NASA Astrophysics Data System (ADS)
Raimond, Emmanuel; Decker, Kurt; Guigueno, Yves; Klug, Joakim; Loeffler, Horst
2015-04-01
The Fukushima nuclear accident in Japan resulted from the combination of two correlated extreme external events (earthquake and tsunami). The consequences, in particular flooding, went beyond what was considered in the initial engineering design design of nuclear power plants (NPPs). Such situations can in theory be identified using probabilistic safety assessment (PSA) methodology. PSA results may then lead industry (system suppliers and utilities) or Safety Authorities to take appropriate decisions to reinforce the defence-in-depth of the NPP for low probability event but high amplitude consequences. In reality, the development of such PSA remains a challenging task. Definitions of the design basis of NPPs, for example, require data on events with occurrence probabilities not higher than 10-4 per year. Today, even lower probabilities, down to 10-8, are expected and typically used for probabilistic safety analyses (PSA) of NPPs and the examination of so-called design extension conditions. Modelling the combinations of natural or man-made hazards that can affect a NPP and affecting some meaningful probability of occurrence seems to be difficult. The European project ASAMPSAE (www.asampsa.eu) gathers more than 30 organizations (industry, research, safety control) from Europe, US and Japan and aims at identifying some meaningful practices to extend the scope and the quality of the existing probabilistic safety analysis developed for nuclear power plants. It offers a framework to discuss, at a technical level, how "extended PSA" can be developed efficiently and be used to verify if the robustness of Nuclear Power Plants (NPPs) in their environment is sufficient. The paper will present the objectives of this project, some first lessons and introduce which type of guidance is being developed. It will explain the need of expertise from geosciences to support the nuclear safety assessment in the different area (seismotectonic, hydrological, meteorological and biological hazards, …).
A probabilistic bridge safety evaluation against floods.
Liao, Kuo-Wei; Muto, Yasunori; Chen, Wei-Lun; Wu, Bang-Ho
2016-01-01
To further capture the influences of uncertain factors on river bridge safety evaluation, a probabilistic approach is adopted. Because this is a systematic and nonlinear problem, MPP-based reliability analyses are not suitable. A sampling approach such as a Monte Carlo simulation (MCS) or importance sampling is often adopted. To enhance the efficiency of the sampling approach, this study utilizes Bayesian least squares support vector machines to construct a response surface followed by an MCS, providing a more precise safety index. Although there are several factors impacting the flood-resistant reliability of a bridge, previous experiences and studies show that the reliability of the bridge itself plays a key role. Thus, the goal of this study is to analyze the system reliability of a selected bridge that includes five limit states. The random variables considered here include the water surface elevation, water velocity, local scour depth, soil property and wind load. Because the first three variables are deeply affected by river hydraulics, a probabilistic HEC-RAS-based simulation is performed to capture the uncertainties in those random variables. The accuracy and variation of our solutions are confirmed by a direct MCS to ensure the applicability of the proposed approach. The results of a numerical example indicate that the proposed approach can efficiently provide an accurate bridge safety evaluation and maintain satisfactory variation.
Formalizing Probabilistic Safety Claims
NASA Technical Reports Server (NTRS)
Herencia-Zapana, Heber; Hagen, George E.; Narkawicz, Anthony J.
2011-01-01
A safety claim for a system is a statement that the system, which is subject to hazardous conditions, satisfies a given set of properties. Following work by John Rushby and Bev Littlewood, this paper presents a mathematical framework that can be used to state and formally prove probabilistic safety claims. It also enables hazardous conditions, their uncertainties, and their interactions to be integrated into the safety claim. This framework provides a formal description of the probabilistic composition of an arbitrary number of hazardous conditions and their effects on system behavior. An example is given of a probabilistic safety claim for a conflict detection algorithm for aircraft in a 2D airspace. The motivation for developing this mathematical framework is that it can be used in an automated theorem prover to formally verify safety claims.
Di Maio, Francesco; Zio, Enrico; Smith, Curtis; ...
2015-07-06
The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore » activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less
Koutsoumanis, Konstantinos; Angelidis, Apostolos S
2007-08-01
Among the new microbiological criteria that have been incorporated in EU Regulation 2073/2005, of particular interest are those concerning Listeria monocytogenes in ready-to eat (RTE) foods, because for certain food categories, they no longer require zero tolerance but rather specify a maximum allowable concentration of 100 CFU/g or ml. This study presents a probabilistic modeling approach for evaluating the compliance of RTE sliced meat products with the new safety criteria for L. monocytogenes. The approach was based on the combined use of (i) growth/no growth boundary models, (ii) kinetic growth models, (iii) product characteristics data (pH, a(w), shelf life) collected from 160 meat products from the Hellenic retail market, and (iv) storage temperature data recorded from 50 retail stores in Greece. This study shows that probabilistic analysis of the above components using Monte Carlo simulation, which takes into account the variability of factors affecting microbial growth, can lead to a realistic estimation of the behavior of L. monocytogenes throughout the food supply chain, and the quantitative output generated can be further used by food managers as a decision-making tool regarding the design or modification of a product's formulation or its "use-by" date in order to ensure its compliance with the new safety criteria. The study also argues that compliance of RTE foods with the new safety criteria should not be considered a parameter with a discrete and binary outcome because it depends on factors such as product characteristics, storage temperature, and initial contamination level, which display considerable variability even among different packages of the same RTE product. Rather, compliance should be expressed and therefore regulated in a more probabilistic fashion.
NASA Technical Reports Server (NTRS)
Shih, Ann T.; Lo, Yunnhon; Ward, Natalie C.
2010-01-01
Quantifying the probability of significant launch vehicle failure scenarios for a given design, while still in the design process, is critical to mission success and to the safety of the astronauts. Probabilistic risk assessment (PRA) is chosen from many system safety and reliability tools to verify the loss of mission (LOM) and loss of crew (LOC) requirements set by the NASA Program Office. To support the integrated vehicle PRA, probabilistic design analysis (PDA) models are developed by using vehicle design and operation data to better quantify failure probabilities and to better understand the characteristics of a failure and its outcome. This PDA approach uses a physics-based model to describe the system behavior and response for a given failure scenario. Each driving parameter in the model is treated as a random variable with a distribution function. Monte Carlo simulation is used to perform probabilistic calculations to statistically obtain the failure probability. Sensitivity analyses are performed to show how input parameters affect the predicted failure probability, providing insight for potential design improvements to mitigate the risk. The paper discusses the application of the PDA approach in determining the probability of failure for two scenarios from the NASA Ares I project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, M.A.; Booker, J.M.
1990-01-01
Expert opinion is frequently used in probabilistic safety assessment (PSA), particularly in estimating low probability events. In this paper, we discuss some of the common problems encountered in eliciting and analyzing expert opinion data and offer solutions or recommendations. The problems are: that experts are not naturally Bayesian. People fail to update their existing information to account for new information as it becomes available, as would be predicted by the Bayesian philosophy; that experts cannot be fully calibrated. To calibrate experts, the feedback from the known quantities must be immediate, frequent, and specific to the task; that experts are limitedmore » in the number of things that they can mentally juggle at a time to 7 {plus minus} 2; that data gatherers and analysts can introduce bias by unintentionally causing an altering of the expert's thinking or answers; that the level of detail the data, or granularity, can affect the analyses; and the conditioning effect poses difficulties in gathering and analyzing of the expert data. The data that the expert gives can be conditioned on a variety of factors that can affect the analysis and the interpretation of the results. 31 refs.« less
Developing Probabilistic Safety Performance Margins for Unknown and Underappreciated Risks
NASA Technical Reports Server (NTRS)
Benjamin, Allan; Dezfuli, Homayoon; Everett, Chris
2015-01-01
Probabilistic safety requirements currently formulated or proposed for space systems, nuclear reactor systems, nuclear weapon systems, and other types of systems that have a low-probability potential for high-consequence accidents depend on showing that the probability of such accidents is below a specified safety threshold or goal. Verification of compliance depends heavily upon synthetic modeling techniques such as PRA. To determine whether or not a system meets its probabilistic requirements, it is necessary to consider whether there are significant risks that are not fully considered in the PRA either because they are not known at the time or because their importance is not fully understood. The ultimate objective is to establish a reasonable margin to account for the difference between known risks and actual risks in attempting to validate compliance with a probabilistic safety threshold or goal. In this paper, we examine data accumulated over the past 60 years from the space program, from nuclear reactor experience, from aircraft systems, and from human reliability experience to formulate guidelines for estimating probabilistic margins to account for risks that are initially unknown or underappreciated. The formulation includes a review of the safety literature to identify the principal causes of such risks.
Probabilistic safety assessment of the design of a tall buildings under the extreme load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Králik, Juraj, E-mail: juraj.kralik@stuba.sk
2016-06-08
The paper describes some experiences from the deterministic and probabilistic analysis of the safety of the tall building structure. There are presented the methods and requirements of Eurocode EN 1990, standard ISO 2394 and JCSS. The uncertainties of the model and resistance of the structures are considered using the simulation methods. The MONTE CARLO, LHS and RSM probabilistic methods are compared with the deterministic results. On the example of the probability analysis of the safety of the tall buildings is demonstrated the effectiveness of the probability design of structures using Finite Element Methods.
Probabilistic safety assessment of the design of a tall buildings under the extreme load
NASA Astrophysics Data System (ADS)
Králik, Juraj
2016-06-01
The paper describes some experiences from the deterministic and probabilistic analysis of the safety of the tall building structure. There are presented the methods and requirements of Eurocode EN 1990, standard ISO 2394 and JCSS. The uncertainties of the model and resistance of the structures are considered using the simulation methods. The MONTE CARLO, LHS and RSM probabilistic methods are compared with the deterministic results. On the example of the probability analysis of the safety of the tall buildings is demonstrated the effectiveness of the probability design of structures using Finite Element Methods.
Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.
Interrelation Between Safety Factors and Reliability
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac; Chamis, Christos C. (Technical Monitor)
2001-01-01
An evaluation was performed to establish relationships between safety factors and reliability relationships. Results obtained show that the use of the safety factor is not contradictory to the employment of the probabilistic methods. In many cases the safety factors can be directly expressed by the required reliability levels. However, there is a major difference that must be emphasized: whereas the safety factors are allocated in an ad hoc manner, the probabilistic approach offers a unified mathematical framework. The establishment of the interrelation between the concepts opens an avenue to specify safety factors based on reliability. In cases where there are several forms of failure, then the allocation of safety factors should he based on having the same reliability associated with each failure mode. This immediately suggests that by the probabilistic methods the existing over-design or under-design can be eliminated. The report includes three parts: Part 1-Random Actual Stress and Deterministic Yield Stress; Part 2-Deterministic Actual Stress and Random Yield Stress; Part 3-Both Actual Stress and Yield Stress Are Random.
Safety Issues with Hydrogen as a Vehicle Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadwallader, Lee Charles; Herring, James Stephen
1999-10-01
This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This reportmore » serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.« less
Safety Issues with Hydrogen as a Vehicle Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. C. Cadwallader; J. S. Herring
1999-09-01
This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This reportmore » serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.« less
NASA Technical Reports Server (NTRS)
Townsend, J.; Meyers, C.; Ortega, R.; Peck, J.; Rheinfurth, M.; Weinstock, B.
1993-01-01
Probabilistic structural analyses and design methods are steadily gaining acceptance within the aerospace industry. The safety factor approach to design has long been the industry standard, and it is believed by many to be overly conservative and thus, costly. A probabilistic approach to design may offer substantial cost savings. This report summarizes several probabilistic approaches: the probabilistic failure analysis (PFA) methodology developed by Jet Propulsion Laboratory, fast probability integration (FPI) methods, the NESSUS finite element code, and response surface methods. Example problems are provided to help identify the advantages and disadvantages of each method.
Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharirli, M.; Rand, J.L.; Sasser, M.K.
1992-01-01
The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less
Limited-scope probabilistic safety analysis for the Los Alamos Meson Physics Facility (LAMPF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharirli, M.; Rand, J.L.; Sasser, M.K.
1992-12-01
The reliability of instrumentation and safety systems is a major issue in the operation of accelerator facilities. A probabilistic safety analysis was performed or the key safety and instrumentation systems at the Los Alamos Meson Physics Facility (LAMPF). in Phase I of this unique study, the Personnel Safety System (PSS) and the Current Limiters (XLs) were analyzed through the use of the fault tree analyses, failure modes and effects analysis, and criticality analysis. Phase II of the program was done to update and reevaluate the safety systems after the Phase I recommendations were implemented. This paper provides a brief reviewmore » of the studies involved in Phases I and II of the program.« less
Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis
2013-09-01
During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modelingmore » and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.« less
Probabilistic analysis on the failure of reactivity control for the PWR
NASA Astrophysics Data System (ADS)
Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.
2018-02-01
The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. Joe; Diego Mandelli; Ronald L. Boring
2015-07-01
The United States Department of Energy is sponsoring the Light Water Reactor Sustainability program, which has the overall objective of supporting the near-term and the extended operation of commercial nuclear power plants. One key research and development (R&D) area in this program is the Risk-Informed Safety Margin Characterization pathway, which combines probabilistic risk simulation with thermohydraulic simulation codes to define and manage safety margins. The R&D efforts to date, however, have not included robust simulations of human operators, and how the reliability of human performance or lack thereof (i.e., human errors) can affect risk-margins and plant performance. This paper describesmore » current and planned research efforts to address the absence of robust human reliability simulations and thereby increase the fidelity of simulated accident scenarios.« less
PROBABILISTIC SAFETY ASSESSMENT OF OPERATIONAL ACCIDENTS AT THE WASTE ISOLATION PILOT PLANT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rucker, D.F.
2000-09-01
This report presents a probabilistic safety assessment of radioactive doses as consequences from accident scenarios to complement the deterministic assessment presented in the Waste Isolation Pilot Plant (WIPP) Safety Analysis Report (SAR). The International Council of Radiation Protection (ICRP) recommends both assessments be conducted to ensure that ''an adequate level of safety has been achieved and that no major contributors to risk are overlooked'' (ICRP 1993). To that end, the probabilistic assessment for the WIPP accident scenarios addresses the wide range of assumptions, e.g. the range of values representing the radioactive source of an accident, that could possibly have beenmore » overlooked by the SAR. Routine releases of radionuclides from the WIPP repository to the environment during the waste emplacement operations are expected to be essentially zero. In contrast, potential accidental releases from postulated accident scenarios during waste handling and emplacement could be substantial, which necessitates the need for radiological air monitoring and confinement barriers (DOE 1999). The WIPP Safety Analysis Report (SAR) calculated doses from accidental releases to the on-site (at 100 m from the source) and off-site (at the Exclusive Use Boundary and Site Boundary) public by a deterministic approach. This approach, as demonstrated in the SAR, uses single-point values of key parameters to assess the 50-year, whole-body committed effective dose equivalent (CEDE). The basic assumptions used in the SAR to formulate the CEDE are retained for this report's probabilistic assessment. However, for the probabilistic assessment, single-point parameter values were replaced with probability density functions (PDF) and were sampled over an expected range. Monte Carlo simulations were run, in which 10,000 iterations were performed by randomly selecting one value for each parameter and calculating the dose. Statistical information was then derived from the 10,000 iteration batch, which included 5%, 50%, and 95% dose likelihood, and the sensitivity of each assumption to the calculated doses. As one would intuitively expect, the doses from the probabilistic assessment for most scenarios were found to be much less than the deterministic assessment. The lower dose of the probabilistic assessment can be attributed to a ''smearing'' of values from the high and low end of the PDF spectrum of the various input parameters. The analysis also found a potential weakness in the deterministic analysis used in the SAR, a detail on drum loading was not taken into consideration. Waste emplacement operations thus far have handled drums from each shipment as a single unit, i.e. drums from each shipment are kept together. Shipments typically come from a single waste stream, and therefore the curie loading of each drum can be considered nearly identical to that of its neighbor. Calculations show that if there are large numbers of drums used in the accident scenario assessment, e.g. 28 drums in the waste hoist failure scenario (CH5), then the probabilistic dose assessment calculations will diverge from the deterministically determined doses. As it is currently calculated, the deterministic dose assessment assumes one drum loaded to the maximum allowable (80 PE-Ci), and the remaining are 10% of the maximum. The effective average of drum curie content is therefore less in the deterministic assessment than the probabilistic assessment for a large number of drums. EEG recommends that the WIPP SAR calculations be revisited and updated to include a probabilistic safety assessment.« less
Probabilistic Survivability Versus Time Modeling
NASA Technical Reports Server (NTRS)
Joyner, James J., Sr.
2016-01-01
This presentation documents Kennedy Space Center's Independent Assessment work completed on three assessments for the Ground Systems Development and Operations (GSDO) Program to assist the Chief Safety and Mission Assurance Officer during key programmatic reviews and provided the GSDO Program with analyses of how egress time affects the likelihood of astronaut and ground worker survival during an emergency. For each assessment, a team developed probability distributions for hazard scenarios to address statistical uncertainty, resulting in survivability plots over time. The first assessment developed a mathematical model of probabilistic survivability versus time to reach a safe location using an ideal Emergency Egress System at Launch Complex 39B (LC-39B); the second used the first model to evaluate and compare various egress systems under consideration at LC-39B. The third used a modified LC-39B model to determine if a specific hazard decreased survivability more rapidly than other events during flight hardware processing in Kennedy's Vehicle Assembly Building.
Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)
NASA Technical Reports Server (NTRS)
Stamatelatos,Michael; Dezfuli, Homayoon; Apostolakis, George; Everline, Chester; Guarro, Sergio; Mathias, Donovan; Mosleh, Ali; Paulos, Todd; Riha, David; Smith, Curtis;
2011-01-01
Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was, however, not to happen. Early in the Apollo program, estimates of the probability for a successful roundtrip human mission to the moon yielded disappointingly low (and suspect) values and NASA became discouraged from further performing quantitative risk analyses until some two decades later when the methods were more refined, rigorous, and repeatable. Instead, NASA decided to rely primarily on the Hazard Analysis (HA) and Failure Modes and Effects Analysis (FMEA) methods for system safety assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Prescott, Steven R; Smith, Curtis L
2011-07-01
In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of amore » power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.« less
NASA Astrophysics Data System (ADS)
Alzbutas, Robertas
2015-04-01
In general, the Emergency Planning Zones (EPZ) are defined as well as plant site and arrangement structures are designed to minimize the potential for natural and manmade hazards external to the plant from affecting the plant safety related functions, which can affect nearby population and environment. This may include consideration of extreme winds, fires, flooding, aircraft crash, seismic activity, etc. Thus the design basis for plant and site is deeply related to the effects of any postulated external events and the limitation of the plant capability to cope with accidents i.e. perform safety functions. It has been observed that the Probabilistic Safety Assessment (PSA) methodologies to deal with EPZ and extreme external events have not reached the same level of maturity as for severe internal events. The design basis for any plant and site is deeply related to the effects of any postulated external events and the limitation of the plant capability to cope with accidents i.e. perform safety functions. As a prime example of an advanced reactor and new Nuclear Power Plant (NPP) with enhanced safety, the International Reactor Innovative and Secure (IRIS) and Site selection for New NPP in Lithuania had been considered in this work. In the used Safety-by-Design™ approach, the PSA played obviously a key role; therefore a Preliminary IRIS PSA had been developed along with the design. For the design and pre-licensing process of IRIS the external events analysis included both qualitative evaluation and quantitative assessment. As a result of preliminary qualitative analyses, the external events that were chosen for more detailed quantitative scoping evaluation were high winds and tornadoes, aircraft crash, and seismic events. For the site selection in Lithuania a detail site evaluation process was performed and related to the EPZ and risk zoning considerations. In general, applying the quantitative assessment, bounding site characteristics could be used in order to optimize potential redefinition or future restrictions on plant siting and risk zoning. It must be noticed that the use of existing regulations and installations as the basis for this redefinition will not in any way impact the high degree of conservatism inherent in current regulations. Moreover, the remapping process makes this methodology partially independent from the uncertainties still affecting probabilistic techniques. Notwithstanding these considerations, it is still expected that applying this methodology to advanced plant designs with improved safety features will allow significant changes in the emergency planning requirements, and specifically the size of the EPZ. In particular, in the case of IRIS it is expected that taking full credit of the Safety-by-Design™ approach of the IRIS reactor will allow a dramatic changes in the EPZ, while still maintaining a level of protection to the public fully consistent with existing regulations.
NASA Technical Reports Server (NTRS)
Thomas, J. M.; Hawk, J. D.
1975-01-01
A generalized concept for cost-effective structural design is introduced. It is assumed that decisions affecting the cost effectiveness of aerospace structures fall into three basic categories: design, verification, and operation. Within these basic categories, certain decisions concerning items such as design configuration, safety factors, testing methods, and operational constraints are to be made. All or some of the variables affecting these decisions may be treated probabilistically. Bayesian statistical decision theory is used as the tool for determining the cost optimum decisions. A special case of the general problem is derived herein, and some very useful parametric curves are developed and applied to several sample structures.
Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.
2003-01-01
Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle (GAMA), elastic axis (ELAXS), Mach number (MACH), mass ratio (MASSR), and frequency ratio (WHWB). The cascade is considered to be in subsonic flow with Mach 0.7. The results of the probabilistic aeroelastic analysis are the probability density function of predicted aerodynamic damping and frequency for flutter and the response amplitudes for forced response.
Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L; Mandelli, Diego; Zhegang Ma
2014-11-01
As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe themore » RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.« less
Khan, F I; Iqbal, A; Ramesh, N; Abbasi, S A
2001-10-12
As it is conventionally done, strategies for incorporating accident--prevention measures in any hazardous chemical process industry are developed on the basis of input from risk assessment. However, the two steps-- risk assessment and hazard reduction (or safety) measures--are not linked interactively in the existing methodologies. This prevents a quantitative assessment of the impacts of safety measures on risk control. We have made an attempt to develop a methodology in which risk assessment steps are interactively linked with implementation of safety measures. The resultant system tells us the extent of reduction of risk by each successive safety measure. It also tells based on sophisticated maximum credible accident analysis (MCAA) and probabilistic fault tree analysis (PFTA) whether a given unit can ever be made 'safe'. The application of the methodology has been illustrated with a case study.
NASA Technical Reports Server (NTRS)
Fayssal, Safie; Weldon, Danny
2008-01-01
The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program called Constellation to send crew and cargo to the international Space Station, to the moon, and beyond. As part of the Constellation program, a new launch vehicle, Ares I, is being developed by NASA Marshall Space Flight Center. Designing a launch vehicle with high reliability and increased safety requires a significant effort in understanding design variability and design uncertainty at the various levels of the design (system, element, subsystem, component, etc.) and throughout the various design phases (conceptual, preliminary design, etc.). In a previous paper [1] we discussed a probabilistic functional failure analysis approach intended mainly to support system requirements definition, system design, and element design during the early design phases. This paper provides an overview of the application of probabilistic engineering methods to support the detailed subsystem/component design and development as part of the "Design for Reliability and Safety" approach for the new Ares I Launch Vehicle. Specifically, the paper discusses probabilistic engineering design analysis cases that had major impact on the design and manufacturing of the Space Shuttle hardware. The cases represent important lessons learned from the Space Shuttle Program and clearly demonstrate the significance of probabilistic engineering analysis in better understanding design deficiencies and identifying potential design improvement for Ares I. The paper also discusses the probabilistic functional failure analysis approach applied during the early design phases of Ares I and the forward plans for probabilistic design analysis in the detailed design and development phases.
Risk-based Spacecraft Fire Safety Experiments
NASA Technical Reports Server (NTRS)
Apostolakis, G.; Catton, I.; Issacci, F.; Paulos, T.; Jones, S.; Paxton, K.; Paul, M.
1992-01-01
Viewgraphs on risk-based spacecraft fire safety experiments are presented. Spacecraft fire risk can never be reduced to a zero probability. Probabilistic risk assessment is a tool to reduce risk to an acceptable level.
Design for Reliability and Safety Approach for the NASA New Launch Vehicle
NASA Technical Reports Server (NTRS)
Safie, Fayssal, M.; Weldon, Danny M.
2007-01-01
The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program intended for sending crew and cargo to the international Space Station (ISS), to the moon, and beyond. This program is called Constellation. As part of the Constellation program, NASA is developing new launch vehicles aimed at significantly increase safety and reliability, reduce the cost of accessing space, and provide a growth path for manned space exploration. Achieving these goals requires a rigorous process that addresses reliability, safety, and cost upfront and throughout all the phases of the life cycle of the program. This paper discusses the "Design for Reliability and Safety" approach for the NASA new crew launch vehicle called ARES I. The ARES I is being developed by NASA Marshall Space Flight Center (MSFC) in support of the Constellation program. The ARES I consists of three major Elements: A solid First Stage (FS), an Upper Stage (US), and liquid Upper Stage Engine (USE). Stacked on top of the ARES I is the Crew exploration vehicle (CEV). The CEV consists of a Launch Abort System (LAS), Crew Module (CM), Service Module (SM), and a Spacecraft Adapter (SA). The CEV development is being led by NASA Johnson Space Center (JSC). Designing for high reliability and safety require a good integrated working environment and a sound technical design approach. The "Design for Reliability and Safety" approach addressed in this paper discusses both the environment and the technical process put in place to support the ARES I design. To address the integrated working environment, the ARES I project office has established a risk based design group called "Operability Design and Analysis" (OD&A) group. This group is an integrated group intended to bring together the engineering, design, and safety organizations together to optimize the system design for safety, reliability, and cost. On the technical side, the ARES I project has, through the OD&A environment, implemented a probabilistic approach to analyze and evaluate design uncertainties and understand their impact on safety, reliability, and cost. This paper focuses on the use of the various probabilistic approaches that have been pursued by the ARES I project. Specifically, the paper discusses an integrated functional probabilistic analysis approach that addresses upffont some key areas to support the ARES I Design Analysis Cycle (DAC) pre Preliminary Design (PD) Phase. This functional approach is a probabilistic physics based approach that combines failure probabilities with system dynamics and engineering failure impact models to identify key system risk drivers and potential system design requirements. The paper also discusses other probabilistic risk assessment approaches planned by the ARES I project to support the PD phase and beyond.
Probabilistic exposure assessment to face and oral care cosmetic products by the French population.
Bernard, A; Dornic, N; Roudot, Ac; Ficheux, As
2018-01-01
Cosmetic exposure data for face and mouth are limited in Europe. The aim of the study was to assess the exposure to face cosmetics using recent French consumption data (Ficheux et al., 2016b, 2015). Exposure was assessed using a probabilistic method for thirty one face products from four lines of products: cleanser, care, make-up and make-up remover products and two oral care products. Probabilistic exposure was assessed for different subpopulation according to sex and age in adults and children. Pregnant women were also studied. The levels of exposure to moisturizing cream, lip balm, mascara, eyeliner, cream foundation, toothpaste and mouthwash were higher than the values currently used by the Scientific Committee on Consumer Safety (SCCS). Exposure values found for eye shadow, lipstick, lotion and milk (make-up remover) were lower than SCCS values. These new French exposure values will be useful for safety assessors and for safety agencies in order to protect the general population and the at risk populations. Copyright © 2017. Published by Elsevier Ltd.
Safety Issues at the DOE Test and Research Reactors. A Report to the U.S. Department of Energy.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.
This report provides an assessment of safety issues at the Department of Energy (DOE) test and research reactors. Part A identifies six safety issues of the reactors. These issues include the safety design philosophy, the conduct of safety reviews, the performance of probabilistic risk assessments, the reliance on reactor operators, the fragmented…
System Risk Assessment and Allocation in Conceptual Design
NASA Technical Reports Server (NTRS)
Mahadevan, Sankaran; Smith, Natasha L.; Zang, Thomas A. (Technical Monitor)
2003-01-01
As aerospace systems continue to evolve in addressing newer challenges in air and space transportation, there exists a heightened priority for significant improvement in system performance, cost effectiveness, reliability, and safety. Tools, which synthesize multidisciplinary integration, probabilistic analysis, and optimization, are needed to facilitate design decisions allowing trade-offs between cost and reliability. This study investigates tools for probabilistic analysis and probabilistic optimization in the multidisciplinary design of aerospace systems. A probabilistic optimization methodology is demonstrated for the low-fidelity design of a reusable launch vehicle at two levels, a global geometry design and a local tank design. Probabilistic analysis is performed on a high fidelity analysis of a Navy missile system. Furthermore, decoupling strategies are introduced to reduce the computational effort required for multidisciplinary systems with feedback coupling.
Design for Reliability and Safety Approach for the New NASA Launch Vehicle
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Weldon, Danny M.
2007-01-01
The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program intended for sending crew and cargo to the international Space Station (ISS), to the moon, and beyond. This program is called Constellation. As part of the Constellation program, NASA is developing new launch vehicles aimed at significantly increase safety and reliability, reduce the cost of accessing space, and provide a growth path for manned space exploration. Achieving these goals requires a rigorous process that addresses reliability, safety, and cost upfront and throughout all the phases of the life cycle of the program. This paper discusses the "Design for Reliability and Safety" approach for the NASA new launch vehicles, the ARES I and ARES V. Specifically, the paper addresses the use of an integrated probabilistic functional analysis to support the design analysis cycle and a probabilistic risk assessment (PRA) to support the preliminary design and beyond.
Probabilistic design of fibre concrete structures
NASA Astrophysics Data System (ADS)
Pukl, R.; Novák, D.; Sajdlová, T.; Lehký, D.; Červenka, J.; Červenka, V.
2017-09-01
Advanced computer simulation is recently well-established methodology for evaluation of resistance of concrete engineering structures. The nonlinear finite element analysis enables to realistically predict structural damage, peak load, failure, post-peak response, development of cracks in concrete, yielding of reinforcement, concrete crushing or shear failure. The nonlinear material models can cover various types of concrete and reinforced concrete: ordinary concrete, plain or reinforced, without or with prestressing, fibre concrete, (ultra) high performance concrete, lightweight concrete, etc. Advanced material models taking into account fibre concrete properties such as shape of tensile softening branch, high toughness and ductility are described in the paper. Since the variability of the fibre concrete material properties is rather high, the probabilistic analysis seems to be the most appropriate format for structural design and evaluation of structural performance, reliability and safety. The presented combination of the nonlinear analysis with advanced probabilistic methods allows evaluation of structural safety characterized by failure probability or by reliability index respectively. Authors offer a methodology and computer tools for realistic safety assessment of concrete structures; the utilized approach is based on randomization of the nonlinear finite element analysis of the structural model. Uncertainty of the material properties or their randomness obtained from material tests are accounted in the random distribution. Furthermore, degradation of the reinforced concrete materials such as carbonation of concrete, corrosion of reinforcement, etc. can be accounted in order to analyze life-cycle structural performance and to enable prediction of the structural reliability and safety in time development. The results can serve as a rational basis for design of fibre concrete engineering structures based on advanced nonlinear computer analysis. The presented methodology is illustrated on results from two probabilistic studies with different types of concrete structures related to practical applications and made from various materials (with the parameters obtained from real material tests).
Probabilistic fatigue life prediction of metallic and composite materials
NASA Astrophysics Data System (ADS)
Xiang, Yibing
Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.
Systems Reliability Framework for Surface Water Sustainability and Risk Management
NASA Astrophysics Data System (ADS)
Myers, J. R.; Yeghiazarian, L.
2016-12-01
With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability. With microbial contamination posing a serious threat to the availability of clean water across the world, it is necessary to develop a framework that evaluates the safety and sustainability of water systems in respect to non-point source fecal microbial contamination. The concept of water safety is closely related to the concept of failure in reliability theory. In water quality problems, the event of failure can be defined as the concentration of microbial contamination exceeding a certain standard for usability of water. It is pertinent in watershed management to know the likelihood of such an event of failure occurring at a particular point in space and time. Microbial fate and transport are driven by environmental processes taking place in complex, multi-component, interdependent environmental systems that are dynamic and spatially heterogeneous, which means these processes and therefore their influences upon microbial transport must be considered stochastic and variable through space and time. A physics-based stochastic model of microbial dynamics is presented that propagates uncertainty using a unique sampling method based on artificial neural networks to produce a correlation between watershed characteristics and spatial-temporal probabilistic patterns of microbial contamination. These results are used to address the question of water safety through several sustainability metrics: reliability, vulnerability, resilience and a composite sustainability index. System reliability is described uniquely though the temporal evolution of risk along watershed points or pathways. Probabilistic resilience describes how long the system is above a certain probability of failure, and the vulnerability metric describes how the temporal evolution of risk changes throughout a hierarchy of failure levels. Additionally our approach allows for the identification of contributions in microbial contamination and uncertainty from specific pathways and sources. We expect that this framework will significantly improve the efficiency and precision of sustainable watershed management strategies through providing a better understanding of how watershed characteristics and environmental parameters affect surface water quality and sustainability.
NASA Technical Reports Server (NTRS)
Cruse, T. A.
1987-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.
1988-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
NASA Astrophysics Data System (ADS)
Hoffmann, K.; Srouji, R. G.; Hansen, S. O.
2017-12-01
The technology development within the structural design of long-span bridges in Norwegian fjords has created a need for reformulating the calculation format and the physical quantities used to describe the properties of wind and the associated wind-induced effects on bridge decks. Parts of a new probabilistic format describing the incoming, undisturbed wind is presented. It is expected that a fixed probabilistic format will facilitate a more physically consistent and precise description of the wind conditions, which in turn increase the accuracy and considerably reduce uncertainties in wind load assessments. Because the format is probabilistic, a quantification of the level of safety and uncertainty in predicted wind loads is readily accessible. A simple buffeting response calculation demonstrates the use of probabilistic wind data in the assessment of wind loads and responses. Furthermore, vortex-induced fatigue damage is discussed in relation to probabilistic wind turbulence data and response measurements from wind tunnel tests.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.
Safety and integrity of pipeline systems - philosophy and experience in Germany
DOT National Transportation Integrated Search
1997-01-01
The design, construction and operation of gas pipeline systems in Germany are subject to the Energy Act and associated regulations. This legal structure is based on a deterministic rather than a probabilistic safety philosophy, consisting of technica...
Station Blackout: A case study in the interaction of mechanistic and probabilistic safety analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis Smith; Diego Mandelli; Cristian Rabiti
2013-11-01
The ability to better characterize and quantify safety margins is important to improved decision making about nuclear power plant design, operation, and plant life extension. As research and development (R&D) in the light-water reactor (LWR) Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway R&D is to support plant decisions for risk-informed margin management with the aim tomore » improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario.« less
ERIC Educational Resources Information Center
Vahabi, Mandana
2010-01-01
Objective: To test whether the format in which women receive probabilistic information about breast cancer and mammography affects their comprehension. Methods: A convenience sample of 180 women received pre-assembled randomized packages containing a breast health information brochure, with probabilities presented in either verbal or numeric…
Unsteady Probabilistic Analysis of a Gas Turbine System
NASA Technical Reports Server (NTRS)
Brown, Marilyn
2003-01-01
In this work, we have considered an annular cascade configuration subjected to unsteady inflow conditions. The unsteady response calculation has been implemented into the time marching CFD code, MSUTURBO. The computed steady state results for the pressure distribution demonstrated good agreement with experimental data. We have computed results for the amplitudes of the unsteady pressure over the blade surfaces. With the increase in gas turbine engine structural complexity and performance over the past 50 years, structural engineers have created an array of safety nets to ensure against component failures in turbine engines. In order to reduce what is now considered to be excessive conservatism and yet maintain the same adequate margins of safety, there is a pressing need to explore methods of incorporating probabilistic design procedures into engine development. Probabilistic methods combine and prioritize the statistical distributions of each design variable, generate an interactive distribution and offer the designer a quantified relationship between robustness, endurance and performance. The designer can therefore iterate between weight reduction, life increase, engine size reduction, speed increase etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. S. Schroeder; R. W. Youngblood
The Risk-Informed Safety Margin Characterization (RISMC) pathway of the Light Water Reactor Sustainability Program is developing simulation-based methods and tools for analyzing safety margin from a modern perspective. [1] There are multiple definitions of 'margin.' One class of definitions defines margin in terms of the distance between a point estimate of a given performance parameter (such as peak clad temperature), and a point-value acceptance criterion defined for that parameter (such as 2200 F). The present perspective on margin is that it relates to the probability of failure, and not just the distance between a nominal operating point and a criterion.more » In this work, margin is characterized through a probabilistic analysis of the 'loads' imposed on systems, structures, and components, and their 'capacity' to resist those loads without failing. Given the probabilistic load and capacity spectra, one can assess the probability that load exceeds capacity, leading to component failure. Within the project, we refer to a plot of these probabilistic spectra as 'the logo.' Refer to Figure 1 for a notional illustration. The implications of referring to 'the logo' are (1) RISMC is focused on being able to analyze loads and spectra probabilistically, and (2) calling it 'the logo' tacitly acknowledges that it is a highly simplified picture: meaningful analysis of a given component failure mode may require development of probabilistic spectra for multiple physical parameters, and in many practical cases, 'load' and 'capacity' will not vary independently.« less
Probabilistic Structural Analysis Program
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.
2010-01-01
NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dandini, Vincent John; Duran, Felicia Angelica; Wyss, Gregory Dane
2003-09-01
This article describes how features of event tree analysis and Monte Carlo-based discrete event simulation can be combined with concepts from object-oriented analysis to develop a new risk assessment methodology, with some of the best features of each. The resultant object-based event scenario tree (OBEST) methodology enables an analyst to rapidly construct realistic models for scenarios for which an a priori discovery of event ordering is either cumbersome or impossible. Each scenario produced by OBEST is automatically associated with a likelihood estimate because probabilistic branching is integral to the object model definition. The OBEST methodology is then applied to anmore » aviation safety problem that considers mechanisms by which an aircraft might become involved in a runway incursion incident. The resulting OBEST model demonstrates how a close link between human reliability analysis and probabilistic risk assessment methods can provide important insights into aviation safety phenomenology.« less
Probabilistic Causal Analysis for System Safety Risk Assessments in Commercial Air Transport
NASA Technical Reports Server (NTRS)
Luxhoj, James T.
2003-01-01
Aviation is one of the critical modes of our national transportation system. As such, it is essential that new technologies be continually developed to ensure that a safe mode of transportation becomes even safer in the future. The NASA Aviation Safety Program (AvSP) is managing the development of new technologies and interventions aimed at reducing the fatal aviation accident rate by a factor of 5 by year 2007 and by a factor of 10 by year 2022. A portfolio assessment is currently being conducted to determine the projected impact that the new technologies and/or interventions may have on reducing aviation safety system risk. This paper reports on advanced risk analytics that combine the use of a human error taxonomy, probabilistic Bayesian Belief Networks, and case-based scenarios to assess a relative risk intensity metric. A sample case is used for illustrative purposes.
Toffel, Michael W; Birkner, Lawrence R
2002-07-01
The protection of people and physical assets is the objective of health and safety professionals and is accomplished through the paradigm of anticipation, recognition, evaluation, and control of risks in the occupational environment. Risk assessment concepts are not only used by health and safety professionals, but also by business and financial planners. Since meeting health and safety objectives requires financial resources provided by business and governmental managers, the hypothesis addressed here is that health and safety risk decisions should be made with probabilistic processes used in financial decision-making and which are familiar and recognizable to business and government planners and managers. This article develops the processes and demonstrates the use of incident probabilities, historic outcome information, and incremental impact analysis to estimate risk of multiple alternatives in the chemical process industry. It also analyzes how the ethical aspects of decision-making can be addressed in formulating health and safety risk management plans. It is concluded that certain, easily understood, and applied probabilistic risk assessment methods used by business and government to assess financial and outcome risk have applicability to improving workplace health and safety in three ways: 1) by linking the business and health and safety risk assessment processes to securing resources, 2) by providing an additional set of tools for health and safety risk assessment, and 3) by requiring the risk assessor to consider multiple risk management alternatives.
Use of limited data to construct Bayesian networks for probabilistic risk assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina M.; Swiler, Laura Painton
2013-03-01
Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was tomore » establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.« less
2017-03-13
support of airborne laser designator use during test and training exercises on military ranges. The initial MATILDA tool, MATILDA PRO Version-1.6.1...was based on the 2007 PRA model developed to perform range safety clearances for the UK Thermal Imaging Airborne Laser Designator (TIALD) system...AFRL Technical Reports. This Technical Report, designated Part I, con- tains documentation of the computational procedures for probabilistic fault
Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis
NASA Technical Reports Server (NTRS)
Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William
2009-01-01
This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
This document is the Executive Summary of a technical report on a probabilistic risk assessment (PRA) of the Space Shuttle vehicle performed under the sponsorship of the Office of Space Flight of the US National Aeronautics and Space Administration. It briefly summarizes the methodology and results of the Shuttle PRA. The primary objective of this project was to support management and engineering decision-making with respect to the Shuttle program by producing (1) a quantitative probabilistic risk model of the Space Shuttle during flight, (2) a quantitative assessment of in-flight safety risk, (3) an identification and prioritization of the design and operations that principally contribute to in-flight safety risk, and (4) a mechanism for risk-based evaluation proposed modifications to the Shuttle System. Secondary objectives were to provide a vehicle for introducing and transferring PRA technology to the NASA community, and to demonstrate the value of PRA by applying it beneficially to a real program of great international importance.
The Role of Probabilistic Design Analysis Methods in Safety and Affordability
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.
2016-01-01
For the last several years, NASA and its contractors have been working together to build space launch systems to commercialize space. Developing commercial affordable and safe launch systems becomes very important and requires a paradigm shift. This paradigm shift enforces the need for an integrated systems engineering environment where cost, safety, reliability, and performance need to be considered to optimize the launch system design. In such an environment, rule based and deterministic engineering design practices alone may not be sufficient to optimize margins and fault tolerance to reduce cost. As a result, introduction of Probabilistic Design Analysis (PDA) methods to support the current deterministic engineering design practices becomes a necessity to reduce cost without compromising reliability and safety. This paper discusses the importance of PDA methods in NASA's new commercial environment, their applications, and the key role they can play in designing reliable, safe, and affordable launch systems. More specifically, this paper discusses: 1) The involvement of NASA in PDA 2) Why PDA is needed 3) A PDA model structure 4) A PDA example application 5) PDA link to safety and affordability.
Probabilistic Structural Analysis of SSME Turbopump Blades: Probabilistic Geometry Effects
NASA Technical Reports Server (NTRS)
Nagpal, V. K.
1985-01-01
A probabilistic study was initiated to evaluate the precisions of the geometric and material properties tolerances on the structural response of turbopump blades. To complete this study, a number of important probabilistic variables were identified which are conceived to affect the structural response of the blade. In addition, a methodology was developed to statistically quantify the influence of these probabilistic variables in an optimized way. The identified variables include random geometric and material properties perturbations, different loadings and a probabilistic combination of these loadings. Influences of these probabilistic variables are planned to be quantified by evaluating the blade structural response. Studies of the geometric perturbations were conducted for a flat plate geometry as well as for a space shuttle main engine blade geometry using a special purpose code which uses the finite element approach. Analyses indicate that the variances of the perturbations about given mean values have significant influence on the response.
Aviation Safety Risk Modeling: Lessons Learned From Multiple Knowledge Elicitation Sessions
NASA Technical Reports Server (NTRS)
Luxhoj, J. T.; Ancel, E.; Green, L. L.; Shih, A. T.; Jones, S. M.; Reveley, M. S.
2014-01-01
Aviation safety risk modeling has elements of both art and science. In a complex domain, such as the National Airspace System (NAS), it is essential that knowledge elicitation (KE) sessions with domain experts be performed to facilitate the making of plausible inferences about the possible impacts of future technologies and procedures. This study discusses lessons learned throughout the multiple KE sessions held with domain experts to construct probabilistic safety risk models for a Loss of Control Accident Framework (LOCAF), FLightdeck Automation Problems (FLAP), and Runway Incursion (RI) mishap scenarios. The intent of these safety risk models is to support a portfolio analysis of NASA's Aviation Safety Program (AvSP). These models use the flexible, probabilistic approach of Bayesian Belief Networks (BBNs) and influence diagrams to model the complex interactions of aviation system risk factors. Each KE session had a different set of experts with diverse expertise, such as pilot, air traffic controller, certification, and/or human factors knowledge that was elicited to construct a composite, systems-level risk model. There were numerous "lessons learned" from these KE sessions that deal with behavioral aggregation, conditional probability modeling, object-oriented construction, interpretation of the safety risk results, and model verification/validation that are presented in this paper.
Probabilistic Risk Assessment Process for High-Power Laser Operations in Outdoor Environments
2016-01-01
avionics data bus. In the case of a UAS-mounted laser system, the control path will additionally include a radio or satellite communications link. A remote...JBSA Fort Sam Houston, TX 78234 711 HPW/RHDO 11 . SPONSOR’S/MONITOR’S REPORT NUMBER(S) AFRL-RH-FS-JA-2015...hazard assessment pur- poses is not widespread within the laser safety community . The aim of this paper is to outline the basis of the probabilistic
NASA Technical Reports Server (NTRS)
Guarro, Sergio B.
2010-01-01
This report validates and documents the detailed features and practical application of the framework for software intensive digital systems risk assessment and risk-informed safety assurance presented in the NASA PRA Procedures Guide for Managers and Practitioner. This framework, called herein the "Context-based Software Risk Model" (CSRM), enables the assessment of the contribution of software and software-intensive digital systems to overall system risk, in a manner which is entirely compatible and integrated with the format of a "standard" Probabilistic Risk Assessment (PRA), as currently documented and applied for NASA missions and applications. The CSRM also provides a risk-informed path and criteria for conducting organized and systematic digital system and software testing so that, within this risk-informed paradigm, the achievement of a quantitatively defined level of safety and mission success assurance may be targeted and demonstrated. The framework is based on the concept of context-dependent software risk scenarios and on the modeling of such scenarios via the use of traditional PRA techniques - i.e., event trees and fault trees - in combination with more advanced modeling devices such as the Dynamic Flowgraph Methodology (DFM) or other dynamic logic-modeling representations. The scenarios can be synthesized and quantified in a conditional logic and probabilistic formulation. The application of the CSRM method documented in this report refers to the MiniAERCam system designed and developed by the NASA Johnson Space Center.
Alternate Methods in Refining the SLS Nozzle Plug Loads
NASA Technical Reports Server (NTRS)
Burbank, Scott; Allen, Andrew
2013-01-01
Numerical analysis has shown that the SLS nozzle environmental barrier (nozzle plug) design is inadequate for the prelaunch condition, which consists of two dominant loads: 1) the main engines startup pressure and 2) an environmentally induced pressure. Efforts to reduce load conservatisms included a dynamic analysis which showed a 31% higher safety factor compared to the standard static analysis. The environmental load is typically approached with a deterministic method using the worst possible combinations of pressures and temperatures. An alternate probabilistic approach, utilizing the distributions of pressures and temperatures, resulted in a 54% reduction in the environmental pressure load. A Monte Carlo simulation of environmental load that used five years of historical pressure and temperature data supported the results of the probabilistic analysis, indicating the probabilistic load is reflective of a 3-sigma condition (1 in 370 probability). Utilizing the probabilistic load analysis eliminated excessive conservatisms and will prevent a future overdesign of the nozzle plug. Employing a similar probabilistic approach to other design and analysis activities can result in realistic yet adequately conservative solutions.
