ various management techniques to limit nutrient loss. Excess nitrogen has several potential fates, which are controlled by the net effects of numerous nitrogen cycling reactions in the soil that are often difficult to measure directly. Nitrogen cycling in soils is controlled in large part by soil moisture, as it affects microbial activity and soil redox conditions. Stable isotope geochemistry is a powerful tool that provides information on nitrogen sources and processes. This study uses crop nitrogen and carbon isotope ratios to provide insights into the net effects of soil nitrogen cycling and nitrogen fate. This research was conducted at the Strawberry Creek Watershed (SCW), an agricultural research watershed located between Kitchener-Waterloo and Guelph, Ontario. The SCW exhibits elevated nitrate concentrations in groundwater, tile discharge, and the stream itself. Previous isotopic work revealed that this nitrate is largely derived from chemical fertilizer and manure applications. Field-scale hydrological processes lead to areas where the fate of applied nitrogen differs, which has an isotopic effect on the residual nitrogen that is available to plants. Results of this study indicate significant patterns in the isotopic signature of plant tissue, in both temporal and spatial scales. At the plot-scale where soil conditions are similar, there is little to no variation in foliar isotope values, but at the field-scale there appears to be a significant amount of variability related to soil moisture and nitrogen loss. This relationship can potentially provide insight into ideal conditions for nitrogen uptake efficiency. Reducing agricultural nitrogen leaching to ground and surface

  9. Egg storage duration and hatch window affect gene expression of nutrient transporters and intestine morphological parameters of early hatched broiler chicks.

    PubMed

    Yalcin, S; Gursel, I; Bilgen, G; Izzetoglu, G T; Horuluoglu, B H; Gucluer, G

    2016-05-01

    In recent years, researchers have given emphasis on the differences in physiological parameters between early and late hatched chicks within a hatch window. Considering the importance of intestine development in newly hatched chicks, however, changes in gene expression of nutrient transporters in the jejunum of early hatched chicks within a hatch window have not been studied yet. This study was conducted to determine the effects of egg storage duration before incubation and hatch window on intestinal development and expression of PepT1 (H+-dependent peptide transporter) and SGLT1 (sodium-glucose co-transporter) genes in the jejunum of early hatched broiler chicks within a 30 h of hatch window. A total of 1218 eggs obtained from 38-week-old Ross 308 broiler breeder flocks were stored for 3 (ES3) or 14 days (ES14) and incubated at the same conditions. Eggs were checked between 475 and 480 h of incubation and 40 chicks from each egg storage duration were weighed; chick length and rectal temperature were measured. The chicks were sampled to evaluate morphological parameters and PepT1 and SGLT1 expression. The remaining chicks that hatched between 475 and 480 h were placed back in the incubator and the same measurements were conducted with those chicks at the end of hatch window at 510 h of incubation. Chick length, chick dry matter content, rectal temperature and weight of small intestine segments increased, whereas chick weight decreased during the hatch window. The increase in the jejunum length and villus width and area during the hatch window were higher for ES3 than ES14 chicks. PepT1 expression was higher for ES3 chicks compared with ES14. There was a 10.2 and 17.6-fold increase in PepT1 and SGLT1 expression of ES3 chicks at the end of hatch window, whereas it was only 2.3 and 3.3-fold, respectively, for ES14 chicks. These results suggested that egg storage duration affected development of early hatched chicks during 30 h of hatch window. It can be concluded that

  10. Silage and whole-farm nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The management of forage-based livestock farms is complex. A selected silage system can affect nutrient management by influencing the type, amount, and nutrient content of feeds fed. Manure handling procedures used on a farm can also affect the yield and nutrient contents of the forages produced. So...

  11. Sodium diformate and extrusion temperature affect nutrient digestibility and physical quality of diets with fish meal and barley protein concentrate for rainbow trout (Oncorhynchus mykiss)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of the experiment were to evaluate the effects of ingredient, extrusion temperature, and the acid salt sodium diformate (NaDF) in diets for rainbow trout on apparent nutrient digestibility and physical quality of the diets. The experiment was arranged in a 23 factorial design with two...

  12. Factors affecting variation of different measures of cheese yield and milk nutrient recovery from an individual model cheese-manufacturing process.

    PubMed

    Cipolat-Gotet, C; Cecchinato, A; De Marchi, M; Bittante, G

    2013-01-01

    Cheese yield (CY) is the most important technological trait of milk, because cheese-making uses a very high proportion of the milk produced worldwide. Few studies have been carried out at the level of individual milk-producing animals due to a scarcity of appropriate procedures for model-cheese production, the complexity of cheese-making, and the frequent use of the fat and protein (or casein) contents of milk as a proxy for cheese yield. Here, we report a high-throughput cheese manufacturing process that mimics all phases of cheese-making, uses 1.5-L samples of milk from individual animals, and allows the simultaneous processing of 15 samples per run. Milk samples were heated (35°C for 40 min), inoculated with starter culture (90 min), mixed with rennet (51.2 international milk-clotting units/L of milk), and recorded for gelation time. Curds were cut twice (10 and 15 min after gelation), separated from the whey, drained (for 30 min), pressed (3 times, 20 min each, with the wheel turned each time), salted in brine (for 60 min), weighed, and sampled. Whey was collected, weighed, and sampled. Milk, curd, and whey samples were analyzed for pH, total solids, fat content, and protein content, and energy content was estimated. Three measures of percentage cheese yield (%CY) were calculated: %CY(CURD), %CY(SOLIDS), and %CY(WATER), representing the ratios between the weight of fresh curd, the total solids of the curd, and the water content of the curd, respectively, and the weight of the milk processed. In addition, 3 measures of daily cheese yield (dCY, kg/d) were defined, considering the daily milk yield. Three measures of nutrient recovery (REC) were computed: REC(FAT), REC(PROTEIN), and REC(SOLIDS), which represented the ratio between the weights of the fat, protein, and total solids in the curd, respectively, and the corresponding components in the milk. Energy recovery, REC(ENERGY), represented the energy content of the cheese compared with that in the milk. This

  13. Are patterns in nutrient limitation belowground consistent with those aboveground: Results from a 4 million year chronosequence

    USGS Publications Warehouse

    Reed, S.C.; Vitousek, P.M.; Cleveland, C.C.

    2011-01-01

    Accurately predicting the effects of global change on net carbon (C) exchange between terrestrial ecosystems and the atmosphere requires a more complete understanding of how nutrient availability regulates both plant growth and heterotrophic soil respiration. Models of soil development suggest that the nature of nutrient limitation changes over the course of ecosystem development, transitioning from nitrogen (N) limitation in 'young' sites to phosphorus (P) limitation in 'old' sites. However, previous research has focused primarily on plant responses to added nutrients, and the applicability of nutrient limitation-soil development models to belowground processes has not been thoroughly investigated. Here, we assessed the effects of nutrients on soil C cycling in three different forests that occupy a 4 million year substrate age chronosequence where tree growth is N limited at the youngest site, co-limited by N and P at the intermediate-aged site, and P limited at the oldest site. Our goal was to use short-term laboratory soil C manipulations (using 14C-labeled substrates) and longer-term intact soil core incubations to compare belowground responses to fertilization with aboveground patterns. When nutrients were applied with labile C (sucrose), patterns of microbial nutrient limitation were similar to plant patterns: microbial activity was limited more by N than by P in the young site, and P was more limiting than N in the old site. However, in the absence of C additions, increased respiration of native soil organic matter only occurred with simultaneous additions of N and P. Taken together, these data suggest that altered nutrient inputs into ecosystems could have dissimilar effects on C cycling above- and belowground, that nutrients may differentially affect of the fate of different soil C pools, and that future changes to the net C balance of terrestrial ecosystems will be partially regulated by soil nutrient status. ?? 2010 US Government.

  14. Key Nutrients.

    ERIC Educational Resources Information Center

    Federal Extension Service (USDA), Washington, DC.

    Lessons written to help trainer agents prepare aides for work with families in the Food and Nutrition Program are presented in this booklet. The key nutrients discussed in the 10 lessons are protein, carbohydrates, fat, calcium, iron, iodine, and Vitamins A, B, C, and D. the format of each lesson is as follows: Purpose, Presentation, Application…

  15. Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal.

    PubMed

    Dwivedi, Sanjay; Tripathi, R D; Srivastava, Sudhakar; Singh, Ragini; Kumar, Amit; Tripathi, Preeti; Dave, Richa; Rai, U N; Chakrabarty, Debasis; Trivedi, P K; Tuli, R; Adhikari, B; Bag, M K

    2010-09-01

    The exposure of paddy fields to arsenic (As) through groundwater irrigation is a serious concern that may not only lead to As accumulation to unacceptable levels but also interfere with mineral nutrients in rice grains. In the present field study, profiling of the mineral nutrients (iron (Fe), phosphorous, zinc, and selenium (Se)) was done in various rice genotypes with respect to As accumulation. A significant genotypic variation was observed in elemental retention on root Fe plaque and their accumulation in various plant parts including grains, specific As uptake (29-167 mg kg(-1) dw), as well as As transfer factor (4-45%). Grains retained the least level of As (0.7-3%) with inorganic As species being the dominant forms, while organic As species, viz., dimethylarsinic acid and monomethylarsonic acid, were non-detectable. In all tested varieties, the level of Se was low (0.05-0.12 mg kg(-1) dw), whereas that of As was high (0.4-1.68 mg kg(-1) dw), considering their safe/recommended daily intake limits, which may not warrant their human consumption. Hence, their utilization may increase the risk of arsenicosis, when grown in As-contaminated areas. PMID:20490609

  16. Ileal and total tract nutrient digestibilities and fecal characteristics of dogs as affected by soybean protein inclusion in dry, extruded diets.

    PubMed

    Clapper, G M; Grieshop, C M; Merchen, N R; Russett, J C; Brent, J L; Fahey, G C

    2001-06-01

    Plant-based protein sources are generally less variable in chemical composition than animal-based protein sources. However, relatively few data are available on the nutrient digestibilities of plant-based protein sources by companion animals. The effects of including selected soybean protein sources in dog diets on nutrient digestion at the ileum and in the total tract, as well as on fecal characteristics, were evaluated. Six protein sources were used: soybean meal (SBM), Soyafluff 200W (soy flour), Profine F (traditional aqueous-alcohol extracted soy protein concentrate [SPC 1]), Profine E (extruded SPC [SPC 2]), Soyarich I (modified molecular weight SPC [SPC 3]), and poultry meal (PM). All diets were extruded and kibbled. Test ingredients varied in CP and fat contents; however, diets were formulated to be isonitrogenous and isocaloric. Nutrient intakes were similar, except for total dietary fiber (TDF), which was lower (P < 0.01) for dogs fed the PM diet. Apparent ileal digestibilities of DM, OM, fat, and TDF were not different among treatments; however, CP digestibility at the terminal ileum was higher (P < 0.01) for diets containing soy protein sources than for PM. Total tract CP digestibility was greater (P < 0.01) for soy protein-containing diets than for PM. Apparent total tract digestibilities of DM, OM, fat, and TDF were not different among treatments. Apparent amino acid digestibilities at the terminal ileum, excluding methionine, threonine, alanine, and glycine, were higher (P < 0.01) for soy protein-containing diets than for PM. Dogs fed SPC diets had lower (P < 0.01) fecal outputs (g asis feces/g DMI) than dogs fed the SF diet, and dogs fed SBM tended (P < 0.11) to have lower fecal outputs than dogs fed the SF diet. However, dogs fed the PM diet had lower (P < 0.03) fecal outputs than dogs fed SPC-containing diets. Fecal outputs and scores reflected the TDF and nonstructural carbohydrate contents of the soy protein fraction. Soy protein sources are

  17. Dynamics of a producer-grazer model incorporating the effects of excess food nutrient content on grazer's growth.

    PubMed

    Peace, Angela; Wang, Hao; Kuang, Yang

    2014-09-01

    Modeling under the framework of ecological stoichiometric allows the investigation of the effects of food quality on food web population dynamics. Recent discoveries in ecological stoichiometry suggest that grazer dynamics are affected by insufficient food nutrient content (low phosphorus (P)/carbon (C) ratio) as well as excess food nutrient content (high P:C). This phenomenon is known as the "stoichiometric knife edge." While previous models have captured this phenomenon, they do not explicitly track P in the producer or in the media that supports the producer, which brings questions to the validity of their predictions. Here, we extend a Lotka-Volterra-type stoichiometric model by mechanistically deriving and tracking P in the producer and free P in the environment in order to investigate the growth response of Daphnia to algae of varying P:C ratios. Bifurcation analysis and numerical simulations of the full model, that explicitly tracks phosphorus, lead to quantitative different predictions than previous models that neglect to track free nutrients. The full model shows that the fate of the grazer population can be very sensitive to excess nutrient concentrations. Dynamical free nutrient pool seems to induce extreme grazer population density changes when total nutrient is in an intermediate range. PMID:25124765

  18. CHARACTERISTICS OF BACTERIA ADAPTED TO LOW NUTRIENT CONDITIONS IN LAKE ONTARIO

    EPA Science Inventory

    The fate of organic pollutants in aquatic ecosystems depends, in part, on metabolic activities of the indigenous microflora. Knowledge is therefore needed for the growth characteristics of aquatic bacteria in low nutrient conditions typical of many aquatic environments. The autho...

  19. Comparison of export dynamics of nutrients and animal-borne estrogens from a tile-drained Midwestern agroecosystem.

    PubMed

    Gall, Heather E; Sassman, Stephen A; Jenkinson, Byron; Lee, Linda S; Jafvert, Chad T

    2015-04-01

    Concentrated animal feeding operations (CAFOs) are known to be a source of nutrients and hormones found in surface water bodies around the world. While the fate and transport of nutrients have been studied for decades, much less research has been conducted on the fate and transport of hormones. To facilitate a comparison of nutrient and hormone export dynamics from farm fields, nitrate + nitrite (N), dissolved reactive phosphorus (DRP), 17α- and 17β-estradiol (E2), estrone (E1), and estriol (E3) were monitored in a tile drain and receiving ditch for one year on a working farm in north central Indiana. Repeated animal waste applications led to high frequency detection of hormones (>50% in tile drain; >90% in the ditch) and nutrients (>70% for DRP; 100% for N). Hydrologic variability was found to be a dominant factor controlling export of N, DRP, and E1 to the drain and ditch. Of the estrogens, the temporal trend in E1 export was most similar to that of DRP. Differences in temporal export between P and the other estrogens likely were due to differences in the biogeochemical processes that affect their fate and transport within the agroecosystem. During short periods when the flowrate exceeded the 80(th) percentile for the year, over 70% of the total mass export of DRP and E1 occurred for the year in both the tile drain and ditch, demonstrating the importance of high-flow events. Therefore, best management practices must be effective during large flow events to substantially reduce transport to downstream locations. PMID:25241950

  20. Out of sight - Profiling soil characteristics, nutrients and microbial communities affected by organic amendments down to one meter in a long-term maize cultivation experiment

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Mikkonen, Anu; Zavattaro, Laura; Grignani, Carlo; Baumgarten, Andreas; Spiegel, Heide

    2016-04-01

    Soil characteristics, nutrients and microbial activity in the deeper soil layers are topics not of-ten covered in agricultural studies since the main interest lies within the most active topsoils and deep soils are more time-consuming to sample. Studies have shown that deep soil does matter, although biogeochemical cycles are not fully understood yet. The main aim of this study is to investigate the soil organic matter dynamics, nutrients and microbial community composition in the first meter of the soil profiles in the long-term maize cropping system ex-periment Tetto Frati, in the vicinity of the Po River in Northern Italy. The trial site lies on a deep, calcareous, free-draining soil with a loamy texture. The following treatments have been applied since 1992: 1) maize for silage with 250 kg mineral N ha-1 (crop residue removal, CRR), 2) maize for grain with 250 kg mineral N ha-1 (crop residue incorporation, CRI), 3) maize for silage with 250 kg bovine slurry N ha-1 (SLU), 4) maize for silage with 250 kg farm yard manure N ha-1 (FYM). Soil characteristics (pH, carbonate content, soil organic carbon (SOC), aggregate stability (WSA)), and nutrients (total nitrogen (Nt), CAL-extractable phos-phorous (P) and potassium (K), potential N mineralisation) were investigated. Bacteri-al community composition was investigated with Ion PGM high-throughput sequencing at the depth of 8000 sequences per sample. Soil pH was moderately alkaline in all soil samples, in-creasing with increasing soil depth, as the carbonate content increased. SOC was significantly higher in the treatments with organic amendments (CRI, SLU and FYM) compared to CRR in 0-25 cm (11.1, 11.6, 14.7 vs. 9.8 g kg-1, respectively), but not in the deeper soil. At 50-75 cm soil depth FYM treatment revealed higher WSA compared to CRR, as well as higher CAL-extractable K (25 and 15 mg kg-1, respectively) and potential N mineralisation (11.30 and 8.78 mg N kg-1 7d-1, respectively). At 75-100 cm soil depth, SLU and

  1. Small-scale soil water repellency in pine rizhosphere associated with ectomycorrhiza is affected by nutrient patchiness: a soil microcosms study

    NASA Astrophysics Data System (ADS)

    Lozano, Elena; Hallett, Paul; Johnson, David; Moore, Lucy; Mataix-Solera, Jorge; Jiménez-Pinilla, Patricia; Arcenegui, Victoria

    2014-05-01

    Soil water repellency (SWR) or hydrophobicity has been commonly related to organic compounds released from the roots or decomposition of different plant species (Doerr et al., 2000). In addition, fungi and microorganisms that are associated with specific plants, could also influence SWR through the production of exudates or cellular material that form hydrophobic coatings on soil surfaces (Feeney et al., 2004; Hallett and Young, 1999) or act as surfactants. Nutrient availability, microbial biomass, organic matter and specific exudates have all been associated with the development of SWR. In terms of plant productivity, these impacts can be significant as their interaction with pore structure changes at the root-soil interface regulates both water transport and storage (Sperry et al., 1998). In boreal forests, basidiomycetous fungi are known to have a large impact on the development of SWR. These fungi are important degraders of organic material and symbionts forming ectomycorrhizal fungi (EF) associations with trees. Although many researchers have suggested a strong positive impact of EF on the ability of plants to capture water from soils, their impact on SWR at the root-soil interface and spatially within soil with a patchy nutrient distribution has not yet been investigated. This study used microcosms with mycelia systems of the EF extending from Pinus sylvestris host plants. Each microcosm was incubated during 15 days and contained plastic cup with 33P under the roots. The transfer of P from the mycelium to the host plant was monitored using a radioactive tracers and a non-destructive electronic autoradiography system in another study (data not published). SWR was measured using different approaches; as repellency index, R using a microinfiltrometer with a contact radius of 0.1 mm (modified from Hallet et al., 2002) and with the water drop penetration time test (WDPT). Sorptivity and SWR were measured between 40-50 points/microcosms. Results obtained with both

  2. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    USGS Publications Warehouse

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  3. Lineage, fate, and fate potential of NG2-glia.

    PubMed

    Nishiyama, Akiko; Boshans, Linda; Goncalves, Christopher M; Wegrzyn, Jill; Patel, Kiran D

    2016-05-01

    NG2 cells represent a fourth major glial cell population in the mammalian central nervous system (CNS). They arise from discrete germinal zones in mid-gestation embryos and expand to occupy the entire CNS parenchyma. Genetic fate mapping studies have shown that oligodendrocytes and a subpopulation of ventral protoplasmic astrocytes arise from NG2 cells. This review describes recent findings on the fate and fate potential of NG2 cells under physiological and pathological conditions. We discuss age-dependent changes in the fate and fate potential of NG2 cells and possible mechanisms that could be involved in restricting their oligodendrocyte differentiation or fate plasticity. This article is part of a Special Issue entitled SI:NG2-glia(Invited only). PMID:26301825

  4. Salinity and nutrient contents of tidal water affects soil respiration and carbon sequestration of high and low tidal flats of Jiuduansha wetlands in different ways.

    PubMed

    Hu, Yu; Wang, Lei; Fu, Xiaohua; Yan, Jianfang; Wu, Jihua; Tsang, Yiufai; Le, Yiquan; Sun, Ying

    2016-09-15

    Soils were collected from low tidal flats and high tidal flats of Shang shoal located upstream and Xia shoal located downstream with different tidal water qualities, in the Jiuduansha wetland of the Yangtze River estuary. Soil respiration (SR) in situ and soil abiotic and microbial characteristics were studied to clarify the respective differences in the effects of tidal water salinity and nutrient levels on SR and soil carbon sequestration in low and high tidal flats. In low tidal flats, higher total nitrogen (TN) and lower salinity in the tidal water of Shang shoal resulted in higher TN and lower salinity in its soils compared with Xia shoal. These would benefit β-Proteobacteria and Anaerolineae in Shang shoal soil, which might have higher heterotrophic microbial activities and thus soil microbial respiration and SR. In low tidal flats, where soil moisture was high and the major carbon input was active organic carbon from tidal water, increasing TN was a more important factor than salinity and obviously enhanced soil microbial heterotrophic activities, soil microbial respiration and SR. While, in high tidal flats, higher salinity in Xia shoal due to higher salinity in tidal water compared with Shang shoal benefited γ-Proteobacteria which might enhance autotrophic microbial activity, and was detrimental to β-Proteobacteria in Xia shoal soil. These might have led to lower soil microbial respiration and thus SR in Xia shoal compared with Shang shoal. In high tidal flats, where soil moisture was relatively lower and the major carbon input was plant biomass that was difficult to degrade, soil salinity was the major factor restraining microbial activities, soil microbial respiration and SR. PMID:27208721

  5. Citizenship Education and Human Rights in Sites of Ethnic Conflict: Toward Critical Pedagogies of Compassion and Shared Fate

    ERIC Educational Resources Information Center

    Zembylas, Michalinos

    2012-01-01

    The present essay discusses the value of citizenship as shared fate in sites of ethnic conflict and analyzes its implications for citizenship education in light of three issues: first, the requirements of affective relationality in the notion of citizenship-as-shared fate; second, the tensions between the values of human rights and shared fate in…

  6. Modeling Nitrogen Fate and Transport at the Sediment-Water Interface

    EPA Science Inventory

    Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of va...

  7. Nutrient content of diet affects the signaling activity of the insulin/target of rapamycin/p70 S6 kinase pathway in the African malaria mosquito Anopheles gambiae.

    PubMed

    Arsic, Dany; Guerin, Patrick M

    2008-08-01

    Regulation of female mosquito feeding and reproduction plays a central role in their disease-vector competence. In this study we show that Anopheles gambiae mosquitoes engorged on albumin, amino acid and saline meals the same way as on blood, whereas sucrose evoked a typical plant nectar feeding response. Among the artificial diets, only the albumin-containing ones allowed follicular development. The target of rapamycin (TOR)/p70 S6 kinase (S6K) pathway has been identified as an essential nutrient-sensing tool controlling egg development in mosquitoes under the control of regulating inputs from the insulin pathway. We assayed the early response of TOR, S6K, tuberous sclerosis (TSC2), insulin receptor (INR) and two insulin-like peptides (ILPs) by quantitative real-time PCR assessment of mRNA levels and immunoblotting of phosphorylated active TOR and S6K in An. gambiae ovary and brain 3 h after engorgement. We show that transcript levels of s6k and members of the insulin pathway are readily affected by nutrients (especially one ILP in the head) and that the TOR/S6K phosphorylation is able to react quickly to a meal to an extent which depends on the true nutritive value. PMID:18634792

  8. Bone nutrients for vegetarians.

    PubMed

    Mangels, Ann Reed

    2014-07-01

    The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health. PMID:24898231

  9. Transport and Fate of Organic and Inorganic Nitrogen from Biosolids leachates

    NASA Astrophysics Data System (ADS)

    Ilani, Talli; Trifonov, Pavel; Arye, Gilboa

    2014-05-01

    The use of biosolids as a means to ameliorate soil becomes prevalent in the last few years. In agricultural fields, the application of biosolids will be followed by irrigation; resulting in excessive leaching of the dissolved fraction of the organic matter. The dissolved organic matter (DOM) is one of the major players in the chemical, physical and biological processes in soils. The DOM mainly composed of dissolved organic carbon (DOC) and lower proportions of dissolved organic nitrogen (DON) and phosphate (DOP). The DON is considered to be the primary source of mineralisable nitrogen in the soil and can be used as an estimate of the nitrogen supplying capacity of the organic matter. Most of the researches which are dealing with nitrogen fate in terrestrial environments focused on its inorganic fractions (mainly nitrate and ammonium) and their transport toward the dipper soil layers. Since DON can be the source of the inorganic nitrogen (by providing nutrients and energy to nitrifying microbes, which in turn increases the nitrogen source for plants as nitrate), knowledge about the nature of its transport characteristics in the soil is important in the case of biosolids amendment. In addition, irrigation water quality (e.g. fresh water, wastewater or desalinized water) may significantly affect the transport and fate of the various nitrogen forms. The main objective of this study is to examine the fate and co-transport of organic and inorganics nitrogen, originating from biosolids leachates in the subsoil. The effect of water quality and flow rate under saturated steady-state flow is examined by a series of flow-through soil column experiments. The established breakthrough curves of the co-transport of total nitrogen, organic nitrogen (will be calculated from the differences between the total nitrogen measurements and the inorganic nitrogen measurements), nitrate, ammonium, dissolved organic carbon and chloride is presented and discussed.

  10. Dairy cattle diets, manure chemistry, and soil nutrient cycles: how do they relate?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While most milk leaves the farm as a desirable end product, manure has different fates – both desirable and undesirable. The desirable outcomes are those in which nutrients stay on the farm to help produce more feed and milk; and the undesirable outcomes are those in which nutrients enter the enviro...

  11. Generalized Nutrient Taxes Can Increase Consumer Welfare.

    PubMed

    Bishai, David

    2015-11-01

    Certain nutrients can stimulate appetite making them fattening in a way that is not fully conveyed by the calorie content on the label. For rational eaters, this information gap could be corrected by more labeling. As an alternative, this paper proposes a set of positive and negative taxes on the fattening and slimming nutrients in food rather than on the food itself. There are conditions under which this tax plus subsidy system could increase welfare by stopping unwanted weight gain while leaving the final retail price of food unchanged. A nutrient tax system could improve welfare if fattening nutrients, net of their effect on weight, are inferior goods and the fiscal cost of administering the tax is sufficiently low. More data on the price elasticity of demand for nutrients as well as data on how specific nutrients affect satiety and how total calorie intake would be necessary before one could be sure a nutrient tax would work in practice. PMID:25241653

  12. Photochemical reactivities of dissolved organic matter (DOM) in a sub-alpine lake revealed by EEM-PARAFAC: An insight into the fate of allochthonous DOM in alpine lakes affected by climate change.

    PubMed

    Du, Yingxun; Zhang, Yuanyuan; Chen, Feizhou; Chang, Yuguang; Liu, Zhengwen

    2016-10-15

    Due to climate change, tree line advance is occurring in many alpine regions. Within the next 50 to 100years, alpine lake catchments are expected to develop increased vegetation cover similar to that of sub-alpine lake catchments which currently exist below the tree line. Such changes in vegetation could trigger increased allochthonous DOM inputs to alpine lakes. To understand the fate of allochthonous DOM in alpine lakes impacted by climate change, the photochemical reactivity of DOM in sub-alpine Lake Tiancai (located 200m below the tree line) was investigated by excitation emission matrix fluorescence combined with parallel factor analysis (EEM-PARAFAC) and UV-Vis spectra analysis. With photo-exposure, a decrease in apparent DOM molecular weight was observed and 32% DOM was photomineralized to CO2. Interestingly, the aromaticity of DOM increased after photodegradation, as evidenced by increases in both the specific UV absorbance at 254nm (SUVA254) and the humification index (HIX). Five EEM-PARAFAC components were identified, including four terrestrially-derived substances (C1, C2, C3 and C4; allochthonous) and one tryptophan-like substance (C5; autochthonous). Generally, allochthonous DOM represented by C2 and C3 exhibited greater photoreactivity than autochthonous DOM represented by C5. C4 was identified as a possible photoproduct with relatively high aromaticity and photorefractive tendencies and contributed to the observed increase in SUVA254 and HIX. UV light facilitated the photodegradation of DOM and had the greatest effect on the removal of C3. This study provides information on the transformation of EEM-PARAFAC components in a sub-alpine lake, which is important in understanding the fate of increased allochthonous DOM inputs to alpine lakes impacted by climate change. PMID:27300561

  13. Nutrient Attenuation Under Natural Conditions in Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches are common practice in agricultural landscapes with poorly drained soils. Even though high concentrations of nutrients and other agricultural chemicals have been reportedly associated with agricultural drainage ditches, processes affecting nutrient transport in these ditches are not...

  14. NUTRIENT DYNAMICS IN RELATION TO GEOMORPHOLOGY OF RIVERINE WETLANDS

    EPA Science Inventory

    Variation in water depth and soil properties associated with geomorphic structures can affect riverine wetland nutrient dynamics by altering biogeochemical processes. We examined the seasonal influence of soils and geomorphology on nutrient forms and concentrations in riverine we...

  15. Fate of Environmental Pollutants.

    PubMed

    Padhye, Lokesh P

    2016-10-01

    This annual review covers the literature published in 2015 on topics related to the occurrence and fate of emerging environmental pollutants in wastewater. Due to the vast amount of literature published on this topic, I have discussed only a fraction of the quality research publications, up to maximum 20 relevant articles per section, due to limitation of space. The abstract search was carried out using Web of Science, and the abstracts were selected based on their relevance. In few cases, full-text articles were referred to better understand new findings. This review is divided into the following sections: biological agents, disinfection by-products (DBPs), halogenated compounds, pharmaceuticals and personal care products (PPCPs), and other emerging contaminants. PMID:27620105

  16. Tuning cell fate

    PubMed Central

    Kami, Daisuke; Gojo, Satoshi

    2014-01-01

    Epigenetic interventions are required to induce reprogramming from one cell type to another. At present, various cellular reprogramming methods such as somatic cell nuclear transfer, cell fusion, and direct reprogramming using transcription factors have been reported. In particular, direct reprogramming from somatic cells to induced pluripotent stem cells (iPSCs) has been achieved using defined factors that play important epigenetic roles. Although the mechanisms underlying cellular reprogramming and vertebrate regeneration, including appendage regeneration, remain unknown, dedifferentiation occurs at an early phase in both the events, and both events are contrasting with regard to cell death. We compared the current status of changes in cell fate of iPSCs with that of vertebrate regeneration and suggested that substantial insights into vertebrate regeneration should be helpful for safe applications of iPSCs to medicine. PMID:24736602

  17. Regulating nutrient allocation in plants

    DOEpatents

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  18. Rhizosphere priming: a nutrient perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizospher...

  19. Transport and Fate of Nitrate and Pathogens at a Dairy Lagoon Water Application Site

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study has been initiated to quantify the vadose zone transport and fate of nutrients and indicator microbes at a dairy lagoon water application site. This site has been heavily instrumented with 48 thermometers, 48 tensiometers, 10 neutron access tubes, 8 electrical conductivity gauges, 2 w...

  20. Alachlor transformation patterns in aquatic field mesocosms under variable oxygen and nutrient conditions

    USGS Publications Warehouse

    Graham, D.W.; Miley, M.K.; Denoyelles, F.; Smith, V.H.; Thurman, E.M.; Carter, R.

    2000-01-01

    Alachlor is one of the most commonly used herbicides in both Europe and North America. Because of its toxic properties, its fate and attenuation in natural waters is practically important. This paper assesses factors that affect alachlor decay rate in aquatic systems using field-scale experimental units. In particular, we used field mesocosms (11.3 m3 outdoor fiberglass tanks) to examine the affect of oxygen level and other factors on decay rate in water columns. This is one of the first studies ever performed where diverse water column conditions have been successfully simulated using common mesocosm-scale facilities. Four treatments were assessed, including aerobic systems (aerobic); low nutrient, oxygen-stratified systems (stratified-LN); moderate nutrient, oxygen-stratified systems (stratified-HN); and anaerobic systems (anaerobic). The lowest half-lives were observed in the anaerobic units (9.7 days) followed by the aerobic (21 days), stratified-HN (22 days), and stratified-LN (46 days) units. Our results indicate that alachlor is transformed most rapidly under anaerobic conditions, although the ambient phosphorus level also appears to influence decay rate. In this study, two common alachlor breakdown products, ethane sulfonic acid (ESA) and oxanilic acid, were also monitored. Oxanilic acid was produced in greater quantities than ESA under all treatments with the highest levels being produced in the stratified-HN units. In general, our results suggest that previous laboratory data, which indicated that high rates of alachlor decay can occur under oxygen-free methanogenic conditions, is translatable to field-scale applications. Copyright (C) 2000 Elsevier Science Ltd.Alachlor is one of the most commonly used herbicides in both Europe and North America. Because of its toxic properties, its fate and attenuation in natural waters is practically important. This paper assesses factors that affect alachlor decay rate in aquatic systems using field-scale experimental

  1. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  2. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes.

    PubMed

    Guerra, P; Kim, M; Shah, A; Alaee, M; Smyth, S A

    2014-03-01

    The presence of pharmaceuticals and personal care products (PPCPs) in the aquatic environment as a result of wastewater effluent discharge is a concern in many countries. In order to expand our understanding on the occurrence and fate of PPCPs during wastewater treatment processes, 62 antibiotic, analgesic/anti-inflammatory, and antifungal compounds were analyzed in 72 liquid and 24 biosolid samples from six wastewater treatment plants (WWTPs) during the summer and winter seasons of 2010-2012. This is the first scientific study to compare five different wastewater treatment processes: facultative and aerated lagoons, chemically-enhanced primary treatment, secondary activated sludge, and advanced biological nutrient removal. PPCPs were detected in all WWTP influents at median concentrations of 1.5 to 92,000 ng/L, with no seasonal differences. PPCPs were also found in all final effluents at median levels ranging from 3.6 to 4,200 ng/L with higher values during winter (p<0.05). Removal efficiencies ranged between -450% and 120%, depending on the compound, WWTP type, and season. Mass balance showed that the fate of analgesic/anti-inflammatory compounds was predominantly biodegradation during biological treatment, while antibiotics and antifungal compounds were more likely to sorb to sludge. However, some PPCPs remained soluble and were detected in effluent samples. Overall, this study highlighted the occurrence and behavior of a large set of PPCPs and determined how their removal is affected by environmental/operational factors in different WWTPs. PMID:24370698

  3. Transport, behavior, and fate of volatile organic compounds in streams. Professional paper

    SciTech Connect

    Rathbun, R.E.

    1998-10-01

    The US Geological Survey National Water-Quality Assessment Program selected 55 VOCs for study. This report reviews the characteristics of the various processes that could affect the transport, behavior, and fate of these VOCs in streams.

  4. Nutrient Density Scores.

    ERIC Educational Resources Information Center

    Dickinson, Annette; Thompson, William T.

    1979-01-01

    Announces a nutrient density food scoring system called the Index of Nutritional Quality (INQ). It expresses the ratio between the percent RDA of a nutrient and the percent daily allowance of calories in a food. (Author/SA)

  5. Rhizosphere priming: a nutrient perspective

    PubMed Central

    Dijkstra, Feike A.; Carrillo, Yolima; Pendall, Elise; Morgan, Jack A.

    2013-01-01

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N) through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P) limited. Under P limitation, rhizodeposition may be used for mobilization of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils. PMID:23908649

  6. DEVELOPMENT OF SAV LOSS-NUTRIENT LOAD RELATIONSHIPS AND FACTORS WHICH CONTROL SAV RESPONSE TO NUTRIENTS

    EPA Science Inventory

    This research aims to understand the relationship between SAV loss and nutrient loading (N and P). A set of models will be developed and used to examine how nutrients interact with the physical and biological components to affect the health of SAV populations. First, a literat...

  7. NATIONAL NUTRIENTS DATABASE

    EPA Science Inventory

    Resource Purpose:The Nutrient Criteria Program has initiated development of a National relational database application that will be used to store and analyze nutrient data. The ultimate use of these data will be to derive ecoregion- and waterbody-specific numeric nutrient...

  8. Understanding the sources and fate of nitrate in a highly developed aquifer system

    NASA Astrophysics Data System (ADS)

    Murgulet, Dorina; Tick, Geoffrey R.

    2013-12-01

    Understanding the processes affecting the transport and fate of nitrate in coastal aquifers has become of great interest in recent years due to concerns of nutrient loading to coastal waters. Novel dual isotopic methods have shown promise for identifying sources and fate of nitrate in shallow groundwater. However, in relatively deep dynamic aquifer systems, the isotopic signatures may be overprinted by mixing of different end-member waters and biogeochemical processes. In this study, δ15N and δ18O of groundwater nitrate are coupled with other forensic geochemistry methods such as Cl/Br, SO4/Cl, and Cl/NO3 mass ratios and land use analysis in order to constrain the isotope correlations and better understand contaminant sources and biogeochemical processes. Most δ15NNO3 values were within ranges expected for nitrate formed by ammonia nitrification in soil. Furthermore, the persistent presence of nitrate in concentrations above background levels (median 2.3 mg/L) and the relatively low δ15NNO3 and δ18ONO3 (median: 4.5 ± 0.2‰ AIR and 5.2 ± 0.5‰ VSMOW, respectively) indicate no direct evidence of denitrification. However, denitrification was inferred for a few samples whereby more enriched δ15NNO3 and δ18ONO3 values coupled with an increase in SO4/Cl and Cl/NO3 ratios were observed. Finally, mixing trends were identified for a few of the samples as indicated by δ15NO3 and δ18ONO3 mixing ratios and were consistent with the study area's land-use/land-cover distribution. The combination of methods utilized in this study revealed that in some cases mass ratios were better diagnostics in elucidating the impact of denitrification, mixing processes, and source identification within dynamic aquifer systems than the dual-isotope technique.

  9. FATE, THE ENVIRONMENTAL FATE CONSTANTS INFORMATION SYSTEM DATABASE

    EPA Science Inventory

    A new online database, designated the FATE database, has been developed for the interactive retrieval of kinetic and equilibrium constants that are needed for assessing the fe of chemicals in the environment. he database contains values for twelve parameters, but may not contain ...

  10. Through form to function: root hair development and nutrient uptake

    NASA Technical Reports Server (NTRS)

    Gilroy, S.; Jones, D. L.

    2000-01-01

    Root hairs project from the surface of the root to aid nutrient and water uptake and to anchor the plant in the soil. Their formation involves the precise control of cell fate and localized cell growth. We are now beginning to unravel the complexities of the molecular interactions that underlie this developmental regulation. In addition, after years of speculation, nutrient transport by root hairs has been demonstrated clearly at the physiological and molecular level, with evidence for root hairs being intense sites of H(+)-ATPase activity and involved in the uptake of Ca(2+), K(+), NH(4)(+), NO(3)(-), Mn(2+), Zn(2+), Cl(-) and H(2)PO(4)(-).

  11. [The tragic fate of physicians].

    PubMed

    Ohry, Avi

    2013-10-01

    Physicians and surgeons were always involved in revolutions, wars and political activities, as well as in various medical humanities. Tragic fate met these doctors, whether in the Russian prisons gulags, German labor or concentration camps, pogroms or at the hands of the Inquisition. PMID:24450039

  12. Duodenal luminal nutrient sensing

    PubMed Central

    Rønnestad, Ivar; Akiba, Yasutada; Kaji, Izumi; Kaunitz, Jonathan D

    2016-01-01

    The gastrointestinal mucosa is exposed to numerous chemical substances and microorganisms, including macronutrients, micronutrients, bacteria, endogenous ions, and proteins. The regulation of mucosal protection, digestion, absorption and motility is signaled in part by luminal solutes. Therefore, luminal chemosensing is an important mechanism enabling the mucosa to monitor luminal conditions, such as pH, ion concentrations, nutrient quantity, and microflora. The duodenal mucosa shares luminal nutrient receptors with lingual taste receptors in order to detect the five basic tastes, in addition to essential nutrients, and unwanted chemicals. The recent ‘de-orphanization’ of nutrient sensing G protein-coupled receptors provides an essential component of the mechanism by which the mucosa senses luminal nutrients. In this review, we will update the mechanisms of and underlying physiological and pathological roles in luminal nutrient sensing, with a main focus on the duodenal mucosa. PMID:25113991

  13. Lipid-based nutrient supplements do not affect the risk of malaria or respiratory morbidity in 6- to 18-month-old Malawian children in a randomized controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is evidence to support the use of lipid-based nutrient supplements (LNSs) to promote child growth and development in low-income countries, but there is also a concern regarding the safety of using iron-fortified products in malaria-endemic areas. The objective of this study was to test the hyp...

  14. Predicting Ecosystem Responses with AQUATOX, a Mechanistic Fate and Effects Model

    NASA Astrophysics Data System (ADS)

    Park, R. A.; Wellman, M. C.

    2005-05-01

    AQUATOX, a mechanistic fate and effects model, simulates the significant physical, chemical, and biological processes affecting aquatic biota. The user can represent the food web with as little or as much complexity as desired. Generality is balanced with site specificity. The parameters governing the biological processes are designed to be as general as possible, such that a parameter set for a group of organisms should transfer from site to site with little or no recalibration. For example, maximum photosynthetic rates for specific plants should be "global," but the predicted time-varying site photosynthetic rates change with temperature, nutrients, light, and toxic chemicals. AQUATOX also contains informative analytical tools. Control and Perturbed simulations isolate the effects of the differences due to a particular stressor, much like a controlled laboratory experiment. The predicted in situ rates due to ecological processes (such as consumption, mortality, and reproduction) and limitations on photosynthesis can be saved and graphed, enabling the analyst to identify the important processes and environmental controls operating at any given time. Built-in uncertainty analysis allows the user to test which driving variables and parameters are most important to the particular endpoints of interest. Examples of simulations of stream ecosystems will be given.

  15. [Quality of life and fate].

    PubMed

    Spaemann, C

    1992-01-01

    While the term "happiness of life", the "eudaimonia" of the greek philosophers, includes the good as such and therefore a metaphysical and moral component, the modern term of the "quality of life" is wholly defined by the criteria of a person's functional capacity and subjective wellbeing. The doctor's orientation by these criteria meets its limits, where he is confronted with fatality. This shows that we cannot really comprehend the quality of life without man's fundamental task of mastering his fate. PMID:1296397

  16. Mechanism of nutrient sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The term nutrient sensing has emerged to describe the molecular mechanisms by which nutrients and their metabolites interact with various cell surface receptors, intracellular signaling proteins, and nuclear receptors, and modulate the activity of a complex network of signaling pathways that regulat...

  17. [Interaction Between Sulfonamide Antibiotics Fates and Chicken Manure Composting].