Brandsch, Rainer
2017-10-01
Migration modelling provides reliable migration estimates from food-contact materials (FCM) to food or food simulants based on mass-transfer parameters like diffusion and partition coefficients related to individual materials. In most cases, mass-transfer parameters are not readily available from the literature and for this reason are estimated with a given uncertainty. Historically, uncertainty was accounted for by introducing upper limit concepts first, turning out to be of limited applicability due to highly overestimated migration results. Probabilistic migration modelling gives the possibility to consider uncertainty of the mass-transfer parameters as well as other model inputs. With respect to a functional barrier, the most important parameters among others are the diffusion properties of the functional barrier and its thickness. A software tool that accepts distribution as inputs and is capable of applying Monte Carlo methods, i.e., random sampling from the input distributions of the relevant parameters (i.e., diffusion coefficient and layer thickness), predicts migration results with related uncertainty and confidence intervals. The capabilities of probabilistic migration modelling are presented in the view of three case studies (1) sensitivity analysis, (2) functional barrier efficiency and (3) validation by experimental testing. Based on the predicted migration by probabilistic migration modelling and related exposure estimates, safety evaluation of new materials in the context of existing or new packaging concepts is possible. Identifying associated migration risk and potential safety concerns in the early stage of packaging development is possible. Furthermore, dedicated material selection exhibiting required functional barrier efficiency under application conditions becomes feasible. Validation of the migration risk assessment by probabilistic migration modelling through a minimum of dedicated experimental testing is strongly recommended.
NASA Technical Reports Server (NTRS)
Johnson, Kenneth L.; White, K, Preston, Jr.
2012-01-01
The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques. This recommended procedure would be used as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. This document contains the outcome of the assessment.
NASA Astrophysics Data System (ADS)
Korkmaz, K. A.
2009-06-01
Pakistan and neighbourhood experience numerous earthquakes, most of which result in damaged or collapsed buildings and loss of life that also affect the economy adversely. On 29 October, 2008, an earthquake of magnitude 6.5 occurred in Ziarat, Quetta Region, Pakistan which was followed by more than 400 aftershocks. Many villages were completely destroyed and more than 200 people died. The previous major earthquake was in 2005, known as the South Asian earthquake (Mw=7.6) occurred in Kashmir, where 80 000 people died. Inadequate building stock is to be blamed for the degree of disaster, as the majority of the buildings in the region are unreinforced masonry low-rise buildings. In this study, seismic vulnerability of regionally common unreinforced masonry low-rise buildings was investigated using probabilistic based seismic safety assessment. The results of the study showed that unreinforced masonry low-rise buildings display higher displacements and shear force. Probability of damage due to higher displacements and shear forces can be directly related to damage or collapse.
Application of reliability-centered-maintenance to BWR ECCS motor operator valve performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Choi, Y.A.
1993-01-01
This paper describes the application of reliability-centered maintenance (RCM) methods to plant probabilistic risk assessment (PRA) and safety analyses for four boiling water reactor emergency core cooling systems (ECCSs): (1) high-pressure coolant injection (HPCI); (2) reactor core isolation cooling (RCIC); (3) residual heat removal (RHR); and (4) core spray systems. Reliability-centered maintenance is a system function-based technique for improving a preventive maintenance program that is applied on a component basis. Those components that truly affect plant function are identified, and maintenance tasks are focused on preventing their failures. The RCM evaluation establishes the relevant criteria that preserve system function somore » that an RCM-focused approach can be flexible and dynamic.« less
NASA Technical Reports Server (NTRS)
Onwubiko, Chin-Yere; Onyebueke, Landon
1996-01-01
The structural design, or the design of machine elements, has been traditionally based on deterministic design methodology. The deterministic method considers all design parameters to be known with certainty. This methodology is, therefore, inadequate to design complex structures that are subjected to a variety of complex, severe loading conditions. A nonlinear behavior that is dependent on stress, stress rate, temperature, number of load cycles, and time is observed on all components subjected to complex conditions. These complex conditions introduce uncertainties; hence, the actual factor of safety margin remains unknown. In the deterministic methodology, the contingency of failure is discounted; hence, there is a use of a high factor of safety. It may be most useful in situations where the design structures are simple. The probabilistic method is concerned with the probability of non-failure performance of structures or machine elements. It is much more useful in situations where the design is characterized by complex geometry, possibility of catastrophic failure, sensitive loads and material properties. Also included: Comparative Study of the use of AGMA Geometry Factors and Probabilistic Design Methodology in the Design of Compact Spur Gear Set.
On the Accuracy of Probabilistic Bucking Load Prediction
NASA Technical Reports Server (NTRS)
Arbocz, Johann; Starnes, James H.; Nemeth, Michael P.
2001-01-01
The buckling strength of thin-walled stiffened or unstiffened, metallic or composite shells is of major concern in aeronautical and space applications. The difficulty to predict the behavior of axially compressed thin-walled cylindrical shells continues to worry design engineers as we enter the third millennium. Thanks to extensive research programs in the late sixties and early seventies and the contributions of many eminent scientists, it is known that buckling strength calculations are affected by the uncertainties in the definition of the parameters of the problem such as definition of loads, material properties, geometric variables, edge support conditions, and the accuracy of the engineering models and analysis tools used in the design phase. The NASA design criteria monographs from the late sixties account for these design uncertainties by the use of a lump sum safety factor. This so-called 'empirical knockdown factor gamma' usually results in overly conservative design. Recently new reliability based probabilistic design procedure for buckling critical imperfect shells have been proposed. It essentially consists of a stochastic approach which introduces an improved 'scientific knockdown factor lambda(sub a)', that is not as conservative as the traditional empirical one. In order to incorporate probabilistic methods into a High Fidelity Analysis Approach one must be able to assess the accuracy of the various steps that must be executed to complete a reliability calculation. In the present paper the effect of size of the experimental input sample on the predicted value of the scientific knockdown factor lambda(sub a) calculated by the First-Order, Second-Moment Method is investigated.
Influences of geological parameters to probabilistic assessment of slope stability of embankment
NASA Astrophysics Data System (ADS)
Nguyen, Qui T.; Le, Tuan D.; Konečný, Petr
2018-04-01
This article considers influences of geological parameters to slope stability of the embankment in probabilistic analysis using SLOPE/W computational system. Stability of a simple slope is evaluated with and without pore–water pressure on the basis of variation of soil properties. Normal distributions of unit weight, cohesion and internal friction angle are assumed. Monte Carlo simulation technique is employed to perform analysis of critical slip surface. Sensitivity analysis is performed to observe the variation of the geological parameters and their effects on safety factors of the slope stability.
NASA Technical Reports Server (NTRS)
Johnson, Kenneth L.; White, K. Preston, Jr.
2012-01-01
The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. In this paper, the results of empirical tests intended to assess the accuracy of acceptance sampling plan calculators implemented for six variable distributions are presented.
NASA Technical Reports Server (NTRS)
Duffy, S. F.; Hu, J.; Hopkins, D. A.
1995-01-01
The article begins by examining the fundamentals of traditional deterministic design philosophy. The initial section outlines the concepts of failure criteria and limit state functions two traditional notions that are embedded in deterministic design philosophy. This is followed by a discussion regarding safety factors (a possible limit state function) and the common utilization of statistical concepts in deterministic engineering design approaches. Next the fundamental aspects of a probabilistic failure analysis are explored and it is shown that deterministic design concepts mentioned in the initial portion of the article are embedded in probabilistic design methods. For components fabricated from ceramic materials (and other similarly brittle materials) the probabilistic design approach yields the widely used Weibull analysis after suitable assumptions are incorporated. The authors point out that Weibull analysis provides the rare instance where closed form solutions are available for a probabilistic failure analysis. Since numerical methods are usually required to evaluate component reliabilities, a section on Monte Carlo methods is included to introduce the concept. The article concludes with a presentation of the technical aspects that support the numerical method known as fast probability integration (FPI). This includes a discussion of the Hasofer-Lind and Rackwitz-Fiessler approximations.
NASA Technical Reports Server (NTRS)
Price J. M.; Ortega, R.
1998-01-01
Probabilistic method is not a universally accepted approach for the design and analysis of aerospace structures. The validity of this approach must be demonstrated to encourage its acceptance as it viable design and analysis tool to estimate structural reliability. The objective of this Study is to develop a well characterized finite population of similar aerospace structures that can be used to (1) validate probabilistic codes, (2) demonstrate the basic principles behind probabilistic methods, (3) formulate general guidelines for characterization of material drivers (such as elastic modulus) when limited data is available, and (4) investigate how the drivers affect the results of sensitivity analysis at the component/failure mode level.
Safety design approach for external events in Japan sodium-cooled fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamano, H.; Kubo, S.; Tani, A.
2012-07-01
This paper describes a safety design approach for external events in the design study of Japan sodium-cooled fast reactor. An emphasis is introduction of a design extension external condition (DEEC). In addition to seismic design, other external events such as tsunami, strong wind, abnormal temperature, etc. were addressed in this study. From a wide variety of external events consisting of natural hazards and human-induced ones, a screening method was developed in terms of siting, consequence, frequency to select representative events. Design approaches for these events were categorized on the probabilistic, statistical and deterministic basis. External hazard conditions were considered mainlymore » for DEECs. In the probabilistic approach, the DEECs of earthquake, tsunami and strong wind were defined as 1/10 of exceedance probability of the external design bases. The other representative DEECs were also defined based on statistical or deterministic approaches. (authors)« less
McClelland, James L.
2013-01-01
This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered. PMID:23970868
McClelland, James L
2013-01-01
This article seeks to establish a rapprochement between explicitly Bayesian models of contextual effects in perception and neural network models of such effects, particularly the connectionist interactive activation (IA) model of perception. The article is in part an historical review and in part a tutorial, reviewing the probabilistic Bayesian approach to understanding perception and how it may be shaped by context, and also reviewing ideas about how such probabilistic computations may be carried out in neural networks, focusing on the role of context in interactive neural networks, in which both bottom-up and top-down signals affect the interpretation of sensory inputs. It is pointed out that connectionist units that use the logistic or softmax activation functions can exactly compute Bayesian posterior probabilities when the bias terms and connection weights affecting such units are set to the logarithms of appropriate probabilistic quantities. Bayesian concepts such the prior, likelihood, (joint and marginal) posterior, probability matching and maximizing, and calculating vs. sampling from the posterior are all reviewed and linked to neural network computations. Probabilistic and neural network models are explicitly linked to the concept of a probabilistic generative model that describes the relationship between the underlying target of perception (e.g., the word intended by a speaker or other source of sensory stimuli) and the sensory input that reaches the perceiver for use in inferring the underlying target. It is shown how a new version of the IA model called the multinomial interactive activation (MIA) model can sample correctly from the joint posterior of a proposed generative model for perception of letters in words, indicating that interactive processing is fully consistent with principled probabilistic computation. Ways in which these computations might be realized in real neural systems are also considered.
Probabilistic Analysis of a Composite Crew Module
NASA Technical Reports Server (NTRS)
Mason, Brian H.; Krishnamurthy, Thiagarajan
2011-01-01
An approach for conducting reliability-based analysis (RBA) of a Composite Crew Module (CCM) is presented. The goal is to identify and quantify the benefits of probabilistic design methods for the CCM and future space vehicles. The coarse finite element model from a previous NASA Engineering and Safety Center (NESC) project is used as the baseline deterministic analysis model to evaluate the performance of the CCM using a strength-based failure index. The first step in the probabilistic analysis process is the determination of the uncertainty distributions for key parameters in the model. Analytical data from water landing simulations are used to develop an uncertainty distribution, but such data were unavailable for other load cases. The uncertainty distributions for the other load scale factors and the strength allowables are generated based on assumed coefficients of variation. Probability of first-ply failure is estimated using three methods: the first order reliability method (FORM), Monte Carlo simulation, and conditional sampling. Results for the three methods were consistent. The reliability is shown to be driven by first ply failure in one region of the CCM at the high altitude abort load set. The final predicted probability of failure is on the order of 10-11 due to the conservative nature of the factors of safety on the deterministic loads.
How Can You Support RIDM/CRM/RM Through the Use of PRA
NASA Technical Reports Server (NTRS)
DoVemto. Tpmu
2011-01-01
Probabilistic Risk Assessment (PRA) is one of key Risk Informed Decision Making (RIDM) tools. It is a scenario-based methodology aimed at identifying and assessing Safety and Technical Performance risks in complex technological systems.
Fuzzy-probabilistic model for risk assessment of radioactive material railway transportation.
Avramenko, M; Bolyatko, V; Kosterev, V
2005-01-01
Transportation of radioactive materials is obviously accompanied by a certain risk. A model for risk assessment of emergency situations and terrorist attacks may be useful for choosing possible routes and for comparing the various defence strategies. In particular, risk assessment is crucial for safe transportation of excess weapons-grade plutonium arising from the removal of plutonium from military employment. A fuzzy-probabilistic model for risk assessment of railway transportation has been developed taking into account the different natures of risk-affecting parameters (probabilistic and not probabilistic but fuzzy). Fuzzy set theory methods as well as standard methods of probability theory have been used for quantitative risk assessment. Information-preserving transformations are applied to realise the correct aggregation of probabilistic and fuzzy parameters. Estimations have also been made of the inhalation doses resulting from possible accidents during plutonium transportation. The obtained data show the scale of possible consequences that may arise from plutonium transportation accidents.
NSTS Orbiter auxiliary power unit turbine wheel cracking risk assessment
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Mcclung, R. C.; Torng, T. Y.
1992-01-01
The present investigation of turbine-wheel cracking problems in the hydrazine-fueled APU turbine wheel of the Space Shuttle Orbiter's Main Engines has indicated the efficacy of systematic probabilistic risk assessment in flight certification and safety resolution. Nevertheless, real crack-initiation and propagation problems do not lend themselves to purely analytical studies. The high-cycle fatigue problem is noted to generally be unsuited to probabilistic modeling, due to its extremely high degree of intrinsic scatter. In the case treated, the cracks appear to trend toward crack arrest in a low cycle fatigue mode, due to a detuning of the resonance model.
Bakic, Jasmina; De Raedt, Rudi; Jepma, Marieke; Pourtois, Gilles
2015-01-01
According to dominant neuropsychological theories of affect, emotions signal salience of events and in turn facilitate a wide spectrum of response options or action tendencies. Valence of an emotional experience is pivotal here, as it alters reward and punishment processing, as well as the balance between safety and risk taking, which can be translated into changes in the exploration-exploitation trade-off during reinforcement learning (RL). To test this idea, we compared the behavioral performance of three groups of participants that all completed a variant of a standard probabilistic learning task, but who differed regarding which mood state was actually induced and maintained (happy, sad or neutral). To foster a change from an exploration to an exploitation-based mode, we removed feedback information once learning was reliably established. Although changes in mood were successful, learning performance was balanced between the three groups. Critically, when focusing on exploitation-driven learning only, they did not differ either. Moreover, mood valence did not alter the learning rate or exploration per se, when titrated using complementing computational modeling. By comparing systematically these results to our previous study (Bakic et al., 2014), we found that arousal levels did differ between studies, which might account for limited modulatory effects of (positive) mood on RL in the present case. These results challenge the assumption that mood valence alone is enough to create strong shifts in the way exploitation or exploration is eventually carried out during (probabilistic) learning. In this context, we discuss the possibility that both valence and arousal are actually necessary components of the emotional mood state to yield changes in the use and exploration of incentives cues during RL.
Effects of Time between Trials on Rats' and Pigeons' Choices with Probabilistic Delayed Reinforcers
ERIC Educational Resources Information Center
Mazur, James E.; Biondi, Dawn R.
2011-01-01
Parallel experiments with rats and pigeons examined reasons for previous findings that in choices with probabilistic delayed reinforcers, rats' choices were affected by the time between trials whereas pigeons' choices were not. In both experiments, the animals chose between a standard alternative and an adjusting alternative. A choice of the…
Liu, Xiang; Saat, Mohd Rapik; Barkan, Christopher P L
2014-07-15
Railroads play a key role in the transportation of hazardous materials in North America. Rail transport differs from highway transport in several aspects, an important one being that rail transport involves trains in which many railcars carrying hazardous materials travel together. By contrast to truck accidents, it is possible that a train accident may involve multiple hazardous materials cars derailing and releasing contents with consequently greater potential impact on human health, property and the environment. In this paper, a probabilistic model is developed to estimate the probability distribution of the number of tank cars releasing contents in a train derailment. Principal operational characteristics considered include train length, derailment speed, accident cause, position of the first car derailed, number and placement of tank cars in a train and tank car safety design. The effect of train speed, tank car safety design and tank car positions in a train were evaluated regarding the number of cars that release their contents in a derailment. This research provides insights regarding the circumstances affecting multiple-tank-car release incidents and potential strategies to reduce their occurrences. The model can be incorporated into a larger risk management framework to enable better local, regional and national safety management of hazardous materials transportation by rail. Copyright © 2014 Elsevier B.V. All rights reserved.
Probabilistic vs linear blending approaches to shared control for wheelchair driving.
Ezeh, Chinemelu; Trautman, Pete; Devigne, Louise; Bureau, Valentin; Babel, Marie; Carlson, Tom
2017-07-01
Some people with severe mobility impairments are unable to operate powered wheelchairs reliably and effectively, using commercially available interfaces. This has sparked a body of research into "smart wheelchairs", which assist users to drive safely and create opportunities for them to use alternative interfaces. Various "shared control" techniques have been proposed to provide an appropriate level of assistance that is satisfactory and acceptable to the user. Most shared control techniques employ a traditional strategy called linear blending (LB), where the user's commands and wheelchair's autonomous commands are combined in some proportion. In this paper, however, we implement a more generalised form of shared control called probabilistic shared control (PSC). This probabilistic formulation improves the accuracy of modelling the interaction between the user and the wheelchair by taking into account uncertainty in the interaction. In this paper, we demonstrate the practical success of PSC over LB in terms of safety, particularly for novice users.
NASA Astrophysics Data System (ADS)
Tsilanizara, A.; Gilardi, N.; Huynh, T. D.; Jouanne, C.; Lahaye, S.; Martinez, J. M.; Diop, C. M.
2014-06-01
The knowledge of the decay heat quantity and the associated uncertainties are important issues for the safety of nuclear facilities. Many codes are available to estimate the decay heat. ORIGEN, FISPACT, DARWIN/PEPIN2 are part of them. MENDEL is a new depletion code developed at CEA, with new software architecture, devoted to the calculation of physical quantities related to fuel cycle studies, in particular decay heat. The purpose of this paper is to present a probabilistic approach to assess decay heat uncertainty due to the decay data uncertainties from nuclear data evaluation like JEFF-3.1.1 or ENDF/B-VII.1. This probabilistic approach is based both on MENDEL code and URANIE software which is a CEA uncertainty analysis platform. As preliminary applications, single thermal fission of uranium 235, plutonium 239 and PWR UOx spent fuel cell are investigated.
Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations
NASA Astrophysics Data System (ADS)
Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.
2014-02-01
The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.
NASA Astrophysics Data System (ADS)
Nowak, W.; Enzenhoefer, R.; Bunk, T.
2013-12-01
Wellhead protection zones are commonly delineated via advective travel time analysis without considering any aspects of model uncertainty. In the past decade, research efforts produced quantifiable risk-based safety margins for protection zones. They are based on well vulnerability criteria (e.g., travel times, exposure times, peak concentrations) cast into a probabilistic setting, i.e., they consider model and parameter uncertainty. Practitioners still refrain from applying these new techniques for mainly three reasons. (1) They fear the possibly cost-intensive additional areal demand of probabilistic safety margins, (2) probabilistic approaches are allegedly complex, not readily available, and consume huge computing resources, and (3) uncertainty bounds are fuzzy, whereas final decisions are binary. The primary goal of this study is to show that these reservations are unjustified. We present a straightforward and computationally affordable framework based on a novel combination of well-known tools (e.g., MODFLOW, PEST, Monte Carlo). This framework provides risk-informed decision support for robust and transparent wellhead delineation under uncertainty. Thus, probabilistic risk-informed wellhead protection is possible with methods readily available for practitioners. As vivid proof of concept, we illustrate our key points on a pumped karstic well catchment, located in Germany. In the case study, we show that reliability levels can be increased by re-allocating the existing delineated area at no increase in delineated area. This is achieved by simply swapping delineated low-risk areas against previously non-delineated high-risk areas. Also, we show that further improvements may often be available at only low additional delineation area. Depending on the context, increases or reductions of delineated area directly translate to costs and benefits, if the land is priced, or if land owners need to be compensated for land use restrictions.
NASA Technical Reports Server (NTRS)
Schumann, Johann; Rozier, Kristin Y.; Reinbacher, Thomas; Mengshoel, Ole J.; Mbaya, Timmy; Ippolito, Corey
2013-01-01
Unmanned aerial systems (UASs) can only be deployed if they can effectively complete their missions and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. In this paper, we design a real-time, on-board system health management (SHM) capability to continuously monitor sensors, software, and hardware components for detection and diagnosis of failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and/or software signals; (2) signal analysis, preprocessing, and advanced on the- fly temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software due to instrumentation. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual data from the NASA Swift UAS, an experimental all-electric aircraft.
Intelligent Hardware-Enabled Sensor and Software Safety and Health Management for Autonomous UAS
NASA Technical Reports Server (NTRS)
Rozier, Kristin Y.; Schumann, Johann; Ippolito, Corey
2015-01-01
Unmanned Aerial Systems (UAS) can only be deployed if they can effectively complete their mission and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. We propose to design a real-time, onboard system health management (SHM) capability to continuously monitor essential system components such as sensors, software, and hardware systems for detection and diagnosis of failures and violations of safety or performance rules during the ight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the- y temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power hardware realization using Field Programmable Gate Arrays (FPGAs) in order to avoid overburdening limited computing resources or costly re-certi cation of ight software due to instrumentation. No currently available SHM capabilities (or combinations of currently existing SHM capabilities) come anywhere close to satisfying these three criteria yet NASA will require such intelligent, hardwareenabled sensor and software safety and health management for introducing autonomous UAS into the National Airspace System (NAS). We propose a novel approach of creating modular building blocks for combining responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. Our proposed research program includes both developing this novel approach and demonstrating its capabilities using the NASA Swift UAS as a demonstration platform.
Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Mustafa Sacit; none,; Flanagan, George F.
2014-07-30
An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two typesmore » of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.« less
Study on the evaluation method for fault displacement based on characterized source model
NASA Astrophysics Data System (ADS)
Tonagi, M.; Takahama, T.; Matsumoto, Y.; Inoue, N.; Irikura, K.; Dalguer, L. A.
2016-12-01
In IAEA Specific Safety Guide (SSG) 9 describes that probabilistic methods for evaluating fault displacement should be used if no sufficient basis is provided to decide conclusively that the fault is not capable by using the deterministic methodology. In addition, International Seismic Safety Centre compiles as ANNEX to realize seismic hazard for nuclear facilities described in SSG-9 and shows the utility of the deterministic and probabilistic evaluation methods for fault displacement. In Japan, it is required that important nuclear facilities should be established on ground where fault displacement will not arise when earthquakes occur in the future. Under these situations, based on requirements, we need develop evaluation methods for fault displacement to enhance safety in nuclear facilities. We are studying deterministic and probabilistic methods with tentative analyses using observed records such as surface fault displacement and near-fault strong ground motions of inland crustal earthquake which fault displacements arose. In this study, we introduce the concept of evaluation methods for fault displacement. After that, we show parts of tentative analysis results for deterministic method as follows: (1) For the 1999 Chi-Chi earthquake, referring slip distribution estimated by waveform inversion, we construct a characterized source model (Miyake et al., 2003, BSSA) which can explain observed near-fault broad band strong ground motions. (2) Referring a characterized source model constructed in (1), we study an evaluation method for surface fault displacement using hybrid method, which combines particle method and distinct element method. At last, we suggest one of the deterministic method to evaluate fault displacement based on characterized source model. This research was part of the 2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (S/NRA), Japan.
DISCOUNTING OF DELAYED AND PROBABILISTIC LOSSES OVER A WIDE RANGE OF AMOUNTS
Green, Leonard; Myerson, Joel; Oliveira, Luís; Chang, Seo Eun
2014-01-01
The present study examined delay and probability discounting of hypothetical monetary losses over a wide range of amounts (from $20 to $500,000) in order to determine how amount affects the parameters of the hyperboloid discounting function. In separate conditions, college students chose between immediate payments and larger, delayed payments and between certain payments and larger, probabilistic payments. The hyperboloid function accurately described both types of discounting, and amount of loss had little or no systematic effect on the degree of discounting. Importantly, the amount of loss also had little systematic effect on either the rate parameter or the exponent of the delay and probability discounting functions. The finding that the parameters of the hyperboloid function remain relatively constant across a wide range of amounts of delayed and probabilistic loss stands in contrast to the robust amount effects observed with delayed and probabilistic rewards. At the individual level, the degree to which delayed losses were discounted was uncorrelated with the degree to which probabilistic losses were discounted, and delay and probability loaded on two separate factors, similar to what is observed with delayed and probabilistic rewards. Taken together, these findings argue that although delay and probability discounting involve fundamentally different decision-making mechanisms, nevertheless the discounting of delayed and probabilistic losses share an insensitivity to amount that distinguishes it from the discounting of delayed and probabilistic gains. PMID:24745086
Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.
Why is Probabilistic Seismic Hazard Analysis (PSHA) still used?
NASA Astrophysics Data System (ADS)
Mulargia, Francesco; Stark, Philip B.; Geller, Robert J.
2017-03-01
Even though it has never been validated by objective testing, Probabilistic Seismic Hazard Analysis (PSHA) has been widely used for almost 50 years by governments and industry in applications with lives and property hanging in the balance, such as deciding safety criteria for nuclear power plants, making official national hazard maps, developing building code requirements, and determining earthquake insurance rates. PSHA rests on assumptions now known to conflict with earthquake physics; many damaging earthquakes, including the 1988 Spitak, Armenia, event and the 2011 Tohoku, Japan, event, have occurred in regions relatively rated low-risk by PSHA hazard maps. No extant method, including PSHA, produces reliable estimates of seismic hazard. Earthquake hazard mitigation should be recognized to be inherently political, involving a tradeoff between uncertain costs and uncertain risks. Earthquake scientists, engineers, and risk managers can make important contributions to the hard problem of allocating limited resources wisely, but government officials and stakeholders must take responsibility for the risks of accidents due to natural events that exceed the adopted safety criteria.
A probabilistic safety analysis of incidents in nuclear research reactors.
Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi
2012-06-01
This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.
Probabilistic Surface Characterization for Safe Landing Hazard Detection and Avoidance (HDA)
NASA Technical Reports Server (NTRS)
Johnson, Andrew E. (Inventor); Ivanov, Tonislav I. (Inventor); Huertas, Andres (Inventor)
2015-01-01
Apparatuses, systems, computer programs and methods for performing hazard detection and avoidance for landing vehicles are provided. Hazard assessment takes into consideration the geometry of the lander. Safety probabilities are computed for a plurality of pixels in a digital elevation map. The safety probabilities are combined for pixels associated with one or more aim points and orientations. A worst case probability value is assigned to each of the one or more aim points and orientations.
Quasi-Static Probabilistic Structural Analyses Process and Criteria
NASA Technical Reports Server (NTRS)
Goldberg, B.; Verderaime, V.
1999-01-01
Current deterministic structural methods are easily applied to substructures and components, and analysts have built great design insights and confidence in them over the years. However, deterministic methods cannot support systems risk analyses, and it was recently reported that deterministic treatment of statistical data is inconsistent with error propagation laws that can result in unevenly conservative structural predictions. Assuming non-nal distributions and using statistical data formats throughout prevailing stress deterministic processes lead to a safety factor in statistical format, which integrated into the safety index, provides a safety factor and first order reliability relationship. The embedded safety factor in the safety index expression allows a historically based risk to be determined and verified over a variety of quasi-static metallic substructures consistent with the traditional safety factor methods and NASA Std. 5001 criteria.
Probabilistic fatigue methodology for six nines reliability
NASA Technical Reports Server (NTRS)
Everett, R. A., Jr.; Bartlett, F. D., Jr.; Elber, Wolf
1990-01-01
Fleet readiness and flight safety strongly depend on the degree of reliability that can be designed into rotorcraft flight critical components. The current U.S. Army fatigue life specification for new rotorcraft is the so-called six nines reliability, or a probability of failure of one in a million. The progress of a round robin which was established by the American Helicopter Society (AHS) Subcommittee for Fatigue and Damage Tolerance is reviewed to investigate reliability-based fatigue methodology. The participants in this cooperative effort are in the U.S. Army Aviation Systems Command (AVSCOM) and the rotorcraft industry. One phase of the joint activity examined fatigue reliability under uniquely defined conditions for which only one answer was correct. The other phases were set up to learn how the different industry methods in defining fatigue strength affected the mean fatigue life and reliability calculations. Hence, constant amplitude and spectrum fatigue test data were provided so that each participant could perform their standard fatigue life analysis. As a result of this round robin, the probabilistic logic which includes both fatigue strength and spectrum loading variability in developing a consistant reliability analysis was established. In this first study, the reliability analysis was limited to the linear cumulative damage approach. However, it is expected that superior fatigue life prediction methods will ultimately be developed through this open AHS forum. To that end, these preliminary results were useful in identifying some topics for additional study.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... must be one which, if proven, would entitle the requestor/petitioner to relief. A requestor/ petitioner..., and fire modeling calculations, have been performed to demonstrate that the performance-based... may include engineering evaluations, probabilistic safety assessments, and fire modeling calculations...
System Maturity Indices for Decision Support in the Defense Acquisition Process
2008-04-23
technologies, but was to be used as ontology for contracting support (Sadin, Povinelli , & Rosen, 1989), thus TRL does not address: A complete...via probabilistic solution discovery. Reliability Engineering & System Safety. In press. Sadin, S.R., Povinelli , F.P., & Rosen, R. (1989). The NASA
Emergence of spontaneous anticipatory hand movements in a probabilistic environment
Bruhn, Pernille
2013-01-01
In this article, we present a novel experimental approach to the study of anticipation in probabilistic cuing. We implemented a modified spatial cuing task in which participants made an anticipatory hand movement toward one of two probabilistic targets while the (x, y)-computer mouse coordinates of their hand movements were sampled. This approach allowed us to tap into anticipatory processes as they occurred, rather than just measuring their behavioral outcome through reaction time to the target. In different conditions, we varied the participants’ degree of certainty of the upcoming target position with probabilistic pre-cues. We found that participants initiated spontaneous anticipatory hand movements in all conditions, even when they had no information on the position of the upcoming target. However, participants’ hand position immediately before the target was affected by the degree of certainty concerning the target’s position. This modulation of anticipatory hand movements emerged rapidly in most participants as they encountered a constant probabilistic relation between a cue and an upcoming target position over the course of the experiment. Finally, we found individual differences in the way anticipatory behavior was modulated with an uncertain/neutral cue. Implications of these findings for probabilistic spatial cuing are discussed. PMID:23833694
NASA Astrophysics Data System (ADS)
Bin, Che; Ruoying, Yu; Dongsheng, Dang; Xiangyan, Wang
2017-05-01
Distributed Generation (DG) integrating to the network would cause the harmonic pollution which would cause damages on electrical devices and affect the normal operation of power system. On the other hand, due to the randomness of the wind and solar irradiation, the output of DG is random, too, which leads to an uncertainty of the harmonic generated by the DG. Thus, probabilistic methods are needed to analyse the impacts of the DG integration. In this work we studied the harmonic voltage probabilistic distribution and the harmonic distortion in distributed network after the distributed photovoltaic (DPV) system integrating in different weather conditions, mainly the sunny day, cloudy day, rainy day and the snowy day. The probabilistic distribution function of the DPV output power in different typical weather conditions could be acquired via the parameter identification method of maximum likelihood estimation. The Monte-Carlo simulation method was adopted to calculate the probabilistic distribution of harmonic voltage content at different frequency orders as well as the harmonic distortion (THD) in typical weather conditions. The case study was based on the IEEE33 system and the results of harmonic voltage content probabilistic distribution as well as THD in typical weather conditions were compared.
Probabilistic Model for Untargeted Peak Detection in LC-MS Using Bayesian Statistics.
Woldegebriel, Michael; Vivó-Truyols, Gabriel
2015-07-21
We introduce a novel Bayesian probabilistic peak detection algorithm for liquid chromatography-mass spectroscopy (LC-MS). The final probabilistic result allows the user to make a final decision about which points in a chromatogram are affected by a chromatographic peak and which ones are only affected by noise. The use of probabilities contrasts with the traditional method in which a binary answer is given, relying on a threshold. By contrast, with the Bayesian peak detection presented here, the values of probability can be further propagated into other preprocessing steps, which will increase (or decrease) the importance of chromatographic regions into the final results. The present work is based on the use of the statistical overlap theory of component overlap from Davis and Giddings (Davis, J. M.; Giddings, J. Anal. Chem. 1983, 55, 418-424) as prior probability in the Bayesian formulation. The algorithm was tested on LC-MS Orbitrap data and was able to successfully distinguish chemical noise from actual peaks without any data preprocessing.
77 FR 58420 - Advisory Committee On Reactor Safeguards; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... Pike, Rockville, Maryland. Thursday, October 4, 2012, Conference Room T2-B1, 11545 Rockville Pike....: Safety Evaluation Report (SER) Associated with WCAP-16793-NP, Revision 2, ``Evaluation of Long-Term..., ``Evaluation of JNES Equipment Fragility Tests for Use in Seismic Probabilistic Risk Assessments for U.S...
Virtues and Limitations of Risk Analysis
ERIC Educational Resources Information Center
Weatherwax, Robert K.
1975-01-01
After summarizing the Rasmussion Report, the author reviews the probabilistic portion of the report from the perspectives of engineering utility and risk assessment uncertainty. The author shows that the report may represent a significant step forward in the assurance of reactor safety and an imperfect measure of actual reactor risk. (BT)
Dornic, N; Ficheux, A S; Bernard, A; Roudot, A C
2017-08-01
The notes of guidance for the testing of cosmetic ingredients and their safety evaluation by the Scientific Committee on Consumer Safety (SCCS) is a document dedicated to ensuring the safety of European consumers. This contains useful data for risk assessment such as default values for Skin Surface Area (SSA). A more in-depth study of anthropometric data across Europe reveals considerable variations. The default SSA value was derived from a study on the Dutch population, which is known to be one of the tallest nations in the World. This value could be inadequate for shorter populations of Europe. Data were collected in a survey on cosmetic consumption in France. Probabilistic treatment of these data and analysis of the case of methylisothiazolinone, a sensitizer recently evaluated by a deterministic approach submitted to SCCS, suggest that the default value for SSA used in the quantitative risk assessment might not be relevant for a significant share of the French female population. Others female populations of Southern Europe may also be excluded. This is of importance given that some studies show an increasing risk of developping skin sensitization among women. The disparities in anthropometric data across Europe should be taken into consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.
Perception of blood transfusion risk.
Lee, David
2006-04-01
Perceptions of risk ultimately drive the responses of individuals and society to risk issues, and transfusion risk is no exception. Surveys of lay people over the past decade indicate that public concern about transfusion safety has remained prevalent, dominated by the ongoing fear of contracting HIV infection. Such perceptions persist despite the acknowledgment that blood transfusion is safer now than in years past. Judgements by the lay public that may, at first glance, seem irrational can often be understood when the heuristics, biases, and models of human judgements of risk are considered. Risk perception research suggests that how lay people perceive risk has less to do with the unidimensional view of risk as a probabilistic expression and more to do with a complex multidimensional construct in which affect, reason, worldviews, trust, and other factors are intertwined. This review summarizes some of the principles of risk perception as applicable to transfusion medicine.
Probabilistic model of bridge vehicle loads in port area based on in-situ load testing
NASA Astrophysics Data System (ADS)
Deng, Ming; Wang, Lei; Zhang, Jianren; Wang, Rei; Yan, Yanhong
2017-11-01
Vehicle load is an important factor affecting the safety and usability of bridges. An statistical analysis is carried out in this paper to investigate the vehicle load data of Tianjin Haibin highway in Tianjin port of China, which are collected by the Weigh-in- Motion (WIM) system. Following this, the effect of the vehicle load on test bridge is calculated, and then compared with the calculation result according to HL-93(AASHTO LRFD). Results show that the overall vehicle load follows a distribution with a weighted sum of four normal distributions. The maximum vehicle load during the design reference period follows a type I extremum distribution. The vehicle load effect also follows a weighted sum of four normal distributions, and the standard value of the vehicle load is recommended as 1.8 times that of the calculated value according to HL-93.
"What--me worry?" "Why so serious?": a personal view on the Fukushima nuclear reactor accidents.
Gallucci, Raymond
2012-09-01
Infrequently, it seems that a significant accident precursor or, worse, an actual accident, involving a commercial nuclear power reactor occurs to remind us of the need to reexamine the safety of this important electrical power technology from a risk perspective. Twenty-five years since the major core damage accident at Chernobyl in the Ukraine, the Fukushima reactor complex in Japan experienced multiple core damages as a result of an earthquake-induced tsunami beyond either the earthquake or tsunami design basis for the site. Although the tsunami itself killed tens of thousands of people and left the area devastated and virtually uninhabitable, much concern still arose from the potential radioactive releases from the damaged reactors, even though there was little population left in the area to be affected. As a lifelong probabilistic safety analyst in nuclear engineering, even I must admit to a recurrence of the doubt regarding nuclear power safety after Fukushima that I had experienced after Three Mile Island and Chernobyl. This article is my attempt to "recover" my personal perspective on acceptable risk by examining both the domestic and worldwide history of commercial nuclear power plant accidents and attempting to quantify the risk in terms of the frequency of core damage that one might glean from a review of operational history. © 2012 Society for Risk Analysis.
Kolios, Athanasios; Jiang, Ying; Somorin, Tosin; Sowale, Ayodeji; Anastasopoulou, Aikaterini; Anthony, Edward J; Fidalgo, Beatriz; Parker, Alison; McAdam, Ewan; Williams, Leon; Collins, Matt; Tyrrel, Sean
2018-05-01
A probabilistic modelling approach was developed and applied to investigate the energy and environmental performance of an innovative sanitation system, the "Nano-membrane Toilet" (NMT). The system treats human excreta via an advanced energy and water recovery island with the aim of addressing current and future sanitation demands. Due to the complex design and inherent characteristics of the system's input material, there are a number of stochastic variables which may significantly affect the system's performance. The non-intrusive probabilistic approach adopted in this study combines a finite number of deterministic thermodynamic process simulations with an artificial neural network (ANN) approximation model and Monte Carlo simulations (MCS) to assess the effect of system uncertainties on the predicted performance of the NMT system. The joint probability distributions of the process performance indicators suggest a Stirling Engine (SE) power output in the range of 61.5-73 W with a high confidence interval (CI) of 95%. In addition, there is high probability (with 95% CI) that the NMT system can achieve positive net power output between 15.8 and 35 W. A sensitivity study reveals the system power performance is mostly affected by SE heater temperature. Investigation into the environmental performance of the NMT design, including water recovery and CO 2 /NO x emissions, suggests significant environmental benefits compared to conventional systems. Results of the probabilistic analysis can better inform future improvements on the system design and operational strategy and this probabilistic assessment framework can also be applied to similar complex engineering systems.
Evaluation of safety of hypobaric decompressions and EVA from positions of probabilistic theory
NASA Astrophysics Data System (ADS)
Nikolaev, V. P.
Formation and subsequent evolution of gas bubbles in blood and tissues of subjects exposed to decompression are casual processes in their nature. Such character of bubbling processes in a body predetermines probabilistic character of decompression sickness (DCS) incidence in divers, aviators and astronauts. Our original probabilistic theory of decompression safety is based on stochastic models of these processes and on the concept of critical volume of a free gas phase in body tissues. From positions of this theory, the probability of DCS incidence during single-stage decompressions and during hypobaric decompressions under EVA in particular, is defined by the distribution of possible values of nucleation efficiency in "pain" tissues and by its critical significance depended on the parameters of a concrete decompression. In the present study the following is shown: 1) the dimensionless index of critical nucleation efficiency for "pain" body tissues is a more adequate index of decompression stress in comparison with Tissue Ratio, TR; 2) a priory the decompression under EVA performed according to the Russian protocol is more safe than decompression under EVA performed in accordance with the U.S. protocol; 3) the Russian space suit operated at a higher pressure and having a higher "rigidity" induces a stronger inhibition of mechanisms of cavitation and gas bubbles formation in tissues of a subject located in it, and by that provides a more considerable reduction of the DCS risk during real EVA performance.
Impact of refining the assessment of dietary exposure to cadmium in the European adult population.
Ferrari, Pietro; Arcella, Davide; Heraud, Fanny; Cappé, Stefano; Fabiansson, Stefan
2013-01-01
Exposure assessment constitutes an important step in any risk assessment of potentially harmful substances present in food. The European Food Safety Authority (EFSA) first assessed dietary exposure to cadmium in Europe using a deterministic framework, resulting in mean values of exposure in the range of health-based guidance values. Since then, the characterisation of foods has been refined to better match occurrence and consumption data, and a new strategy to handle left-censoring in occurrence data was devised. A probabilistic assessment was performed and compared with deterministic estimates, using occurrence values at the European level and consumption data from 14 national dietary surveys. Mean estimates in the probabilistic assessment ranged from 1.38 (95% CI = 1.35-1.44) to 2.08 (1.99-2.23) µg kg⁻¹ bodyweight (bw) week⁻¹ across the different surveys, which were less than 10% lower than deterministic (middle bound) mean values that ranged from 1.50 to 2.20 µg kg⁻¹ bw week⁻¹. Probabilistic 95th percentile estimates of dietary exposure ranged from 2.65 (2.57-2.72) to 4.99 (4.62-5.38) µg kg⁻¹ bw week⁻¹, which were, with the exception of one survey, between 3% and 17% higher than middle-bound deterministic estimates. Overall, the proportion of subjects exceeding the tolerable weekly intake of 2.5 µg kg⁻¹ bw ranged from 14.8% (13.6-16.0%) to 31.2% (29.7-32.5%) according to the probabilistic assessment. The results of this work indicate that mean values of dietary exposure to cadmium in the European population were of similar magnitude using determinist or probabilistic assessments. For higher exposure levels, probabilistic estimates were almost consistently larger than deterministic counterparts, thus reflecting the impact of using the full distribution of occurrence values to determine exposure levels. It is considered prudent to use probabilistic methodology should exposure estimates be close to or exceeding health-based guidance values.
Integrated Risk-Informed Decision-Making for an ALMR PRISM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhlheim, Michael David; Belles, Randy; Denning, Richard S.
Decision-making is the process of identifying decision alternatives, assessing those alternatives based on predefined metrics, selecting an alternative (i.e., making a decision), and then implementing that alternative. The generation of decisions requires a structured, coherent process, or a decision-making process. The overall objective for this work is that the generalized framework is adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or no human intervention. The overriding goal of automation is to replace ormore » supplement human decision makers with reconfigurable decision-making modules that can perform a given set of tasks rationally, consistently, and reliably. Risk-informed decision-making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The probabilistic portion of the decision-making engine of the supervisory control system is based on the control actions associated with an ALMR PRISM. Newly incorporated into the probabilistic models are the prognostic/diagnostic models developed by Pacific Northwest National Laboratory. These allow decisions to incorporate the health of components into the decision–making process. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic portion of the decision-making engine uses thermal-hydraulic modeling and components for an advanced liquid-metal reactor Power Reactor Inherently Safe Module. The deterministic multi-attribute decision-making framework uses various sensor data (e.g., reactor outlet temperature, steam generator drum level) and calculates its position within the challenge state, its trajectory, and its margin within the controllable domain using utility functions to evaluate current and projected plant state space for different control decisions. The metrics that are evaluated are based on reactor trip set points. The integration of the deterministic calculations using multi-physics analyses and probabilistic safety calculations allows for the examination and quantification of margin recovery strategies. This also provides validation of the control options identified from the probabilistic assessment. Thus, the thermalhydraulics analyses are used to validate the control options identified from the probabilistic assessment. Future work includes evaluating other possible metrics and computational efficiencies, and developing a user interface to mimic display panels at a modern nuclear power plant.« less
Probabilistic assessment of wildfire hazard and municipal watershed exposure
Joe Scott; Don Helmbrecht; Matthew P. Thompson; David E. Calkin; Kate Marcille
2012-01-01
The occurrence of wildfires within municipal watersheds can result in significant impacts to water quality and ultimately human health and safety. In this paper, we illustrate the application of geospatial analysis and burn probability modeling to assess the exposure of municipal watersheds to wildfire. Our assessment of wildfire exposure consists of two primary...
Reliability and Maintainability Data for Lead Lithium Cooling Systems
Cadwallader, Lee
2016-11-16
This article presents component failure rate data for use in assessment of lead lithium cooling systems. Best estimate data applicable to this liquid metal coolant is presented. Repair times for similar components are also referenced in this work. These data support probabilistic safety assessment and reliability, availability, maintainability and inspectability analyses.
NASA Technical Reports Server (NTRS)
Reinhart, L. E.
2001-01-01
This paper provides an overview of the U.S. space nuclear power system launch approval process as defined by the two separate requirements of the National Environmental Policy Act (NEPA) and Presidential Directive/National Security Council Memorandum No. 25 (PD/NSC-25).
Probabilistic analysis of preload in the abutment screw of a dental implant complex.
Guda, Teja; Ross, Thomas A; Lang, Lisa A; Millwater, Harry R
2008-09-01
Screw loosening is a problem for a percentage of implants. A probabilistic analysis to determine the cumulative probability distribution of the preload, the probability of obtaining an optimal preload, and the probabilistic sensitivities identifying important variables is lacking. The purpose of this study was to examine the inherent variability of material properties, surface interactions, and applied torque in an implant system to determine the probability of obtaining desired preload values and to identify the significant variables that affect the preload. Using software programs, an abutment screw was subjected to a tightening torque and the preload was determined from finite element (FE) analysis. The FE model was integrated with probabilistic analysis software. Two probabilistic analysis methods (advanced mean value and Monte Carlo sampling) were applied to determine the cumulative distribution function (CDF) of preload. The coefficient of friction, elastic moduli, Poisson's ratios, and applied torque were modeled as random variables and defined by probability distributions. Separate probability distributions were determined for the coefficient of friction in well-lubricated and dry environments. The probabilistic analyses were performed and the cumulative distribution of preload was determined for each environment. A distinct difference was seen between the preload probability distributions generated in a dry environment (normal distribution, mean (SD): 347 (61.9) N) compared to a well-lubricated environment (normal distribution, mean (SD): 616 (92.2) N). The probability of obtaining a preload value within the target range was approximately 54% for the well-lubricated environment and only 0.02% for the dry environment. The preload is predominately affected by the applied torque and coefficient of friction between the screw threads and implant bore at lower and middle values of the preload CDF, and by the applied torque and the elastic modulus of the abutment screw at high values of the preload CDF. Lubrication at the threaded surfaces between the abutment screw and implant bore affects the preload developed in the implant complex. For the well-lubricated surfaces, only approximately 50% of implants will have preload values within the generally accepted range. This probability can be improved by applying a higher torque than normally recommended or a more closely controlled torque than typically achieved. It is also suggested that materials with higher elastic moduli be used in the manufacture of the abutment screw to achieve a higher preload.
NASA Astrophysics Data System (ADS)
Dialynas, Y. G.; Arnone, E.; Noto, L. V.; Bras, R. L.
2013-12-01
Slope stability depends on geotechnical and hydrological factors that exhibit wide natural spatial variability, yet sufficient measurements of the related parameters are rarely available over entire study areas. The uncertainty associated with the inability to fully characterize hydrologic behavior has an impact on any attempt to model landslide hazards. This work suggests a way to systematically account for this uncertainty in coupled distributed hydrological-stability models for shallow landslide hazard assessment. A probabilistic approach for the prediction of rainfall-triggered landslide occurrence at basin scale was implemented in an existing distributed eco-hydrological and landslide model, tRIBS-VEGGIE -landslide (Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator - VEGetation Generator for Interactive Evolution). More precisely, we upgraded tRIBS-VEGGIE- landslide to assess the likelihood of shallow landslides by accounting for uncertainty related to geotechnical and hydrological factors that directly affect slope stability. Natural variability of geotechnical soil characteristics was considered by randomizing soil cohesion and friction angle. Hydrological uncertainty related to the estimation of matric suction was taken into account by considering soil retention parameters as correlated random variables. The probability of failure is estimated through an assumed theoretical Factor of Safety (FS) distribution, conditioned on soil moisture content. At each cell, the temporally variant FS statistics are approximated by the First Order Second Moment (FOSM) method, as a function of parameters statistical properties. The model was applied on the Rio Mameyes Basin, located in the Luquillo Experimental Forest in Puerto Rico, where previous landslide analyses have been carried out. At each time step, model outputs include the probability of landslide occurrence across the basin, and the most probable depth of failure at each soil column. The use of the proposed probabilistic approach for shallow landslide prediction is able to reveal and quantify landslide risk at slopes assessed as stable by simpler deterministic methods.
Li, Zhixi; Peck, Kyung K.; Brennan, Nicole P.; Jenabi, Mehrnaz; Hsu, Meier; Zhang, Zhigang; Holodny, Andrei I.; Young, Robert J.
2014-01-01
Purpose The purpose of this study was to compare the deterministic and probabilistic tracking methods of diffusion tensor white matter fiber tractography in patients with brain tumors. Materials and Methods We identified 29 patients with left brain tumors <2 cm from the arcuate fasciculus who underwent pre-operative language fMRI and DTI. The arcuate fasciculus was reconstructed using a deterministic Fiber Assignment by Continuous Tracking (FACT) algorithm and a probabilistic method based on an extended Monte Carlo Random Walk algorithm. Tracking was controlled using two ROIs corresponding to Broca’s and Wernicke’s areas. Tracts in tumoraffected hemispheres were examined for extension between Broca’s and Wernicke’s areas, anterior-posterior length and volume, and compared with the normal contralateral tracts. Results Probabilistic tracts displayed more complete anterior extension to Broca’s area than did FACT tracts on the tumor-affected and normal sides (p < 0.0001). The median length ratio for tumor: normal sides was greater for probabilistic tracts than FACT tracts (p < 0.0001). The median tract volume ratio for tumor: normal sides was also greater for probabilistic tracts than FACT tracts (p = 0.01). Conclusion Probabilistic tractography reconstructs the arcuate fasciculus more completely and performs better through areas of tumor and/or edema. The FACT algorithm tends to underestimate the anterior-most fibers of the arcuate fasciculus, which are crossed by primary motor fibers. PMID:25328583
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua
2014-11-01
Passive system, structure and components (SSCs) will degrade over their operation life and this degradation may cause to reduction in the safety margins of a nuclear power plant. In traditional probabilistic risk assessment (PRA) using the event-tree/fault-tree methodology, passive SSC failure rates are generally based on generic plant failure data and the true state of a specific plant is not reflected realistically. To address aging effects of passive SSCs in the traditional PRA methodology [1] does consider physics based models that account for the operating conditions in the plant, however, [1] does not include effects of surveillance/inspection. This paper representsmore » an overall methodology for the incorporation of aging modeling of passive components into the RAVEN/RELAP-7 environment which provides a framework for performing dynamic PRA. Dynamic PRA allows consideration of both epistemic and aleatory uncertainties (including those associated with maintenance activities) in a consistent phenomenological and probabilistic framework and is often needed when there is complex process/hardware/software/firmware/ human interaction [2]. Dynamic PRA has gained attention recently due to difficulties in the traditional PRA modeling of aging effects of passive components using physics based models and also in the modeling of digital instrumentation and control systems. RAVEN (Reactor Analysis and Virtual control Environment) [3] is a software package under development at the Idaho National Laboratory (INL) as an online control logic driver and post-processing tool. It is coupled to the plant transient code RELAP-7 (Reactor Excursion and Leak Analysis Program) also currently under development at INL [3], as well as RELAP 5 [4]. The overall methodology aims to: • Address multiple aging mechanisms involving large number of components in a computational feasible manner where sequencing of events is conditioned on the physical conditions predicted in a simulation environment such as RELAP-7. • Identify the risk-significant passive components, their failure modes and anticipated rates of degradation • Incorporate surveillance and maintenance activities and their effects into the plant state and into component aging progress. • Asses aging affects in a dynamic simulation environment 1. C. L. SMITH, V. N. SHAH, T. KAO, G. APOSTOLAKIS, “Incorporating Ageing Effects into Probabilistic Risk Assessment –A Feasibility Study Utilizing Reliability Physics Models,” NUREG/CR-5632, USNRC, (2001). 2. T. ALDEMIR, “A Survey of Dynamic Methodologies for Probabilistic Safety Assessment of Nuclear Power Plants, Annals of Nuclear Energy, 52, 113-124, (2013). 3. C. RABITI, A. ALFONSI, J. COGLIATI, D. MANDELLI and R. KINOSHITA “Reactor Analysis and Virtual Control Environment (RAVEN) FY12 Report,” INL/EXT-12-27351, (2012). 4. D. ANDERS et.al, "RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7," INL/EXT-12-25924, (2012).« less
Structural Deterministic Safety Factors Selection Criteria and Verification
NASA Technical Reports Server (NTRS)
Verderaime, V.
1992-01-01
Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.
Affective and cognitive factors influencing sensitivity to probabilistic information.
Tyszka, Tadeusz; Sawicki, Przemyslaw
2011-11-01
In study 1 different groups of female students were randomly assigned to one of four probabilistic information formats. Five different levels of probability of a genetic disease in an unborn child were presented to participants (within-subject factor). After the presentation of the probability level, participants were requested to indicate the acceptable level of pain they would tolerate to avoid the disease (in their unborn child), their subjective evaluation of the disease risk, and their subjective evaluation of being worried by this risk. The results of study 1 confirmed the hypothesis that an experience-based probability format decreases the subjective sense of worry about the disease, thus, presumably, weakening the tendency to overrate the probability of rare events. Study 2 showed that for the emotionally laden stimuli, the experience-based probability format resulted in higher sensitivity to probability variations than other formats of probabilistic information. These advantages of the experience-based probability format are interpreted in terms of two systems of information processing: the rational deliberative versus the affective experiential and the principle of stimulus-response compatibility. © 2011 Society for Risk Analysis.
Marsh, Rachel; Alexander, Gerianne M; Packard, Mark G; Zhu, Hongtu; Peterson, Bradley S
2005-01-01
Procedural learning and memory systems likely comprise several skills that are differentially affected by various illnesses of the central nervous system, suggesting their relative functional independence and reliance on differing neural circuits. Gilles de la Tourette syndrome (GTS) is a movement disorder that involves disturbances in the structure and function of the striatum and related circuitry. Recent studies suggest that patients with GTS are impaired in performance of a probabilistic classification task that putatively involves the acquisition of stimulus-response (S-R)-based habits. Assessing the learning of perceptual-motor skills and probabilistic classification in the same samples of GTS and healthy control subjects may help to determine whether these various forms of procedural (habit) learning rely on the same or differing neuroanatomical substrates and whether those substrates are differentially affected in persons with GTS. Therefore, we assessed perceptual-motor skill learning using the pursuit-rotor and mirror tracing tasks in 50 patients with GTS and 55 control subjects who had previously been compared at learning a task of probabilistic classifications. The GTS subjects did not differ from the control subjects in performance of either the pursuit rotor or mirror-tracing tasks, although they were significantly impaired in the acquisition of a probabilistic classification task. In addition, learning on the perceptual-motor tasks was not correlated with habit learning on the classification task in either the GTS or healthy control subjects. These findings suggest that the differing forms of procedural learning are dissociable both functionally and neuroanatomically. The specific deficits in the probabilistic classification form of habit learning in persons with GTS are likely to be a consequence of disturbances in specific corticostriatal circuits, but not the same circuits that subserve the perceptual-motor form of habit learning.
An Online Risk Monitor System (ORMS) to Increase Safety and Security Levels in Industry
NASA Astrophysics Data System (ADS)
Zubair, M.; Rahman, Khalil Ur; Hassan, Mehmood Ul
2013-12-01
The main idea of this research is to develop an Online Risk Monitor System (ORMS) based on Living Probabilistic Safety Assessment (LPSA). The article highlights the essential features and functions of ORMS. The basic models and modules such as, Reliability Data Update Model (RDUM), running time update, redundant system unavailability update, Engineered Safety Features (ESF) unavailability update and general system update have been described in this study. ORMS not only provides quantitative analysis but also highlights qualitative aspects of risk measures. ORMS is capable of automatically updating the online risk models and reliability parameters of equipment. ORMS can support in the decision making process of operators and managers in Nuclear Power Plants.
Reliability and Failure in NASA Missions: Blunders, Normal Accidents, High Reliability, Bad Luck
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2015-01-01
NASA emphasizes crew safety and system reliability but several unfortunate failures have occurred. The Apollo 1 fire was mistakenly unanticipated. After that tragedy, the Apollo program gave much more attention to safety. The Challenger accident revealed that NASA had neglected safety and that management underestimated the high risk of shuttle. Probabilistic Risk Assessment was adopted to provide more accurate failure probabilities for shuttle and other missions. NASA's "faster, better, cheaper" initiative and government procurement reform led to deliberately dismantling traditional reliability engineering. The Columbia tragedy and Mars mission failures followed. Failures can be attributed to blunders, normal accidents, or bad luck. Achieving high reliability is difficult but possible.
Development of a First-of-a-Kind Deterministic Decision-Making Tool for Supervisory Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Sacit M; Kisner, Roger A; Muhlheim, Michael David
2015-07-01
Decision-making is the process of identifying and choosing alternatives where each alternative offers a different approach or path to move from a given state or condition to a desired state or condition. The generation of consistent decisions requires that a structured, coherent process be defined, immediately leading to a decision-making framework. The overall objective of the generalized framework is for it to be adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or nomore » human intervention. The overriding goal of automation is to replace or supplement human decision makers with reconfigurable decision- making modules that can perform a given set of tasks reliably. Risk-informed decision making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The implementation of the probabilistic portion of the decision-making engine of the proposed supervisory control system was detailed in previous milestone reports. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic multi-attribute decision-making framework uses variable sensor data (e.g., outlet temperature) and calculates where it is within the challenge state, its trajectory, and margin within the controllable domain using utility functions to evaluate current and projected plant state space for different control decisions. Metrics to be evaluated include stability, cost, time to complete (action), power level, etc. The integration of deterministic calculations using multi-physics analyses (i.e., neutronics, thermal, and thermal-hydraulics) and probabilistic safety calculations allows for the examination and quantification of margin recovery strategies. This also provides validation of the control options identified from the probabilistic assessment. Thus, the thermal-hydraulics analyses are used to validate the control options identified from the probabilistic assessment. Future work includes evaluating other possible metrics and computational efficiencies.« less
Long-term multi-hazard assessment for El Misti volcano (Peru)
NASA Astrophysics Data System (ADS)
Sandri, Laura; Thouret, Jean-Claude; Constantinescu, Robert; Biass, Sébastien; Tonini, Roberto
2014-02-01
We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located <20 km from Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabilistic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra loading during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley represents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods. Although this study does not intend to replace the current El Misti hazard map, the quantitative results of this probabilistic multi-hazard assessment can be incorporated into a multi-risk analysis, to support decision makers in any future improvement of the current hazard evaluation, such as further land-use planning and possible emergency management.
Chien, Tsair-Wei; Shao, Yang; Kuo, Shu-Chun
2017-01-10
Many continuous item responses (CIRs) are encountered in healthcare settings, but no one uses item response theory's (IRT) probabilistic modeling to present graphical presentations for interpreting CIR results. A computer module that is programmed to deal with CIRs is required. To present a computer module, validate it, and verify its usefulness in dealing with CIR data, and then to apply the model to real healthcare data in order to show how the CIR that can be applied to healthcare settings with an example regarding a safety attitude survey. Using Microsoft Excel VBA (Visual Basic for Applications), we designed a computer module that minimizes the residuals and calculates model's expected scores according to person responses across items. Rasch models based on a Wright map and on KIDMAP were demonstrated to interpret results of the safety attitude survey. The author-made CIR module yielded OUTFIT mean square (MNSQ) and person measures equivalent to those yielded by professional Rasch Winsteps software. The probabilistic modeling of the CIR module provides messages that are much more valuable to users and show the CIR advantage over classic test theory. Because of advances in computer technology, healthcare users who are familiar to MS Excel can easily apply the study CIR module to deal with continuous variables to benefit comparisons of data with a logistic distribution and model fit statistics.
MATILDA: A Military Laser Range Safety Tool Based on Probabilistic Risk Assessment (PRA) Techniques
2014-08-01
Figure 6: MATILDA Coordinate Transformations ....................................................... 22 Figure 7: Geocentric and MICS Coordinates...Target – Range Boundary Undershoot Geometry .............. 34 Figure 19: Geocentric Overshoot Geometry and Parameters...transformed into Geocentric coordinates, a Cartesian (x,y,z) coordinate system with origin at the center of the Earth and z-axis oriented towards the
Concerns have been raised regarding the safety of young children who may contact arsenic residues while playing on and around chromated copper arsenate (CCA)-treated wood playsets and decks. Although CCA registrants voluntarily canceled the production of treated wood for residen...
van der Lei, Harry; Tenenbaum, Gershon
2012-12-01
Individual affect-related performance zones (IAPZs) method utilizing Kamata et al. (J Sport Exerc Psychol 24:189-208, 2002) probabilistic model of determining the individual zone of optimal functioning was utilized as idiosyncratic affective patterns during golf performance. To do so, three male golfers of a varsity golf team were observed during three rounds of golf competition. The investigation implemented a multi-modal assessment approach in which the probabilistic relationship between affective states and both, performance process and performance outcome, measures were determined. More specifically, introspective (i.e., verbal reports) and objective (heart rate and respiration rate) measures of arousal were incorporated to examine the relationships between arousal states and both, process components (i.e., routine consistency, timing), and outcome scores related to golf performance. Results revealed distinguishable and idiosyncratic IAPZs associated with physiological and introspective measures for each golfer. The associations between the IAPZs and decision-making or swing/stroke execution were strong and unique for each golfer. Results are elaborated using cognitive and affect-related concepts, and applications for practitioners are provided.
Probabilistic framework for product design optimization and risk management
NASA Astrophysics Data System (ADS)
Keski-Rahkonen, J. K.
2018-05-01
Probabilistic methods have gradually gained ground within engineering practices but currently it is still the industry standard to use deterministic safety margin approaches to dimensioning components and qualitative methods to manage product risks. These methods are suitable for baseline design work but quantitative risk management and product reliability optimization require more advanced predictive approaches. Ample research has been published on how to predict failure probabilities for mechanical components and furthermore to optimize reliability through life cycle cost analysis. This paper reviews the literature for existing methods and tries to harness their best features and simplify the process to be applicable in practical engineering work. Recommended process applies Monte Carlo method on top of load-resistance models to estimate failure probabilities. Furthermore, it adds on existing literature by introducing a practical framework to use probabilistic models in quantitative risk management and product life cycle costs optimization. The main focus is on mechanical failure modes due to the well-developed methods used to predict these types of failures. However, the same framework can be applied on any type of failure mode as long as predictive models can be developed.
Structural Probability Concepts Adapted to Electrical Engineering
NASA Technical Reports Server (NTRS)
Steinberg, Eric P.; Chamis, Christos C.
1994-01-01
Through the use of equivalent variable analogies, the authors demonstrate how an electrical subsystem can be modeled by an equivalent structural subsystem. This allows the electrical subsystem to be probabilistically analyzed by using available structural reliability computer codes such as NESSUS. With the ability to analyze the electrical subsystem probabilistically, we can evaluate the reliability of systems that include both structural and electrical subsystems. Common examples of such systems are a structural subsystem integrated with a health-monitoring subsystem, and smart structures. Since these systems have electrical subsystems that directly affect the operation of the overall system, probabilistically analyzing them could lead to improved reliability and reduced costs. The direct effect of the electrical subsystem on the structural subsystem is of secondary order and is not considered in the scope of this work.
Axelsson, Jan; Riklund, Katrine; Nyberg, Lars; Dayan, Peter; Bäckman, Lars
2017-01-01
Probabilistic reward learning is characterised by individual differences that become acute in aging. This may be due to age-related dopamine (DA) decline affecting neural processing in striatum, prefrontal cortex, or both. We examined this by administering a probabilistic reward learning task to younger and older adults, and combining computational modelling of behaviour, fMRI and PET measurements of DA D1 availability. We found that anticipatory value signals in ventromedial prefrontal cortex (vmPFC) were attenuated in older adults. The strength of this signal predicted performance beyond age and was modulated by D1 availability in nucleus accumbens. These results uncover that a value-anticipation mechanism in vmPFC declines in aging, and that this mechanism is associated with DA D1 receptor availability. PMID:28870286
Lord, Dominique
2006-07-01
There has been considerable research conducted on the development of statistical models for predicting crashes on highway facilities. Despite numerous advancements made for improving the estimation tools of statistical models, the most common probabilistic structure used for modeling motor vehicle crashes remains the traditional Poisson and Poisson-gamma (or Negative Binomial) distribution; when crash data exhibit over-dispersion, the Poisson-gamma model is usually the model of choice most favored by transportation safety modelers. Crash data collected for safety studies often have the unusual attributes of being characterized by low sample mean values. Studies have shown that the goodness-of-fit of statistical models produced from such datasets can be significantly affected. This issue has been defined as the "low mean problem" (LMP). Despite recent developments on methods to circumvent the LMP and test the goodness-of-fit of models developed using such datasets, no work has so far examined how the LMP affects the fixed dispersion parameter of Poisson-gamma models used for modeling motor vehicle crashes. The dispersion parameter plays an important role in many types of safety studies and should, therefore, be reliably estimated. The primary objective of this research project was to verify whether the LMP affects the estimation of the dispersion parameter and, if it is, to determine the magnitude of the problem. The secondary objective consisted of determining the effects of an unreliably estimated dispersion parameter on common analyses performed in highway safety studies. To accomplish the objectives of the study, a series of Poisson-gamma distributions were simulated using different values describing the mean, the dispersion parameter, and the sample size. Three estimators commonly used by transportation safety modelers for estimating the dispersion parameter of Poisson-gamma models were evaluated: the method of moments, the weighted regression, and the maximum likelihood method. In an attempt to complement the outcome of the simulation study, Poisson-gamma models were fitted to crash data collected in Toronto, Ont. characterized by a low sample mean and small sample size. The study shows that a low sample mean combined with a small sample size can seriously affect the estimation of the dispersion parameter, no matter which estimator is used within the estimation process. The probability the dispersion parameter becomes unreliably estimated increases significantly as the sample mean and sample size decrease. Consequently, the results show that an unreliably estimated dispersion parameter can significantly undermine empirical Bayes (EB) estimates as well as the estimation of confidence intervals for the gamma mean and predicted response. The paper ends with recommendations about minimizing the likelihood of producing Poisson-gamma models with an unreliable dispersion parameter for modeling motor vehicle crashes.
Risk management at the stage of design of high-rise construction facilities
NASA Astrophysics Data System (ADS)
Politi, Violetta
2018-03-01
This paper describes the assessment of the probabilistic risk of an accident formed in the process of designing a technically complex facility. It considers values of conditional probabilities of the compliance of load-bearing structures with safety requirements, provides an approximate list of significant errors of the designer and analyzes the relationship between the degree of compliance and the level of danger of errors. It describes and proposes for implementation the regulated procedures related to the assessment of the safety level of constructive solutions and the reliability of the construction process participants.
NASA Technical Reports Server (NTRS)
Carson, William; Lindemuth, Kathleen; Mich, John; White, K. Preston; Parker, Peter A.
2009-01-01
Probabilistic engineering design enhances safety and reduces costs by incorporating risk assessment directly into the design process. In this paper, we assess the format of the quantitative metrics for the vehicle which will replace the Space Shuttle, the Ares I rocket. Specifically, we address the metrics for in-flight measurement error in the vector position of the motor nozzle, dictated by limits on guidance, navigation, and control systems. Analyses include the propagation of error from measured to derived parameters, the time-series of dwell points for the duty cycle during static tests, and commanded versus achieved yaw angle during tests. Based on these analyses, we recommend a probabilistic template for specifying the maximum error in angular displacement and radial offset for the nozzle-position vector. Criteria for evaluating individual tests and risky decisions also are developed.
Probabilistic assessment of roadway departure risk in a curve
NASA Astrophysics Data System (ADS)
Rey, G.; Clair, D.; Fogli, M.; Bernardin, F.
2011-10-01
Roadway departure while cornering constitutes a major part of car accidents and casualties in France. Even though drastic policy about overspeeding contributes to reduce accidents, there obviously exist other factors. This article presents the construction of a probabilistic strategy for the roadway departure risk assessment. A specific vehicle dynamic model is developed in which some parameters are modelled by random variables. These parameters are deduced from a sensitivity analysis to ensure an efficient representation of the inherent uncertainties of the system. Then, structural reliability methods are employed to assess the roadway departure risk in function of the initial conditions measured at the entrance of the curve. This study is conducted within the French national road safety project SARI that aims to implement a warning systems alerting the driver in case of dangerous situation.
Findings of a review of spacecraft fire safety needs
NASA Technical Reports Server (NTRS)
Apostolakis, G. E.; Catton, I.; Paulos, T.; Paxton, K.; Jones, S.
1992-01-01
Discussions from a workshop to guide UCLA and NASA investigators on the state of knowledge and perceived needs in spacecraft fire safety and its risk management are reviewed, for an introduction to an analytical and experimental project in this field. The report summarizes the workshop discussions and includes the visual aids used in the presentations. Probabilistic Safety Assessment (PSA) methods, which are currently not used, would be of great value to the designs and operation of future human-crew spacecraft. Key points in the discussions were the importance of understanding and testing smoldering as a likely fire scenario in space and the need for smoke damage modeling, since many fire-risk models ignore this mechanism and consider only heat damage.
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Zaretsky, Erwin V.
2001-01-01
Critical component design is based on minimizing product failures that results in loss of life. Potential catastrophic failures are reduced to secondary failures where components removed for cause or operating time in the system. Issues of liability and cost of component removal become of paramount importance. Deterministic design with factors of safety and probabilistic design address but lack the essential characteristics for the design of critical components. In deterministic design and fabrication there are heuristic rules and safety factors developed over time for large sets of structural/material components. These factors did not come without cost. Many designs failed and many rules (codes) have standing committees to oversee their proper usage and enforcement. In probabilistic design, not only are failures a given, the failures are calculated; an element of risk is assumed based on empirical failure data for large classes of component operations. Failure of a class of components can be predicted, yet one can not predict when a specific component will fail. The analogy is to the life insurance industry where very careful statistics are book-kept on classes of individuals. For a specific class, life span can be predicted within statistical limits, yet life-span of a specific element of that class can not be predicted.
Towards Measurement of Confidence in Safety Cases
NASA Technical Reports Server (NTRS)
Denney, Ewen; Paim Ganesh J.; Habli, Ibrahim
2011-01-01
Arguments in safety cases are predominantly qualitative. This is partly attributed to the lack of sufficient design and operational data necessary to measure the achievement of high-dependability targets, particularly for safety-critical functions implemented in software. The subjective nature of many forms of evidence, such as expert judgment and process maturity, also contributes to the overwhelming dependence on qualitative arguments. However, where data for quantitative measurements is systematically collected, quantitative arguments provide far more benefits over qualitative arguments, in assessing confidence in the safety case. In this paper, we propose a basis for developing and evaluating integrated qualitative and quantitative safety arguments based on the Goal Structuring Notation (GSN) and Bayesian Networks (BN). The approach we propose identifies structures within GSN-based arguments where uncertainties can be quantified. BN are then used to provide a means to reason about confidence in a probabilistic way. We illustrate our approach using a fragment of a safety case for an unmanned aerial system and conclude with some preliminary observations
Rivas, Elena; Lang, Raymond; Eddy, Sean R
2012-02-01
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.
Rivas, Elena; Lang, Raymond; Eddy, Sean R.
2012-01-01
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases. PMID:22194308
NASA Astrophysics Data System (ADS)
Kleinmann, Matthias; Osborne, Tobias J.; Scholz, Volkher B.; Werner, Albert H.
2013-01-01
What singles out quantum mechanics as the fundamental theory of nature? Here we study local measurements in generalized probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalization of Dvoretzky’s theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.
Fragility Analysis of Concrete Gravity Dams
NASA Astrophysics Data System (ADS)
Tekie, Paulos B.; Ellingwood, Bruce R.
2002-09-01
Concrete gravity dams are an important part ofthe nation's infrastructure. Many dams have been in service for over 50 years, during which time important advances in the methodologies for evaluation of natural phenomena hazards have caused the design-basis events to be revised upwards, in some cases significantly. Many existing dams fail to meet these revised safety criteria and structural rehabilitation to meet newly revised criteria may be costly and difficult. A probabilistic safety analysis (PSA) provides a rational safety assessment and decision-making tool managing the various sources of uncertainty that may impact dam performance. Fragility analysis, which depicts fl%e uncertainty in the safety margin above specified hazard levels, is a fundamental tool in a PSA. This study presents a methodology for developing fragilities of concrete gravity dams to assess their performance against hydrologic and seismic hazards. Models of varying degree of complexity and sophistication were considered and compared. The methodology is illustrated using the Bluestone Dam on the New River in West Virginia, which was designed in the late 1930's. The hydrologic fragilities showed that the Eluestone Dam is unlikely to become unstable at the revised probable maximum flood (PMF), but it is likely that there will be significant cracking at the heel ofthe dam. On the other hand, the seismic fragility analysis indicated that sliding is likely, if the dam were to be subjected to a maximum credible earthquake (MCE). Moreover, there will likely be tensile cracking at the neck of the dam at this level of seismic excitation. Probabilities of relatively severe limit states appear to be only marginally affected by extremely rare events (e.g. the PMF and MCE). Moreover, the risks posed by the extreme floods and earthquakes were not balanced for the Bluestone Dam, with seismic hazard posing a relatively higher risk.
Lee, Jin-Jing; Jang, Cheng-Shin; Liang, Ching-Ping; Liu, Chen-Wuing
2008-09-15
This study spatially analyzed potential carcinogenic risks associated with ingesting arsenic (As) contents in aquacultural smeltfish (Plecoglossus altirelis) from the Lanyang Plain of northeastern Taiwan. Sequential indicator simulation (SIS) was adopted to reproduce As exposure distributions in groundwater based on their three-dimensional variability. A target cancer risk (TR) associated with ingesting As in aquacultural smeltfish was employed to evaluate the potential risk to human health. The probabilistic risk assessment determined by Monte Carlo simulation and SIS is used to propagate properly the uncertainty of parameters. Safe and hazardous aquacultural regions were mapped to elucidate the safety of groundwater use. The TRs determined from the risks at the 95th percentiles exceed one millionth, indicating that ingesting smeltfish that are farmed in the highly As-affected regions represents a potential cancer threat to human health. The 95th percentile of TRs is considered in formulating a strategy for the aquacultural use of groundwater in the preliminary stage.
Vanderveldt, Ariana; Green, Leonard; Myerson, Joel
2014-01-01
The value of an outcome is affected both by the delay until its receipt (delay discounting) and by the likelihood of its receipt (probability discounting). Despite being well-described by the same hyperboloid function, delay and probability discounting involve fundamentally different processes, as revealed, for example, by the differential effects of reward amount. Previous research has focused on the discounting of delayed and probabilistic rewards separately, with little research examining more complex situations in which rewards are both delayed and probabilistic. In two experiments, participants made choices between smaller rewards that were both immediate and certain and larger rewards that were both delayed and probabilistic. Analyses revealed significant interactions between delay and probability factors inconsistent with an additive model. In contrast, a hyperboloid discounting model in which delay and probability were combined multiplicatively provided an excellent fit to the data. These results suggest that the hyperboloid is a good descriptor of decision making in complicated monetary choice situations like those people encounter in everyday life. PMID:24933696
Fuller, Robert William; Wong, Tony E; Keller, Klaus
2017-01-01
The response of the Antarctic ice sheet (AIS) to changing global temperatures is a key component of sea-level projections. Current projections of the AIS contribution to sea-level changes are deeply uncertain. This deep uncertainty stems, in part, from (i) the inability of current models to fully resolve key processes and scales, (ii) the relatively sparse available data, and (iii) divergent expert assessments. One promising approach to characterizing the deep uncertainty stemming from divergent expert assessments is to combine expert assessments, observations, and simple models by coupling probabilistic inversion and Bayesian inversion. Here, we present a proof-of-concept study that uses probabilistic inversion to fuse a simple AIS model and diverse expert assessments. We demonstrate the ability of probabilistic inversion to infer joint prior probability distributions of model parameters that are consistent with expert assessments. We then confront these inferred expert priors with instrumental and paleoclimatic observational data in a Bayesian inversion. These additional constraints yield tighter hindcasts and projections. We use this approach to quantify how the deep uncertainty surrounding expert assessments affects the joint probability distributions of model parameters and future projections.
Reasoning about Probabilistic Security Using Task-PIOAs
NASA Astrophysics Data System (ADS)
Jaggard, Aaron D.; Meadows, Catherine; Mislove, Michael; Segala, Roberto
Task-structured probabilistic input/output automata (Task-PIOAs) are concurrent probabilistic automata that, among other things, have been used to provide a formal framework for the universal composability paradigms of protocol security. One of their advantages is that that they allow one to distinguish high-level nondeterminism that can affect the outcome of the protocol, from low-level choices, which can't. We present an alternative approach to analyzing the structure of Task-PIOAs that relies on ordered sets. We focus on two of the components that are required to define and apply Task-PIOAs: discrete probability theory and automata theory. We believe our development gives insight into the structure of Task-PIOAs and how they can be utilized to model crypto-protocols. We illustrate our approach with an example from anonymity, an area that has not previously been addressed using Task-PIOAs. We model Chaum's Dining Cryptographers Protocol at a level that does not require cryptographic primitives in the analysis. We show via this example how our approach can leverage a proof of security in the case a principal behaves deterministically to prove security when that principal behaves probabilistically.
Evaluation of Horizontal Seismic Hazard of Shahrekord, Iran
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiri, G. Ghodrati; Dehkordi, M. Raeisi; Amrei, S. A. Razavian
2008-07-08
This paper presents probabilistic horizontal seismic hazard assessment of Shahrekord, Iran. It displays the probabilistic estimate of Peak Ground Horizontal Acceleration (PGHA) for the return period of 75, 225, 475 and 2475 years. The output of the probabilistic seismic hazard analysis is based on peak ground acceleration (PGA), which is the most common criterion in designing of buildings. A catalogue of seismic events that includes both historical and instrumental events was developed and covers the period from 840 to 2007. The seismic sources that affect the hazard in Shahrekord were identified within the radius of 150 km and the recurrencemore » relationships of these sources were generated. Finally four maps have been prepared to indicate the earthquake hazard of Shahrekord in the form of iso-acceleration contour lines for different hazard levels by using SEISRISK III software.« less
Membré, Jeanne-Marie; Bassett, John; Gorris, Leon G M
2007-09-01
The objective of this study was to investigate the practicality of designing a heat treatment process in a food manufacturing operation for a product governed by a Food Safety Objective (FSO). Salmonella in cooked poultry meat was taken as the working example. Although there is no FSO for this product in current legislation, this may change in the (near) future. Four different process design calculations were explored by means of deterministic and probabilistic approaches to mathematical data handling and modeling. It was found that the probabilistic approach was a more objective, transparent, and quantifiable approach to establish the stringency of food safety management systems. It also allowed the introduction of specific prevalence rates. The key input analyzed in this study was the minimum time required for the heat treatment at a fixed temperature to produce a product that complied with the criterion for product safety, i.e., the FSO. By means of the four alternative process design calculations, the minimum time requirement at 70 degrees C was established and ranged from 0.26 to 0.43 min. This is comparable to the U.S. regulation recommendations and significantly less than that of 2 min at 70 degrees C used, for instance, in the United Kingdom regulation concerning vegetative microorganisms in ready-to-eat foods. However, the objective of this study was not to challenge existing regulations but to provide an illustration of how an FSO established by a competent authority can guide decisions on safe product and process designs in practical operation; it hopefully contributes to the collaborative work between regulators, academia, and industries that need to continue learning and gaining experience from each other in order to translate risk-based concepts such as the FSO into everyday operational practice.
NASA Astrophysics Data System (ADS)
Mattie, P. D.; Knowlton, R. G.; Arnold, B. W.; Tien, N.; Kuo, M.
2006-12-01
Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in radioactive waste disposal and is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. International technology transfer efforts are often hampered by small budgets, time schedule constraints, and a lack of experienced personnel in countries with small radioactive waste disposal programs. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, re-vitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a creditable and solid computational platform for constructing probabilistic safety assessment models. External model linkage capabilities in Goldsim and the techniques applied to facilitate this process will be presented using example applications, including Breach, Leach, and Transport-Multiple Species (BLT-MS), a U.S. NRC sponsored code simulating release and transport of contaminants from a subsurface low-level waste disposal facility used in a cooperative technology transfer project between Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research (INER) for the preliminary assessment of several candidate low-level waste repository sites. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.
Probabilistic safety analysis of earth retaining structures during earthquakes
NASA Astrophysics Data System (ADS)
Grivas, D. A.; Souflis, C.
1982-07-01
A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.
Integration of RAMS in LCC analysis for linear transport infrastructures. A case study for railways.
NASA Astrophysics Data System (ADS)
Calle-Cordón, Álvaro; Jiménez-Redondo, Noemi; Morales-Gámiz, F. J.; García-Villena, F. A.; Garmabaki, Amir H. S.; Odelius, Johan
2017-09-01
Life-cycle cost (LCC) analysis is an economic technique used to assess the total costs associated with the lifetime of a system in order to support decision making in long term strategic planning. For complex systems, such as railway and road infrastructures, the cost of maintenance plays an important role in the LCC analysis. Costs associated with maintenance interventions can be more reliably estimated by integrating the probabilistic nature of the failures associated to these interventions in the LCC models. Reliability, Maintainability, Availability and Safety (RAMS) parameters describe the maintenance needs of an asset in a quantitative way by using probabilistic information extracted from registered maintenance activities. Therefore, the integration of RAMS in the LCC analysis allows obtaining reliable predictions of system maintenance costs and the dependencies of these costs with specific cost drivers through sensitivity analyses. This paper presents an innovative approach for a combined RAMS & LCC methodology for railway and road transport infrastructures being developed under the on-going H2020 project INFRALERT. Such RAMS & LCC analysis provides relevant probabilistic information to be used for condition and risk-based planning of maintenance activities as well as for decision support in long term strategic investment planning.
Probabilistic description of probable maximum precipitation
NASA Astrophysics Data System (ADS)
Ben Alaya, Mohamed Ali; Zwiers, Francis W.; Zhang, Xuebin
2017-04-01
Probable Maximum Precipitation (PMP) is the key parameter used to estimate probable Maximum Flood (PMF). PMP and PMF are important for dam safety and civil engineering purposes. Even if the current knowledge of storm mechanisms remains insufficient to properly evaluate limiting values of extreme precipitation, PMP estimation methods are still based on deterministic consideration, and give only single values. This study aims to provide a probabilistic description of the PMP based on the commonly used method, the so-called moisture maximization. To this end, a probabilistic bivariate extreme values model is proposed to address the limitations of traditional PMP estimates via moisture maximization namely: (i) the inability to evaluate uncertainty and to provide a range PMP values, (ii) the interpretation that a maximum of a data series as a physical upper limit (iii) and the assumption that a PMP event has maximum moisture availability. Results from simulation outputs of the Canadian Regional Climate Model CanRCM4 over North America reveal the high uncertainties inherent in PMP estimates and the non-validity of the assumption that PMP events have maximum moisture availability. This later assumption leads to overestimation of the PMP by an average of about 15% over North America, which may have serious implications for engineering design.
Probabilistic Assessment of Cancer Risk for Astronauts on Lunar Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2009-01-01
During future lunar missions, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon transit. NASA s new lunar program anticipates that up to 15% of crew time may be on EVA, with minimal radiation shielding. For the operational challenge to respond to events of unknown size and duration, a probabilistic risk assessment approach is essential for mission planning and design. Using the historical database of proton measurements during the past 5 solar cycles, a typical hazard function for SPE occurrence was defined using a non-homogeneous Poisson model as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions ranging from the 5th to 95th percentile of particle fluences for a specified mission period were simulated. Organ doses corresponding to particle fluences at the median and at the 95th percentile for a specified mission period were assessed using NASA s baryon transport model, BRYNTRN. The cancer fatality risk for astronauts as functions of age, gender, and solar cycle activity were then analyzed. The probability of exceeding the NASA 30- day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated. Future work will involve using this probabilistic risk assessment approach to SPE forecasting, combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.
Probabilistic reversal learning is impaired in Parkinson's disease
Peterson, David A.; Elliott, Christian; Song, David D.; Makeig, Scott; Sejnowski, Terrence J.; Poizner, Howard
2009-01-01
In many everyday settings, the relationship between our choices and their potentially rewarding outcomes is probabilistic and dynamic. In addition, the difficulty of the choices can vary widely. Although a large body of theoretical and empirical evidence suggests that dopamine mediates rewarded learning, the influence of dopamine in probabilistic and dynamic rewarded learning remains unclear. We adapted a probabilistic rewarded learning task originally used to study firing rates of dopamine cells in primate substantia nigra pars compacta (Morris et al. 2006) for use as a reversal learning task with humans. We sought to investigate how the dopamine depletion in Parkinson's disease (PD) affects probabilistic reward learning and adaptation to a reversal in reward contingencies. Over the course of 256 trials subjects learned to choose the more favorable from among pairs of images with small or large differences in reward probabilities. During a subsequent otherwise identical reversal phase, the reward probability contingencies for the stimuli were reversed. Seventeen Parkinson's disease (PD) patients of mild to moderate severity were studied off of their dopaminergic medications and compared to 15 age-matched controls. Compared to controls, PD patients had distinct pre- and post-reversal deficiencies depending upon the difficulty of the choices they had to learn. The patients also exhibited compromised adaptability to the reversal. A computational model of the subjects’ trial-by-trial choices demonstrated that the adaptability was sensitive to the gain with which patients weighted pre-reversal feedback. Collectively, the results implicate the nigral dopaminergic system in learning to make choices in environments with probabilistic and dynamic reward contingencies. PMID:19628022
Probabilistic confidence for decisions based on uncertain reliability estimates
NASA Astrophysics Data System (ADS)
Reid, Stuart G.
2013-05-01
Reliability assessments are commonly carried out to provide a rational basis for risk-informed decisions concerning the design or maintenance of engineering systems and structures. However, calculated reliabilities and associated probabilities of failure often have significant uncertainties associated with the possible estimation errors relative to the 'true' failure probabilities. For uncertain probabilities of failure, a measure of 'probabilistic confidence' has been proposed to reflect the concern that uncertainty about the true probability of failure could result in a system or structure that is unsafe and could subsequently fail. The paper describes how the concept of probabilistic confidence can be applied to evaluate and appropriately limit the probabilities of failure attributable to particular uncertainties such as design errors that may critically affect the dependability of risk-acceptance decisions. This approach is illustrated with regard to the dependability of structural design processes based on prototype testing with uncertainties attributable to sampling variability.
Compressed natural gas bus safety: a quantitative risk assessment.
Chamberlain, Samuel; Modarres, Mohammad
2005-04-01
This study assesses the fire safety risks associated with compressed natural gas (CNG) vehicle systems, comprising primarily a typical school bus and supporting fuel infrastructure. The study determines the sensitivity of the results to variations in component failure rates and consequences of fire events. The components and subsystems that contribute most to fire safety risk are determined. Finally, the results are compared to fire risks of the present generation of diesel-fueled school buses. Direct computation of the safety risks associated with diesel-powered vehicles is possible because these are mature technologies for which historical performance data are available. Because of limited experience, fatal accident data for CNG bus fleets are minimal. Therefore, this study uses the probabilistic risk assessment (PRA) approach to model and predict fire safety risk of CNG buses. Generic failure data, engineering judgments, and assumptions are used in this study. This study predicts the mean fire fatality risk for typical CNG buses as approximately 0.23 fatalities per 100-million miles for all people involved, including bus passengers. The study estimates mean values of 0.16 fatalities per 100-million miles for bus passengers only. Based on historical data, diesel school bus mean fire fatality risk is 0.091 and 0.0007 per 100-million miles for all people and bus passengers, respectively. One can therefore conclude that CNG buses are more prone to fire fatality risk by 2.5 times that of diesel buses, with the bus passengers being more at risk by over two orders of magnitude. The study estimates a mean fire risk frequency of 2.2 x 10(-5) fatalities/bus per year. The 5% and 95% uncertainty bounds are 9.1 x 10(-6) and 4.0 x 10(-5), respectively. The risk result was found to be affected most by failure rates of pressure relief valves, CNG cylinders, and fuel piping.
2017-07-28
Approved for public release; distribution unlimited. PA Case No: TSRL- PA-2017-0228 Air Force Research Laboratory 711th Human Performance Wing Airman...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory Engility Corp 8. PERFORMING ORGANIZATION...United States (US) Air Force Research Laboratory (AFRL) have collaborated to develop a US-UK laser range safety tool, the Military Advanced Technology
Analyzing system safety in lithium-ion grid energy storage
NASA Astrophysics Data System (ADS)
Rosewater, David; Williams, Adam
2015-12-01
As grid energy storage systems become more complex, it grows more difficult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to fill the gaps recognized in PRA for designing complex systems and hence be more effective or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. We conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.
Behavioral economics and regulatory analysis.
Robinson, Lisa A; Hammitt, James K
2011-09-01
Behavioral economics has captured the interest of scholars and the general public by demonstrating ways in which individuals make decisions that appear irrational. While increasing attention is being focused on the implications of this research for the design of risk-reducing policies, less attention has been paid to how it affects the economic valuation of policy consequences. This article considers the latter issue, reviewing the behavioral economics literature and discussing its implications for the conduct of benefit-cost analysis, particularly in the context of environmental, health, and safety regulations. We explore three concerns: using estimates of willingness to pay or willingness to accept compensation for valuation, considering the psychological aspects of risk when valuing mortality-risk reductions, and discounting future consequences. In each case, we take the perspective that analysts should avoid making judgments about whether values are "rational" or "irrational." Instead, they should make every effort to rely on well-designed studies, using ranges, sensitivity analysis, or probabilistic modeling to reflect uncertainty. More generally, behavioral research has led some to argue for a more paternalistic approach to policy analysis. We argue instead for continued focus on describing the preferences of those affected, while working to ensure that these preferences are based on knowledge and careful reflection. © 2011 Society for Risk Analysis.
Wong, Tony E.; Keller, Klaus
2017-01-01
The response of the Antarctic ice sheet (AIS) to changing global temperatures is a key component of sea-level projections. Current projections of the AIS contribution to sea-level changes are deeply uncertain. This deep uncertainty stems, in part, from (i) the inability of current models to fully resolve key processes and scales, (ii) the relatively sparse available data, and (iii) divergent expert assessments. One promising approach to characterizing the deep uncertainty stemming from divergent expert assessments is to combine expert assessments, observations, and simple models by coupling probabilistic inversion and Bayesian inversion. Here, we present a proof-of-concept study that uses probabilistic inversion to fuse a simple AIS model and diverse expert assessments. We demonstrate the ability of probabilistic inversion to infer joint prior probability distributions of model parameters that are consistent with expert assessments. We then confront these inferred expert priors with instrumental and paleoclimatic observational data in a Bayesian inversion. These additional constraints yield tighter hindcasts and projections. We use this approach to quantify how the deep uncertainty surrounding expert assessments affects the joint probability distributions of model parameters and future projections. PMID:29287095
Economic Dispatch for Microgrid Containing Electric Vehicles via Probabilistic Modeling: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yin; Gao, Wenzhong; Momoh, James
In this paper, an economic dispatch model with probabilistic modeling is developed for a microgrid. The electric power supply in a microgrid consists of conventional power plants and renewable energy power plants, such as wind and solar power plants. Because of the fluctuation in the output of solar and wind power plants, an empirical probabilistic model is developed to predict their hourly output. According to different characteristics of wind and solar power plants, the parameters for probabilistic distribution are further adjusted individually for both. On the other hand, with the growing trend in plug-in electric vehicles (PHEVs), an integrated microgridmore » system must also consider the impact of PHEVs. The charging loads from PHEVs as well as the discharging output via the vehicle-to-grid (V2G) method can greatly affect the economic dispatch for all of the micro energy sources in a microgrid. This paper presents an optimization method for economic dispatch in a microgrid considering conventional power plants, renewable power plants, and PHEVs. The simulation results reveal that PHEVs with V2G capability can be an indispensable supplement in a modern microgrid.« less
Methodology for assessing the safety of Hydrogen Systems: HyRAM 1.1 technical reference manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina; Hecht, Ethan; Reynolds, John Thomas
The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM is envisioned as a unifying platform combining validated, analytical models of hydrogen behavior, a stan- dardized, transparent QRA approach, and engineering models and generic data for hydrogen installations. HyRAM is being developed at Sandia National Laboratories for the U. S. De- partment of Energy to increase access to technical data about hydrogen safety andmore » to enable the use of that data to support development and revision of national and international codes and standards. This document provides a description of the methodology and models contained in the HyRAM version 1.1. HyRAM 1.1 includes generic probabilities for hydrogen equipment fail- ures, probabilistic models for the impact of heat flux on humans and structures, and computa- tionally and experimentally validated analytical and first order models of hydrogen release and flame physics. HyRAM 1.1 integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet fires, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is a prototype software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals.« less
Sáez, Carlos; Zurriaga, Oscar; Pérez-Panadés, Jordi; Melchor, Inma; Robles, Montserrat; García-Gómez, Juan M
2016-11-01
To assess the variability in data distributions among data sources and over time through a case study of a large multisite repository as a systematic approach to data quality (DQ). Novel probabilistic DQ control methods based on information theory and geometry are applied to the Public Health Mortality Registry of the Region of Valencia, Spain, with 512 143 entries from 2000 to 2012, disaggregated into 24 health departments. The methods provide DQ metrics and exploratory visualizations for (1) assessing the variability among multiple sources and (2) monitoring and exploring changes with time. The methods are suited to big data and multitype, multivariate, and multimodal data. The repository was partitioned into 2 probabilistically separated temporal subgroups following a change in the Spanish National Death Certificate in 2009. Punctual temporal anomalies were noticed due to a punctual increment in the missing data, along with outlying and clustered health departments due to differences in populations or in practices. Changes in protocols, differences in populations, biased practices, or other systematic DQ problems affected data variability. Even if semantic and integration aspects are addressed in data sharing infrastructures, probabilistic variability may still be present. Solutions include fixing or excluding data and analyzing different sites or time periods separately. A systematic approach to assessing temporal and multisite variability is proposed. Multisite and temporal variability in data distributions affects DQ, hindering data reuse, and an assessment of such variability should be a part of systematic DQ procedures. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Ranking of sabotage/tampering avoidance technology alternatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, W.B.; Tabatabai, A.S.; Powers, T.B.