    PubMed

    Lin, Hui; Wang, Jian-mei; Sun, Wan-chun; Fu, Jian-rong; Chen, Hong-jin; Ma, Jun-wei

    2016-05-15

    Based on aerobic manure composting with or without the addition of a mixture of sulfadimethoxine SM2 and sulfamonomethoxine SMM (1:1, m/m), changes in the physic-chemical properties of manure compost, the microbial community physiological profiles, the antibiotics concentration and the abundances of five antibiotic resistance genes (ARGs) during the composting were tracked. The results indicated that the introduction of sulfonamide antibiotics led to inhibition on the basal respiration of manure compost during the early composting period, delayed the formation of thermophilic temperature and reduced the conversion of nutrients such as organic matter, ammonia nitrogen and nitrate nitrogen. Meanwhile, the introduction of sulfonamide antibiotics dramatically affected the physiological profile of microbial community in manure in the middle stage of composting. HPLC-MS/MS results showed that both SMM and SM2 in manure were completely degraded within 14 days, while the degradation rate of SMM was faster than that of SM2. For both composting treatments with or without addition of exogenous antibiotics, the relative abundance of sull and sul2 showed an initial decline in the first 14 or 21 days and a slight increase thereafter. The addition of exogenous antibiotics showed insignificant enhancement on increasing the relative abundance of sul1 and IntI1 in manure, but resulted in an apparent increase in sul2 relative abundance. Although the fates of tetQ and tetW during composting were different from that of sulfonamide ARGs, the introduction of sulfonamide antibiotics into manure increased the relative abundance of tetracycline ARGs. Redundancy analysis indicated that composting temperature correlated negatively with sul1, sul2 and IntI1 relative abundance in manure but had no obvious relationship with tetQ and tetW relative abundance. All the ARGs detected in this work correlated negatively with C/N ratio and the nitrate nitrogen concentration of manure compost but

  18. SELECTION OF NUTRIENTS TO ENHANCE BIODEGRADATION FOR THE REMEDIATION OF OIL SPILLED ON BEACHES

    EPA Science Inventory

    Laboratory studies were conducted to determine the fate of fertilizers proposed for application to the Alaska shoreline in support of the Alaskan Oil Spill EPA Bioremediation Project. ertilizer application is theorized to prove indigenous organisms with nutrients that appear to b...

  19. APPLICATION OF DISTRIBUTED MODELS FOR MANAGEMENT OF SEDIMENTS AND NUTRIENTS IN WATERSHEDS

    EPA Science Inventory

    This research evaluates a suite of distributed hydrologic, sediment, and nutrients fate and transport models by application to gaged watersheds in Iowa and Indiana. The purpose of this project is primarily three-fold. First, it evaluates the performance of the distributed models,...

  20. APPLICATION OF DISTRIBUTED MODELS FOR MANAGEMENT OF SEDIMENTS AND NUTRIENTS IN GAGED WATERSHEDS

    EPA Science Inventory

    This research evaluates a suite of distributed hydrologic, sediment, and nutrients fate and transport models by application to gaged watersheds in Iowa and Indiana. The purpose of this project is primarily three-fold. First, it evaluates the performance of the distributed models,...

  1. Recommendations for nutrient management plans in a semi-Arid environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A nutrient management plan (NMP) field experiment was conducted to investigate the fate of nitrogen (N), phosphorus (P), potassium (K) and salts in a semi-arid environment (San Jacinto, CA). Our mechanistic approach to study NMP performance was based on comprehensive measurements of water and N mass...

  2. Nutrient distributions, transports, and budgets on the inner margin of a river-dominated continental shelf

    EPA Science Inventory

    Physical and biogeochemical processes determining the distribution and fate of nutrients delivered by the Mississippi and Atchafalaya rivers to the inner (<50 m depth) Louisiana continental shelf (LCS) were examined using a three-dimensional hydrodynamic model of the LCS and obse...

  3. Submarine Ground Water Discharge and Fate Along the Coast of Kaloko-Honokohau National Historical Park, Hawai'i:Part 2, Spatial and Temporal Variations in Salinity, Radium-Isotope Activity, and Nutrient Concentrations in Coastal Waters, December 2003-April 2006

    USGS Publications Warehouse

    Knee, Karen; Street, Joseph; Grossman, Eric E.; Paytan, Adina

    2008-01-01

    The aquatic resources of Kaloko-Honokohau National Historical Park, including rocky shoreline, fishponds, and anchialine pools, provide habitat to numerous plant and animal species and offer recreational opportunities to local residents and tourists. A considerable amount of submarine groundwater discharge was known to occur in the park, and this discharge was suspected to influence the park's water quality. Thus, the goal of this study was to characterize spatial and temporal variations in the quality and quantity of groundwater discharge in the park. Samples were collected in December 2003, November 2005, and April 2006 from the coastal ocean, beach pits, three park observation wells, anchialine pools, fishponds, and Honokohau Harbor. The activities of two Ra isotopes commonly used as natural ground-water tracers (223Ra and 224Ra), salinity, and nutrient concentrations were measured. Fresh ground water composed a significant proportion (8-47 volume percent) of coastal-ocean water. This percentage varied widely between study sites, indicating significant spatial variation in submarine groundwater discharge at small (meter to kilometer) scales. Nitrate + nitrite, phosphate, and silica concentrations were significantly higher in nearshore coastal-ocean samples relative to samples collected 1 km or more offshore, and linear regression showed that most of this difference was due to fresh ground-water discharge. High-Ra-isotope-activity, higher-salinity springs were a secondary source of nutrients, particularly phosphate, at Honokohau Harbor and Aiopio Fishtrap. Salinity, Ra-isotope activity, and nutrient concentrations appeared to vary in response to the daily tidal cycle, although little seasonal variation was observed, indicating that submarine ground-water discharge may buffer the park's water quality against the severe seasonal changes that would occur in a system where freshwater inputs were dominated by rivers and runoff. Ra-isotope-activity ratios indicated

  4. Nutrient Enrichment Increases Mortality of Mangroves

    PubMed Central

    Lovelock, Catherine E.; Ball, Marilyn C.; Martin, Katherine C.; C. Feller, Ilka

    2009-01-01

    Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients. PMID:19440554

  5. Regulation of intestinal ontogeny by intraluminal nutrients.

    PubMed

    Castillo, R O; Feng, J J; Stevenson, D K; Kerner, J A; Kwong, L K

    1990-02-01

    Major events in gastrointestinal ontogeny occur in the infant rat in association with weaning, resulting in striking alterations in small intestinal structure and function. Although the dietary changes attendant to weaning are not essential for the initiation of these events, dietary nutrients have been shown to participate in the maturation of some intestinal parameters. In order to define more precisely the role of intraluminal nutrients in the regulation of small intestinal ontogeny, a longitudinal study was conducted using a unique animal model in which intraluminal nutrients were excluded from the intact maturing intestine in vivo throughout the entire weaning period without major compromise in nutritional status. The absence of intraluminal nutrients over the weaning period resulted in diminished lengthening and accretion of mucosal mass, suggesting a slower rate of intestinal growth. Lower mucosal DNA, protein, and mitotic indices in intestines of animals receiving no intraluminal nutrients suggested that the lack of intraluminal nutrients resulted in the blunting of the striking increases in cellular proliferation normally exhibited by the developing intestinal mucosa at this time. Maturation of intestinal lactase-phlorizin hydrolase and maltase-glucoamylase was not affected by the absence of intraluminal nutrients. Although the appearance of sucrase-isomaltase was not altered by the absence of intraluminal nutrients, activity levels rose to only 50% of control levels. These data suggest that during this period of rapid intestinal maturation, intestinal growth is more dependent upon intraluminal nutrients than are the characteristic enzymic alterations normally expressed during this period.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2303970

  6. Physical characteristics and feeding skills as predictors of adequacy of nutrient intakes of mentally retarded individuals.

    PubMed

    Litchford, M D

    1986-03-01

    Characteristics common to mentally retarded adults with marginal or inadequate nutrient intakes who may be high risk for specific nutrient deficiencies were identified. Although physiological and psychological influences, feeding practices, and weight status were not found to influence the average nutrient intakes of the sample population, intakes of iron, calcium, and riboflavin were affected by sex of the resident. Inadequate intakes of these key nutrients may predispose this vulnerable population to nutrient-related disorders. PMID:3953684

  7. Nutrients in estuaries--an overview and the potential impacts of climate change.

    PubMed

    Statham, Peter J

    2012-09-15

    The fate and cycling of macronutrients introduced into estuaries depend upon a range of interlinked processes. Hydrodynamics and morphology in combination with freshwater inflow control the freshwater flushing time, and the timescale for biogeochemical processes to operate that include microbial activity, particle-dissolved phase interactions, and benthic exchanges. In some systems atmospheric inputs and exchanges with coastal waters can also be important. Climate change will affect nutrient inputs and behaviour through modifications to temperature, wind patterns, the hydrological cycle, and sea level rise. Resulting impacts include: 1) inundation of freshwater systems 2) changes in stratification, flushing times and phytoplankton productivity 3) increased coastal storm activity 4) changes in species and ecosystem function. A combination of continuing high inputs of nutrients through human activity and climate change is anticipated to lead to enhanced eutrophication in the future. The most obvious impacts of increasing global temperature will be in sub-arctic systems where permafrost zones will be reduced in combination with enhanced inputs from glacial systems. Improved process understanding in several key areas including cycling of organic N and P, benthic exchanges, resuspension, impact of bio-irrigation, particle interactions, submarine groundwater discharges, and rates and magnitude of bacterially-driven recycling processes, is needed. Development of high frequency in situ nutrient analysis systems will provide data to improve predictive models that need to incorporate a wider variety of key factors, although the complexity of estuarine systems makes such modelling a challenge. However, overall a more holistic approach is needed to effectively understand, predict and manage the impact of macronutrients on estuaries. PMID:22119025

  8. Nanoparticle characteristics affecting environmental fate and transport through soil.

    PubMed

    Darlington, Thomas K; Neigh, Arianne M; Spencer, Matthew T; Nguyen, Oanh T; Oldenburg, Steven J

    2009-06-01

    Nanoparticles are being used in broad range of applications; therefore, these materials probably will enter the environment during their life cycle. The objective of the present study is to identify changes in properties of nanoparticles released into the environment with a case study on aluminum nanoparticles. Aluminum nanoparticles commonly are used in energetic formulations and may be released into the environment during their handling and use. To evaluate the transport of aluminum nanoparticles, it is necessary not only to understand the properties of the aluminum in its initial state but also to determine how the nanoparticle properties will change when exposed to relevant environmental conditions. Transport measurements were conducted with a soil-column system that delivers a constant upflow of a suspension of nanoparticles to a soil column and monitors the concentration, size, agglomeration state, and charge of the particles in the eluent. The type of solution and surface functionalization had a marked effect on the charge, stability, and agglomeration state of the nanoparticles, which in turn impacted transport through the receiving matrix. Transport also is dependent on the size of the nanoparticles, although it is the agglomerate size, not the primary size, that is correlated with transportability. Electrostatically induced binding events of positively charged aluminum nanoparticles to the soil matrix were greater than those for negatively charged aluminum nanoparticles. Many factors influence the transport of nanoparticles in the environment, but size, charge, and agglomeration rate of nanoparticles in the transport medium are predictive of nanoparticle mobility in soil. PMID:19175296

  9. Mechanotransduction: Tuning Stem Cells Fate

    PubMed Central

    D'Angelo, Francesco; Tiribuzi, Roberto; Armentano, Ilaria; Kenny, Josè Maria; Martino, Sabata; Orlacchio, Aldo

    2011-01-01

    It is a general concern that the success of regenerative medicine-based applications is based on the ability to recapitulate the molecular events that allow stem cells to repair the damaged tissue/organ. To this end biomaterials are designed to display properties that, in a precise and physiological-like fashion, could drive stem cell fate both in vitro and in vivo. The rationale is that stem cells are highly sensitive to forces and that they may convert mechanical stimuli into a chemical response. In this review, we describe novelties on stem cells and biomaterials interactions with more focus on the implication of the mechanical stimulation named mechanotransduction. PMID:24956164

  10. Nutrient Control Design Manual

    EPA Science Inventory

    The Nutrient Control Design Manual will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). This manual will present ...

  11. Nutrient Control Seminars

    EPA Science Inventory

    These Nutrient Control Seminars will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). These seminars will present ...

  12. Transport, behavior, and fate of volatile organic compounds in streams

    USGS Publications Warehouse

    Rathbun, R.E.

    1998-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties making them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution VOCs in the environment is necessary. The U.S. Geological Survey selected 55 VOCs for study. This report reviews the characteristics of the various process that could affect the transport, behavior, and fate of these VOCs in streams.

  13. Fate of diuron and terbuthylazine in soils amended with two-phase olive oil mill waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of organic amendments to soil increases soil organic matter content and stimulates soil microbial activity. Thus, processes affecting herbicide fate in the soil should be affected. The objective of this work was to investigate the effect of olive oil production industry organic waste (a...

  14. Landscape influence on soil carbon and nutrient levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Past runoff, erosion, and management practices influence nutrient levels on the landscape. These starting levels affect future nutrient transport due to runoff, erosion, and leaching events. The purpose of this study was to examine closed-depression landscape effects on surface soil organic matter, ...

  15. Nutrient Transport in Tile-Fed Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches receive water and associated contaminants from agricultural fields via surface runoff or sub-surface tile drains. Little consideration has been given to the processes affecting nutrient transport once in surface water. The objective of this research was to evaluate the nutrient fa...

  16. Fate and transport of reproductive hormone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An invited overview of the NSF funded projects 0730492 "Effects of Animal Manure Storage and Disposal on the Fate and Transport of Manure-Borne Hormones," and 0244169 "Fate and Transport of an Endocrine Disruptor in Soil-Water Systems." We will highlight the Research and Educational contributions by...

  17. Stem Cell Fate Is a Touchy Subject.

    PubMed

    Smith, Quinton; Gerecht, Sharon

    2016-09-01

    Uncoupling synergistic interactions between physio-chemical cues that guide stem cell fate may improve efforts to direct their differentiation in culture. Using supramolecular hydrogels, Alakpa et al. (2016) demonstrate that mesenchymal stem cell differentiation is paired to depletion of bioactive metabolites, which can be utilized to chemically induce osteoblast and chondrocyte fate. PMID:27588745

  18. Nutrient Sensing Mechanisms Across Evolution

    PubMed Central

    Chantranupong, Lynne; Wolfson, Rachel L.; Sabatini, David M.

    2015-01-01

    For organisms to coordinate their growth and development with nutrient availability they must be able to sense nutrient levels in their environment. Here, we review select nutrient sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes. PMID:25815986

  19. Why people are reluctant to tempt fate.

    PubMed

    Risen, Jane L; Gilovich, Thomas

    2008-08-01

    The present research explored the belief that it is bad luck to "tempt fate." Studies 1 and 2 demonstrated that people do indeed have the intuition that actions that tempt fate increase the likelihood of negative outcomes. Studies 3-6 examined our claim that the intuition is due, in large part, to the combination of the automatic tendencies to attend to negative prospects and to use accessibility as a cue when judging likelihood. Study 3 demonstrated that negative outcomes are more accessible following actions that tempt fate than following actions that do not tempt fate. Studies 4 and 5 demonstrated that the heightened accessibility of negative outcomes mediates the elevated perceptions of likelihood. Finally, Study 6 examined the automatic nature of the underlying processes. The types of actions that are thought to tempt fate as well as the role of society and culture in shaping this magical belief are discussed. PMID:18665703

  20. Integrated Urban Nutrient Management

    NASA Astrophysics Data System (ADS)

    Nhapi, I.; Veenstra, S.; Siebel, M. A.; Gijzen, H. J.

    Most cities, especially from the developing countries, are facing serious problems with the management of nutrients, necessitating an urgent review of current waste management systems. Whilst highly efficient technologies are available, the inclusion of these in a well-thought out and systematic approach is necessary to contain the nutrient influxes and outfluxes from towns. Five intervention measures are proposed in this paper. The first is to manage the use and generation of nutrients by drastically minimising water consumption and employing other cleaner production approaches. The second deals with the optimal reuse of nutrients and water at the smallest possible level, like at the household and on-plot level. The second option is to covert the waste into something useful for reuse, and, where not possible, to something which is envi- ronmentally neutral. This involves treatment, but applying technologies that makes the best use of side products via reuse. Where the first three options will have failed, two least preferred options could be used. Waste can be dispersed or diluted to enhance self-purification capacities of downstream water bodies. The last option is to store the wastewater for some parts of the year when there is water shortage to allow for polishing during the standing period. The success of urban nutrient planning requires an integrated approach, proving specific solutions to specific situations. This, in turn, requires appropriate institutional responses.

  1. Ingestion of crude oil: effects on digesta retention times and nutrient uptake in captive river otters.

    PubMed

    Ormseth, O A; Ben-David, M

    2000-09-01

    Studies following the Exxon Valdez oil spill in Prince William Sound, Alaska indicated that river otters (Lontra canadensis) from oiled regions displayed symptoms of degraded health, including reduced body weight. We examined the fate of ingested oil in the digestive tract and its effects on gut function in captive river otters. Fifteen wild-caught males were assigned to three groups, two of which were given weathered crude oil in food (i.e., control, 5 ppm day(-1), and 50 ppm day(-1)) under controlled conditions at the Alaska Sealife Center. Using glass beads as non-specific digesta markers and stable isotope analysis, we determined the effects of ingested oil on retention time and nutrient uptake. Our data indicated that oil ingestion reduced marker retention time when we controlled for activity and meal size. Fecal isotope ratios suggested that absorption of lipids in the oiled otters might have been affected by reduced retention time of food. In addition, a dilution model indicated that as much as 80% of ingested oil was not absorbed in high-dose animals. Thus, while the ingestion of large quantities of weathered crude oil appears to reduce absorption of oil hydrocarbons and may alleviate systemic effects, it may concurrently affect body condition by impacting digestive function. PMID:11083525

  2. Fate Mapping of Dendritic Cells

    PubMed Central

    Poltorak, Mateusz Pawel; Schraml, Barbara Ursula

    2015-01-01

    Dendritic cells (DCs) are a heterogeneous group of mononuclear phagocytes with versatile roles in immunity. They are classified predominantly based on phenotypic and functional properties, namely their stellate morphology, expression of the integrin CD11c, and major histocompatibility class II molecules, as well as their superior capacity to migrate to secondary lymphoid organs and stimulate naïve T cells. However, these attributes are not exclusive to DCs and often change within inflammatory or infectious environments. This led to debates over cell identification and questioned even the mere existence of DCs as distinct leukocyte lineage. Here, we review experimental approaches taken to fate map DCs and discuss how these have shaped our understanding of DC ontogeny and lineage affiliation. Considering the ontogenetic properties of DCs will help to overcome the inherent shortcomings of purely phenotypic- and function-based approaches to cell definition and will yield a more robust way of DC classification. PMID:25999945

  3. Groundwater - The Disregarded Component in Lake Water and Nutrient Budgets

    NASA Astrophysics Data System (ADS)

    Lewandowski, J.; Meinikmann, K.; Pöschke, F.; Nuetzmann, G.; Rosenberry, D. O.

    2015-12-01

    Lake eutrophication is a large and still growing problem in many parts of the world, commonly due to anthropogenic sources of nutrients such as fertilizer, manure or sewage. Improved quantification of nutrient inputs is required to address this problem. Lacustrine groundwater discharge (LGD) transports nutrients from catchments to lakes. Unfortunately, LGD has often been disregarded in lake nutrient studies due to many different reasons, although first reports of LGD are more than 40 years old. Most measurement techniques are based on separate determinations of seepage volume and nutrient concentration of exfiltrating groundwater; i.e., by multiplying both values. We review the international literature, give a brief overview of measurement techniques, and present typical volumes, concentrations and loads reported in literature. Furthermore, we describe the fate of nitrogen and phosphorus on their subsurface pathway from the catchment through the reactive aquifer-lake interface into the lake, and compare LGD related processes with those of two other groundwater-surface water interfaces: the hyporheic zone in streams and the interface between aquifer and marine systems where SGD (submarine groundwater discharge) occurs.

  4. Marine science: Storms bring ocean nutrients to light

    NASA Astrophysics Data System (ADS)

    Palter, Jaime

    2015-09-01

    Ships and ocean-observing robots have been used to quantify the amount of nutrients that a storm brings up from the Stygian ocean depths to the sunlit surface -- a first step in assessing how storms affect oceanic biomass production.

  5. Ambient conditions and fate and transport simulations of dissolved solids, chloride, and sulfate in Beaver Lake, Arkansas, 2006--10

    USGS Publications Warehouse

    Green, W. Reed

    2013-01-01

    Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas, and was completed in 1963 for the purposes of flood control, hydroelectric power, and water supply. Beaver Lake is affected by point and nonpoint sources of minerals, nutrients, and sediments. The City of Fayetteville discharges about half of its sewage effluent into the White River immediately upstream from the backwater of the reservoir. The City of West Fork discharges its sewage effluent into the West Fork of the White River, and the City of Huntsville discharges its sewage effluent into a tributary of War Eagle Creek. A study was conducted to describe the ambient conditions and fate and transport of dissolved solids, chloride, and sulfate concentrations in Beaver Lake. Dissolved solids, chloride, and sulfate are components of wastewater discharged into Beaver Lake and a major concern of the drinking water utilities that use Beaver Lake as their source. A two-dimensional model of hydrodynamics and water quality was calibrated to include simulations of dissolved solids, chloride, and sulfate for the period January 2006 through December 2010. Estimated daily dissolved solids, chloride, and sulfate loads were increased in the White River and War Eagle Creek tributaries, individually and the two tributaries together, by 1.2, 1.5, 2.0, 5.0, and 10.0 times the baseline conditions to examine fate and transport of these constituents through time at seven locations (segments) in the reservoir, from upstream to downstream in Beaver Lake. Fifteen dissolved solids, chloride, and sulfate fate and transport scenarios were compared to the baseline simulation at each of the seven downstream locations in the reservoir, both 2 meters (m) below the surface and 2 m above the bottom. Concentrations were greater in the reservoir at model segments closer to where the tributaries entered the reservoir. Concentrations resulting from the increase in loading became more diluted

  6. The Content and Bioavailability of Mineral Nutrients of Selected Wild and Traditional Edible Plants as Affected by Household Preparation Methods Practiced by Local Community in Benishangul Gumuz Regional State, Ethiopia.

    PubMed

    Hailu, Andinet Abera; Addis, Getachew

    2016-01-01

    Edible parts of some wild and traditional vegetables used by the Gumuz community, namely, Portulaca quadrifida, Dioscorea abyssinica, Abelmoschus esculentus, and Oxytenanthera abyssinica, were evaluated for their minerals composition and bioavailability. Mineral elements, namely, Ca, Fe, Zn, and Cu, were analyzed using Shimadzu atomic absorption spectrophotometer. Effects of household processing practices on the levels of mineral elements were evaluated and the bioavailability was predicted using antinutrient-mineral molar ratios. Fe, Zn, Ca, Cu, P, Na, and K level in raw edible portions ranged in (0.64 ± 0.02-27.0 ± 6.24), (0.46 ± 0.02-0.85 ± 0.02), (24.49 ± 1.2-131.7 ± 8.3), (0.11 ± 0.01-0.46 ± 0.04), (39.13 ± 0.34-57.27 ± 0.94), (7.34 ± 0.42-20.42 ± 1.31), and (184.4 ± 1.31-816.3 ± 11.731) mg/100 g FW, respectively. Although statistically significant losses in minerals as a result of household preparation practices were observed, the amount of nutrients retained could be valuable especially in communities that have limited alternative sources of these micronutrients. The predicted minerals' bioavailability shows adequacy in terms of calcium and zinc but not iron. PMID:26981523

  7. The Content and Bioavailability of Mineral Nutrients of Selected Wild and Traditional Edible Plants as Affected by Household Preparation Methods Practiced by Local Community in Benishangul Gumuz Regional State, Ethiopia

    PubMed Central

    Hailu, Andinet Abera; Addis, Getachew

    2016-01-01

    Edible parts of some wild and traditional vegetables used by the Gumuz community, namely, Portulaca quadrifida, Dioscorea abyssinica, Abelmoschus esculentus, and Oxytenanthera abyssinica, were evaluated for their minerals composition and bioavailability. Mineral elements, namely, Ca, Fe, Zn, and Cu, were analyzed using Shimadzu atomic absorption spectrophotometer. Effects of household processing practices on the levels of mineral elements were evaluated and the bioavailability was predicted using antinutrient-mineral molar ratios. Fe, Zn, Ca, Cu, P, Na, and K level in raw edible portions ranged in (0.64 ± 0.02–27.0 ± 6.24), (0.46 ± 0.02–0.85 ± 0.02), (24.49 ± 1.2–131.7 ± 8.3), (0.11 ± 0.01–0.46 ± 0.04), (39.13 ± 0.34–57.27 ± 0.94), (7.34 ± 0.42–20.42 ± 1.31), and (184.4 ± 1.31–816.3 ± 11.731) mg/100 g FW, respectively. Although statistically significant losses in minerals as a result of household preparation practices were observed, the amount of nutrients retained could be valuable especially in communities that have limited alternative sources of these micronutrients. The predicted minerals' bioavailability shows adequacy in terms of calcium and zinc but not iron. PMID:26981523

  8. SPARROW REGIONAL NUTRIENT MODEL

    EPA Science Inventory

    This is the second year of funding for the New England SPARROW (Spatially Referenced Regressions on Watershed Attributes) model. Funds in the first year (along with funds allocated for projects supporting Nutrient-Criteria development) were used to analyze regional results ...

  9. Nutrient Criteria Research

    EPA Science Inventory

    EPA has developed methodologies for deriving nutrient criteria, default criteria for the variety of waters and eco-regions found in the U.S., and a strategy for implementing the criteria including guidance on the use and development of biocriteria. Whereas preliminary research ha...

  10. Nutrient Requirements in Adolescence.

    ERIC Educational Resources Information Center

    McKigney, John I,; Munro, Hamish N.

    It is important to understand the nutrient requirements and the significance of nutrition both in pubescence and adolescence. The pubescent growth spurt is characterized by an increase in body size and a change in proportion of different tissues. Both of these factors are of great nutritional importance, since there is reason to believe that the…

  11. Nutrient element interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The management of overall tree physiological processes for optimization of either orchard yield or profitability is an annual challenge facing orchard managers. Optimization of chemical nutrient element concentrations within this context is often far more challenging than first appears. Tree or or...

  12. Estimation of stream nutrient uptake from nutrient addition experiments

    SciTech Connect

    Payn, Robert

    2005-09-01

    Nutrient uptake in streams is often quantified by determining nutrient uptake length. However, current methods for measuring nutrient uptake length are often impractical, expensive, or demonstrably incorrect. We have developed a new method to estimate ambient nutrient uptake lengths using field experiments involving several levels of nutrient addition. Data analysis involves plotting nutrient addition uptake lengths versus added concentration and extrapolating to the negative ambient concentration. This method is relatively easy, inexpensive, and based on sound theoretical development. It is more accurate than the commonly used method involving a single nutrient addition. The utility of the method is supported by field studies directly comparing our new method with isotopic tracer methods for determining uptake lengths of phosphorus, ammonium, and nitrate. Our method also provides parameters for comparing potential nutrient limitation among streams.

  13. Food Affects Human Behavior.

    ERIC Educational Resources Information Center

    Kolata, Gina

    1982-01-01

    A conference on whether food and nutrients affect human behavior was held on November 9, 1982 at the Massachusetts Institute of Technology. Various research studies on this topic are reviewed, including the effects of food on brain biochemistry (particularly sleep) and effects of tryptophane as a pain reducer. (JN)

  14. Variation in nutrients formulated and nutrients supplied on 5 California dairies.

    PubMed

    Rossow, H A; Aly, S S

    2013-01-01

    Computer models used in ration formulation assume that nutrients supplied by a ration formulation are the same as the nutrients presented in front of the cow in the final ration. Deviations in nutrients due to feed management effects such as dry matter changes (i.e., rain), loading, mixing, and delivery errors are assumed to not affect delivery of nutrients to the cow and her resulting milk production. To estimate how feed management affects nutrients supplied to the cow and milk production, and determine if nutrients can serve as indexes of feed management practices, weekly total mixed ration samples were collected and analyzed for 4 pens (close-up cows, fresh cows, high-milk-producing, and low-milk-producing cows, if available) for 7 to 12 wk on 5 commercial California dairies. Differences among nutrient analyses from these samples and nutrients from the formulated rations were analyzed by PROC MIXED of SAS (SAS Institute Inc., Cary, NC). Milk fat and milk protein percentages did not vary as much [coefficient of variation (CV) = 18 to 33%] as milk yield (kg; CV = 16 to 47 %) across all dairies and pens. Variability in nutrients delivered were highest for macronutrient fat (CV = 22%), lignin (CV = 15%), and ash (CV = 11%) percentages and micronutrients Fe (mg/kg; CV = 48%), Na (%; CV = 42%), and Zn (mg/kg; CV = 38%) for the milking pens across all dairies. Partitioning of the variability in random effects of nutrients delivered and intraclass correlation coefficients showed that variability in lignin percentage of TMR had the highest correlation with variability in milk yield and milk fat percentage, followed by fat and crude protein percentages. But, variability in ash, fat, and lignin percentages of total mixed ration had the highest correlation with variability in milk protein percentage. Therefore, lignin, fat, and ash may be the best indices of feed management to include effects of variability in nutrients on variability in milk yield, milk fat, and milk

  15. One-time tillage of no-till: Effects on nutrients, mycorrhizae, and phosphorus uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stratification of nutrient availability, especially of P, that develops with continuous no-till (NT) can affect runoff nutrient concentration and possibly nutrient uptake. The effects of composted manure application and one-time tillage of NT on the distribution of soil chemical properties, root co...

  16. Insects, infestations and nutrient fluxes

    NASA Astrophysics Data System (ADS)

    Michalzik, B.

    2012-04-01

    endemic situations (Larrson and Tenow 1980). However, at times of insect mass outbreaks with leaf area losses up to 100%, nutrient fluxes are strongly affected at the ecosystem level and consequently attract greater attention (Grace 1986). In this context, mass outbreaks of herbivore insects constitute a class of ecosystem disturbance (Pickett and White 1985). More specific, insect pests meet the criteria of biogeochemical "hot spots" and "hot moments" (McClain et al. 2003) as they induce temporal-spatial process heterogeneity or changes in biogeochemical reaction rates, but not necessarily changes in the structure of ecosystems or landscapes. This contribution presents a compilation of literature and own research data on insect herbivory effects on nutrient cycling and ecosystem functioning from the plot to the catchment scale. It focuses on temperate forest ecosystems and on short-term impacts as exerted by two focal functional groups of herbivore canopy insects (leaf and sap feeders). In detail, research results on effects operating on short temporal scales are presented including a) alterations in throughfall fluxes encompassing dissolved and particulate organic matter fractions, b) alterations in the amount, timing and quality of frass and honeydew deposition and c) soil microbial activity and decomposition processes.

  17. Nutrient balance and body composition.

    PubMed

    Rolland-Cachera, M F; Deheeger, M; Bellisle, F

    1997-01-01

    The prevalence of obesity in industrialized countries is increasing in spite of decreased energy and fat intakes. This trend might be mainly a consequence of a decline in energy expenditure. It is suggested here that it might also be accounted for by the increasing proportion of protein in the diet, affecting the hormonal status. The nutrient imbalance is particularly apparent in early childhood, when a low fat and high protein diet is not justified because of high energy needs for growth and because it is the period of high rate of myelinization of the nervous system. At later ages, the proportion of fat exceeds the recommended level, and the protein intake remains high. A diet containing less animal and more vegetable products would reduce both protein and saturated fat excesses and could help decrease metabolic risk factors. PMID:9477439

  18. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Astrophysics Data System (ADS)

    Strayer, R. F.

    1994-11-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  19. Dynamics of microorganism populations in recirculating nutrient solutions.

    PubMed

    Strayer, R F

    1994-11-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis. PMID:11540206

  20. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet Controlled Ecological Life Support Systems (CELSS) tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  1. Dynamics of microorganism populations in recirculating nutrient solutions

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.

    1994-01-01

    This overview covers the basic microbial ecology of recirculating hydroponic solutions. Examples from NASA and Soviet CELSS tests and the commercial hydroponic industry will be used. The sources of microorganisms in nutrient solutions include air, water, seeds, plant containers and plumbing, biological vectors, and personnel. Microbial fates include growth, death, and emigration. Important microbial habitats within nutrient delivery systems are root surfaces, hardware surfaces (biofilms), and solution suspension. Numbers of bacteria on root surfaces usually exceed those from the other habitats by several orders of magnitude. Gram negative bacteria dominate the microflora with fungal counts usually much lower. Trends typically show a decrease in counts with increasing time unless stressed plants increase root exudates. Important microbial activities include carbon mineralization and nitrogen transformations. Important detrimental interactions include competition with plants, and human and plant pathogenesis.

  2. Epigenetic regulation of early neural fate commitment.

    PubMed

    Qiao, Yunbo; Yang, Xianfa; Jing, Naihe

    2016-04-01

    Early neural fate commitment is a key process in neural development and establishment of the central nervous system, and this process is tightly controlled by extrinsic signals, intrinsic factors, and epigenetic regulation. Here, we summarize the main findings regarding the regulatory network of epigenetic mechanisms that play important roles during early neural fate determination and embryonic development, including histone modifications, chromatin remodeling, DNA modifications, and RNA-level regulation. These regulatory mechanisms coordinate to play essential roles in silencing of pluripotency genes and activating key neurodevelopmental genes during cell fate commitment at DNA, histone, chromatin, and RNA levels. Moreover, we discuss the relationship between epigenetic regulation, signaling pathways, and intrinsic factors during early neural fate specification. PMID:26801220

  3. When are fish sources vs. sinks of nutrients in lake ecosystems?

    PubMed

    Vanni, Michael J; Boros, Gergely; McIntyre, Peter B

    2013-10-01

    Animals can be important in nutrient cycling through a variety of direct and indirect pathways. A high biomass of animals often represents a large pool of nutrients, leading some ecologists to argue that animal assemblages can represent nutrient sinks within ecosystems. The role of animals as sources vs. sinks of nutrients has been debated particularly extensively for freshwater fishes. We argue that a large pool size does not equate to a nutrient sink; rather, animals can be nutrient sinks when their biomass increases, when emigration rates are high, and/or when nutrients in animal carcasses are not remineralized. To further explore these ideas, we use a simple model to evaluate the conditions under which fish are phosphorus (P) sources or sinks at the ecosystem (lake) level, and at the habitat level (benthic and water column habitats). Our simulations suggest that, under most conditions, fish are sinks for benthic P but are net P sources to the water column. However, P source and sink strengths depend on fish feeding habits (proportion of P consumed from the benthos and water column), migration patterns, and especially the fate of carcass P. Of particular importance is the rate at which carcasses are mineralized and the relative importance of benthic vs. pelagic primary producers in taking up mineralized P (and excreted P). Higher proportional uptake of P by benthic primary producers increases the likelihood that fish are sinks for water column P. Carcass bones and scales are relatively recalcitrant and can represent a P sink even if fish biomass does not change over time. Thus, there is a need for better documentation of the fraction of carcass P that is remineralized, and the fate of this P, under natural conditions. We urge a more holistic perspective regarding the role of animals in nutrient cycling, with a focus on quantifying the rates at which animals consume, store, release, and transport nutrients under various conditions. PMID:24358706

  4. Sources and fate of bioavailable dissolved organic nitrogen in the Neuse River Estuary, North Carolina

    NASA Astrophysics Data System (ADS)

    Paerl, H. W.; Peierls, B. L.; Hounshell, A.; Osburn, C. L.

    2015-12-01

    Eutrophication is a widespread problem affecting the structure and function of estuaries and is often linked to anthropogenic nitrogen (N) enrichment, since N is the primary nutrient limiting algal production. Watershed management actions typically have ignored dissolved organic nitrogen (DON) loading because of its perceived refractory nature and instead focused on inorganic N as targets for loading reductions. A fluorescence-based model indicated that anthropogenic sources of DON near the head of the microtidal Neuse River Estuary (NRE), NC were dominated by septic systems and poultry waste. A series of bioassays were used to determine the bioavailability of river DON and DON-rich sources to primary producers and whether those additions promoted the growth of certain phytoplankton taxa, particularly harmful species. Overall, at time scales up to two to three weeks, estuarine phytoplankton and bacteria only showed limited responses to additions of high molecular weight (HMW, >1 kDa) river DON. When increases in productivity and biomass did occur, they were quite small compared with the response to inorganic N. Low molecular weight (LMW) river DON, waste water treatment plant effluent, and poultry litter extract did have a positive effect on phytoplankton and bacterial production, indicating a bioavailable fraction. High variability of bulk DON concentration suggested that bioavailable compounds added in the experimental treatments were low in concentration and turned over quite rapidly. Some phytoplankton taxa, as measured by diagnostic photopigments, appeared to be selectively enhanced by the HMW and specific source DON additions, although the taxa could not be positively identified as harmful species. Preliminary tests show that labile autochthonous organic matter may act as a primer for the mineralization of the HMW DON. These and other, longer-term bioavailability studies will be needed to adequately address the fate of watershed DON in estuarine ecosystems.

  5. Fate Mapping Mammalian Corneal Epithelia.

    PubMed

    Richardson, Alexander; Wakefield, Denis; Di Girolamo, Nick

    2016-04-01

    The anterior aspect of the cornea consists of a stratified squamous epithelium, thought to be maintained by a rare population of stem cells (SCs) that reside in the limbal transition zone. Although migration of cells that replenish the corneal epithelium has been studied for over a century, the process is still poorly understood and not well characterized. Numerous techniques have been employed to examine corneal epithelial dynamics, including visualization by light microscopy, the incorporation of vital dyes and DNA labels, and transplantation of genetically marked cells that have acted as cell and lineage beacons. Modern-day lineage tracing utilizes molecular methods to determine the fate of a specific cell and its progeny over time. Classically employed in developmental biology, lineage tracing has been used more recently to track the progeny of adult SCs in a number of organs to pin-point their location and understand their movement and influence on tissue regeneration. This review highlights key discoveries that have led researchers to develop cutting-edge genetic tools to effectively and more accurately monitor turnover and displacement of cells within the mammalian corneal epithelium. Collating information on the basic biology of SCs will have clinical ramifications in furthering our knowledge of the processes that govern their role in homeostasis, wound-healing, transplantation, and how we can improve current unsatisfactory SC-based therapies for patients suffering blinding corneal disease. PMID:26774909

  6. mTOR Links Environmental Signals to T Cell Fate Decisions

    PubMed Central

    Chapman, Nicole M.; Chi, Hongbo

    2015-01-01

    T cell fate decisions play an integral role in maintaining the health of organisms under homeostatic and inflammatory conditions. The localized microenvironment in which developing and mature T cells reside provides signals that serve essential functions in shaping these fate decisions. These signals are derived from the immune compartment, including antigens, co-stimulation, and cytokines, and other factors, including growth factors and nutrients. The mechanistic target of rapamycin (mTOR), a vital sensor of signals within the immune microenvironment, is a central regulator of T cell biology. In this review, we discuss how various environmental cues tune mTOR activity in T cells, and summarize how mTOR integrates these signals to influence multiple aspects of T cell biology. PMID:25653651

  7. Nutrient profiling: the new environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2005 Dietary Guidelines for Americans (DGA) recommends that individuals choose nutrient-dense foods to help meet nutrient needs without consuming excess calories, a concept that is supported by health professionals and nutrition organizations. With an increased emphasis on nutrient density, the ...

  8. National Nutrient Database for Standard Reference - Find Nutrient Value of Common Foods by Nutrient

    MedlinePlus

    ... Department of Agriculture Agricultural Research Service National Nutrient Database for Standard Reference Release 28 NDL Home Food ... Sort by: Measure by: * required field ​ National Nutrient Database for Standard Reference Release 28 slightly revised May, ...

  9. A holistic view of dietary carbohydrate utilization in lobster: digestion, postprandial nutrient flux, and metabolism.