1986-01-01
Pacific Northwest Laboratory conducted a study to evaluate alternatives to the design and operation of nuclear power plants, emphasizing a reduction of their vulnerability to sabotage. Estimates of core melt accident frequency during normal operations and from sabotage/tampering events were used to rank the alternatives. Core melt frequency for normal operations was estimated using sensitivity analysis of results of probabilistic risk assessments. Core melt frequency for sabotage/tampering was estimated by developing a model based on probabilistic risk analyses, historic data, engineering judgment, and safeguards analyses of plant locations where core melt events could be initiated. Results indicate the most effectivemore » alternatives focus on large areas of the plant, increase safety system redundancy, and reduce reliance on single locations for mitigation of transients. Less effective options focus on specific areas of the plant, reduce reliance on some plant areas for safe shutdown, and focus on less vulnerable targets.« less
Role of ionotropic glutamate receptors in delay and probability discounting in the rat.
Yates, Justin R; Batten, Seth R; Bardo, Michael T; Beckmann, Joshua S
2015-04-01
Discounting of delayed and probabilistic reinforcement is linked to increased drug use and pathological gambling. Understanding the neurobiology of discounting is important for designing treatments for these disorders. Glutamate is considered to be involved in addiction-like behaviors; however, the role of ionotropic glutamate receptors (iGluRs) in discounting remains unclear. The current study examined the effects of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor blockade on performance in delay and probability discounting tasks. Following training in either delay or probability discounting, rats (n = 12, each task) received pretreatments of the NMDA receptor antagonists MK-801 (0, 0.01, 0.03, 0.1, or 0.3 mg/kg, s.c.) or ketamine (0, 1.0, 5.0, or 10.0 mg/kg, i.p.), as well as the AMPA receptor antagonist CNQX (0, 1.0, 3.0, or 5.6 mg/kg, i.p.). Hyperbolic discounting functions were used to estimate sensitivity to delayed/probabilistic reinforcement and sensitivity to reinforcer amount. An intermediate dose of MK-801 (0.03 mg/kg) decreased sensitivity to both delayed and probabilistic reinforcement. In contrast, ketamine did not affect the rate of discounting in either task but decreased sensitivity to reinforcer amount. CNQX did not alter sensitivity to reinforcer amount or delayed/probabilistic reinforcement. These results show that blockade of NMDA receptors, but not AMPA receptors, decreases sensitivity to delayed/probabilistic reinforcement (MK-801) and sensitivity to reinforcer amount (ketamine). The differential effects of MK-801 and ketamine demonstrate that sensitivities to delayed/probabilistic reinforcement and reinforcer amount are pharmacologically dissociable.
Confirming criticality safety of TRU waste with neutron measurements and risk analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winn, W.G.; Hochel, R.D.
1992-04-01
The criticality safety of {sup 239}Pu in 55-gallon drums stored in TRU waste containers (culverts) is confirmed using NDA neutron measurements and risk analyses. The neutron measurements yield a {sup 239}Pu mass and k{sub eff} for a culvert, which contains up to 14 drums. Conservative probabilistic risk analyses were developed for both drums and culverts. Overall {sup 239}Pu mass estimates are less than a calculated safety limit of 2800 g per culvert. The largest measured k{sub eff} is 0.904. The largest probability for a critical drum is 6.9 {times} 10{sup {minus}8} and that for a culvert is 1.72 {times} 10{supmore » {minus}7}. All examined suspect culverts, totaling 118 in number, are appraised as safe based on these observations.« less
Un regard international sur la sécurité nucléaire
NASA Astrophysics Data System (ADS)
Birkhofer, Adolf
2002-10-01
Safety has always been an important objective in nuclear technology. Starting with a set of sound physical principles and prudent design approaches, safety concepts have gradually been refined and cover now a wide range of provisions related to design, quality and operation. Research, the evaluation of operating experiences and probabilistic risk assessments constitute an essential basis and international co-operation plays a significant role in that context. Concerning future developments a major objective for new reactor concepts, such as the EPR, is to practically exclude a severe core damage accident with large scale consequences outside the plant. To cite this article: A. Birkhofer, C. R. Physique 3 (2002) 1059-1065.
Upgrading the fuel-handling machine of the Novovoronezh nuclear power plant unit no. 5
NASA Astrophysics Data System (ADS)
Terekhov, D. V.; Dunaev, V. I.
2014-02-01
The calculation of safety parameters was carried out in the process of upgrading the fuel-handling machine (FHM) of the Novovoronezh nuclear power plant (NPP) unit no. 5 based on the results of quantitative safety analysis of nuclear fuel transfer operations using a dynamic logical-and-probabilistic model of the processing procedure. Specific engineering and design concepts that made it possible to reduce the probability of damaging the fuel assemblies (FAs) when performing various technological operations by an order of magnitude and introduce more flexible algorithms into the modernized FHM control system were developed. The results of pilot operation during two refueling campaigns prove that the total reactor shutdown time is lowered.
NASA Astrophysics Data System (ADS)
Arnone, E.; Noto, L. V.; Dialynas, Y. G.; Caracciolo, D.; Bras, R. L.
2015-12-01
This work presents the capabilities of a model, i.e. the tRIBS-VEGGIE-Landslide, in two different versions, i.e. developed within a probabilistic framework and coupled with a root cohesion module. The probabilistic model treats geotechnical and soil retention curve parameters as random variables across the basin and estimates theoretical probability distributions of slope stability and the associated "factor of safety" commonly used to describe the occurrence of shallow landslides. The derived distributions are used to obtain the spatio-temporal dynamics of probability of failure, conditioned on soil moisture dynamics at each watershed location. The framework has been tested in the Luquillo Experimental Forest (Puerto Rico) where shallow landslides are common. In particular, the methodology was used to evaluate how the spatial and temporal patterns of precipitation, whose variability is significant over the basin, affect the distribution of probability of failure. Another version of the model accounts for the additional cohesion exerted by vegetation roots. The approach is to use the Fiber Bundle Model (FBM) framework that allows for the evaluation of the root strength as a function of the stress-strain relationships of bundles of fibers. The model requires the knowledge of the root architecture to evaluate the additional reinforcement from each root diameter class. The root architecture is represented with a branching topology model based on Leonardo's rule. The methodology has been tested on a simple case study to explore the role of both hydrological and mechanical root effects. Results demonstrate that the effects of root water uptake can at times be more significant than the mechanical reinforcement; and that the additional resistance provided by roots depends heavily on the vegetation root structure and length.
NASA Astrophysics Data System (ADS)
Zhang, Shaojie; Zhao, Luqiang; Delgado-Tellez, Ricardo; Bao, Hongjun
2018-03-01
Conventional outputs of physics-based landslide forecasting models are presented as deterministic warnings by calculating the safety factor (Fs) of potentially dangerous slopes. However, these models are highly dependent on variables such as cohesion force and internal friction angle which are affected by a high degree of uncertainty especially at a regional scale, resulting in unacceptable uncertainties of Fs. Under such circumstances, the outputs of physical models are more suitable if presented in the form of landslide probability values. In order to develop such models, a method to link the uncertainty of soil parameter values with landslide probability is devised. This paper proposes the use of Monte Carlo methods to quantitatively express uncertainty by assigning random values to physical variables inside a defined interval. The inequality Fs < 1 is tested for each pixel in n simulations which are integrated in a unique parameter. This parameter links the landslide probability to the uncertainties of soil mechanical parameters and is used to create a physics-based probabilistic forecasting model for rainfall-induced shallow landslides. The prediction ability of this model was tested in a case study, in which simulated forecasting of landslide disasters associated with heavy rainfalls on 9 July 2013 in the Wenchuan earthquake region of Sichuan province, China, was performed. The proposed model successfully forecasted landslides in 159 of the 176 disaster points registered by the geo-environmental monitoring station of Sichuan province. Such testing results indicate that the new model can be operated in a highly efficient way and show more reliable results, attributable to its high prediction accuracy. Accordingly, the new model can be potentially packaged into a forecasting system for shallow landslides providing technological support for the mitigation of these disasters at regional scale.
Probabilistic Survivability Versus Time Modeling
NASA Technical Reports Server (NTRS)
Joyner, James J., Sr.
2015-01-01
This technical paper documents Kennedy Space Centers Independent Assessment team work completed on three assessments for the Ground Systems Development and Operations (GSDO) Program to assist the Chief Safety and Mission Assurance Officer (CSO) and GSDO management during key programmatic reviews. The assessments provided the GSDO Program with an analysis of how egress time affects the likelihood of astronaut and worker survival during an emergency. For each assessment, the team developed probability distributions for hazard scenarios to address statistical uncertainty, resulting in survivability plots over time. The first assessment developed a mathematical model of probabilistic survivability versus time to reach a safe location using an ideal Emergency Egress System at Launch Complex 39B (LC-39B); the second used the first model to evaluate and compare various egress systems under consideration at LC-39B. The third used a modified LC-39B model to determine if a specific hazard decreased survivability more rapidly than other events during flight hardware processing in Kennedys Vehicle Assembly Building (VAB).Based on the composite survivability versus time graphs from the first two assessments, there was a soft knee in the Figure of Merit graphs at eight minutes (ten minutes after egress ordered). Thus, the graphs illustrated to the decision makers that the final emergency egress design selected should have the capability of transporting the flight crew from the top of LC 39B to a safe location in eight minutes or less. Results for the third assessment were dominated by hazards that were classified as instantaneous in nature (e.g. stacking mishaps) and therefore had no effect on survivability vs time to egress the VAB. VAB emergency scenarios that degraded over time (e.g. fire) produced survivability vs time graphs that were line with aerospace industry norms.
Probabilistic Description of the Hydrologic Risk in Agriculture
NASA Astrophysics Data System (ADS)
Vico, G.; Porporato, A. M.
2011-12-01
Supplemental irrigation represents one of the main strategies to mitigate the effects of climatic variability on agroecosystems productivity and profitability, at the expenses of increasing water requirements for irrigation purposes. Optimizing water allocation for crop yield preservation and sustainable development needs to account for hydro-climatic variability, which is by far the main source of uncertainty affecting crop yields and irrigation water requirements. In this contribution, a widely applicable probabilistic framework is proposed to quantitatively define the hydrologic risk of yield reduction for both rainfed and irrigated agriculture. The occurrence of rainfall events and irrigation applications are linked probabilistically to crop development during the growing season. Based on these linkages, long-term and real-time yield reduction risk indices are defined as a function of climate, soil and crop parameters, as well as irrigation strategy. The former risk index is suitable for long-term irrigation strategy assessment and investment planning, while the latter risk index provides a rigorous probabilistic quantification of the emergence of drought conditions during a single growing season. This probabilistic framework allows also assessing the impact of limited water availability on crop yield, thus guiding the optimal allocation of water resources for human and environmental needs. Our approach employs relatively few parameters and is thus easily and broadly applicable to different crops and sites, under current and future climate scenarios, thus facilitating the assessment of the impact of increasingly frequent water shortages on agricultural productivity, profitability, and sustainability.
2001-12-01
32. Maxwell , J . R., & Beard, J . (1973). Bi-directional reflectance model validation and utilization. Tehnical Report AFAL-TR-73-303. Michigan... CECILIA MONTES DE OCA, Ist Lt, USAF Contract Monitor RICHARD L. MILLER, PhD Chief, Directed Energy Bioeffects Division Form Approved REPORT... J .. . a •. . . ......... ..... ... a.. •. l • • , 0.3 0.1 .. . .. . .. . . .. . . ......... ....... .. , 0.0 1 10 100 l000 Kinetic Energy, ft-ibf
Experimental Resource Allocation for Statistical Simulation of Fretting Fatigue Problem (Preprint)
2012-08-01
Metals Branch Structural Materials Division Harry R. Millwater , Carolina Dubinsky, and Gulshan Singh University of Texas at San Antonio...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) Patrick Golden (AFRL/RXCM) Harry R. Millwater , Carolina Dubinsky, and Gulshan...Safety. 1996;54(2-3):133-144 [5] Golden, PJ, Millwater HR and Yang X. Probabilistic Fretting Fatigue Life Prediction of Ti-6Al-4V. International Journal
NASA System Safety Handbook. Volume 1; System Safety Framework and Concepts for Implementation
NASA Technical Reports Server (NTRS)
Dezfuli, Homayoon; Benjamin, Allan; Everett, Christopher; Smith, Curtis; Stamatelatos, Michael; Youngblood, Robert
2011-01-01
System safety assessment is defined in NPR 8715.3C, NASA General Safety Program Requirements as a disciplined, systematic approach to the analysis of risks resulting from hazards that can affect humans, the environment, and mission assets. Achievement of the highest practicable degree of system safety is one of NASA's highest priorities. Traditionally, system safety assessment at NASA and elsewhere has focused on the application of a set of safety analysis tools to identify safety risks and formulate effective controls.1 Familiar tools used for this purpose include various forms of hazard analyses, failure modes and effects analyses, and probabilistic safety assessment (commonly also referred to as probabilistic risk assessment (PRA)). In the past, it has been assumed that to show that a system is safe, it is sufficient to provide assurance that the process for identifying the hazards has been as comprehensive as possible and that each identified hazard has one or more associated controls. The NASA Aerospace Safety Advisory Panel (ASAP) has made several statements in its annual reports supporting a more holistic approach. In 2006, it recommended that "... a comprehensive risk assessment, communication and acceptance process be implemented to ensure that overall launch risk is considered in an integrated and consistent manner." In 2009, it advocated for "... a process for using a risk-informed design approach to produce a design that is optimally and sufficiently safe." As a rationale for the latter advocacy, it stated that "... the ASAP applauds switching to a performance-based approach because it emphasizes early risk identification to guide designs, thus enabling creative design approaches that might be more efficient, safer, or both." For purposes of this preface, it is worth mentioning three areas where the handbook emphasizes a more holistic type of thinking. First, the handbook takes the position that it is important to not just focus on risk on an individual basis but to consider measures of aggregate safety risk and to ensure wherever possible that there be quantitative measures for evaluating how effective the controls are in reducing these aggregate risks. The term aggregate risk, when used in this handbook, refers to the accumulation of risks from individual scenarios that lead to a shortfall in safety performance at a high level: e.g., an excessively high probability of loss of crew, loss of mission, planetary contamination, etc. Without aggregated quantitative measures such as these, it is not reasonable to expect that safety has been optimized with respect to other technical and programmatic objectives. At the same time, it is fully recognized that not all sources of risk are amenable to precise quantitative analysis and that the use of qualitative approaches and bounding estimates may be appropriate for those risk sources. Second, the handbook stresses the necessity of developing confidence that the controls derived for the purpose of achieving system safety not only handle risks that have been identified and properly characterized but also provide a general, more holistic means for protecting against unidentified or uncharacterized risks. For example, while it is not possible to be assured that all credible causes of risk have been identified, there are defenses that can provide protection against broad categories of risks and thereby increase the chances that individual causes are contained. Third, the handbook strives at all times to treat uncertainties as an integral aspect of risk and as a part of making decisions. The term "uncertainty" here does not refer to an actuarial type of data analysis, but rather to a characterization of our state of knowledge regarding results from logical and physical models that approximate reality. Uncertainty analysis finds how the output parameters of the models are related to plausible variations in the input parameters and in the modeling assumptions. The evaluation of unrtainties represents a method of probabilistic thinking wherein the analyst and decision makers recognize possible outcomes other than the outcome perceived to be "most likely." Without this type of analysis, it is not possible to determine the worth of an analysis product as a basis for making decisions related to safety and mission success. In line with these considerations the handbook does not take a hazard-analysis-centric approach to system safety. Hazard analysis remains a useful tool to facilitate brainstorming but does not substitute for a more holistic approach geared to a comprehensive identification and understanding of individual risk issues and their contributions to aggregate safety risks. The handbook strives to emphasize the importance of identifying the most critical scenarios that contribute to the risk of not meeting the agreed-upon safety objectives and requirements using all appropriate tools (including but not limited to hazard analysis). Thereafter, emphasis shifts to identifying the risk drivers that cause these scenarios to be critical and ensuring that there are controls directed toward preventing or mitigating the risk drivers. To address these and other areas, the handbook advocates a proactive, analytic-deliberative, risk-informed approach to system safety, enabling the integration of system safety activities with systems engineering and risk management processes. It emphasizes how one can systematically provide the necessary evidence to substantiate the claim that a system is safe to within an acceptable risk tolerance, and that safety has been achieved in a cost-effective manner. The methodology discussed in this handbook is part of a systems engineering process and is intended to be integral to the system safety practices being conducted by the NASA safety and mission assurance and systems engineering organizations. The handbook posits that to conclude that a system is adequately safe, it is necessary to consider a set of safety claims that derive from the safety objectives of the organization. The safety claims are developed from a hierarchy of safety objectives and are therefore hierarchical themselves. Assurance that all the claims are true within acceptable risk tolerance limits implies that all of the safety objectives have been satisfied, and therefore that the system is safe. The acceptable risk tolerance limits are provided by the authority who must make the decision whether or not to proceed to the next step in the life cycle. These tolerances are therefore referred to as the decision maker's risk tolerances. In general, the safety claims address two fundamental facets of safety: 1) whether required safety thresholds or goals have been achieved, and 2) whether the safety risk is as low as possible within reasonable impacts on cost, schedule, and performance. The latter facet includes consideration of controls that are collective in nature (i.e., apply generically to broad categories of risks) and thereby provide protection against unidentified or uncharacterized risks.
NASA Astrophysics Data System (ADS)
Porporato, A. M.
2013-05-01
We discuss the key processes by which hydrologic variability affects the probabilistic structure of soil moisture dynamics in water-controlled ecosystems. These in turn impact biogeochemical cycling and ecosystem structure through plant productivity and biodiversity as well as nitrogen availability and soil conditions. Once the long-term probabilistic structure of these processes is quantified, the results become useful to understand the impact of climatic changes and human activities on ecosystem services, and can be used to find optimal strategies of water and soil resources management under unpredictable hydro-climatic fluctuations. Particular applications regard soil salinization, phytoremediation and optimal stochastic irrigation.
NASA Applications and Lessons Learned in Reliability Engineering
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Fuller, Raymond P.
2011-01-01
Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.
NASA Technical Reports Server (NTRS)
Hercencia-Zapana, Heber; Herencia-Zapana, Heber; Hagen, George E.; Neogi, Natasha
2012-01-01
Projections of future traffic in the national airspace show that most of the hub airports and their attendant airspace will need to undergo significant redevelopment and redesign in order to accommodate any significant increase in traffic volume. Even though closely spaced parallel approaches increase throughput into a given airport, controller workload in oversubscribed metroplexes is further taxed by these approaches that require stringent monitoring in a saturated environment. The interval management (IM) concept in the TRACON area is designed to shift some of the operational burden from the control tower to the flight deck, placing the flight crew in charge of implementing the required speed changes to maintain a relative spacing interval. The interval management tolerance is a measure of the allowable deviation from the desired spacing interval for the IM aircraft (and its target aircraft). For this complex task, Formal Methods can help to ensure better design and system implementation. In this paper, we propose a probabilistic framework to quantify the uncertainty and performance associated with the major components of the IM tolerance. The analytical basis for this framework may be used to formalize both correctness and probabilistic system safety claims in a modular fashion at the algorithmic level in a way compatible with several Formal Methods tools.
NASA Technical Reports Server (NTRS)
Wiegmann, Douglas A.a
2005-01-01
The NASA Aviation Safety Program (AvSP) has defined several products that will potentially modify airline and/or ATC operations, enhance aircraft systems, and improve the identification of potential hazardous situations within the National Airspace System (NAS). Consequently, there is a need to develop methods for evaluating the potential safety benefit of each of these intervention products so that resources can be effectively invested to produce the judgments to develop Bayesian Belief Networks (BBN's) that model the potential impact that specific interventions may have. Specifically, the present report summarizes methodologies for improving the elicitation of probability estimates during expert evaluations of AvSP products for use in BBN's. The work involved joint efforts between Professor James Luxhoj from Rutgers University and researchers at the University of Illinois. The Rutgers' project to develop BBN's received funding by NASA entitled "Probabilistic Decision Support for Evaluating Technology Insertion and Assessing Aviation Safety System Risk." The proposed project was funded separately but supported the existing Rutgers' program.
Incorporating seismic phase correlations into a probabilistic model of global-scale seismology
NASA Astrophysics Data System (ADS)
Arora, Nimar
2013-04-01
We present a probabilistic model of seismic phases whereby the attributes of the body-wave phases are correlated to those of the first arriving P phase. This model has been incorporated into NET-VISA (Network processing Vertically Integrated Seismic Analysis) a probabilistic generative model of seismic events, their transmission, and detection on a global seismic network. In the earlier version of NET-VISA, seismic phase were assumed to be independent of each other. Although this didn't affect the quality of the inferred seismic bulletin, for the most part, it did result in a few instances of anomalous phase association. For example, an S phase with a smaller slowness than the corresponding P phase. We demonstrate that the phase attributes are indeed highly correlated, for example the uncertainty in the S phase travel time is significantly reduced given the P phase travel time. Our new model exploits these correlations to produce better calibrated probabilities for the events, as well as fewer anomalous associations.
Prevalence of drug use among drivers based on mandatory, random tests in a roadside survey
Alcañiz, Manuela; Guillen, Montserrat
2018-01-01
Background In the context of road safety, this study aims to examine the prevalence of drug use in a random sample of drivers. Methods A stratified probabilistic sample was designed to represent vehicles circulating on non-urban roads. Random drug tests were performed during autumn 2014 on 521 drivers in Catalonia (Spain). Participation was mandatory. The prevalence of drug driving for cannabis, methamphetamines, amphetamines, cocaine, opiates and benzodiazepines was assessed. Results The overall prevalence of drug use is 16.4% (95% CI: 13.9; 18.9) and affects primarily younger male drivers. Drug use is similarly prevalent during weekdays and on weekends, but increases with the number of occupants. The likelihood of being positive for methamphetamines is significantly higher for drivers of vans and lorries. Conclusions Different patterns of use are detected depending on the drug considered. Preventive drug tests should not only be conducted on weekends and at night-time, and need to be reinforced for drivers of commercial vehicles. Active educational campaigns should focus on the youngest age-group of male drivers. PMID:29920542
Infrared radiation and stealth characteristics prediction for supersonic aircraft with uncertainty
NASA Astrophysics Data System (ADS)
Pan, Xiaoying; Wang, Xiaojun; Wang, Ruixing; Wang, Lei
2015-11-01
The infrared radiation (IR) intensity is generally used to embody the stealth characteristics of a supersonic aircraft, which directly affects its survivability in warfare. Under such circumstances, the research on IR signature as an important branch of stealth technology is significant to overcome this threat for survivability enhancement. Considering the existence of uncertainties in material and environment, the IR intensity is indeed a range rather than a specific value. In this paper, subjected to the properties of the IR, an analytic process containing the uncertainty propagation and the reliability evaluation is investigated when taking into account that the temperature of object, the atmospheric transmittance and the spectral emissivity of materials are all regarded as uncertain parameters. For one thing, the vertex method is used to analyze and estimate the dispersion of IR intensity; for another, the safety assessment of the stealth performance for aircraft is conducted by non-probabilistic reliability analysis. For the purpose of the comparison and verification, the Monte Carlo simulation is discussed as well. The validity, usage, and efficiency of the developed methodology are demonstrated by two application examples eventually.
NASA Astrophysics Data System (ADS)
Wang, Lei; Xiong, Chuang; Wang, Xiaojun; Li, Yunlong; Xu, Menghui
2018-04-01
Considering that multi-source uncertainties from inherent nature as well as the external environment are unavoidable and severely affect the controller performance, the dynamic safety assessment with high confidence is of great significance for scientists and engineers. In view of this, the uncertainty quantification analysis and time-variant reliability estimation corresponding to the closed-loop control problems are conducted in this study under a mixture of random, interval, and convex uncertainties. By combining the state-space transformation and the natural set expansion, the boundary laws of controlled response histories are first confirmed with specific implementation of random items. For nonlinear cases, the collocation set methodology and fourth Rounge-Kutta algorithm are introduced as well. Enlightened by the first-passage model in random process theory as well as by the static probabilistic reliability ideas, a new definition of the hybrid time-variant reliability measurement is provided for the vibration control systems and the related solution details are further expounded. Two engineering examples are eventually presented to demonstrate the validity and applicability of the methodology developed.
Holzgrefe, Henry; Ferber, Georg; Champeroux, Pascal; Gill, Michael; Honda, Masaki; Greiter-Wilke, Andrea; Baird, Theodore; Meyer, Olivier; Saulnier, Muriel
2014-01-01
In vivo models have been required to demonstrate relative cardiac safety, but model sensitivity has not been systematically investigated. Cross-species and human translation of repolarization delay, assessed as QT/QTc prolongation, has not been compared employing common methodologies across multiple species and sites. Therefore, the accurate translation of repolarization results within and between preclinical species, and to man, remains problematic. Six pharmaceutical companies entered into an informal consortium designed to collect high-resolution telemetered data in multiple species (dog; n=34, cynomolgus; n=37, minipig; n=12, marmoset; n=14, guinea pig; n=5, and man; n=57). All animals received vehicle and varying doses of moxifloxacin (3-100 mg/kg, p.o.) with telemetered ECGs (≥500 Hz) obtained for 20-24h post-dose. Individual probabilistic QT-RR relationships were derived for each subject. The rate-correction efficacies of the individual (QTca) and generic correction formulae (Bazett, Fridericia, and Van de Water) were objectively assessed as the mean squared slopes of the QTc-RR relationships. Normalized moxifloxacin QTca responses (Veh Δ%/μM) were derived for 1h centered on the moxifloxacin Tmax. All QT-RR ranges demonstrated probabilistic uncertainty; slopes varied distinctly by species where dog and human exhibited the lowest QT rate-dependence, which was much steeper in the cynomolgus and guinea pig. Incorporating probabilistic uncertainty, the normalized QTca-moxifloxacin responses were similarly conserved across all species, including man. The current results provide the first unambiguous evidence that all preclinical in vivo repolarization assays, when accurately modeled and evaluated, yield results that are consistent with the conservation of moxifloxacin-induced QT prolongation across all common preclinical species. Furthermore, these outcomes are directly transferable across all species including man. The consortium results indicate that the implementation of standardized QTc data presentation, QTc reference cycle lengths, and rate-correction coefficients can markedly improve the concordance of preclinical and clinical outcomes in most preclinical species. Copyright © 2013 Elsevier Inc. All rights reserved.
Fault displacement hazard assessment for nuclear installations based on IAEA safety standards
NASA Astrophysics Data System (ADS)
Fukushima, Y.
2016-12-01
In the IAEA Safety NS-R-3, surface fault displacement hazard assessment (FDHA) is required for the siting of nuclear installations. If any capable faults exist in the candidate site, IAEA recommends the consideration of alternative sites. However, due to the progress in palaeoseismological investigations, capable faults may be found in existing site. In such a case, IAEA recommends to evaluate the safety using probabilistic FDHA (PFDHA), which is an empirical approach based on still quite limited database. Therefore a basic and crucial improvement is to increase the database. In 2015, IAEA produced a TecDoc-1767 on Palaeoseismology as a reference for the identification of capable faults. Another IAEA Safety Report 85 on ground motion simulation based on fault rupture modelling provides an annex introducing recent PFDHAs and fault displacement simulation methodologies. The IAEA expanded the project of FDHA for the probabilistic approach and the physics based fault rupture modelling. The first approach needs a refinement of the empirical methods by building a world wide database, and the second approach needs to shift from kinematic to the dynamic scheme. Both approaches can complement each other, since simulated displacement can fill the gap of a sparse database and geological observations can be useful to calibrate the simulations. The IAEA already supported a workshop in October 2015 to discuss the existing databases with the aim of creating a common worldwide database. A consensus of a unified database was reached. The next milestone is to fill the database with as many fault rupture data sets as possible. Another IAEA work group had a WS in November 2015 to discuss the state-of-the-art PFDHA as well as simulation methodologies. Two groups jointed a consultancy meeting in February 2016, shared information, identified issues, discussed goals and outputs, and scheduled future meetings. Now we may aim at coordinating activities for the whole FDHA tasks jointly.
NASA Astrophysics Data System (ADS)
Wang, Chunxiang; Watanabe, Naoki; Marui, Hideaki
2013-04-01
The hilly slopes of Mt. Medvednica are stretched in the northwestern part of Zagreb City, Croatia, and extend to approximately 180km2. In this area, landslides, e.g. Kostanjek landslide and Črešnjevec landslide, have brought damage to many houses, roads, farmlands, grassland and etc. Therefore, it is necessary to predict the potential landslides and to enhance landslide inventory for hazard mitigation and security management of local society in this area. We combined deterministic method and probabilistic method to assess potential landslides including their locations, size and sliding surfaces. Firstly, this study area is divided into several slope units that have similar topographic and geological characteristics using the hydrology analysis tool in ArcGIS. Then, a GIS-based modified three-dimensional Hovland's method for slope stability analysis system is developed to identify the sliding surface and corresponding three-dimensional safety factor for each slope unit. Each sliding surface is assumed to be the lower part of each ellipsoid. The direction of inclination of the ellipsoid is considered to be the same as the main dip direction of the slope unit. The center point of the ellipsoid is randomly set to the center point of a grid cell in the slope unit. The minimum three-dimensional safety factor and corresponding critical sliding surface are also obtained for each slope unit. Thirdly, since a single value of safety factor is insufficient to evaluate the slope stability of a slope unit, the ratio of the number of calculation cases in which the three-dimensional safety factor values less than 1.0 to the total number of trial calculation is defined as the failure probability of the slope unit. If the failure probability is more than 80%, the slope unit is distinguished as 'unstable' from other slope units and the landslide hazard can be mapped for the whole study area.
Initiating Event Analysis of a Lithium Fluoride Thorium Reactor
NASA Astrophysics Data System (ADS)
Geraci, Nicholas Charles
The primary purpose of this study is to perform an Initiating Event Analysis for a Lithium Fluoride Thorium Reactor (LFTR) as the first step of a Probabilistic Safety Assessment (PSA). The major objective of the research is to compile a list of key initiating events capable of resulting in failure of safety systems and release of radioactive material from the LFTR. Due to the complex interactions between engineering design, component reliability and human reliability, probabilistic safety assessments are most useful when the scope is limited to a single reactor plant. Thus, this thesis will study the LFTR design proposed by Flibe Energy. An October 2015 Electric Power Research Institute report on the Flibe Energy LFTR asked "what-if?" questions of subject matter experts and compiled a list of key hazards with the most significant consequences to the safety or integrity of the LFTR. The potential exists for unforeseen hazards to pose additional risk for the LFTR, but the scope of this thesis is limited to evaluation of those key hazards already identified by Flibe Energy. These key hazards are the starting point for the Initiating Event Analysis performed in this thesis. Engineering evaluation and technical study of the plant using a literature review and comparison to reference technology revealed four hazards with high potential to cause reactor core damage. To determine the initiating events resulting in realization of these four hazards, reference was made to previous PSAs and existing NRC and EPRI initiating event lists. Finally, fault tree and event tree analyses were conducted, completing the logical classification of initiating events. Results are qualitative as opposed to quantitative due to the early stages of system design descriptions and lack of operating experience or data for the LFTR. In summary, this thesis analyzes initiating events using previous research and inductive and deductive reasoning through traditional risk management techniques to arrive at a list of key initiating events that can be used to address vulnerabilities during the design phases of LFTR development.
Forlenza, Gregory P; Cameron, Faye M; Ly, Trang T; Lam, David; Howsmon, Daniel P; Baysal, Nihat; Kulina, Georgia; Messer, Laurel; Clinton, Paula; Levister, Camilla; Patek, Stephen D; Levy, Carol J; Wadwa, R Paul; Maahs, David M; Bequette, B Wayne; Buckingham, Bruce A
2018-05-01
Initial Food and Drug Administration-approved artificial pancreas (AP) systems will be hybrid closed-loop systems that require prandial meal announcements and will not eliminate the burden of premeal insulin dosing. Multiple model probabilistic predictive control (MMPPC) is a fully closed-loop system that uses probabilistic estimation of meals to allow for automated meal detection. In this study, we describe the safety and performance of the MMPPC system with announced and unannounced meals in a supervised hotel setting. The Android phone-based AP system with remote monitoring was tested for 72 h in six adults and four adolescents across three clinical sites with daily exercise and meal challenges involving both three announced (manual bolus by patient) and six unannounced (no bolus by patient) meals. Safety criteria were predefined. Controller aggressiveness was adapted daily based on prior hypoglycemic events. Mean 24-h continuous glucose monitor (CGM) was 157.4 ± 14.4 mg/dL, with 63.6 ± 9.2% of readings between 70 and 180 mg/dL, 2.9 ± 2.3% of readings <70 mg/dL, and 9.0 ± 3.9% of readings >250 mg/dL. Moderate hyperglycemia was relatively common with 24.6 ± 6.2% of readings between 180 and 250 mg/dL, primarily within 3 h after a meal. Overnight mean CGM was 139.6 ± 27.6 mg/dL, with 77.9 ± 16.4% between 70 and 180 mg/dL, 3.0 ± 4.5% <70 mg/dL, 17.1 ± 14.9% between 180 and 250 mg/dL, and 2.0 ± 4.5%> 250 mg/dL. Postprandial hyperglycemia was more common for unannounced meals compared with announced meals (4-h postmeal CGM 197.8 ± 44.1 vs. 140.6 ± 35.0 mg/dL; P < 0.001). No participants met safety stopping criteria. MMPPC was safe in a supervised setting despite meal and exercise challenges. Further studies are needed in a less supervised environment.
A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints
NASA Astrophysics Data System (ADS)
Wei, Helin; Wang, Kuisheng
2011-11-01
Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.
Fan, Ming; Thongsri, Tepwitoon; Axe, Lisa; Tyson, Trevor A
2005-06-01
A probabilistic approach was applied in an ecological risk assessment (ERA) to characterize risk and address uncertainty employing Monte Carlo simulations for assessing parameter and risk probabilistic distributions. This simulation tool (ERA) includes a Window's based interface, an interactive and modifiable database management system (DBMS) that addresses a food web at trophic levels, and a comprehensive evaluation of exposure pathways. To illustrate this model, ecological risks from depleted uranium (DU) exposure at the US Army Yuma Proving Ground (YPG) and Aberdeen Proving Ground (APG) were assessed and characterized. Probabilistic distributions showed that at YPG, a reduction in plant root weight is considered likely to occur (98% likelihood) from exposure to DU; for most terrestrial animals, likelihood for adverse reproduction effects ranges from 0.1% to 44%. However, for the lesser long-nosed bat, the effects are expected to occur (>99% likelihood) through the reduction in size and weight of offspring. Based on available DU data for the firing range at APG, DU uptake will not likely affect survival of aquatic plants and animals (<0.1% likelihood). Based on field and laboratory studies conducted at APG and YPG on pocket mice, kangaroo rat, white-throated woodrat, deer, and milfoil, body burden concentrations observed fall into the distributions simulated at both sites.
Probabilistic liver atlas construction.
Dura, Esther; Domingo, Juan; Ayala, Guillermo; Marti-Bonmati, Luis; Goceri, E
2017-01-13
Anatomical atlases are 3D volumes or shapes representing an organ or structure of the human body. They contain either the prototypical shape of the object of interest together with other shapes representing its statistical variations (statistical atlas) or a probability map of belonging to the object (probabilistic atlas). Probabilistic atlases are mostly built with simple estimations only involving the data at each spatial location. A new method for probabilistic atlas construction that uses a generalized linear model is proposed. This method aims to improve the estimation of the probability to be covered by the liver. Furthermore, all methods to build an atlas involve previous coregistration of the sample of shapes available. The influence of the geometrical transformation adopted for registration in the quality of the final atlas has not been sufficiently investigated. The ability of an atlas to adapt to a new case is one of the most important quality criteria that should be taken into account. The presented experiments show that some methods for atlas construction are severely affected by the previous coregistration step. We show the good performance of the new approach. Furthermore, results suggest that extremely flexible registration methods are not always beneficial, since they can reduce the variability of the atlas and hence its ability to give sensible values of probability when used as an aid in segmentation of new cases.
NASA Astrophysics Data System (ADS)
Caglar, Mehmet Umut; Pal, Ranadip
2011-03-01
Central dogma of molecular biology states that ``information cannot be transferred back from protein to either protein or nucleic acid''. However, this assumption is not exactly correct in most of the cases. There are a lot of feedback loops and interactions between different levels of systems. These types of interactions are hard to analyze due to the lack of cell level data and probabilistic - nonlinear nature of interactions. Several models widely used to analyze and simulate these types of nonlinear interactions. Stochastic Master Equation (SME) models give probabilistic nature of the interactions in a detailed manner, with a high calculation cost. On the other hand Probabilistic Boolean Network (PBN) models give a coarse scale picture of the stochastic processes, with a less calculation cost. Differential Equation (DE) models give the time evolution of mean values of processes in a highly cost effective way. The understanding of the relations between the predictions of these models is important to understand the reliability of the simulations of genetic regulatory networks. In this work the success of the mapping between SME, PBN and DE models is analyzed and the accuracy and affectivity of the control policies generated by using PBN and DE models is compared.
Gaissmaier, Wolfgang; Giese, Helge; Galesic, Mirta; Garcia-Retamero, Rocio; Kasper, Juergen; Kleiter, Ingo; Meuth, Sven G; Köpke, Sascha; Heesen, Christoph
2018-01-01
A shared decision-making approach is suggested for multiple sclerosis (MS) patients. To properly evaluate benefits and risks of different treatment options accordingly, MS patients require sufficient numeracy - the ability to understand quantitative information. It is unknown whether MS affects numeracy. Therefore, we investigated whether patients' numeracy was impaired compared to a probabilistic national sample. As part of the larger prospective, observational, multicenter study PERCEPT, we assessed numeracy for a clinical study sample of German MS patients (N=725) with a standard test and compared them to a German probabilistic sample (N=1001), controlling for age, sex, and education. Within patients, we assessed whether disease variables (disease duration, disability, annual relapse rate, cognitive impairment) predicted numeracy beyond these demographics. MS patients showed a comparable level of numeracy as the probabilistic national sample (68.9% vs. 68.5% correct answers, P=0.831). In both samples, numeracy was higher for men and the highly educated. Disease variables did not predict numeracy beyond demographics within patients, and predictability was generally low. This sample of MS patients understood quantitative information on the same level as the general population. There is no reason to withhold quantitative information from MS patients. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pattabhiraman, Sriram
Airplane fuselage structures are designed with the concept of damage tolerance, wherein small damage are allowed to remain on the airplane, and damage that otherwise affect the safety of the structure are repaired. The damage critical to the safety of the fuselage are repaired by scheduling maintenance at pre-determined intervals. Scheduling maintenance is an interesting trade-off between damage tolerance and cost. Tolerance of larger damage would require less frequent maintenance and hence, a lower cost, to maintain a certain level of reliability. Alternatively, condition-based maintenance techniques have been developed using on-board sensors, which track damage continuously and request maintenance only when the damage size crosses a particular threshold. This effects a tolerance of larger damage than scheduled maintenance, leading to savings in cost. This work quantifies the savings of condition-based maintenance over scheduled maintenance. The work also quantifies converting the cost savings into weight savings. Structural health monitoring will need time to be able to establish itself as a stand-alone system for maintenance, due to concerns on its diagnosis accuracy and reliability. This work also investigates the effect of synchronizing structural health monitoring system with scheduled maintenance. This work uses on-board SHM equipment skip structural airframe maintenance (a subsect of scheduled maintenance), whenever deemed unnecessary while maintain a desired level of safety of structure. The work will also predict the necessary maintenance for a fleet of airplanes, based on the current damage status of the airplanes. The work also analyses the possibility of false alarm, wherein maintenance is being requested with no critical damage on the airplane. The work use SHM as a tool to identify lemons in a fleet of airplanes. Lemons are those airplanes that would warrant more maintenance trips than the average behavior of the fleet.
Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code
Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc
2018-02-02
The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less
Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc
The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less
NASA Astrophysics Data System (ADS)
Győri, Erzsébet; Gráczer, Zoltán; Tóth, László; Bán, Zoltán; Horváth, Tibor
2017-04-01
Liquefaction potential evaluations are generally made to assess the hazard from specific scenario earthquakes. These evaluations may estimate the potential in a binary fashion (yes/no), define a factor of safety or predict the probability of liquefaction given a scenario event. Usually the level of ground shaking is obtained from the results of PSHA. Although it is determined probabilistically, a single level of ground shaking is selected and used within the liquefaction potential evaluation. In contrary, the fully probabilistic liquefaction potential assessment methods provide a complete picture of liquefaction hazard, namely taking into account the joint probability distribution of PGA and magnitude of earthquake scenarios; both of which are key inputs in the stress-based simplified methods. Kramer and Mayfield (2007) has developed a fully probabilistic liquefaction potential evaluation method using a performance-based earthquake engineering (PBEE) framework. The results of the procedure are the direct estimate of the return period of liquefaction and the liquefaction hazard curves in function of depth. The method combines the disaggregation matrices computed for different exceedance frequencies during probabilistic seismic hazard analysis with one of the recent models for the conditional probability of liquefaction. We have developed a software for the assessment of performance-based liquefaction triggering on the basis of Kramer and Mayfield method. Originally the SPT based probabilistic method of Cetin et al. (2004) was built-in into the procedure of Kramer and Mayfield to compute the conditional probability however there is no professional consensus about its applicability. Therefore we have included not only Cetin's method but Idriss and Boulanger (2012) SPT based moreover Boulanger and Idriss (2014) CPT based procedures into our computer program. In 1956, a damaging earthquake of magnitude 5.6 occurred in Dunaharaszti, in Hungary. Its epicenter was located about 5 km from the southern boundary of Budapest. The quake caused serious damages in the epicentral area and in the southern districts of the capital. The epicentral area of the earthquake is located along the Danube River. Sand boils were observed in some locations that indicated the occurrence of liquefaction. Because their exact locations were recorded at the time of the earthquake, in situ geotechnical measurements (CPT and SPT) could be performed at two (Dunaharaszti and Taksony) sites. The different types of measurements enabled the probabilistic liquefaction hazard computations at the two studied sites. We have compared the return periods of liquefaction that were computed using different built-in simplified stress based methods.
Analyzing system safety in lithium-ion grid energy storage
Rosewater, David; Williams, Adam
2015-10-08
As grid energy storage systems become more complex, it grows more di cult to design them for safe operation. This paper first reviews the properties of lithium-ion batteries that can produce hazards in grid scale systems. Then the conventional safety engineering technique Probabilistic Risk Assessment (PRA) is reviewed to identify its limitations in complex systems. To address this gap, new research is presented on the application of Systems-Theoretic Process Analysis (STPA) to a lithium-ion battery based grid energy storage system. STPA is anticipated to ll the gaps recognized in PRA for designing complex systems and hence be more e ectivemore » or less costly to use during safety engineering. It was observed that STPA is able to capture causal scenarios for accidents not identified using PRA. Additionally, STPA enabled a more rational assessment of uncertainty (all that is not known) thereby promoting a healthy skepticism of design assumptions. Lastly, we conclude that STPA may indeed be more cost effective than PRA for safety engineering in lithium-ion battery systems. However, further research is needed to determine if this approach actually reduces safety engineering costs in development, or improves industry safety standards.« less
Interim reliability evaluation program, Browns Ferry 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, S.E.; Poloski, J.P.; Sullivan, W.H.
1981-01-01
Probabilistic risk analysis techniques, i.e., event tree and fault tree analysis, were utilized to provide a risk assessment of the Browns Ferry Nuclear Plant Unit 1. Browns Ferry 1 is a General Electric boiling water reactor of the BWR 4 product line with a Mark 1 (drywell and torus) containment. Within the guidelines of the IREP Procedure and Schedule Guide, dominant accident sequences that contribute to public health and safety risks were identified and grouped according to release categories.
Dynamic Positioning System (DPS) Risk Analysis Using Probabilistic Risk Assessment (PRA)
NASA Technical Reports Server (NTRS)
Thigpen, Eric B.; Boyer, Roger L.; Stewart, Michael A.; Fougere, Pete
2017-01-01
The National Aeronautics and Space Administration (NASA) Safety & Mission Assurance (S&MA) directorate at the Johnson Space Center (JSC) has applied its knowledge and experience with Probabilistic Risk Assessment (PRA) to projects in industries ranging from spacecraft to nuclear power plants. PRA is a comprehensive and structured process for analyzing risk in complex engineered systems and/or processes. The PRA process enables the user to identify potential risk contributors such as, hardware and software failure, human error, and external events. Recent developments in the oil and gas industry have presented opportunities for NASA to lend their PRA expertise to both ongoing and developmental projects within the industry. This paper provides an overview of the PRA process and demonstrates how this process was applied in estimating the probability that a Mobile Offshore Drilling Unit (MODU) operating in the Gulf of Mexico and equipped with a generically configured Dynamic Positioning System (DPS) loses location and needs to initiate an emergency disconnect. The PRA described in this paper is intended to be generic such that the vessel meets the general requirements of an International Maritime Organization (IMO) Maritime Safety Committee (MSC)/Circ. 645 Class 3 dynamically positioned vessel. The results of this analysis are not intended to be applied to any specific drilling vessel, although provisions were made to allow the analysis to be configured to a specific vessel if required.
Tozer, Sarah A; Kelly, Seamus; O'Mahony, Cian; Daly, E J; Nash, J F
2015-09-01
Realistic estimates of chemical aggregate exposure are needed to ensure consumer safety. As exposure estimates are a critical part of the equation used to calculate acceptable "safe levels" and conduct quantitative risk assessments, methods are needed to produce realistic exposure estimations. To this end, a probabilistic aggregate exposure model was developed to estimate consumer exposure from several rinse off personal cleansing products containing the anti-dandruff preservative zinc pyrithione. The model incorporates large habits and practices surveys, containing data on frequency of use, amount applied, co-use along with market share, and combines these data at the level of the individual based on subject demographics to better estimate exposure. The daily-applied exposure (i.e., amount applied to the skin) was 3.79 mg/kg/day for the 95th percentile consumer. The estimated internal dose for the 95th percentile exposure ranged from 0.01-1.29 μg/kg/day after accounting for retention following rinsing and dermal penetration of ZnPt. This probabilistic aggregate exposure model can be used in the human safety assessment of ingredients in multiple rinse-off technologies (e.g., shampoo, bar soap, body wash, and liquid hand soap). In addition, this model may be used in other situations where refined exposure assessment is required to support a chemical risk assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quantum Experimental Data in Psychology and Economics
NASA Astrophysics Data System (ADS)
Aerts, Diederik; D'Hooghe, Bart; Haven, Emmanuel
2010-12-01
We prove a theorem which shows that a collection of experimental data of probabilistic weights related to decisions with respect to situations and their disjunction cannot be modeled within a classical probabilistic weight structure in case the experimental data contain the effect referred to as the ‘disjunction effect’ in psychology. We identify different experimental situations in psychology, more specifically in concept theory and in decision theory, and in economics (namely situations where Savage’s Sure-Thing Principle is violated) where the disjunction effect appears and we point out the common nature of the effect. We analyze how our theorem constitutes a no-go theorem for classical probabilistic weight structures for common experimental data when the disjunction effect is affecting the values of these data. We put forward a simple geometric criterion that reveals the non classicality of the considered probabilistic weights and we illustrate our geometrical criterion by means of experimentally measured membership weights of items with respect to pairs of concepts and their disjunctions. The violation of the classical probabilistic weight structure is very analogous to the violation of the well-known Bell inequalities studied in quantum mechanics. The no-go theorem we prove in the present article with respect to the collection of experimental data we consider has a status analogous to the well known no-go theorems for hidden variable theories in quantum mechanics with respect to experimental data obtained in quantum laboratories. Our analysis puts forward a strong argument in favor of the validity of using the quantum formalism for modeling the considered psychological experimental data as considered in this paper.
Probabilistic objective functions for margin-less IMRT planning
NASA Astrophysics Data System (ADS)
Bohoslavsky, Román; Witte, Marnix G.; Janssen, Tomas M.; van Herk, Marcel
2013-06-01
We present a method to implement probabilistic treatment planning of intensity-modulated radiation therapy using custom software plugins in a commercial treatment planning system. Our method avoids the definition of safety-margins by directly including the effect of geometrical uncertainties during optimization when objective functions are evaluated. Because the shape of the resulting dose distribution implicitly defines the robustness of the plan, the optimizer has much more flexibility than with a margin-based approach. We expect that this added flexibility helps to automatically strike a better balance between target coverage and dose reduction for surrounding healthy tissue, especially for cases where the planning target volume overlaps organs at risk. Prostate cancer treatment planning was chosen to develop our method, including a novel technique to include rotational uncertainties. Based on population statistics, translations and rotations are simulated independently following a marker-based IGRT correction strategy. The effects of random and systematic errors are incorporated by first blurring and then shifting the dose distribution with respect to the clinical target volume. For simplicity and efficiency, dose-shift invariance and a rigid-body approximation are assumed. Three prostate cases were replanned using our probabilistic objective functions. To compare clinical and probabilistic plans, an evaluation tool was used that explicitly incorporates geometric uncertainties using Monte-Carlo methods. The new plans achieved similar or better dose distributions than the original clinical plans in terms of expected target coverage and rectum wall sparing. Plan optimization times were only about a factor of two higher than in the original clinical system. In conclusion, we have developed a practical planning tool that enables margin-less probability-based treatment planning with acceptable planning times, achieving the first system that is feasible for clinical implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madankan, R.; Pouget, S.; Singla, P., E-mail: psingla@buffalo.edu
Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions – height, profile of particle location, volcanic vent parameters – are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This papermore » presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajökull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 14–16 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.« less
Forman, Jason L.; Kent, Richard W.; Mroz, Krystoffer; Pipkorn, Bengt; Bostrom, Ola; Segui-Gomez, Maria
2012-01-01
This study sought to develop a strain-based probabilistic method to predict rib fracture risk with whole-body finite element (FE) models, and to describe a method to combine the results with collision exposure information to predict injury risk and potential intervention effectiveness in the field. An age-adjusted ultimate strain distribution was used to estimate local rib fracture probabilities within an FE model. These local probabilities were combined to predict injury risk and severity within the whole ribcage. The ultimate strain distribution was developed from a literature dataset of 133 tests. Frontal collision simulations were performed with the THUMS (Total HUman Model for Safety) model with four levels of delta-V and two restraints: a standard 3-point belt and a progressive 3.5–7 kN force-limited, pretensioned (FL+PT) belt. The results of three simulations (29 km/h standard, 48 km/h standard, and 48 km/h FL+PT) were compared to matched cadaver sled tests. The numbers of fractures predicted for the comparison cases were consistent with those observed experimentally. Combining these results with field exposure informantion (ΔV, NASS-CDS 1992–2002) suggests a 8.9% probability of incurring AIS3+ rib fractures for a 60 year-old restrained by a standard belt in a tow-away frontal collision with this restraint, vehicle, and occupant configuration, compared to 4.6% for the FL+PT belt. This is the first study to describe a probabilistic framework to predict rib fracture risk based on strains observed in human-body FE models. Using this analytical framework, future efforts may incorporate additional subject or collision factors for multi-variable probabilistic injury prediction. PMID:23169122
Risk analysis of Safety Service Patrol (SSP) systems in Virginia.
Dickey, Brett D; Santos, Joost R
2011-12-01
The transportation infrastructure is a vital backbone of any regional economy as it supports workforce mobility, tourism, and a host of socioeconomic activities. In this article, we specifically examine the incident management function of the transportation infrastructure. In many metropolitan regions, incident management is handled primarily by safety service patrols (SSPs), which monitor and resolve roadway incidents. In Virginia, SSP allocation across highway networks is based typically on average vehicle speeds and incident volumes. This article implements a probabilistic network model that partitions "business as usual" traffic flow with extreme-event scenarios. Results of simulated network scenarios reveal that flexible SSP configurations can improve incident resolution times relative to predetermined SSP assignments. © 2011 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Enzenhoefer, R.; Rodriguez-Pretelin, A.; Nowak, W.
2012-12-01
"From an engineering standpoint, the quantification of uncertainty is extremely important not only because it allows estimating risk but mostly because it allows taking optimal decisions in an uncertain framework" (Renard, 2007). The most common way to account for uncertainty in the field of subsurface hydrology and wellhead protection is to randomize spatial parameters, e.g. the log-hydraulic conductivity or porosity. This enables water managers to take robust decisions in delineating wellhead protection zones with rationally chosen safety margins in the spirit of probabilistic risk management. Probabilistic wellhead protection zones are commonly based on steady-state flow fields. However, several past studies showed that transient flow conditions may substantially influence the shape and extent of catchments. Therefore, we believe they should be accounted for in the probabilistic assessment and in the delineation process. The aim of our work is to show the significance of flow transients and to investigate the interplay between spatial uncertainty and flow transients in wellhead protection zone delineation. To this end, we advance our concept of probabilistic capture zone delineation (Enzenhoefer et al., 2012) that works with capture probabilities and other probabilistic criteria for delineation. The extended framework is able to evaluate the time fraction that any point on a map falls within a capture zone. In short, we separate capture probabilities into spatial/statistical and time-related frequencies. This will provide water managers additional information on how to manage a well catchment in the light of possible hazard conditions close to the capture boundary under uncertain and time-variable flow conditions. In order to save computational costs, we take advantage of super-positioned flow components with time-variable coefficients. We assume an instantaneous development of steady-state flow conditions after each temporal change in driving forces, following an idea by Festger and Walter, 2002. These quasi steady-state flow fields are cast into a geostatistical Monte Carlo framework to admit and evaluate the influence of parameter uncertainty on the delineation process. Furthermore, this framework enables conditioning on observed data with any conditioning scheme, such as rejection sampling, Ensemble Kalman Filters, etc. To further reduce the computational load, we use the reverse formulation of advective-dispersive transport. We simulate the reverse transport by particle tracking random walk in order to avoid numerical dispersion to account for well arrival times.
NASA Technical Reports Server (NTRS)
Bast, Callie C.; Jurena, Mark T.; Godines, Cody R.; Chamis, Christos C. (Technical Monitor)
2001-01-01
This project included both research and education objectives. The goal of this project was to advance innovative research and education objectives in theoretical and computational probabilistic structural analysis, reliability, and life prediction for improved reliability and safety of structural components of aerospace and aircraft propulsion systems. Research and education partners included Glenn Research Center (GRC) and Southwest Research Institute (SwRI) along with the University of Texas at San Antonio (UTSA). SwRI enhanced the NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) code and provided consulting support for NESSUS-related activities at UTSA. NASA funding supported three undergraduate students, two graduate students, a summer course instructor and the Principal Investigator. Matching funds from UTSA provided for the purchase of additional equipment for the enhancement of the Advanced Interactive Computational SGI Lab established during the first year of this Partnership Award to conduct the probabilistic finite element summer courses. The research portion of this report presents the cumulation of work performed through the use of the probabilistic finite element program, NESSUS, Numerical Evaluation and Structures Under Stress, and an embedded Material Strength Degradation (MSD) model. Probabilistic structural analysis provided for quantification of uncertainties associated with the design, thus enabling increased system performance and reliability. The structure examined was a Space Shuttle Main Engine (SSME) fuel turbopump blade. The blade material analyzed was Inconel 718, since the MSD model was previously calibrated for this material. Reliability analysis encompassing the effects of high temperature and high cycle fatigue, yielded a reliability value of 0.99978 using a fully correlated random field for the blade thickness. The reliability did not change significantly for a change in distribution type except for a change in distribution from Gaussian to Weibull for the centrifugal load. The sensitivity factors determined to be most dominant were the centrifugal loading and the initial strength of the material. These two sensitivity factors were influenced most by a change in distribution type from Gaussian to Weibull. The education portion of this report describes short-term and long-term educational objectives. Such objectives serve to integrate research and education components of this project resulting in opportunities for ethnic minority students, principally Hispanic. The primary vehicle to facilitate such integration was the teaching of two probabilistic finite element method courses to undergraduate engineering students in the summers of 1998 and 1999.
Lee, Jaeyoung; Yasmin, Shamsunnahar; Eluru, Naveen; Abdel-Aty, Mohamed; Cai, Qing
2018-02-01
In traffic safety literature, crash frequency variables are analyzed using univariate count models or multivariate count models. In this study, we propose an alternative approach to modeling multiple crash frequency dependent variables. Instead of modeling the frequency of crashes we propose to analyze the proportion of crashes by vehicle type. A flexible mixed multinomial logit fractional split model is employed for analyzing the proportions of crashes by vehicle type at the macro-level. In this model, the proportion allocated to an alternative is probabilistically determined based on the alternative propensity as well as the propensity of all other alternatives. Thus, exogenous variables directly affect all alternatives. The approach is well suited to accommodate for large number of alternatives without a sizable increase in computational burden. The model was estimated using crash data at Traffic Analysis Zone (TAZ) level from Florida. The modeling results clearly illustrate the applicability of the proposed framework for crash proportion analysis. Further, the Excess Predicted Proportion (EPP)-a screening performance measure analogous to Highway Safety Manual (HSM), Excess Predicted Average Crash Frequency is proposed for hot zone identification. Using EPP, a statewide screening exercise by the various vehicle types considered in our analysis was undertaken. The screening results revealed that the spatial pattern of hot zones is substantially different across the various vehicle types considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Addressing Uniqueness and Unison of Reliability and Safety for a Better Integration
NASA Technical Reports Server (NTRS)
Huang, Zhaofeng; Safie, Fayssal
2016-01-01
Over time, it has been observed that Safety and Reliability have not been clearly differentiated, which leads to confusion, inefficiency, and, sometimes, counter-productive practices in executing each of these two disciplines. It is imperative to address this situation to help Reliability and Safety disciplines improve their effectiveness and efficiency. The paper poses an important question to address, "Safety and Reliability - Are they unique or unisonous?" To answer the question, the paper reviewed several most commonly used analyses from each of the disciplines, namely, FMEA, reliability allocation and prediction, reliability design involvement, system safety hazard analysis, Fault Tree Analysis, and Probabilistic Risk Assessment. The paper pointed out uniqueness and unison of Safety and Reliability in their respective roles, requirements, approaches, and tools, and presented some suggestions for enhancing and improving the individual disciplines, as well as promoting the integration of the two. The paper concludes that Safety and Reliability are unique, but compensating each other in many aspects, and need to be integrated. Particularly, the individual roles of Safety and Reliability need to be differentiated, that is, Safety is to ensure and assure the product meets safety requirements, goals, or desires, and Reliability is to ensure and assure maximum achievability of intended design functions. With the integration of Safety and Reliability, personnel can be shared, tools and analyses have to be integrated, and skill sets can be possessed by the same person with the purpose of providing the best value to a product development.
Koutsoumanis, Konstantinos; Pavlis, Athanasios; Nychas, George-John E.; Xanthiakos, Konstantinos
2010-01-01
A survey on the time-temperature conditions of pasteurized milk in Greece during transportation to retail, retail storage, and domestic storage and handling was performed. The data derived from the survey were described with appropriate probability distributions and introduced into a growth model of Listeria monocytogenes in pasteurized milk which was appropriately modified for taking into account strain variability. Based on the above components, a probabilistic model was applied to evaluate the growth of L. monocytogenes during the chill chain of pasteurized milk using a Monte Carlo simulation. The model predicted that, in 44.8% of the milk cartons released in the market, the pathogen will grow until the time of consumption. For these products the estimated mean total growth of L. monocytogenes during transportation, retail storage, and domestic storage was 0.93 log CFU, with 95th and 99th percentiles of 2.68 and 4.01 log CFU, respectively. Although based on EU regulation 2073/2005 pasteurized milk produced in Greece belongs to the category of products that do not allow the growth of L. monocytogenes due to a shelf life (defined by law) of 5 days, the above results show that this shelf life limit cannot prevent L. monocytogenes from growing under the current chill chain conditions. The predicted percentage of milk cartons—initially contaminated with 1 cell/1-liter carton—in which the pathogen exceeds the safety criterion of 100 cells/ml at the time of consumption was 0.14%. The probabilistic model was used for an importance analysis of the chill chain factors, using rank order correlation, while selected intervention and shelf life increase scenarios were evaluated. The results showed that simple interventions, such as excluding the door shelf from the domestic storage of pasteurized milk, can effectively reduce the growth of the pathogen. The door shelf was found to be the warmest position in domestic refrigerators, and it was most frequently used by the consumers for domestic storage of pasteurized milk. Furthermore, the model predicted that a combination of this intervention with a decrease of the mean temperature of domestic refrigerators by 2°C may allow an extension of pasteurized milk shelf life from 5 to 7 days without affecting the current consumer exposure to L. monocytogenes. PMID:20139308
Revealing the ISO/IEC 9126-1 Clique Tree for COTS Software Evaluation
NASA Technical Reports Server (NTRS)
Morris, A. Terry
2007-01-01
Previous research has shown that acyclic dependency models, if they exist, can be extracted from software quality standards and that these models can be used to assess software safety and product quality. In the case of commercial off-the-shelf (COTS) software, the extracted dependency model can be used in a probabilistic Bayesian network context for COTS software evaluation. Furthermore, while experts typically employ Bayesian networks to encode domain knowledge, secondary structures (clique trees) from Bayesian network graphs can be used to determine the probabilistic distribution of any software variable (attribute) using any clique that contains that variable. Secondary structures, therefore, provide insight into the fundamental nature of graphical networks. This paper will apply secondary structure calculations to reveal the clique tree of the acyclic dependency model extracted from the ISO/IEC 9126-1 software quality standard. Suggestions will be provided to describe how the clique tree may be exploited to aid efficient transformation of an evaluation model.
Dura-Bernal, Salvador; Garreau, Guillaume; Georgiou, Julius; Andreou, Andreas G; Denham, Susan L; Wennekers, Thomas
2013-10-01
The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance.
Quantitative Risk Modeling of Fire on the International Space Station
NASA Technical Reports Server (NTRS)
Castillo, Theresa; Haught, Megan
2014-01-01
The International Space Station (ISS) Program has worked to prevent fire events and to mitigate their impacts should they occur. Hardware is designed to reduce sources of ignition, oxygen systems are designed to control leaking, flammable materials are prevented from flying to ISS whenever possible, the crew is trained in fire response, and fire response equipment improvements are sought out and funded. Fire prevention and mitigation are a top ISS Program priority - however, programmatic resources are limited; thus, risk trades are made to ensure an adequate level of safety is maintained onboard the ISS. In support of these risk trades, the ISS Probabilistic Risk Assessment (PRA) team has modeled the likelihood of fire occurring in the ISS pressurized cabin, a phenomenological event that has never before been probabilistically modeled in a microgravity environment. This paper will discuss the genesis of the ISS PRA fire model, its enhancement in collaboration with fire experts, and the results which have informed ISS programmatic decisions and will continue to be used throughout the life of the program.
Reliability assessment of slender concrete columns at the stability failure
NASA Astrophysics Data System (ADS)
Valašík, Adrián; Benko, Vladimír; Strauss, Alfred; Täubling, Benjamin
2018-01-01
The European Standard for designing concrete columns within the use of non-linear methods shows deficiencies in terms of global reliability, in case that the concrete columns fail by the loss of stability. The buckling failure is a brittle failure which occurs without warning and the probability of its formation depends on the columns slenderness. Experiments with slender concrete columns were carried out in cooperation with STRABAG Bratislava LTD in Central Laboratory of Faculty of Civil Engineering SUT in Bratislava. The following article aims to compare the global reliability of slender concrete columns with slenderness of 90 and higher. The columns were designed according to methods offered by EN 1992-1-1 [1]. The mentioned experiments were used as basis for deterministic nonlinear modelling of the columns and subsequent the probabilistic evaluation of structural response variability. Final results may be utilized as thresholds for loading of produced structural elements and they aim to present probabilistic design as less conservative compared to classic partial safety factor based design and alternative ECOV method.
Development of Maximum Considered Earthquake Ground Motion Maps
Leyendecker, E.V.; Hunt, R.J.; Frankel, A.D.; Rukstales, K.S.
2000-01-01
The 1997 NEHRP Recommended Provisions for Seismic Regulations for New Buildings use a design procedure that is based on spectral response acceleration rather than the traditional peak ground acceleration, peak ground velocity, or zone factors. The spectral response accelerations are obtained from maps prepared following the recommendations of the Building Seismic Safety Council's (BSSC) Seismic Design Procedures Group (SDPG). The SDPG-recommended maps, the Maximum Considered Earthquake (MCE) Ground Motion Maps, are based on the U.S. Geological Survey (USGS) probabilistic hazard maps with additional modifications incorporating deterministic ground motions in selected areas and the application of engineering judgement. The MCE ground motion maps included with the 1997 NEHRP Provisions also serve as the basis for the ground motion maps used in the seismic design portions of the 2000 International Building Code and the 2000 International Residential Code. Additionally the design maps prepared for the 1997 NEHRP Provisions, combined with selected USGS probabilistic maps, are used with the 1997 NEHRP Guidelines for the Seismic Rehabilitation of Buildings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
System Level Uncertainty Assessment for Collaborative RLV Design
NASA Technical Reports Server (NTRS)
Charania, A. C.; Bradford, John E.; Olds, John R.; Graham, Matthew
2002-01-01
A collaborative design process utilizing Probabilistic Data Assessment (PDA) is showcased. Given the limitation of financial resources by both the government and industry, strategic decision makers need more than just traditional point designs, they need to be aware of the likelihood of these future designs to meet their objectives. This uncertainty, an ever-present character in the design process, can be embraced through a probabilistic design environment. A conceptual design process is presented that encapsulates the major engineering disciplines for a Third Generation Reusable Launch Vehicle (RLV). Toolsets consist of aerospace industry standard tools in disciplines such as trajectory, propulsion, mass properties, cost, operations, safety, and economics. Variations of the design process are presented that use different fidelities of tools. The disciplinary engineering models are used in a collaborative engineering framework utilizing Phoenix Integration's ModelCenter and AnalysisServer environment. These tools allow the designer to join disparate models and simulations together in a unified environment wherein each discipline can interact with any other discipline. The design process also uses probabilistic methods to generate the system level output metrics of interest for a RLV conceptual design. The specific system being examined is the Advanced Concept Rocket Engine 92 (ACRE-92) RLV. Previous experience and knowledge (in terms of input uncertainty distributions from experts and modeling and simulation codes) can be coupled with Monte Carlo processes to best predict the chances of program success.
Medical statistics and hospital medicine: the case of the smallpox vaccination.
Rusnock, Andrea
2007-01-01
Between 1799 and 1806, trials of vaccination to determine its safety and efficacy were undertaken in hospitals in London, Paris, Vienna, and Boston. These trials were among the first instances of formal hospital evaluations of a medical procedure and signal a growing acceptance of a relatively new approach to medical practice. These early evaluations of smallpox vaccination also relied on descriptive and quantitative accounts, as well as probabilistic analyses, and thus occupy a significant, yet hitherto unexamined, place in the history of medical statistics.
Intuitive Interference in Probabilistic Reasoning
ERIC Educational Resources Information Center
Babai, Reuven; Brecher, Tali; Stavy, Ruth; Tirosh, Dina
2006-01-01
One theoretical framework which addresses students' conceptions and reasoning processes in mathematics and science education is the intuitive rules theory. According to this theory, students' reasoning is affected by intuitive rules when they solve a wide variety of conceptually non-related mathematical and scientific tasks that share some common…
Probabilistic Flood Maps to support decision-making: Mapping the Value of Information
NASA Astrophysics Data System (ADS)
Alfonso, L.; Mukolwe, M. M.; Di Baldassarre, G.
2016-02-01
Floods are one of the most frequent and disruptive natural hazards that affect man. Annually, significant flood damage is documented worldwide. Flood mapping is a common preimpact flood hazard mitigation measure, for which advanced methods and tools (such as flood inundation models) are used to estimate potential flood extent maps that are used in spatial planning. However, these tools are affected, largely to an unknown degree, by both epistemic and aleatory uncertainty. Over the past few years, advances in uncertainty analysis with respect to flood inundation modeling show that it is appropriate to adopt Probabilistic Flood Maps (PFM) to account for uncertainty. However, the following question arises; how can probabilistic flood hazard information be incorporated into spatial planning? Thus, a consistent framework to incorporate PFMs into the decision-making is required. In this paper, a novel methodology based on Decision-Making under Uncertainty theories, in particular Value of Information (VOI) is proposed. Specifically, the methodology entails the use of a PFM to generate a VOI map, which highlights floodplain locations where additional information is valuable with respect to available floodplain management actions and their potential consequences. The methodology is illustrated with a simplified example and also applied to a real case study in the South of France, where a VOI map is analyzed on the basis of historical land use change decisions over a period of 26 years. Results show that uncertain flood hazard information encapsulated in PFMs can aid decision-making in floodplain planning.
Performance of probabilistic method to detect duplicate individual case safety reports.
Tregunno, Philip Michael; Fink, Dorthe Bech; Fernandez-Fernandez, Cristina; Lázaro-Bengoa, Edurne; Norén, G Niklas
2014-04-01
Individual case reports of suspected harm from medicines are fundamental for signal detection in postmarketing surveillance. Their effective analysis requires reliable data and one challenge is report duplication. These are multiple unlinked records describing the same suspected adverse drug reaction (ADR) in a particular patient. They distort statistical screening and can mislead clinical assessment. Many organisations rely on rule-based detection, but probabilistic record matching is an alternative. The aim of this study was to evaluate probabilistic record matching for duplicate detection, and to characterise the main sources of duplicate reports within each data set. vigiMatch™, a published probabilistic record matching algorithm, was applied to the WHO global individual case safety reports database, VigiBase(®), for reports submitted between 2000 and 2010. Reported drugs, ADRs, patient age, sex, country of origin, and date of onset were considered in the matching. Suspected duplicates for the UK, Denmark, and Spain were reviewed and classified by the respective national centre. This included evaluation to determine whether confirmed duplicates had already been identified by in-house, rule-based screening. Furthermore, each confirmed duplicate was classified with respect to the likely source of duplication. For each country, the proportions of suspected duplicates classified as confirmed duplicates, likely duplicates, otherwise related, and unrelated were obtained. The proportions of confirmed or likely duplicates that were not previously known by the national organisation were determined, and variations in the rates of suspected duplicates across subsets of reports were characterised. Overall, 2.5 % of the reports with sufficient information to be evaluated by vigiMatch were classified as suspected duplicates. The rates for the three countries considered in this study were 1.4 % (UK), 1.0 % (Denmark), and 0.7 % (Spain). Higher rates of suspected duplicates were observed for literature reports (11 %) and reports with fatal outcome (5 %), whereas a lower rate was observed for reports from consumers and non-health professionals (0.5 %). The predictive value for confirmed or likely duplicates among reports flagged as suspected duplicates by vigiMatch ranged from 86 % for the UK, to 64 % for Denmark and 33 % for Spain. The proportions of confirmed duplicates that were previously unknown to national centres ranged from 89 % for Spain, to 60 % for the UK and 38 % for Denmark, despite in-house duplicate detection processes in routine use. The proportion of unrelated cases among suspected duplicates were below 10 % for each national centre in the study. Probabilistic record matching, as implemented in vigiMatch, achieved good predictive value for confirmed or likely duplicates in each data source. Most of the false positives corresponded to otherwise related reports; less than 10 % were altogether unrelated. A substantial proportion of the correctly identified duplicates had not previously been detected by national centre activity. On one hand, vigiMatch highlighted duplicates that had been missed by rule-based methods, and on the other hand its lower total number of suspected duplicates to review improved the accuracy of manual review.
Probabilistic Micromechanics and Macromechanics for Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; Shah, Ashwin R.
1997-01-01
The properties of ceramic matrix composites (CMC's) are known to display a considerable amount of scatter due to variations in fiber/matrix properties, interphase properties, interphase bonding, amount of matrix voids, and many geometry- or fabrication-related parameters, such as ply thickness and ply orientation. This paper summarizes preliminary studies in which formal probabilistic descriptions of the material-behavior- and fabrication-related parameters were incorporated into micromechanics and macromechanics for CMC'S. In this process two existing methodologies, namely CMC micromechanics and macromechanics analysis and a fast probability integration (FPI) technique are synergistically coupled to obtain the probabilistic composite behavior or response. Preliminary results in the form of cumulative probability distributions and information on the probability sensitivities of the response to primitive variables for a unidirectional silicon carbide/reaction-bonded silicon nitride (SiC/RBSN) CMC are presented. The cumulative distribution functions are computed for composite moduli, thermal expansion coefficients, thermal conductivities, and longitudinal tensile strength at room temperature. The variations in the constituent properties that directly affect these composite properties are accounted for via assumed probabilistic distributions. Collectively, the results show that the present technique provides valuable information about the composite properties and sensitivity factors, which is useful to design or test engineers. Furthermore, the present methodology is computationally more efficient than a standard Monte-Carlo simulation technique; and the agreement between the two solutions is excellent, as shown via select examples.
ORAM-SENTINEL{trademark} demonstration at Fitzpatrick. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, L.K.; Anderson, V.M.; Mohammadi, K.
1998-06-01
New York Power Authority, in cooperation with EPRI, installed the ORAM-SENTINEL{trademark} software at James A. Fitzpatrick (JAF) Nuclear Power Plant. This software incorporates models of safety systems and support systems that are used for defense-in-depth in the plant during outage and on-line periods. A secondary goal was to include some pre-analyzed risk results to validate the methodology for quantitative assessment of the plant risks during proposed on-line maintenance. During the past year, New York Power Authority personnel have become familiar with the formal computerized Safety Assessment process associated with on-line and outage maintenance. The report describes techniques and lessons learnedmore » during development of the ORAM-SENTINEL model at JAF. It overviews the systems important to the Safety Function Assessment Process and provides details on development of the Plant Transient Assessment process using the station emergency operating procedures. The assessment results are displayed by color (green, yellow, orange, red) to show decreasing safety conditions. The report describes use of the JAF Probabilistic Safety Assessment within the ORAM-SENTINEL code to calculate an instantaneous core damage frequency and the criteria by which this frequency is translated to a color indicator.« less
A quantitative model of optimal data selection in Wason's selection task.
Hattori, Masasi
2002-10-01
The optimal data selection model proposed by Oaksford and Chater (1994) successfully formalized Wason's selection task (Wason, 1966). The model, however, involved some questionable assumptions and was also not sufficient as a model of the task because it could not provide quantitative predictions of the card selection frequencies. In this paper, the model was revised to provide quantitative fits to the data. The model can predict the selection frequencies of cards based on a selection tendency function (STF), or conversely, it enables the estimation of subjective probabilities from data. Past experimental data were first re-analysed based on the model. In Experiment 1, the superiority of the revised model was shown. However, when the relationship between antecedent and consequent was forced to deviate from the biconditional form, the model was not supported. In Experiment 2, it was shown that sufficient emphasis on probabilistic information can affect participants' performance. A detailed experimental method to sort participants by probabilistic strategies was introduced. Here, the model was supported by a subgroup of participants who used the probabilistic strategy. Finally, the results were discussed from the viewpoint of adaptive rationality.
Finding models to detect Alzheimer's disease by fusing structural and neuropsychological information
NASA Astrophysics Data System (ADS)
Giraldo, Diana L.; García-Arteaga, Juan D.; Velasco, Nelson; Romero, Eduardo
2015-12-01
Alzheimer's disease (AD) is a neurodegenerative disease that affects higher brain functions. Initial diagnosis of AD is based on the patient's clinical history and a battery of neuropsychological tests. The accuracy of the diagnosis is highly dependent on the examiner's skills and on the evolution of a variable clinical frame. This work presents an automatic strategy that learns probabilistic brain models for different stages of the disease, reducing the complexity, parameter adjustment and computational costs. The proposed method starts by setting a probabilistic class description using the information stored in the neuropsychological test, followed by constructing the different structural class models using membership values from the learned probabilistic functions. These models are then used as a reference frame for the classification problem: a new case is assigned to a particular class simply by projecting to the different models. The validation was performed using a leave-one-out cross-validation, two classes were used: Normal Control (NC) subjects and patients diagnosed with mild AD. In this experiment it is possible to achieve a sensibility and specificity of 80% and 79% respectively.
Site specific probabilistic seismic hazard analysis at Dubai Creek on the west coast of UAE
NASA Astrophysics Data System (ADS)
Shama, Ayman A.
2011-03-01
A probabilistic seismic hazard analysis (PSHA) was conducted to establish the hazard spectra for a site located at Dubai Creek on the west coast of the United Arab Emirates (UAE). The PSHA considered all the seismogenic sources that affect the site, including plate boundaries such as the Makran subduction zone, the Zagros fold-thrust region and the transition fault system between them; and local crustal faults in UAE. PSHA indicated that local faults dominate the hazard. The peak ground acceleration (PGA) for the 475-year return period spectrum is 0.17 g and 0.33 g for the 2,475-year return period spectrum. The hazard spectra are then employed to establish rock ground motions using the spectral matching technique.
Towards high-speed autonomous navigation of unknown environments
NASA Astrophysics Data System (ADS)
Richter, Charles; Roy, Nicholas
2015-05-01
In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.
A multilevel examination of affective job insecurity climate on safety outcomes.
Jiang, Lixin; Probst, Tahira M
2016-07-01
Previous research has established a causal link between individual perceptions of job insecurity and safety outcomes. However, whether job insecurity climate is associated with safety outcomes has not been studied. The purpose of the current study was to explore the main and cross-level interaction effects of affective job insecurity climate on safety outcomes, including behavioral safety compliance, reporting attitudes, workplace injuries, experienced safety events, unreported safety events, and accident underreporting, beyond individual affective job insecurity. With 171 employees nested in 40 workgroups, multilevel analyses revealed that the negative impacts of individual affective job insecurity on safety outcomes are exacerbated when they occur in a climate of high affective job insecurity. These results are interpreted in light of safety management efforts and suggest that efforts to create a secure climate within one's workgroup may reap safety-related benefits. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Probabilistic Learning in Junior High School: Investigation of Student Probabilistic Thinking Levels
NASA Astrophysics Data System (ADS)
Kurniasih, R.; Sujadi, I.
2017-09-01
This paper was to investigate level on students’ probabilistic thinking. Probabilistic thinking level is level of probabilistic thinking. Probabilistic thinking is thinking about probabilistic or uncertainty matter in probability material. The research’s subject was students in grade 8th Junior High School students. The main instrument is a researcher and a supporting instrument is probabilistic thinking skills test and interview guidelines. Data was analyzed using triangulation method. The results showed that the level of students probabilistic thinking before obtaining a teaching opportunity at the level of subjective and transitional. After the students’ learning level probabilistic thinking is changing. Based on the results of research there are some students who have in 8th grade level probabilistic thinking numerically highest of levels. Level of students’ probabilistic thinking can be used as a reference to make a learning material and strategy.
Application of predictive modelling techniques in industry: from food design up to risk assessment.
Membré, Jeanne-Marie; Lambert, Ronald J W
2008-11-30
In this communication, examples of applications of predictive microbiology in industrial contexts (i.e. Nestlé and Unilever) are presented which cover a range of applications in food safety from formulation and process design to consumer safety risk assessment. A tailor-made, private expert system, developed to support safe product/process design assessment is introduced as an example of how predictive models can be deployed for use by non-experts. Its use in conjunction with other tools and software available in the public domain is discussed. Specific applications of predictive microbiology techniques are presented relating to investigations of either growth or limits to growth with respect to product formulation or process conditions. An example of a probabilistic exposure assessment model for chilled food application is provided and its potential added value as a food safety management tool in an industrial context is weighed against its disadvantages. The role of predictive microbiology in the suite of tools available to food industry and some of its advantages and constraints are discussed.
NASA Astrophysics Data System (ADS)
Moya, J. L.; Skocypec, R. D.; Thomas, R. K.
1993-09-01
Over the past 40 years, Sandia National Laboratories (SNL) has been actively engaged in research to improve the ability to accurately predict the response of engineered systems to abnormal thermal and structural environments. These engineered systems contain very hazardous materials. Assessing the degree of safety/risk afforded the public and environment by these engineered systems, therefore, is of upmost importance. The ability to accurately predict the response of these systems to accidents (to abnormal environments) is required to assess the degree of safety. Before the effect of the abnormal environment on these systems can be determined, it is necessary to ascertain the nature of the environment. Ascertaining the nature of the environment, in turn, requires the ability to physically characterize and numerically simulate the abnormal environment. Historically, SNL has demonstrated the level of safety provided by these engineered systems by either of two approaches: a purely regulatory approach, or by a probabilistic risk assessment (PRA). This paper will address the latter of the two approaches.
NASA Astrophysics Data System (ADS)
Sari, Dwi Ivayana; Budayasa, I. Ketut; Juniati, Dwi
2017-08-01
Formulation of mathematical learning goals now is not only oriented on cognitive product, but also leads to cognitive process, which is probabilistic thinking. Probabilistic thinking is needed by students to make a decision. Elementary school students are required to develop probabilistic thinking as foundation to learn probability at higher level. A framework of probabilistic thinking of students had been developed by using SOLO taxonomy, which consists of prestructural probabilistic thinking, unistructural probabilistic thinking, multistructural probabilistic thinking and relational probabilistic thinking. This study aimed to analyze of probability task completion based on taxonomy of probabilistic thinking. The subjects were two students of fifth grade; boy and girl. Subjects were selected by giving test of mathematical ability and then based on high math ability. Subjects were given probability tasks consisting of sample space, probability of an event and probability comparison. The data analysis consisted of categorization, reduction, interpretation and conclusion. Credibility of data used time triangulation. The results was level of boy's probabilistic thinking in completing probability tasks indicated multistructural probabilistic thinking, while level of girl's probabilistic thinking in completing probability tasks indicated unistructural probabilistic thinking. The results indicated that level of boy's probabilistic thinking was higher than level of girl's probabilistic thinking. The results could contribute to curriculum developer in developing probability learning goals for elementary school students. Indeed, teachers could teach probability with regarding gender difference.
Cetin, K.O.; Seed, R.B.; Der Kiureghian, A.; Tokimatsu, K.; Harder, L.F.; Kayen, R.E.; Moss, R.E.S.
2004-01-01
This paper presents'new correlations for assessment of the likelihood of initiation (or triggering) of soil liquefaction. These new correlations eliminate several sources of bias intrinsic to previous, similar correlations, and provide greatly reduced overall uncertainty and variance. Key elements in the development of these new correlations are (1) accumulation of a significantly expanded database of field performance case histories; (2) use of improved knowledge and understanding of factors affecting interpretation of standard penetration test data; (3) incorporation of improved understanding of factors affecting site-specific earthquake ground motions (including directivity effects, site-specific response, etc.); (4) use of improved methods for assessment of in situ cyclic shear stress ratio; (5) screening of field data case histories on a quality/uncertainty basis; and (6) use of high-order probabilistic tools (Bayesian updating). The resulting relationships not only provide greatly reduced uncertainty, they also help to resolve a number of corollary issues that have long been difficult and controversial including: (1) magnitude-correlated duration weighting factors, (2) adjustments for fines content, and (3) corrections for overburden stress. ?? ASCE.
NASA Astrophysics Data System (ADS)
Berge-Thierry, C.; Hollender, F.; Guyonnet-Benaize, C.; Baumont, D.; Ameri, G.; Bollinger, L.
2017-09-01
Seismic analysis in the context of nuclear safety in France is currently guided by a pure deterministic approach based on Basic Safety Rule ( Règle Fondamentale de Sûreté) RFS 2001-01 for seismic hazard assessment, and on the ASN/2/01 Guide that provides design rules for nuclear civil engineering structures. After the 2011 Tohohu earthquake, nuclear operators worldwide were asked to estimate the ability of their facilities to sustain extreme seismic loads. The French licensees then defined the `hard core seismic levels', which are higher than those considered for design or re-assessment of the safety of a facility. These were initially established on a deterministic basis, and they have been finally justified through state-of-the-art probabilistic seismic hazard assessments. The appreciation and propagation of uncertainties when assessing seismic hazard in France have changed considerably over the past 15 years. This evolution provided the motivation for the present article, the objectives of which are threefold: (1) to provide a description of the current practices in France to assess seismic hazard in terms of nuclear safety; (2) to discuss and highlight the sources of uncertainties and their treatment; and (3) to use a specific case study to illustrate how extended source modeling can help to constrain the key assumptions or parameters that impact upon seismic hazard assessment. This article discusses in particular seismic source characterization, strong ground motion prediction, and maximal magnitude constraints, according to the practice of the French Atomic Energy Commission. Due to increases in strong motion databases in terms of the number and quality of the records in their metadata and the uncertainty characterization, several recently published empirical ground motion prediction models are eligible for seismic hazard assessment in France. We show that propagation of epistemic and aleatory uncertainties is feasible in a deterministic approach, as in a probabilistic way. Assessment of seismic hazard in France in the framework of the safety of nuclear facilities should consider these recent advances. In this sense, the opening of discussions with all of the stakeholders in France to update the reference documents (i.e., RFS 2001-01; ASN/2/01 Guide) appears appropriate in the short term.
Stochastic Controls on Nitrate Transport and Cycling
NASA Astrophysics Data System (ADS)
Botter, G.; Settin, T.; Alessi Celegon, E.; Marani, M.; Rinaldo, A.
2005-12-01
In this paper, the impact of nutrient inputs on basin-scale nitrates losses is investigated in a probabilistic framework by means of a continuous, geomorphologically based, Montecarlo approach, which explicitly tackles the random character of the processes controlling nitrates generation, transformation and transport in river basins. This is obtained by coupling the stochastic generation of climatic and rainfall series with simplified hydrologic and biogeochemical models operating at the hillslope scale. Special attention is devoted to the spatial and temporal variability of nitrogen sources of agricultural origin and to the effect of temporally distributed rainfall fields on the ensuing nitrates leaching. The influence of random climatic variables on bio-geochemical processes affecting the nitrogen cycle in the soil-water system (e.g. plant uptake, nitrification and denitrification, mineralization), is also considered. The approach developed has been applied to a catchment located in North-Eastern Italy and is used to provide probabilistic estimates of the NO_3 load transferred downstream, which is received and accumulated in the Venice lagoon. We found that the nitrogen load introduced by fertilizations significantly affects the pdf of the nitrates content in the soil moisture, leading to prolonged risks of increased nitrates leaching from soil. The model allowed the estimation of the impact of different practices on the probabilistic structure of the basin-scale hydrologic and chemical response. As a result, the return period of the water volumes and of the nitrates loads released into the Venice lagoon has been linked directly to the ongoing climatic, pluviometric and agricultural regimes, with relevant implications for environmental planning activities aimed at achieving sustainable management practices.
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew D.; Grabaskas, David; Brunett, Acacia J.
2016-01-01
Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended due to deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologiesmore » for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Centering on an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive reactor cavity cooling system following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. While this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability for the reactor cavity cooling system (and the reactor system in general) to the postulated transient event.« less
Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; ...
2017-01-24
We report that many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has beenmore » examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Lastly, although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.« less
The affect heuristic in occupational safety.
Savadori, Lucia; Caovilla, Jessica; Zaniboni, Sara; Fraccaroli, Franco
2015-07-08
The affect heuristic is a rule of thumb according to which, in the process of making a judgment or decision, people use affect as a cue. If a stimulus elicits positive affect then risks associated to that stimulus are viewed as low and benefits as high; conversely, if the stimulus elicits negative affect, then risks are perceived as high and benefits as low. The basic tenet of this study is that affect heuristic guides worker's judgment and decision making in a risk situation. The more the worker likes her/his organization the less she/he will perceive the risks as high. A sample of 115 employers and 65 employees working in small family agricultural businesses completed a questionnaire measuring perceived safety costs, psychological safety climate, affective commitment and safety compliance. A multi-sample structural analysis supported the thesis that safety compliance can be explained through an affect-based heuristic reasoning, but only for employers. Positive affective commitment towards their family business reduced employers' compliance with safety procedures by increasing the perceived cost of implementing them.
Nonlinear analysis of NPP safety against the aircraft attack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Králik, Juraj, E-mail: juraj.kralik@stuba.sk; Králik, Juraj, E-mail: kralik@fa.stuba.sk
The paper presents the nonlinear probabilistic analysis of the reinforced concrete buildings of nuclear power plant under the aircraft attack. The dynamic load is defined in time on base of the airplane impact simulations considering the real stiffness, masses, direction and velocity of the flight. The dynamic response is calculated in the system ANSYS using the transient nonlinear analysis solution method. The damage of the concrete wall is evaluated in accordance with the standard NDRC considering the spalling, scabbing and perforation effects. The simple and detailed calculations of the wall damage are compared.
Reliability analysis of composite structures
NASA Technical Reports Server (NTRS)
Kan, Han-Pin
1992-01-01
A probabilistic static stress analysis methodology has been developed to estimate the reliability of a composite structure. Closed form stress analysis methods are the primary analytical tools used in this methodology. These structural mechanics methods are used to identify independent variables whose variations significantly affect the performance of the structure. Once these variables are identified, scatter in their values is evaluated and statistically characterized. The scatter in applied loads and the structural parameters are then fitted to appropriate probabilistic distribution functions. Numerical integration techniques are applied to compute the structural reliability. The predicted reliability accounts for scatter due to variability in material strength, applied load, fabrication and assembly processes. The influence of structural geometry and mode of failure are also considerations in the evaluation. Example problems are given to illustrate various levels of analytical complexity.
Guilé, Jean Marc
2013-01-01
Homeostasis is not a permanent and stable state but instead results from conflicting forces. Therefore, infants have to engage in dynamic exchanges with their environment, in biological, cognitive, and affective domains. Empathy is an adaptive response to these environmental challenges, which contributes to reaching proper dynamic homeostasis and development. Empathy relies on implicit interactive processes, namely probabilistic perception and synchrony, which will be reviewed in the article. If typically-developed neonates are fully equipped to automatically and synchronously interact with their human environment, conduct disorders (CD) and autism spectrum disorders (ASD) present with impairments in empathetic communication, e.g., emotional arousal and facial emotion processing. In addition sensorimotor resonance is lacking in ASD, and emotional concern and semantic empathy are impaired in CD with Callous-Unemotional traits. PMID:24479115
Potthoff, Denise; Seitz, Rüdiger J
2015-12-01
Humans typically make probabilistic inferences about another person's affective state based on her/his bodily movements such as emotional facial expressions, emblematic gestures and whole body movements. Furthermore, humans deduce tentative predictions about the other person's intentions. Thus, the first person perspective of a subject is supplemented by the second person perspective involving theory of mind and empathy. Neuroimaging investigations have shown that the medial and lateral frontal cortex are critical nodes in the circuits underlying theory of mind, empathy, as well as intention of action. It is suggested that personal perspective taking in social interactions is paradigmatic for the capability of humans to generate probabilistic accounts of the outside world that underlie a person's control of behaviour. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josse, Florent; Lefebvre, Yannick; Todeschini, Patrick
2006-07-01
Assessing the structural integrity of a nuclear Reactor Pressure Vessel (RPV) subjected to pressurized-thermal-shock (PTS) transients is extremely important to safety. In addition to conventional deterministic calculations to confirm RPV integrity, Electricite de France (EDF) carries out probabilistic analyses. Probabilistic analyses are interesting because some key variables, albeit conventionally taken at conservative values, can be modeled more accurately through statistical variability. One variable which significantly affects RPV structural integrity assessment is cleavage fracture initiation toughness. The reference fracture toughness method currently in use at EDF is the RCCM and ASME Code lower-bound K{sub IC} based on the indexing parameter RT{submore » NDT}. However, in order to quantify the toughness scatter for probabilistic analyses, the master curve method is being analyzed at present. Furthermore, the master curve method is a direct means of evaluating fracture toughness based on K{sub JC} data. In the framework of the master curve investigation undertaken by EDF, this article deals with the following two statistical items: building a master curve from an extract of a fracture toughness dataset (from the European project 'Unified Reference Fracture Toughness Design curves for RPV Steels') and controlling statistical uncertainty for both mono-temperature and multi-temperature tests. Concerning the first point, master curve temperature dependence is empirical in nature. To determine the 'original' master curve, Wallin postulated that a unified description of fracture toughness temperature dependence for ferritic steels is possible, and used a large number of data corresponding to nuclear-grade pressure vessel steels and welds. Our working hypothesis is that some ferritic steels may behave in slightly different ways. Therefore we focused exclusively on the basic french reactor vessel metal of types A508 Class 3 and A 533 grade B Class 1, taking the sampling level and direction into account as well as the test specimen type. As for the second point, the emphasis is placed on the uncertainties in applying the master curve approach. For a toughness dataset based on different specimens of a single product, application of the master curve methodology requires the statistical estimation of one parameter: the reference temperature T{sub 0}. Because of the limited number of specimens, estimation of this temperature is uncertain. The ASTM standard provides a rough evaluation of this statistical uncertainty through an approximate confidence interval. In this paper, a thorough study is carried out to build more meaningful confidence intervals (for both mono-temperature and multi-temperature tests). These results ensure better control over uncertainty, and allow rigorous analysis of the impact of its influencing factors: the number of specimens and the temperatures at which they have been tested. (authors)« less
NASA Astrophysics Data System (ADS)
Naseri Kouzehgarani, Asal
2009-12-01
Most models of aircraft trajectories are non-linear and stochastic in nature; and their internal parameters are often poorly defined. The ability to model, simulate and analyze realistic air traffic management conflict detection scenarios in a scalable, composable, multi-aircraft fashion is an extremely difficult endeavor. Accurate techniques for aircraft mode detection are critical in order to enable the precise projection of aircraft conflicts, and for the enactment of altitude separation resolution strategies. Conflict detection is an inherently probabilistic endeavor; our ability to detect conflicts in a timely and accurate manner over a fixed time horizon is traded off against the increased human workload created by false alarms---that is, situations that would not develop into an actual conflict, or would resolve naturally in the appropriate time horizon-thereby introducing a measure of probabilistic uncertainty in any decision aid fashioned to assist air traffic controllers. The interaction of the continuous dynamics of the aircraft, used for prediction purposes, with the discrete conflict detection logic gives rise to the hybrid nature of the overall system. The introduction of the probabilistic element, common to decision alerting and aiding devices, places the conflict detection and resolution problem in the domain of probabilistic hybrid phenomena. A hidden Markov model (HMM) has two stochastic components: a finite-state Markov chain and a finite set of output probability distributions. In other words an unobservable stochastic process (hidden) that can only be observed through another set of stochastic processes that generate the sequence of observations. The problem of self separation in distributed air traffic management reduces to the ability of aircraft to communicate state information to neighboring aircraft, as well as model the evolution of aircraft trajectories between communications, in the presence of probabilistic uncertain dynamics as well as partially observable and uncertain data. We introduce the Hybrid Hidden Markov Modeling (HHMM) formalism to enable the prediction of the stochastic aircraft states (and thus, potential conflicts), by combining elements of the probabilistic timed input output automaton and the partially observable Markov decision process frameworks, along with the novel addition of a Markovian scheduler to remove the non-deterministic elements arising from the enabling of several actions simultaneously. Comparisons of aircraft in level, climbing/descending and turning flight are performed, and unknown flight track data is evaluated probabilistically against the tuned model in order to assess the effectiveness of the model in detecting the switch between multiple flight modes for a given aircraft. This also allows for the generation of probabilistic distribution over the execution traces of the hybrid hidden Markov model, which then enables the prediction of the states of aircraft based on partially observable and uncertain data. Based on the composition properties of the HHMM, we study a decentralized air traffic system where aircraft are moving along streams and can perform cruise, accelerate, climb and turn maneuvers. We develop a common decentralized policy for conflict avoidance with spatially distributed agents (aircraft in the sky) and assure its safety properties via correctness proofs.