    PubMed

    Rodríguez-Viera, Leandro; Perera, Erick; Casuso, Antonio; Perdomo-Morales, Rolando; Gutierrez, Odilia; Scull, Idania; Carrillo, Olimpia; Martos-Sitcha, Juan A; García-Galano, Tsai; Mancera, Juan Miguel

    2014-01-01

    Crustaceans exhibit a remarkable variation in their feeding habits and food type, but most knowledge on carbohydrate digestion and utilization in this group has come from research on few species. The aim of this study was to make an integrative analysis of dietary carbohydrate utilization in the spiny lobster Panulirus argus. We used complementary methodologies such as different assessments of digestibility, activity measurements of digestive and metabolic enzymes, and post-feeding flux of nutrients and metabolites. Several carbohydrates were well digested by the lobster, but maize starch was less digestible than all other starches studied, and its inclusion in diet affected protein digestibility. Most intense hydrolysis of carbohydrates in the gastric chamber of lobster occurred between 2-6 h after ingestion and afterwards free glucose increased in hemolymph. The inclusion of wheat in diet produced a slow clearance of glucose from the gastric fluid and a gradual increase in hemolymph glucose. More intense hydrolysis of protein in the gastric chamber occurred 6-12 h after ingestion and then amino acids tended to increase in hemolymph. Triglyceride concentration in hemolymph rose earlier in wheat-fed lobsters than in lobsters fed other carbohydrates, but it decreased the most 24 h later. Analyses of metabolite levels and activities of different metabolic enzymes revealed that intermolt lobsters had a low capacity to store and use glycogen, although it was slightly higher in wheat-fed lobsters. Lobsters fed maize and rice diets increased amino acid catabolism, while wheat-fed lobsters exhibited higher utilization of fatty acids. Multivariate analysis confirmed that the type of carbohydrate ingested had a profound effect on overall metabolism. Although we found no evidence of a protein-sparing effect of dietary carbohydrate, differences in the kinetics of their digestion and absorption impacted lobster metabolism determining the fate of other nutrients. PMID:25268641

  10. A Holistic View of Dietary Carbohydrate Utilization in Lobster: Digestion, Postprandial Nutrient Flux, and Metabolism

    PubMed Central

    Casuso, Antonio; Perdomo-Morales, Rolando; Gutierrez, Odilia; Scull, Idania; Carrillo, Olimpia; Martos-Sitcha, Juan A.; García-Galano, Tsai; Mancera, Juan Miguel

    2014-01-01

    Crustaceans exhibit a remarkable variation in their feeding habits and food type, but most knowledge on carbohydrate digestion and utilization in this group has come from research on few species. The aim of this study was to make an integrative analysis of dietary carbohydrate utilization in the spiny lobster Panulirus argus. We used complementary methodologies such as different assessments of digestibility, activity measurements of digestive and metabolic enzymes, and post-feeding flux of nutrients and metabolites. Several carbohydrates were well digested by the lobster, but maize starch was less digestible than all other starches studied, and its inclusion in diet affected protein digestibility. Most intense hydrolysis of carbohydrates in the gastric chamber of lobster occurred between 2–6 h after ingestion and afterwards free glucose increased in hemolymph. The inclusion of wheat in diet produced a slow clearance of glucose from the gastric fluid and a gradual increase in hemolymph glucose. More intense hydrolysis of protein in the gastric chamber occurred 6–12 h after ingestion and then amino acids tended to increase in hemolymph. Triglyceride concentration in hemolymph rose earlier in wheat-fed lobsters than in lobsters fed other carbohydrates, but it decreased the most 24 h later. Analyses of metabolite levels and activities of different metabolic enzymes revealed that intermolt lobsters had a low capacity to store and use glycogen, although it was slightly higher in wheat-fed lobsters. Lobsters fed maize and rice diets increased amino acid catabolism, while wheat-fed lobsters exhibited higher utilization of fatty acids. Multivariate analysis confirmed that the type of carbohydrate ingested had a profound effect on overall metabolism. Although we found no evidence of a protein-sparing effect of dietary carbohydrate, differences in the kinetics of their digestion and absorption impacted lobster metabolism determining the fate of other nutrients. PMID

  11. Fitness of resprouters versus seeders in relation to nutrient availability in two Plantago species

    NASA Astrophysics Data System (ADS)

    Latzel, Vít; Klimešová, Jitka

    2009-07-01

    Two contrasting strategies of plants from disturbed areas are reported to depend on nutrient availability. Resprouters, investing into storage and capable of vegetative regeneration after disturbance, are predicted to be enhanced in nutrient poor environments. This contrasts to seeders, which invest preferentially into seed production and regenerating only from seeds, and are thought to prevail in nutrient rich environments. To test such predicted dichotomy, we set up an experiment with two facultative resprouters with contrasting nutrient demands and assessed the fitness of individuals regenerated from seeds and root fragments in differently productive environments. We hypothesized that 1) plants with higher nutrient demands have a higher fitness as seeders irrespectable of nutrient availability and/or 2) both species will have a higher fitness as resprouters under lower nutrient availability and as seeders when nutrient availability is higher. Nutrient availability was also manipulated prior to and after disturbance to evaluate the impact of changing nutrient availability on the strategy of resprouting. The results of our pot experiment with Plantago lanceolata and Plantago media supported the first but not the second hypothesis. Moreover, high nutrient availability prior to disturbance negatively affected resprouting success, but the growth and fitness of successfully regenerated individuals were enhanced under higher nutrient availability. We concluded that resprouting from roots after disturbance is affected by nutrient availability, but this effect considerably differs between individual life-history stages.

  12. Freshwater ecology. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems.

    PubMed

    Rosemond, Amy D; Benstead, Jonathan P; Bumpers, Phillip M; Gulis, Vladislav; Kominoski, John S; Manning, David W P; Suberkropp, Keller; Wallace, J Bruce

    2015-03-01

    Nutrient pollution of freshwater ecosystems results in predictable increases in carbon (C) sequestration by algae. Tests of nutrient enrichment on the fates of terrestrial organic C, which supports riverine food webs and is a source of CO2, are lacking. Using whole-stream nitrogen (N) and phosphorus (P) additions spanning the equivalent of 27 years, we found that average terrestrial organic C residence time was reduced by ~50% as compared to reference conditions as a result of nutrient pollution. Annual inputs of terrestrial organic C were rapidly depleted via release of detrital food webs from N and P co-limitation. This magnitude of terrestrial C loss can potentially exceed predicted algal C gains with nutrient enrichment across large parts of river networks, diminishing associated ecosystem services. PMID:25745171

  13. Prehistoric agricultural depletion of soil nutrients in Hawai'i.

    PubMed

    Hartshorn, A S; Chadwick, O A; Vitousek, P M; Kirch, P V

    2006-07-18

    We investigated the fate of soil nutrients after centuries of indigenous dryland agriculture in Hawai'i using a coupled geochemical and archaeological approach. Beginning approximately 500 years ago, farmers began growing dryland taro and sweet potato on the leeward slopes of East Maui. Their digging sticks pierced a subsurface layer of cinders, enhancing crop access to the soil water stored below the intact cinders. Cultivation also catalyzed nutrient losses, directly by facilitating leaching of mobile nutrients after disturbing a stratigraphic barrier to vertical water movement, and indirectly by increasing mineral weathering and subsequent uptake and harvest. As a result, centuries of cultivation lowered volumetric total calcium, magnesium, sodium, potassium, and phosphorus content by 49%, 28%, 75%, 37%, and 32%, respectively. In the absence of written records, we used the difference in soil phosphorus to estimate that prehistoric yields were sufficient to meet local demand over very long time frames, but the associated acceleration of nutrient losses could have compromised subsequent yields. PMID:16832047

  14. Prehistoric agricultural depletion of soil nutrients in Hawai'i

    PubMed Central

    Hartshorn, A. S.; Chadwick, O. A.; Vitousek, P. M.; Kirch, P. V.

    2006-01-01

    We investigated the fate of soil nutrients after centuries of indigenous dryland agriculture in Hawai‘i using a coupled geochemical and archaeological approach. Beginning ≈500 years ago, farmers began growing dryland taro and sweet potato on the leeward slopes of East Maui. Their digging sticks pierced a subsurface layer of cinders, enhancing crop access to the soil water stored below the intact cinders. Cultivation also catalyzed nutrient losses, directly by facilitating leaching of mobile nutrients after disturbing a stratigraphic barrier to vertical water movement, and indirectly by increasing mineral weathering and subsequent uptake and harvest. As a result, centuries of cultivation lowered volumetric total calcium, magnesium, sodium, potassium, and phosphorus content by 49%, 28%, 75%, 37%, and 32%, respectively. In the absence of written records, we used the difference in soil phosphorus to estimate that prehistoric yields were sufficient to meet local demand over very long time frames, but the associated acceleration of nutrient losses could have compromised subsequent yields. PMID:16832047

  15. Transport, behavior, and fate of volatile organic compounds in streams

    USGS Publications Warehouse

    Rathbun, R.E.

    2000-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties that make them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution of VOCs in the environment is necessary. The transport, behavior, and fate of VOCs in streams are determined by combinations of chemical, physical, and biological processes. These processes are volatilization, absorption, wet and dry deposition, microbial degradation, sorption, hydrolysis, aquatic photolysis, oxidation, chemical reaction, biocon-centration, advection, and dispersion. The relative importance of each of these processes depends on the characteristics of the VOC and the stream. The U.S. Geological Survey National Water-Quality Assessment Program selected 55 VOCs for study. This article reviews the characteristics of the various processes that could affect the transport, behavior, and fate of these VOCs in streams.

  16. Modeling Natural Stream Nutrient Concentrations from Landscape Predictors

    NASA Astrophysics Data System (ADS)

    Olson, J. R.; Hawkins, C. P.

    2012-12-01

    Understanding how much land use change has affected nutrient concentrations in aquatic ecosystems requires a way of estimating the nutrient concentrations that were present in these systems before they were altered. Pre-alteration data are generally not available, but models that associate natural landscape variation with stream nutrient concentrations can be used to predict natural nutrient concentrations. These models can also provide insight into which processes are primarily responsible for observed natural spatial and temporal variability in stream nutrient concentrations. We used data from 782 reference sites across the western USA to develop empirical models that predict natural, base-flow concentrations of total phosphorus (TP) and total nitrogen (TN). Models were built using Random Forests, a nonparametric regression technique that accounts for both interactions between variables and non-linear relationships. We developed candidate predictor variables associated with nutrient sources, sinks, or other processes potentially affecting nutrient concentrations among sites. Factors associated with watershed geology and P availability were the most important predictors of TP. Climate and co-precipitates were less important predictors. TN concentrations were equally associated with climate, atmospheric deposition, and vegetation phenology. Both models were relatively accurate (Root Mean Squared Errors < 12% of the range of observations for independent validation sites) and made better predictions than previous models of natural nutrient concentrations. However, the models were not very precise (r2 = 0.46 for the TP model, and r2 = 0.23 for the TN model). An analysis of the sources of variation showed that our models accounted for a majority of the spatial variation in nutrient concentrations, and much of the imprecision was due to temporal or measurement variation in nutrient concentrations.

  17. Msx2 alters the timing of retinal ganglion cells fate commitment and differentiation

    SciTech Connect

    Jiang, Shao-Yun; Wang, Jian-Tao; Dohney Eye Institute, Keck School of Medicine, University of Southern California, 1355 San Pablo Street, DOH 314, Los Angeles, CA 90033

    2010-05-14

    Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.

  18. Nutrient dynamics: Chapter 3

    USGS Publications Warehouse

    Likens, Gene E.; LaBaugh, James W.; Buso, Donald C.; Bade, Darren

    2009-01-01

    This chapter focuses on the variability and trends in chemical concentrations and fluxes at Mirror Lake during the period 1981–2000. It examines the water and chemical budgets of Mirror Lake to identify and understand better long-term trends in the chemical characteristics of the lake. It also identifies the causes of changes in nutrient concentrations and examines the contribution of hydrologic pathways to the contamination of Mirror Lake by road salt. The role of groundwater and precipitation on water and chemical budgets of the lake are also examined.

  19. Bifurcation dynamics and determination of alternate cell fates in bipotent progenitor cells.

    PubMed

    Li, Shanshan; Liu, Yanwei; Liu, Zengrong; Wang, Ruiqi

    2015-04-01

    The gene regulatory networks in which two lineage-affiliated transcription factors, such as GATA1 and PU.1, inhibit each other but activate themselves so as to regulate the choice between alternative cell fates have been extensively studied. These simple networks can generate bistability and explain the transitions between the alternative cell fates. The commitment of a progenitor cell to a new fate corresponds to the occurrence of different types of bifurcations, depending on if a system is symmetrical and how perturbations affect the system. Here we take a general modeling and analyzing approach and show that the lateral inhibition with symmetry and asymmetry can lead to different bifurcation dynamics. Especially, if cell fate decision-making is initiated with asymmetry or symmetry-breaking perturbations, a progenitor cell pre-patterns itself into a polarized cell, depending on the asymmetry or symmetry-breaking perturbations. This study may help us understand the fundamental features of binary cell fate decisions more clearly and further apply to a wider range of decision-making processes. PMID:25852780

  20. Association of arsenic with nutrient elements in rice plants.

    PubMed

    Duan, Guilan; Liu, Wenju; Chen, Xueping; Hu, Ying; Zhu, Yongguan

    2013-06-01

    Rice is the main cereal crop that feeds half of the world's population, and two thirds of the Chinese population. Arsenic (As) contamination in paddy soil and irrigation water elevates As concentration in rice grains, thus rice consumption is an important As intake route for populations in south and south-east Asia, where rice is the staple food. In addition to direct toxicity of As to human, As may limit the accumulation of micro-nutrients in rice grains, such as selenium (Se) and zinc (Zn). These micro-nutrients are essential for humans, while mineral deficiencies, especially iron (Fe) and Zn, are prevalent in China. Therefore, it is important to understand the interactions between As and micro-nutrients in rice plants, which is the principal source of these nutrients for people on rice diets. In addition, during the processes of As uptake, translocation and transformation, the status of macro-nutrients (e.g. silicon (Si), phosphors (P), sulfur (S)) are important factors affecting As dynamics in soil-plant systems and As accumulation in rice grains. Recently, synchrotron-based spectroscopic techniques have been applied to map the distribution of As and nutrient elements in rice plants, which will aid to understand how As are accumulated, complexed and transported within plants. This paper reviews the interactions between As and macro-nutrients, as well as micro-nutrients in rice plants. PMID:23771154

  1. Intestinal maturation in the rat: the role of enteral nutrients.

    PubMed

    Castillo, R O; Pittler, A; Costa, F

    1988-01-01

    In order to investigate the role of enteral nutrients in intestinal maturation, an animal model was developed consisting of provision of intravenous nutrient infusions to immature suckling rats over the period of weaning. Age- and litter-matched controls were provided identical amounts of the parenteral solution by entered cannula using the same model. At the end of the period of weaning, animals were killed and the intestines removed for measurement of morphologic parameters and disaccharidase, DNA, and protein levels. The absence of enteral nutrients during weaning resulted in striking inhibition of intestinal growth, diminution in mucosal cell mass, and delayed development of lactase. Although the appearance of sucrase was not affected by the lack of enteral nutrients, sucrase levels rose to only one-third of control levels. Jejunoileal gradients were not present in animals deprived of enteral nutrients but were present in animals receiving enteral nutrients. These results are distinct from adult animals treated in identical experimental fashion and indicate that major parameters of intestinal maturation are altered by the absence of intraluminal nutrients. A critical role for intraluminal nutrients in regulation of intestinal development is therefore suggested. The animal model developed for these studies is well suited for investigation of the interactions of the intraluminal environment with intestinal maturation. PMID:3141647

  2. Water and nutrient acquisition by roots and canopies

    SciTech Connect

    Oren, R.; Sheriff, D.W.

    1995-07-01

    Water and nutrient supply rates, as well as internal (plant) and external (soil) deficits, can have major effects on physiological activity and growth. Effects of water or nutrient deficits on growth can be demonstrated separately, but they often interact, as shown for several Pinus species, and by Turner (1982) for Pinus radiata. Moist soil and wet canopy surfaces facilitate nutrient uptake through roots and foliage, respectively. Water uptake is affected by the number and distribution of roots in relation to the distribution of soil moisture, and by the wetness and hydraulic permeability of foliage. Nutrient uptake is similarly affected by tissue characteristics and nutrient concentration, but also depends on the moisture regime in the bulk soil and in the vicinity of absorbing surfaces. In this chapter, we discuss generalities based on results from observational studies of unmanipulated plants and of stands. We also consider information from experimental manipulation of nutrient and water availability. A more thorough treatment of the effects of mycorrhizae and anthropogenic pollution on water and nutrient acquisition is given, respectively.

  3. Cell fate control by pioneer transcription factors.

    PubMed

    Iwafuchi-Doi, Makiko; Zaret, Kenneth S

    2016-06-01

    Distinct combinations of transcription factors are necessary to elicit cell fate changes in embryonic development. Yet within each group of fate-changing transcription factors, a subset called 'pioneer factors' are dominant in their ability to engage silent, unmarked chromatin and initiate the recruitment of other factors, thereby imparting new function to regulatory DNA sequences. Recent studies have shown that pioneer factors are also crucial for cellular reprogramming and that they are implicated in the marked changes in gene regulatory networks that occur in various cancers. Here, we provide an overview of the contexts in which pioneer factors function, how they can target silent genes, and their limitations at regions of heterochromatin. Understanding how pioneer factors regulate gene expression greatly enhances our understanding of how specific developmental lineages are established as well as how cell fates can be manipulated. PMID:27246709

  4. A minimal fate-selection switch.

    PubMed

    Weinberger, Leor S

    2015-12-01

    To preserve fitness in unpredictable, fluctuating environments, a range of biological systems probabilistically generate variant phenotypes--a process often referred to as 'bet-hedging', after the financial practice of diversifying assets to minimize risk in volatile markets. The molecular mechanisms enabling bet-hedging have remained elusive. Here, we review how HIV makes a bet-hedging decision between active replication and proviral latency, a long-lived dormant state that is the chief barrier to an HIV cure. The discovery of a virus-encoded bet-hedging circuit in HIV revealed an ancient evolutionary role for latency and identified core regulatory principles, such as feedback and stochastic 'noise', that enable cell-fate decisions. These core principles were later extended to fate selection in stem cells and cancer, exposed new therapeutic targets for HIV, and led to a potentially broad strategy of using 'noise modulation' to redirect cell fate. PMID:26611210

  5. Sources, transformation and fate of particulate amino acids and hexosamines under varying hydrological regimes in the tropical Wenchang/Wenjiao Rivers and Estuary, Hainan, China

    NASA Astrophysics Data System (ADS)

    Unger, Daniela; Herbeck, Lucia S.; Li, Min; Bao, Hongyan; Wu, Ying; Zhang, Jing; Jennerjahn, Tim

    2013-04-01

    The small tropical Wenchang and Wenjiao Rivers on the island of Hainan, tropical China, are affected by effluents from municipal sewage, aquaculture and agriculture, and by contrasting hydrological regimes related to monsoon and tropical storms. In order to obtain information on the sources, transformation and fate of organic matter (OM) we investigated the amount and composition of amino acids and hexosamines as well as the carbon isotope composition in suspended particulate matter (SPM) from the Wenchang/Wenjiao Estuary. SPM was collected along the salinity gradient starting from the river sites, along the lagoon-shaped Bamen Bay to coastal waters during four sampling campaigns between 2006 and 2009. SPM concentrations ranged between 4.7 and 58.2 mg L-1. Apart from highest values after heavy rain events in spring and summer, SPM showed little seasonal variation, but increased with salinity. From SPM POC% (1.2-20.9%), C/N (4.9-16.5) and δ13Corg (-31.5 to -19.5‰), the molar composition and content of amino acids and hexosamines (8.2-156.2 mg g-1 dry weight) and by comparison with sediments, mangroves, soils and plants we are able to show that soil-derived material, freshwater and marine plankton were the major sources of suspended OM. High POC and amino acid contents were related to primary production sustained by dissolved nutrients to a large extent stemming from municipal and aquaculture effluents. Factor analysis showed that the suite of biogeochemical parameters measured clearly depict the terrestrial vs. marine origin and the freshness/reactivity of OM. The four groups of samples resulting from cluster analysis were basically related to varying hydrological regimes. With respect to the sources, degradation and fate of particulate OM the major factors were: (i) the year round input of labile, amino acid rich riverine OM matter at the freshwater dominated sites, (ii) high input of degraded soil OM after heavy rains with dispersal throughout the estuary and

  6. Fate and Transport of Perchlorate at California's Stringfellow Superfund Site

    NASA Astrophysics Data System (ADS)

    Kenoyer, G. J.; Nuttall, H. E.; Paulson, R.; Wolfenden, A.; Aldern, J.

    2007-12-01

    will show how geologic conditions and the geochemical environment affect the fate and transport of perchlorate at the Stringfellow site.

  7. Nutrient losses from fall- and winter-applied manure: effects of timing and soil temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil temperature is a major environmental factor that affects meltwater and precipitation infiltration and nutrient cycling. The objective of this study was to determine nutrient losses in runoff and leachate from fall- and winter-applied dairy manure as affected by soil temperature at the time of a...

  8. Substrate and nutrient limitation regulating microbial growth in soil

    NASA Astrophysics Data System (ADS)

    Bååth, Erland

    2015-04-01

    Microbial activity and growth in soil is regulated by several abiotic factors, including temperature, moisture and pH as the most important ones. At the same time nutrient conditions and substrate availability will also determine microbial growth. Amount of substrate will not only affect overall microbial growth, but also affect the balance of fungal and bacterial growth. The type of substrate will also affect the latter. Furthermore, according to Liebig law of limiting factors, we would expect one nutrient to be the main limiting one for microbial growth in soil. When this nutrient is added, the initial second liming factor will become the main one, adding complexity to the microbial response after adding different substrates. I will initially describe different ways of determining limiting factors for bacterial growth in soil, especially a rapid method estimating bacterial growth, using the leucine incorporation technique, after adding C (as glucose), N (as ammonium nitrate) and P (as phosphate). Scenarios of different limitations will be covered, with the bacterial growth response compared with fungal growth and total activity (respiration). The "degree of limitation", as well as the main limiting nutrient, can be altered by adding substrate of different stoichiometric composition. However, the organism group responding after alleviating the nutrient limitation can differ depending on the type of substrate added. There will also be situations, where fungi and bacteria appear to be limited by different nutrients. Finally, I will describe interactions between abiotic factors and the response of the soil microbiota to alleviation of limiting factors.

  9. NUTRIENT ENRICHMENT AND FISHERIES EXPLOITATION: INTERACTIVE EFFECTS ON ESTUARINE LIVING RESOURCES AND THEIR MANAGEMENT

    EPA Science Inventory

    Fisheries exploitation and increased nutrient loadings affect fish and shellfish abudance and production in estuaries. These stressors do not act independently; instead they jointly influence food webs, and each affects the sensitivity of species and ecosystems to the other. Nu...

  10. Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland.

    PubMed

    Yan, Bangguo; Ji, Zhonghua; Fan, Bo; Wang, Xuemei; He, Guangxiong; Shi, Liangtao; Liu, Gangcai

    2016-09-01

    Biomass allocation can exert a great influence on plant resource acquisition and nutrient use. However, the role of biomass allocation strategies in shaping plant community composition under nutrient limitations remains poorly addressed. We hypothesized that species-specific allocation strategies can affect plant adaptation to nutrient limitations, resulting in species turnover and changes in community-level biomass allocations across nutrient gradients. In this study, we measured species abundance and the concentrations of nitrogen and phosphorus in leaves and soil nutrients in an arid-hot grassland. We quantified species-specific allocation parameters for stems vs leaves based on allometric scaling relationships. Species-specific stem vs leaf allocation parameters were weighted with species abundances to calculate the community-weighted means driven by species turnover. We found that the community-weighted means of biomass allocation parameters were significantly related to the soil nutrient gradient as well as to leaf stoichiometry, indicating that species-specific allocation strategies can affect plant adaptation to nutrient limitations in the studied grassland. Species that allocate less to stems than leaves tend to dominate nutrient-limited environments. The results support the hypothesis that species-specific allocations affect plant adaptation to nutrient limitations. The allocation trade-off between stems and leaves has the potential to greatly affect plant distribution across nutrient gradients. PMID:27101947

  11. GUIDELINES FOR FIELD TESTING AQUATIC FATE AND TRANSPORT MODELS

    EPA Science Inventory

    This guidance has been developed for those attempting to field validate aquatic fate and transport models. Included are discussions of the major steps in validating models and sections on the individual fate and transport processes: biodegradation, oxidation, hydrolysis, photolys...

  12. Nutrient Sensing Mechanisms and Pathways

    PubMed Central

    Efeyan, Alejo; Comb, William C.; Sabatini, David M.

    2015-01-01

    PREFACE The ability to sense and respond to fluctuations in environmental nutrient levels is a requisite for life. Nutrient scarcity is a selective pressure that has shaped the evolution of most cellular processes. Different pathways that detect intracellular and extracellular levels of sugars, amino acids and lipids, and surrogate metabolites, are then integrated and coordinated at the organismal level via hormonal signals. During food abundance, nutrient sensing pathways engage anabolism and storage, and scarcity triggers homeostatic mechanisms, like the mobilization of internal stores through mechanisms such as autophagy. Nutrient sensing pathways are commonly deregulated in human metabolic diseases. PMID:25592535

  13. Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability

    PubMed Central

    Weidberg, Hilla; Moretto, Fabien; Spedale, Gianpiero; Amon, Angelika; van Werven, Folkert J.

    2016-01-01

    Cell fate choices are tightly controlled by the interplay between intrinsic and extrinsic signals, and gene regulatory networks. In Saccharomyces cerevisiae, the decision to enter into gametogenesis or sporulation is dictated by mating type and nutrient availability. These signals regulate the expression of the master regulator of gametogenesis, IME1. Here we describe how nutrients control IME1 expression. We find that protein kinase A (PKA) and target of rapamycin complex I (TORC1) signalling mediate nutrient regulation of IME1 expression. Inhibiting both pathways is sufficient to induce IME1 expression and complete sporulation in nutrient-rich conditions. Our ability to induce sporulation under nutrient rich conditions allowed us to show that respiration and fermentation are interchangeable energy sources for IME1 transcription. Furthermore, we find that TORC1 can both promote and inhibit gametogenesis. Down-regulation of TORC1 is required to activate IME1. However, complete inactivation of TORC1 inhibits IME1 induction, indicating that an intermediate level of TORC1 signalling is required for entry into sporulation. Finally, we show that the transcriptional repressor Tup1 binds and represses the IME1 promoter when nutrients are ample, but is released from the IME1 promoter when both PKA and TORC1 are inhibited. Collectively our data demonstrate that nutrient control of entry into sporulation is mediated by a combination of energy availability, TORC1 and PKA activities that converge on the IME1 promoter. PMID:27272508

  14. Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability.

    PubMed

    Weidberg, Hilla; Moretto, Fabien; Spedale, Gianpiero; Amon, Angelika; van Werven, Folkert J

    2016-06-01

    Cell fate choices are tightly controlled by the interplay between intrinsic and extrinsic signals, and gene regulatory networks. In Saccharomyces cerevisiae, the decision to enter into gametogenesis or sporulation is dictated by mating type and nutrient availability. These signals regulate the expression of the master regulator of gametogenesis, IME1. Here we describe how nutrients control IME1 expression. We find that protein kinase A (PKA) and target of rapamycin complex I (TORC1) signalling mediate nutrient regulation of IME1 expression. Inhibiting both pathways is sufficient to induce IME1 expression and complete sporulation in nutrient-rich conditions. Our ability to induce sporulation under nutrient rich conditions allowed us to show that respiration and fermentation are interchangeable energy sources for IME1 transcription. Furthermore, we find that TORC1 can both promote and inhibit gametogenesis. Down-regulation of TORC1 is required to activate IME1. However, complete inactivation of TORC1 inhibits IME1 induction, indicating that an intermediate level of TORC1 signalling is required for entry into sporulation. Finally, we show that the transcriptional repressor Tup1 binds and represses the IME1 promoter when nutrients are ample, but is released from the IME1 promoter when both PKA and TORC1 are inhibited. Collectively our data demonstrate that nutrient control of entry into sporulation is mediated by a combination of energy availability, TORC1 and PKA activities that converge on the IME1 promoter. PMID:27272508

  15. Nutrients and neurodevelopment: lipids.

    PubMed

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding. PMID:27606648

  16. Nutrient Cycling Study

    SciTech Connect

    Peter A. Pryfogle

    2005-09-01

    The particular goal of this study is to develop measurement techniques for understanding how consortia of organisms from geothermal facilities utilize sulfur and iron for metabolic activity; and in turn, what role that activity plays in initiating or promoting the development of a biofilm on plant substrates. Sulfur cycling is of interest because sulfur is produced in the resource. Iron is found in some of the steel formulations used in plant components and is also added as chemical treatment for reducing sulfide emissions from the plants. This report describes the set-up and operation of a bioreactor for evaluating the response of colonies of geothermal organisms to changes in nutrient and environmental conditions. Data from initial experiments are presented and plans for future testing is discussed.

  17. The influence of the forest canopy on nutrient cycling.

    PubMed

    Prescott, Cindy E

    2002-11-01

    Rates of key soil processes involved in recycling of nutrients in forests are governed by temperature and moisture conditions and by the chemical and physical nature of the litter. The forest canopy influences all of these factors and thus has a large influence on nutrient cycling. The increased availability of nutrients in soil in clearcuts illustrates how the canopy retains nutrients (especially N) on site, both by storing nutrients in foliage and through the steady input of available C in litter. The idea that faster decomposition is responsible for the flush of nitrate in clearcuts has not been supported by experimental evidence. Soil N availability increases in canopy gaps as small as 0.1 ha, so natural disturbances or partial harvesting practices that increase the complexity of the canopy by creating gaps will similarly increase the spatial variability in soil N cycling and availability within the forest. Canopy characteristics affect the amount and composition of leaf litter produced, which largely determines the amount of nutrients to be recycled and the resulting nutrient availability. Although effects of tree species on soil nutrient availability were thought to be brought about largely through differences in the decomposition rate of their foliar litter, recent studies indicate that the effect of tree species can be better predicted from the mass and nutrient content of litter produced, hence total nutrient return, than from litter decay rate. The greater canopy complexity in mixed species forests creates similar heterogeneity in nutritional characteristics of the forest floor. Site differences in slope position, parent material and soil texture lead to variation in species composition and productivity of forests, and thus in the nature and amount of litter produced. Through this positive feedback, the canopy accentuates inherent differences in site fertility. PMID:12414379

  18. The influence of bedrock hydrogeology on catchment-scale nitrate fate and transport in fractured aquifers.

    PubMed

    Orr, Alison; Nitsche, Janka; Archbold, Marie; Deakin, Jenny; Ofterdinger, Ulrich; Flynn, Raymond

    2016-11-01

    Characterising catchment scale biogeochemical processes controlling nitrate fate in groundwater constitutes a fundamental consideration when applying programmes of measures to reduce risks posed by diffuse agricultural pollutants to water quality. Combining hydrochemical analyses with nitrate isotopic data and physical hydrogeological measurements permitted characterisation of biogeochemical processes influencing nitrogen fate and transport in the groundwater in two fractured bedrock aquifers with contrasting hydrogeology but comparable nutrient loads. Hydrochemical and isotopic analyses of groundwater samples collected from moderately fractured, diffusely karstified limestone indicated nitrification controlled dissolved nitrogen fate and delivery to aquatic receptors. By contrast nitrate concentrations in groundwater were considerably lower in a low transmissivity highly lithified sandstone and pyrite-bearing shale unit with patchy subsoil cover. Geophysical and hydrochemical investigations showed shallower intervals contained hydraulically active fractures where denitrification was reflected through lower nitrogen levels and an isotopic enrichment ratio of 1.7 between δ(15)N and δ(18)O. Study findings highlight the influence of bedrock hydrogeological conditions on aqueous nitrogen mobility. Investigation results demonstrate that bedrock conditions need to be considered when implementing catchment management plans to reduce the impact of agricultural practices on the quality of groundwater and baseflow in receiving rivers. Nitrate isotopic signatures in the groundwater of a freely draining catchment underlain by a karstified aquifer and a poorly draining aquifer with a low transmissivity aquifer. PMID:27432726

  19. Wnt signaling and the control of human stem cell fate.

    PubMed

    Van Camp, J K; Beckers, S; Zegers, D; Van Hul, W

    2014-04-01

    Wnt signaling determines major developmental processes in the embryonic state and regulates maintenance, self-renewal and differentiation of adult mammalian tissue stem cells. Both β-catenin dependent and independent Wnt pathways exist, and both affect stem cell fate in developing and adult tissues. In this review, we debate the response to Wnt signal activation in embryonic stem cells and human, adult stem cells of mesenchymal, hematopoetic, intestinal, gastric, epidermal, mammary and neural lineages, and discuss the need for Wnt signaling in these cell types. Due to the vital actions of Wnt signaling in developmental and maintenance processes, deregulation of the pathway can culminate into a broad spectrum of developmental and genetic diseases, including cancer. The way in which Wnt signals can feed tumors and maintain cancer stem stells is discussed as well. Manipulation of Wnt signals both in vivo and in vitro thus carries potential for therapeutic approaches such as tissue engineering for regenerative medicine and anti-cancer treatment. Although many questions remain regarding the complete Wnt signal cell-type specific response and interplay of Wnt signaling with pathways such as BMP, Hedgehog and Notch, we hereby provide an overview of current knowledge on Wnt signaling and its control over human stem cell fate. PMID:24323281

  20. 40 CFR 158.1300 - Environmental fate data requirements table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Environmental fate data requirements table. 158.1300 Section 158.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Environmental Fate § 158.1300 Environmental fate data requirements table. (a) General....

  1. Fate of Nutrients in Shallow Groundwater Receiving Treated Septage, Malibu, CA

    PubMed Central

    Izbicki, John A

    2014-01-01

    Treated wastewater discharged from more than 400 onsite wastewater treatment systems (OWTS) near the Civic Center area of Malibu, California, 40 km west of downtown Los Angeles, composes 28% of the recharge to a 3.4 km2 alluvial aquifer. On the basis of δ18O and δD data, the fraction of wastewater in some samples was >70%. Ammonium and nitrate concentrations in water from 15 water-table wells sampled in July 2009 and April 2010 ranged from <0.01 to 12 milligrams per liter as nitrogen (mg/L as N), and from <0.01 to 11 mg/L as N, respectively. Chemical and isotopic data (δ15N of ammonium and nitrate, and δ18O of nitrate) show two processes remove nitrogen discharged from OWTS. Where groundwater was reducing, sorption of ammonium resulted in 30 to 50% nitrogen removal. Where groundwater was initially oxic, nitrification with subsequent denitrification as reducing conditions developed, resulted in up to 60% nitrogen removal. Nitrogen removal through sorption dominated during the cooler April sample period, and denitrification dominated during the warmer July sample period. The combination of mixing and nitrogen removal due to denitrification, sorption, and volatilization produces a δ15N apparent fractionation factor (εapp = −5), that can be explained using laboratory-derived fractionation factors (ε) for the individual processes. Phosphate concentrations ranged from < 0.04 to 2 mg/L as phosphorous. Sorption to iron oxides on the surfaces of mineral grains at near-neutral pH's removed some phosphate; however, little removal occurred at more alkaline pH's (>7.3). PMID:24902718

  2. Influence of ditch management on nutrient and pesticide fate and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are prominent in the landscape of the Midwestern United States. Dredging of drainage ditches is periodically necessary to ensure that agricultural fields are drained adequately. The objective of this research was to quantify the potential impacts of dredging on nutrie...

  3. Fate of dissolved organic nitrogen during biological nutrient removal wastewater treatment processes.

    PubMed

    Liu, Bing; Lin, Huirong; Yu, Guozhong; Zhang, Shenghua; Zhao, Chengmei

    2013-04-01

    Due to its potential to form toxic nitrogenous disinfection byproducts (N-DBPs), dissolved organic nitrogen (DON) is considered as one of the most important parameters in wastewater treatment plants (WWTP). This study describes a comprehensive investigation of variations in DON levels in orbal oxidation ditches. The results showed that DON increased gradually from 0.71 to 1.14 mg I(-1) along anaerobic zone, anoxic zone, aerobic zone 1 and aerobic 2. Molecular weight fractionation of DON in one anaerobic zone and one aerobic zone (aerobic zone 2) was performed. We found that the proportion of small molecular weight (<6 kDa) decreased and large molecular weight (> 20 kDa) showed opposite trend. This variation may have been caused due to the release of different types of soluble microbial products (SMPs) during biological processes. These SMPs contained both tryptophan protein-like and aromatic protein-like substances, which were confirmed by three-dimensional excitation-emission matrix (EEM) analysis. PMID:24620601

  4. Nutrient loading alters the performance of key nutrient exchange mutualisms.

    PubMed

    Shantz, Andrew A; Lemoine, Nathan P; Burkepile, Deron E

    2016-01-01

    Nutrient exchange mutualisms between phototrophs and heterotrophs, such as plants and mycorrhizal fungi or symbiotic algae and corals, underpin the functioning of many ecosystems. These relationships structure communities, promote biodiversity and help maintain food security. Nutrient loading may destabilise these mutualisms by altering the costs and benefits each partner incurs from interacting. Using meta-analyses, we show a near ubiquitous decoupling in mutualism performance across terrestrial and marine environments in which phototrophs benefit from enrichment at the expense of their heterotrophic partners. Importantly, heterotroph identity, their dependence on phototroph-derived C and the type of nutrient enrichment (e.g. nitrogen vs. phosphorus) mediated the responses of different mutualisms to enrichment. Nutrient-driven changes in mutualism performance may alter community organisation and ecosystem processes and increase costs of food production. Consequently, the decoupling of nutrient exchange mutualisms via alterations of the world's nitrogen and phosphorus cycles may represent an emerging threat of global change. PMID:26549314

  5. Metolachlor and atrazine fate in surface water systems

    SciTech Connect

    Rice, P.J.; Anderson, T.A.; Coats, J.R.

    1995-12-31

    The detection of pesticides in surface water and ground water provokes concern involving human health risks associated with pesticide exposure. Monitoring studies of surface waters have detected concentrations of herbicides that exceed the U.S. Environmental Protection Agency proposed maximum contamination level (MCL) for drinking water. Conventional water treatment processes do not remove many herbicides. Tap water drawn from surface-water sources has been reported to contain levels of herbicides above the regulatory limits. There is current interest in the use of artificial wetlands and macrophyte-cultured ponds in waste-water-treatment systems. Aquatic plant-based water treatment systems improve waste water effluent by solid filtration and nutrient assimilation. Various aquatic plants have been shown to accumulate metals, absorb inorganic ions, and accelerate the biodegradation of complex organics. Our research evaluates the fate of metolachlor and atrazine in surface water, surface water/sediment, and surface water/aquatic plant incubation systems to study the influence of sediment and aquatic plants in the removal and biotransformation of herbicides from contaminated waters. Aquatic macrophyte systems may prove to be useful in the remediation of herbicide contaminated surface waters in water treatment facilities or in the reduction of herbicide concentrations from tile drain effluents prior to entering watersheds.

  6. FATE OF COAL NITROGEN DURING COMBUSTION

    EPA Science Inventory

    The paper describes the burning of 21 coals, covering all ranks and under a wide variety of conditions, to ascertain the impact of coal properties on the fate of fuel nitrogen. Fuel NC was identified by using a nitrogen-free oxidant consisting of Ar/O2/CO2. It was found that fuel...

  7. Fate of glucuronide conjugated estradiol in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reproductive hormone, 17ß-estradiol (E2), is made more water soluble (polar) in the body by attachment of glucuronide acid to E2, facilitating urinary elimination. The fate of this potentially more mobile polar form of E2 is not well understood. Soil sorption studies were conducted using [14C] 1...

  8. Pesticide Fate in a Golf Course Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on the fate of pesticides in a golf course environment was presented to science professionals and golf course personnel at the Minnesota Golf Course Superintendents' Association March Mini-Seminar in Bloomington, MN, on 6 March 2007. Topics presented included: the definition of pesticide...

  9. AEROBIC DENITRIFICATION: IMPLICATIONS FOR NITROGEN FATE MODELING

    EPA Science Inventory

    In the Mississippi, as well as most nitrogen-degraded rivers and streams, NO3- is the dominant N species and therefore understanding its biogeochemical behavior is critical for accurate nitrogen fate modeling. To our knowledge this is the first work to report aerobic denitrificat...

  10. PROBLEMS ASSOCIATED WITH PUBLISHED ENVIRONMENTAL FATE DATA

    EPA Science Inventory

    Some of the problems associated with published data on the environmental fate of chemicals are unknown quality/reliability, misquoted numbers, citations from other publications and not the original work, data referenced as unpublished or as personal communication, non-corroborati...

  11. Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model

    PubMed Central

    Chen, Celia Y.; Hammerschmidt, Chad R.; Mason, Robert P.; Gilmour, Cynthia C.; Sunderland, Elsie M.; Greenfield, Ben K.; Buckman, Kate L.; Lamborg, Carl H.

    2013-01-01

    There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg

  12. Short-Term Effect of Nutrient Availability and Rainfall Distribution on Biomass Production and Leaf Nutrient Content of Savanna Tree Species

    PubMed Central

    Barbosa, Eduardo R. M.; Tomlinson, Kyle W.; Carvalheiro, Luísa G.; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H. T.; van Langevelde, Frank

    2014-01-01

    Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings’ above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient

  13. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of savanna tree species.

    PubMed

    Barbosa, Eduardo R M; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T; van Langevelde, Frank

    2014-01-01

    Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings' above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient concentration

  14. Nutrient biofortification of food crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-based foods offer an array of nutrients that are essential for human nutrition and promote good health. However, the major staple crops of the world are often deficient in some of these nutrients. Traditional agricultural approaches can marginally enhance the nutritional value of some foods, b...

  15. Nutrient Removal in Wastewater Treatment

    ERIC Educational Resources Information Center

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  16. Nutrient Needs of Young Athletes.

    ERIC Educational Resources Information Center

    Willenberg, Barbara; Hemmelgarn, Melinda

    1991-01-01

    Explains the nutritional requirements of children and adolescents, and the physiological roles of the major nutrients. Details the nutrient needs of young athletes, including pre- and postgame meals and fluid replacement. Discusses eating disorders and obesity. Advocates a diet rich in complex carbohydrates. (BC)

  17. Use of nutrient supplements to increase the microbial degradation of PAH in contaminated soils

    SciTech Connect

    Carmichael, L.M.; Pfaender, F.K.

    1994-12-31

    The microbial degradation of polycyclic aromatic hydrocarbons (PAH) is often low in soils due to unavailability of PAH and/or to conditions in the soil that are not favorable to microbial activity. As a result, successful bioremediation of PAH contaminated soils may require the addition of supplements to impact PAH availability or soil conditions. This paper reports on the addition of supplements (Triton X-100, Inopol, nutrient buffer, an organic nutrient solution, salicylic acid) on the fate of (9-{sup 14}C) phenanthrene, a model PAH, in creosote contaminated soils. Phenanthrene metabolism was assessed using a mass balance approach that accounts for metabolism of phenanthrene to CO{sub 2}, relative metabolite production, and uptake of phenanthrene into cells. Most of the supplements did not drastically alter the fate of phenanthrene in the contaminated soils. Additions of Inopol, however, increased phenanthrene mineralization, while salicylic acid decreased phenanthrene mineralization but greatly increased the production of polar and water soluble metabolites. All supplements (excluding salicylic acid and the organic nutrient solution) increased populations of heterotrophic microorganisms, as measured by plate counts. Phenanthrene degrader populations, however, were only slightly increased by additions of the nutrient buffer, as measured by the Most Probable Number assay.

  18. NUTRIENT DYNAMICS IN STREAMS AND THE ROLE OF J-NABS

    SciTech Connect

    Mulholland, Patrick J; Webster, Jackson

    2010-01-01

    Nutrient dynamics in streams has been an important topic of research since the 1960s. Here we review this topic and the significant role played by J-NABS in its development. We limit this review almost exclusively to studies of N and P because these elements have been shown to limit productivity in streams. We use the expression nutrient dynamics for studies that included some measures of biological processes occurring within streams. Prior to the 1970s, instream biological processes were little studied, but through 1985 conceptual advances were made, and 4 types of studies made important contributions to our understanding of instream processes: (1) evidence of increased plant production and decomposition in response to nutrient addition, (2) studies showing a downstream decrease in nutrient concentrations, (3) studies using radioisotopes, and (4) budget studies. Beginning with the first paper printed in its first issue, J-NABS has been the outlet for key papers advancing our understanding of rates and controls of nutrient dynamics in streams. In the first few years, an important review and a conceptual model for conducting experiments to study nutrient dynamics in streams were published in J-NABS. In the 1990s, J-NABS published a number of papers on nutrient recycling within algal communities, the role of the hyporheic zone, the role of spawning fish, and the coupling of data from field {sup 15}N additions and a N-cycling model to provide a synoptic view of N dynamics in streams. Since 2000, J-NABS has published influential studies on nutrient criteria for streams, rates of and controls on nitrification and denitrification, uptake of stream nutrients by riparian vegetation, and nutrient dynamics in urban streams. Nutrient dynamics will certainly continue to be an important topic in J-NABS. Topics needing further study include techniques for studying nutrient dynamics, nutrient dynamics in larger streams and rivers, the ultimate fate of nutrients taken up by plants

  19. Stoichiometric patterns in foliar nutrient resorption across multiple scales

    USGS Publications Warehouse

    Reed, Sasha C.; Townsend, Alan R.; Davidson, Eric A.; Cleveland, Cory C.

    2012-01-01

    *Nutrient resorption is a fundamental process through which plants withdraw nutrients from leaves before abscission. Nutrient resorption patterns have the potential to reflect gradients in plant nutrient limitation and to affect a suite of terrestrial ecosystem functions. *Here, we used a stoichiometric approach to assess patterns in foliar resorption at a variety of scales, specifically exploring how N : P resorption ratios relate to presumed variation in N and/or P limitation and possible relationships between N : P resorption ratios and soil nutrient availability. *N : P resorption ratios varied significantly at the global scale, increasing with latitude and decreasing with mean annual temperature and precipitation. In general, tropical sites (absolute latitudes < 23°26′) had N : P resorption ratios of < 1, and plants growing on highly weathered tropical soils maintained the lowest N : P resorption ratios. Resorption ratios also varied with forest age along an Amazonian forest regeneration chronosequence and among species in a diverse Costa Rican rain forest. *These results suggest that variations in N : P resorption stoichiometry offer insight into nutrient cycling and limitation at a variety of spatial scales, complementing other metrics of plant nutrient biogeochemistry. The extent to which the stoichiometric flexibility of resorption will help regulate terrestrial responses to global change merits further investigation.

  20. Use of Select Nutrients to Foster Wellness.

    ERIC Educational Resources Information Center

    Cassel, Russell N.

    1987-01-01

    Discusses how to be healthy through one's diet. Lists 20 nutrients necessary for one's well being and explains role of each nutrient. Describes how nutrients complement one another and asserts that the right combination of nutrients can sometimes substitute for medication. Also lists 20 diagnostic categories of problems and suggests nutrients to…

  1. Cation uptake and allocation by red pine seedlings under cation-nutrient stress in a column growth experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and aims: Plant nutrient uptake is affected by environmental stress, but how plants respond to cation nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient stress on cation uptake in an experimental plant-mineral system. Methods: Column experim...

  2. Transport and fate of river waters under flood conditions and rim current influence: the Mississippi River test case

    NASA Astrophysics Data System (ADS)

    Kourafalou, Villy; Androulidakis, Yannis

    2013-04-01

    Large river plumes are a major supplier of freshwater, sediments and nutrients in coastal and shelf seas. Novel processes controlling the transport and fate of riverine waters (and associated materials) will be presented, under flood conditions and in the presence of complex topography, ambient shelf circulation and slope processes, controlled by the interaction with rim currents. The Mississippi River (MR) freshwater outflow is chosen as a test case, as a major circulation forcing mechanism for the Northern Gulf of Mexico and a unique river plume for the intense interactions with a large scale ocean current, namely the Loop Current branch of the Gulf Stream, and associated eddy field. The largest MR outflow in history (45,000 m3/sec in 2011) is compared with the second largest outflow in the last 8 years (41,000 m3/sec in 2008). Realistically forced simulations, based on the Hybrid Coordinate Ocean Model (HYCOM) with careful treatment of river plume dynamics and nested to a data assimilated, basin-wide model, reveal the synergistic effect of enhanced discharge, winds, stratification of ambient shelf waters and offshore circulation over the transport of plume waters. The investigation targets a broader understanding of the dynamics of large scale river plumes in general, and of the MR plume in particular. In addition, in situ observations from ship surveys and satellite chl-a data showed that the mathematical simulations with high temporal resolution river outflow input may reproduce adequately the buoyant waters spreading over the Northern Gulf of Mexico shelf and offshore areas. The fate of the river plume is strongly determined and affected by deep basin processes. The strong impacts of the Loop Current system (and its frontal eddies) on river plume evolution are of particular importance under conditions of increased offshore spreading, which is presumed under large discharge rates and can cause loss of riverine materials to the basin interior. Flood conditions

  3. Does infection tilt the scales? Disease effects on the mass balance of an invertebrate nutrient recycler.

    PubMed

    Narr, Charlotte F; Frost, Paul C

    2015-12-01

    While parasites are increasingly recognized as important components of ecosystems, we currently know little about how they alter ecosystem nutrient availability via host-mediated nutrient cycling. We examined whether infection alters the flow of nutrients through hosts and whether such effects depend upon host diet quality. To do so, we compared the mass specific nutrient (i.e., nitrogen and phosphorus) release rates, ingestion rates, and elemental composition of uninfected Daphnia to those infected with a bacterial parasite, P. ramosa. N and P release rates were increased by infection when Daphnia were fed P-poor diets, but we found no effect of infection on the nutrient release of individuals fed P-rich diets. Calculations based on the first law of thermodynamics indicated that infection should increase the nutrient release rates of Daphnia by decreasing nutrient accumulation rates in host tissues. Although we found reduced nutrient accumulation rates in infected Daphnia fed all diets, this reduction did not increase the nutrient release rates of Daphnia fed the P-rich diet because infected Daphnia fed this diet ingested nutrients more slowly than uninfected hosts. Our results thus indicate that parasites can significantly alter the nutrient use of animal consumers, which could affect the availability of nutrients in heavily parasitized environments. PMID:26298190

  4. Short-term and long-term impacts of dredging on nutrient transport in agricultural ditches of the Lake Erie Basin, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are a common landscape feature in the Midwestern United States. Compared to natural streams in more pristine environments, little is known about nutrient fate and transport in these highly enriched systems, especially following human induced manipulations. Drainage di...

  5. Herbivores and nutrients control grassland plant diversity via light limitation.

    PubMed

    Borer, Elizabeth T; Seabloom, Eric W; Gruner, Daniel S; Harpole, W Stanley; Hillebrand, Helmut; Lind, Eric M; Adler, Peter B; Alberti, Juan; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Chu, Chengjin; Cleland, Elsa E; Crawley, Michael J; Daleo, Pedro; Damschen, Ellen I; Davies, Kendi F; DeCrappeo, Nicole M; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Leakey, Andrew D B; Li, Wei; MacDougall, Andrew S; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Mortensen, Brent; O'Halloran, Lydia R; Orrock, John L; Pascual, Jesús; Prober, Suzanne M; Pyke, David A; Risch, Anita C; Schuetz, Martin; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren L; Williams, Ryan J; Wragg, Peter D; Wright, Justin P; Yang, Louie H

    2014-04-24

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light. PMID:24670649

  6. Herbivores and nutrients control grassland plant diversity via light limitation

    USGS Publications Warehouse

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  7. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate.

    PubMed

    Petros, Timothy J; Bultje, Ronald S; Ross, M Elizabeth; Fishell, Gord; Anderson, Stewart A

    2015-11-10

    Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination. PMID:26526999

  8. Conventionally altered organisms: Database on survival, dispersal, fate, and pathogenicity

    SciTech Connect

    Kuklinski, D.M.; King, K.H.; Addison, J.T.; Travis, C.C.

    1990-03-29

    Although increases in development and sales of biotechnology are projected, research on the risks associated with deliberate releases of biotechnology products lags behind. Thus, there is an urgent need to provide investigators and regulators with guidelines for classifying and evaluating risks associated with the release of genetically engineered microorganisms (GEMs). If the release of GEMs into the environmental poses risks similar to that of releasing conventionally altered organisms (CAOs), then a study evaluating the hazards associated with environmentally released CAOs would be most useful. This paper provides a survey of the available data on survival, dispersal, pathogenicity, and other characteristics which affect the fate of microbes after release. Although the present study is not exhaustive, it does provide an indication of the type and amount of data available on CAOs. 350 refs.

  9. Fertilization and pesticides affect mandarin orange nutrient composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of the application of foliar fertilization and pesticide on nutritional quality of mandarin orange juices were evaluated using 1H NMR metabolomics. Significant differences between the use of fertilizer and pesticides during fruit formation were observed, and included changes in sugar, am...

  10. Nutrient Addition Dramatically Accelerates Microbial Community Succession

    PubMed Central

    Knelman, Joseph E.; Schmidt, Steven K.; Lynch, Ryan C.; Darcy, John L.; Castle, Sarah C.; Cleveland, Cory C.; Nemergut, Diana R.

    2014-01-01

    The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients – important drivers of plant succession – affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession. PMID:25050551

  11. Influence of nutrient level on methylmercury content in water spinach.

    PubMed

    Greger, Maria; Dabrowska, Beata

    2010-08-01

    Widely consumed vegetables are often cultivated in sewage waters with high nutrient levels. They can contain high levels of methylmercury (MeHg), because they can form MeHg from inorganic Hg in their young shoots. We determined whether the MeHg uptake and the MeHg formation in the shoots of water spinach (Ipomoea aquatica) were affected by the presence of a high nutrient level in the growth medium. Water spinach shoots were rooted and pretreated in growth medium containing 7% (low) or 70% (high) Hoagland nutrient solution; thereafter, the plants were treated with either 0.02 microM MeHg or 0.2 microM HgCl2 for 3 d. Half the plants were then analyzed for total Hg and MeHg. The remaining plants were transferred to mercury-free medium with low or high nutrient levels and posttreated for 3 days before analysis of total Hg and MeHg in order to measure MeHg formation in the absence of external Hg. The results indicate that nutrient level did not influence MeHg uptake, but that a high nutrient level reduced the distribution of MeHg to the shoots 2.7-fold versus low nutrient level. After treatment with HgCl2, MeHg was found in roots and new shoots but not in old shoots. The MeHg:total-Hg ratio was higher in new shoots than in roots, being 13 times higher at high versus low nutrient levels. Thus, MeHg formation was the same in new shoots independent of inorganic Hg concentration, since the total Hg level decreased at a high nutrient level. PMID:20821626

  12. Nutrient sources and transport along urban flowpaths to aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.; Janke, B.; Baker, L. A.; Hobbie, S. E.; Nidzgorski, D.; Sterner, R.; Wilson, B. N.

    2012-12-01

    Water quality of urban freshwater ecosystems is widely impaired by eutrophication, with little recent improvement and much potential for further degradation due to urban expansion and intensification. Despite the degradation of water quality in urban streams and lakes and adjacent coastal areas, relatively little is known about the relative importance of specific nutrient sources and the processes that regulate their movement across highly modified land-water interfaces. To better understand the nutrient sources and cycling that affect aquatic ecosystems, we assess nutrient movement through urban drainage networks in St. Paul, Minnesota. Nutrient concentrations and flux in stormwater at six intensively monitored sites show consistent seasonal patterns, with peaks in total nitrogen (N) and phosphorus (P) in the late spring. Trees contributed to nutrient movement via litterfall and throughfall to impervious surfaces, with peaks in inputs that corresponded to stormwater nutrient patterns. Despite runoff generated primarily from impervious surfaces, organic carbon and nitrogen concentrations were high, with organic N accounting for >80% of stormwater N loading. Together, these data suggested an important role for urban tree canopies in nutrient mobilization in stormwater. Base flow, present in larger storm drains and buried streams, results primarily from groundwater seepage and from outflow of surface water connected to drains. Base flow contributed significantly to nutrient export, particularly for N (33 to 68% of warm season export) but also for P (8 to 34%). Sites with upstream hydrologic connections to lakes and remnant above-ground stream reaches had higher baseflow organic carbon and P, and reduced N concentrations compared to sites dominated by groundwater. Together, these data show that the characteristics of urban vegetation and the nature of human alterations to hydrologic connections are dominant features influencing the form and amount of nutrient movement

  13. Sorption, desorption, and surface oxidative fate of nicotine.

    PubMed

    Petrick, Lauren; Destaillats, Hugo; Zouev, Irena; Sabach, Sara; Dubowski, Yael

    2010-09-21

    Nicotine dynamics in an indoor environment can be greatly affected by building parameters (e.g. relative humidity (RH), air exchange rate (AER), and presence of ozone), as well as surface parameters (e.g. surface area (SA) and polarity). To better understand the indoor fate of nicotine, these parameter effects on its sorption, desorption, and oxidation rates were investigated on model indoor surfaces that included fabrics, wallboard paper, and wood materials. Nicotine sorption under dry conditions was enhanced by higher SA and higher polarity of the substrate. Interestingly, nicotine sorption to cotton and nylon was facilitated by increased RH, while sorption to polyester was hindered by it. Desorption was affected by RH, AER, and surface type. Heterogeneous nicotine-ozone reaction was investigated by Fourier transform infrared spectrometry with attenuated total reflection (FTIR-ATR), and revealed a pseudo first-order surface reaction rate of 0.035 +/- 0.015 min(-1) (at [O(3)] = 6 +/- 0.3 x 10(15) molecules cm(-3)) that was partially inhibited at high RH. Extrapolation to a lower ozone level ([O(3)] = 42 ppb) showed oxidation on the order of 10(-5) min(-1) corresponding to a half-life of 1 week. In addition, similar surface products were identified in dry and high RH using gas chromatography-mass spectrometry (GC-MS). However, FTIR analysis revealed different product spectra for these conditions, suggesting additional unidentified products and association with surface water. Knowing the indoor fate of condensed and gas phase nicotine and its oxidation products will provide a better understanding of nicotine's impact on personal exposures as well as overall indoor air quality. PMID:20582338

  14. Assessment of Nutrient Stability in Space Foods

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Perchonok, M.; Braby, L. A.; Kloeris, V. A.; Smith, S. M.

    2009-01-01

    Maintaining an intact nutrient supply in the food system flown on spacecraft is a critical issue for mission success and crew health and safety. Early polar expeditions and exploration expeditions by sailing vessels have taught us that a deficiency, or excess, of even a single vitamin in the food supply can be catastrophic. Evidence from ground-based research indicates that some vitamins are destroyed and fatty acids are oxidized (and therefore rendered dangerous or useless) by different types of radiation and by conditions of long-term storage. We hypothesize that radiation and long-term storage in the space-flight environment will affect the stability of vitamins, amino acids, and fatty acids in the space food system. The research objectives of our ongoing stability studies are to determine the stability of water- and fat-soluble vitamins, fatty acids, and amino acids in the space food supply before and after space flight on the International Space Station (ISS). Foods were analyzed after 2 weeks (a flight control), 11, 19, and 28 months of flight. Along with the space-flown foods, ground-based controls matched for time, light, and temperature are analyzed. The flight studies complement planned ground-based studies of the effects of radiation on vitamins, amino acids, and fatty acids. Flight studies are needed because a model based on ground-based data cannot predict all of the effects of the space-flight environment. Flight studies provide a more accurate test system to determine the effects on these nutrients of the temperature, and radiation conditions in the space-flight environment. Ground studies are required to evaluate longer missions and higher radiation levels expected outside low-Earth orbit. In addition to providing information about nutrient stability in space, the results of these studies will help NASA determine if a need exists to develop special packaging that can ensure stability of foods and nutrients in space, or if further studies of nutrient

  15. Allocation of Nutrients to Somatic Tissues in Young Ovariectomized Grasshoppers

    PubMed Central

    Judd, Evan T.; Hatle, John D.; Drewry, Michelle D.; Wessels, Frank J.; Hahn, Daniel A.

    2010-01-01

    The disposable soma hypothesis predicts that when reproduction is reduced, life span is increased because more nutrients are invested in the soma, increasing somatic repair. Rigorously testing the hypothesis requires tracking nutrients from ingestion to allocation to the soma or to reproduction. Fruit flies on life-extending dietary restriction increase allocation to the soma “relative” to reproduction, suggesting that allocation of nutrients can be associated with extension of life span. Here, we use stable isotopes to track ingested nutrients in ovariectomized grasshoppers during the first oviposition cycle. Previous work has shown that ovariectomy extends life span, but investment of protein in reproduction is not reduced until after the first clutch of eggs is laid. Because ovariectomy does not affect investment in reproduction at this age, the disposable soma hypothesis would predict that ovariectomy should also not affect investment in somatic tissues. We developed grasshopper diets with distinct signatures of 13C and 15N, but that produced equivalent reproductive outputs. These diets are, therefore, appropriate for the reciprocal switches in diet needed for tracking ingested nutrients. Incorporation of stable isotopes into eggs showed that grasshoppers are income breeders, especially for carbon. Allocation to the fat body of nitrogen ingested as adults was slightly increased by ovariectomy; this was our only result that was not consistent with the disposable soma hypothesis. In contrast, ovariectomy did not affect allocation of nitrogen to femoral muscles. Further, allocation of carbon to the fat body or femoral muscles did not appear to be affected by ovariectomy. Total anti-oxidant activities in the hemolymph and femoral muscles were not affected by ovariectomy. These experiments showed that allocation of nutrients was altered little by ovariectomy in young grasshoppers. Additional studies on older individuals are needed to further test the disposable

  16. Allocation of nutrients to somatic tissues in young ovariectomized grasshoppers.

    PubMed

    Judd, Evan T; Hatle, John D; Drewry, Michelle D; Wessels, Frank J; Hahn, Daniel A

    2010-11-01

    The disposable soma hypothesis predicts that when reproduction is reduced, life span is increased because more nutrients are invested in the soma, increasing somatic repair. Rigorously testing the hypothesis requires tracking nutrients from ingestion to allocation to the soma or to reproduction. Fruit flies on life-extending dietary restriction increase allocation to the soma "relative" to reproduction, suggesting that allocation of nutrients can be associated with extension of life span. Here, we use stable isotopes to track ingested nutrients in ovariectomized grasshoppers during the first oviposition cycle. Previous work has shown that ovariectomy extends life span, but investment of protein in reproduction is not reduced until after the first clutch of eggs is laid. Because ovariectomy does not affect investment in reproduction at this age, the disposable soma hypothesis would predict that ovariectomy should also not affect investment in somatic tissues. We developed grasshopper diets with distinct signatures of ¹³C and ¹⁵N, but that produced equivalent reproductive outputs. These diets are, therefore, appropriate for the reciprocal switches in diet needed for tracking ingested nutrients. Incorporation of stable isotopes into eggs showed that grasshoppers are income breeders, especially for carbon. Allocation to the fat body of nitrogen ingested as adults was slightly increased by ovariectomy; this was our only result that was not consistent with the disposable soma hypothesis. In contrast, ovariectomy did not affect allocation of nitrogen to femoral muscles. Further, allocation of carbon to the fat body or femoral muscles did not appear to be affected by ovariectomy. Total anti-oxidant activities in the hemolymph and femoral muscles were not affected by ovariectomy. These experiments showed that allocation of nutrients was altered little by ovariectomy in young grasshoppers. Additional studies on older individuals are needed to further test the disposable

  17. Modelling macrofaunal biomass in relation to hypoxia and nutrient loading

    NASA Astrophysics Data System (ADS)

    Timmermann, Karen; Norkko, Joanna; Janas, Urszula; Norkko, Alf; Gustafsson, Bo G.; Bonsdorff, Erik

    2012-12-01

    Nutrient loading of aquatic ecosystems results in more food for benthic macrofaunal communities but also increases the risk of hypoxia, resulting in a reduction or complete loss of benthic biomass. This study investigates the interaction between eutrophication, hypoxia and benthic biomass with emphasis on the balance between gains and loss of benthic biomass due to changes in nutrient loadings. A physiological fauna model with 5 functional groups was linked to a 3D coupled hydrodynamic-ecological Baltic Sea model. Model results revealed that benthic biomass increased between 0 and 700% after re-oxygenating bottom waters. Nutrient reduction scenarios indicated improved oxygen concentrations in bottom waters and decreased sedimentation of organic matter up to 40% after a nutrient load reduction following the Baltic Sea Action Plan. The lower food supply to benthos reduced the macrofaunal biomass up to 35% especially in areas not currently affected by hypoxia, whereas benthic biomass increased up to 200% in areas affected by eutrophication-induced hypoxia. The expected changes in benthic biomass resulting from nutrient load reductions and subsequent reduced hypoxia may not only increase the food supply for benthivorous fish, but also significantly affect the biogeochemical functioning of the ecosystem.

  18. Elevated nutrients change bacterial community composition and connectivity: high throughput sequencing of young marine biofilms.

    PubMed

    Lawes, Jasmin C; Neilan, Brett A; Brown, Mark V; Clark, Graeme F; Johnston, Emma L

    2016-01-01

    Biofilms are integral to many marine processes but their formation and function may be affected by anthropogenic inputs that alter environmental conditions, including fertilisers that increase nutrients. Density composition and connectivity of biofilms developed in situ (under ambient and elevated nutrients) were compared using 454-pyrosequencing of the 16S gene. Elevated nutrients shifted community composition from bacteria involved in higher processes (eg Pseudoalteromonas spp. invertebrate recruitment) towards more nutrient-tolerant bacterial species (eg Terendinibacter sp.). This may enable the persistence of biofilm communities by increasing resistance to nutrient inputs. A core biofilm microbiome was identified (predominantly Alteromonadales and Oceanospirillales) and revealed shifts in abundances of core microbes that could indicate enrichment by fertilisers. Fertiliser decreased density and connectivity within biofilms indicating that associations were disrupted perhaps via changes to energetic allocations within the core microbiome. Density composition and connectivity changes suggest nutrients can affect the stability and function of these important marine communities. PMID:26751559

  19. Energy and Nutrient Intake Monitoring

    NASA Technical Reports Server (NTRS)

    Luckey, T. D.; Venugopal, B.; Hutcheson, D. P.

    1975-01-01

    A passive system to determine the in-flight intake of nutrients is developed. Nonabsorbed markers placed in all foods in proportion to the nutrients selected for study are analyzed by neutron activation analysis. Fecal analysis for each market indicates how much of the nutrients were eaten and apparent digestibility. Results of feasibility tests in rats, mice, and monkeys indicate the diurnal variation of several markers, the transit time for markers in the alimentary tract, the recovery of several markers, and satisfactory use of selected markers to provide indirect measurement of apparent digestibility. Recommendations are provided for human feasibility studies.

  20. Specifying and protecting germ cell fate

    PubMed Central

    Strome, Susan; Updike, Dustin

    2015-01-01

    Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied ‘germ plasm’, inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts. Findings from diverse species continue to provide insights into the shared and divergent needs of these special reproductive cells. PMID:26122616

  1. Modeling the environmental fate of atrazine

    SciTech Connect

    Devillers, J.; Bintein, S.; Domine, D.

    1996-10-01

    Modeling the environmental distribution of organic pollutants from their physicochemical properties is essential for hazard assessment. For this purpose, biosphere is generally divided into a given number of compartments (e.g., air, water, soil) and the physical, chemical, and biological processes involved in the environmental fate of pollutants are defined in terms of mathematical equations. Models are then computed so that an easy and rapid handling is offered. Based on this strategy, CHEMFRANCE, a regional fugacity level III model allowing to calculate the environmental distribution of organic chemicals in France or any user-defined region is well suited for rapid screening analyses. In this study, CHEMFRANCE was used for modeling the environmental fate of atrazine. The simulations were compared with field and laboratory results recorded in Europe and North-America.

  2. Soil and Water Assessment Tool (SWAT) Applicability on Nutrients Loadings Prediction in Mountainous Lower Bear Malad River (LBMR) Watershed, Utah.

    NASA Astrophysics Data System (ADS)

    Salha, A. A.; Stevens, D. K.

    2014-12-01

    The application of watershed simulation models is indispensable when pollution is generated by a nonpoint source. These models should be able to simulate large complex watersheds with varying soils, land use and management conditions over long periods of time. This study presents the application of Soil and Water Assessment Tool (SWAT) to investigate, manage, and research the transport and fate of nutrients in (Subbasin HUC 16010204) Lower Bear Malad River (LBMR) watershed, Box elder County, Utah. Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by increasing agricultural and farming activities and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses). Using the available input data (Digital Elevation Model (DEM), land use/Land cover (LULC), soil map and weather and climate data for 20 years (1990-2010) to predict the water quantity and quality of the LBMR watershed using a spatially distributed model version of hydrological ArcSWAT model (ArcSWAT 2012.10_1.14). No previous studies have been found in the literature regarding an in-depth simulation study of the Lower Bear Malad River (LBMR) watershed to simulate stream flow and to quantify the associated movement of nitrogen, phosphorus, and sediment. It is expected that the model mainly will predict monthly mean total phosphorus (TP) concentration and loadings in a mountainous LBRM watershed (steep Wellsville mountain range with peak of (2,857 m)) having into consideration the snow and runoff variables affecting the prediction process. The simulated nutrient concentrations were properly consistent with observations based on the R2 and Nash- Sutcliffe fitness factors. Further, the model will be able to manage and assess the land application in that area with corresponding to proper BMPs regarding water quality management. Keywords: Water Quality Modeling; Soil and

  3. Redox Regulation of Endothelial Cell Fate

    PubMed Central

    Song, Ping; Zou, Ming-Hui

    2014-01-01

    Endothelial cells (ECs) are present throughout blood vessels and have variable roles in both physiological and pathological settings. EC fate is altered and regulated by several key factors in physiological or pathological conditions. Reactive nitrogen species and reactive oxygen species derived from NAD(P)H oxidases, mitochondria, or nitric oxide-producing enzymes are not only cytotoxic but also compose a signaling network in the redox system. The formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. We review the identities, sources, and biological actions of oxidants and reductants produced during EC function or dysfunction. Further, we discuss how ECs shape key redox sensors and examine the biological functions, transcriptional responses, and post-translational modifications evoked by the redox system in ECs. We summarize recent findings regarding the mechanisms by which redox signals regulate the fate of ECs and address the outcome of altered EC fate in health and disease. Future studies will examine if the redox biology of ECs can be targeted in pathophysiological conditions. PMID:24633153

  4. SIRT1 and Neural Cell Fate Determination.

    PubMed

    Cai, Yulong; Xu, Le; Xu, Haiwei; Fan, Xiaotang

    2016-07-01

    During the development of the central nervous system (CNS), neurons and glia are derived from multipotent neural stem cells (NSCs) undergoing self-renewal. NSC commitment and differentiation are tightly controlled by intrinsic and external regulatory mechanisms in space- and time-related fashions. SIRT1, a silent information regulator 2 (Sir2) ortholog, is expressed in several areas of the brain and has been reported to be involved in the self-renewal, multipotency, and fate determination of NSCs. Recent studies have highlighted the role of the deacetylase activity of SIRT1 in the determination of the final fate of NSCs. This review summarizes the roles of SIRT1 in the expansion and differentiation of NSCs, specification of neuronal subtypes and glial cells, and reprogramming of functional neurons from embryonic stem cells and fibroblasts. This review also discusses potential signaling pathways through which SIRT1 can exhibit versatile functions in NSCs to regulate the cell fate decisions of neurons and glia. PMID:25850787

  5. Specification of germ cell fate in mice.

    PubMed Central

    Saitou, Mitinori; Payer, Bernhard; Lange, Ulrike C; Erhardt, Sylvia; Barton, Sheila C; Surani, M Azim

    2003-01-01

    An early fundamental event during development is the segregation of germ cells from somatic cells. In many organisms, this is accomplished by the inheritance of preformed germ plasm, which apparently imposes transcriptional repression to prevent somatic cell fate. However, in mammals, pluripotent epiblast cells acquire germ cell fate in response to signalling molecules. We have used single cell analysis to study how epiblast cells acquire germ cell competence and undergo specification. Germ cell competent cells express Fragilis and initially progress towards a somatic mesodermal fate. However, a subset of these cells, the future primordial germ cells (PGCs), then shows rapid upregulation of Fragilis with concomitant transcriptional repression of a number of genes, including Hox and Smad genes. This repression may be a key event associated with germ cell specification. Furthermore, PGCs express Stella and other genes, such as Oct-4 that are associated with pluripotency. While these molecules are also detected in mature oocytes as maternally inherited factors, their early role is to regulate development and maintain pluripotency, and they do not serve the role of classical germline determinants. PMID:14511483

  6. Engineering the human pluripotent stem cell microenvironment to direct cell fate

    PubMed Central

    Hazeltine, Laurie B.; Selekman, Joshua A.; Palecek, Sean P.

    2013-01-01

    Human pluripotent stem cells (hPSCs), including both embryonic stem cells and induced pluripotent stem cells, offer a potential cell source for research, drug screening, and regenerative medicine applications due to their unique ability to self-renew or differentiate to any somatic cell type. Before the full potential of hPSCs can be realized, robust protocols must be developed to direct their fate. Cell fate decisions are based on components of the surrounding microenvironment, including soluble factors, substrate or extracellular matrix, cell-cell interactions, mechanical forces, and 2D or 3D architecture. Depending on their spatio-temporal context, these components can signal hPSCs to either self-renew or differentiate to cell types of the ectoderm, mesoderm, or endoderm. Researchers working at the interface of engineering and biology have identified various factors which can affect hPSC fate, often based on lessons from embryonic development, and they have utilized this information to design in vitro niches which can reproducibly direct hPSC fate. This review highlights culture systems that have been engineered to promote self-renewal or differentiation of hPSCs, with a focus on studies that have elucidated the contributions of specific microenvironmental cues in the context of those culture systems. We propose the use of microsystems technologies for high-throughput screening of spatial-temporal presentation of cues, as this has been demonstrated to be a powerful approach for differentiating hPSCs to desired cell types. PMID:23510904

  7. Aquifer microcosms and in situ methods to test the fate and function of pollutant-degrading microorganisms

    SciTech Connect

    Krumme, M.L.; Dwyer, D. . Inst. fuer Biotechnologie); Thiem, S.M.; Tiedje, J.M. ); Smith, R.L. )

    1990-01-01

    Little information is available on groundwater microorganism ecology, and specifically on the distribution and biochemical diversity of pollution degrading microorganisms in the aquifer. While the introduction of nutrients and electron acceptors may stimulate natural populations to degrade certain pollutants, low levels of pollutants and complex mixtures of pollutants may require the modification of natural populations through selective pressure or by means of genetic engineering. This study was designed to address these issues by examining three populations of substituted aromatic compound-degraders: an indigenous population, an introduced degrader, and a genetically engineered microorganism (GEM) in the environmental conditions of a sand and gravel aquifer. The goals of this study are to gain field experience on the fate and function of pollutant-degrading organisms in the aquifer and to evaluate column microcosms and survival chambers as tools for predicting the fate and function of selected and modified bacterial strains as appropriate aquifer bioremediation agents. 6 figs.

  8. Hydromorphological control of nutrient cycling in complex river floodplain systems

    NASA Astrophysics Data System (ADS)

    Hein, T.; Bondar-Kunze, E.; Felkl, M.; Habersack, H.; Mair, M.; Pinay, G.; Tritthart, M.; Welti, N.

    2009-04-01

    Riparian zones and floodplains are key components within river ecosystems controlling nutrient cycling by promoting transformation processes and thus, act as biogeochemical hot spots. The intensity of these processes depends on the exchange conditions (the connectivity) with the main channel and the morphological setting of the water bodies. At the landscape scale, three interrelated principles of hydromorphological dynamics can be formulated regarding the cycling and transfer of carbon and nutrients in large rivers ecosystems: a) The mode of carbon and nutrient delivery affects ecosystem functioning; b) Increasing residence time and contact area impact nutrient transformation; c) Floods and droughts are natural events that strongly influence pathways of carbon and nutrient cycling. These three principles of hydromorphological dynamics control the nutrient uptake and retention and are linked over different temporal and spatial scales. All three factors can be strongly affected by natural disturbances or anthropogenic impacts, through a change in either the water regime or the geomorphologic setting of the river valley. Any change in natural water regimes will affect the biogeochemistry of riparian zones and floodplains as well as their ability to cycle and mitigate nutrient fluxes originating from upstream and/or upslope. Especially these areas have been altered by river regulation and land use changes over the last 200 years leading to the deterioration of the functioning of these compartments within the riverine landscape. The resulting deficits have prompted rehabilitation and restoration measures aiming to increase the spatial heterogeneity, the complexity, of these ecosystems. Yet, a more integrated approach is needed considering the present status of nutrient dynamics and the effects of restoration measures at different scales. The present paper analyses the effects of river side-arm restoration on ecosystem functions within the side-arm and highlights

  9. [Effects of biochar on soil nutrients leaching and potential mechanisms: A review].

    PubMed

    Liu, Yu-xue; Lyu, Hao-hao; Shi, Yan; Wang, Yao-feng; Zhong, Zhe-ke; Yang, Sheng-mao

    2015-01-01

    Controlling soil nutrient leaching in farmland ecosystems has been a hotspot in the research field of agricultural environment. Biochar has its unique physical and chemical properties, playing a significant role in enhancing soil carbon storage, improving soil quality and increasing crop yield. As a kind of new exogenous material, biochar has the potential in impacting soil nutrient cycling directly or indirectly, and has profound influences on soil nutrient leaching. This paper analyzed the intrinsic factors affecting how biochar affects soil nutrient leaching, such as the physical and chemical properties of biochar, and the interaction between biochar and soil organisms. Then the latest literatures regarding the external factors, including biochar application rates, soil types, depth of soil layer, fertilization conditions and temporal dynamics, through which biochar influences soil nutrient (especially nitrogen and phosphorus) leaching were reviewed. On that basis, four related action mechanisms were clarified, including direct adsorption of nutrients by biochar due to its micropore structure or surface charge, influencing nutrient leaching through increasing soil water- holding capacity, influencing nutrient cycling through the interaction with soil microbes, and preferential transport of absorbed nutrients by fine biochar particles. At last future research directions for better understanding the interactions between biochar and nutrient leaching in the soil were proposed. PMID:25985683

  10. Surface-Water Nutrient Conditions and Sources in the United States Pacific Northwest1

    PubMed Central

    Wise, Daniel R; Johnson, Henry M

    2011-01-01

    Abstract The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts. PMID:22457584

  11. Distribution and chemical fate of 36Cl-chlorine dioxide gas during the fumigation of tomatoes and cantaloupe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The distribution and chemical fate of 36Cl-ClO2 gas subsequent to fumigation of tomatoes or cantaloupe was investigated as was major factors that affect the formation of chloroxyanion byproducts. Approximately 22% of the generated 36Cl-ClO2 was present on fumigated tomatoes after a 2-hour exposure t...

  12. Prevention and treatment of cancers by immune modulating nutrients.

    PubMed

    Janakiram, Naveena B; Mohammed, Altaf; Madka, Venkateshwar; Kumar, Gaurav; Rao, Chinthalapally V

    2016-06-01

    Epidemiological and laboratory data support the protective effects of bioactive nutrients in our diets for various diseases. Along with various factors, such as genetic history, alcohol, smoking, exercise, and dietary choices play a vital role in affecting an individual's immune responses toward a transforming cell, by either preventing or accelerating a neoplastic transformation. Ample evidence suggests that dietary nutrients control the inflammatory and protumorigenic responses in immune cells. Immunoprevention is usually associated with the modulation of immune responses that help in resolving the inflammation, thus improving clinical outcome. Various metabolic pathway-related nutrients, including glutamine, arginine, vitamins, minerals, and long-chain fatty acids, are important components of immunonutrient mixes. Epidemiological studies related to these substances have reported different results, with no or minimal effects. However, several studies suggest that these nutrients may have immune-modulating effects that may lower cancer risk. Preclinical studies submit that most of these components may provide beneficial effects. The present review discusses the available data, the immune-modulating functions of these nutrients, and how these substances could be used to study immune modulation in a neoplastic environment. Further research will help to determine whether the mechanistic signaling pathways in immune cells altered by nutrients can be exploited for cancer prevention and treatment. PMID:26833775

  13. Fate and degradation of petroleum hydrocarbons in stormwater bioretention cells

    NASA Astrophysics Data System (ADS)

    LeFevre, Gregory Hallett

    This dissertation describes the investigation of the fate of hydrocarbons in stormwater bioretention areas and those mechanisms that affect hydrocarbon fate in such systems. Seventy-five samples from 58 bioretention areas were collected and analyzed to measure total petroleum hydrocarbon (TPH) residual and biodegradation functional genes. TPH residual in bioretention areas was greater than background sites but low overall (<3 µg/kg), and well below either the TPH concentration of concern or the expected concentration, assuming no losses. Bioretention areas with deep-root vegetation contained significantly greater quantites of bacterial 16S rRNA genes and two functional genes involved in hydrocarbon biodegradation. Field soils were capable of mineralizing naphthalene, a polycyclic aromatic hydrocarbon (PAH) when incubated in the laboratory. In an additional laboratory investigation, a column study was initiated to comprehensively determine naphthalene fate in a simulated bioretention cell using a 14C-labeled tracer. Sorption to soil was the greatest sink of naphthalene in the columns, although biodegradation and vegetative uptake were also important loss mechanisms. Little leaching occurred following the first flush, and volatilization was insignificant. Significant enrichment of naphthalene degrading bacteria occurred over the course of the experiment as a result of naphthalene exposure. This was evident from enhanced naphthalene biodegradation kinetics (measured via batch tests), significant increases in naphthalene dioxygenase gene quantities, and a significant correlation observed between naphthalene residual and biodegradation functional genes. Vegetated columns outperformed the unplanted control column in terms of total naphthalene removal and biodegradation kinetics. As a result of these experiments, a final study focused on why planted systems outperform unplanted systems was conducted. Plant root exudates were harvested from hydroponic setups for three

  14. Avoidance of dairy products: Implications for nutrient adequacy and health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy products are an important contributor of many essential nutrients often lacking in the typical North American diet, including calcium, potassium, and vitamin D, and limiting dairy intake may adversely affect health. Dairy exclusion diets may exacerbate the risk of osteoporosis and negatively i...

  15. MODELING SEDIMENT-NUTRIENT FLUX AND SEDIMENT OXYGEN DEMAND

    EPA Science Inventory

    Depositional flux of particulate organic matter in bottom sediments affects nutrients cycling at the sediment-water interface and consumes oxygen from the overlying water in streams, lakes, and estuaries. This project deals with analytical modeling of nitrogen and carbon producti...

  16. Stream Restoration to Manage Nutrients in Degraded Watersheds

    EPA Science Inventory

    Historic land-use change can reduce water quality by impairing the ability of stream ecosystems to efficiently process nutrients such as nitrogen. Study results of two streams (Minebank Run and Big Spring Run) affected by urbanization, quarrying, agriculture, and impoundments in...

  17. Nutrient Transport in Dredged Reaches of Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are a vital component of many of the more productive agricultural landscapes in the United States. These systems often require intensive management to ensure adequate removal of water from the system, but little is known about how ditch management affects nutrient losse...

  18. Cell Fate Decision Making through Oriented Cell Division

    PubMed Central

    Johnston, Christopher A.

    2016-01-01

    The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control. PMID:26844213

  19. Nutrient content at the sediment-water interface of tile-fed agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive network of tile drains present in the Midwest USA accelerate losses of nutrients to receiving ditches, rivers and eventually to the Gulf of Mexico. Nutrient inputs from agricultural watersheds and their role in affecting water quality have received increased attention recently; however, be...

  20. Nutrient losses from Fall and Winter-applied manure: Effects of timing and soil temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil temperature is a major environmental factor that affects both the infiltration of meltwater and precipitation, and nutrient cycling. The objectives of this study were to determine nutrient losses in runoff and leachate from fall and winter-applied dairy manure based on the soil temperature at t...

  1. Interactive Effects of Nutrient and Mechanical Stresses on Plant Morphology

    PubMed Central

    Puijalon, Sara; Lena, Jean-Paul; Bornette, Gudrun

    2007-01-01

    Background and Aims Plant species frequently encounter multiple stresses under natural conditions, and the way they cope with these stresses is a major determinant of their ecological breadth. The way mechanical (e.g. wind, current) and resource stresses act simultaneously on plant morphological traits has been poorly addressed, even if both stresses often interact. This paper aims to assess whether hydraulic stress affects plant morphology in the same way at different nutrient levels. Methods An examination was made of morphological variations of an aquatic plant species growing under four hydraulic stress (flow velocity) gradients located in four habitats distributed along a nutrient gradient. Morphological traits covering plant size, dry mass allocation, organ water content and foliage architecture were measured. Key Results Significant interactive effects of flow velocity and nutrient level were observed for all morphological traits. In particular, increased flow velocity resulted in size reductions under low nutrient conditions, suggesting an adaptive response to flow stress (escape strategy). On the other hand, moderate increases in flow velocity resulted in increased size under high nutrient conditions, possibly related to an inevitable growth response to a higher nutrient supply induced by water renewal at the plant surface. For some traits (e.g. dry mass allocation), a consistent sense of variation as a result of increasing flow velocity was observed, but the amount of variation was either reduced or amplified under nutrient-rich compared with nutrient-poor conditions, depending on the traits considered. Conclusions These results suggest that, for a given species, a stress factor may result, in contrasting patterns and hence strategies, depending on a second stress factor. Such results emphasize the relevance of studies on plant responses to multiple stresses for understanding the actual ecological breadth of species. PMID:17913725

  2. Fate of microplastics in the marine isopod Idotea emarginata.

    PubMed

    Hämer, Julia; Gutow, Lars; Köhler, Angela; Saborowski, Reinhard

    2014-11-18

    Plastic pollution is an emerging global threat for marine wildlife. Many species of birds, reptiles, and fishes are directly impaired by plastics as they can get entangled in ropes and drown or they can ingest plastic fragments which, in turn, may clog their stomachs and guts. Microplastics of less than 1 mm can be ingested by small invertebrates, but their fate in the digestive organs and their effects on the animals are yet not well understood. We embedded fluorescent microplastics in artificial agarose-based food and offered the food to marine isopods, Idotea emarginata. The isopods did not distinguish between food with and food without microplastics. Upon ingestion, the microplastics were present in the stomach and in the gut but not in the tubules of the midgut gland which is the principal organ of enzyme-secretion and nutrient resorption. The feces contained the same concentration of microplastics as the food which indicates that no accumulation of microplastics happens during the gut passage. Long-term bioassays of 6 weeks showed no distinct effects of continuous microplastic consumption on mortality, growth, and intermolt duration. I. emarginata are able to prevent intrusion of particles even smaller than 1 μm into the midgut gland which is facilitated by the complex structure of the stomach including a fine filter system. It separates the midgut gland tubules from the stomach and allows only the passage of fluids and chyme. Our results indicate that microplastics, as administered in the experiments, do not clog the digestive organs of isopods and do not have adverse effects on their life history parameters. PMID:25289587

  3. Nutrient-sensing mechanisms across evolution.

    PubMed

    Chantranupong, Lynne; Wolfson, Rachel L; Sabatini, David M

    2015-03-26

    For organisms to coordinate their growth and development with nutrient availability, they must be able to sense nutrient levels in their environment. Here, we review select nutrient-sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes. PMID:25815986

  4. Cycling and loss of nutrients in pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pastures are fundamentally different than croplands. When cropland is harvested, large amounts of plant nutrients are removed so relatively large rates of nutrients are often needed. In pasture, most of the nutrients harvested by livestock are returned. The proportion of nutrients returned by livest...