NASA Astrophysics Data System (ADS)
Pimentel, F. P.; Marques Da Cruz, L.; Cabral, M. M.; Miranda, T. C.; Garção, H. F.; Oliveira, A. L. S. C.; Carvalho, G. V.; Soares, F.; São Tiago, P. M.; Barmak, R. B.; Rinaldi, F.; dos Santos, F. A.; Da Rocha Fragoso, M.; Pellegrini, J. C.
2016-02-01
Marine debris is a widespread pollution issue that affects almost all water bodies and is remarkably relevant in estuaries and bays. Rio de Janeiro city will host the 2016 Olympic Games and Guanabara Bay will be the venue for the sailing competitions. Historically serving as deposit for all types of waste, this water body suffers with major environmental problems, one of them being the massive presence of floating garbage. Therefore, it is of great importance to count on effective contingency actions to address this issue. In this sense, an operational ocean forecasting system was designed and it is presently being used by the Rio de Janeiro State Government to manage and control the cleaning actions on the bay. The forecasting system makes use of high resolution hydrodynamic and atmospheric models and a lagragian particle transport model, in order to provide probabilistic forecasts maps of the areas where the debris are most probably accumulating. All the results are displayed on an interactive GIS web platform along with the tracks of the boats that make the garbage collection, so the decision makers can easily command the actions, enhancing its efficiency. The integration of in situ data and advanced techniques such as Lyapunov exponent analysis are also being developed in the system, so to increase its forecast reliability. Additionally, the system also gathers and compiles on its database all the information on the debris collection, including quantity, type, locations, accumulation areas and their correlation with the environmental factors that drive the runoff and surface drift. Combining probabilistic, deterministic and statistical approaches, the forecasting system of Guanabara Bay has been proving to be a powerful tool for the environmental management and will be of great importance on helping securing the safety and fairness of the Olympic sailing competitions. The system design, its components and main results are presented in this paper.
Stress attenuates the flexible updating of aversive value
Raio, Candace M.; Hartley, Catherine A.; Orederu, Temidayo A.; Li, Jian; Phelps, Elizabeth A.
2017-01-01
In a dynamic environment, sources of threat or safety can unexpectedly change, requiring the flexible updating of stimulus−outcome associations that promote adaptive behavior. However, aversive contexts in which we are required to update predictions of threat are often marked by stress. Acute stress is thought to reduce behavioral flexibility, yet its influence on the modulation of aversive value has not been well characterized. Given that stress exposure is a prominent risk factor for anxiety and trauma-related disorders marked by persistent, inflexible responses to threat, here we examined how acute stress affects the flexible updating of threat responses. Participants completed an aversive learning task, in which one stimulus was probabilistically associated with an electric shock, while the other stimulus signaled safety. A day later, participants underwent an acute stress or control manipulation before completing a reversal learning task during which the original stimulus−outcome contingencies switched. Skin conductance and neuroendocrine responses provided indices of sympathetic arousal and stress responses, respectively. Despite equivalent initial learning, stressed participants showed marked impairments in reversal learning relative to controls. Additionally, reversal learning deficits across participants were related to heightened levels of alpha-amylase, a marker of noradrenergic activity. Finally, fitting arousal data to a computational reinforcement learning model revealed that stress-induced reversal learning deficits emerged from stress-specific changes in the weight assigned to prediction error signals, disrupting the adaptive adjustment of learning rates. Our findings provide insight into how stress renders individuals less sensitive to changes in aversive reinforcement and have implications for understanding clinical conditions marked by stress-related psychopathology. PMID:28973957
Engineering in an age of anxiety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinberg, A.M.
Public fears of nuclear or chemical accidents should challenge engineers to build systems that are inherently safe. Much of our national anxiety focuses on modern technology. This anxiety places constraints on our technologies. Probabilistic risk assessment (PBA) has become an accepted tool for determining the safety of a device. Although PBA is widely accepted by engineers, it will not allay the public's anxieties. To concede that a technology has the potential for causing a major disaster, even if the probability of occurrence is minute, is unacceptable in the age of anxiety. The search for inherent safety concepts, that - informedmore » skeptics - and the public will accept, continues. The greenhouse effect may be decisive in spurring the demand for inherently safe nuclear technology. Ultimately what the public requires by way of assurance may well depend on the alternatives available. 11 refs.« less
Landslide hazard analysis for pipelines: The case of the Simonette river crossing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grivas, D.A.; Schultz, B.C.; O`Neil, G.
1995-12-31
The overall objective of this study is to develop a probabilistic methodology to analyze landslide hazards and their effects on the safety of buried pipelines. The methodology incorporates a range of models that can accommodate differences in the ground movement modes and the amount and type of information available at various site locations. Two movement modes are considered, namely (a) instantaneous (catastrophic) slides, and (b) gradual ground movement which may result in cumulative displacements over the pipeline design life (30--40 years) that are in excess of allowable values. Probabilistic analysis is applied in each case to address the uncertainties associatedmore » with important factors that control slope stability. Availability of information ranges from relatively well studied, instrumented installations to cases where data is limited to what can be derived from topographic and geologic maps. The methodology distinguishes between procedures applied where there is little information and those that can be used when relatively extensive data is available. important aspects of the methodology are illustrated in a case study involving a pipeline located in Northern Alberta, Canada, in the Simonette river valley.« less
The ARGO Project: assessing NA-TECH risks on off-shore oil platforms
NASA Astrophysics Data System (ADS)
Capuano, Paolo; Basco, Anna; Di Ruocco, Angela; Esposito, Simona; Fusco, Giannetta; Garcia-Aristizabal, Alexander; Mercogliano, Paola; Salzano, Ernesto; Solaro, Giuseppe; Teofilo, Gianvito; Scandone, Paolo; Gasparini, Paolo
2017-04-01
ARGO (Analysis of natural and anthropogenic risks on off-shore oil platforms) is a 2 years project, funded by the DGS-UNMIG (Directorate General for Safety of Mining and Energy Activities - National Mining Office for Hydrocarbons and Georesources) of Italian Ministry of Economic Development. The project, coordinated by AMRA (Center for the Analysis and Monitoring of Environmental Risk), aims at providing technical support for the analysis of natural and anthropogenic risks on offshore oil platforms. In order to achieve this challenging objective, ARGO brings together climate experts, risk management experts, seismologists, geologists, chemical engineers, earth and coastal observation experts. ARGO has developed methodologies for the probabilistic analysis of industrial accidents triggered by natural events (NA-TECH) on offshore oil platforms in the Italian seas, including extreme events related to climate changes. Furthermore the environmental effect of offshore activities has been investigated, including: changes on seismicity and on the evolution of coastal areas close to offshore platforms. Then a probabilistic multi-risk framework has been developed for the analysis of NA-TECH events on offshore installations for hydrocarbon extraction.
Jiang, Quansheng; Shen, Yehu; Li, Hua; Xu, Fengyu
2018-01-24
Feature recognition and fault diagnosis plays an important role in equipment safety and stable operation of rotating machinery. In order to cope with the complexity problem of the vibration signal of rotating machinery, a feature fusion model based on information entropy and probabilistic neural network is proposed in this paper. The new method first uses information entropy theory to extract three kinds of characteristics entropy in vibration signals, namely, singular spectrum entropy, power spectrum entropy, and approximate entropy. Then the feature fusion model is constructed to classify and diagnose the fault signals. The proposed approach can combine comprehensive information from different aspects and is more sensitive to the fault features. The experimental results on simulated fault signals verified better performances of our proposed approach. In real two-span rotor data, the fault detection accuracy of the new method is more than 10% higher compared with the methods using three kinds of information entropy separately. The new approach is proved to be an effective fault recognition method for rotating machinery.
The Spatial Assessment of the Current Seismic Hazard State for Hard Rock Underground Mines
NASA Astrophysics Data System (ADS)
Wesseloo, Johan
2018-06-01
Mining-induced seismic hazard assessment is an important component in the management of safety and financial risk in mines. As the seismic hazard is a response to the mining activity, it is non-stationary and variable both in space and time. This paper presents an approach for implementing a probabilistic seismic hazard assessment to assess the current hazard state of a mine. Each of the components of the probabilistic seismic hazard assessment is considered within the context of hard rock underground mines. The focus of this paper is the assessment of the in-mine hazard distribution and does not consider the hazard to nearby public or structures. A rating system and methodologies to present hazard maps, for the purpose of communicating to different stakeholders in the mine, i.e. mine managers, technical personnel and the work force, are developed. The approach allows one to update the assessment with relative ease and within short time periods as new data become available, enabling the monitoring of the spatial and temporal change in the seismic hazard.
NASA Astrophysics Data System (ADS)
Gözükırmızı, Coşar; Kırkın, Melike Ebru
2017-01-01
Probabilistic evolution theory (PREVTH) provides a powerful framework for the solution of initial value problems of explicit ordinary differential equation sets with second degree multinomial right hand side functions. The use of the recursion between squarified telescope matrices provides the opportunity to obtain accurate results without much effort. Convergence may be considered as one of the drawbacks of PREVTH. It is related to many factors: the initial values and the coefficients in the right hand side functions are the most apparent ones. If a space extension is utilized before PREVTH, the convergence of PREVTH may also be affected by how the space extension is performed. There are works about implementations related to probabilistic evolution and how to improve the convergence by methods like analytic continuation. These works were written before squarification was introduced. Since recursion between squarified telescope matrices has given us the opportunity to obtain results corresponding to relatively higher truncation levels, it is important to obtain and analyze results related to certain problems in different areas of engineering. This manuscript may be considered to be in a series of papers and conference proceedings which serves for this purpose.
Almahdi, Basil; Sultan, Pervez; Sohanpal, Imrat; Brandner, Brigitta; Collier, Tracey; Shergill, Sukhi S; Cregg, Roman; Averbeck, Bruno B
2012-01-01
Evidence suggests that some aspects of schizophrenia can be induced in healthy volunteers through acute administration of the non-competitive NMDA-receptor antagonist, ketamine. In probabilistic inference tasks, patients with schizophrenia have been shown to ‘jump to conclusions’ (JTC) when asked to make a decision. We aimed to test whether healthy participants receiving ketamine would adopt a JTC response pattern resembling that of patients. The paradigmatic task used to investigate JTC has been the ‘urn’ task, where participants are shown a sequence of beads drawn from one of two ‘urns’, each containing coloured beads in different proportions. Participants make a decision when they think they know the urn from which beads are being drawn. We compared performance on the urn task between controls receiving acute ketamine or placebo with that of patients with schizophrenia and another group of controls matched to the patient group. Patients were shown to exhibit a JTC response pattern relative to their matched controls, whereas JTC was not evident in controls receiving ketamine relative to placebo. Ketamine does not appear to promote JTC in healthy controls, suggesting that ketamine does not affect probabilistic inferences. PMID:22389244
Dillon, Neal P.; Siebold, Michael A.; Mitchell, Jason E.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Webster, Robert J.
2017-01-01
Safe and effective planning for robotic surgery that involves cutting or ablation of tissue must consider all potential sources of error when determining how close the tool may come to vital anatomy. A pre-operative plan that does not adequately consider potential deviations from ideal system behavior may lead to patient injury. Conversely, a plan that is overly conservative may result in ineffective or incomplete performance of the task. Thus, enforcing simple, uniform-thickness safety margins around vital anatomy is insufficient in the presence of spatially varying, anisotropic error. Prior work has used registration error to determine a variable-thickness safety margin around vital structures that must be approached during mastoidectomy but ultimately preserved. In this paper, these methods are extended to incorporate image distortion and physical robot errors, including kinematic errors and deflections of the robot. These additional sources of error are discussed and stochastic models for a bone-attached robot for otologic surgery are developed. An algorithm for generating appropriate safety margins based on a desired probability of preserving the underlying anatomical structure is presented. Simulations are performed on a CT scan of a cadaver head and safety margins are calculated around several critical structures for planning of a robotic mastoidectomy. PMID:29200595
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Chanyoung; Kim, Nam H.
Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less
NASA Astrophysics Data System (ADS)
Dillon, Neal P.; Siebold, Michael A.; Mitchell, Jason E.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Webster, Robert J.
2016-03-01
Safe and effective planning for robotic surgery that involves cutting or ablation of tissue must consider all potential sources of error when determining how close the tool may come to vital anatomy. A pre-operative plan that does not adequately consider potential deviations from ideal system behavior may lead to patient injury. Conversely, a plan that is overly conservative may result in ineffective or incomplete performance of the task. Thus, enforcing simple, uniform-thickness safety margins around vital anatomy is insufficient in the presence of spatially varying, anisotropic error. Prior work has used registration error to determine a variable-thickness safety margin around vital structures that must be approached during mastoidectomy but ultimately preserved. In this paper, these methods are extended to incorporate image distortion and physical robot errors, including kinematic errors and deflections of the robot. These additional sources of error are discussed and stochastic models for a bone-attached robot for otologic surgery are developed. An algorithm for generating appropriate safety margins based on a desired probability of preserving the underlying anatomical structure is presented. Simulations are performed on a CT scan of a cadaver head and safety margins are calculated around several critical structures for planning of a robotic mastoidectomy.
Nuclear power and probabilistic safety assessment (PSA): past through future applications
NASA Astrophysics Data System (ADS)
Stamatelatos, M. G.; Moieni, P.; Everline, C. J.
1995-03-01
Nuclear power reactor safety in the United States is about to enter a new era -- an era of risk- based management and risk-based regulation. First, there was the age of `prescribed safety assessment,' during which a series of design-basis accidents in eight categories of severity, or classes, were postulated and analyzed. Toward the end of that era, it was recognized that `Class 9,' or `beyond design basis,' accidents would need special attention because of the potentially severe health and financial consequences of these accidents. The accident at Three Mile Island showed that sequences of low-consequence, high-frequency events and human errors can be much more risk dominant than the Class 9 accidents. A different form of safety assessment, PSA, emerged and began to gain ground against the deterministic safety establishment. Eventually, this led to the current regulatory requirements for individual plant examinations (IPEs). The IPEs can serve as a basis for risk-based regulation and management, a concept that may ultimately transform the U.S. regulatory process from its traditional deterministic foundations to a process predicated upon PSA. Beyond the possibility of a regulatory environment predicated upon PSA lies the possibility of using PSA as the foundation for managing daily nuclear power plant operations.
Safety envelope for load tolerance of structural element design based on multi-stage testing
Park, Chanyoung; Kim, Nam H.
2016-09-06
Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less
A Figure of Merit: Quantifying the Probability of a Nuclear Reactor Accident.
Wellock, Thomas R
In recent decades, probabilistic risk assessment (PRA) has become an essential tool in risk analysis and management in many industries and government agencies. The origins of PRA date to the 1975 publication of the U.S. Nuclear Regulatory Commission's (NRC) Reactor Safety Study led by MIT professor Norman Rasmussen. The "Rasmussen Report" inspired considerable political and scholarly disputes over the motives behind it and the value of its methods and numerical estimates of risk. The Report's controversies have overshadowed the deeper technical origins of risk assessment. Nuclear experts had long sought to express risk in a "figure of merit" to verify the safety of weapons and, later, civilian reactors. By the 1970s, technical advances in PRA gave the methodology the potential to serve political ends, too. The Report, it was hoped, would prove nuclear power's safety to a growing chorus of critics. Subsequent attacks on the Report's methods and numerical estimates damaged the NRC's credibility. PRA's fortunes revived when the 1979 Three Mile Island accident demonstrated PRA's potential for improving the safety of nuclear power and other technical systems. Nevertheless, the Report's controversies endure in mistrust of PRA and its experts.
Quantifying Safety Margin Using the Risk-Informed Safety Margin Characterization (RISMC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, David; Bucknor, Matthew; Brunett, Acacia
2015-04-26
The Risk-Informed Safety Margin Characterization (RISMC), developed by Idaho National Laboratory as part of the Light-Water Reactor Sustainability Project, utilizes a probabilistic safety margin comparison between a load and capacity distribution, rather than a deterministic comparison between two values, as is usually done in best-estimate plus uncertainty analyses. The goal is to determine the failure probability, or in other words, the probability of the system load equaling or exceeding the system capacity. While this method has been used in pilot studies, there has been little work conducted investigating the statistical significance of the resulting failure probability. In particular, it ismore » difficult to determine how many simulations are necessary to properly characterize the failure probability. This work uses classical (frequentist) statistics and confidence intervals to examine the impact in statistical accuracy when the number of simulations is varied. Two methods are proposed to establish confidence intervals related to the failure probability established using a RISMC analysis. The confidence interval provides information about the statistical accuracy of the method utilized to explore the uncertainty space, and offers a quantitative method to gauge the increase in statistical accuracy due to performing additional simulations.« less
Sensemaking of patient safety risks and hazards.
Battles, James B; Dixon, Nancy M; Borotkanics, Robert J; Rabin-Fastmen, Barbara; Kaplan, Harold S
2006-08-01
In order for organizations to become learning organizations, they must make sense of their environment and learn from safety events. Sensemaking, as described by Weick (1995), literally means making sense of events. The ultimate goal of sensemaking is to build the understanding that can inform and direct actions to eliminate risk and hazards that are a threat to patient safety. True sensemaking in patient safety must use both retrospective and prospective approach to learning. Sensemaking is as an essential part of the design process leading to risk informed design. Sensemaking serves as a conceptual framework to bring together well established approaches to assessment of risk and hazards: (1) at the single event level using root cause analysis (RCA), (2) at the processes level using failure modes effects analysis (FMEA) and (3) at the system level using probabilistic risk assessment (PRA). The results of these separate or combined approaches are most effective when end users in conversation-based meetings add their expertise and knowledge to the data produced by the RCA, FMEA, and/or PRA in order to make sense of the risks and hazards. Without ownership engendered by such conversations, the possibility of effective action to eliminate or minimize them is greatly reduced.
Sensemaking of Patient Safety Risks and Hazards
Battles, James B; Dixon, Nancy M; Borotkanics, Robert J; Rabin-Fastmen, Barbara; Kaplan, Harold S
2006-01-01
In order for organizations to become learning organizations, they must make sense of their environment and learn from safety events. Sensemaking, as described by Weick (1995), literally means making sense of events. The ultimate goal of sensemaking is to build the understanding that can inform and direct actions to eliminate risk and hazards that are a threat to patient safety. True sensemaking in patient safety must use both retrospective and prospective approach to learning. Sensemaking is as an essential part of the design process leading to risk informed design. Sensemaking serves as a conceptual framework to bring together well established approaches to assessment of risk and hazards: (1) at the single event level using root cause analysis (RCA), (2) at the processes level using failure modes effects analysis (FMEA) and (3) at the system level using probabilistic risk assessment (PRA). The results of these separate or combined approaches are most effective when end users in conversation-based meetings add their expertise and knowledge to the data produced by the RCA, FMEA, and/or PRA in order to make sense of the risks and hazards. Without ownership engendered by such conversations, the possibility of effective action to eliminate or minimize them is greatly reduced. PMID:16898979
Probabilistic Design Methodology and its Application to the Design of an Umbilical Retract Mechanism
NASA Technical Reports Server (NTRS)
Onyebueke, Landon; Ameye, Olusesan
2002-01-01
A lot has been learned from past experience with structural and machine element failures. The understanding of failure modes and the application of an appropriate design analysis method can lead to improved structural and machine element safety as well as serviceability. To apply Probabilistic Design Methodology (PDM), all uncertainties are modeled as random variables with selected distribution types, means, and standard deviations. It is quite difficult to achieve a robust design without considering the randomness of the design parameters which is the case in the use of the Deterministic Design Approach. The US Navy has a fleet of submarine-launched ballistic missiles. An umbilical plug joins the missile to the submarine in order to provide electrical and cooling water connections. As the missile leaves the submarine, an umbilical retract mechanism retracts the umbilical plug clear of the advancing missile after disengagement during launch and retrains the plug in the retracted position. The design of the current retract mechanism in use was based on the deterministic approach which puts emphasis on factor of safety. A new umbilical retract mechanism that is simpler in design, lighter in weight, more reliable, easier to adjust, and more cost effective has become desirable since this will increase the performance and efficiency of the system. This paper reports on a recent project performed at Tennessee State University for the US Navy that involved the application of PDM to the design of an umbilical retract mechanism. This paper demonstrates how the use of PDM lead to the minimization of weight and cost, and the maximization of reliability and performance.
Cost-effectiveness analysis of risk-reduction measures to reach water safety targets.
Lindhe, Andreas; Rosén, Lars; Norberg, Tommy; Bergstedt, Olof; Pettersson, Thomas J R
2011-01-01
Identifying the most suitable risk-reduction measures in drinking water systems requires a thorough analysis of possible alternatives. In addition to the effects on the risk level, also the economic aspects of the risk-reduction alternatives are commonly considered important. Drinking water supplies are complex systems and to avoid sub-optimisation of risk-reduction measures, the entire system from source to tap needs to be considered. There is a lack of methods for quantification of water supply risk reduction in an economic context for entire drinking water systems. The aim of this paper is to present a novel approach for risk assessment in combination with economic analysis to evaluate risk-reduction measures based on a source-to-tap approach. The approach combines a probabilistic and dynamic fault tree method with cost-effectiveness analysis (CEA). The developed approach comprises the following main parts: (1) quantification of risk reduction of alternatives using a probabilistic fault tree model of the entire system; (2) combination of the modelling results with CEA; and (3) evaluation of the alternatives with respect to the risk reduction, the probability of not reaching water safety targets and the cost-effectiveness. The fault tree method and CEA enable comparison of risk-reduction measures in the same quantitative unit and consider costs and uncertainties. The approach provides a structured and thorough analysis of risk-reduction measures that facilitates transparency and long-term planning of drinking water systems in order to avoid sub-optimisation of available resources for risk reduction. Copyright © 2010 Elsevier Ltd. All rights reserved.
Plioutsias, Anastasios; Karanikas, Nektarios; Chatzimihailidou, Maria Mikela
2018-03-01
Currently, published risk analyses for drones refer mainly to commercial systems, use data from civil aviation, and are based on probabilistic approaches without suggesting an inclusive list of hazards and respective requirements. Within this context, this article presents: (1) a set of safety requirements generated from the application of the systems theoretic process analysis (STPA) technique on a generic small drone system; (2) a gap analysis between the set of safety requirements and the ones met by 19 popular drone models; (3) the extent of the differences between those models, their manufacturers, and the countries of origin; and (4) the association of drone prices with the extent they meet the requirements derived by STPA. The application of STPA resulted in 70 safety requirements distributed across the authority, manufacturer, end user, or drone automation levels. A gap analysis showed high dissimilarities regarding the extent to which the 19 drones meet the same safety requirements. Statistical results suggested a positive correlation between drone prices and the extent that the 19 drones studied herein met the safety requirements generated by STPA, and significant differences were identified among the manufacturers. This work complements the existing risk assessment frameworks for small drones, and contributes to the establishment of a commonly endorsed international risk analysis framework. Such a framework will support the development of a holistic and methodologically justified standardization scheme for small drone flights. © 2017 Society for Risk Analysis.
Reliability and Probabilistic Risk Assessment - How They Play Together
NASA Technical Reports Server (NTRS)
Safie, Fayssal; Stutts, Richard; Huang, Zhaofeng
2015-01-01
Since the Space Shuttle Challenger accident in 1986, NASA has extensively used probabilistic analysis methods to assess, understand, and communicate the risk of space launch vehicles. Probabilistic Risk Assessment (PRA), used in the nuclear industry, is one of the probabilistic analysis methods NASA utilizes to assess Loss of Mission (LOM) and Loss of Crew (LOC) risk for launch vehicles. PRA is a system scenario based risk assessment that uses a combination of fault trees, event trees, event sequence diagrams, and probability distributions to analyze the risk of a system, a process, or an activity. It is a process designed to answer three basic questions: 1) what can go wrong that would lead to loss or degraded performance (i.e., scenarios involving undesired consequences of interest), 2) how likely is it (probabilities), and 3) what is the severity of the degradation (consequences). Since the Challenger accident, PRA has been used in supporting decisions regarding safety upgrades for launch vehicles. Another area that was given a lot of emphasis at NASA after the Challenger accident is reliability engineering. Reliability engineering has been a critical design function at NASA since the early Apollo days. However, after the Challenger accident, quantitative reliability analysis and reliability predictions were given more scrutiny because of their importance in understanding failure mechanism and quantifying the probability of failure, which are key elements in resolving technical issues, performing design trades, and implementing design improvements. Although PRA and reliability are both probabilistic in nature and, in some cases, use the same tools, they are two different activities. Specifically, reliability engineering is a broad design discipline that deals with loss of function and helps understand failure mechanism and improve component and system design. PRA is a system scenario based risk assessment process intended to assess the risk scenarios that could lead to a major/top undesirable system event, and to identify those scenarios that are high-risk drivers. PRA output is critical to support risk informed decisions concerning system design. This paper describes the PRA process and the reliability engineering discipline in detail. It discusses their differences and similarities and how they work together as complementary analyses to support the design and risk assessment processes. Lessons learned, applications, and case studies in both areas are also discussed in the paper to demonstrate and explain these differences and similarities.
Seismic hazard and risk assessment for large Romanian dams situated in the Moldavian Platform
NASA Astrophysics Data System (ADS)
Moldovan, Iren-Adelina; Popescu, Emilia; Otilia Placinta, Anica; Petruta Constantin, Angela; Toma Danila, Dragos; Borleanu, Felix; Emilian Toader, Victorin; Moldoveanu, Traian
2016-04-01
Besides periodical technical inspections, the monitoring and the surveillance of dams' related structures and infrastructures, there are some more seismic specific requirements towards dams' safety. The most important one is the seismic risk assessment that can be accomplished by rating the dams into seismic risk classes using the theory of Bureau and Ballentine (2002), and Bureau (2003), taking into account the maximum expected peak ground motions at the dams site - values obtained using probabilistic hazard assessment approaches (Moldovan et al., 2008), the structures vulnerability and the downstream risk characteristics (human, economical, historic and cultural heritage, etc) in the areas that might be flooded in the case of a dam failure. Probabilistic seismic hazard (PSH), vulnerability and risk studies for dams situated in the Moldavian Platform, starting from Izvorul Muntelui Dam, down on Bistrita and following on Siret River and theirs affluent will be realized. The most vulnerable dams will be studied in detail and flooding maps will be drawn to find the most exposed downstream localities both for risk assessment studies and warnings. GIS maps that clearly indicate areas that are potentially flooded are enough for these studies, thus giving information on the number of inhabitants and goods that may be destroyed. Geospatial servers included topography is sufficient to achieve them, all other further studies are not necessary for downstream risk assessment. The results will consist of local and regional seismic information, dams specific characteristics and locations, seismic hazard maps and risk classes, for all dams sites (for more than 30 dams), inundation maps (for the most vulnerable dams from the region) and possible affected localities. The studies realized in this paper have as final goal to provide the local emergency services with warnings of a potential dam failure and ensuing flood as a result of an large earthquake occurrence, allowing further public training for evacuation. The work is supported from PNII/PCCA 2013 Project DARING 69/2014, financed by UEFISCDI, Romania. Bureau GJ (2003) "Dams and appurtenant facilities" Earthquake Engineering Handbook, CRS Press, WF Chen, and C Scawthorn (eds.), Boca Raton, pp. 26.1-26.47. Bureau GJ and Ballentine GD (2002) "A comprehensive seismic vulnerability and loss assessment of the State of Carolina using HAZUS. Part IV: Dam inventory and vulnerability assessment methodology", 7th National Conference on Earthquake Engineering, July 21-25, Boston, Earthquake Engineering Research Institute, Oakland, CA. Moldovan IA, Popescu E, Constantin A (2008), "Probabilistic seismic hazard assessment in Romania: application for crustal seismic active zones", Romanian Journal of Physics, Vol.53, Nos. 3-4
Proceedings, Seminar on Probabilistic Methods in Geotechnical Engineering
NASA Astrophysics Data System (ADS)
Hynes-Griffin, M. E.; Buege, L. L.
1983-09-01
Contents: Applications of Probabilistic Methods in Geotechnical Engineering; Probabilistic Seismic and Geotechnical Evaluation at a Dam Site; Probabilistic Slope Stability Methodology; Probability of Liquefaction in a 3-D Soil Deposit; Probabilistic Design of Flood Levees; Probabilistic and Statistical Methods for Determining Rock Mass Deformability Beneath Foundations: An Overview; Simple Statistical Methodology for Evaluating Rock Mechanics Exploration Data; New Developments in Statistical Techniques for Analyzing Rock Slope Stability.
Probabilistic, meso-scale flood loss modelling
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno
2016-04-01
Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.
Probabilistic forecasts based on radar rainfall uncertainty
NASA Astrophysics Data System (ADS)
Liguori, S.; Rico-Ramirez, M. A.
2012-04-01
The potential advantages resulting from integrating weather radar rainfall estimates in hydro-meteorological forecasting systems is limited by the inherent uncertainty affecting radar rainfall measurements, which is due to various sources of error [1-3]. The improvement of quality control and correction techniques is recognized to play a role for the future improvement of radar-based flow predictions. However, the knowledge of the uncertainty affecting radar rainfall data can also be effectively used to build a hydro-meteorological forecasting system in a probabilistic framework. This work discusses the results of the implementation of a novel probabilistic forecasting system developed to improve ensemble predictions over a small urban area located in the North of England. An ensemble of radar rainfall fields can be determined as the sum of a deterministic component and a perturbation field, the latter being informed by the knowledge of the spatial-temporal characteristics of the radar error assessed with reference to rain-gauges measurements. This approach is similar to the REAL system [4] developed for use in the Southern-Alps. The radar uncertainty estimate can then be propagated with a nowcasting model, used to extrapolate an ensemble of radar rainfall forecasts, which can ultimately drive hydrological ensemble predictions. A radar ensemble generator has been calibrated using radar rainfall data made available from the UK Met Office after applying post-processing and corrections algorithms [5-6]. One hour rainfall accumulations from 235 rain gauges recorded for the year 2007 have provided the reference to determine the radar error. Statistics describing the spatial characteristics of the error (i.e. mean and covariance) have been computed off-line at gauges location, along with the parameters describing the error temporal correlation. A system has then been set up to impose the space-time error properties to stochastic perturbations, generated in real-time at gauges location, and then interpolated back onto the radar domain, in order to obtain probabilistic radar rainfall fields in real time. The deterministic nowcasting model integrated in the STEPS system [7-8] has been used for the purpose of propagating the uncertainty and assessing the benefit of implementing the radar ensemble generator for probabilistic rainfall forecasts and ultimately sewer flow predictions. For this purpose, events representative of different types of precipitation (i.e. stratiform/convective) and significant at the urban catchment scale (i.e. in terms of sewer overflow within the urban drainage system) have been selected. As high spatial/temporal resolution is required to the forecasts for their use in urban areas [9-11], the probabilistic nowcasts have been set up to be produced at 1 km resolution and 5 min intervals. The forecasting chain is completed by a hydrodynamic model of the urban drainage network. The aim of this work is to discuss the implementation of this probabilistic system, which takes into account the radar error to characterize the forecast uncertainty, with consequent potential benefits in the management of urban systems. It will also allow a comparison with previous findings related to the analysis of different approaches to uncertainty estimation and quantification in terms of rainfall [12] and flows at the urban scale [13]. Acknowledgements The authors would like to acknowledge the BADC, the UK Met Office and Dr. Alan Seed from the Australian Bureau of Meteorology for providing the radar data and the nowcasting model. The authors acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) via grant EP/I012222/1.
Probabilistic assessment of landslide tsunami hazard for the northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Pampell-Manis, A.; Horrillo, J.; Shigihara, Y.; Parambath, L.
2016-01-01
The devastating consequences of recent tsunamis affecting Indonesia and Japan have prompted a scientific response to better assess unexpected tsunami hazards. Although much uncertainty exists regarding the recurrence of large-scale tsunami events in the Gulf of Mexico (GoM), geological evidence indicates that a tsunami is possible and would most likely come from a submarine landslide triggered by an earthquake. This study customizes for the GoM a first-order probabilistic landslide tsunami hazard assessment. Monte Carlo Simulation (MCS) is employed to determine landslide configurations based on distributions obtained from observational submarine mass failure (SMF) data. Our MCS approach incorporates a Cholesky decomposition method for correlated landslide size parameters to capture correlations seen in the data as well as uncertainty inherent in these events. Slope stability analyses are performed using landslide and sediment properties and regional seismic loading to determine landslide configurations which fail and produce a tsunami. The probability of each tsunamigenic failure is calculated based on the joint probability of slope failure and probability of the triggering earthquake. We are thus able to estimate sizes and return periods for probabilistic maximum credible landslide scenarios. We find that the Cholesky decomposition approach generates landslide parameter distributions that retain the trends seen in observational data, improving the statistical validity and relevancy of the MCS technique in the context of landslide tsunami hazard assessment. Estimated return periods suggest that probabilistic maximum credible SMF events in the north and northwest GoM have a recurrence of 5000-8000 years, in agreement with age dates of observed deposits.
NASA Astrophysics Data System (ADS)
Ishizaki, N. N.; Dairaku, K.; Ueno, G.
2016-12-01
We have developed a statistical downscaling method for estimating probabilistic climate projection using CMIP5 multi general circulation models (GCMs). A regression model was established so that the combination of weights of GCMs reflects the characteristics of the variation of observations at each grid point. Cross validations were conducted to select GCMs and to evaluate the regression model to avoid multicollinearity. By using spatially high resolution observation system, we conducted statistically downscaled probabilistic climate projections with 20-km horizontal grid spacing. Root mean squared errors for monthly mean air surface temperature and precipitation estimated by the regression method were the smallest compared with the results derived from a simple ensemble mean of GCMs and a cumulative distribution function based bias correction method. Projected changes in the mean temperature and precipitation were basically similar to those of the simple ensemble mean of GCMs. Mean precipitation was generally projected to increase associated with increased temperature and consequent increased moisture content in the air. Weakening of the winter monsoon may affect precipitation decrease in some areas. Temperature increase in excess of 4 K was expected in most areas of Japan in the end of 21st century under RCP8.5 scenario. The estimated probability of monthly precipitation exceeding 300 mm would increase around the Pacific side during the summer and the Japan Sea side during the winter season. This probabilistic climate projection based on the statistical method can be expected to bring useful information to the impact studies and risk assessments.
Pressman, Assaf; Karniel, Amir; Mussa-Ivaldi, Ferdinando A
2011-04-27
A new haptic illusion is described, in which the location of the mobile object affects the perception of its rigidity. There is theoretical and experimental support for the notion that limb position sense results from the brain combining ongoing sensory information with expectations arising from prior experience. How does this probabilistic state information affect one's tactile perception of the environment mechanics? In a simple estimation process, human subjects were asked to report the relative rigidity of two simulated virtual objects. One of the objects remained fixed in space and had various coefficients of stiffness. The other virtual object had constant stiffness but moved with respect to the subjects. Earlier work suggested that the perception of an object's rigidity is consistent with a process of regression between the contact force and the perceived amount of penetration inside the object's boundary. The amount of penetration perceived by the subject was affected by varying the position of the object. This, in turn, had a predictable effect on the perceived rigidity of the contact. Subjects' reports on the relative rigidity of the object are best accounted for by a probabilistic model in which the perceived boundary of the object is estimated based on its current location and on past observations. Therefore, the perception of contact rigidity is accounted for by a stochastic process of state estimation underlying proprioceptive localization of the hand.
NASA Astrophysics Data System (ADS)
Armand, P.; Brocheton, F.; Poulet, D.; Vendel, F.; Dubourg, V.; Yalamas, T.
2014-10-01
This paper is an original contribution to uncertainty quantification in atmospheric transport & dispersion (AT&D) at the local scale (1-10 km). It is proposed to account for the imprecise knowledge of the meteorological and release conditions in the case of an accidental hazardous atmospheric emission. The aim is to produce probabilistic risk maps instead of a deterministic toxic load map in order to help the stakeholders making their decisions. Due to the urge attached to such situations, the proposed methodology is able to produce such maps in a limited amount of time. It resorts to a Lagrangian particle dispersion model (LPDM) using wind fields interpolated from a pre-established database that collects the results from a computational fluid dynamics (CFD) model. This enables a decoupling of the CFD simulations from the dispersion analysis, thus a considerable saving of computational time. In order to make the Monte-Carlo-sampling-based estimation of the probability field even faster, it is also proposed to recourse to the use of a vector Gaussian process surrogate model together with high performance computing (HPC) resources. The Gaussian process (GP) surrogate modelling technique is coupled with a probabilistic principal component analysis (PCA) for reducing the number of GP predictors to fit, store and predict. The design of experiments (DOE) from which the surrogate model is built, is run over a cluster of PCs for making the total production time as short as possible. The use of GP predictors is validated by comparing the results produced by this technique with those obtained by crude Monte Carlo sampling.
Steven P. Norman; Danny C. Lee; Sandra Jacobson; Christine Damiani
2010-01-01
The tradeoffs that surround forest management are inherently complex, often involving multiple temporal and spatial scales. For example, conflicts may result when fuel treatments are designed to mediate long-term fuel hazards, but activities could impair sensitive aquatic habitat or degrade wildlife habitat in the short term. This complexity makes it hard for managers...
ERIC Educational Resources Information Center
Habib, M.; Cassotti, M.; Borst, G.; Simon, G.; Pineau, A.; Houde, O.; Moutier, S.
2012-01-01
Regret and relief are related to counterfactual thinking and rely on comparison processes between what has been and what might have been. In this article, we study the development of regret and relief from late childhood to adulthood (11.2-20.2 years), and we examine how these two emotions affect individuals' willingness to retrospectively…
Lopatka, Martin; Barcaru, Andrei; Sjerps, Marjan J; Vivó-Truyols, Gabriel
2016-01-29
Accurate analysis of chromatographic data often requires the removal of baseline drift. A frequently employed strategy strives to determine asymmetric weights in order to fit a baseline model by regression. Unfortunately, chromatograms characterized by a very high peak saturation pose a significant challenge to such algorithms. In addition, a low signal-to-noise ratio (i.e. s/n<40) also adversely affects accurate baseline correction by asymmetrically weighted regression. We present a baseline estimation method that leverages a probabilistic peak detection algorithm. A posterior probability of being affected by a peak is computed for each point in the chromatogram, leading to a set of weights that allow non-iterative calculation of a baseline estimate. For extremely saturated chromatograms, the peak weighted (PW) method demonstrates notable improvement compared to the other methods examined. However, in chromatograms characterized by low-noise and well-resolved peaks, the asymmetric least squares (ALS) and the more sophisticated Mixture Model (MM) approaches achieve superior results in significantly less time. We evaluate the performance of these three baseline correction methods over a range of chromatographic conditions to demonstrate the cases in which each method is most appropriate. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteleone, S.
This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updatedmore » and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.« less
Advanced Reactor PSA Methodologies for System Reliability Analysis and Source Term Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabaskas, D.; Brunett, A.; Passerini, S.
Beginning in 2015, a project was initiated to update and modernize the probabilistic safety assessment (PSA) of the GE-Hitachi PRISM sodium fast reactor. This project is a collaboration between GE-Hitachi and Argonne National Laboratory (Argonne), and funded in part by the U.S. Department of Energy. Specifically, the role of Argonne is to assess the reliability of passive safety systems, complete a mechanistic source term calculation, and provide component reliability estimates. The assessment of passive system reliability focused on the performance of the Reactor Vessel Auxiliary Cooling System (RVACS) and the inherent reactivity feedback mechanisms of the metal fuel core. Themore » mechanistic source term assessment attempted to provide a sequence specific source term evaluation to quantify offsite consequences. Lastly, the reliability assessment focused on components specific to the sodium fast reactor, including electromagnetic pumps, intermediate heat exchangers, the steam generator, and sodium valves and piping.« less
Conceptual design study of Fusion Experimental Reactor (FY86 FER): Safety
NASA Astrophysics Data System (ADS)
Seki, Yasushi; Iida, Hiromasa; Honda, Tsutomu
1987-08-01
This report describes the study on safety for FER (Fusion Experimental Reactor) which has been designed as a next step machine to the JT-60. Though the final purpose of this study is to have an image of design base accident, maximum credible accident and to assess their risk or probability, etc., as FER plant system, the emphasis of this years study is placed on fuel-gas circulation system where the tritium inventory is maximum. The report consists of two chapters. The first chapter summarizes the FER system and describes FMEA (Failure Mode and Effect Analysis) and related accident progression sequence for FER plant system as a whole. The second chapter of this report is focused on fuel-gas circulation system including purification, isotope separation and storage. Probability of risk is assessed by the probabilistic risk analysis (PRA) procedure based on FMEA, ETA and FTA.
A Flexible Hierarchical Bayesian Modeling Technique for Risk Analysis of Major Accidents.
Yu, Hongyang; Khan, Faisal; Veitch, Brian
2017-09-01
Safety analysis of rare events with potentially catastrophic consequences is challenged by data scarcity and uncertainty. Traditional causation-based approaches, such as fault tree and event tree (used to model rare event), suffer from a number of weaknesses. These include the static structure of the event causation, lack of event occurrence data, and need for reliable prior information. In this study, a new hierarchical Bayesian modeling based technique is proposed to overcome these drawbacks. The proposed technique can be used as a flexible technique for risk analysis of major accidents. It enables both forward and backward analysis in quantitative reasoning and the treatment of interdependence among the model parameters. Source-to-source variability in data sources is also taken into account through a robust probabilistic safety analysis. The applicability of the proposed technique has been demonstrated through a case study in marine and offshore industry. © 2017 Society for Risk Analysis.
Engineering thinking in emergency situations: A new nuclear safety concept
Guarnieri, Franck; Travadel, Sébastien
2014-01-01
The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for “engineering thinking in emergency situations.” This is a new concept that emphasizes adaptability and resilience within organizations—such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident. PMID:25419015
Engineering thinking in emergency situations: A new nuclear safety concept.
Guarnieri, Franck; Travadel, Sébastien
2014-11-01
The lessons learned from the Fukushima Daiichi accident have focused on preventive measures designed to protect nuclear reactors, and crisis management plans. Although there is still no end in sight to the accident that occurred on March 11, 2011, how engineers have handled the aftermath offers new insight into the capacity of organizations to adapt in situations that far exceed the scope of safety standards based on probabilistic risk assessment and on the comprehensive identification of disaster scenarios. Ongoing crises in which conventional resources are lacking, but societal expectations are high, call for "engineering thinking in emergency situations." This is a new concept that emphasizes adaptability and resilience within organizations-such as the ability to create temporary new organizational structures; to quickly switch from a normal state to an innovative mode; and to integrate a social dimension into engineering activities. In the future, nuclear safety oversight authorities should assess the ability of plant operators to create and implement effective engineering strategies on the fly, and should require that operators demonstrate the capability for resilience in the aftermath of an accident.
Risk management for the Space Exploration Initiative
NASA Technical Reports Server (NTRS)
Buchbinder, Ben
1993-01-01
Probabilistic Risk Assessment (PRA) is a quantitative engineering process that provides the analytic structure and decision-making framework for total programmatic risk management. Ideally, it is initiated in the conceptual design phase and used throughout the program life cycle. Although PRA was developed for assessment of safety, reliability, and availability risk, it has far greater application. Throughout the design phase, PRA can guide trade-off studies among system performance, safety, reliability, cost, and schedule. These studies are based on the assessment of the risk of meeting each parameter goal, with full consideration of the uncertainties. Quantitative trade-off studies are essential, but without full identification, propagation, and display of uncertainties, poor decisions may result. PRA also can focus attention on risk drivers in situations where risk is too high. For example, if safety risk is unacceptable, the PRA prioritizes the risk contributors to guide the use of resources for risk mitigation. PRA is used in the Space Exploration Initiative (SEI) Program. To meet the stringent requirements of the SEI mission, within strict budgetary constraints, the PRA structure supports informed and traceable decision-making. This paper briefly describes the SEI PRA process.
Flooding Fragility Experiments and Prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L.; Tahhan, Antonio; Muchmore, Cody
2016-09-01
This report describes the work that has been performed on flooding fragility, both the experimental tests being carried out and the probabilistic fragility predictive models being produced in order to use the text results. Flooding experiments involving full-scale doors have commenced in the Portal Evaluation Tank. The goal of these experiments is to develop a full-scale component flooding experiment protocol and to acquire data that can be used to create Bayesian regression models representing the fragility of these components. This work is in support of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluation research and development.
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session JA1, the discussion focuses on the following topics: The Staged Decompression to the Hypobaric Atmosphere as a Prophylactic Measure Against Decompression Sickness During Repetitive EVA; A New Preoxygenation Procedure for Extravehicular Activity (EVA); Metabolic Assessments During Extra-Vehicular Activity; Evaluation of Safety of Hypobaric Decompressions and EVA From Positions of Probabilistic Theory; Fatty Acid Composition of Plasma Lipids and Erythrocyte Membranes During Simulation of Extravehicular Activity; Biomedical Studies Relating to Decompression Stress with Simulated EVA, Overview; The Joint Angle and Muscle Signature (JAMS) System - Current Uses and Future Applications; and Experimental Investigation of Cooperative Human-Robotic Roles in an EVA Work Site.
Moving Aerospace Structural Design Practice to a Load and Resistance Factor Approach
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.; Raju, Ivatury S.
2016-01-01
Aerospace structures are traditionally designed using the factor of safety (FOS) approach. The limit load on the structure is determined and the structure is then designed for FOS times the limit load - the ultimate load. Probabilistic approaches utilize distributions for loads and strengths. Failures are predicted to occur in the region of intersection of the two distributions. The load and resistance factor design (LRFD) approach judiciously combines these two approaches by intensive calibration studies on loads and strength to result in structures that are efficient and reliable. This paper discusses these three approaches.
Probabilistic simulation of stress concentration in composite laminates
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Liaw, L.
1993-01-01
A computational methodology is described to probabilistically simulate the stress concentration factors in composite laminates. This new approach consists of coupling probabilistic composite mechanics with probabilistic finite element structural analysis. The probabilistic composite mechanics is used to probabilistically describe all the uncertainties inherent in composite material properties while probabilistic finite element is used to probabilistically describe the uncertainties associated with methods to experimentally evaluate stress concentration factors such as loads, geometry, and supports. The effectiveness of the methodology is demonstrated by using it to simulate the stress concentration factors in composite laminates made from three different composite systems. Simulated results match experimental data for probability density and for cumulative distribution functions. The sensitivity factors indicate that the stress concentration factors are influenced by local stiffness variables, by load eccentricities and by initial stress fields.
Probabilistic load simulation: Code development status
NASA Astrophysics Data System (ADS)
Newell, J. F.; Ho, H.
1991-05-01
The objective of the Composite Load Spectra (CLS) project is to develop generic load models to simulate the composite load spectra that are included in space propulsion system components. The probabilistic loads thus generated are part of the probabilistic design analysis (PDA) of a space propulsion system that also includes probabilistic structural analyses, reliability, and risk evaluations. Probabilistic load simulation for space propulsion systems demands sophisticated probabilistic methodology and requires large amounts of load information and engineering data. The CLS approach is to implement a knowledge based system coupled with a probabilistic load simulation module. The knowledge base manages and furnishes load information and expertise and sets up the simulation runs. The load simulation module performs the numerical computation to generate the probabilistic loads with load information supplied from the CLS knowledge base.