  5. Sumoylated NHR-25/NR5A Regulates Cell Fate during C. elegans Vulval Development

    PubMed Central

    Bernal, Teresita; Ashrafi, Kaveh; Asahina, Masako; Yamamoto, Keith R.

    2013-01-01

    Individual metazoan transcription factors (TFs) regulate distinct sets of genes depending on cell type and developmental or physiological context. The precise mechanisms by which regulatory information from ligands, genomic sequence elements, co-factors, and post-translational modifications are integrated by TFs remain challenging questions. Here, we examine how a single regulatory input, sumoylation, differentially modulates the activity of a conserved C. elegans nuclear hormone receptor, NHR-25, in different cell types. Through a combination of yeast two-hybrid analysis and in vitro biochemistry we identified the single C. elegans SUMO (SMO-1) as an NHR-25 interacting protein, and showed that NHR-25 is sumoylated on at least four lysines. Some of the sumoylation acceptor sites are in common with those of the NHR-25 mammalian orthologs SF-1 and LRH-1, demonstrating that sumoylation has been strongly conserved within the NR5A family. We showed that NHR-25 bound canonical SF-1 binding sequences to regulate transcription, and that NHR-25 activity was enhanced in vivo upon loss of sumoylation. Knockdown of smo-1 mimicked NHR-25 overexpression with respect to maintenance of the 3° cell fate in vulval precursor cells (VPCs) during development. Importantly, however, overexpression of unsumoylatable alleles of NHR-25 revealed that NHR-25 sumoylation is critical for maintaining 3° cell fate. Moreover, SUMO also conferred formation of a developmental time-dependent NHR-25 concentration gradient across the VPCs. That is, accumulation of GFP-tagged NHR-25 was uniform across VPCs at the beginning of development, but as cells began dividing, a smo-1-dependent NHR-25 gradient formed with highest levels in 1° fated VPCs, intermediate levels in 2° fated VPCs, and low levels in 3° fated VPCs. We conclude that sumoylation operates at multiple levels to affect NHR-25 activity in a highly coordinated spatial and temporal manner. PMID:24348269

  6. Nutrient Limitation of Microbial Mediated Decomposition and Arctic Soil Chronology

    NASA Astrophysics Data System (ADS)

    Melle, C. J.; Darrouzet-Nardi, A.; Wallenstein, M. D.

    2012-12-01

    Soils of northern permafrost regions currently contain twice as much carbon as the entire Earth's atmosphere. Traditionally, environmental constraints have limited microbial activity resulting in restricted decomposition of soil organic matter in these systems and accumulation of massive amounts of soil organic carbon (SOC), however climate change is reducing the constraints of decomposition in arctic permafrost regions. Carbon cycling in nutrient poor, arctic ecosystems is tightly coupled to other biogeochemical cycles. Several studies have suggested strong nitrogen limitations of primary productivity and potentially warm-season microbial activity in these nutrient deficient soils. Nitrogen is required for microbial extracellular enzyme production which drives the decomposition of soil organic matter (SOM). Nitrogen limited arctic soils may also experience limitation via labile carbon availability despite the SOM rich environment due to low extracellular enzyme production. Few studies have directly addressed nutrient induced microbial limitation in SOC rich arctic tundra soils, and even less is known about the potential for nutrient co-limitation. Additionally, through the process of becoming deglaciated, sites within close proximity to one another may have experienced drastic differences in their effective soil ages due to the varied length of their active histories. Many soil properties and nutrient deficiencies are directly related to soil age, however this chronology has not previously been a focus of research on nutrient limitation of arctic soil microbial activity. Understanding of nutrient limitations, as well as potential co-limitation, on arctic soil microbial activity has important implications for carbon cycling and the ultimate fate of the current arctic SOC reservoir. Analyses of nutrient limitation on soils of a single site are not adequate for fully understanding the controls on soil microbial activity across a vast land mass with large variation in

  7. Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation

    PubMed Central

    Tao, Jun; Ma, Yi-Cheng; Yang, Zhong-Shan; Zou, Cheng-Gang; Zhang, Ke-Qin

    2016-01-01

    Starvation is probably the most common stressful situation in nature. In vertebrates, elevation of the biogenic amine norepinephrine levels is common during starvation. However, the precise role of norepinephrine in nutrient deprivation remains largely unknown. We report that in the free-living nematode Caenorhabditis elegans, up-regulation of the biosynthesis of octopamine, the invertebrate counterpart of norepinephrine, serves as a mechanism to adapt to starvation. During nutrient deprivation, the nuclear receptor DAF-12, known to sense nutritional cues, up-regulates the expression of tbh-1 that encodes tyramine β-hydroxylase, a key enzyme for octopamine biosynthesis, in the RIC neurons. Octopamine induces the expression of the lipase gene lips-6 via its receptor SER-3 in the intestine. LIPS-6, in turn, elicits lipid mobilization. Our findings reveal that octopamine acts as an endocrine regulator linking nutrient cues to lipolysis to maintain energy homeostasis, and suggest that such a mechanism may be evolutionally conserved in diverse organisms. PMID:27386520

  8. Nutrients and defoliation increase soil carbon inputs in grassland.

    PubMed

    Ziter, Carly; MacDougall, Andrew S

    2013-01-01

    Given the regulatory impact of resources and consumers on plant production, decomposition, and soil carbon sequestration, anthropogenic changes to nutrient inputs and grazing have likely transformed how grasslands process atmospheric CO2. The direction and magnitude of these changes, however, remain unclear in this system, whose soils contain -20% of the world's carbon pool. Nutrients stimulate production but can also increase tissue palatability and decomposition. Grazing variously affects tissue quality and quantity, decreasing, standing biomass, but potentially increasing leaf nutrient concentrations, root production, or investment in tissue defenses that slow litter decay. Here, we quantified individual and interactive impacts of nutrient addition and simulated grazing (mowing) on above- and belowground production, tissue quality, and soil carbon inputs in a western North American grassland with globally distributed agronomic species. Given that nutrients and grazing are often connected with increased root production and higher foliar tissue quality, we hypothesized that these treatments would combine to reduce inputs of recalcitrant-rich litter critical for C storage. This hypothesis was unsupported. Nutrients and defoliation combined to significantly increase belowground production but did not affect root tissue quality. There were no significant interactions between nutrients and defoliation for any measured response. Three years of nutrient addition increased root and shoot biomass by 37% and 23%, respectively, and had no impact on decomposition, resulting in a -15% increase in soil organic matter and soil carbon. Defoliation triggered a significant burst of short-lived lignin-rich roots, presumably a compensatory response to foliar loss, which increased root litter inputs by 33%. The majority of root and shoot responses were positively correlated, with aboveground biomass a reasonable proxy for whole plant responses. The exceptions were decomposition, with

  9. N limited herbivore consumer growth and low nutrient regeneration N:P ratios in nutrient poor Swedish lakes along a gradient in DOC concentration

    NASA Astrophysics Data System (ADS)

    Bergström, A. K.; Karlsson, D.; Karlsson, J.; Vrede, T.

    2014-12-01

    Nutrient limitation of primary producers and their consumers can have a large influence on ecosystem productivity. The nature and strength of nutrient limitation is driven both by external factors (nutrient loading) and internal processes (consumer-driven nutrient regeneration). Here we present results from a field study in 16 unproductive headwater lakes in northern subarctic and boreal Sweden where N deposition is low. We assessed the C:N:P stoichiometry of lake water, seston and zooplankton and estimated the consumer driven nutrient regeneration N:P ratio. The elemental imbalances between seston and zooplankton indicated that zooplankton were mainly N limited and regenerated nutrients with low N:P ratios (median 9.7, atomic ratio). The N:P regeneration ratios declined with increasing DOC concentrations, suggesting that catchment release of DOC accentuates the N limitation by providing more P to the lakes. The N:P regeneration ratios were related to responses in phytoplankton bioassays in mid-summer with low N:P regeneration with N limited phytoplankton, and high N:P regeneration with P limited phytoplankton. During other seasons, increased nutrient loading from the surrounding catchments during periods of greater water throughput had stronger effects on phytoplankton nutrient limitation. Our results suggest that herbivore zooplankton are N limited and recycle nutrients with low N:P ratio in low productive lakes with low N deposition. This will, at least during seasons when in-lake processes play an important role in nutrient turn over, contribute to continued N limitation of phytoplankton in these systems. We anticipate that increased N deposition and changes in climate and hydrology may affect this feedback and result in qualitative changes in these ecosystems, changing both autotroph producers and herbivore consumers from N- to P-limitation, eventually affecting important ecosystem characteristics such as productivity and turnover of energy and nutrients.

  10. The Atmospheric Fate of Organic Nitrogen Compounds

    NASA Astrophysics Data System (ADS)

    Borduas, Nadine

    Organic nitrogen compounds are present in our atmosphere from biogenic and anthropogenic sources and have impacts on air quality and climate. Due to recent advances in instrumentation, these compounds are being detected in the gas and particle phases, raising questions as to their source, processing and sinks in the environment. With their recently identified role as contributors to aerosol formation and growth, their novel large scale use as solvents in carbon capture and storage (CCS) technology and their emissions from cigarette smoke, it is now important to address the gaps in our understanding of the fate of organic nitrogen. Experimentally and theoretically, I studied the chemical atmospheric fate of specific organic nitrogen compounds in the amine, amide and isocyanate families, yielding information that can be used in chemical transport models to assess the fate of this emerging class of atmospheric molecules. I performed kinetic laboratory studies in a smog chamber to measure the room temperature rate coefficient for reaction with the hydroxyl radical of monoethanolamine, nicotine, and five different amides. I employed online-mass spectrometry techniques to quantify the oxidation products. I found that amines react quickly with OH radicals with lifetimes of a few hours under sunlit conditions, producing amides as oxidation products. My studies on amides revealed that they have much longer lifetimes in the atmosphere, ranging from a few hours to a week. Photo-oxidation of amides produces isocyanates and I investigated these mechanisms in detail using ab initio calculations. Furthermore, I experimentally measured isocyanic acid's Henry's Law constant as well as its hydrolysis rate constants to better understand its sinks in the atmosphere. Finally, I re-examined the structure-activity relationship (SAR) of organic nitrogen molecules for improved model parameterizations.

  11. TOR Signaling and Nutrient Sensing.

    PubMed

    Dobrenel, Thomas; Caldana, Camila; Hanson, Johannes; Robaglia, Christophe; Vincentz, Michel; Veit, Bruce; Meyer, Christian

    2016-04-29

    All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth. PMID:26905651

  12. Responses of periphyton morphology, structure, and function to extreme nutrient loading.

    PubMed

    Lu, Haiying; Feng, Yanfang; Wang, Jinhua; Wu, Yonghong; Shao, Hongbo; Yang, Linzhang

    2016-07-01

    Periphyton have been widely applied in aquaculture systems, however, little information is available on how periphyton respond to such high nutrient levels in water. Thus, changes in the morphological characteristics, community structure, and metabolic function of periphyton under high eutrophic waters were evaluated. The results indicated that the morphology of periphyton was affected by increasing the nutrient concentration of water, which shifted the micromorphology of periphyton from spheriform to filamentous. The periphyton under higher water nutrient levels were able to utilize more carbon source types. Additionally, higher water nutrient levels increased the bacterial and protozoal proportions in periphyton. This study fills the gap in knowledge about the responses of periphytic communities to extremely eutrophic waters. It provides valuable information on the full understanding of the periphyton-nutrient relationship in aquaculture systems, which is beneficial for regulating the microbial species or communities in periphyton by manipulating the nutrient levels in water. PMID:27173591

  13. Programming placental nutrient transport capacity

    PubMed Central

    Fowden, A L; Ward, J W; Wooding, F P B; Forhead, A J; Constancia, M

    2006-01-01

    Many animal studies and human epidemiological findings have shown that impaired growth in utero is associated with physiological abnormalities in later life and have linked this to tissue programming during suboptimal intrauterine conditions at critical periods of development. However, few of these studies have considered the contribution of the placenta to the ensuing adult phenotype. In mammals, the major determinant of intrauterine growth is the placental nutrient supply, which, in turn, depends on the size, morphology, blood supply and transporter abundance of the placenta and on synthesis and metabolism of nutrients and hormones by the uteroplacental tissues. This review examines the regulation of placental nutrient transfer capacity and the potential programming effects of nutrition and glucocorticoid over-exposure on placental phenotype with particular emphasis on the role of the Igf2 gene in these processes. PMID:16439433

  14. Investigating Student Ideas About the Fate of the Universe

    NASA Astrophysics Data System (ADS)

    Conlon, Mallory; Coble, Kimberly A.; Bailey, Janelle M.; Cominsky, Lynn R.

    2015-01-01

    Data from recent surveys have enabled astronomers to precisely quantify the composition of the Universe, though the nature of its primary component, dark energy, remains a mystery. The evolution of dark energy and how it might impact the Universe in the future is an area of intense study. As astronomers further develop an understanding of the fate of the Universe, it is essential to study student ideas on this fate so that instructors can communicate the field's current status and its underpinnings more effectively to their students. In this study, we examine undergraduate students' pre-instruction ideas of the fate of the Universe in twelve semester-long courses at four institutions. We also examine ideas about the fate of the Universe as undergraduate students progress through an introductory or advanced astronomy course at two institutions. The data include pre-course surveys given during the first week of instruction [N=291], midterm and final exam questions [N=58], post-course surveys [N=26], and student interviews [N=7]. We find that, though the term was not necessarily used, students that respond tend to describe a 'big freeze' scenario in the pre-course surveys. Students mention the Universe's expansion when describing how we know the fate of the Universe but do not discuss how we know the Universe is expanding or the relationship between expansion and the fate of the Universe. We also find that students discuss the fate of the solar system or the galaxy in the pre-course surveys instead of the fate of the Universe, suggesting conflation of the Universe with the solar system or the galaxy. At the end of the course, we find that students continue to describe a 'big freeze' scenario and fail to explain how we determine the fate of the Universe. We also find that student tendency to discuss the fate of the solar system or galaxy instead of the fate of the Universe is diminished by the end of the course.

  15. DEVELOPMENT OF NUTRIENT EXPOSURE AND BIOLOGICAL RESPONSE INDICATORS FOR LAKE MICHIGAN COASTAL WETLANDS

    EPA Science Inventory

    This study examines how landscape-scale gradient affect sedimentation rates, nutrient exposure, and biological responses in Lake Michigan coastal wetlands, and assess indicators for these trends. Twenty riverine coastal wetlands in Lake Michigan (Herdendorf 1981) were selected t...

  16. Quantitative Models for Ecosystem Assessment in Narragansett Bay: Response to Nutrient Loading and Other Stressors

    EPA Science Inventory

    Multiple drivers, including nutrient loading and climate change, affect the Narragansett Bay ecosystem. Managers are interested in understanding the timing and magnitude of these effects, as well as ecosystem responses to restoration actions, such as the capacity and potential fo...

  17. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction

    PubMed Central

    Choi, Soo-Jin; Choy, Jin-Ho

    2014-01-01

    Biokinetic studies of zinc oxide (ZnO) nanoparticles involve systematic and quantitative analyses of absorption, distribution, metabolism, and excretion in plasma and tissues of whole animals after exposure. A full understanding of the biokinetics provides basic information about nanoparticle entry into systemic circulation, target organs of accumulation and toxicity, and elimination time, which is important for predicting the long-term toxic potential of nanoparticles. Biokinetic behaviors can be dependent on physicochemical properties, dissolution property in biological fluids, and nanoparticle–protein interaction. Moreover, the determination of biological fates of ZnO nanoparticles in the systemic circulation and tissues is critical in interpreting biokinetic behaviors and predicting toxicity potential as well as mechanism. This review focuses on physicochemical factors affecting the biokinetics of ZnO nanoparticles, in concert with understanding bioavailable fates and their interaction with proteins. PMID:25565844

  18. From cell fates to morphology: developmental genetics of the Caenorhabditis elegans male tail.

    PubMed

    Emmons, S W

    1992-05-01

    The C. elegans male tail is being studied as a model to understand how genes specify the form of multicellular animals. Morphogenesis of the specialized male copulatory organ takes place in the last larval stages during male development. Genetic analysis is facilitated because the structure is not necessary for male viability or for strain propagation. Analysis of developmental mutants, isolated in several functional and morphological screens, has begun to reveal how fates of cells are determined in the cell lineages, and how the specification of cell fates affects the morphology of the structure. Cytological studies in wild type and in mutants have been used to study the mechanism of pattern formation in the tail peripheral nervous system. The ultimate goal is to define the entire pathway leading to the male copulatory organ. PMID:1637362

  19. Hungry for Nutrient Data? Navigating the USDA Nutrient Database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA National Nutrient Database for Standard Reference (SR) is the major source of food composition data in the United States, providing the foundation for most food composition databases in the public and private sectors. Most nutrition professionals are familiar with the basics of the SR onlin...

  20. Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.

    USGS Publications Warehouse

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.

    1988-01-01

    The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.

  1. Fate of HERS during Tooth Root Development

    PubMed Central

    Huang, Xiaofeng; Bringas, Pablo; Slavkin, Harold C.; Chai, Yang

    2009-01-01

    Tooth root development begins after the completion of crown formation in mammals. Previous studies have shown that Hertwig's epithelial root sheath (HERS) plays an important role in root development, but the fate of HERS has remained unknown. In order to investigate the morphological fate and analyze the dynamic movement of HERS cells in vivo, we generated K14-Cre;R26R mice. HERS cells are detectable on the surface of the root throughout root formation and do not disappear. Most of the HERS cells are attached to the surface of the cementum, and others separate to become the epithelial rest of Malasez. HERS cells secrete extracellular matrix components onto the surface of the dentin before dental follicle cells penetrate the HERS network to contact dentin. HERS cells also participate in the cementum development and may differentiate into cementocytes. During root development, the HERS is not interrupted, and instead the HERS cells continue to communicate with each other through the network structure. Furthermore, HERS cells interact with cranial neural crest derived mesenchyme to guide root development. Taken together, the network of HERS cells is crucial for tooth root development. PMID:19576204

  2. Cell fate regulation in early mammalian development

    NASA Astrophysics Data System (ADS)

    Oron, Efrat; Ivanova, Natalia

    2012-08-01

    Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.

  3. Glucocorticoid Regulation of Astrocytic Fate and Function

    PubMed Central

    Yu, Shuang; Yang, Silei; Holsboer, Florian; Sousa, Nuno; Almeida, Osborne F. X.

    2011-01-01

    Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC) secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS) and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus. PMID:21811605

  4. Autophagy: controlling cell fate in rheumatic diseases.

    PubMed

    Rockel, Jason S; Kapoor, Mohit

    2016-09-01

    Autophagy, an endogenous process necessary for the turnover of organelles, maintains cellular homeostasis and directs cell fate. Alterations to the regulation of autophagy contribute to the progression of various rheumatic diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), osteoarthritis (OA) and systemic sclerosis (SSc). Implicit in the progression of these diseases are cell-type-specific responses to surrounding factors that alter autophagy: chondrocytes within articular cartilage show decreased autophagy in OA, leading to rapid cell death and cartilage degeneration; fibroblasts from patients with SSc have restricted autophagy, similar to that seen in aged dermal fibroblasts; fibroblast-like synoviocytes from RA joints show altered autophagy, which contributes to synovial hyperplasia; and dysregulation of autophagy in haematopoietic lineage cells alters their function and maturation in SLE. Various upstream mechanisms also contribute to these diseases by regulating autophagy as part of their signalling cascades. In this Review, we discuss the links between autophagy, immune responses, fibrosis and cellular fates as they relate to pathologies associated with rheumatic diseases. Therapies in clinical use, and in preclinical or clinical development, are also discussed in relation to their effects on autophagy in rheumatic diseases. PMID:27334205

  5. The "occlusis" model of cell fate restriction.

    PubMed

    Lahn, Bruce T

    2011-01-01

    A simple model, termed "occlusis", is presented here to account for both cell fate restriction during somatic development and reestablishment of pluripotency during reproduction. The model makes three assertions: (1) A gene's transcriptional potential can assume one of two states: the "competent" state, wherein the gene is responsive to, and can be activated by, trans-acting factors in the cellular milieu, and the "occluded" state, wherein the gene is blocked by cis-acting, chromatin-based mechanisms from responding to trans-acting factors such that it remains silent irrespective of whether transcriptional activators are present in the milieu. (2) As differentiation proceeds in somatic lineages, lineage-inappropriate genes shift progressively and irreversibly from competent to occluded state, thereby leading to the restriction of cell fate. (3) During reproduction, global deocclusion takes place in the germline and/or early zygotic cells to reset the genome to the competent state in order to facilitate a new round of organismal development. PMID:20954221

  6. Fate dynamics of environmentally exposed explosive traces.

    PubMed

    Kunz, Roderick R; Gregory, Kerin E; Aernecke, Matthew J; Clark, Michelle L; Ostrinskaya, Alla; Fountain, Augustus W

    2012-04-12

    The chemical and physical fates of trace amounts (<50 μg) of explosives containing 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and pentaerythritol tetranitrate (PETN) were determined for the purpose of informing the capabilities of tactical trace explosive detection systems. From these measurements, it was found that the mass decreases and the chemical composition changes on a time scale of hours, with the loss mechanism due to a combination of sublimation and photodegradation. The rates for these processes were dependent on the explosive composition, as well as on both the ambient temperature and the size distribution of the explosive particulates. From these results, a persistence model was developed and applied to model the time dependence of both the mass and areal coverage of the fingerprints, resulting in a predictive capability for determining fingerprint fate. Chemical analysis confirmed that sublimation rates for TNT were depressed by UV (330-400 nm) exposure due to photochemically driven increases in the molecular weight, whereas the opposite was observed for RDX. No changes were observed for PETN upon exposure to UV radiation, and this was attributed to its low UV absorbance. PMID:22424334

  7. Mechanical Modulation of Osteochondroprogenitor Cell Fate

    PubMed Central

    Knothe Tate, Melissa L.; Falls, Thomas D.; McBride, Sarah H.; Atit, Radhika; Knothe, Ulf R.

    2015-01-01

    Mesenchymal cells are natural tissue builders. They exhibit an extraordinary capacity to metamorphize into differentiated cells, using extrinsic spatial and temporal inputs and intrinsic algorithms, as well as to build and adapt their own habitat. In addition to providing a habitat for osteoprogenitor cells, tissues of the skeletal system provide mechanical support and protection for the multiple organs of vertebrate organisms. This review examines the role of mechanics on determination of cell fate during pre-, peri- and postnatal development of the skeleton as well as during tissue genesis and repair in postnatal life. The role of cell mechanics is examined and brought into context of intrinsic cues during mesenchymal condensation. Remarkable new insights regarding structure function relationships in mesenchymal stem cells, and their influence on determination of cell fate are integrated in the context of de novo tissue generation and postnatal repair. Key differences in the formation of osteogenic and chondrogenic condensations are discussed in relation to direct intramembranous and indirect endochondral ossification. New approaches are discussed to elucidate and exploit extrinsic cues to generate tissues in the laboratory and in the clinic. PMID:18620888

  8. SF6 Tracer Release Study: A Contaminant Fate Study in Newtown Creek

    NASA Astrophysics Data System (ADS)

    Schmieder, P. J.; Ho, D. T.; Peter, S.; Simpson, H. J.; Flores, S.; Dugan, W. A.

    2004-12-01

    Newtown Creek is a 5.5km creek that discharges into the East River, a 25km strait connecting Long Island Sound to the north and the New York Harbor to the south. Surface runoff dominates the freshwater input into the creek, for natural tributaries no longer exist. The areas directly adjacent to the creek are highly industrialized, and New York City's largest Water Pollution Control Plant (WPCP) discharges directly into creek. In August 2004, we injected sulfur hexafluoride (SF6) into Newtown creek to study the fate of oil seeping into the creek from an underground oil spill and the fate of nutrient rich effluent from the WPCP. We monitored SF6 in Newtown Creek, the East River, and the Upper Bay of New York Harbor for 7 consecutive days following the injection in order to investigate the spreading patterns and transport mechanics of waters exiting the creek, and to determine the ultimate fate of the contaminants/solutes originating in Newtown Creek. Dissolved oxygen (DO) measurements were collected simultaneously with SF6 measurements. A strong DO gradient exists in the creek, where waters in the upper reaches are anoxic. We use SF6 data to calculate mean residence times for Newtown Creek waters. SF6 was detected above background concentrations approximately 15km to the south of the creek at the Verrazano Bridge only 1 day after the tracer injection. By combining the movements of the SF6 distribution, the position of the oxygen gradient, and the residence time of Newtown Creek water, we can determine a lower boundary for oxygen consumption rates.

  9. Fate of increased nitrogen deposition in humid sub-tropical forests in Southern China

    NASA Astrophysics Data System (ADS)

    Abdisa Gurmesa, Geshere; Gundersen, Per; Lu, Xiankai; Mo, Jiangming

    2015-04-01

    Increased nitrogen (N) emissions from anthropogenic activities have dramatically increased N deposition to forest ecosystems particularly in the warm and humid south-east of China. Elevated N input may lead to eutrophication, nutrient imbalances, N leaching and soil acidification. The effects of deposited N depend greatly on the initial status of the forest and the fate of deposited N. However, the fate of increased N deposition is not well understood. In this study the objective was to quantify the retention of atmospheric N deposition in different ecosystem compartments as well as the leaching loss from a N-rich subtropical forest ecosystem. To this end, we investigate the fate of simulated increased N-deposition in an old growth forest using isotopic labelling (15N). We used an on-going long-term N-addition experiment in Dinghushan Biosphere Reserve in South China. Stable 15N-tracer in the form of 15NH415NO3was mixed with fertilizer (NH4NO3)and sprayed to the forest floor under two different N deposition levels over one year. Following application, the recovery of added 15N in major ecosystem pools (trees, ground vegetation, forest floor and mineral soil) and in water fluxes was determined. Samples were collected in June-July 2014 about three months after the last monthly addition. We hypothesize less recovery of 15N and lower N assimilation by trees in this N-rich subtropical forest compared to the high recovery and retention usually observed in such experiments performed in N-limited boreal and temperate forests. Due to the high N status we expect the N cycle to be relatively open in this forest and that most of the deposited N to be lost from the forest ecosystem.

  10. Runoff and nutrient losses during winter periods in cold climates--requirements to nutrient simulation models.

    PubMed

    Deelstra, Johannes; Kvaernø, Sigrun H; Granlund, Kirsti; Sileika, Antanas Sigitas; Gaigalis, Kazimieras; Kyllmar, Katarina; Vagstad, Nils

    2009-03-01

    Large areas in Europe may experience frozen soils during winter periods which pose special challenges to modelling. Extensive data are collected in small agricultural catchments in Nordic and Baltic countries. An analysis on measurements, carried out in four small agricultural catchments has shown that a considerable amount of the yearly nutrient loss occurs during the freezing period. A freezing period was defined as the time period indicated by the maximum and minimum points on the cumulative degree-day curve. On average 6-32% of the yearly runoff was generated during this period while N-loss varied from 5-35% and P loss varied from 3-33%. The results indicate that infiltration into frozen soils might occur during the freezing period and that the runoff generating processes, at least during a considerable part of the freezing period, are rather similar compared to the processes outside the freezing period. Freeze-thaw cycles affect the infiltration capacity and aggregate stability, thereby the erosion and nutrient losses. The Norwegian catchment had a high P loss during the freezing period compared to the other catchments, most likely caused by catchment characteristics such as slope, soil types, tillage methods and fertiliser application. It is proposed to use data, collected on small agricultural dominated catchments, in the calibration and validation of watershed management models and to take into account runoff and nutrient loss processes which are representative for cold climates, thereby obtaining reliable results. PMID:19280038

  11. REGIONAL CHARACTERISTICS OF NUTRIENT CONCENTRATIONS IN STREAMS AND THEIR APPLICATION TO NUTRIENT CRITERIA DEVELOPMENT

    EPA Science Inventory

    In order to establish meaningful nutrient criteria, consideration must be given to the spatial variations in geographic phenomena that cause or reflect differences in nutrient concentrations in streams. Regional differences in stream nutrient concentrations were illustrated usin...

  12. Algal remediation of CO₂ and nutrient discharges: A review.

    PubMed

    Judd, Simon; van den Broeke, Leo J P; Shurair, Mohamed; Kuti, Yussuf; Znad, Hussein

    2015-12-15

    The recent literature pertaining to the application of algal photobioreactors (PBRs) to both carbon dioxide mitigation and nutrient abatement is reviewed and the reported data analysed. The review appraises the influence of key system parameters on performance with reference to (a) the absorption and biological fixation of CO2 from gaseous effluent streams, and (b) the removal of nutrients from wastewaters. Key parameters appraised individually with reference to CO2 removal comprise algal speciation, light intensity, mass transfer, gas and hydraulic residence time, pollutant (CO2 and nutrient) loading, biochemical and chemical stoichiometry (including pH), and temperature. Nutrient removal has been assessed with reference to hydraulic residence time and reactor configuration, along with C:nutrient ratios and other factors affecting carbon fixation, and outcomes compared with those reported for classical biological nutrient removal (BNR). Outcomes of the review indicate there has been a disproportionate increase in algal PBR research outputs over the past 5-8 years, with a significant number of studies based on small, bench-scale systems. The quantitative impacts of light intensity and loading on CO2 uptake are highly dependent on the algal species, and also affected by solution chemical conditions such as temperature and pH. Calculations based on available data for biomass growth rates indicate that a reactor CO2 residence time of around 4 h is required for significant CO2 removal. Nutrient removal data indicate residence times of 2-5 days are required for significant nutrient removal, compared with <12 h for a BNR plant. Moreover, the shallow depth of the simplest PBR configuration (the high rate algal pond, HRAP) means that its footprint is at least two orders of magnitude greater than a classical BNR plant. It is concluded that the combined carbon capture/nutrient removal process relies on optimisation of a number of process parameters acting synergistically

  13. Climate Variability Impacts on Watershed Nutrient Delivery and Reservoir Production

    NASA Astrophysics Data System (ADS)

    White, J. D.; Prochnow, S. J.; Zygo, L. M.; Byars, B. W.

    2005-05-01

    Reservoirs in agricultural dominated watersheds tend to exhibit pulse-system behavior especially if located in climates dominated by summer convective precipitation inputs. Concentration and bulk mass of nutrient and sediment inputs into reservoir systems vary in terms of timing and magnitude of delivery from watershed sources to reservoirs under these climate conditions. Reservoir management often focuses on long-term average inputs without considering short and long-term impacts of variation in loading. In this study we modeled a watershed-reservoir system to assess how climate variability affects reservoir primary production through shifts in external loading and internal recycling of limiting nutrients. The Bosque watershed encompasses 423,824 ha in central Texas which delivers water to Lake Waco, a 2900 ha reservoir that is the primary water source for the city of Waco and surrounding areas. Utilizing the Soil Water Assessment Tool for the watershed and river simulations and the CE-Qual-2e model for the reservoir, hydrologic and nutrient dynamics were simulated for a 10 year period encompassing two ENSO cycles. The models were calibrated based on point measurement of water quality attributes for a two year time period. Results indicated that watershed delivery of nutrients was affected by the presence and density of small flood-control structure in the watershed. However, considerable nitrogen and phosphorus loadings were derived from soils in the upper watershed which have had long-term waste-application from concentrated animal feeding operations. During El Niño years, nutrient and sediment loads increased by 3 times above non-El Niño years. The simulated response within the reservoir to these nutrient and sediment loads had both direct and indirect. Productivity evaluated from chlorophyll a and algal biomass increased under El Niño conditions, however species composition shifts were found with an increase in cyanobacteria dominance. In non-El Niño years

  14. On nutrients and trace metals: Effects from Enhanced Weathering

    NASA Astrophysics Data System (ADS)

    Amann, T.; Hartmann, J.

    2015-12-01

    The application of rock flour on suitable land ("Enhanced Weathering") is one proposed strategy to reduce the increase of atmospheric CO2 concentrations. At the same time it is an old and established method to add fertiliser and influence soil properties. Investigations of this method focused on the impact on the carbonate system, as well as on engineering aspects of a large-scale application, but potential side effects were never discussed quantitatively. We analysed about 120,000 geochemically characterised volcanic rock samples from the literature. Applying basic statistics, theoretical release rates of nutrients and potential contaminants by Enhanced Weathering were evaluated for typical rock types. Applied rock material can contain significant amounts of essential or beneficial nutrients (potassium, phosphorus, micronutrients). Their release can partly cover the demand of major crops like wheat, rice or corn, thereby increasing crop yield on degraded soils. However, the concentrations of considered elements are variable within a specific rock type, depending on the geological setting. High heavy metal concentrations are found in (ultra-) basic rocks, the class with the highest CO2 drawdown potential. More acidic rocks contain less or no critical amounts, but sequester less CO2. Findings show that the rock selection determines the capability to supply significant amounts of nutrients, which could partly substitute industrial mineral fertiliser usage. At the same time, the release of harmful trace element has to be considered. Through careful selection of regionally available rocks, benefits could be maximised and drawbacks reduced. The deployment of Enhanced Weathering to sequester CO2 and to ameliorate soils necessitates an ecosystem management, considering the release and fate of weathered elements in plants, soils and water. Cropland with degraded soils would benefit while having a net negative CO2 effect, while other carbon dioxide removal strategies, like

  15. Adaptation of carbon allocation under light and nutrient reduction

    NASA Astrophysics Data System (ADS)

    Wegener, Frederik; Werner, Christiane

    2015-04-01

    The allocation of recently assimilated carbon (C) by plants depends on developmental stage and on environmental factors, but the underlying mechanisms are still a matter of debate. Whereas shifts in the allocation of photosynthates induced by reduced water availability, enhanced temperature and CO2 concentration were recently investigated in various studies, less is known about the response to light and nutrient reduction. We induced different allocation patterns in the Mediterranean shrub Halimium halimifolium L. by a reduction of light (Low L treatment) and nutrient availability (Low N treatment) and analysed allocation parameters as well as morphological and physiological traits for 15 months. Finally, we conducted a 13CO2 pulse-labelling and followed the fate of recently assimilated carbon to eight different classes of plant tissues and respiration for 13 days. The results revealed a high intraspecific variability in C distribution to tissues and in respiration. Allocation changes even varied within leaf and stem tissue classes (e.g. more C in main stems, less in lateral stems). These results show that the common separation of plant tissues in only three classes, i.e. root, shoot and leaf tissues, can result in missing information about allocation changes. The nutrient reduction enhanced the transport of recently assimilated C from leaves to roots in terms of quantity (c. 200%) and velocity compared to control plants. Interestingly, a 57% light reduction enhanced photosynthetic capacity and caused no change in final biomass after 15 months. Therefore, our results support the recently discussed sink regulation of photosynthesis. Finally, our results indicate that growing heterotrophic tissues strongly reduce the C loss from storage and structural C pools and therefore enhance the fraction of recent assimilates used for respiration. We propose that this interruption of the C reflux from storage and structural C pools could be a control mechanism for C

  16. FATE AND TRANSPORT OF MTBE AND OTHER GASOLINE COMPONENTS

    EPA Science Inventory

    This book chapter reviews the processes and interactions that control the transport and fate of MTBE and TBA in the subsurface. It describes the transport and fate of vapors of MTBE in the unsaturated zone, the partitioning of MTBE from gasoline spills directly into water, and t...

  17. Light, nutrients, and herbivore growth in oligotrophic streams

    SciTech Connect

    Hill, Walter R; Smith, John G; Stewart, Arthur J

    2010-02-01

    The light : nutrient hypothesis posits that herbivore growth is increasingly constrained by low food quality as the ratio of light to nutrients increases in aquatic ecosystems. We tested predictions of this hypothesis by examining the effects of large seasonal cycles in light and nutrients on the mineral content of periphyton and the growth rate of a dominant herbivore (the snail Elimia clavaeformis) in two oligotrophic streams. Streambed irradiances in White Oak Creek and Walker Branch (eastern Tennessee, USA) varied dramatically on a seasonal basis due to leaf phenology in the surrounding deciduous forests and seasonal changes in sun angle. Concentrations of dissolved nutrients varied inversely with light, causing light : nitrate and light : phosphate to range almost 100-fold over the course of any individual year. Periphyton nitrogen and phosphorus concentrations were much lower than the concentrations of these elements in snails, and they bottomed out in early spring when streambed irradiances were highest. Snail growth, however, peaked in early spring when light:nutrient ratios were highest and periphyton nutrient concentrations were lowest, Growth was linearly related to primary production (accounting for up to 85% of growth variance in individual years), which in turn was driven by seasonal variation in light. Conceptual models of herbivore growth indicate that growth should initially increase as increasing light levels stimulate primary production, but then level off, and then decrease as the negative effects of decreasing algal nutrient content override the positive effects of increased food production. Our results showed no evidence of an inflection point where increasing ratios of light to nutrients negatively affected growth. Snail growth in these intensively grazed streams is probably unaffected by periphyton nutrient content because exploitative competition for food reduces growth rates to levels where the demand for nitrogen and phosphorus is small

  18. Reducing future nutrient inputs to the Black Sea.

    PubMed

    Strokal, Maryna Petrivna; Kroeze, Carolien; Kopilevych, Volodymyr Abramovych; Voytenko, Larysa Vladyslavivna

    2014-01-01

    Rivers export increasing amounts of dissolved inorganic (DIN, DIP) and organic (DON, DOP) nitrogen and phosphorus to the Black Sea causing coastal eutrophication. The aim of this study is to explore future trends in river export of these nutrients to the sea through a sensitivity analysis. We used the Global NEWS (Nutrient Export from WaterSheds) model to this end. We calculated that between 2000 and 2050 nutrient inputs to the Black Sea may increase or decrease, depending on the assumed environmental management. We analyzed the effects of agricultural and sewage management on nutrient inputs to the sea in 2050 relative to two Millennium Ecosystem Assessment (MEA) scenarios, Global Orchestration (GO) and Adaptive Mosaic (AM). In these baselines, total N and P inputs to the Black Sea decrease between 2000 and 2050, but not for all rivers and nutrient forms. Our results indicate that it is possible to reduce nutrient inputs to the sea further between 2000 and 2050 in particular for dissolved inorganic N and P and for many river basins, but not for all. For scenarios assuming combined agricultural and sewage management dissolved inorganic N and P inputs to the Black Sea are reduced by up to two-thirds between 2000 and 2050 and dissolved organic N and P inputs by one-third. River export of DIN is mainly affected by agricultural management and that of DIP by sewage management. On the other hand, in scenarios assuming increased fertilizer use for, for instance bioenergy crops, nutrient inputs to the sea increase. An increase in DIP inputs by southern rivers seems difficult to avoid because of the increasing number of people connected to sewage systems. PMID:23906857

  19. Are large macroalgal blooms necessarily bad? Nutrient impacts on seagrass in upwelling-influenced estuaries.

    PubMed

    Hessing-Lewis, Margot L; Hacker, Sally D; Menge, Bruce A; McConville, Sea-oh; Henderson, Jeremy

    2015-07-01

    Knowledge of nutrient pathways and their resulting ecological interactions can alleviate numerous environmental problems associated with nutrient increases in both natural and managed systems. Although not unique, coastal systems are particularly prone to complex ecological interactions resulting from nutrient inputs from both the land and sea. Nutrient inputs to coastal systems often spur ulvoid macroalgal blooms, with negative consequences for seagrasses, primarily through shading, as well as through changes in local biogeochemistry. We conducted complementary field and mesocosm experiments in an upwelling-influenced estuary, where marine-derived nutrients dominate, to understand the direct and indirect effects of nutrients on the macroalgal-eelgrass (Zostera marina L.) interaction. In the field experiment, we found weak evidence that nutrients and/or macroalgal treatments had a negative effect on eelgrass. However, in the mesocosm experiment, we found that a combination of nutrient and macroalgal treatments led to strongly negative eelgrass responses, primarily via indirect effects associated with macroalgal additions. Together, increased total light attenuation and decreased sediment oxygen levels were associated with larger effects on eelgrass than shading alone, which was evaluated using mimic algae treatments that did not alter sediment redox potential. Nutrient addition in the mesocosms directly affected seagrass density; biomass, and morphology, but not as strongly as macroalgae. We hypothesize that the contrary results from these parallel experiments are a consequence of differences in the hydrodynamics between field and mesocosm settings. We suggest that the high rates of water movement and tidal submersion of our intertidal field experiments alleviated the light reduction and negative biogeochemical changes in the sediment associated with macroalgal canopies, as well as the nutrient effects observed in the mesocosm experiments. Furthermore, adaptation

  20. Compatibility considerations in parenteral nutrient solutions.

    PubMed

    Niemiec, P W; Vanderveen, T W

    1984-05-01

    Information on compatibility of nutrients and drugs with parenteral nutrient (PN) solutions is reviewed and evaluated. Precipitation of calcium phosphate when calcium and phosphate salts are added can be affected by pH, amino acid concentration, amino acid product, temperature, sequence of additives, specific salt used, and time since admixture; precipitate formation can occur gradually over 24 hours. Insulin is chemically stable in PN solutions, but adsorption to the infusion system can cause decreased availability. Poor delivery of vitamin A via PN solutions has been reported. The sodium bisulfite content of amino acid injections may cause degradation of thiamine, but studies simulating clinical use are needed. Folic acid stability in PN solutions has been demonstrated, and phytonadione appears to be stable. Drug administration via PN solutions may be advantageous when fluid intake is restricted or peripheral vein access is limited and in home PN therapy. Summarized are results of studies involving heparin, cimetidine hydrochloride, aminophylline, amphotericin B, iron dextran, hydrochloric acid, corticosteroids, narcotics, metoclopramide, digoxin, and fluorouracil. Many antibiotics are probably stable, especially when administered by co-infusion rather than by direct mixture in the PN solution container. When lipids are mixed in the same container with amino acid-dextrose solutions, compatibility and stability of electrolytes, vitamins, and trace elements must be reassessed. Practical research is needed, and availability of additives should be studied in specific patient populations and for specific PN formulations. Valid conclusions are dependent on careful study design. PMID:6328980

  1. Placental Nutrient Transport and Intrauterine Growth Restriction

    PubMed Central

    Gaccioli, Francesca; Lager, Susanne

    2016-01-01

    Intrauterine growth restriction refers to the inability of the fetus to reach its genetically determined potential size. Fetal growth restriction affects approximately 5–15% of all pregnancies in the United States and Europe. In developing countries the occurrence varies widely between 10 and 55%, impacting about 30 million newborns per year. Besides having high perinatal mortality rates these infants are at greater risk for severe adverse outcomes, such as hypoxic ischemic encephalopathy and cerebral palsy. Moreover, reduced fetal growth has lifelong health consequences, including higher risks of developing metabolic and cardiovascular diseases in adulthood. Numerous reports indicate placental insufficiency as one of the underlying causes leading to altered fetal growth and impaired placental capacity of delivering nutrients to the fetus has been shown to contribute to the etiology of intrauterine growth restriction. Indeed, reduced expression and/or activity of placental nutrient transporters have been demonstrated in several conditions associated with an increased risk of delivering a small or growth restricted infant. This review focuses on human pregnancies and summarizes the changes in placental amino acid, fatty acid, and glucose transport reported in conditions associated with intrauterine growth restriction, such as maternal undernutrition, pre-eclampsia, young maternal age, high altitude and infection. PMID:26909042

  2. Zebrafish small molecule screen in reprogramming/cell fate modulation

    PubMed Central

    Munson, Kathleen M.; Yeh, Jing-Ruey J.

    2010-01-01

    Embryonic zebrafish have long been used for lineage tracing studies. In zebrafish embryos, the cell fate identities can be determined by whole-mount in situ hybridization, or by visualization of live embryos if using fluorescent reporter lines. We use embryonic zebrafish to study the effects of a leukemic oncogene AML1-ETO on modulating hematopoietic cell fate. Induced expression of AML1-ETO is able to efficiently reprogram hematopoietic progenitor cells from erythroid to myeloid cell fate. Using the zebrafish model of AML1-ETO, we performed a chemical screen to identify small molecules that suppress the cell fate switch in the presence of AML1-ETO. The methods discussed herein may be broadly applicable for identifying small molecules that modulate other cell fate decisions. PMID:20336532

  3. Stillage processing for nutrient recovery

    SciTech Connect

    Sweeten, J.M.; Coble, C.G.; Egg, R.P.; Lawhon, J.T.; McBee, G.G.; Schelling, G.T.

    1983-06-01

    Stillage from fermentation of grain sorghum and sweet potatoes was processed for dry matter and nutrient recovery by combinations of screw press, vibrating screen, centrifugation, ultrafiltration, and reverse osmosis, yielding up to 98% dry matter removal. For most processes, protein removal equaled or exceeded dry matter removal.

  4. DEVELOPMENT OF NUMERICAL NUTRIENT CRITERIA

    EPA Science Inventory

    A major goal of the numeric nutrient criteria program is to develop waterbody-type technical guidance manuals for assessing trophic state. EPA has published guidance for lakes and for rivers. EPA Region 1 is publishing New England-specific guidance in 2001 for lakes, ponds and ...

  5. Pathogen infection drives patterns of nutrient resorption in citrus plants.

    PubMed

    Cao, Jirong; Cheng, Chunzhen; Yang, Junjie; Wang, Qibing

    2015-01-01

    Nutrient resorption processes in the plants infected by pathogen remain poorly understood. Huanglongbing (HLB) is a destructive disease of citrus. HLB-pathogen 'Candidatus Liberibacter asiaticus' grows specifically in the phloem of hosts and may cause problems in the plant vascular system after infection. Therefore, it brings a great concern about the phloem nutrient transport and nutrient intra-cycling in HLB-affected plants. We investigated the effects of 'Ca. L. asiaticus' infection on nitrogen (N) and phosphorus (P) concentrations and resorption in different citrus species (i.e. Citrus reticulata, Citrus limon and Citrus maxima). HLB-pathogen infection had distinctive impacts on nutrient resorption in different species. P resorption efficiency substantially decreased in infected C. reticulata plants relative to the healthy plants in summer, which may account for the marked decrease in the average fruit yield. P resorption was more efficient in infected C. limon plants than in the healthy plants. However, for C. maxima plants, HLB had no significant effects on N:P ratio in live leaves and resorption efficiency as well as on fruit yield. Keeping efficient internal nutrient cycling can be a strategy of citrus species being tolerant to HLB. PMID:26419510

  6. Pathogen infection drives patterns of nutrient resorption in citrus plants

    PubMed Central

    Cao, Jirong; Cheng, Chunzhen; Yang, Junjie; Wang, Qibing

    2015-01-01

    Nutrient resorption processes in the plants infected by pathogen remain poorly understood. Huanglongbing (HLB) is a destructive disease of citrus. HLB-pathogen ‘Candidatus Liberibacter asiaticus’ grows specifically in the phloem of hosts and may cause problems in the plant vascular system after infection. Therefore, it brings a great concern about the phloem nutrient transport and nutrient intra-cycling in HLB-affected plants. We investigated the effects of ‘Ca. L. asiaticus’ infection on nitrogen (N) and phosphorus (P) concentrations and resorption in different citrus species (i.e. Citrus reticulata, Citrus limon and Citrus maxima). HLB-pathogen infection had distinctive impacts on nutrient resorption in different species. P resorption efficiency substantially decreased in infected C. reticulata plants relative to the healthy plants in summer, which may account for the marked decrease in the average fruit yield. P resorption was more efficient in infected C. limon plants than in the healthy plants. However, for C. maxima plants, HLB had no significant effects on N:P ratio in live leaves and resorption efficiency as well as on fruit yield. Keeping efficient internal nutrient cycling can be a strategy of citrus species being tolerant to HLB. PMID:26419510

  7. Therapeutic perspectives of epigenetically active nutrients.

    PubMed

    Remely, M; Lovrecic, L; de la Garza, A L; Migliore, L; Peterlin, B; Milagro, F I; Martinez, A J; Haslberger, A G

    2015-06-01

    Many nutrients are known for a wide range of activities in prevention and alleviation of various diseases. Recently, their potential role in regulating human health through effects on epigenetics has become evident, although specific mechanisms are still unclear. Thus, nutriepigenetics/nutriepigenomics has emerged as a new and promising field in current epigenetics research in the past few years. In particular, polyphenols, as part of the central dynamic interaction between the genome and the environment with specificity at physiological concentrations, are well known to affect mechanisms underlying human health. This review summarizes the effects of dietary compounds on epigenetic mechanisms in the regulation of gene expression including expression of enzymes and other molecules responsible for drug absorption, distribution, metabolism and excretion in cancer, metabolic syndrome, neurodegenerative disorders and hormonal dysfunction. PMID:25046997

  8. Therapeutic perspectives of epigenetically active nutrients

    PubMed Central

    Remely, M; Lovrecic, L; de la Garza, A L; Migliore, L; Peterlin, B; Milagro, F I; Martinez, A J; Haslberger, A G

    2015-01-01

    Many nutrients are known for a wide range of activities in prevention and alleviation of various diseases. Recently, their potential role in regulating human health through effects on epigenetics has become evident, although specific mechanisms are still unclear. Thus, nutriepigenetics/nutriepigenomics has emerged as a new and promising field in current epigenetics research in the past few years. In particular, polyphenols, as part of the central dynamic interaction between the genome and the environment with specificity at physiological concentrations, are well known to affect mechanisms underlying human health. This review summarizes the effects of dietary compounds on epigenetic mechanisms in the regulation of gene expression including expression of enzymes and other molecules responsible for drug absorption, distribution, metabolism and excretion in cancer, metabolic syndrome, neurodegenerative disorders and hormonal dysfunction. PMID:25046997

  9. Cell Fate Decisions During Breast Cancer Development

    PubMed Central

    Gross, Kayla; Wronski, Ania; Skibinski, Adam; Phillips, Sarah; Kuperwasser, Charlotte

    2016-01-01

    During the formation of breast cancer, many genes become altered as cells evolve progressively from normal to a pre-malignant to a malignant state of growth. How mutations in genes lead to specific subtypes of human breast cancer is only partially understood. Here we review how initial genetic or epigenetic alterations within mammary epithelial cells (MECs) can alter cell fate decisions and put pre-malignant cells on a path towards cancer development with specific phenotypes. Understanding the early stages of breast cancer initiation and progression and how normal developmental processes are hijacked during transformation has significant implications for improving early detection and prevention of breast cancer. In addition, insights gleaned from this understanding may also be important for developing subtype-specific treatment options. PMID:27110512

  10. A D Sakharov: personality and fate

    NASA Astrophysics Data System (ADS)

    Ritus, Vladimir I.

    2012-02-01

    A D Sakharov was an amazingly gifted person for whom, with his combined talents as a physicist and inventor, "physical laws and the relation among phenomena were directly visualized and tangible in all their inherent simplicity" (I E Tamm). The author of the key ideas involved in the hydrogen weapons and fusion reactor programs, and well aware of his scientific and public status, Sakharov was, nevertheless, a modest and highly decent man, always trustful of people in discussing their or his problems. Although his greatest satisfaction lay in successfully solving fundamental problems in physics and cosmology, fate and duty made him turn to matters of universal human significance, particularly human rights, to the gruelling struggle to which he devoted many years of his life.

  11. Designing Biomaterials To Direct Stem Cell Fate

    PubMed Central

    Cha, Chaenyung; Liechty, William B.; Khademhosseini, Ali; Peppas, Nicholas A.

    2012-01-01

    As stem cells are a cornerstone of regenerative medicine, research efforts have been extensively focused on controlling their self-renewal and differentiation. It is well known that stem cells are tightly regulated by a combination of physical and chemical factors from their complex extracellular surroundings; thus, conventional cell culture approaches based purely on using soluble factors to direct stem cell fate have resulted in limited success. To account for the complexities of native stem-cell niches, biomaterials are actively investigated as artificial extracellular matrices in order to mimic the natural microenvironment. This Perspective highlights important areas related to the design of biomaterials to control stem cell behavior, such as cell-responsive ligands, mechanical signals, and delivery of soluble factors. PMID:23136849

  12. Designing biomaterials to direct stem cell fate.

    PubMed

    Cha, Chaenyung; Liechty, William B; Khademhosseini, Ali; Peppas, Nicholas A

    2012-11-27

    As stem cells are a cornerstone of regenerative medicine, research efforts have been extensively focused on controlling their self-renewal and differentiation. It is well-known that stem cells are tightly regulated by a combination of physical and chemical factors from their complex extracellular surroundings; thus, conventional cell culture approaches based purely on using soluble factors to direct stem cell fate have resulted in limited success. To account for the complexities of native stem-cell niches, biomaterials are actively investigated as artificial extracellular matrices in order to mimic the natural microenvironment. This Perspective highlights important areas related to the design of biomaterials to control stem cell behavior, such as cell-responsive ligands, mechanical signals, and delivery of soluble factors. PMID:23136849

  13. Fate of pesticides during beer brewing.

    PubMed

    Inoue, Tomonori; Nagatomi, Yasushi; Suga, Keiko; Uyama, Atsuo; Mochizuki, Naoki

    2011-04-27

    The fates of more than 300 pesticide residues were investigated in the course of beer brewing. Ground malt artificially contaminated with pesticides was brewed via steps such as mashing, boiling, and fermentation. Analytical samples were taken from wort, spent grain, and beer produced at certain key points in the brewing process. The samples were extracted and purified with the QuEChERS (Quick Easy Cheap Effective Rugged and Safe) method and were then analyzed by LC-MS/MS using a multiresidue method. In the results, a majority of pesticides showed a reduction in the unhopped wort and were adsorbed onto the spent grain after mashing. In addition, some pesticides diminished during the boiling and fermentation. This suggests that the reduction was caused mainly by adsorption, pyrolysis, and hydrolysis. After the entire process of brewing, the risks of contaminating beer with pesticides were reduced remarkably, and only a few pesticides remained without being removed or resolved. PMID:21401094

  14. Fibronectin mediates mesendodermal cell fate decisions

    PubMed Central

    Cheng, Paul; Andersen, Peter; Hassel, David; Kaynak, Bogac L.; Limphong, Pattraranee; Juergensen, Lonny; Kwon, Chulan; Srivastava, Deepak

    2013-01-01

    Non-cell-autonomous signals often play crucial roles in cell fate decisions during animal development. Reciprocal signaling between endoderm and mesoderm is vital for embryonic development, yet the key signals and mechanisms remain unclear. Here, we show that endodermal cells efficiently promote the emergence of mesodermal cells in the neighboring population through signals containing an essential short-range component. The endoderm-mesoderm interaction promoted precardiac mesoderm formation in mouse embryonic stem cells and involved endodermal production of fibronectin. In vivo, fibronectin deficiency resulted in a dramatic reduction of mesoderm accompanied by endodermal expansion in zebrafish embryos. This event was mediated by regulation of Wnt signaling in mesodermal cells through activation of integrin-β1. Our findings highlight the importance of the extracellular matrix in mediating short-range signals and reveal a novel function of endoderm, involving fibronectin and its downstream signaling cascades, in promoting the emergence of mesoderm. PMID:23715551

  15. On the fate of ingested Bacillus spores.

    PubMed

    Spinosa, M R; Braccini, T; Ricca, E; De Felice, M; Morelli, L; Pozzi, G; Oggioni, M R

    2000-06-01

    Spores of various Bacillus species, including B. subtilis, B. cereus and B. clausii, are used as probiotics, although they are generally absent from the normal microflora of man. We used two nonpathogenic Bacillus species, B. subtilis and B. clausii, to follow the fate of spores inoculated intragastrically in mice. We did not find detectable amounts of vegetative cells in intestinal samples, probably because of high toxicity of the conjugated bile salt taurodeoxycholic acid against Bacillus species. Both spores and cells were detected in the lymph nodes and spleen of one mouse. Our results indicate that Bacillus is present in the intestinal tract solely as spores and that nonpathogenic Bacillus spores may germinate in lymphoid organs, a finding reminiscent of B. anthracis germination in macrophages. These results indicate that any claimed probiotic effect of B. subtilis should be due to spores or, alternatively, to vegetative growth outside the intestine. PMID:10919516

  16. Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth.

    PubMed

    Chrzanowski, T H; Sterner, R W; Elser, J J

    1995-05-01

    Bacterial abundance results from predatory losses of individuals and replacement of losses through growth. Growth depends on sustained input of organic substrates and mineral nutrients. In this work we tested the hypothesis that bacterial growth in two oligotrophic Canadian shield lakes was limited by nitrogen (N) or phosphorus (P). We also determined whether consumer-regenerated resources contributed substantially to net bacterial growth. Two types of dilution assays were conducted to determine the response of bacteria to nutrient enrichment: diluted whole water (DWW, 1:9 whole/filtered with 0.2 μm of filtered lake water) and diluted fractionated water (DFW, 1.0 μm prefiltered then diluted as above). Replicate bottles in each dilution assay received either N (50 μM), P (10 μM), or both N and P enrichments. Controls received no nutrients. Resource-saturated growth rates and grazing rates were estimated from a standard dilution-growth approach. Bacterial growth was stimulated by addition of P alone and in combination with N. Consumers regenerated sufficient resources to support up to half the bacterial growth rate, but the benefit derived from consumers was minor when compared to mortality. PMID:24185342

  17. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens

    PubMed Central

    Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.

    2016-01-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973

  18. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens.

    PubMed

    Gharajehdaghipour, Tazarve; Roth, James D; Fafard, Paul M; Markham, John H

    2016-01-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ(15)N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973

  19. Fate and Effects of Metals in River Biofilms

    NASA Astrophysics Data System (ADS)

    Lawrence, J. R.

    2002-12-01

    Studies were carried out to assess the influence of: nutrients, dissolved oxygen concentration (DO) and nickel (Ni) concentration on river biofilm development, structure, function and composition. Biofilms were cultivated in rotating annular reactors with river water at 0.5 mg/l or 7.5 mg/l DO, plus a combination of carbon, nitrogen and phosphorus (CNP), and with or without 0, 0.01, 0.05, 0.1, or 0.5 mg/l Ni. The effects of Ni were apparent in the elimination of cyanobacterial populations and reduced photosynthetic biomass in the biofilm. Application of lectin binding analyses indicated changes in exopolymer abundance and a shift in the glycoconjugate make up of the biofilms as well in the response to all treatments. Differences in exopolymer chemistry and community composition were detected between biofilms developed under each nutrient regime. This variation in biofilm chemistry was reflected in the sorption of nickel. Based on X-ray mapping and ICP-MS analyses the treatments C, N and P all resulted in increased (p < 0.05) sorption of nickel relative to control biofilms. X-ray mapping indicated a significant role for specific accumulator species. All concentrations of nickel resulted in reductions in carbon utilization spectra, although these were most significant at 0.1 and 0.5 mg/l corresponding to the drinking water and release rate concentrations for nickel respectively. In these cases the presence of CNP alleviated the negative effects of nickel. In the presence of CNP and at both DO levels, Ni negatively affected denitrification but had no effect on hexadecane mineralization or sulfate reduction. Analysis of total community DNA indicated abundant eubacterial 16S rDNA, whereas Archeae were not detected. Amplification of the alkB gene indicated a positive effect of nutrients and a negative effect of Ni. The nirS gene was not detected in samples treated with 0.5 mg/l Ni indicating a negative effect on specific populations of bacteria, such as denitrifiers

  20. Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies.

    PubMed

    Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Dirzo, Rodolfo

    2010-02-01

    Plant introductions and subsequent community shifts are known to affect nutrient cycling, but most such studies have focused on nutrient enrichment effects. The nature of plant-driven nutrient depletions and the mechanisms by which these might occur are relatively poorly understood. In this study we demonstrate that the proliferation of the commonly introduced coconut palm, Cocos nucifera, interrupts the flow of allochthonous marine subsidies to terrestrial ecosystems via an indirect effect: impact on birds. Birds avoid nesting or roosting in C. nucifera, thus reducing the critical nutrient inputs they bring from the marine environment. These decreases in marine subsidies then lead to reductions in available soil nutrients, decreases in leaf nutrient quality, diminished leaf palatability, and reduced herbivory. This nutrient depletion pathway contrasts the more typical patterns of nutrient enrichment that follow plant species introductions. Research on the effects of spatial subsidy disruptions on ecosystems has not yet examined interruptions driven by changes within the recipient community, such as plant community shifts. The ubiquity of coconut palm introductions across the tropics and subtropics makes these observations particularly noteworthy. Equally important, the case of C. nucifera provides a strong demonstration of how plant community changes can dramatically impact the supply of allochthonous nutrients and thereby reshape energy flow in ecosystems. PMID:20133852

  1. The effects of leaf litter nutrient pulses on Alliaria petiolata performance

    PubMed Central

    Carr, David E.

    2015-01-01

    Nutrient pulses can facilitate species establishment and spread in new habitats, particularly when one species more effectively uses that nutrient pulse. Biological differences in nutrient acquisition between native and exotic species may facilitate invasions into a variety of habitats including deciduous forest understories. Alliaria petiolata (Bieb.) Cavara & Grande is an important invader of deciduous forest understories throughout much of North America. These understory communities contain many species which perform the majority of their growth and reproduction before canopy closure in spring. Because A. petiolata is a wintergreen biennial that can be active during autumn and winter, it may utilize nutrients released from decaying leaf litter before its competitors. To investigate this we manipulated the timing of leaf litter addition (fall or spring) and experimentally simulated the nutrient pulse from decaying leaves using artificial fertilizer. To determine whether A. petiolata affected the abundance of understory competitors, we also removed A. petiolata from one treatment. A. petiolata that received early nutrients exhibited greater growth. Treatments receiving fall leaf litter or artificial nutrients had greater A. petiolata adult biomass than plots receiving spring nutrient additions (leaf litter or artificial nutrients). However, fall leaf litter addition had no effect on the richness of competitor species. Thus, wintergreen phenology may contribute to the spread of A. petiolata through deciduous forest understories, but may not explain community-level impacts of A. petiolata in deciduous forests. PMID:26312176

  2. The effects of leaf litter nutrient pulses on Alliaria petiolata performance.

    PubMed

    Heckman, Robert W; Carr, David E

    2015-01-01

    Nutrient pulses can facilitate species establishment and spread in new habitats, particularly when one species more effectively uses that nutrient pulse. Biological differences in nutrient acquisition between native and exotic species may facilitate invasions into a variety of habitats including deciduous forest understories. Alliaria petiolata (Bieb.) Cavara & Grande is an important invader of deciduous forest understories throughout much of North America. These understory communities contain many species which perform the majority of their growth and reproduction before canopy closure in spring. Because A. petiolata is a wintergreen biennial that can be active during autumn and winter, it may utilize nutrients released from decaying leaf litter before its competitors. To investigate this we manipulated the timing of leaf litter addition (fall or spring) and experimentally simulated the nutrient pulse from decaying leaves using artificial fertilizer. To determine whether A. petiolata affected the abundance of understory competitors, we also removed A. petiolata from one treatment. A. petiolata that received early nutrients exhibited greater growth. Treatments receiving fall leaf litter or artificial nutrients had greater A. petiolata adult biomass than plots receiving spring nutrient additions (leaf litter or artificial nutrients). However, fall leaf litter addition had no effect on the richness of competitor species. Thus, wintergreen phenology may contribute to the spread of A. petiolata through deciduous forest understories, but may not explain community-level impacts of A. petiolata in deciduous forests. PMID:26312176

  3. Localization-dependent and -independent roles of numb contribute to cell-fate specification in Drosophila.

    PubMed

    Bhalerao, Sheetal; Berdnik, Daniela; Török, Tibor; Knoblich, Juergen A

    2005-09-01

    During asymmetric cell division, protein determinants are segregated into one of the two daughter cells. The Numb protein acts as a segregating determinant during both mouse and Drosophila development. In flies, Numb localizes asymmetrically and is required for cell-fate specification in the central and peripheral nervous systems, as well as during muscle and heart development. Whether its asymmetric segregation is important to the performance of these functions is not firmly established. Here, we demonstrate that Numb acts both in a localization-dependent and in a localization-independent manner. We have generated numb mutants that affect only the asymmetric localization of the protein during mitosis. We demonstrate that asymmetric segregation of Numb into one of the two daughter cells is absolutely essential for cell-fate specification in the Drosophila peripheral nervous system. Numb localization is also essential in MP2 neuroblasts in the central nervous system and during muscle development. Surprisingly, in dividing ganglion mother cells or during heart development, Numb function is independent of its ability to segregate asymmetrically in mitosis. Our results suggest that two classes of asymmetric cell division exist, each with different requirements for asymmetric inheritance of cell-fate determinants. PMID:16139215

  4. Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs

    PubMed Central

    Jiménez-Rojo, Lucía; Granchi, Zoraide; Graf, Daniel; Mitsiadis, Thimios A.

    2012-01-01

    The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands, and teeth. Despite varying in number, shape, and function, all these ectodermal organs develop through continuous and reciprocal epithelial–mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein, and fibroblast growth factor signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues. PMID:22539926

  5. Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs.

    PubMed

    Jiménez-Rojo, Lucía; Granchi, Zoraide; Graf, Daniel; Mitsiadis, Thimios A

    2012-01-01

    The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands, and teeth. Despite varying in number, shape, and function, all these ectodermal organs develop through continuous and reciprocal epithelial-mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein, and fibroblast growth factor signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues. PMID:22539926

  6. Fate of linear alkylbenzene sulfonate in the Mississippi River

    USGS Publications Warehouse

    Tabor, C.F.; Barber, L.B., II

    1996-01-01

    The 2 800-km reach of the Mississippi River between Minneapolis, MN, and New Orleans, LA, was examined for the occurrence and fate of linear alkylbenzene sulfonate (LAS), a common anionic surfactant found in municipal sewage effluents. River water and bottom sediment were sampled in the summer and fall of 1991 and in the spring of 1992. LAS was analyzed using solid- phase extraction/derivatization/gas chromatography/mass spectrometry. LAS was present on all bottom sediments at concentrations ranging from 0.01 to 20 mg/kg and was identified in 21% of the water samples at concentrations ranging from 0.1 to 28.2 ??g/L. The results indicate that LAS is a ubiquitous contaminant on Mississippi River bottom sediments and that dissolved LAS is present mainly downstream from the sewage outfalls of major cities. The removal of the higher LAS homologs and external isomers indicates that sorption and biodegradation are the principal processes affecting dissolved LAS. Sorbed LAS appears to degrade slowly.

  7. Fate of trace organics in a wastewater effluent dependent stream.

    PubMed

    Dong, Bingfeng; Kahl, Alandra; Cheng, Long; Vo, Hao; Ruehl, Stephanie; Zhang, Tianqi; Snyder, Shane; Sáez, A Eduardo; Quanrud, David; Arnold, Robert G

    2015-06-15

    Trace organic compounds (TOrCs) in municipal wastewater effluents that are discharged to streams are of potential concern to ecosystem and human health. This study examined the fate of a suite of TOrCs and estrogenic activity in water and sediments in an effluent-dependent stream in Tucson, Arizona. Sampling campaigns were performed during 2011 to 2013 along the Lower Santa Cruz River, where TOrCs and estrogenic activity were measured in aqueous (surface) and solid (riverbed sediment) phases. Some TOrCs, including contributors to estrogenic activity, were rapidly attenuated with distance of travel in the river. Those TOrCs that are not sufficiently attenuated and percolate to ground water have in common low biodegradation probabilities and low octanol-water distribution ratios. Independent experiments showed that attenuation of estrogenic compounds may be due in part to indirect photolysis caused by formation of organic radicals from sunlight absorption. Hydrophobic TOrCs may accumulate in riverbed sediments during dry weather periods, but riverbed sediment quality is periodically affected through storm-related scouring during periods of heavy rainfall and runoff. Taken together, evidence suggests that natural processes can attenuate at least some TOrCs, reducing potential impacts to ecosystem and human health. PMID:25777953

  8. Fate of neptunium in an anaerobic, methanogenic microcosm.

    SciTech Connect

    Banaszak, J. E.

    1998-12-21

    Neptunium is found predominantly as Np(IV) in reducing environments, but Np(V) in aerobic environments. However, currently it is not known how the interplay between biotic and abiotic processes affects Np redox speciation in the environment. In order to evaluate the effect of anaerobic microbial activity on the fate of Np in natural systems, Np(V) was added to a microcosminoculated with anaerobic sediments from a metal-contaminated fresh water lake. The consortium included metal-reducing, sulfate-reducing, and methanogenic microorganisms, and acetate was supplied as the only exogenous substrate. Addition of more than 10{sup {minus}5} M Np did not inhibit methane production. Total Np volubility in the active microcosm, as well as in sterilized control samples, decreased by nearly two orders of magnitude. A combination of analytical techniques, including VIS-NIR absorption spectroscopy and XANES, identified Np(IV) as the oxidation state associated with the sediments. The similar results from the active microcosm and the abiotic controls suggest that microbian y produced Mn(II/HI) and Fe(II) may serve as electron donors for Np reduction.

  9. Exploration of physical and chemical cues on retinal cell fate.

    PubMed

    Zalis, Marina Castro; Johansson, Sebastian; Johansson, Fredrik; Johansson, Ulrica Englund

    2016-09-01

    Identification of the key components in the physical and chemical milieu directing donor cells into a desired phenotype is a requirement in the investigation of bioscaffolds for the advancement of cell-based therapies for retinal neurodegeneration. We explore the effect of electrospun poly-ε-caprolactone (PCL) fiber scaffold topography and functionalization and culture medium, on the behavior of mouse retinal cells. Dissociated mouse retinal post-natal cells were seeded on random or aligned oriented fibers, with or without laminin coating and cultured with either basic or neurotrophins enriched medium for 7days. Addition of laminin in combination with neurotrophins clearly promoted cell- morphology, fate, and neurite extension. Nanotopography per se significantly affected cell morphology, with mainly bipolar profiles on aligned fibers and more multipolar profiles on random fibers. Laminin induced a remarkable 90° switch of neurite orientation. Herewith, we demonstrate that the chemical cue is stronger than the physical cue for the orientation of retinal neurites and describe the requirement of both neurotrophins and extracellular matrix proteins for extended neurite outgrowth and formation of complex retinal neuronal networks. Therefore, tailor-made PCL fiber mats, which can be physically and chemically modified, indeed influence cell behavior and hence motivate further retinal restorative studies using this system. PMID:27497842

  10. Fate of dispersants associated with the deepwater horizon oil spill.

    PubMed

    Kujawinski, Elizabeth B; Kido Soule, Melissa C; Valentine, David L; Boysen, Angela K; Longnecker, Krista; Redmond, Molly C

    2011-02-15

    Response actions to the Deepwater Horizon oil spill included the injection of ∼771,000 gallons (2,900,000 L) of chemical dispersant into the flow of oil near the seafloor. Prior to this incident, no deepwater applications of dispersant had been conducted, and thus no data exist on the environmental fate of dispersants in deepwater. We used ultrahigh resolution mass spectrometry and liquid chromatography with tandem mass spectrometry (LC/MS/MS) to identify and quantify one key ingredient of the dispersant, the anionic surfactant DOSS (dioctyl sodium sulfosuccinate), in the Gulf of Mexico deepwater during active flow and again after flow had ceased. Here we show that DOSS was sequestered in deepwater hydrocarbon plumes at 1000-1200 m water depth and did not intermingle with surface dispersant applications. Further, its concentration distribution was consistent with conservative transport and dilution at depth and it persisted up to 300 km from the well, 64 days after deepwater dispersant applications ceased. We conclude that DOSS was selectively associated with the oil and gas phases in the deepwater plume, yet underwent negligible, or slow, rates of biodegradation in the affected waters. These results provide important constraints on accurate modeling of the deepwater plume and critical geochemical contexts for future toxicological studies. PMID:21265576

  11. Nutrient quality of fast food kids meals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure of children to kids’ meals at fast food restaurants is high; however, the nutrient quality of such meals has not been systematically assessed. We assessed the nutrient quality of fast food meals marketed to young children, i.e., "kids meals". The nutrient quality of kids’ meals was assessed...

  12. NUTRIENT CRITERIA DEVELOPMENT FOR R10 ECOREGIONS.

    EPA Science Inventory

    Excess nutrients in waters of the northwest are one of the top contributors to water quality impairment. EPA, states and Tribes lack quantifiable targets for nutrients in the water quality standards. Water quality standards for nutrients usually use narrative language, such as ...

  13. Nutrient Data Bases--Considerations for Educators.

    ERIC Educational Resources Information Center

    Hoover, Loretta W.; Pelican, Suzanne

    1984-01-01

    Examines sources and limitations of nutrient data and databases, and discusses some educational issues surrounding their selection and use in nutrient analysis programs. Tables illustrating the state of development of methods for nutrients in food, and selected United States Department of Agriculture (USDA) databases. (JN)

  14. Nutrient Management Behavior on Wisconsin Dairy Farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management plans for livestock operations should account for rates and timing of manure application to cropland, as well as how manure is integrated with other nutrient sources. Little is known, however, about actual farmer nutrient management practices and what changes may be needed for fa...

  15. Biomass density relationships of the seagrass Zostera noltii: A tool for monitoring anthropogenic nutrient disturbance

    NASA Astrophysics Data System (ADS)

    Cabaço, Susana; Machás, Raquel; Santos, Rui

    2007-09-01

    In order to assess how anthropogenic nutrient disturbance affects the populations of the seagrass Zostera noltii, the temporal variation of the stand biomass and shoot density expressed by the population-specific biomass-density relationships were studied along nutrient gradients associated with discharge from Waste Water Treatment Works, in two coastal systems of southern Portugal. Two sites were studied in Ria Formosa lagoon (Faro NW and Tavira) and one in the Arade estuary. Four stations were sampled along the nutrient gradient in each of two sites (Faro NW along 2 years, and Arade along 1 year) and two stations were sampled in Tavira. The Z. noltii population structure reflected the anthropogenic nutrient disturbance. The nutrient-disturbed stations showed significant correlations between biomass and density, whereas at nutrient-undisturbed stations the biomass-density data were uncorrelated. The Z. noltii population parameters derived from the temporal variation of the population structure, i.e. the slope of the biomass-density relationships, the coefficient of variation of biomass and the ratio of the maximum/minimum biomass increased with nutrient availability, whereas the intercept of the biomass-density relationships decreased with nutrient availability. These patterns resulted mostly from the higher variability of biomass at nutrient-disturbed stations as shoot density varied little among stations. The higher biomass variability may reflect both the beneficial effects (availability) and the detrimental effects (toxicity) of nutrients along the year. Very high concentrations of DIN (>400 μM) caused toxic effects on plants limiting the biomass development. The described relationships and patterns of variation may be used to assess the global nutrient disturbance level of areas within the coastal systems in southern Portugal. Validation of these patterns for other geographical areas and other seagrass species may provide a general valuable tool to assess

  16. Automated nutrient analyses in seawater

    SciTech Connect

    Whitledge, T.E.; Malloy, S.C.; Patton, C.J.; Wirick, C.D.

    1981-02-01

    This manual was assembled for use as a guide for analyzing the nutrient content of seawater samples collected in the marine coastal zone of the Northeast United States and the Bering Sea. Some modifications (changes in dilution or sample pump tube sizes) may be necessary to achieve optimum measurements in very pronounced oligotrophic, eutrophic or brackish areas. Information is presented under the following section headings: theory and mechanics of automated analysis; continuous flow system description; operation of autoanalyzer system; cookbook of current nutrient methods; automated analyzer and data analysis software; computer interfacing and hardware modifications; and trouble shooting. The three appendixes are entitled: references and additional reading; manifold components and chemicals; and software listings. (JGB)

  17. Spectral Quantitation Of Hydroponic Nutrients

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle

    1996-01-01

    Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.

  18. Dissolved Organic Matter in Arctic and Boreal Streams: Rates and Fates of Decomposition

    NASA Astrophysics Data System (ADS)

    Mutschlecner, A.; Harms, T.

    2015-12-01

    As high-latitude regions warm, new inputs of carbon from thawing permafrost may influence the carbon cycle. Some of this newly released carbon, bound up in molecules of dissolved organic matter (DOM), will be exported into streams and rivers where it may be incorporated into microbial biomass, released to the atmosphere as carbon dioxide, or exported downstream. The factors that control the fate of dissolved organic carbon (DOC) are not fully understood, nor are the seasonal and spatial dynamics of these relationships. We sampled six streams along an arctic-boreal gradient in interior Alaska, collecting water from under ice in April, during snowmelt (May), and in early summer (June). These samples were incubated in the laboratory to determine the fraction of DOC that is susceptible to microbial decomposition and the fraction released as carbon dioxide. Nitrogen and phosphorous additions were used to determine the effect of nutrient limitation on DOC processing. Percent DOC loss across sites ranged from 37-71% in April before snowmelt, 0-9% during snowmelt, and 0-53% in June. We observed no effect of nutrient addition on lability of DOC. Seasonal data are critical to predicting how the processing of DOC in streams will respond to changes in permafrost extent, as well as to changes in the timing of snowmelt and ice-off.

  19. Predator-Driven Nutrient Recycling in California Stream Ecosystems

    PubMed Central

    Munshaw, Robin G.; Palen, Wendy J.; Courcelles, Danielle M.; Finlay, Jacques C.

    2013-01-01

    Nutrient recycling by consumers in streams can influence ecosystem nutrient availability and the assemblage and growth of photoautotrophs. Stream fishes can play a large role in nutrient recycling, but contributions by other vertebrates to overall recycling rates remain poorly studied. In tributaries of the Pacific Northwest, coastal giant salamanders (Dicamptodon tenebrosus) occur at high densities alongside steelhead trout (Oncorhynchus mykiss) and are top aquatic predators. We surveyed the density and body size distributions of D. tenebrosus and O. mykiss in a California tributary stream, combined with a field study to determine mass-specific excretion rates of ammonium (N) and total dissolved phosphorus (P) for D. tenebrosus. We estimated O. mykiss excretion rates (N, P) by bioenergetics using field-collected data on the nutrient composition of O. mykiss diets from the same system. Despite lower abundance, D. tenebrosus biomass was 2.5 times higher than O. mykiss. Mass-specific excretion summed over 170 m of stream revealed that O. mykiss recycle 1.7 times more N, and 1.2 times more P than D. tenebrosus, and had a higher N:P ratio (8.7) than that of D. tenebrosus (6.0), or the two species combined (7.5). Through simulated trade-offs in biomass, we estimate that shifts from salamander biomass toward fish biomass have the potential to ease nutrient limitation in forested tributary streams. These results suggest that natural and anthropogenic heterogeneity in the relative abundance of these vertebrates and variation in the uptake rates across river networks can affect broad-scale patterns of nutrient limitation. PMID:23520520

  20. Effects of nutrient enrichment on mangrove leaf litter decomposition.

    PubMed

    Keuskamp, Joost A; Hefting, Mariet M; Dingemans, Bas J J; Verhoeven, Jos T A; Feller, Ilka C

    2015-03-01

    Nutrient enrichment of mangroves, a common phenomenon along densely populated coastlines, may negatively affect mangrove ecosystems by modifying internal carbon and nutrient cycling. The decomposition of litter exerts a strong influence on these processes and is potentially modified by eutrophication. This study describes effects of N and P enrichment on litter decomposition rate and mineralisation/immobilisation patterns. By making use of reciprocal litter transplantation experiments among fertiliser treatments, it was tested if nutrient addition primarily acts on the primary producers (i.e. changes in litter quantity and quality) or on the microbial decomposers (i.e. changes in nutrient limitation for decomposition). Measurements were done in two mangrove forests where primary production was either limited by N or by P, which had been subject to at least 5 years of experimental N and P fertilisation. Results of this study indicated that decomposers were always N-limited regardless of the limitation of the primary producers. This leads to a differential nutrient limitation between decomposers and primary producers in sites where mangrove production was P-limited. In these sites, fertilisation with P caused litter quality to change, resulting in a higher decomposition rate. This study shows that direct effects of fertilisation on decomposition through an effect on decomposer nutrient availability might be non-significant, while the indirect effects through modifying litter quality might be quite substantial in mangroves. Our results show no indication that eutrophication increases decomposition without stimulating primary production. Therefore we do not expect a decline in carbon sequestration as a result of eutrophication of mangrove ecosystems. PMID:25497680

  1. Nutrient enrichment coupled with sedimentation favors sea anemones over corals.

    PubMed

    Liu, Pi-Jen; Hsin, Min-Chieh; Huang, Yen-Hsun; Fan, Tung-Yung; Meng, Pei-Jie; Lu, Chung-Cheng; Lin, Hsing-Juh

    2015-01-01

    Fine sediments, which account for the majority of total fluvial sediment flux, have been suggested to degrade coral reefs on a global scale. Furthermore, sediment impacts can be exacerbated by extreme rainfall events associated with global climate change and anthropogenic nutrient enrichment. We report the findings from a series of mesocosm experiments exploring the effects of short-term sedimentation and nutrient enrichment on the interactions between the hard coral Acropora muricata, the sea anemone Mesactinia ganesis, and the green macroalga Codium edule. Mesocosms were manipulated to simulate either unimpacted reefs or reefs exposed to elevated levels of fine sediments for 10 or 14 days to simulate the effects of heavy rainfall. The first and second experiments were aimed to examine the effects of inorganic and organic sediments, respectively. The third experiment was designed to examine the interactive effects of nutrient enrichment and elevated sediment loads. Neither inorganic nor organic sediment loadings significantly affected the physiological performance of the coral, but, importantly, did reduce its ability to compete with other organisms. Photosynthetic efficiencies of both the green macroalga and the sea anemone increased in response to both sediment loadings when they were simultaneously exposed to nutrient enrichment. While organic sediment loading increased the nitrogen content of the green macroalga in the first experiment, inorganic sediment loading increased its phosphorus content in the second experiment. The coral mortality due to sea anemones attack was significantly greater upon exposure to enriched levels of organic sediments and nutrients. Our findings suggest that the combined effects of short-term sedimentation and nutrient enrichment could cause replacement of corals by sea anemones on certain coral reefs. PMID:25897844

  2. Nutrient Enrichment Coupled with Sedimentation Favors Sea Anemones over Corals

    PubMed Central

    Liu, Pi-Jen; Hsin, Min-Chieh; Huang, Yen-Hsun; Fan, Tung-Yung; Meng, Pei-Jie; Lu, Chung-Cheng; Lin, Hsing-Juh

    2015-01-01

    Fine sediments, which account for the majority of total fluvial sediment flux, have been suggested to degrade coral reefs on a global scale. Furthermore, sediment impacts can be exacerbated by extreme rainfall events associated with global climate change and anthropogenic nutrient enrichment. We report the findings from a series of mesocosm experiments exploring the effects of short-term sedimentation and nutrient enrichment on the interactions between the hard coral Acropora muricata, the sea anemone Mesactinia ganesis, and the green macroalga Codium edule. Mesocosms were manipulated to simulate either unimpacted reefs or reefs exposed to elevated levels of fine sediments for 10 or 14 days to simulate the effects of heavy rainfall. The first and second experiments were aimed to examine the effects of inorganic and organic sediments, respectively. The third experiment was designed to examine the interactive effects of nutrient enrichment and elevated sediment loads. Neither inorganic nor organic sediment loadings significantly affected the physiological performance of the coral, but, importantly, did reduce its ability to compete with other organisms. Photosynthetic efficiencies of both the green macroalga and the sea anemone increased in response to both sediment loadings when they were simultaneously exposed to nutrient enrichment. While organic sediment loading increased the nitrogen content of the green macroalga in the first experiment, inorganic sediment loading increased its phosphorus content in the second experiment. The coral mortality due to sea anemones attack was significantly greater upon exposure to enriched levels of organic sediments and nutrients. Our findings suggest that the combined effects of short-term sedimentation and nutrient enrichment could cause replacement of corals by sea anemones on certain coral reefs. PMID:25897844

  3. Nutrient Cycling in Piermont Marsh

    NASA Astrophysics Data System (ADS)

    Diaz, K.; Reyes, N.; Gribbin, S.; Newton, R.; Laporte, N.; Trivino, G.; Ortega, J.; McKee, K.; Sambrotto, R.

    2011-12-01

    We investigate the cycling of nutrients through a brackish tidal wetland about 40 km north of Manhattan in the Hudson River estuary. As part of a long-term ecological study of Piermont Marsh, a NOAA reference wetland managed by the NY State DEC, we are measuring dissolved inorganic nutrients on the Marsh surface and its drainage channels. The marsh occupies 400 acres along the southwest corner of Haverstraw Bay with approximately 2 km frontage to the estuary. It is supplied with nutrient-rich water and drained primarily along several tidal creeks and the hundreds of rivulets that feed them. During most tidal cycles the silty berm bounding the marsh is not topped. Human influence in the marsh's surrounding area has had profound effects, one of the most fundamental of which has been the shift from native grass species, predominantly Spartina alterniflora, to an invasive genotype of common reed, Phragmites australis. Along with this shift there have been changes in the root bed, the effective marsh interior and berm heights, the hydroperiod and, as a result, the ability of the marsh to be utilized by various types of Hudson estuary fish. The vegetative shift is believed to be anthropogenic, but the connection is not well understood, and it is not known what role biogeochemical perturbations are playing. We present two field seasons of nitrate, phosphate and silicate measurements from Sparkill Creek, a freshwater stream draining the surrounding highlands constitutes the northern boundary, two tidally driven creeks transect the Marsh from West to East: the Crumkill and an unnamed creek we have dubbed the "Tidal", Ludlow Ditch, a no-longer-maintained drainage channel grading gently from the northern part of the marsh to the South terminates in a wide tidal outlet that is its southern boundary. Net tidal cycle fluxes and fluxes resulting from runoff events are presented. Deviations from Redfield ratios and limiting nutrients are analyzed. Piermont Marsh data is compared

  4. Cool tadpoles from Arctic environments waste fewer nutrients - high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North.