Valente, Giordano; Taddei, Fulvia; Jonkers, Ilse
2013-09-03
The weakness of hip abductor muscles is related to lower-limb joint osteoarthritis, and joint overloading may increase the risk for disease progression. The relationship between muscle strength, structural joint deterioration and joint loading makes the latter an important parameter in the study of onset and follow-up of the disease. Since the relationship between hip abductor weakness and joint loading still remains an open question, the purpose of this study was to adopt a probabilistic modeling approach to give insights into how the weakness of hip abductor muscles, in the extent to which normal gait could be unaltered, affects ipsilateral joint contact forces. A generic musculoskeletal model was scaled to each healthy subject included in the study, and the maximum force-generating capacity of each hip abductor muscle in the model was perturbed to evaluate how all physiologically possible configurations of hip abductor weakness affected the joint contact forces during walking. In general, the muscular system was able to compensate for abductor weakness. The reduced force-generating capacity of the abductor muscles affected joint contact forces to a mild extent, with 50th percentile mean differences up to 0.5 BW (maximum 1.7 BW). There were greater increases in the peak knee joint loads than in loads at the hip or ankle. Gluteus medius, particularly the anterior compartment, was the abductor muscle with the most influence on hip and knee loads. Further studies should assess if these increases in joint loading may affect initiation and progression of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua Joseph
2015-10-01
RAVEN is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. The initial development was aimed to provide dynamic risk analysis capabilities to the Thermo-Hydraulic code RELAP-7, currently under development at the Idaho National Laboratory (INL). Although the initial goal has been fully accomplished, RAVEN is now a multi-purpose probabilistic and uncertainty quantification platform, capable to agnostically communicate with any system code. This agnosticism includes providing Application Programming Interfaces (APIs). These APIs are used to allow RAVEN to interact with any code as long as all the parameters that need tomore » be perturbed are accessible by inputs files or via python interfaces. RAVEN is capable of investigating the system response, and investigating the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. The development of RAVEN has started in 2012, when, within the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, the need to provide a modern risk evaluation framework became stronger. RAVEN principal assignment is to provide the necessary software and algorithms in order to employ the concept developed by the Risk Informed Safety Margin Characterization (RISMC) program. RISMC is one of the pathways defined within the Light Water Reactor Sustainability (LWRS) program. In the RISMC approach, the goal is not just the individuation of the frequency of an event potentially leading to a system failure, but the closeness (or not) to key safety-related events. Hence, the approach is interested in identifying and increasing the safety margins related to those events. A safety margin is a numerical value quantifying the probability that a safety metric (e.g. for an important process such as peak pressure in a pipe) is exceeded under certain conditions. The initial development of RAVEN has been focused on providing dynamic risk assessment capability to RELAP-7, currently under development at the INL and, likely, future replacement of the RELAP5-3D code. Most the capabilities that have been implemented having RELAP-7 as principal focus are easily deployable for other system codes. For this reason, several side activaties are currently ongoing for coupling RAVEN with software such as RELAP5-3D, etc. The aim of this document is the explanation of the input requirements, focalizing on the input structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua Joseph
2016-02-01
RAVEN is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. The initial development was aimed to provide dynamic risk analysis capabilities to the Thermo-Hydraulic code RELAP-7, currently under development at the Idaho National Laboratory (INL). Although the initial goal has been fully accomplished, RAVEN is now a multi-purpose probabilistic and uncertainty quantification platform, capable to agnostically communicate with any system code. This agnosticism includes providing Application Programming Interfaces (APIs). These APIs are used to allow RAVEN to interact with any code as long as all the parameters that need tomore » be perturbed are accessible by input files or via python interfaces. RAVEN is capable of investigating the system response, and investigating the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. The development of RAVEN started in 2012, when, within the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, the need to provide a modern risk evaluation framework became stronger. RAVEN principal assignment is to provide the necessary software and algorithms in order to employ the concept developed by the Risk Informed Safety Margin Characterization (RISMC) program. RISMC is one of the pathways defined within the Light Water Reactor Sustainability (LWRS) program. In the RISMC approach, the goal is not just the individuation of the frequency of an event potentially leading to a system failure, but the closeness (or not) to key safety-related events. Hence, the approach is interested in identifying and increasing the safety margins related to those events. A safety margin is a numerical value quantifying the probability that a safety metric (e.g. for an important process such as peak pressure in a pipe) is exceeded under certain conditions. The initial development of RAVEN has been focused on providing dynamic risk assessment capability to RELAP-7, currently under development at the INL and, likely, future replacement of the RELAP5-3D code. Most the capabilities that have been implemented having RELAP-7 as principal focus are easily deployable for other system codes. For this reason, several side activates are currently ongoing for coupling RAVEN with software such as RELAP5-3D, etc. The aim of this document is the explanation of the input requirements, focusing on the input structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua Joseph
2017-03-01
RAVEN is a generic software framework to perform parametric and probabilistic analy- sis based on the response of complex system codes. The initial development was aimed to provide dynamic risk analysis capabilities to the Thermo-Hydraulic code RELAP-7, currently under development at the Idaho National Laboratory (INL). Although the initial goal has been fully accomplished, RAVEN is now a multi-purpose probabilistic and uncer- tainty quantification platform, capable to agnostically communicate with any system code. This agnosticism includes providing Application Programming Interfaces (APIs). These APIs are used to allow RAVEN to interact with any code as long as all the parameters thatmore » need to be perturbed are accessible by inputs files or via python interfaces. RAVEN is capable of investigating the system response, and investigating the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused to- ward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. The development of RAVEN has started in 2012, when, within the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, the need to provide a modern risk evaluation framework became stronger. RAVEN principal assignment is to provide the necessary software and algorithms in order to employ the concept developed by the Risk Informed Safety Margin Characterization (RISMC) program. RISMC is one of the pathways defined within the Light Water Reactor Sustainability (LWRS) program. In the RISMC approach, the goal is not just the individuation of the frequency of an event potentially leading to a system failure, but the closeness (or not) to key safety-related events. Hence, the approach is in- terested in identifying and increasing the safety margins related to those events. A safety margin is a numerical value quantifying the probability that a safety metric (e.g. for an important process such as peak pressure in a pipe) is exceeded under certain conditions. The initial development of RAVEN has been focused on providing dynamic risk assess- ment capability to RELAP-7, currently under develop-ment at the INL and, likely, future replacement of the RELAP5-3D code. Most the capabilities that have been implemented having RELAP-7 as principal focus are easily deployable for other system codes. For this reason, several side activates are currently ongoing for coupling RAVEN with soft- ware such as RELAP5-3D, etc. The aim of this document is the explaination of the input requirements, focalizing on the input structure.« less
The probabilistic nature of preferential choice.
Rieskamp, Jörg
2008-11-01
Previous research has developed a variety of theories explaining when and why people's decisions under risk deviate from the standard economic view of expected utility maximization. These theories are limited in their predictive accuracy in that they do not explain the probabilistic nature of preferential choice, that is, why an individual makes different choices in nearly identical situations, or why the magnitude of these inconsistencies varies in different situations. To illustrate the advantage of probabilistic theories, three probabilistic theories of decision making under risk are compared with their deterministic counterparts. The probabilistic theories are (a) a probabilistic version of a simple choice heuristic, (b) a probabilistic version of cumulative prospect theory, and (c) decision field theory. By testing the theories with the data from three experimental studies, the superiority of the probabilistic models over their deterministic counterparts in predicting people's decisions under risk become evident. When testing the probabilistic theories against each other, decision field theory provides the best account of the observed behavior.
The Sapir-Whorf Hypothesis and Probabilistic Inference: Evidence from the Domain of Color
Austerweil, Joseph L.; Griffiths, Thomas L.; Regier, Terry
2016-01-01
The Sapir-Whorf hypothesis holds that our thoughts are shaped by our native language, and that speakers of different languages therefore think differently. This hypothesis is controversial in part because it appears to deny the possibility of a universal groundwork for human cognition, and in part because some findings taken to support it have not reliably replicated. We argue that considering this hypothesis through the lens of probabilistic inference has the potential to resolve both issues, at least with respect to certain prominent findings in the domain of color cognition. We explore a probabilistic model that is grounded in a presumed universal perceptual color space and in language-specific categories over that space. The model predicts that categories will most clearly affect color memory when perceptual information is uncertain. In line with earlier studies, we show that this model accounts for language-consistent biases in color reconstruction from memory in English speakers, modulated by uncertainty. We also show, to our knowledge for the first time, that such a model accounts for influential existing data on cross-language differences in color discrimination from memory, both within and across categories. We suggest that these ideas may help to clarify the debate over the Sapir-Whorf hypothesis. PMID:27434643
A Probabilistic Analysis of Surface Water Flood Risk in London.
Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris
2018-06-01
Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.
Functional mechanisms of probabilistic inference in feature- and space-based attentional systems.
Dombert, Pascasie L; Kuhns, Anna; Mengotti, Paola; Fink, Gereon R; Vossel, Simone
2016-11-15
Humans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tang, Zhongqian; Zhang, Hua; Yi, Shanzhen; Xiao, Yangfan
2018-03-01
GIS-based multi-criteria decision analysis (MCDA) is increasingly used to support flood risk assessment. However, conventional GIS-MCDA methods fail to adequately represent spatial variability and are accompanied with considerable uncertainty. It is, thus, important to incorporate spatial variability and uncertainty into GIS-based decision analysis procedures. This research develops a spatially explicit, probabilistic GIS-MCDA approach for the delineation of potentially flood susceptible areas. The approach integrates the probabilistic and the local ordered weighted averaging (OWA) methods via Monte Carlo simulation, to take into account the uncertainty related to criteria weights, spatial heterogeneity of preferences and the risk attitude of the analyst. The approach is applied to a pilot study for the Gucheng County, central China, heavily affected by the hazardous 2012 flood. A GIS database of six geomorphological and hydrometeorological factors for the evaluation of susceptibility was created. Moreover, uncertainty and sensitivity analysis were performed to investigate the robustness of the model. The results indicate that the ensemble method improves the robustness of the model outcomes with respect to variation in criteria weights and identifies which criteria weights are most responsible for the variability of model outcomes. Therefore, the proposed approach is an improvement over the conventional deterministic method and can provides a more rational, objective and unbiased tool for flood susceptibility evaluation.
NASA Astrophysics Data System (ADS)
Engström, Kerstin; Olin, Stefan; Rounsevell, Mark D. A.; Brogaard, Sara; van Vuuren, Detlef P.; Alexander, Peter; Murray-Rust, Dave; Arneth, Almut
2016-11-01
We present a modelling framework to simulate probabilistic futures of global cropland areas that are conditional on the SSP (shared socio-economic pathway) scenarios. Simulations are based on the Parsimonious Land Use Model (PLUM) linked with the global dynamic vegetation model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) using socio-economic data from the SSPs and climate data from the RCPs (representative concentration pathways). The simulated range of global cropland is 893-2380 Mha in 2100 (± 1 standard deviation), with the main uncertainties arising from differences in the socio-economic conditions prescribed by the SSP scenarios and the assumptions that underpin the translation of qualitative SSP storylines into quantitative model input parameters. Uncertainties in the assumptions for population growth, technological change and cropland degradation were found to be the most important for global cropland, while uncertainty in food consumption had less influence on the results. The uncertainties arising from climate variability and the differences between climate change scenarios do not strongly affect the range of global cropland futures. Some overlap occurred across all of the conditional probabilistic futures, except for those based on SSP3. We conclude that completely different socio-economic and climate change futures, although sharing low to medium population development, can result in very similar cropland areas on the aggregated global scale.
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.
2003-01-01
The SAE G-11 RMSL Division and Probabilistic Methods Committee meeting sponsored by the Picatinny Arsenal during March 1-3, 2004 at Westin Morristown, will report progress on projects for probabilistic assessment of Army system and launch an initiative for probabilistic education. The meeting features several Army and industry Senior executives and Ivy League Professor to provide an industry/government/academia forum to review RMSL technology; reliability and probabilistic technology; reliability-based design methods; software reliability; and maintainability standards. With over 100 members including members with national/international standing, the mission of the G-11s Probabilistic Methods Committee is to enable/facilitate rapid deployment of probabilistic technology to enhance the competitiveness of our industries by better, faster, greener, smarter, affordable and reliable product development.
Probabilistic margin evaluation on accidental transients for the ASTRID reactor project
NASA Astrophysics Data System (ADS)
Marquès, Michel
2014-06-01
ASTRID is a technological demonstrator of Sodium cooled Fast Reactor (SFR) under development. The conceptual design studies are being conducted in accordance with the Generation IV reactor objectives, particularly in terms of improving safety. For the hypothetical events, belonging to the accidental category "severe accident prevention situations" having a very low frequency of occurrence, the safety demonstration is no more based on a deterministic demonstration with conservative assumptions on models and parameters but on a "Best-Estimate Plus Uncertainty" (BEPU) approach. This BEPU approach ispresented in this paper for an Unprotected Loss-of-Flow (ULOF) event. The Best-Estimate (BE) analysis of this ULOFt ransient is performed with the CATHARE2 code, which is the French reference system code for SFR applications. The objective of the BEPU analysis is twofold: first evaluate the safety margin to sodium boiling in taking into account the uncertainties on the input parameters of the CATHARE2 code (twenty-two uncertain input parameters have been identified, which can be classified into five groups: reactor power, accident management, pumps characteristics, reactivity coefficients, thermal parameters and head losses); secondly quantify the contribution of each input uncertainty to the overall uncertainty of the safety margins, in order to refocusing R&D efforts on the most influential factors. This paper focuses on the methodological aspects of the evaluation of the safety margin. At least for the preliminary phase of the project (conceptual design), a probabilistic criterion has been fixed in the context of this BEPU analysis; this criterion is the value of the margin to sodium boiling, which has a probability 95% to be exceeded, obtained with a confidence level of 95% (i.e. the M5,95percentile of the margin distribution). This paper presents two methods used to assess this percentile: the Wilks method and the Bootstrap method ; the effectiveness of the two methods is compared on the basis of 500 simulations performed with theCATHARE2 code. We conclude that, with only 100 simulations performed with the CATHARE2 code, which is a number of simulations workable in the conceptual design phase of the ASTRID project where the models and the hypothesis are often modified, it is best in order to evaluate the percentile M5,95 of the margin to sodium boiling to use the bootstrap method, which will provide a slightly conservative result. On the other hand, in order to obtain an accurate estimation of the percentileM5,95, for the safety report for example, it will be necessary to perform at least 300 simulations with the CATHARE2 code. In this case, both methods (Wilks and Bootstrap) would give equivalent results.
Evaluating the safety risk of roadside features for rural two-lane roads using reliability analysis.
Jalayer, Mohammad; Zhou, Huaguo
2016-08-01
The severity of roadway departure crashes mainly depends on the roadside features, including the sideslope, fixed-object density, offset from fixed objects, and shoulder width. Common engineering countermeasures to improve roadside safety include: cross section improvements, hazard removal or modification, and delineation. It is not always feasible to maintain an object-free and smooth roadside clear zone as recommended in design guidelines. Currently, clear zone width and sideslope are used to determine roadside hazard ratings (RHRs) to quantify the roadside safety of rural two-lane roadways on a seven-point pictorial scale. Since these two variables are continuous and can be treated as random, probabilistic analysis can be applied as an alternative method to address existing uncertainties. Specifically, using reliability analysis, it is possible to quantify roadside safety levels by treating the clear zone width and sideslope as two continuous, rather than discrete, variables. The objective of this manuscript is to present a new approach for defining the reliability index for measuring roadside safety on rural two-lane roads. To evaluate the proposed approach, we gathered five years (2009-2013) of Illinois run-off-road (ROR) crash data and identified the roadside features (i.e., clear zone widths and sideslopes) of 4500 300ft roadway segments. Based on the obtained results, we confirm that reliability indices can serve as indicators to gauge safety levels, such that the greater the reliability index value, the lower the ROR crash rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
The role of PRA in the safety assessment of VVER Nuclear Power Plants in Ukraine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, C.
1999-05-10
Ukraine operates thirteen (13) Soviet-designed pressurized water reactors, VVERS. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs), in accordance with new SAR content requirements issued in September 1995, by the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine. The requirements are in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. The last two requirements, on PRA and BDBA, are new, and the DBA requirements are an expanded version of the older SAR requirements. The US Departmentmore » of Energy (USDOE), as part of its Soviet-Designed Reactor Safety activities, is providing assistance and technology transfer to Ukraine to support their nuclear power plants (NPPs) in developing a Western-type technical basis for the new SARs. USDOE sponsored In-Depth Safety Assessments (ISAs) are in progress at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1, and a follow-on study has been initiated at Khmenytskyy Unit 1. The ISA projects encompass most areas of plant safety evaluation, but the initial emphasis is on performing a detailed, plant-specific Level 1 Internal Events PRA. This allows the early definition of the plant risk profile, the identification of risk significant accident sequences and plant vulnerabilities and provides guidance for the remainder of the safety assessments.« less
A dynamical systems model for nuclear power plant risk
NASA Astrophysics Data System (ADS)
Hess, Stephen Michael
The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of these models. Details of the development of the mathematical risk model are presented. This includes discussion of the processes included in the model and the identification of significant interprocess interactions. This is followed by analysis of the model that demonstrates that its dynamical evolution displays characteristics that have been observed at commercially operating plants. The model is analyzed using the previously described techniques from dynamical systems theory. From this analysis, several significant insights are obtained with respect to the effective control of nuclear safety risk. Finally, we present conclusions and recommendations for further research.
Students’ difficulties in probabilistic problem-solving
NASA Astrophysics Data System (ADS)
Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.
2018-03-01
There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.
Can better infrastructure and quality reduce hospital infant mortality rates in Mexico?
Aguilera, Nelly; Marrufo, Grecia M
2007-02-01
Preliminary evidence from hospital discharges hints enormous disparities in infant hospital mortality rates. At the same time, public health agencies acknowledge severe deficiencies and variations in the quality of medical services across public hospitals. Despite these concerns, there is limited evidence of the contribution of hospital infrastructure and quality in explaining variations in outcomes among those who have access to medical services provided at public hospitals. This paper provides evidence to address this question. We use probabilistic econometric methods to estimate the impact of material and human resources and hospital quality on the probability that an infant dies controlling for socioeconomic, maternal and reproductive risk factors. As a measure of quality, we calculate for the first time for Mexico patient safety indicators developed by the AHRQ. We find that the probability to die is affected by hospital infrastructure and by quality. In this last regard, having been treated in a hospital with the worse quality incidence doubles the probability to die. This paper also presents evidence on the contribution of other risk factors on perinatal mortality rates. The conclusions of this paper suggest that lower infant mortality rates can be reached by implementing a set of coherent public policy actions including an increase and reorganization of hospital infrastructure, quality improvement, and increasing demand for health by poor families.
Robust Depth Image Acquisition Using Modulated Pattern Projection and Probabilistic Graphical Models
Kravanja, Jaka; Žganec, Mario; Žganec-Gros, Jerneja; Dobrišek, Simon; Štruc, Vitomir
2016-01-01
Depth image acquisition with structured light approaches in outdoor environments is a challenging problem due to external factors, such as ambient sunlight, which commonly affect the acquisition procedure. This paper presents a novel structured light sensor designed specifically for operation in outdoor environments. The sensor exploits a modulated sequence of structured light projected onto the target scene to counteract environmental factors and estimate a spatial distortion map in a robust manner. The correspondence between the projected pattern and the estimated distortion map is then established using a probabilistic framework based on graphical models. Finally, the depth image of the target scene is reconstructed using a number of reference frames recorded during the calibration process. We evaluate the proposed sensor on experimental data in indoor and outdoor environments and present comparative experiments with other existing methods, as well as commercial sensors. PMID:27775570
NASA Astrophysics Data System (ADS)
Ma, Yuan-Zhuo; Li, Hong-Shuang; Yao, Wei-Xing
2018-05-01
The evaluation of the probabilistic constraints in reliability-based design optimization (RBDO) problems has always been significant and challenging work, which strongly affects the performance of RBDO methods. This article deals with RBDO problems using a recently developed generalized subset simulation (GSS) method and a posterior approximation approach. The posterior approximation approach is used to transform all the probabilistic constraints into ordinary constraints as in deterministic optimization. The assessment of multiple failure probabilities required by the posterior approximation approach is achieved by GSS in a single run at all supporting points, which are selected by a proper experimental design scheme combining Sobol' sequences and Bucher's design. Sequentially, the transformed deterministic design optimization problem can be solved by optimization algorithms, for example, the sequential quadratic programming method. Three optimization problems are used to demonstrate the efficiency and accuracy of the proposed method.
A probabilistic Hu-Washizu variational principle
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Besterfield, G. H.
1987-01-01
A Probabilistic Hu-Washizu Variational Principle (PHWVP) for the Probabilistic Finite Element Method (PFEM) is presented. This formulation is developed for both linear and nonlinear elasticity. The PHWVP allows incorporation of the probabilistic distributions for the constitutive law, compatibility condition, equilibrium, domain and boundary conditions into the PFEM. Thus, a complete probabilistic analysis can be performed where all aspects of the problem are treated as random variables and/or fields. The Hu-Washizu variational formulation is available in many conventional finite element codes thereby enabling the straightforward inclusion of the probabilistic features into present codes.
2017-02-01
ERDC/CHL CHETN-II-56 February 2017 Approved for public release; distribution is unlimited. Coastal Foredune Evolution, Part 1: Environmental... Coastal and Hydraulics Engineering Technical Note (CHETN) is the first of two CHETNs focused on improving technologies to forecast coastal foredune...morphodynamic evolution of coastal foredunes. Part 2 reviews modeling approaches to forecast these changes and develops a probabilistic modeling framework to
NASA Technical Reports Server (NTRS)
Prassinos, Peter G.; Stamatelatos, Michael G.; Young, Jonathan; Smith, Curtis
2010-01-01
Managed by NASA's Office of Safety and Mission Assurance, a pilot probabilistic risk analysis (PRA) of the NASA Crew Exploration Vehicle (CEV) was performed in early 2006. The PRA methods used follow the general guidance provided in the NASA PRA Procedures Guide for NASA Managers and Practitioners'. Phased-mission based event trees and fault trees are used to model a lunar sortie mission of the CEV - involving the following phases: launch of a cargo vessel and a crew vessel; rendezvous of these two vessels in low Earth orbit; transit to th$: moon; lunar surface activities; ascension &om the lunar surface; and return to Earth. The analysis is based upon assumptions, preliminary system diagrams, and failure data that may involve large uncertainties or may lack formal validation. Furthermore, some of the data used were based upon expert judgment or extrapolated from similar componentssystemsT. his paper includes a discussion of the system-level models and provides an overview of the analysis results used to identify insights into CEV risk drivers, and trade and sensitivity studies. Lastly, the PRA model was used to determine changes in risk as the system configurations or key parameters are modified.
Probabilistic flood damage modelling at the meso-scale
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno
2014-05-01
Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.
Acoustic emission based damage localization in composites structures using Bayesian identification
NASA Astrophysics Data System (ADS)
Kundu, A.; Eaton, M. J.; Al-Jumali, S.; Sikdar, S.; Pullin, R.
2017-05-01
Acoustic emission based damage detection in composite structures is based on detection of ultra high frequency packets of acoustic waves emitted from damage sources (such as fibre breakage, fatigue fracture, amongst others) with a network of distributed sensors. This non-destructive monitoring scheme requires solving an inverse problem where the measured signals are linked back to the location of the source. This in turn enables rapid deployment of mitigative measures. The presence of significant amount of uncertainty associated with the operating conditions and measurements makes the problem of damage identification quite challenging. The uncertainties stem from the fact that the measured signals are affected by the irregular geometries, manufacturing imprecision, imperfect boundary conditions, existing damages/structural degradation, amongst others. This work aims to tackle these uncertainties within a framework of automated probabilistic damage detection. The method trains a probabilistic model of the parametrized input and output model of the acoustic emission system with experimental data to give probabilistic descriptors of damage locations. A response surface modelling the acoustic emission as a function of parametrized damage signals collected from sensors would be calibrated with a training dataset using Bayesian inference. This is used to deduce damage locations in the online monitoring phase. During online monitoring, the spatially correlated time data is utilized in conjunction with the calibrated acoustic emissions model to infer the probabilistic description of the acoustic emission source within a hierarchical Bayesian inference framework. The methodology is tested on a composite structure consisting of carbon fibre panel with stiffeners and damage source behaviour has been experimentally simulated using standard H-N sources. The methodology presented in this study would be applicable in the current form to structural damage detection under varying operational loads and would be investigated in future studies.
Probabilistic Aeroelastic Analysis of Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, S. K.; Stefko, G. L.
2004-01-01
A probabilistic approach is described for aeroelastic analysis of turbomachinery blade rows. Blade rows with subsonic flow and blade rows with supersonic flow with subsonic leading edge are considered. To demonstrate the probabilistic approach, the flutter frequency, damping and forced response of a blade row representing a compressor geometry is considered. The analysis accounts for uncertainties in structural and aerodynamic design variables. The results are presented in the form of probabilistic density function (PDF) and sensitivity factors. For subsonic flow cascade, comparisons are also made with different probabilistic distributions, probabilistic methods, and Monte-Carlo simulation. The approach shows that the probabilistic approach provides a more realistic and systematic way to assess the effect of uncertainties in design variables on the aeroelastic instabilities and response.
Achana, Felix; Sutton, Alex J; Kendrick, Denise; Hayes, Mike; Jones, David R; Hubbard, Stephanie J; Cooper, Nicola J
2016-08-03
Systematic reviews and a network meta-analysis show home safety education with or without the provision of safety equipment is effective in promoting poison prevention behaviours in households with children. This paper compares the cost-effectiveness of home safety interventions to promote poison prevention practices. A probabilistic decision-analytic model simulates healthcare costs and benefits for a hypothetical cohort of under 5 year olds. The model compares the cost-effectiveness of home safety education, home safety inspections, provision of free or low cost safety equipment and fitting of equipment. Analyses are conducted from a UK National Health Service and Personal Social Services perspective and expressed in 2012 prices. Education without safety inspection, provision or fitting of equipment was the most cost-effective strategy for promoting safe storage of medicines with an incremental cost-effectiveness ratio of £2888 (95 % credible interval (CrI) £1990-£5774) per poison case avoided or £41,330 (95%CrI £20,007-£91,534) per QALY gained compared with usual care. Compared to usual care, home safety interventions were not cost-effective in promoting safe storage of other household products. Education offers better value for money than more intensive but expensive strategies for preventing medicinal poisonings, but is only likely to be cost-effective at £30,000 per QALY gained for families in disadvantaged areas and for those with more than one child. There was considerable uncertainty in cost-effectiveness estimates due to paucity of evidence on model parameters. Policy makers should consider both costs and effectiveness of competing interventions to ensure efficient use of resources.
Probabilistic structural analysis methods for space propulsion system components
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1986-01-01
The development of a three-dimensional inelastic analysis methodology for the Space Shuttle main engine (SSME) structural components is described. The methodology is composed of: (1) composite load spectra, (2) probabilistic structural analysis methods, (3) the probabilistic finite element theory, and (4) probabilistic structural analysis. The methodology has led to significant technical progress in several important aspects of probabilistic structural analysis. The program and accomplishments to date are summarized.
Orhan, A Emin; Ma, Wei Ji
2017-07-26
Animals perform near-optimal probabilistic inference in a wide range of psychophysical tasks. Probabilistic inference requires trial-to-trial representation of the uncertainties associated with task variables and subsequent use of this representation. Previous work has implemented such computations using neural networks with hand-crafted and task-dependent operations. We show that generic neural networks trained with a simple error-based learning rule perform near-optimal probabilistic inference in nine common psychophysical tasks. In a probabilistic categorization task, error-based learning in a generic network simultaneously explains a monkey's learning curve and the evolution of qualitative aspects of its choice behavior. In all tasks, the number of neurons required for a given level of performance grows sublinearly with the input population size, a substantial improvement on previous implementations of probabilistic inference. The trained networks develop a novel sparsity-based probabilistic population code. Our results suggest that probabilistic inference emerges naturally in generic neural networks trained with error-based learning rules.Behavioural tasks often require probability distributions to be inferred about task specific variables. Here, the authors demonstrate that generic neural networks can be trained using a simple error-based learning rule to perform such probabilistic computations efficiently without any need for task specific operations.
29 CFR 1960.19 - Other Federal agency standards affecting occupational safety and health.
Code of Federal Regulations, 2014 CFR
2014-07-01
... safety and health. 1960.19 Section 1960.19 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL... EMPLOYEE OCCUPATIONAL SAFETY AND HEALTH PROGRAMS AND RELATED MATTERS Standards § 1960.19 Other Federal agency standards affecting occupational safety and health. (a) Where employees of different agencies...
29 CFR 1960.19 - Other Federal agency standards affecting occupational safety and health.
Code of Federal Regulations, 2013 CFR
2013-07-01
... safety and health. 1960.19 Section 1960.19 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL... EMPLOYEE OCCUPATIONAL SAFETY AND HEALTH PROGRAMS AND RELATED MATTERS Standards § 1960.19 Other Federal agency standards affecting occupational safety and health. (a) Where employees of different agencies...
29 CFR 1960.19 - Other Federal agency standards affecting occupational safety and health.
Code of Federal Regulations, 2012 CFR
2012-07-01
... safety and health. 1960.19 Section 1960.19 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL... EMPLOYEE OCCUPATIONAL SAFETY AND HEALTH PROGRAMS AND RELATED MATTERS Standards § 1960.19 Other Federal agency standards affecting occupational safety and health. (a) Where employees of different agencies...
Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS)
NASA Astrophysics Data System (ADS)
OConnor, A.; Kirtman, B. P.; Harrison, S.; Gorman, J.
2016-02-01
Current US Navy forecasting systems cannot easily incorporate extended-range forecasts that can improve mission readiness and effectiveness; ensure safety; and reduce cost, labor, and resource requirements. If Navy operational planners had systems that incorporated these forecasts, they could plan missions using more reliable and longer-term weather and climate predictions. Further, using multi-model forecast ensembles instead of single forecasts would produce higher predictive performance. Extended-range multi-model forecast ensembles, such as those available in the North American Multi-Model Ensemble (NMME), are ideal for system integration because of their high skill predictions; however, even higher skill predictions can be produced if forecast model ensembles are combined correctly. While many methods for weighting models exist, the best method in a given environment requires expert knowledge of the models and combination methods.We present an innovative approach that uses machine learning to combine extended-range predictions from multi-model forecast ensembles and generate a probabilistic forecast for any region of the globe up to 12 months in advance. Our machine-learning approach uses 30 years of hindcast predictions to learn patterns of forecast model successes and failures. Each model is assigned a weight for each environmental condition, 100 km2 region, and day given any expected environmental information. These weights are then applied to the respective predictions for the region and time of interest to effectively stitch together a single, coherent probabilistic forecast. Our experimental results demonstrate the benefits of our approach to produce extended-range probabilistic forecasts for regions and time periods of interest that are superior, in terms of skill, to individual NMME forecast models and commonly weighted models. The probabilistic forecast leverages the strengths of three NMME forecast models to predict environmental conditions for an area spanning from San Diego, CA to Honolulu, HI, seven months in-advance. Key findings include: weighted combinations of models are strictly better than individual models; machine-learned combinations are especially better; and forecasts produced using our approach have the highest rank probability skill score most often.
Wu, Tsung-Chih; Liu, Chi-Wei; Lu, Mu-Chen
2007-01-01
Universities and colleges serve to be institutions of education excellence; however, problems in the areas of occupational safety may undermine such goals. Occupational safety must be the concern of every employee in the organization, regardless of job position. Safety climate surveys have been suggested as important tools for measuring the effectiveness and improvement direction of safety programs. Thus, this study aims to investigate the influence of organizational and individual factors on safety climate in university and college laboratories. Employees at 100 universities and colleges in Taiwan were mailed a self-administered questionnaire survey; the response rate was 78%. Multivariate analysis of variance revealed that organizational category of ownership, the presence of a safety manager and safety committee, gender, age, title, accident experience, and safety training significantly affected the climate. Among them, accident experience and safety training affected the climate with practical significance. The authors recommend that managers should address important factors affecting safety issues and then create a positive climate by enforcing continuous improvements.
Pressman, Assaf; Karniel, Amir; Mussa-Ivaldi, Ferdinando A.
2011-01-01
A new haptic illusion is described, in which the location of the mobile object affects the perception of its rigidity. There is theoretical and experimental support to the notion that limb position sense results from the brain combining ongoing sensory information with expectations arising from prior experience. How does this probabilistic state information affect one’s tactile perception of the environment mechanics? In a simple estimation process human subjects were asked to report the relative rigidity of two simulated virtual objects. One of the objects remained fixed in space and had various coefficients of stiffness. The other virtual object had constant stiffness but moved with respect to the subjects. Earlier work suggested that the perception of an object’s rigidity is consistent with a process of regression between the contact force and the perceived amount of penetration inside the object’s boundary. The amount of penetration perceived by the subject was affected by varying the position of the object. This, in turn, had a predictable effect on the perceived rigidity of the contact. Subjects’ reports on the relative rigidity of the object are best accounted for by a probabilistic model in which the perceived boundary of the object is estimated based on its current location and on its past observations. Therefore, the perception of contact rigidity is accounted for by a stochastic process of state estimation underlying proprioceptive localization of the hand. PMID:21525300
Conchie, Stacey M; Taylor, Paul J; Donald, Ian J
2012-01-01
Although safety-specific transformational leadership is known to encourage employee safety voice behaviors, less is known about what makes this style of leadership effective. We tested a model that links safety-specific transformational leadership to safety voice through various dimensions of trust. Data from 150 supervisor-employee dyads from the United Kingdom oil industry supported our predictions that the effects of safety-specific transformational leadership are sequentially mediated by affect-based trust beliefs and disclosure trust intentions. Moreover, we found that reliance trust intentions moderated the effect of disclosure: employees' disclosure intentions mediated the effects of affect-based trust on safety voice behaviors only when employees' intention to rely on their leader was moderate to high. These findings suggest that leaders seeking to encourage safety voice behaviors should go beyond "good reason" arguments and develop affective bonds with their employees.
Evaluation of power system security and development of transmission pricing method
NASA Astrophysics Data System (ADS)
Kim, Hyungchul
The electric power utility industry is presently undergoing a change towards the deregulated environment. This has resulted in unbundling of generation, transmission and distribution services. The introduction of competition into unbundled electricity services may lead system operation closer to its security boundaries resulting in smaller operating safety margins. The competitive environment is expected to lead to lower price rates for customers and higher efficiency for power suppliers in the long run. Under this deregulated environment, security assessment and pricing of transmission services have become important issues in power systems. This dissertation provides new methods for power system security assessment and transmission pricing. In power system security assessment, the following issues are discussed (1) The description of probabilistic methods for power system security assessment; (2) The computation time of simulation methods; (3) on-line security assessment for operation. A probabilistic method using Monte-Carlo simulation is proposed for power system security assessment. This method takes into account dynamic and static effects corresponding to contingencies. Two different Kohonen networks, Self-Organizing Maps and Learning Vector Quantization, are employed to speed up the probabilistic method. The combination of Kohonen networks and Monte-Carlo simulation can reduce computation time in comparison with straight Monte-Carlo simulation. A technique for security assessment employing Bayes classifier is also proposed. This method can be useful for system operators to make security decisions during on-line power system operation. This dissertation also suggests an approach for allocating transmission transaction costs based on reliability benefits in transmission services. The proposed method shows the transmission transaction cost of reliability benefits when transmission line capacities are considered. The ratio between allocation by transmission line capacity-use and allocation by reliability benefits is computed using the probability of system failure.
Probalistic Assessment of Radiation Risk for Solar Particle Events
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2008-01-01
For long duration missions outside of the protection of the Earth's magnetic field, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon or Earth-to-Mars transit. The large majority (90%) of SPEs have small or no health consequences because the doses are low and the particles do not penetrate to organ depths. However, there is an operational challenge to respond to events of unknown size and duration. We have developed a probabilistic approach to SPE risk assessment in support of mission design and operational planning. Using the historical database of proton measurements during the past 5 solar cycles, the functional form of hazard function of SPE occurrence per cycle was found for nonhomogeneous Poisson model. A typical hazard function was defined as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions of particle fluences for a specified mission period were simulated ranging from its 5th to 95th percentile. Organ doses from large SPEs were assessed using NASA's Baryon transport model, BRYNTRN. The SPE risk was analyzed with the organ dose distribution for the given particle fluences during a mission period. In addition to the total particle fluences of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the cancer risk associated with energetic particles for large events. The probability of exceeding the NASA 30-day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated for various SPE sizes. This probabilistic approach to SPE protection will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks in future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppersmith , Kevin J.; Bommer, Julian J.; Bryce, Robert W.
Under the sponsorship of the US Department of Energy (DOE) and the electric utility Energy Northwest, the Pacific Northwest National Laboratory (PNNL) is conducting a probabilistic seismic hazard analysis (PSHA) within the framework of a SSHAC Level 3 procedure (Senior Seismic Hazard Analysis Committee; Budnitz et al., 1997). Specifically, the project is being conducted following the guidelines and requirements specified in NUREG-2117 (USNRC, 2012b) and consistent with approach given in the American Nuclear Standard ANSI/ANS-2.29-2008 Probabilistic Seismic Hazard Analysis. The collaboration between DOE and Energy Northwest is spawned by the needs of both organizations for an accepted PSHA with highmore » levels of regulatory assurance that can be used for the design and safety evaluation of nuclear facilities. DOE committed to this study after performing a ten-year review of the existing PSHA, as required by DOE Order 420.1C. The study will also be used by Energy Northwest as a basis for fulfilling the NRC’s 10CFR50.54(f) requirement that the western US nuclear power plants conduct PSHAs in conformance with SSHAC Level 3 procedures. The study was planned and is being carried out in conjunction with a project Work Plan, which identifies the purpose of the study, the roles and responsibilities of all participants, tasks and their associated schedules, Quality Assurance (QA) requirements, and project deliverables. New data collection and analysis activities are being conducted as a means of reducing the uncertainties in key inputs to the PSHA. It is anticipated that the results of the study will provide inputs to the site response analyses at multiple nuclear facility sites within the Hanford Site and at the Columbia Generating Station.« less
Probabilistic classifiers with high-dimensional data
Kim, Kyung In; Simon, Richard
2011-01-01
For medical classification problems, it is often desirable to have a probability associated with each class. Probabilistic classifiers have received relatively little attention for small n large p classification problems despite of their importance in medical decision making. In this paper, we introduce 2 criteria for assessment of probabilistic classifiers: well-calibratedness and refinement and develop corresponding evaluation measures. We evaluated several published high-dimensional probabilistic classifiers and developed 2 extensions of the Bayesian compound covariate classifier. Based on simulation studies and analysis of gene expression microarray data, we found that proper probabilistic classification is more difficult than deterministic classification. It is important to ensure that a probabilistic classifier is well calibrated or at least not “anticonservative” using the methods developed here. We provide this evaluation for several probabilistic classifiers and also evaluate their refinement as a function of sample size under weak and strong signal conditions. We also present a cross-validation method for evaluating the calibration and refinement of any probabilistic classifier on any data set. PMID:21087946
NASA Astrophysics Data System (ADS)
Garcia, Elena
The demand for air travel is expanding beyond the capacity of the existing National Airspace System. Excess traffic results in delays and compromised safety. Thus, a number of initiatives to improve airspace capacity have been proposed. To assess the impact of these technologies on air traffic one must move beyond the vehicle to a system-of-systems point of view. This top-level perspective must include consideration of the aircraft, airports, air traffic control and airlines that make up the airspace system. In addition to these components and their interactions economics, safety and government regulations must also be considered. Furthermore, the air transportation system is inherently variable with changes in everything from fuel prices to the weather. The development of a modeling environment that enables a comprehensive probabilistic evaluation of technological impacts was the subject of this thesis. The final modeling environment developed used economics as the thread to tie the airspace components together. Airport capacities and delays were calculated explicitly with due consideration to the impacts of air traffic control. The delay costs were then calculated for an entire fleet, and an airline economic analysis, considering the impact of these costs, was carried out. Airline return on investment was considered the metric of choice since it brings together all costs and revenues, including the cost of delays, landing fees for airport use and aircraft financing costs. Safety was found to require a level of detail unsuitable for a system-of-systems approach and was relegated to future airspace studies. Environmental concerns were considered to be incorporated into airport regulations and procedures and were not explicitly modeled. A deterministic case study was developed to test this modeling environment. The Atlanta airport operations for the year 2000 were used for validation purposes. A 2005 baseline was used as a basis for comparing the four technologies considered: a very large aircraft, Terminal Area Productivity air traffic control technologies, smoothing of an airline schedule, and the addition of a runway. A case including all four technologies simultaneously was also considered. Unfortunately, the complexity of the system prevented full exploration of the probabilistic aspects of the National Airspace System.
A Proposed Probabilistic Extension of the Halpern and Pearl Definition of ‘Actual Cause’
2017-01-01
ABSTRACT Joseph Halpern and Judea Pearl ([2005]) draw upon structural equation models to develop an attractive analysis of ‘actual cause’. Their analysis is designed for the case of deterministic causation. I show that their account can be naturally extended to provide an elegant treatment of probabilistic causation. 1Introduction2Preemption3Structural Equation Models4The Halpern and Pearl Definition of ‘Actual Cause’5Preemption Again6The Probabilistic Case7Probabilistic Causal Models8A Proposed Probabilistic Extension of Halpern and Pearl’s Definition9Twardy and Korb’s Account10Probabilistic Fizzling11Conclusion PMID:29593362
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-04
...The Nuclear Regulatory Commission (NRC) is amending its regulations to provide alternate fracture toughness requirements for protection against pressurized thermal shock (PTS) events for pressurized water reactor (PWR) pressure vessels. This final rule provides alternate PTS requirements based on updated analysis methods. This action is desirable because the existing requirements are based on unnecessarily conservative probabilistic fracture mechanics analyses. This action reduces regulatory burden for those PWR licensees who expect to exceed the existing requirements before the expiration of their licenses, while maintaining adequate safety, and may choose to comply with the final rule as an alternative to complying with the existing requirements.
Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components
NASA Technical Reports Server (NTRS)
1991-01-01
The fourth year of technical developments on the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) system for Probabilistic Structural Analysis Methods is summarized. The effort focused on the continued expansion of the Probabilistic Finite Element Method (PFEM) code, the implementation of the Probabilistic Boundary Element Method (PBEM), and the implementation of the Probabilistic Approximate Methods (PAppM) code. The principal focus for the PFEM code is the addition of a multilevel structural dynamics capability. The strategy includes probabilistic loads, treatment of material, geometry uncertainty, and full probabilistic variables. Enhancements are included for the Fast Probability Integration (FPI) algorithms and the addition of Monte Carlo simulation as an alternate. Work on the expert system and boundary element developments continues. The enhanced capability in the computer codes is validated by applications to a turbine blade and to an oxidizer duct.
Advancements in Risk-Informed Performance-Based Asset Management for Commercial Nuclear Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liming, James K.; Ravindra, Mayasandra K.
2006-07-01
Over the past several years, ABSG Consulting Inc. (ABS Consulting) and the South Texas Project Nuclear Operating Company (STPNOC) have developed a decision support process and associated software for risk-informed, performance-based asset management (RIPBAM) of nuclear power plant facilities. RIPBAM applies probabilistic risk assessment (PRA) tools and techniques in the realm of plant physical and financial asset management. The RIPBAM process applies a tiered set of models and supporting performance measures (or metrics) that can ultimately be applied to support decisions affecting the allocation and management of plant resources (e.g., funding, staffing, scheduling, etc.). In general, the ultimate goal ofmore » the RIPBAM process is to continually support decision-making to maximize a facility's net present value (NPV) and long-term profitability for its owners. While the initial applications of RIPBAM have been for nuclear power stations, the methodology can easily be adapted to other types of power station or complex facility decision-making support. RIPBAM can also be designed to focus on performance metrics other than NPV and profitability (e.g., mission reliability, operational availability, probability of mission success per dollar invested, etc.). Recent advancements in the RIPBAM process focus on expanding the scope of previous RIPBAM applications to include not only operations, maintenance, and safety issues, but also broader risk perception components affecting plant owner (stockholder), operator, and regulator biases. Conceptually, RIPBAM is a comprehensive risk-informed cash flow model for decision support. It originated as a tool to help manage plant refueling outage scheduling, and was later expanded to include the full spectrum of operations and maintenance decision support. However, it differs from conventional business modeling tools in that it employs a systems engineering approach with broadly based probabilistic analysis of organizational 'value streams'. The scope of value stream inclusion in the process can be established by the user, but in its broadest applications, RIPBAM can be used to address how risk perceptions of plant owners and regulators are impacted by plant performance. Plant staffs can expand and refine RIPBAM models scope via a phased program of activities over time. This paper shows how the multi-metric uncertainty analysis feature of RIPBAM can apply a wide spectrum of decision-influencing factors to support decisions designed to maximize the probability of achieving, maintaining, and improving upon plant goals and objectives. In this paper, the authors show how this approach can be extremely valuable to plant owners and operators in supporting plant value-impacting decision-making processes. (authors)« less
Selective Attention, Diffused Attention, and the Development of Categorization
Deng, Wei (Sophia); Sloutsky, Vladimir M.
2016-01-01
How do people learn categories and what changes with development? The current study attempts to address these questions by focusing on the role of attention in the development of categorization. In Experiment 1, participants (adults, 7-year-olds, and 4-year-olds) were trained with novel categories consisting of deterministic and probabilistic features, and their categorization and memory for features were tested. In Experiment 2, participants’ attention was directed to the deterministic feature, and in Experiment 3 it was directed to the probabilistic features. Attentional cuing affected categorization and memory in adults and 7-year-olds: these participants relied on the cued features in their categorization and exhibited better memory of cued than of non-cued features. In contrast, in 4-year-olds attentional cueing affected only categorization, but not memory: these participants exhibited equally good memory for both cued and non-cued features. Furthermore, across the experiments, 4-year-olds remembered non-cued features better than adults. These results coupled with computational simulations provide novel evidence (1) pointing to differences in category representation and mechanisms of categorization across development, (2) elucidating the role of attention in the development of categorization, and (3) suggesting an important distinction between representation and decision factors in categorization early in development. These issues are discussed with respect to theories of categorization and its development. PMID:27721103
Identification of Gustatory–Olfactory Flavor Mixtures: Effects of Linguistic Labeling
2013-01-01
Two experiments, using different ranges and numbers of stimuli, examined how linguistic labels affect the identification of flavor mixtures containing different proportions of sucrose (gustatory flavorant) and citral (olfactory flavorant). Both experiments asked subjects to identify each stimulus as having either “mostly sugar” or “mostly citrus.” In one condition, no labels preceded the flavor stimuli. In another condition, each flavor stimulus followed a label, either SUGAR or CITRUS, which, the subjects were informed, usually though not always named the stronger flavor component; that is, the labels were probabilistically valid. The results of both experiments showed that the labels systematically modified the identification responses: Subjects responded “sugar” or “citrus” more often when the flavor stimulus followed the corresponding label, SUGAR or CITRUS. But the labels hardly affected overall accuracy of identification. Accuracy was possibly limited, however, by both the confusability of the flavor stimuli per se and the way that confusability could limit the opportunity to discern the probabilistic associations between labels and individual flavor stimuli. We describe the results in terms of a decision-theoretic model, in which labels induce shifts in response criteria governing the identification responses, or possibly effect changes in the sensory representations of the flavorants themselves. PMID:23329730
Use of evidential reasoning and AHP to assess regional industrial safety
Chen, Zhichao; Chen, Tao; Qu, Zhuohua; Ji, Xuewei; Zhou, Yi; Zhang, Hui
2018-01-01
China’s fast economic growth contributes to the rapid development of its urbanization process, and also renders a series of industrial accidents, which often cause loss of life, damage to property and environment, thus requiring the associated risk analysis and safety control measures to be implemented in advance. However, incompleteness of historical failure data before the occurrence of accidents makes it difficult to use traditional risk analysis approaches such as probabilistic risk analysis in many cases. This paper aims to develop a new methodology capable of assessing regional industrial safety (RIS) in an uncertain environment. A hierarchical structure for modelling the risks influencing RIS is first constructed. The hybrid of evidential reasoning (ER) and Analytical Hierarchy Process (AHP) is then used to assess the risks in a complementary way, in which AHP is hired to evaluate the weight of each risk factor and ER is employed to synthesise the safety evaluations of the investigated region(s) against the risk factors from the bottom to the top level in the hierarchy. The successful application of the hybrid approach in a real case analysis of RIS in several major districts of Beijing (capital of China) demonstrates its feasibility as well as provides risk analysts and safety engineers with useful insights on effective solutions to comprehensive risk assessment of RIS in metropolitan cities. The contribution of this paper is made by the findings on the comparison of risk levels of RIS at different regions against various risk factors so that best practices from the good performer(s) can be used to improve the safety of the others. PMID:29795593
Use of evidential reasoning and AHP to assess regional industrial safety.