    PubMed

    Liess, Antonia; Guo, Junwen; Lind, Martin I; Rowe, Owen

    2015-11-01

    Endothermic organisms can adapt to short growing seasons, low temperatures and nutrient limitation by developing high growth rates and high gross growth efficiencies (GGEs). Animals with high GGEs are better at assimilating limiting nutrients and thus should recycle (or lose) fewer nutrients. Longer guts in relation to body mass may facilitate higher GGE under resource limitation. Within the context of ecological stoichiometry theory, this study combines ecology with evolution by relating latitudinal life-history adaptations in GGE, mediated by gut length, to its ecosystem consequences, such as consumer-mediated nutrient recycling. In common garden experiments, we raised Rana temporaria tadpoles from two regions (Arctic/Boreal) under two temperature regimes (18/23 °C) crossed with two food quality treatments (high/low-nitrogen content). We measured tadpole GGEs, total nutrient loss (excretion + egestion) rates and gut length during ontogeny. In order to maintain their elemental balance, tadpoles fed low-nitrogen (N) food had lower N excretion rates and higher total phosphorous (P) loss rates than tadpoles fed high-quality food. In accordance with expectations, Arctic tadpoles had higher GGEs and lower N loss rates than their low-latitude conspecifics, especially when fed low-N food, but only in ambient temperature treatments. Arctic tadpoles also had relatively longer guts than Boreal tadpoles during early development. That temperature and food quality interacted with tadpole region of origin in affecting tadpole GGEs, nutrient loss rates and relative gut length, suggests evolved adaptation to temperature and resource differences. With future climate change, mean annual temperatures will increase. Additionally, species and genotypes will migrate north. This will change the functioning of Boreal and Arctic ecosystems by affecting consumer-mediated nutrient recycling and thus affect nutrient dynamics in general. Our study shows that evolved latitudinal adaption can

  5. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

    PubMed

    Cerozi, Brunno da Silva; Fitzsimmons, Kevin

    2016-11-01

    The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants. PMID:27575336

  6. Selection of nutrients to enhance biodegradation for the remediation of oil spilled on beaches

    SciTech Connect

    Safferman, S.I.

    1991-01-01

    Laboratory studies were conducted to determine the fate of fertilizers proposed for application to the Alaska shoreline in support of the Alaskan Oil Spill EPA Bioremediation Project. Fertilizer application is theorized to provide indigenous organisms with nutrients that appear to be limited on ocean beaches. The experiments were developed strictly to test the durability, release rates, and application procedures of a variety of fertilizer types. The effects of tidal movement on a beach was simulated by two separate conditions, static and dynamic. The static condition represented periods when the beach material was under water and turbulence was at a minimum. This condition was simulated in the laboratory by submerging the nutrient in a beaker of simulated sea water (with or without beach material depending on the nutrients). These experiments ran continuously over a 3-month period with water exchanges in accordance with a planned schedule. Nutrient concentrations were measured in the exchanged water. Dynamic conditions represented the forces on beach material as the water moved from the low to high tide and then back to the low tide. In the laboratory, the condition was simulated by applying the nutrients to beach material, which was piled in one end of a long narrow trayplaced on a rocker table. When the rocker table was operating and sufficient quantities of sea water had been added to cover the beach material, a gentle sloshing of the water over the materials resulted. These experiments generally lasted 1 to 2 hours during which time liquid samples were collected for nutrient analyses. Durability of the fertilizers was measured by visual observation and freeze/thaw determinations. The experimental setup was economical and performed well.

  7. Inorganic nutrients, bacteria, and the microbial loop.

    PubMed

    Caron, D A

    1994-09-01

    The realization that natural assemblages of planktonic bacteria may acquire a significant fraction of their nitrogen and phosphorus via the uptake of dissolved inorganic nutrients has modified our traditional view of these microorganisms as nutrient remineralizers in plankton communities. Bacterial uptake of inorganic nitrogen and phosphorus may place bacteria and phytoplankton in competition for growth-limiting nutrients, rather than in their traditional roles as the respective "source" and "sink" for these nutrients in the plankton. Bacterial nutrient uptake also implies that bacterivorous protozoa may play a pivotal role in the remineralization of these elements in the microbial loop. The overall contribution of bacterial utilization of inorganic nutrients to total nutrient uptake in the ocean is still poorly understood, but some generalizations are emerging with respect to the geographical areas and community physiological conditions that might elicit this behavior. PMID:24186457

  8. Nutrient Management in Recirculating Hydroponic Culture

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  9. ASSESSMENT OF THE SUBSURFACE FATE OF MONOETHANOLAMINE

    SciTech Connect

    James A. Sorensen; John R. Gallagher; Lori G. Kays

    2000-05-01

    Burial of amine reclaimer unit sludges and system filters has resulted in contamination of soil at the CanOxy Okotoks decommissioned sour gas-processing plant with amines, amine byproducts, and salts. A three-phase research program was devised to investigate the natural attenuation process that controls the subsurface transport and fate of these contaminants and to apply the results toward the development of a strategy for the remediation of this type of contamination in soils. Phase I experimental activities examined interactions between monoethanolamine (MEA) and sediment, the biodegradability of MEA in soils at various concentrations and temperatures, and the biodegradability of MEA sludge contamination in a soil slurry bioreactor. The transport and fate of MEA in the subsurface was found to be highly dependant on the nature of the release, particularly MEA concentration and conditions of the subsurface environment, i.e., pH, temperature, and oxygen availability. Pure compound biodegradation experiments in soil demonstrated rapid biodegradation of MEA under aerobic conditions and moderate temperatures (>6 C). Phase II landfarming activities confirmed that these contaminants are readily biodegradable in soil under ideal laboratory conditions, yet considerable toxicity was observed in the remaining material. Examination of water extracts from the treated soil suggested that the toxicity is water-soluble. Phase II activities led to the conclusion that landfarming is not the most desirable bioremediation technique; however, an engineered biopile with a leachate collection system could remove the remaining toxic fraction from the soil. Phase III was initiated to conduct field-based experimental activities to examine the optimized remediation technology. A pilot-scale engineered biopile was constructed at a decommissioned gas-sweetening facility in Okotoks, Alberta, Canada. On the basis of a review of the analytical and performance data generated from soil and

  10. INTERNALIZATION AND FATE OF INDIVIDUAL MANUFACTURED NANOMATERIAL WITHIN LIVING CELLS

    EPA Science Inventory

    Using quantitative fluorescence imaging with single molecule sensitivity, combined with molecular biology techniques, we have been investigating the cellular interactions and fate of one nanoparticle or nanoscale aggregate at a time, identifying molecular interactions and cellula...

  11. WATERSHED AND INSTREAM MODELING OF SEDIMENT FATE AND TRANSPORT

    EPA Science Inventory

    To effectively manage watersheds, the assessment of watershed ecological response to physicochemical stressors such as sediments over broad spatial and temporal scales is needed. Assessments at this level of complexity requires the development of sediment transport and fate model...

  12. CHARACTERISTICS, DEPOSITION AND FATE OF INHALED PARTICULATE MATTER

    EPA Science Inventory

    Accurate estimates of absorption and fate for particulate matter in the respiratory track are difficult because of complexities in particle composition and morphology. Several deficiencies in information further complicate the ability to make accurate estimates. Available models ...

  13. The Importance of Soil Protein Fate to PIP Crop Registration

    EPA Science Inventory

    Plant Incorporated Protectant (PIP) crops are registered under the authority of the Federal Insecticide Fungicide and Rodenticide Act (FIFRA) and as part of this registration certain environmental fate information is required to properly judge the environmental compatibility of n...

  14. Fate of High Priority Pesticides During Drinking Water Treatment

    EPA Science Inventory

    The fate of organophosphorus (OP) pesticides in the presence of chlorinated oxidants was investigated under drinking water treatment conditions. In the presence of aqueous chlorine, intrinsic rate coefficients were found for the reaction of hypochlorous acid and hypochlorite ion ...

  15. Investigating the Toxicity and Environmental Fate of Graphene Nanomaterials

    EPA Science Inventory

    The Hersam Laboratory at Northwestern University works with the Center for Environmental Implications of Nanotechnology and the United States Environmental Protection Agency to study the toxicity and environmental fate of emergent nanomaterials, specifically carbon-based nanomate...

  16. UNDERSTANDING MERCURY FATE AND TRANSPORT FROM SOURCES TO DEPOSITION

    EPA Science Inventory

    ORD's atmospheric mercury research produces information to improve the understanding of mercury transport and fate from the point of emission into the atmosphere to its deposition to terrestrial and aquatic ecosystems. Specifically, this research will produce source emission and...

  17. ENANTIOMER-SPECIFIC FATE AND EFFECTS OF MODERN CHIRAL PESTICIDES

    EPA Science Inventory

    This slide presentation presents enantiomer-specific fate and effects of modern chiral pesticides. The research areas presented were analytical separation of enantiomers; environmental occurrence of enantiomers; transformation rates and enantioselectivity; bioaccumulation; and e...

  18. Combining insoluble and soluble factors to steer stem cell fate

    NASA Astrophysics Data System (ADS)

    Dingal, P. C. Dave P.; Discher, Dennis E.

    2014-06-01

    Materials-based control of stem cell fate is beginning to be rigorously combined with traditional soluble-factor approaches to better understand the cells' behaviour and maximize their potential for therapy.

  19. MULTIMEDIA CONTAMINANT FATE, TRANSPORT, AND EXPOSURE MODEL (MMSOILS)

    EPA Science Inventory

    The Multimedia Contaminant Fate, Transport, and Exposure Model (MMSOILS) estimates the human exposure and health risk associated with releases of contamination from hazardous waste sites. The methodology consists of a multimedia model that addresses the transport of a chemical in...

  20. Growth physiology and fate of diatoms in the ocean: a review

    NASA Astrophysics Data System (ADS)

    Sarthou, Géraldine; Timmermans, Klaas R.; Blain, Stéphane; Tréguer, Paul

    2005-01-01

    Diatoms are a major component of phytoplankton community. They tend to dominate under natural high-nutrient concentrations, as well as during artificial Fe fertilisation experiments. They are main players in the biogeochemical cycle of carbon (C), as they can account for 40% of the total primary production in the Ocean and dominate export production, as well as in the biogeochemical cycles of the other macro-nutrients, nitrogen (N), phosphorus (P), and silicon (Si). Another important nutrient is Fe, which was shown to have a direct or indirect effect on nearly all the biogeochemical parameters of diatoms. In the present paper, an inventory is made of the growth, physiology and fate of many diatom species, including maximum growth rate, photosynthetic parameters (maximum specific rate of photosynthesis, photosynthetic efficiency and light adaptation parameter), nutrient limitation (half-saturation constant for growth/uptake), cellular elemental ratios, and loss terms (sinking rates, autolysis rates and grazing rates). This is a first step for improvement of the parameterisation of physiologically based phytoplankton growth and global 3D carbon models. This review is a synthesis of a large number of published laboratory experiments using monospecific cultures as well as field data. Our compilation confirms that size is an important factor explaining variations of biogeochemical parameters of diatoms (e.g. maximum growth rate, photosynthesis parameters, half-saturation constants, sinking rate, and grazing). Some variations of elemental ratios can be explained by adaptation of intracellular requirements or storage of Fe, and P, for instance. The important loss processes of diatoms pointed out by this synthesis are (i) sinking, as single cells as well as through aggregation which generally greatly increases sinking rate, (ii) cell autolysis, which can significantly reduce net growth rates, especially under nutrient limitation when gross growth rates are low, and (iii

  1. Fate and significance of major degradation products of atrazine in the soil environment

    SciTech Connect

    Coats, J.R.; Kruger, E.L.; Baluch, H.U.

    1995-12-01

    Complete metabolism studies using radiotracers were performed in the laboratory to determine the fate of atrazine and major degradation products, deethylatrazine, deisopropylatrazine, and hydroxyatrazine, in soil as affected by soil type, soil moisture, soil depth, and previous long-term atrazine history. Several soil factors have been shown to significantly affect the fate of these compounds in soil. Persistence of the 4 compounds was significantly increased in subsurface soils. Hydroxyatrazine was the most persistent of the 4 compounds in surface and subsurface soil. Desiopropylatrazine was the most susceptible to mineralization in both surface and subsurface soil. A higher amount of bound residues were formed in deisopropylatrazine-treated soils. Soil moisture significantly affects the persistence of atrazine, deethylatrazine and deisopropylatrazine with decreased persistence under saturated soil moisture conditions. Persistence of deethylatrazine was positively correlated with percent clay and negatively correlated with percent organic matter. In soils with long-term atrazine history, deethylatrazine undergoes enhanced degradation. In soil column studies, the relative movement of deethylatrazine was greater than that of atrazine.

  2. Emerging Pollutants - Part I: Occurrence, Fate and Transport.

    PubMed

    Qiu, Lang; Dong, Zhanfeng; Sun, Huan; Li, Hongxiang; Chang, Chein-Chi

    2016-10-01

    Part I: Occurrence, Fate, and Transport (this review) is a sequel of Emerging Pollutants. This review compiles research in 2015 for investigating emerging pollutants in wastewater and environmental sources of emerging pollutants. It investigates the occurrence, fate, transport of emerging pollutants in the environment. This review further discusses the monitoring approaches, modeling, and toxicological impacts of these compounds that are relevant to wastewater. PMID:27620111

  3. Assessment of contaminant fate in catchments using a novel integrated hydrobiogeochemical-multimedia fate model.

    PubMed

    Nizzetto, Luca; Butterfield, Dan; Futter, Martyn; Lin, Yan; Allan, Ian; Larssen, Thorjørn

    2016-02-15

    Models for pollution exposure assessment typically adopt an overly simplistic representation of geography, climate and biogeochemical processes. This strategy is unsatisfactory when high temporal resolution simulations for sub-regional spatial domains are performed, in which parameters defining scenarios can vary interdependently in space and time. This is, for example, the case when assessing the influence of biogeochemical processing on contaminant fate. Here we present INCA-Contaminants, the Integrated Catchments model for Contaminants; a new model that simultaneously and realistically solves mass balances of water, carbon, sediments and contaminants in the soil-stream-sediment system of catchments and their river networks as a function of climate, land use/management and contaminant properties. When forced with realistic climate and contaminant input data, the model was able to predict polychlorinated biphenyls (PCBs) concentrations in multiple segments of a river network in a complex landscape. We analyzed model output sensitivity to a number of hydro-biogeochemical parameters. The rate of soil organic matter mineralization was the most sensitive parameter controlling PCBs levels in river water, supporting the hypothesis that organic matter turnover rates will influence re-mobilization of previously deposited PCBs which had accumulated in soil organic matrix. The model was also used to project the long term fate of PCB 101 under two climate scenarios. Catchment diffuse run-off and riverine transport were the major pathways of contaminant re-mobilization. Simulations show that during the next decade the investigated boreal catchment will shift from being a net atmospheric PCB sink to a net source for air and water, with future climate perturbation having little influence on this trend. Our results highlight the importance of using credible hydro-biogeochemical simulations when modeling the fate of hydrophobic contaminants. PMID:26674684

  4. Dorsal eye selector pannier (pnr) suppresses the eye fate to define dorsal margin of the Drosophila eye

    PubMed Central

    Oros, Sarah M.; Tare, Meghana; Kango-Singh, Madhuri; Singh, Amit

    2010-01-01

    Axial patterning is crucial for organogenesis. During Drosophila eye development, dorso-ventral (DV) axis determination is the first lineage restriction event. The eye primordium begins with a default ventral fate, on which the dorsal eye fate is established by expression of the GATA-1 transcription factor pannier (pnr). Earlier, it was suggested that loss of pnr function induces enlargement in the dorsal eye due to ectopic equator formation. Interestingly, we found that in addition to regulating DV patterning, pnr suppresses the eye fate by downregulating the core retinal determination genes eyes absent (eya), sine oculis (so) and dacshund (dac) to define the dorsal eye margin. We found that pnr acts downstream of Ey and affect the retinal determination pathway by suppressing eya. Further analysis of the “eye suppression” function of pnr revealed that this function is likely mediated through suppression of the homeotic gene teashirt (tsh) and is independent of homothorax (hth), a negative regulator of eye. Pnr expression is restricted to the peripodial membrane on the dorsal eye margin, which gives rise to head structures around the eye, and pnr is not expressed in the eye disc proper that forms the retina. Thus, pnr has dual function, during early developmental stages pnr is involved in axial patterning whereas later it promotes the head specific fate. These studies will help in understanding the developmental regulation of boundary formation of the eye field on the dorsal eye margin. PMID:20691679

  5. Fate of blood meal iron in mosquitos

    PubMed Central

    Zhou, Guoli; Kohlhepp, Pete; Geiser, Dawn; Frasquillo, Maria del Carmen; Vazquez-Moreno, Luz; Winzerling, Joy J.

    2007-01-01

    Iron is an essential element of living cells and organisms as a component of numerous metabolic pathways. Hemoglobin and ferric-transferrin in vertebrate host blood are the two major iron sources for female mosquitoes. We used inductively coupled plasma mass spectrometry (ICP-MS) and radioisotope-labeling to quantify the fate of iron supplied from hemoglobin or as transferrin in Aedes aegypti. At the end of the first gonotrophic cycloe, ~87% of the ingested total meal heme iron was excreted, while 7% was distributed into the eggs and 6% was stored in different tissues. In contrast, ~8% of the iron provided as transferrin was excreted and of that absorbed, 77% was allocated to the eggs and 15% distributed in the tissues. Further analyses indicate that of the iron supplied in a blood meal, ~7% appears in the eggs and of this iron 98% is from hemoglobin and 2% from ferric-transferrin. Whereas of iron from a blood meal retained in body of the female, ~97% is from heme and <1 % is from transferrin. Evaluation of iron-binding proteins in hemolymph and egg following intake of 59Fe-transferrin revealed that ferritin is iron loaded in these animals, and indicate that this protein plays a critical role in meal iron transport and iron storage in eggs in A. aegypti. PMID:17689557

  6. Reprogramming cell fate: a changing story

    PubMed Central

    Chin, Michael T.

    2014-01-01

    Direct reprogramming of adult, lineage-determined cells from one cell fate to another has long been an elusive goal in developmental biology. Recent studies have demonstrated that forced expression of lineage-specific transcription factors in various differentiated cell types can promote the adoption of different lineages. These seminal findings have the potential to revolutionize the field of regenerative medicine by providing replacement cells for various degenerative disorders. Current reprogramming protocols, however, are inefficient in that relatively few cells in a given population can be made to undergo reprogramming and the completeness and extent of reprogramming that occurs has been questioned. At present, the fundamental molecular mechanisms involved are still being elucidated. Although the potential clinical applications are extensive, these issues will need to be addressed before direct reprogramming may be used clinically. This review will give an overview of pioneering studies in the field, will describe what is known about direct reprogramming to specific lineage types, will summarize what is known about the molecular mechanisms involved in reprogramming and will discuss challenges for the future. PMID:25364753

  7. The Fate of Ejecta from Hyperion

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Ejecta from Saturn's moon Hyperion is subject to powerful perturbations from nearby Titan, which control its ultimate fate. We have performed numerical integrations to simulate a simplified system consisting of Saturn (including oblateness), Tethys, Dione, Titan, Hyperion, Iapetus, and the Sun (treated simply as a massive satellite). In addition, 1050 massless particles were ejected from Hyperion at five different points in its orbit. These particles started more or less evenly distributed over latitude and longitude, 1 km above Hyperion's mean radius, and were ejected radially outward at speeds 10\\% faster than its escape speed. Only about 4\\% of the particles survived for the 100,000-year course of the integration, while $\\sim$8/% escaped from the Saturnian system. Titan accreted $\\sim$77\\% of all the particles, while Hyperion reaccreted only $\\sim$5\\%. This may help to account for Hyperion's rugged shape. Three particles hit Rhea and 2 hit Dione, but $\\sim$5\\% of the particles were removed when they penetrated within 150,000 km of Saturn. Most removals occurred within the first few thousand years. In general, ejecta from Hyperion are much more widely scattered than previously thought, and cross the orbits of all of the other classical satellites.

  8. MicroRNAs: regulators of neuronal fate

    PubMed Central

    Sun, Alfred X; Crabtree, Gerald R; Yoo, Andrew S

    2013-01-01

    Mammalian neural development has been traditionally studied in the context of evolutionarily conserved signaling pathways and neurogenic transcription factors. Recent studies suggest that microRNAs, a group of highly conserved non-coding regulatory small RNAs also play essential roles in neural development and neuronal function. A part of their action in the developing nervous system is to regulate subunit compositions of BAF complexes (ATP-dependent chromatin remodeling complexes), which appear to have dedicated functions during neural development. Intriguingly, ectopic expression of a set of brain-enriched microRNAs, miR-9/9* and miR-124 that promote the assembly of neuron-specific BAF complexes, convert the nonneuronal fate of human dermal fibroblasts towards post-mitotic neurons, thereby revealing a previously unappreciated instructive role of these microRNAs. In addition to these global effects, accumulating evidence indicate that many microRNAs could also function locally, such as at the growth cone or at synapses modulating synaptic activity and neuronal connectivity. Here we discuss some of the recent findings about microRNAs’ activity in regulating various developmental stages of neurons. PMID:23374323

  9. Environmental fate of tungsten from military use.

    PubMed

    Clausen, Jay L; Korte, Nic

    2009-04-01

    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth--at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (<1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use. PMID:19217645

  10. Proliferating cell nuclear antigen in neutrophil fate.

    PubMed

    Witko-Sarsat, Véronique; Ohayon, Delphine

    2016-09-01

    The life span of a neutrophil is a tightly regulated process as extended survival is beneficial for pathogen elimination and cell death necessary to prevent cytotoxic content release from activated neutrophils at the inflammatory site. Therefore, the control between survival and death must be a dynamic process. We have previously described that proliferating cell nuclear antigen (PCNA) which is known as a nuclear protein pivotal in DNA synthesis, is a key element in controlling neutrophil survival through its association with procaspases. Contrary to the dogma which asserted that PCNA has a strictly nuclear function, in mature neutrophils, PCNA is present exclusively within the cytosol due to its nuclear export at the end of the granulocytic differentiation. More recent studies are consistent with the notion that the cytosolic scaffold of PCNA is aimed at modulating neutrophil fate rather than simply preventing death. Ultimately, targeting neutrophil survival might have important applications not just in the field of immunology and inflammation, but also in hematology and transfusion. The neutrophil emerges as a unique and powerful cellular model to unravel the basic mechanisms governing the cell cycle-independent functions of PCNA and should be considered as a leader of the pack. PMID:27558345

  11. On the fate of anthropogenic nitrogen

    PubMed Central

    Schlesinger, William H.

    2009-01-01

    This article provides a synthesis of literature values to trace the fate of 150 Tg/yr anthropogenic nitrogen applied by humans to the Earth's land surface. Approximately 9 TgN/yr may be accumulating in the terrestrial biosphere in pools with residence times of ten to several hundred years. Enhanced fluvial transport of nitrogen in rivers and percolation to groundwater accounts for ≈35 and 15 TgN/yr, respectively. Greater denitrification in terrestrial soils and wetlands may account for the loss of ≈17 TgN/yr from the land surface, calculated by a compilation of data on the fraction of N2O emitted to the atmosphere and the current global rise of this gas in the atmosphere. A recent estimate of atmospheric transport of reactive nitrogen from land to sea (NOx and NHx) accounts for 48 TgN/yr. The total of these enhanced sinks, 124 TgN/yr, is less than the human-enhanced inputs to the land surface, indicating areas of needed additional attention to global nitrogen biogeochemistry. Policy makers should focus on increasing nitrogen-use efficiency in fertilization, reducing transport of reactive N to rivers and groundwater, and maximizing denitrification to its N2 endproduct. PMID:19118195

  12. MicroRNAs as novel regulators of stem cell fate

    PubMed Central

    Choi, Eunhyun; Choi, Eunmi; Hwang, Ki-Chul

    2013-01-01

    Mounting evidence in stem cell biology has shown that microRNAs (miRNAs) play a crucial role in cell fate specification, including stem cell self-renewal, lineage-specific differentiation, and somatic cell reprogramming. These functions are tightly regulated by specific gene expression patterns that involve miRNAs and transcription factors. To maintain stem cell pluripotency, specific miRNAs suppress transcription factors that promote differentiation, whereas to initiate differentiation, lineage-specific miRNAs are upregulated via the inhibition of transcription factors that promote self-renewal. Small molecules can be used in a similar manner as natural miRNAs, and a number of natural and synthetic small molecules have been isolated and developed to regulate stem cell fate. Using miRNAs as novel regulators of stem cell fate will provide insight into stem cell biology and aid in understanding the molecular mechanisms and crosstalk between miRNAs and stem cells. Ultimately, advances in the regulation of stem cell fate will contribute to the development of effective medical therapies for tissue repair and regeneration. This review summarizes the current insights into stem cell fate determination by miRNAs with a focus on stem cell self-renewal, differentiation, and reprogramming. Small molecules that control stem cell fate are also highlighted. PMID:24179605

  13. Top-down and bottom-up control of stream periphyton: Effects of nutrients and herbivores

    SciTech Connect

    Rosemond, A.D. ); Mulholland, P.J.; Elwood, J.W. )

    1993-06-01

    Two experiments determineD the relative effects of herbivory and nutrients on an algal community in in a stream having effectively two trophic levels: primary producers and herbivorous snails. The first study (1989), in streamside channels, tested the effects of three factors: (1) stream water nitrogen (N), (2) phosphorus (P), and (3) snail grazing, on periphyton biomass, productivity, and community composition. The second study (1990), conducted in situ, tested the effects of snail grazing and nutrients (N + P). In the 1989 study, nutrients had positive effects, and herbivores had negative effects, on algal biomass and primary productivity. Likewise, both nutrients and snail grazing exerted effects (+ and [minus], respectively) on biomass measured in the 1990 study. Grazed communities, dominated by chlorophytes and cyanophytes, were overgrown by diatoms when herbivores were removed. Algal species , reduced the most by herbivores, were increased most by nutrient addition, and vice versa, suggesting a trade-off between resistance to herbivory and nutrient-saturated growth rates. The greatest changes in periphyton structure or function were observed when both N and P were added and simultaneously, grazers were removed, in contrast to lesser effects when nutrients were added under grazed conditions or grazers were removed at low nutrient levels, indicating dual control by both factors. Nutrient addition also positively affected snail growth in both experiments, indicating tight coupling between herbivore and algal growth (top-down effects) and that bottom-up factors that directly affected plant growth could also indirectly affect consumers belonging to higher trophic levels. Indices showed that the relative strength of top-down and bottom-up factors varied among biomass and productivity parameters and that top-down and bottom-up effects, alone, were less important than their combined effects. 67 refs., 8 figs., 7 tabs.

  14. Transient dynamics of pelagic producer-grazer systems in a gradient of nutrients and mixing depths.

    PubMed

    Jäger, Christoph G; Diehl, Sebastian; Matauschek, Christian; Klausmeier, Christopher A; Stibor, Herwig

    2008-05-01

    Phytoplankton-grazer dynamics are often characterized by long transients relative to the length of the growing season. Using a phytoplankton-grazer model parameterized for Daphnia pulex with either flexible or fixed algal carbon:nutrient stoichiometry, we explored how nutrient and light supply (the latter by varying depth of the mixed water column) affect the transient dynamics of the system starting from low densities. The system goes through an initial oscillation across nearly the entire light-nutrient supply space. With flexible (but not with fixed) algal stoichiometry, duration of the initial algal peak, timing and duration of the subsequent grazer peak, and timing of the algal minimum are consistently accelerated by nutrient enrichment but decelerated by light enrichment (decreasing mixing depth) over the range of intermediate to shallow mixing depths. These contrasting effects of nutrient vs. light enrichment are consequences of their opposing influences on food quality (algal nutrient content): algal productivity and food quality are positively related along a nutrient gradient but inversely related along a light gradient. Light enrichment therefore slows down grazer growth relative to algal growth, decelerating oscillatory dynamics; nutrient enrichment has opposite effects. We manipulated nutrient supply and mixing depth in a field enclosure experiment. The experimental results were qualitatively much more consistent with the flexible than with the fixed stoichiometry model. Nutrient enrichment increased Daphnia peak biomass, decreased algal minimum biomass, decreased the seston C:P ratio, and accelerated transient oscillatory dynamics. Light enrichment (decreasing mixing depth) produced the opposite patterns, except that Daphnia peak biomass increased monotonously with light enrichment, too. Thus, while the model predicts the possibility of the "paradox of energy enrichment" (a decrease in grazer biomass with light enrichment) at high light and low

  15. Herbivores and nutrients control grassland plant diversity via light limitation.

    SciTech Connect

    Borer, Elizabeth T.; et al, et al

    2014-01-01

    Human alterations to nutrient cycles1,2 and herbivore communities3–7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8,9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  16. Changes in the nutrient content of american diets

    PubMed Central

    2011-01-01

    As obesity and being overweight continue to increase in the United States, public concern is growing about the quality of American diets. We compare the changes in nutrients contributed by major food groups in the periods 1953-1980 and 1981-2008 and find that there is reduced cholesterol intake and increased calcium intake, but the levels of food energy and total fats increase substantially. To understand how economic factors affect the overall nutritional quality of American diets, we estimate a complete food demand system and conduct a nutrient demand analysis. Among our findings, we conclude that some price manipulations such as subsidizing fruits and vegetables could be effective to increase produce consumption, but the effects of taxing fats to reduce the consumption of fats could be limited. Increasing income would improve intakes of nutrients such as calcium and various vitamins (likely now insufficient), but intakes of nutrients such as energy, saturated fats, and cholesterol (likely now excessive) would also rise with increased income. PMID:22828122

  17. Examination of relation between nutrient components and fruits: biplot approach.

    PubMed

    Atakan, Cemal; Alkan, Baris; Sahin, Afsin

    2009-01-01

    Adequate intake of fruits and vegetables as part of the daily diet may help prevent major diseases. Low fruit intake is a major risk factor for cancer, coronary heart disease and stroke. The World Health Organization recommends eating at least five portions of a variety of fruit, which is nearly 400 g/day. Essential nutrients, water, carbohydrates, oils and vitamins are needed in appropriate quantities in order to have a well-functioning body. In this study we try to carry out a food composition study to identify and determine the chemical nature of the organic and inorganic macro-nutrient and micro-nutrient properties of the main fruit types that affect human nature, by a biplot graphical approach. The biplot can be considered as multivariate equivalents of scatter plots that have been used for graphically analyzing bivariate data. Biplot approaches show a simultaneous display of fruits and nutrient components in low dimensions. In the present study, the theory of biplot and different types of biplot will be given and than an application of the biplot approach will be applied to the real data. PMID:19235615

  18. Masting in whitebark pine (Pinus albicaulis) depletes stored nutrients.

    PubMed

    Sala, Anna; Hopping, Kelly; McIntire, Eliot J B; Delzon, Sylvain; Crone, Elizabeth E

    2012-10-01

    • In masting trees, synchronized, heavy reproductive events are thought to deplete stored resources and to impose a replenishment period before subsequent masting. However, direct evidence of resource depletion in wild, masting trees is very rare. Here, we examined the timing and magnitude (local vs individual-level) of stored nutrient depletion after a heavy mast event in Pinus albicaulis. • In 2005, the mast year, we compared seasonal changes in leaf and sapwood nitrogen (N) and phosphorus (P) concentrations and leaf photosynthetic rates in cone-bearing branches, branches that never produced cones, and branches with experimentally removed cones. We also compared nutrient concentrations in cone branches and branches that had never had cones between 2005 and 2006, and measured tree ring width and new shoot growth during 2005. • During the mast year, N or P depletion occurred only in tissue fractions of reproductive branches, where photosynthetic rates were reduced. However, by the end of the following year, nutrients were depleted in all branches, indicating individual-level resource depletion. New shoot and radial growth were not affected by masting. • We provide direct evidence that mast events in wild trees deplete stored nutrients. Our results highlight the importance of evaluating reproductive costs over time and at the individual level. PMID:22889129

  19. Modelling and simulation of nutrient dispersion from coated fertilizer granules

    NASA Astrophysics Data System (ADS)

    Razali, Radzuan; Daud, Hanita; Nor, Shafiq Mohd.

    2014-10-01

    The usage of Controlled-Release Fertilizer (CRF) is essential in plants and crops to fulfill the need and requirement for the modern agriculture which now feeds 6 billion people. Therefore modeling and simulation of nutrient release from coated fertilizer has become the best method to study the behavior of some parameters toward water saturation in and nutrient release from the coated-fertilizer granule. This paper is the improvement development of modeling and computer simulation by Basu [1] which include some of the factors affecting the water saturation time and nutrient release time from a coated-fertilizer. The effect of granule radius, the diffusivity of water and nutrient, the temperature of surrounding, the contact areas and the characteristic of the coating are studied and the simulation was developed using MATLAB software. The studies and understanding of this project is very important and useful especially to determine the important parameters in the manufacturing process of the coated-fertilizer granule and also will be useful for the farmers/users in the selection of the best fertilizers for their crops.

  20. Hydrological and Biogeochemical Controls on the Fate of Dissolved Organic Matter in Large Drainage Networks: The Pulse-Shunt Concept

    NASA Astrophysics Data System (ADS)

    Saiers, J. E.; Raymond, P. A.; Sobczak, W. V.; Hoyle, J. B.

    2014-12-01

    Dissolved organic matter (DOM) is central to the ecology and chemistry of inland waters as an energy and nutrient source, transporter of heavy metals and other pollutants, and a control on light attenuation. In this research, we examine the manner in which hydrologic variation interacts with biogeochemical processes to affect the utilization and concentrations of DOM throughout streams and rivers of a large drainage basin. The Pulse-Shunt Concept (PSC) forms the framework for our analysis. The PSC is based, in part, on field observations of pulsed inputs of terrestrial DOM to streams of headwater catchments during high-discharge events that are associated with rainfall and snowmelt. The pulse is followed by the shunt, which occurs as rising flows rapidly transmit terrestrially derived DOM from headwater streams to larger streams and rivers of the drainage network. Owing to the reduction in channel residence times, the shunt perturbs the downstream gradient in DOM lability and compositional diversity established under base-flow conditions, leading to the riverine export of biochemically reactive DOM that has retained its terrestrial signature. We explore the fate of terrestrial DOM subsidies in context of the PSC by developing a simple model that routes water and DOM through an idealized 200,000 km2 basin. This basin is drained by a dendritic channel network comprised of 30,000 first- through seventh-order streams that ultimately feed a 500-km long, eighth-order river. Published scaling laws are used to specify the numbers, lengths, and connectivities of the stream segments, while the routing algorithm describes the precipitation-induced delivery of terrestrial DOM to headwater reaches and the down-network changes in DOM concentrations resulting from rate-limited decomposition and mixing of waters from different reaches. Results of model simulations conducted to date underscore the dominant contribution of low-frequency precipitation events to the annual subsidy of

  1. Nutritional regulation of the anabolic fate of amino acids within the liver in mammals: concepts arising from in vivo studies.

    PubMed

    Wester, T J; Kraft, G; Dardevet, D; Polakof, S; Ortigues-Marty, I; Rémond, D; Savary-Auzeloux, I

    2015-06-01

    At the crossroad between nutrient supply and requirements, the liver plays a central role in partitioning nitrogenous nutrients among tissues. The present review examines the utilisation of amino acids (AA) within the liver in various physiopathological states in mammals and how the fates of AA are regulated. AA uptake by the liver is generally driven by the net portal appearance of AA. This coordination is lost when demands by peripheral tissues is important (rapid growth or lactation), or when certain metabolic pathways within the liver become a priority (synthesis of acute-phase proteins). Data obtained in various species have shown that oxidation of AA and export protein synthesis usually responds to nutrient supply. Gluconeogenesis from AA is less dependent on hepatic delivery and the nature of nutrients supplied, and hormones like insulin are involved in the regulatory processes. Gluconeogenesis is regulated by nutritional factors very differently between mammals (glucose absorbed from the diet is important in single-stomached animals, while in carnivores, glucose from endogenous origin is key). The underlying mechanisms explaining how the liver adapts its AA utilisation to the body requirements are complex. The highly adaptable hepatic metabolism must be capable to deal with the various nutritional/physiological challenges that mammals have to face to maintain homeostasis. Whereas the liver responds generally to nutritional parameters in various physiological states occurring throughout life, other complex signalling pathways at systemic and tissue level (hormones, cytokines, nutrients, etc.) are involved additionally in specific physiological/nutritional states to prioritise certain metabolic pathways (pathological states or when nutritional requirements are uncovered). PMID:26156215

  2. Rainfall-induced nutrient losses from manure-fertilized farmland in an alluvial plain.

    PubMed

    Wang, Yiyao; Li, Huaizheng; Xu, Zuxin

    2016-01-01

    Nutrient transport and loss in farmlands are affected by factors such as land cover, fertilization, soil type, rainfall, and management practices. We investigated the temporal and spatial changes in macronutrient transport and loss after fertilization and precipitation in manure-fertilized eggplant farmland in an alluvial plain. Upon adding topical fertilizer, concentrations of most nutrients in runoff and groundwater increased, and nitrogen runoff increased from 22.11 to 35.81 kg/ha, although eggplant yield did not increase correspondingly. Incorporation of fertilizer by plowing reduced nutrient losses (nitrogen runoff/fertilizer decreased from 18.40 to 12.29 %). Measurements taken along the nutrient transport route (runoff, drainage ditch, groundwater, river water, and finally rainfall) revealed that concentrations of most nutrients declined at each stage. Nutrient characteristics varied by transport, and the forms of nitrogen and phosphorus differed greatly between runoff and groundwater (nitrate/nitrogen in runoff was ~43.49 %, while in groundwater ~5.41 %). Most nutrient concentrations in runoff decreased greatly during the planting season (total nitrogen decreased from 62.25 to 4.17 mg/L), correlated positively with temperature and stage of plant growth, but little temporal change was observed in groundwater. This field investigation during one planting season exemplifies the basic principles of nutrient loss and transport from manure-fertilized farmland in an alluvial plain. PMID:26631398

  3. Maturation of jejunoileal gradients in rat intestine: the role of intraluminal nutrients.

    PubMed

    Castillo, R O; Feng, J J; Stevenson, D K; Kwong, L K

    1992-01-01

    Jejunoileal gradients of intestinal function are thought to be established during the third week of life in the rat when postnatal intestinal maturation occurs. In order to investigate the normal development of jejunoileal gradients and whether either the absence of intraluminal nutrients or the form in which they are provided affected the development of jejunoileal gradients, gradients for mucosal DNA, protein, lactase and sucrase were studied in suckling rats undergoing normal weaning and compared to gradients in rats receiving no intraluminal nutrients or rats receiving nutrients in elemental form. In suckling animals, preexisting jejunoileal gradients for DNA and protein persisted through the weaning period, gradients for lactase formed by rapid decline of ileal function and sucrase gradients formed by rapid increase in jejunal activities. Intraluminal nutrients in elemental form resulted in the formation of jejunoileal gradients similar to those in intestines of normally weaned rats. The lack of intraluminal nutrients resulted in no qualitative differences in the expression of jejunoileal gradients for sucrase, but provision of elemental nutrients resulted in increased jejunoileal differences for this enzyme. The lack of intraluminal nutrients resulted in no gradients for DNA, less pronounced jejunoileal differences for protein and delayed maturational decline of ileal lactase which prevented development of jejunoileal gradients for the enzyme. These studies indicate that the formation of jejunoileal gradients in the maturing rat intestine for the parameters investigated require intraluminal nutrients regardless of the form in which they are provided for their normal expression. PMID:1467373

  4. Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis

    PubMed Central

    Liang, Gang; Ai, Qin; Yu, Diqiu

    2015-01-01

    Integrating carbon (C), nitrogen (N), and sulfur (S) metabolism is essential for the growth and development of living organisms. MicroRNAs (miRNAs) play key roles in regulating nutrient metabolism in plants. However, how plant miRNAs mediate crosstalk between different nutrient metabolic pathways is unclear. In this study, deep sequencing of Arabidopsis thaliana small RNAs was used to reveal miRNAs that were differentially expressed in response to C, N, or S deficiency. Comparative analysis revealed that the targets of the differentially expressed miRNAs are involved in different cellular responses and metabolic processes, including transcriptional regulation, auxin signal transduction, nutrient homeostasis, and regulation of development. C, N, and S deficiency specifically induced miR169b/c, miR826 and miR395, respectively. In contrast, miR167, miR172, miR397, miR398, miR399, miR408, miR775, miR827, miR841, miR857, and miR2111 are commonly suppressed by C, N, and S deficiency. In particular, the miRNAs that are induced specifically by a certain nutrient deficiency are often suppressed by other nutrient deficiencies. Further investigation indicated that the modulation of nutrient-responsive miRNA abundance affects the adaptation of plants to nutrient starvation conditions. This study revealed that miRNAs function as important regulatory nodes of different nutrient metabolic pathways. PMID:26134148

  5. Are Nutrient Stresses Associated with Enantioselectivity of the Chiral Herbicide Imazethapyr in Arabidopsis thaliana?

    PubMed

    Chen, Zunwei; Chen, Hui; Zou, Yuqin; Qiu, Jiguo; Wen, Yuezhong; Xu, Dongmei

    2015-12-01

    Plant growth can be inhibited by herbicides and is strongly limited by the availability of nutrients, which can influence human health through the food chain. Until now, however, cross talk between the enantioselectivity of herbicides and nutrient stresses has been poorly understood. We analyzed trace element and macroelement contents in shoots of Arabidopsis thaliana treated by the chiral herbicide imazethapyr (IM) and observed that multiple-nutrient stress (trace elements Mn, Cu, and Fe and macroelements P, K, Ca, and Mg) was enantioselective. The (R)-IM treatments resulted in Mn 23.37%, Cu 63.53%, P 30.61%, K 63.70%, Ca 34.32%, and Mg 36.14% decreases compared with the control. Interestingly, it was also found that herbicidally active (R)-IM induced notable aggregation of nutrient elements in leaves and roots compared with the control and (S)-IM. Through gene expression analyses, it was found that herbicidally active (R)-IM induced the up- or down-regulation of genes involved in the transport of nutrient elements. We propose that (R)-IM affected the uptake and translocation of nutrient elements in A. thaliana, which destroyed the balance of nutrient elements in the plant. This finding reminds us to reconsider the effect of nutrient stresses in risk assessment of herbicides. PMID:26566036

  6. Salmon nutrients are associated with the phylogenetic dispersion of riparian flowering-plant assemblages.

    PubMed

    Hurteau, Leslie A; Mooers, Arne Ø; Reynolds, John D; Hocking, Morgan D

    2016-02-01

    A signature of nonrandom phylogenetic community structure has been interpreted as indicating community assembly processes. Significant clustering within the phylogenetic structure of a community can be caused by habitat filtering due to low nutrient availability. Nutrient limitation in temperate Pacific coastal rainforests can be alleviated to some extent by marine nutrient subsidies introduced by migrating salmon, which leave a quantitative signature on the makeup of plant communities near spawning streams. Thus, nutrient-mediated habitat filtering could be reduced by salmon nutrients. Here, we ask how salmon abundance affects the phylogenetic structure of riparian flowering plant assemblages across 50 watersheds in the Great Bear Rainforest of British Columbia, Canada. Based on a regional pool of 60 plant species, we found that assemblages become more phylogenetically dispersed and species poor adjacent to streams with higher salmon spawning density. In contrast, increased phylogenetic clumping and species richness was seen in sites with low salmon density, with steeper slopes, further from the stream edge, and within smaller watersheds. These observations are all consistent with abiotic habitat filtering and biotic competitive exclusion acting together across local and landscape-scale gradients in nutrient availability to structure assembly of riparian flowering plants. In this case, rich salmon nutrients appear to release riparian flowering-plant assemblages from the confines of a low-nutrient habitat filter that drives phylogenetic clustering. PMID:27145619

  7. Testing the stress gradient hypothesis in herbivore communities facilitation peaks at intermediate nutrient levels.

    PubMed

    Bakker, Elisabeth S; Dobrescu, Ioana; Straile, Dietmar; Holmgren, Milena

    2013-08-01

    The role of positive interactions in structuring plant and animal communities is increasingly recognized, but the generality of current theoretical models has remained practically unexplored in animal communities. The stress gradient hypothesis predicts a linear increase in the intensity of facilitation as environmental conditions become increasingly stressful, whereas other theoretical models predict a maximum at intermediate environmental stress. We tested how competition and facilitation between herbivores change over a manipulated gradient of nutrient availability. We studied the effect of grazing by pond snails (Lymnaea stagnalis L.) as bulk grazers on aquatic caterpillars (Acentria ephemerella Denis and Schiffermüller) as small specialist grazers along an experimental gradient of environmental nutrient concentration. Higher nutrient levels increased overall total plant biomass but induced a shift toward dominance of filamentous algae at the expense of macrophytes. Facilitation of caterpillars by snail presence peaked at intermediate nutrient levels. Both caterpillar biomass and caterpillar grazing on macrophytes were highest at intermediate nutrient levels. Snails facilitated caterpillars possibly by removing filamentous algae and increasing access to the macrophyte resource, whereas they did not affect macrophyte biomass or C: nutrient ratios, a measure of food quality. We conclude that competition and facilitation in herbivore communities change along nutrient availability gradients that affect plant biomass and community composition. Understanding how interspecific interactions may change in strength and direction along environmental gradients is important to predict how the diversity and structure of communities may respond to the introduction or removal of herbivore species in ecosystems. PMID:24015521

  8. Does nutrient enrichment compensate fungicide effects on litter decomposition and decomposer communities in streams?

    PubMed

    Fernández, Diego; Tummala, Mallikarjun; Schreiner, Verena C; Duarte, Sofia; Pascoal, Cláudia; Winkelmann, Carola; Mewes, Daniela; Muñoz, Katherine; Schäfer, Ralf B

    2016-05-01

    Nutrient and pesticide pollution are widespread agricultural stressors. Fungicides may affect freshwater fungi, which play an important role in litter decomposition (LD), whereas moderate nutrient enrichment can stimulate LD. We examined potential interaction effects of nutrients and fungicides on decomposer communities and LD in a 14-day two-factorial (fungicide and nutrient treatments) mesocosm experiment. Fungicide exposure was limited to 4days to simulate episodic contamination. Only the microbial community responded significantly to the experimental factors, though non-significant increases >20% were found for invertebrate decomposer weight gain and LD under high-nutrient conditions. Fungal community structure responded more strongly to fungicides than sporulation. Sporulation responded strongest to nutrients. Bacterial community structure was affected by both factors, although only nutrients influenced bacterial density. Our results suggest effects from fungicides at field-relevant levels on the microbial community. Whether these changes propagate to invertebrate communities and LD remains unclear and should be analysed under longer and recurrent fungicide exposure. PMID:26963520

  9. Plant and pathogen nutrient acquisition strategies

    PubMed Central

    Fatima, Urooj; Senthil-Kumar, Muthappa

    2015-01-01

    Nutrients are indispensable elements required for the growth of all living organisms including plants and pathogens. Phyllosphere, rhizosphere, apoplast, phloem, xylem, and cell organelles are the nutrient niches in plants that are the target of bacterial pathogens. Depending upon nutrients availability, the pathogen adapts various acquisition strategies and inhabits the specific niche. In this review, we discuss the nutrient composition of different niches in plants, the mechanisms involved in the recognition of nutrient niche and the sophisticated strategies used by the bacterial pathogens for acquiring nutrients. We provide insight into various nutrient acquisition strategies used by necrotrophic, biotrophic, and hemibiotrophic bacteria. Specifically we discuss both modulation of bacterial machinery and manipulation of host machinery. In addition, we highlight the current status of our understanding about the nutrient acquisition strategies used by bacterial pathogens, namely targeting the sugar transporters that are dedicated for the plant’s growth and development. Bacterial strategies for altering the plant cell membrane permeability to enhance the release of nutrients are also enumerated along with in-depth analysis of molecular mechanisms behind these strategies. The information presented in this review will be useful to understand the plant–pathogen interaction in nutrient perspective. PMID:26442063

  10. Global nutrient limitation in terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Fisher, Joshua B.; Badgley, Grayson; Blyth, Eleanor

    2012-09-01

    Most vegetation is limited in productivity by nutrient availability, but the magnitude of limitation globally is not known. Nutrient limitation is directly relevant not only to ecology and agriculture, but also to the global carbon cycle by regulating how much atmospheric CO2the terrestrial biosphere can sequester. We attempt to identify total nutrient limitation in terrestrial plant productivity globally using ecophysiological theory and new developments in remote sensing for evapotranspiration and plant productivity. Our map of nutrient limitation qualitatively reproduces known regional nutrient gradients (e.g., across Amazonia), highlights differences in nutrient addition to croplands (e.g., between "developed" and "developing" countries), identifies the role of nutrients on the distribution of major biomes (e.g., tree line migration in boreal North America), and compares similarly to a ground-based test along the Long Substrate Age Gradient in Hawaii, U.S.A. (e.g., foliar and soil nutrients, litter decomposition). Nonetheless, challenges in representing light and water use efficiencies, disturbance, and comparison to ground data with multiple interacting nutrients provide avenues for further progress on refining such a global map. Global average reduction in terrestrial plant productivity was within 16-28%, depending on treatment of disturbance; these values can be compared to global carbon cycle model estimates of carbon uptake reduction with nutrient cycle inclusion.

  11. Culturing Selenastrum capricornutum (Chlorophyta) in a synthetic algal nutrient medium with defined mineral particulates

    USGS Publications Warehouse

    Kuwabara, J.S.; Davis, J.A.; Chang, Cecily C.Y.

    1985-01-01

    Algal nutrient studies in chemically-defined media typically employ a synthetic chelator to prevent iron hydroxide precipitation. Micronutrient-particulate interactions may, however, significantly affect chemical speciation and hence biovailability of these nutrients in natural waters. A technique is described by which Selenastrum capricornutum Printz (Chlorophyta) may be cultured in a medium where trace metal speciation (except iron) is controlled, not by organic chelation, but by sorption onto titanium dioxide. Application of this culturing protocol in conjunction with results from sorption studies of nutrient ions on mineral particles provides a means of studying biological impacts of sorptive processes in aquatic environments. ?? 1985 Dr W. Junk Publishers.

  12. [Research advances on controlled-release mechanisms of nutrients in coated fertilizers].

    PubMed

    Zhang, Haijun; Wu, Zhijie; Liang, Wenju; Xie, Hongtu

    2003-12-01

    Using encapsulation techniques to coat easily soluble fertilizers is an important way to improve fertilizer use efficiency while reduce environmental hazards. Based on a wide range of literature collection on coated fertilizer research, the theories, processes, and characters of nutrient controlled-release from coated fertilizer were discussed, and the factors affecting nutrient controlled-release and the mathematical simulations on it were reviewed. The main tendencies related to this research in China were also put forward. PMID:15031946

  13. Fate and toxicity of spilled oil from the Exxon Valdez. Subtidal study number 4. Exxon Valdez oil spill, state/federal natural resource damage assessment final report

    SciTech Connect

    Wolfe, D.A.

    1996-03-01

    Three separate papers are represented in this final report; Toxicity of intertidal and subtidal sediments contaminated by the Exxon Valdez oil spill; Comparative toxicities of polar and non-polar organic fractions from sediments affected by the Exxon Valdez oil spill in Prince William Sound, Alaska; and Fate of the oil spilled from the T/V Exxon Valdez in Prince William Sound, Alaska.

  14. [Nutrient supplements - possibilities and limitations].

    PubMed

    Ströhle, Alexander; Hahn, Andreas

    2013-05-01

    The consumption of micronutrient-supplements by the general public has become widespread; between 25 and more than 40% of individuals questioned in western developed nations confirm to regularly consume such products. In principle, there are two product categories for micronutrient-supplements - medicinal products (drugs) and foodstuffs. The latter are marketed as food supplements (FS) and dietary foodstuffs for particular nutritional uses including foods for special medical purposes (FSMP). FS serve the general supplementation of any consumer whilst foodstuffs for particular nutritional uses are directed at consumers with special dietary requirements; FSMP are intended for the dietary management of patients. There are clearly defined legal frameworks for those product categories. Independently of their legal product status, six areas of application can be characterised for micronutrient-supplements: general and special supplementation, primary prevention, compensation of disease-related deficits, therapeutic function and containment of diseases or avoidance of subsequent damages (secondary and tertiary function). Gauged with the mean-intake, micro nutrient supply in Germany is sufficient (exception: folic acid and vitamin D; partially also iodine). However, the intake of vitamins E, C, B1 and B2 as well as the minerals calcium, magnesium, zinc and iodine could be improved in 20-50% of the general public. Micro nutrient preparations in physiological dose could contribute to closing this gap in supply. PMID:23758028

  15. Protein: A nutrient in focus.

    PubMed

    Arentson-Lantz, Emily; Clairmont, Stephanie; Paddon-Jones, Douglas; Tremblay, Angelo; Elango, Rajavel

    2015-08-01

    Protein is an essential component of a healthy diet and is a focus of research programs seeking to optimize health at all stages of life. The focus on protein as a nutrient often centers on its thermogenic and satiating effect, and when included as part of a healthy diet, its potential to preserve lean body mass. A growing body of literature, including stable isotope based studies and longer term dietary interventions, suggests that current dietary protein recommendations may not be sufficient to promote optimal muscle health in all populations. A protein intake moderately higher than current recommendations has been widely endorsed by many experts and working groups and may provide health benefits for aging populations. Further, consuming moderate amounts of high-quality protein at each meal may optimally stimulate 24-h muscle protein synthesis and may provide a dietary platform that favors the maintenance of muscle mass and function while promoting successful weight management in overweight and obese individuals. Dietary protein has the potential to serve as a key nutrient for many health outcomes and benefits might be increased when combined with adequate physical activity. Future studies should focus on confirming these health benefits from dietary protein with long-term randomized controlled studies. PMID:26197807

  16. Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading.

    PubMed

    Shriwastav, Amritanshu; Gupta, Sanjay Kumar; Ansari, Faiz Ahmad; Rawat, Ismail; Bux, Faizal

    2014-12-01

    Chlorella sorokiniana can sustain growth in conditions hostile to other species, and possesses good nutrient removal and lipid accumulation potentials. However, the effects of variable nutrient levels (N and P) in wastewaters on growth, productivity, and nutrient uptake by C. sorokiniana have not been studied in detail. This study demonstrates the ability of this alga to sustain uniform growth and productivity, while regulating the relative nutrient uptake in accordance to their availability in the bulk medium. These results highlight the potential of C. sorokiniana as a suitable candidate for fulfilling the coupled objectives of nutrient removal and biomass production for bio-fuel with wastewaters having great variability in nutrient levels. PMID:25463782

  17. The Fate of Unstable Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    What happens to Tattooine-like planets that are instead in unstable orbits around their binary star system? A new study examines whether such planets will crash into a host star, get ejected from the system, or become captured into orbit around one of their hosts.Orbit Around a DuoAt this point we have unambiguously detected multiple circumbinary planets, raising questions about these planets formation and evolution. Current models suggest that it is unlikely that circumbinary planets would be able to form in the perturbed environment close their host stars. Instead, its thought that the planets formed at a distance and then migrated inwards.One danger such planets face when migrating is encountering ranges of radii where their orbits become unstable. Two scientists at the University of Chicago, Adam Sutherland and Daniel Fabrycky, have studied what happens when circumbinary planets migrate into such a region and develop unstable orbits.Producing Rogue PlanetsTime for planets to either be ejected or collide with one of the two stars, as a function of the planets starting distance (in AU) from the binary barycenter. Colors represent different planetary eccentricities. [Sutherland Fabrycky 2016]Sutherland and Fabrycky used N-body simulations to determine the fates of planets orbiting around a star system consisting of two stars a primary like our Sun and a secondary roughly a tenth of its size that are separated by 1 AU.The authors find that the most common fate for a circumbinary planet with an unstable orbit is ejection from the system; over 80% of unstable planets were ejected. This has interesting implications: if the formation of circumbinary planets is common, this mechanism could be filling the Milky Way with a population of free-floating, rogue planets that no longer are associated with their host star.The next most common outcome for unstable planets is collision with one of their host stars (most often the secondary), resulting inaccretion of the planet

  18. Fate of manufactured nanoparticles in environmental systems

    NASA Astrophysics Data System (ADS)

    Gelabert, A.; Sivry, Y.; Siron, V.; Akrout, A.; Ferrari, R.; Juillot, F.; Menguy, N.; Benedetti, M. F.

    2009-12-01

    Because of their specific physico-chemical properties, engineered nanoparticles (NPs) have become largely widespread in numerous industrial fields such as biomedicine, cosmetics, and material sciences. However, their growing use could possibly result in the release of various NPs amounts in environmental settings. Thus, an accurate understanding of their behaviour in natural systems is required, and of first importance is an estimation of their persistence and/or physico-chemical modifications since they can greatly alter their fate and bioavailability in the biogeosphere. The present study focuses on dissolution rate estimations for commercial NPs ZnO and TiO2 in natural waters (i.e. filtered Seine river water and seawater). Both NPs were used uncoated and coated with an organic polymer. Native NPs size and shape were investigated using TEM, and appeared as 20-50 nm spheroids, with an associated specific surface area of 37.5 and 57.6 m2/g for ZnO and TiO2, respectivelly. NPs dissolution rates were determined using both ultrafiltration (UF) and Donnan Membrane Techniques (DMT, [1]). The latter method allows a direct in-situ measurement of the free metal ion concentration only (here Zn2+), while the UF membrane small nominal pore size (approx. 2 nm) results in the separation of small inorganic complexes in addition to free metal ions. After a fast dissolution step reaching 1% of total zinc within the first hour for uncoated ZnO NPs in Seine water, precipitation of new mineral phases occurred with the formation of smithonite and hydrozincite as observed by XRD and TEM and confirmed by thermodynamic calculations (Visual Minteq). Interestingly, the behaviour of the coated ZnO NPs is slightly different since the initial dissolution step takes place during the first 72 hours, to reach up to 10% of the total zinc in our system. However, despite this difference in dissolution kinetics, both systems evolve similarly after 3 days, and they reach a steady state after

  19. Geochemical fate of arsenic in swine litter

    NASA Astrophysics Data System (ADS)

    Quazi, S.; Makris, K.; Sarkar, D.; Datta, R.; Punamiya, P.

    2007-12-01

    Swine diet is often supplemented by organoarsenicals, such as roxarsone to treat diseases and to promote growth. Recent data reported roxarsone degradation under anaerobic conditions in poultry litter, but no such data exist for swine wastes typically stored in unprotected lagoons in concentrated animal feeding operations (CAFOs). However, serious environmental health risk may arise upon significant arsenic (As) release into solution. The problem may be exacerbated under certain environmental conditions where organoarsenicals, such as roxarsone transform into the more toxic inorganic As, posing serious health risk to the surrounding ecosystem. The objective of this study were to analyze swine wastes collected from 19 randomly selected CAFOs in the USA for As concentrations, and to determine the geochemical fate of As in the swine waste suspensions. Swine wastes were analyzed for total-recoverable, total soluble, and water-extractable As, which were measured by ICP-MS. Speciation of As was performed following a well-established hyphenated technique using HPLC- ICPMS. Swine waste suspensions differed in solids contents; thus, the particulate matters with varying As concentrations were spiked with roxarsone and incubated under dark/light and aerobic/anaerobic conditions. Findings show the prevalence of inorganic As [As(V)] in swine waste suspension solutions. Roxarsone underwent degradation to both organoarsenicals, such as p-ASA, as well as inorganic arsenate and to a number of unidentified metabolites. Roxarsone degradation kinetics was influenced by the solids content and the air conditions (anaerobic/aerobic) of the swine waste suspensions. Maximum degradation rates were observed under anaerobic conditions, in suspensions which were low in solids content. Roxarsone degradation was primarily microbially-mediated, but in certain cases abiotic degradation was also observed, which were significantly slower.

  20. Aquatic pathways model to predict the fate of phenolic compounds

    SciTech Connect

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  1. Transport and Fate of Nutrients and Indicator Microorganisms at a Dairy Lagoon Water Application Site: An Assessment of Nutrient Management Plans

    EPA Science Inventory

    Nitrate is the most common chemical contaminant found in ground water. Recent research by U.S. EPA has shown that land application of manure can cause nitrate contamination of ground water above the maximum contaminant levels (MCLs) of 10 mg NO3-N/L at significant depths. This ...

  2. Nutrient availability moderates transpiration in Ehrharta calycina.

    PubMed

    Cramer, Michael D; Hoffmann, Vera; Verboom, G Anthony

    2008-01-01

    Transpiration-driven 'mass-flow' of soil-water can increase nutrient flow to the root surface. Here it was investigated whether transpiration could be partially regulated by nutrient status. Seeds of Ehrharta calycina from nine sites across a rainfall gradient were supplied with slow-release fertilizer dibbled into the sand surrounding the roots and directly available through interception, mass-flow and diffusion (dubbed 'interception'), or sequestered behind a 40-microm mesh and not directly accessible by the roots, but from which nutrients could move by diffusion or mass-flow (dubbed 'mass-flow'). Although mass-flow plants were significantly smaller than interception plants as a consequence of nutrient limitation, they transpired 60% faster, had 90% higher photosynthesis relative to transpiration (A/E), and 40% higher tissue P, Ca and Na concentrations than plants allowed to intercept nutrients directly. Tissue N and K concentrations were similar for interception and mass-flow plants. Transpiration was thus higher in the nutrient-constrained 'mass-flow' plants, increasing the transport of nutrients to the roots by mass-flow. Transpiration may have been regulated by N availability, resulting in similar tissue concentration between treatments. It is concluded that, although transpiration is a necessary consequence of photosynthetic CO(2) uptake in C(3) plants, plants can respond to nutrient limitation by varying transpiration-driven mass-flow of nutrients. PMID:18537891

  3. Nutrient-Specific Foraging in Invertebrate Predators

    NASA Astrophysics Data System (ADS)

    Mayntz, David; Raubenheimer, David; Salomon, Mor; Toft, Søren; Simpson, Stephen J.

    2005-01-01

    Many herbivores and omnivores adjust their food selection behavior to regulate the intake of multiple nutrients. Carnivores, however, are generally assumed to optimize the rate of prey capture rather than select prey according to nutrient composition. We showed experimentally that invertebrate predators can forage selectively for protein and lipids to redress specific nutritional imbalances. This selection can take place at different stages of prey handling: The predator may select among foods of different nutritional composition, eat more of a prey if it is rich in nutrients that the predator is deficient in, or extract specific nutrients from a single prey item.

  4. Nutrient and Phytoplankton Analysis of a Mediterranean Coastal Area

    NASA Astrophysics Data System (ADS)

    Sebastiá, M. T.; Rodilla, M.

    2013-01-01

    Identifying and quantifying the key anthropogenic nutrient input sources are essential to adopting management measures that can target input for maximum effect in controlling the phytoplankton biomass. In this study, three systems characterized by distinctive main nutrient sources were sampled along a Mediterranean coast transect. These sources were groundwater discharge in the Ahuir area, the Serpis river discharge in the Venecia area, and a submarine wastewater outfall 1,900 m from the coast. The study area includes factors considered important in determining a coastal area as a sensitive area: it has significant nutrient sources, tourism is a major source of income in the region, and it includes an area of high water residence time (Venecia area) which is affected by the harbor facilities and by wastewater discharges. We found that in the Ahuir and the submarine wastewater outfall areas, the effects of freshwater inputs were reduced because of a greater water exchange with the oligotrophic Mediterranean waters. On the other hand, in the Venecia area, the highest levels of nutrient concentration and phytoplankton biomass were attributed to the greatest water residence time. In this enclosed area, harmful dinoflagellates were detected ( Alexandrium sp. and Dinophysis caudata). If the planned enlargement of the Gandia Harbor proceeds, it may increase the vulnerability of this system and provide the proper conditions of confinement for the dinoflagellate blooms' development. Management measures should first target phosphorus inputs as this is the most potential-limiting nutrient in the Venecia area and comes from a point source that is easier to control. Finally, we recommend that harbor environmental management plans include regular monitoring of water quality in adjacent waters to identify adverse phytoplankton community changes.

  5. Influence of Physiological Stress on Nutrient Stoichiometry in Larval Amphibians.

    PubMed

    Kirschman, Lucas J; Haslett, Savhannah; Fritz, Kelley A; Whiles, Matt R; Warne, Robin W

    2016-01-01

    Exposure to environmental stressors alters animal phenotypes as well as nutrient metabolism, assimilation, and excretion. While stress-induced shifts in nutrient processes are known to alter organismal carbon (C) and nitrogen (N) stoichiometry, there has been little exploration of how environmental factors influence phosphorous (P). A better understanding of how P cycling varies with animal physiological state may provide insight into across-scale processes, because P is essential to animal function and ecological processes such as production and decomposition. We tested the effects of predator stress and exogenous glucocorticoids on C∶N∶P stoichiometry of larval amphibians. Glucocorticoids altered nutrient stoichiometry, apparently by modulating ossification and renal function. This reduced whole-body P and significantly increased N∶P. Additionally, elevated glucocorticoids caused a long-term reduction in P excretion. This reduction may reflect an initial unmeasured loss of P that glucocorticoids induce over acute timescales. In contrast, exposure to predator cues had no effect on larval C∶N∶P stoichiometry, which highlights that different stressors have varied effects on the endocrine stress response. Predation, in particular, is ubiquitous in the environment; thus, larvae responding to predators have conserved mechanisms that likely prevent or minimize physiological disruption. These results demonstrate the differing physiological roles of N and P, distinct nutrient demands associated with amphibian metamorphosis, and the contrasting effects that different environmental factors have on the physiological stress response. Our results also suggest that anthropogenic changes to the environment that induce chronic stress in amphibians could affect the biogeochemistry of nutrient-poor environments where they may act as keystone species. PMID:27327181

  6. Isolating the effects of storm events on arctic aquatic bacteria: temperature, nutrients, and community composition as controls on bacterial productivity

    PubMed Central

    Adams, Heather E.; Crump, Byron C.; Kling, George W.

    2015-01-01

    Storm events can pulse nutrients and carbon from soils and provide an important subsidy to food webs in oligotrophic streams and lakes. Bacterial nutrient limitation and the potential response of stream aquatic bacteria to storm events was investigated in arctic tundra environments by manipulating both water temperature and inorganic nutrient concentrations in short (up to 4 days) and long duration (up to 2 weeks) laboratory mesocosm experiments. Inorganic N and P additions increased bacterial production (14C-labeled leucine uptake) up to seven times over controls, and warmer incubation temperatures increased the speed of this response to added nutrients. Bacterial cell numbers also increased in response to temperature and nutrient additions with cell-specific carbon uptake initially increasing and then declining after 2 days. Bacterial community composition (BCC; determined by means of 16S denaturing gradient gel electrophoresis fingerprinting) shifted rapidly in response to changes in incubation temperature and the addition of nutrients, within 2 days in some cases. While the bacteria in these habitats responded to nutrient additions with rapid changes in productivity and community composition, water temperature controlled the speed of the metabolic response and affected the resultant change in bacterial community structure, constraining the potential responses to pulsed nutrient subsidies associated with storm events. In all cases, at higher nutrient levels and temperatures the effect of initial BCC on bacterial activity was muted, suggesting a consistent, robust interaction of temperature, and nutrients controlling activity in these aquatic systems. PMID:25873916

  7. Quantitative Models Describing Past and Current Nutrient Fluxes and Associated Ecosystem Level Responses in the Narragansett Bay Ecosystem

    EPA Science Inventory

    Multiple drivers, including nutrient loading and climate change, affect the Narragansett Bay ecosystem in Rhode Island/Massachusetts, USA. Managers are interested in understanding the timing and magnitude of these effects, and ecosystem responses to restoration actions. To provid...

  8. Chiral chemicals as tracers of atmospheric sources and fate processes in a world of changing climate.

    PubMed

    F Bidleman, Terry; M Jantunen, Liisa; Binnur Kurt-Karakus, Perihan; Wong, Fiona; Hung, Hayley; Ma, Jianmin; Stern, Gary; Rosenberg, Bruno

    2013-01-01

    Elimination of persistent organic pollutants (POPs) under national and international regulations reduces "primary" emissions, but "secondary" emissions continue from residues deposited in soil, water, ice and vegetation during former years of usage. In a future, secondary source controlled world, POPs will follow the carbon cycle and biogeochemical processes will determine their transport, accumulation and fate. Climate change is likely to affect mobilisation of POPs through e.g., increased temperature, altered precipitation and wind patterns, flooding, loss of ice cover in polar regions, melting glaciers, and changes in soil and water microbiology which affect degradation and transformation. Chiral compounds offer advantages for following transport and fate pathways because of their ability to distinguish racemic (newly released or protected from microbial attack) and nonracemic (microbially degraded) sources. This paper discusses the rationale for this approach and suggests applications where chiral POPs could aid investigation of climate-mediated exchange and degradation processes. Multiyear measurements of two chiral POPs, trans-chlordane and α-HCH, at a Canadian Arctic air monitoring station show enantiomer compositions which cycle seasonally, suggesting varying source contributions which may be under climatic control. Large-scale shifts in the enantioselective metabolism of chiral POPs in soil and water might influence the enantiomer composition of atmospheric residues, and it would be advantageous to include enantiospecific analysis in POPs monitoring programs. PMID:24349938

  9. Chiral Chemicals as Tracers of Atmospheric Sources and Fate Processes in a World of Changing Climate

    PubMed Central

    F. Bidleman, Terry; M. Jantunen, Liisa; Binnur Kurt-Karakus, Perihan; Wong, Fiona; Hung, Hayley; Ma, Jianmin; Stern, Gary; Rosenberg, Bruno

    2013-01-01

    Elimination of persistent organic pollutants (POPs) under national and international regulations reduces “primary” emissions, but “secondary” emissions continue from residues deposited in soil, water, ice and vegetation during former years of usage. In a future, secondary source controlled world, POPs will follow the carbon cycle and biogeochemical processes will determine their transport, accumulation and fate. Climate change is likely to affect mobilisation of POPs through e.g., increased temperature, altered precipitation and wind patterns, flooding, loss of ice cover in polar regions, melting glaciers, and changes in soil and water microbiology which affect degradation and transformation. Chiral compounds offer advantages for following transport and fate pathways because of their ability to distinguish racemic (newly released or protected from microbial attack) and nonracemic (microbially degraded) sources. This paper discusses the rationale for this approach and suggests applications where chiral POPs could aid investigation of climate-mediated exchange and degradation processes. Multiyear measurements of two chiral POPs, trans-chlordane and α-HCH, at a Canadian Arctic air monitoring station show enantiomer compositions which cycle seasonally, suggesting varying source contributions which may be under climatic control. Large-scale shifts in the enantioselective metabolism of chiral POPs in soil and water might influence the enantiomer composition of atmospheric residues, and it would be advantageous to include enantiospecific analysis in POPs monitoring programs. PMID:24349938

  10. Nutrients stimulate leaf breakdown rates and detritivore biomass: Bottom-up effects via heterotrophic pathways

    USGS Publications Warehouse

    Greenwood, J.L.; Rosemond, A.D.; Wallace, J.B.; Cross, W.F.; Weyers, H.S.

    2007-01-01

    Most nutrient enrichment studies in aquatic systems have focused on autotrophic food webs in systems where primary producers dominate the resource base. We tested the heterotrophic response to long-term nutrient enrichment in a forested, headwater stream. Our study design consisted of 2 years of pretreatment data in a reference and treatment stream and 2 years of continuous nitrogen (N) + phosphorus addition to the treatment stream. Studies were conducted with two leaf species that differed in initial C:N, Rhododendron maximum (rhododendron) and Acer rubrum (red maple). We determined the effects of nutrient addition on detrital resources (leaf breakdown rates, litter C:N and microbial activity) and tested whether nutrient enrichment affected macroinvertebrate consumers via increased biomass. Leaf breakdown rates were ca. 1.5 and 3?? faster during the first and second years of enrichment, respectively, in the treatment stream for both leaf types. Microbial respiration rates of both leaf types were 3?? higher with enrichment, and macroinvertebrate biomass associated with leaves increased ca. 2-3?? with enrichment. The mass of N in macroinvertebrate biomass relative to leaves tended to increase with enrichment up to 6?? for red maple and up to 44?? for rhododendron leaves. Lower quality (higher C:N) rhododendron leaves exhibited greater changes in leaf nutrient content and macroinvertebrate response to nutrient enrichment than red maple leaves, suggesting a unique response by different leaf species to nutrient enrichment. Nutrient concentrations used in this study were moderate and equivalent to those in streams draining watersheds with altered land use. Thus, our results suggest that similarly moderate levels of enrichment may affect detrital resource quality and subsequently lead to altered energy and nutrient flow in detrital food webs. ?? 2006 Springer-Verlag.

  11. Variable primary producer responses to nutrient and temperature manipulations in mesocosms: temperature usually trumps nutrient effects

    EPA Science Inventory

    Mesocosm experiments have been used to evaluate the impacts of nutrient loading on estuarine plant communities in order to develop nutrient response relationships. Mesocosm eutrophication studies tend to focus on long residence time systems. In the Pacific Northwest, many estuari...

  12. NUTRIENT UPTAKE: A Microcomputer Program to Predict Nutrient Absorption from Soil by Roots.

    ERIC Educational Resources Information Center

    Oates, Kenneth; Barber, S. A.

    1987-01-01

    Discusses the use of a computer program designed to solve the mathematical model associated with soil nutrient uptake by plant roots and to predict the nutrient uptake. Describes a user-friendly personal computer version of this program. (TW)

  13. Recovery of three arctic stream reaches from experimental nutrient enrichment

    USGS Publications Warehouse

    Benstead, J.P.; Green, A.C.; Deegan, Linda A.; Peterson, B.J.; Slavik, K.; Bowden, W.B.; Hershey, A.E.

    2007-01-01

    1. Nutrient enrichment and resulting eutrophication is a widespread anthropogenic influence on freshwater ecosystems, but recovery from nutrient enrichment is poorly understood, especially in stream environments. We examined multi-year patterns in community recovery from experimental low-concentration nutrient enrichment (N + P or P only) in three reaches of two Arctic tundra streams (Kuparuk River and Oksrukuyik Creek) on the North Slope of Alaska (U.S.A.). 2. Rates of recovery varied among community components and depended on duration of enrichment (2-13 consecutive growing seasons). Biomass of epilithic algae returned to reference levels rapidly (within 2 years), regardless of nutrients added or enrichment duration. Aquatic bryophyte cover, which increased greatly in the Kuparuk River only after long-term enrichment (8 years), took 8 years of recovery to approach reference levels, after storms had scoured most remnant moss in the recovering reach. 3. Multi-year persistence of bryophytes in the Kuparuk River appeared to prevent recovery of insect populations that had either been positively (e.g. the mayfly Ephemerella, most chironomid midge taxa) or negatively (e.g. the tube-building chironomid Orthocladius rivulorum) affected by this shift in dominant primary producer. These lags in recovery (of >3 years) were probably driven by the persistent effect of bryophytes on physical benthic habitat. 4. Summer growth rates of Arctic grayling (both adults and young-of-year) in Oksrukuyik Creek (fertilised for 6 years with no bryophyte colonisation), which were consistently increased by nutrient addition, returned to reference rates within 1-2 years. 5. Rates of recovery of these virtually pristine Arctic stream ecosystems from low-level nutrient enrichment appeared to be controlled largely by duration of enrichment, mediated through physical habitat shifts caused by eventual bryophyte colonisation, and subsequent physical disturbance that removed bryophytes. Nutrient

  14. Dissolved Nutrient Retention Dynamics in River Networks: A Modeling Investigation of Transient Flow and Scale Effects

    SciTech Connect

    Ye, Sheng; Covino, Timothy P.; Sivapalan, Murugesu; Basu, Nandita; Li, Hongyi; Wang, Shaowen

    2012-06-30

    In this paper, we use a dynamic network flow model, coupled with a transient storage zone biogeochemical model, to simulate dissolved nutrient removal processes at the channel network scale. We have explored several scenarios in respect of the combination of rainfall variability, and the biological and geomorphic characteristics of the catchment, to understand the dominant controls on removal and delivery of dissolved nutrients (e.g., nitrate). These model-based theoretical analyses suggested that while nutrient removal efficiency is lower during flood events compared to during baseflow periods, flood events contribute significantly to bulk nutrient removal, whereas bulk removal during baseflow periods is less. This is due to the fact that nutrient supply is larger during flood events; this trend is even stronger in large rivers. However, the efficiency of removal during both periods decreases in larger rivers, however, due to (i) increasing flow velocities and thus decreasing residence time, and (ii) increasing flow depth, and thus decreasing nutrient uptake rates. Besides nutrient removal processes can be divided into two parts: in the main channel and in the hyporheic transient storage zone. When assessing their relative contributions the size of the transient storage zone is a dominant control, followed by uptake rates in the main channel and in the transient storage zone. Increasing size of the transient storage zone with downstream distance affects the relative contributions to nutrient removal of the water column and the transient storage zone, which also impacts the way nutrient removal rates scale with increasing size of rivers. Intra-annual hydrologic variability has a significant impact on removal rates at all scales: the more variable the streamflow is, compared to mean discharge, the less nutrient is removed in the channel network. A scale-independent first order uptake coefficient, ke, estimated from model simulations, is highly dependent on the

  15. Biogeographic patterns of nutrient resorption from Quercus variabilis Blume leaves across China.

    PubMed

    Sun, X; Kang, H; Chen, H Y H; Björn, B; Samuel, B F; Liu, C

    2016-05-01

    The variation in nutrient resorption has been studied at different taxonomic levels and geographic ranges. However, the variable traits of nutrient resorption at the individual species level across its distribution are poorly understood. We examined the variability and environmental controls of leaf nutrient resorption of Quercus variabilis, a widely distributed species of important ecological and economic value in China. The mean resorption efficiency was highest for phosphorus (P), followed by potassium (K), nitrogen (N), sulphur (S), magnesium (Mg) and carbon (C). Resorption efficiencies and proficiencies were strongly affected by climate and respective nutrients concentrations in soils and green leaves, but had little association with leaf mass per area. Climate factors, especially growing season length, were dominant drivers of nutrient resorption efficiencies, except for C, which was strongly related to green leaf C status. In contrast, green leaf nutritional status was the primary controlling factor of leaf nutrient proficiencies, except for C. Resorption efficiencies of N, P, K and S increased significantly with latitude, and were negatively related to growing season length and mean annual temperature. In turn, N, P, K and S in senesced leaves decreased with latitude, likely due to their efficient resorption response to variation in climate, but increased for Mg and did not change for C. Our results indicate that the nutrient resorption efficiency and proficiency of Q. variabilis differed strongly among nutrients, as well as growing environments. Our findings provide important insights into understanding the nutrient conservation strategy at the individual species level and its possible influence on nutrient cycling. PMID:26597338

  16. Nutrient dynamics in tropical rivers, estuarine-lagoons, and coastal ecosystems along the eastern Hainan Island

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2013-06-01

    Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006-2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO43- ranged from 37 to 1063, suggesting preferential PO43- relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi) varied from 76 to 448 × 103 mol km-2 yr-1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH4+ (up to 157 μM) and DON (up to 130 μM). Particulate phosphorus concentrations (0.5 ∼1.4 μM) were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture), as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption) in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom in the sea would be

  17. Nutrient addition does not enhance leaf decomposition in a Southeastern Brazilian stream (Espinhaço mountain range).

    PubMed

    Abelho, M; Moretti, M; França, J; Callisto, M

    2010-10-01

    A decomposition experiment using eucalyptus leaves was carried out in a Southeastern Brazilian mountain stream located at the transition between the Cerrado and the Atlantic Forest to test whether nutrient addition increases microbial and invertebrate colonisation and accelerates breakdown rates. The results show that none of the tested variables was significantly affected by nutrient addition, despite the average increase in ATP concentrations and invertebrate colonisation observed in the fertilised leaf bags. This could mean that breakdown in the stream was already at its maximum due to the relatively high water temperature and nutrient content, or that the breakdown rate of eucalyptus leaves was too fast to allow the detection of any effects of nutrient addition. Breakdown rates of eucalyptus leaves were much faster than the values reported in literature for most species in Brazilian Cerrado streams, suggesting that the replacement of the natural vegetation by eucalyptus may affect nutrient dynamics in the region. PMID:21085781

  18. Nutrient Models Developments Using Runoff-Nutrient Relationships in an Agricultural Prairie Basin, Manitoba.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Pomeroy, J. W.; Wheater, H. S.; Elliott, J. A.; Baulch, H. M.; Lindenschmidt, K. E.

    2015-12-01

    Nutrient export to streams and lakes from agricultural activities can result in significant deterioration of water quality and aquatic ecosystem health. In Western Canada, particular concerns arise for prairie agricultural systems, which are dominated by the effects of a cold climate. Insufficient attention has been given to understand the links between cold region watershed responses and nutrient concentration and a robust watershed-scale modeling framework is needed to simulate nutrient concentration and loads. Long-term, field observations of nutrient concentration-runoff relationships were used to develop nutrient concentration models for the Tobacco Creek Model Watershed (TCMW) which drains into the Red River basin. Field observations include streamflow concentrations of N and P at multiple scales from two headwater basins. Distinct nutrient concentration-runoff models for snowmelt, rain on snow (ROS) and rainfall runoff processes were developed from observed runoff-nutrient concentration relationships. Snowmelt runoff had a moderately positive correlation with particulate nutrient concentrations but no correlation with that of dissolved nutrients. ROS runoff had a weak relationship with both particulate and dissolved nutrient concentrations. Rainfall runoff had the strongest positive correlation with particulate nutrient concentrations but no association with that of dissolved nutrients. The modeling approach also identified a clear hysteretic behavior in the relationship between runoff and particulate nutrient concentration during the 2013 snowmelt runoff event at the basin outlet gauge. The models provide insight into the hydrological controls on nutrient export from cold regions watersheds and the strong effects of inter-annual climatic variability. Snowmelt runoff is a reliable exporter of large nutrient loads while nutrient export by rainfall runoff exceeded snowmelt runoff during hydrologically wet summers such as 2002, 2005, 2011 and 2013.

  19. The Environmental Fate of C60 Fullerenes: A Holistic Approach

    NASA Astrophysics Data System (ADS)

    Schreiner, K. M.; Filley, T. R.; Blanchette, R. A.; Jafvert, C.; Bolskar, R.

    2007-12-01

    The manufacture and use of carbon-based nanoparticles, for which C60 fullerenes can be considered a proxy, has grown exponentially in the past decade, and nanotechnology is now a multi-billion dollar industry, spanning disciplines such as cosmetics, biotechnology, and agriculture. Despite this, almost nothing is known of the fate of these compounds in the environment. Based upon the strong radical scavenging properties of many of these substances there are a variety of microbial and photochemical-mediated oxidative fates that will transform the physicochemical properties and control the residence time of these compounds in nature. It is essential that these fates, as well as the fates of the products of the degradation of carbon nanoparticles, are known. For instance, conversion of C60 fullerenes to hydroxylated or carboxylated analogs will shift the manner in which they partition between soils and sediments and water as well as how they interact with cell membranes. This paper combines our findings on the microbial activity of C60 fullerenes, one of the most common types of manufactured carbon nanoparticles, along with recent literature to develop potential chemical decay trajectories in oxidative environmental settings. We show what is known about the environmental fate of this type of nanomaterial and also areas where further research is needed.

  20. Genetic Circuit Architectures Underlying Cell Fate Choices for Immunity

    NASA Astrophysics Data System (ADS)

    Dinner, Aaron

    2009-03-01

    Antigen stimulated B cells follow an unusual developmental trajectory that transiently passes through a germinal center state, which promotes receptor affinity maturation and immunoglobulin class switching, before terminally differentiating into antibody secreting plasma cells. It was found that graded expression of the transcription factor IRF-4 regulates cell fate, but the relationship between antigen receptor signaling, the network of interactions with IRF-4, and cell fate was not known. This talk describes models that link ligand-receptor avidity with cell fate. The models have been validated experimentally by directly varying the levels and kinetics of IRF-4 accumulation. Furthermore, signaling through the antigen receptor is demonstrated to control the expression of IRF-4 and in turn the frequency of B cells that undergo class switching before differentiating into plasma cells. These findings provide an explanation for experiments that measure B cell numbers in transgenic mice. The architecture of our regulatory circuit provides a general mechanism for quantitative variations in a signal to be translated into a binary cell-fate choice involving transient expression of one of the two developmental fates. In collaboration with Aryeh Warmflash, Ying Li, Roger Sciammas, and Harinder Singh, The University of Chicago.