Chen, Zhichao; Chen, Tao; Qu, Zhuohua; Yang, Zaili; Ji, Xuewei; Zhou, Yi; Zhang, Hui
2018-01-01
China's fast economic growth contributes to the rapid development of its urbanization process, and also renders a series of industrial accidents, which often cause loss of life, damage to property and environment, thus requiring the associated risk analysis and safety control measures to be implemented in advance. However, incompleteness of historical failure data before the occurrence of accidents makes it difficult to use traditional risk analysis approaches such as probabilistic risk analysis in many cases. This paper aims to develop a new methodology capable of assessing regional industrial safety (RIS) in an uncertain environment. A hierarchical structure for modelling the risks influencing RIS is first constructed. The hybrid of evidential reasoning (ER) and Analytical Hierarchy Process (AHP) is then used to assess the risks in a complementary way, in which AHP is hired to evaluate the weight of each risk factor and ER is employed to synthesise the safety evaluations of the investigated region(s) against the risk factors from the bottom to the top level in the hierarchy. The successful application of the hybrid approach in a real case analysis of RIS in several major districts of Beijing (capital of China) demonstrates its feasibility as well as provides risk analysts and safety engineers with useful insights on effective solutions to comprehensive risk assessment of RIS in metropolitan cities. The contribution of this paper is made by the findings on the comparison of risk levels of RIS at different regions against various risk factors so that best practices from the good performer(s) can be used to improve the safety of the others.
Probabilistic assessment of dynamic system performance. Part 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belhadj, Mohamed
1993-01-01
Accurate prediction of dynamic system failure behavior can be important for the reliability and risk analyses of nuclear power plants, as well as for their backfitting to satisfy given constraints on overall system reliability, or optimization of system performance. Global analysis of dynamic systems through investigating the variations in the structure of the attractors of the system and the domains of attraction of these attractors as a function of the system parameters is also important for nuclear technology in order to understand the fault-tolerance as well as the safety margins of the system under consideration and to insure a safemore » operation of nuclear reactors. Such a global analysis would be particularly relevant to future reactors with inherent or passive safety features that are expected to rely on natural phenomena rather than active components to achieve and maintain safe shutdown. Conventionally, failure and global analysis of dynamic systems necessitate the utilization of different methodologies which have computational limitations on the system size that can be handled. Using a Chapman-Kolmogorov interpretation of system dynamics, a theoretical basis is developed that unifies these methodologies as special cases and which can be used for a comprehensive safety and reliability analysis of dynamic systems.« less
Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification
Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang
2016-01-01
Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975
Yan, Xianghe; Peng, Yun; Meng, Jianghong; Ruzante, Juliana; Fratamico, Pina M; Huang, Lihan; Juneja, Vijay; Needleman, David S
2011-01-01
Several factors have hindered effective use of information and resources related to food safety due to inconsistency among semantically heterogeneous data resources, lack of knowledge on profiling of food-borne pathogens, and knowledge gaps among research communities, government risk assessors/managers, and end-users of the information. This paper discusses technical aspects in the establishment of a comprehensive food safety information system consisting of the following steps: (a) computational collection and compiling publicly available information, including published pathogen genomic, proteomic, and metabolomic data; (b) development of ontology libraries on food-borne pathogens and design automatic algorithms with formal inference and fuzzy and probabilistic reasoning to address the consistency and accuracy of distributed information resources (e.g., PulseNet, FoodNet, OutbreakNet, PubMed, NCBI, EMBL, and other online genetic databases and information); (c) integration of collected pathogen profiling data, Foodrisk.org ( http://www.foodrisk.org ), PMP, Combase, and other relevant information into a user-friendly, searchable, "homogeneous" information system available to scientists in academia, the food industry, and government agencies; and (d) development of a computational model in semantic web for greater adaptability and robustness.
Existential risks: exploring a robust risk reduction strategy.
Jebari, Karim
2015-06-01
A small but growing number of studies have aimed to understand, assess and reduce existential risks, or risks that threaten the continued existence of mankind. However, most attention has been focused on known and tangible risks. This paper proposes a heuristic for reducing the risk of black swan extinction events. These events are, as the name suggests, stochastic and unforeseen when they happen. Decision theory based on a fixed model of possible outcomes cannot properly deal with this kind of event. Neither can probabilistic risk analysis. This paper will argue that the approach that is referred to as engineering safety could be applied to reducing the risk from black swan extinction events. It will also propose a conceptual sketch of how such a strategy may be implemented: isolated, self-sufficient, and continuously manned underground refuges. Some characteristics of such refuges are also described, in particular the psychosocial aspects. Furthermore, it is argued that this implementation of the engineering safety strategy safety barriers would be effective and plausible and could reduce the risk of an extinction event in a wide range of possible (known and unknown) scenarios. Considering the staggering opportunity cost of an existential catastrophe, such strategies ought to be explored more vigorously.
The Processing of Extraposed Structures in English
Levy, Roger; Fedorenko, Evelina; Breen, Mara; Gibson, Ted
2012-01-01
In most languages, most of the syntactic dependency relations found in any given sentence are PROJECTIVE: the word-word dependencies in the sentence do not cross each other. Some syntactic dependency relations, however, are NON-PROJECTIVE: some of their word-word dependencies cross each other. Non-projective dependencies are both rarer and more computationally complex than projective dependencies; hence, it is of natural interest to investigate whether there are any processing costs specific to non-projective dependencies, and whether factors known to influence processing of projective dependencies also affect non-projective dependency processing. We report three self-paced reading studies, together with corpus and sentence completion studies, investigating the comprehension difficulty associated with the non-projective dependencies created by the extraposition of relative clauses in English. We find that extraposition over either verbs or prepositional phrases creates comprehension difficulty, and that this difficulty is consistent with probabilistic syntactic expectations estimated from corpora. Furthermore, we find that manipulating the expectation that a given noun will have a postmodifying relative clause can modulate and even neutralize the difficulty associated with extraposition. Our experiments rule out accounts based purely on derivational complexity and/or dependency locality in terms of linear positioning. Our results demonstrate that comprehenders maintain probabilistic syntactic expectations that persist beyond projective-dependency structures, and suggest that it may be possible to explain observed patterns of comprehension difficulty associated with extraposition entirely through probabilistic expectations. PMID:22035959
Probabilistic analysis of tsunami hazards
Geist, E.L.; Parsons, T.
2006-01-01
Determining the likelihood of a disaster is a key component of any comprehensive hazard assessment. This is particularly true for tsunamis, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models. We discuss probabilistic tsunami hazard analysis (PTHA) from the standpoint of integrating computational methods with empirical analysis of past tsunami runup. PTHA is derived from probabilistic seismic hazard analysis (PSHA), with the main difference being that PTHA must account for far-field sources. The computational methods rely on numerical tsunami propagation models rather than empirical attenuation relationships as in PSHA in determining ground motions. Because a number of source parameters affect local tsunami runup height, PTHA can become complex and computationally intensive. Empirical analysis can function in one of two ways, depending on the length and completeness of the tsunami catalog. For site-specific studies where there is sufficient tsunami runup data available, hazard curves can primarily be derived from empirical analysis, with computational methods used to highlight deficiencies in the tsunami catalog. For region-wide analyses and sites where there are little to no tsunami data, a computationally based method such as Monte Carlo simulation is the primary method to establish tsunami hazards. Two case studies that describe how computational and empirical methods can be integrated are presented for Acapulco, Mexico (site-specific) and the U.S. Pacific Northwest coastline (region-wide analysis).
A Robust Approach to Risk Assessment Based on Species Sensitivity Distributions.
Monti, Gianna S; Filzmoser, Peter; Deutsch, Roland C
2018-05-03
The guidelines for setting environmental quality standards are increasingly based on probabilistic risk assessment due to a growing general awareness of the need for probabilistic procedures. One of the commonly used tools in probabilistic risk assessment is the species sensitivity distribution (SSD), which represents the proportion of species affected belonging to a biological assemblage as a function of exposure to a specific toxicant. Our focus is on the inverse use of the SSD curve with the aim of estimating the concentration, HCp, of a toxic compound that is hazardous to p% of the biological community under study. Toward this end, we propose the use of robust statistical methods in order to take into account the presence of outliers or apparent skew in the data, which may occur without any ecological basis. A robust approach exploits the full neighborhood of a parametric model, enabling the analyst to account for the typical real-world deviations from ideal models. We examine two classic HCp estimation approaches and consider robust versions of these estimators. In addition, we also use data transformations in conjunction with robust estimation methods in case of heteroscedasticity. Different scenarios using real data sets as well as simulated data are presented in order to illustrate and compare the proposed approaches. These scenarios illustrate that the use of robust estimation methods enhances HCp estimation. © 2018 Society for Risk Analysis.
Sampling Assumptions Affect Use of Indirect Negative Evidence in Language Learning.
Hsu, Anne; Griffiths, Thomas L
2016-01-01
A classic debate in cognitive science revolves around understanding how children learn complex linguistic patterns, such as restrictions on verb alternations and contractions, without negative evidence. Recently, probabilistic models of language learning have been applied to this problem, framing it as a statistical inference from a random sample of sentences. These probabilistic models predict that learners should be sensitive to the way in which sentences are sampled. There are two main types of sampling assumptions that can operate in language learning: strong and weak sampling. Strong sampling, as assumed by probabilistic models, assumes the learning input is drawn from a distribution of grammatical samples from the underlying language and aims to learn this distribution. Thus, under strong sampling, the absence of a sentence construction from the input provides evidence that it has low or zero probability of grammaticality. Weak sampling does not make assumptions about the distribution from which the input is drawn, and thus the absence of a construction from the input as not used as evidence of its ungrammaticality. We demonstrate in a series of artificial language learning experiments that adults can produce behavior consistent with both sets of sampling assumptions, depending on how the learning problem is presented. These results suggest that people use information about the way in which linguistic input is sampled to guide their learning.
Sampling Assumptions Affect Use of Indirect Negative Evidence in Language Learning
2016-01-01
A classic debate in cognitive science revolves around understanding how children learn complex linguistic patterns, such as restrictions on verb alternations and contractions, without negative evidence. Recently, probabilistic models of language learning have been applied to this problem, framing it as a statistical inference from a random sample of sentences. These probabilistic models predict that learners should be sensitive to the way in which sentences are sampled. There are two main types of sampling assumptions that can operate in language learning: strong and weak sampling. Strong sampling, as assumed by probabilistic models, assumes the learning input is drawn from a distribution of grammatical samples from the underlying language and aims to learn this distribution. Thus, under strong sampling, the absence of a sentence construction from the input provides evidence that it has low or zero probability of grammaticality. Weak sampling does not make assumptions about the distribution from which the input is drawn, and thus the absence of a construction from the input as not used as evidence of its ungrammaticality. We demonstrate in a series of artificial language learning experiments that adults can produce behavior consistent with both sets of sampling assumptions, depending on how the learning problem is presented. These results suggest that people use information about the way in which linguistic input is sampled to guide their learning. PMID:27310576
Is probabilistic bias analysis approximately Bayesian?
MacLehose, Richard F.; Gustafson, Paul
2011-01-01
Case-control studies are particularly susceptible to differential exposure misclassification when exposure status is determined following incident case status. Probabilistic bias analysis methods have been developed as ways to adjust standard effect estimates based on the sensitivity and specificity of exposure misclassification. The iterative sampling method advocated in probabilistic bias analysis bears a distinct resemblance to a Bayesian adjustment; however, it is not identical. Furthermore, without a formal theoretical framework (Bayesian or frequentist), the results of a probabilistic bias analysis remain somewhat difficult to interpret. We describe, both theoretically and empirically, the extent to which probabilistic bias analysis can be viewed as approximately Bayesian. While the differences between probabilistic bias analysis and Bayesian approaches to misclassification can be substantial, these situations often involve unrealistic prior specifications and are relatively easy to detect. Outside of these special cases, probabilistic bias analysis and Bayesian approaches to exposure misclassification in case-control studies appear to perform equally well. PMID:22157311
Development of probabilistic multimedia multipathway computer codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, C.; LePoire, D.; Gnanapragasam, E.
2002-01-01
The deterministic multimedia dose/risk assessment codes RESRAD and RESRAD-BUILD have been widely used for many years for evaluation of sites contaminated with residual radioactive materials. The RESRAD code applies to the cleanup of sites (soils) and the RESRAD-BUILD code applies to the cleanup of buildings and structures. This work describes the procedure used to enhance the deterministic RESRAD and RESRAD-BUILD codes for probabilistic dose analysis. A six-step procedure was used in developing default parameter distributions and the probabilistic analysis modules. These six steps include (1) listing and categorizing parameters; (2) ranking parameters; (3) developing parameter distributions; (4) testing parameter distributionsmore » for probabilistic analysis; (5) developing probabilistic software modules; and (6) testing probabilistic modules and integrated codes. The procedures used can be applied to the development of other multimedia probabilistic codes. The probabilistic versions of RESRAD and RESRAD-BUILD codes provide tools for studying the uncertainty in dose assessment caused by uncertain input parameters. The parameter distribution data collected in this work can also be applied to other multimedia assessment tasks and multimedia computer codes.« less
Probabilistic structural analysis methods for select space propulsion system components
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Cruse, T. A.
1989-01-01
The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.
The in-depth safety assessment (ISA) pilot projects in Ukraine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kot, C. A.
1998-02-10
Ukraine operates pressurized water reactors of the Soviet-designed type, VVER. All Ukrainian plants are currently operating with annually renewable permits until they update their safety analysis reports (SARs). After approval of the SARS by the Ukrainian Nuclear Regulatory Authority, the plants will be granted longer-term operating licenses. In September 1995, the Nuclear Regulatory Authority and the Government Nuclear Power Coordinating Committee of Ukraine issued a new contents requirement for the safety analysis reports of VVERs in Ukraine. It contains requirements in three major areas: design basis accident (DBA) analysis, probabilistic risk assessment (PRA), and beyond design-basis accident (BDBA) analysis. Themore » DBA requirements are an expanded version of the older SAR requirements. The last two requirements, on PRA and BDBA, are new. The US Department of Energy (USDOE), through the International Nuclear Safety Program (INSP), has initiated an assistance and technology transfer program to Ukraine to assist their nuclear power stations in developing a Western-type technical basis for the new SARS. USDOE sponsored In-Depth Safety Assessments (ISAs) have been initiated at three pilot nuclear reactor units in Ukraine, South Ukraine Unit 1, Zaporizhzhya Unit 5, and Rivne Unit 1. USDOE/INSP have structured the ISA program in such a way as to provide maximum assistance and technology transfer to Ukraine while encouraging and supporting the Ukrainian plants to take the responsibility and initiative and to perform the required assessments.« less
Frontal and Parietal Contributions to Probabilistic Association Learning
Rushby, Jacqueline A.; Vercammen, Ans; Loo, Colleen; Short, Brooke
2011-01-01
Neuroimaging studies have shown both dorsolateral prefrontal (DLPFC) and inferior parietal cortex (iPARC) activation during probabilistic association learning. Whether these cortical brain regions are necessary for probabilistic association learning is presently unknown. Participants' ability to acquire probabilistic associations was assessed during disruptive 1 Hz repetitive transcranial magnetic stimulation (rTMS) of the left DLPFC, left iPARC, and sham using a crossover single-blind design. On subsequent sessions, performance improved relative to baseline except during DLPFC rTMS that disrupted the early acquisition beneficial effect of prior exposure. A second experiment examining rTMS effects on task-naive participants showed that neither DLPFC rTMS nor sham influenced naive acquisition of probabilistic associations. A third experiment examining consecutive administration of the probabilistic association learning test revealed early trial interference from previous exposure to different probability schedules. These experiments, showing disrupted acquisition of probabilistic associations by rTMS only during subsequent sessions with an intervening night's sleep, suggest that the DLPFC may facilitate early access to learned strategies or prior task-related memories via consolidation. Although neuroimaging studies implicate DLPFC and iPARC in probabilistic association learning, the present findings suggest that early acquisition of the probabilistic cue-outcome associations in task-naive participants is not dependent on either region. PMID:21216842
Newgard, Craig; Malveau, Susan; Staudenmayer, Kristan; Wang, N. Ewen; Hsia, Renee Y.; Mann, N. Clay; Holmes, James F.; Kuppermann, Nathan; Haukoos, Jason S.; Bulger, Eileen M.; Dai, Mengtao; Cook, Lawrence J.
2012-01-01
Objectives The objective was to evaluate the process of using existing data sources, probabilistic linkage, and multiple imputation to create large population-based injury databases matched to outcomes. Methods This was a retrospective cohort study of injured children and adults transported by 94 emergency medical systems (EMS) agencies to 122 hospitals in seven regions of the western United States over a 36-month period (2006 to 2008). All injured patients evaluated by EMS personnel within specific geographic catchment areas were included, regardless of field disposition or outcome. The authors performed probabilistic linkage of EMS records to four hospital and postdischarge data sources (emergency department [ED] data, patient discharge data, trauma registries, and vital statistics files) and then handled missing values using multiple imputation. The authors compare and evaluate matched records, match rates (proportion of matches among eligible patients), and injury outcomes within and across sites. Results There were 381,719 injured patients evaluated by EMS personnel in the seven regions. Among transported patients, match rates ranged from 14.9% to 87.5% and were directly affected by the availability of hospital data sources and proportion of missing values for key linkage variables. For vital statistics records (1-year mortality), estimated match rates ranged from 88.0% to 98.7%. Use of multiple imputation (compared to complete case analysis) reduced bias for injury outcomes, although sample size, percentage missing, type of variable, and combined-site versus single-site imputation models all affected the resulting estimates and variance. Conclusions This project demonstrates the feasibility and describes the process of constructing population-based injury databases across multiple phases of care using existing data sources and commonly available analytic methods. Attention to key linkage variables and decisions for handling missing values can be used to increase match rates between data sources, minimize bias, and preserve sampling design. PMID:22506952
The Role of Affect in Cross-Cultural Competence
2012-04-26
4.56 2.58 .70 .89 Food Affect (pre) 1.00 5.00 3.10 .70 .91 Food Affect (post) 1.00 5.00 3.22 1.00 .95 Food Safety (pre) 1.57 5.00 3.35 .82 Food ...controlled for Looked at affect in terms of food affect and food safety Hypotheses and Results (cont.) • Hypothesis 2a*: Disgust sensitivity will be...05 • Food Safety , r(96)=-.13, n.s. • Disgust Sensitivity, r(96)=-.16, n.s. • Contamination, r(96)=-.24, p<.05 • Core Disgust, r(96)=-.20, p=.05
Density Control of Multi-Agent Systems with Safety Constraints: A Markov Chain Approach
NASA Astrophysics Data System (ADS)
Demirer, Nazli
The control of systems with autonomous mobile agents has been a point of interest recently, with many applications like surveillance, coverage, searching over an area with probabilistic target locations or exploring an area. In all of these applications, the main goal of the swarm is to distribute itself over an operational space to achieve mission objectives specified by the density of swarm. This research focuses on the problem of controlling the distribution of multi-agent systems considering a hierarchical control structure where the whole swarm coordination is achieved at the high-level and individual vehicle/agent control is managed at the low-level. High-level coordination algorithms uses macroscopic models that describes the collective behavior of the whole swarm and specify the agent motion commands, whose execution will lead to the desired swarm behavior. The low-level control laws execute the motion to follow these commands at the agent level. The main objective of this research is to develop high-level decision control policies and algorithms to achieve physically realizable commanding of the agents by imposing mission constraints on the distribution. We also make some connections with decentralized low-level motion control. This dissertation proposes a Markov chain based method to control the density distribution of the whole system where the implementation can be achieved in a decentralized manner with no communication between agents since establishing communication with large number of agents is highly challenging. The ultimate goal is to guide the overall density distribution of the system to a prescribed steady-state desired distribution while satisfying desired transition and safety constraints. Here, the desired distribution is determined based on the mission requirements, for example in the application of area search, the desired distribution should match closely with the probabilistic target locations. The proposed method is applicable for both systems with a single agent and systems with large number of agents due to the probabilistic nature, where the probability distribution of each agent's state evolves according to a finite-state and discrete-time Markov chain (MC). Hence, designing proper decision control policies requires numerically tractable solution methods for the synthesis of Markov chains. The synthesis problem has the form of a Linear Matrix Inequality Problem (LMI), with LMI formulation of the constraints. To this end, we propose convex necessary and sufficient conditions for safety constraints in Markov chains, which is a novel result in the Markov chain literature. In addition to LMI-based, offline, Markov matrix synthesis method, we also propose a QP-based, online, method to compute a time-varying Markov matrix based on the real-time density feedback. Both problems are convex optimization problems that can be solved in a reliable and tractable way, utilizing existing tools in the literature. A Low Earth Orbit (LEO) swarm simulations are presented to validate the effectiveness of the proposed algorithms. Another problem tackled as a part of this research is the generalization of the density control problem to autonomous mobile agents with two control modes: ON and OFF. Here, each mode consists of a (possibly overlapping) finite set of actions, that is, there exist a set of actions for the ON mode and another set for the OFF mode. We give formulation for a new Markov chain synthesis problem, with additional measurements for the state transitions, where a policy is designed to ensure desired safety and convergence properties for the underlying Markov chain.
The effects of organizational commitment and structural empowerment on patient safety culture.
Horwitz, Sujin K; Horwitz, Irwin B
2017-03-20
Purpose The purpose of this paper is to investigate the relationship between patient safety culture and two attitudinal constructs: affective organizational commitment and structural empowerment. In doing so, the main and interaction effects of the two constructs on the perception of patient safety culture were assessed using a cohort of physicians. Design/methodology/approach Affective commitment was measured with the Organizational Commitment Questionnaire, whereas structural empowerment was assessed with the Conditions of Work Effectiveness Questionnaire-II. The abbreviated versions of these surveys were administered to a cohort of 71 post-doctoral medical residents. For the data analysis, hierarchical regression analyses were performed for the main and interaction effects of affective commitment and structural empowerment on the perception of patient safety culture. Findings A total of 63 surveys were analyzed. The results revealed that both affective commitment and structural empowerment were positively related to patient safety culture. A potential interaction effect of the two attitudinal constructs on patient safety culture was tested but no such effect was detected. Research limitations/implications This study suggests that there are potential benefits of promoting affective commitment and structural empowerment for patient safety culture in health care organizations. By identifying the positive associations between the two constructs and patient safety culture, this study provides additional empirical support for Kanter's theoretical tenet that structural and organizational support together helps to shape the perceptions of patient safety culture. Originality/value Despite the wide recognition of employee empowerment and commitment in organizational research, there has still been a paucity of empirical studies specifically assessing their effects on patient safety culture in health care organizations. To the authors' knowledge, this study is the first empirical study to examine the relationship between structural empowerment as proposed by Kanter and the culture of patient safety using physicians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldemir, Tunc; Denning, Richard; Catalyurek, Umit
Reduction in safety margin can be expected as passive structures and components undergo degradation with time. Limitations in the traditional probabilistic risk assessment (PRA) methodology constrain its value as an effective tool to address the impact of aging effects on risk and for quantifying the impact of aging management strategies in maintaining safety margins. A methodology has been developed to address multiple aging mechanisms involving large numbers of components (with possibly statistically dependent failures) within the PRA framework in a computationally feasible manner when the sequencing of events is conditioned on the physical conditions predicted in a simulation environment, suchmore » as the New Generation System Code (NGSC) concept. Both epistemic and aleatory uncertainties can be accounted for within the same phenomenological framework and maintenance can be accounted for in a coherent fashion. The framework accommodates the prospective impacts of various intervention strategies such as testing, maintenance, and refurbishment. The methodology is illustrated with several examples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankovsky, Zachary Kyle; Denman, Matthew R.
It is difficult to assess the consequences of a transient in a sodium-cooled fast reactor (SFR) using traditional probabilistic risk assessment (PRA) methods, as numerous safety-related sys- tems have passive characteristics. Often there is significant dependence on the value of con- tinuous stochastic parameters rather than binary success/failure determinations. One form of dynamic PRA uses a system simulator to represent the progression of a transient, tracking events through time in a discrete dynamic event tree (DDET). In order to function in a DDET environment, a simulator must have characteristics that make it amenable to changing physical parameters midway through themore » analysis. The SAS4A SFR system analysis code did not have these characteristics as received. This report describes the code modifications made to allow dynamic operation as well as the linking to a Sandia DDET driver code. A test case is briefly described to demonstrate the utility of the changes.« less
Measuring the Resilience of Advanced Life Support Systems
NASA Technical Reports Server (NTRS)
Bell, Ann Maria; Dearden, Richard; Levri, Julie A.
2002-01-01
Despite the central importance of crew safety in designing and operating a life support system, the metric commonly used to evaluate alternative Advanced Life Support (ALS) technologies does not currently provide explicit techniques for measuring safety. The resilience of a system, or the system s ability to meet performance requirements and recover from component-level faults, is fundamentally a dynamic property. This paper motivates the use of computer models as a tool to understand and improve system resilience throughout the design process. Extensive simulation of a hybrid computational model of a water revitalization subsystem (WRS) with probabilistic, component-level faults provides data about off-nominal behavior of the system. The data can then be used to test alternative measures of resilience as predictors of the system s ability to recover from component-level faults. A novel approach to measuring system resilience using a Markov chain model of performance data is also developed. Results emphasize that resilience depends on the complex interaction of faults, controls, and system dynamics, rather than on simple fault probabilities.
Master Logic Diagram: An Approach to Identify Initiating Events of HTGRs
NASA Astrophysics Data System (ADS)
Purba, J. H.
2018-02-01
Initiating events of a nuclear power plant being evaluated need to be firstly identified prior to applying probabilistic safety assessment on that plant. Various types of master logic diagrams (MLDs) have been proposedforsearching initiating events of the next generation of nuclear power plants, which have limited data and operating experiences. Those MLDs are different in the number of steps or levels and different in the basis for developing them. This study proposed another type of MLD approach to find high temperature gas cooled reactor (HTGR) initiating events. It consists of five functional steps starting from the top event representing the final objective of the safety functions to the basic event representing the goal of the MLD development, which is an initiating event. The application of the proposed approach to search for two HTGR initiating events, i.e. power turbine generator trip and loss of offsite power, is provided. The results confirmed that the proposed MLD is feasiblefor finding HTGR initiating events.
Probabilistic Ontology Architecture for a Terrorist Identification Decision Support System
2014-06-01
in real-world problems requires probabilistic ontologies, which integrate the inferential reasoning power of probabilistic representations with the... inferential reasoning power of probabilistic representations with the first-order expressivity of ontologies. The Reference Architecture for...ontology, terrorism, inferential reasoning, architecture I. INTRODUCTION A. Background Whether by nature or design, the personas of terrorists are
Probabilistic Evaluation of Blade Impact Damage
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Abumeri, G. H.
2003-01-01
The response to high velocity impact of a composite blade is probabilistically evaluated. The evaluation is focused on quantifying probabilistically the effects of uncertainties (scatter) in the variables that describe the impact, the blade make-up (geometry and material), the blade response (displacements, strains, stresses, frequencies), the blade residual strength after impact, and the blade damage tolerance. The results of probabilistic evaluations results are in terms of probability cumulative distribution functions and probabilistic sensitivities. Results show that the blade has relatively low damage tolerance at 0.999 probability of structural failure and substantial at 0.01 probability.
Probabilistic Simulation of Stress Concentration in Composite Laminates
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Liaw, D. G.
1994-01-01
A computational methodology is described to probabilistically simulate the stress concentration factors (SCF's) in composite laminates. This new approach consists of coupling probabilistic composite mechanics with probabilistic finite element structural analysis. The composite mechanics is used to probabilistically describe all the uncertainties inherent in composite material properties, whereas the finite element is used to probabilistically describe the uncertainties associated with methods to experimentally evaluate SCF's, such as loads, geometry, and supports. The effectiveness of the methodology is demonstrated by using is to simulate the SCF's in three different composite laminates. Simulated results match experimental data for probability density and for cumulative distribution functions. The sensitivity factors indicate that the SCF's are influenced by local stiffness variables, by load eccentricities, and by initial stress fields.
Impact of Passive Safety on FHR Instrumentation Systems Design and Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, David Eugene
2015-01-01
Fluoride salt-cooled high-temperature reactors (FHRs) will rely more extensively on passive safety than earlier reactor classes. 10CFR50 Appendix A, General Design Criteria for Nuclear Power Plants, establishes minimum design requirements to provide reasonable assurance of adequate safety. 10CFR50.69, Risk-Informed Categorization and Treatment of Structures, Systems and Components for Nuclear Power Reactors, provides guidance on how the safety significance of systems, structures, and components (SSCs) should be reflected in their regulatory treatment. The Nuclear Energy Institute (NEI) has provided 10 CFR 50.69 SSC Categorization Guideline (NEI-00-04) that factors in probabilistic risk assessment (PRA) model insights, as well as deterministic insights, throughmore » an integrated decision-making panel. Employing the PRA to inform deterministic requirements enables an appropriately balanced, technically sound categorization to be established. No FHR currently has an adequate PRA or set of design basis accidents to enable establishing the safety classification of its SSCs. While all SSCs used to comply with the general design criteria (GDCs) will be safety related, the intent is to limit the instrumentation risk significance through effective design and reliance on inherent passive safety characteristics. For example, FHRs have no safety-significant temperature threshold phenomena, thus enabling the primary and reserve reactivity control systems required by GDC 26 to be passively, thermally triggered at temperatures well below those for which core or primary coolant boundary damage would occur. Moreover, the passive thermal triggering of the primary and reserve shutdown systems may relegate the control rod drive motors to the control system, substantially decreasing the amount of safety-significant wiring needed. Similarly, FHR decay heat removal systems are intended to be running continuously to minimize the amount of safety-significant instrumentation needed to initiate operation of systems and components important to safety as required in GDC 20. This paper provides an overview of the design process employed to develop a pre-conceptual FHR instrumentation architecture intended to lower plant capital and operational costs by minimizing reliance on expensive, safety related, safety-significant instrumentation through the use of inherent passive features of FHRs.« less
Modeling Techniques for Shipboard Manning: A Review and Plan for Development
1993-02-01
manning levels. Once manning models have been created, experiments can be conducted to show how changes in the manning structure might affect ship safety...these predictions, users of the manning models can evaluate how changes in crew configurations, manning levels, and voyage profiles affect ship safety...mitigate emergency situations would provide crucial information on how changes in manning structure would affect overall ship safety. Like emergency
Network reciprocity by coexisting learning and teaching strategies
NASA Astrophysics Data System (ADS)
Tanimoto, Jun; Brede, Markus; Yamauchi, Atsuo
2012-03-01
We propose a network reciprocity model in which an agent probabilistically adopts learning or teaching strategies. In the learning adaptation mechanism, an agent may copy a neighbor's strategy through Fermi pairwise comparison. The teaching adaptation mechanism involves an agent imposing its strategy on a neighbor. Our simulations reveal that the reciprocity is significantly affected by the frequency with which learning and teaching agents coexist in a network and by the structure of the network itself.
Probabilistic Modeling and Simulation of Metal Fatigue Life Prediction
2002-09-01
distribution demonstrate the central limit theorem? Obviously not! This is much the same as materials testing. If only NBA basketball stars are...60 near the exit of a NBA locker room. There would obviously be some pseudo-normal distribution with a very small standard deviation. The mean...completed, the investigators must understand how the midgets and the NBA stars will affect the total solution. D. IT IS MUCH SIMPLER TO MODEL THE
Abou, Seraphin C
2012-03-01
In this paper, a new interpretation of intuitionistic fuzzy sets in the advanced framework of the Dempster-Shafer theory of evidence is extended to monitor safety-critical systems' performance. Not only is the proposed approach more effective, but it also takes into account the fuzzy rules that deal with imperfect knowledge/information and, therefore, is different from the classical Takagi-Sugeno fuzzy system, which assumes that the rule (the knowledge) is perfect. We provide an analytical solution to the practical and important problem of the conceptual probabilistic approach for formal ship safety assessment using the fuzzy set theory that involves uncertainties associated with the reliability input data. Thus, the overall safety of the ship engine is investigated as an object of risk analysis using the fuzzy mapping structure, which considers uncertainty and partial truth in the input-output mapping. The proposed method integrates direct evidence of the frame of discernment and is demonstrated through references to examples where fuzzy set models are informative. These simple applications illustrate how to assess the conflict of sensor information fusion for a sufficient cooling power system of vessels under extreme operation conditions. It was found that propulsion engine safety systems are not only a function of many environmental and operation profiles but are also dynamic and complex. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fatimah, F.; Rosadi, D.; Hakim, R. B. F.
2018-03-01
In this paper, we motivate and introduce probabilistic soft sets and dual probabilistic soft sets for handling decision making problem in the presence of positive and negative parameters. We propose several types of algorithms related to this problem. Our procedures are flexible and adaptable. An example on real data is also given.
Learning Probabilistic Logic Models from Probabilistic Examples
Chen, Jianzhong; Muggleton, Stephen; Santos, José
2009-01-01
Abstract We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples. PMID:19888348
Learning Probabilistic Logic Models from Probabilistic Examples.
Chen, Jianzhong; Muggleton, Stephen; Santos, José
2008-10-01
We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.
Probabilistic simulation of uncertainties in thermal structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Shiao, Michael
1990-01-01
Development of probabilistic structural analysis methods for hot structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) blade temperature, pressure, and torque of the Space Shuttle Main Engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; (3) evaluation of the failure probability; (4) reliability and risk-cost assessment, and (5) an outline of an emerging approach for eventual hot structures certification. Collectively, the results demonstrate that the structural durability/reliability of hot structural components can be effectively evaluated in a formal probabilistic framework. In addition, the approach can be readily extended to computationally simulate certification of hot structures for aerospace environments.
Amirouche, Farid; Solitro, Giovanni F; Walia, Amit; Gonzalez, Mark; Bobko, Aimee
2017-08-01
Management of segmental rim defects and bone mineral density (BMD) loss in the elderly prior to total hip replacement is unclear within classification systems for acetabular bone loss. In this study, our objectives were (1) to understand how a reduction in BMD in the elderly affects the oversizing of a press-fit cup for primary fixation and (2) to evaluate whether the location of the segmental defect affected cup fixation. A finite element (FE) model was used to simulate and evaluate cup insertion and fixation in the context of segmental rim defects. We focused on the distribution of patients over age 70 and used BMD (estimated from CT) as a proxy for aging's implications on THR and used probabilistic FE analysis to understand how BMD loss affects oversizing of a press-fit cup. A cup oversized by 1.10 ± 0.28 mm provides sufficient fixation and lower stresses at the cup-bone interface for elderly patients. Defects in the anterior column and posterior column both required the same mean insertion force for cup seating of 84% (taken as an average of 2 anterior column and 2 posterior column defects) compared to the control configuration, which was 5% greater than the insertion force for a superior rim defect and 12% greater than the insertion force for an inferior rim defect. A defect along the superior or inferior rim had a minimal effect on cup fixation, while a defect in the columns created cup instability and increased stress at the defect location.
Probabilistic peak detection for first-order chromatographic data.
Lopatka, M; Vivó-Truyols, G; Sjerps, M J
2014-03-19
We present a novel algorithm for probabilistic peak detection in first-order chromatographic data. Unlike conventional methods that deliver a binary answer pertaining to the expected presence or absence of a chromatographic peak, our method calculates the probability of a point being affected by such a peak. The algorithm makes use of chromatographic information (i.e. the expected width of a single peak and the standard deviation of baseline noise). As prior information of the existence of a peak in a chromatographic run, we make use of the statistical overlap theory. We formulate an exhaustive set of mutually exclusive hypotheses concerning presence or absence of different peak configurations. These models are evaluated by fitting a segment of chromatographic data by least-squares. The evaluation of these competing hypotheses can be performed as a Bayesian inferential task. We outline the potential advantages of adopting this approach for peak detection and provide several examples of both improved performance and increased flexibility afforded by our approach. Copyright © 2014 Elsevier B.V. All rights reserved.
Blind image quality assessment via probabilistic latent semantic analysis.
Yang, Xichen; Sun, Quansen; Wang, Tianshu
2016-01-01
We propose a blind image quality assessment that is highly unsupervised and training free. The new method is based on the hypothesis that the effect caused by distortion can be expressed by certain latent characteristics. Combined with probabilistic latent semantic analysis, the latent characteristics can be discovered by applying a topic model over a visual word dictionary. Four distortion-affected features are extracted to form the visual words in the dictionary: (1) the block-based local histogram; (2) the block-based local mean value; (3) the mean value of contrast within a block; (4) the variance of contrast within a block. Based on the dictionary, the latent topics in the images can be discovered. The discrepancy between the frequency of the topics in an unfamiliar image and a large number of pristine images is applied to measure the image quality. Experimental results for four open databases show that the newly proposed method correlates well with human subjective judgments of diversely distorted images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plessis, Sylvain; Carrasco, Nathalie; Pernot, Pascal
Experimental data about branching ratios for the products of dissociative recombination of polyatomic ions are presently the unique information source available to modelers of natural or laboratory chemical plasmas. Yet, because of limitations in the measurement techniques, data for many ions are incomplete. In particular, the repartition of hydrogen atoms among the fragments of hydrocarbons ions is often not available. A consequence is that proper implementation of dissociative recombination processes in chemical models is difficult, and many models ignore invaluable data. We propose a novel probabilistic approach based on Dirichlet-type distributions, enabling modelers to fully account for the available information.more » As an application, we consider the production rate of radicals through dissociative recombination in an ionospheric chemistry model of Titan, the largest moon of Saturn. We show how the complete scheme of dissociative recombination products derived with our method dramatically affects these rates in comparison with the simplistic H-loss mechanism implemented by default in all recent models.« less
Plessis, Sylvain; Carrasco, Nathalie; Pernot, Pascal
2010-10-07
Experimental data about branching ratios for the products of dissociative recombination of polyatomic ions are presently the unique information source available to modelers of natural or laboratory chemical plasmas. Yet, because of limitations in the measurement techniques, data for many ions are incomplete. In particular, the repartition of hydrogen atoms among the fragments of hydrocarbons ions is often not available. A consequence is that proper implementation of dissociative recombination processes in chemical models is difficult, and many models ignore invaluable data. We propose a novel probabilistic approach based on Dirichlet-type distributions, enabling modelers to fully account for the available information. As an application, we consider the production rate of radicals through dissociative recombination in an ionospheric chemistry model of Titan, the largest moon of Saturn. We show how the complete scheme of dissociative recombination products derived with our method dramatically affects these rates in comparison with the simplistic H-loss mechanism implemented by default in all recent models.
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Huang, W.; Fan, Y. R.; Li, Z.
2015-10-01
In this study, a fractional factorial probabilistic collocation method is proposed to reveal statistical significance of hydrologic model parameters and their multi-level interactions affecting model outputs, facilitating uncertainty propagation in a reduced dimensional space. The proposed methodology is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability, as well as its capability of revealing complex and dynamic parameter interactions. A set of reduced polynomial chaos expansions (PCEs) only with statistically significant terms can be obtained based on the results of factorial analysis of variance (ANOVA), achieving a reduction of uncertainty in hydrologic predictions. The predictive performance of reduced PCEs is verified by comparing against standard PCEs and the Monte Carlo with Latin hypercube sampling (MC-LHS) method in terms of reliability, sharpness, and Nash-Sutcliffe efficiency (NSE). Results reveal that the reduced PCEs are able to capture hydrologic behaviors of the Xiangxi River watershed, and they are efficient functional representations for propagating uncertainties in hydrologic predictions.
Recent developments of the NESSUS probabilistic structural analysis computer program
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.
1992-01-01
The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.
NASA Astrophysics Data System (ADS)
Gao, Yi
The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities. There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina M.; Zumwalt, Hannah Ruth; Clark, Andrew Jordan
2016-03-01
Hydrogen Risk Assessment Models (HyRAM) is a prototype software toolkit that integrates data and methods relevant to assessing the safety of hydrogen fueling and storage infrastructure. The HyRAM toolkit integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing the impact of hydrogen hazards, including thermal effects from jet fires and thermal pressure effects from deflagration. HyRAM version 1.0 incorporates generic probabilities for equipment failures for nine types of components, and probabilistic models for the impact of heat flux on humans and structures, with computationally and experimentally validated models of various aspects of gaseous hydrogen releasemore » and flame physics. This document provides an example of how to use HyRAM to conduct analysis of a fueling facility. This document will guide users through the software and how to enter and edit certain inputs that are specific to the user-defined facility. Description of the methodology and models contained in HyRAM is provided in [1]. This User’s Guide is intended to capture the main features of HyRAM version 1.0 (any HyRAM version numbered as 1.0.X.XXX). This user guide was created with HyRAM 1.0.1.798. Due to ongoing software development activities, newer versions of HyRAM may have differences from this guide.« less
Woldegebriel, Michael; Derks, Eduard
2017-01-17
In this work, a novel probabilistic untargeted feature detection algorithm for liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) using artificial neural network (ANN) is presented. The feature detection process is approached as a pattern recognition problem, and thus, ANN was utilized as an efficient feature recognition tool. Unlike most existing feature detection algorithms, with this approach, any suspected chromatographic profile (i.e., shape of a peak) can easily be incorporated by training the network, avoiding the need to perform computationally expensive regression methods with specific mathematical models. In addition, with this method, we have shown that the high-resolution raw data can be fully utilized without applying any arbitrary thresholds or data reduction, therefore improving the sensitivity of the method for compound identification purposes. Furthermore, opposed to existing deterministic (binary) approaches, this method rather estimates the probability of a feature being present/absent at a given point of interest, thus giving chance for all data points to be propagated down the data analysis pipeline, weighed with their probability. The algorithm was tested with data sets generated from spiked samples in forensic and food safety context and has shown promising results by detecting features for all compounds in a computationally reasonable time.
Billoir, Elise; Denis, Jean-Baptiste; Cammeau, Natalie; Cornu, Marie; Zuliani, Veronique
2011-02-01
To assess the impact of the manufacturing process on the fate of Listeria monocytogenes, we built a generic probabilistic model intended to simulate the successive steps in the process. Contamination evolution was modeled in the appropriate units (breasts, dice, and then packaging units through the successive steps in the process). To calibrate the model, parameter values were estimated from industrial data, from the literature, and based on expert opinion. By means of simulations, the model was explored using a baseline calibration and alternative scenarios, in order to assess the impact of changes in the process and of accidental events. The results are reported as contamination distributions and as the probability that the product will be acceptable with regards to the European regulatory safety criterion. Our results are consistent with data provided by industrial partners and highlight that tumbling is a key step for the distribution of the contamination at the end of the process. Process chain models could provide an important added value for risk assessment models that basically consider only the outputs of the process in their risk mitigation strategies. Moreover, a model calibrated to correspond to a specific plant could be used to optimize surveillance. © 2010 Society for Risk Analysis.
Quantitative safety assessment of air traffic control systems through system control capacity
NASA Astrophysics Data System (ADS)
Guo, Jingjing
Quantitative Safety Assessments (QSA) are essential to safety benefit verification and regulations of developmental changes in safety critical systems like the Air Traffic Control (ATC) systems. Effectiveness of the assessments is particularly desirable today in the safe implementations of revolutionary ATC overhauls like NextGen and SESAR. QSA of ATC systems are however challenged by system complexity and lack of accident data. Extending from the idea "safety is a control problem" in the literature, this research proposes to assess system safety from the control perspective, through quantifying a system's "control capacity". A system's safety performance correlates to this "control capacity" in the control of "safety critical processes". To examine this idea in QSA of the ATC systems, a Control-capacity Based Safety Assessment Framework (CBSAF) is developed which includes two control capacity metrics and a procedural method. The two metrics are Probabilistic System Control-capacity (PSC) and Temporal System Control-capacity (TSC); each addresses an aspect of a system's control capacity. And the procedural method consists three general stages: I) identification of safety critical processes, II) development of system control models and III) evaluation of system control capacity. The CBSAF was tested in two case studies. The first one assesses an en-route collision avoidance scenario and compares three hypothetical configurations. The CBSAF was able to capture the uncoordinated behavior between two means of control, as was observed in a historic midair collision accident. The second case study compares CBSAF with an existing risk based QSA method in assessing the safety benefits of introducing a runway incursion alert system. Similar conclusions are reached between the two methods, while the CBSAF has the advantage of simplicity and provides a new control-based perspective and interpretation to the assessments. The case studies are intended to investigate the potential and demonstrate the utilities of CBSAF and are not intended for thorough studies of collision avoidance and runway incursions safety, which are extremely challenging problems. Further development and thorough validations are required to allow CBSAF to reach implementation phases, e.g. addressing the issues of limited scalability and subjectivity.
Learning Sparse Feature Representations using Probabilistic Quadtrees and Deep Belief Nets
2015-04-24
Feature Representations usingProbabilistic Quadtrees and Deep Belief Nets Learning sparse feature representations is a useful instru- ment for solving an...novel framework for the classifi cation of handwritten digits that learns sparse representations using probabilistic quadtrees and Deep Belief Nets... Learning Sparse Feature Representations usingProbabilistic Quadtrees and Deep Belief Nets Report Title Learning sparse feature representations is a useful
Bonasia, Rosanna; Scaini, Chirara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau
2013-01-01
Popocatépetl is one of Mexico’s most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene–Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl’s reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the “Ochre Pumice” Plinian eruption (4965 14C yr BP). FALL3D model input eruptive parameters are constrained through an inversion method carried out with the semi-analytical HAZMAP model and are varied by sampling them using probability density functions. We analyze the influence of seasonal variations on ash dispersal and estimate the average persistence of critical ash concentrations at relevant locations and airports. This study assesses the impact that a Plinian eruption similar to the Ochre Pumice eruption would have on the main airports of Mexico and adjacent areas. The hazard maps presented here can support long-term planning that would help minimize the impacts of such an eruption on civil aviation.
NASA Astrophysics Data System (ADS)
Bonasia, Rosanna; Scaini, Chiara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau
2014-01-01
Popocatépetl is one of Mexico's most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl's reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the "Ochre Pumice" Plinian eruption (4965 14C yr BP). FALL3D model input eruptive parameters are constrained through an inversion method carried out with the semi-analytical HAZMAP model and are varied by sampling them using probability density functions. We analyze the influence of seasonal variations on ash dispersal and estimate the average persistence of critical ash concentrations at relevant locations and airports. This study assesses the impact that a Plinian eruption similar to the Ochre Pumice eruption would have on the main airports of Mexico and adjacent areas. The hazard maps presented here can support long-term planning that would help minimize the impacts of such an eruption on civil aviation.
Seismic Hazard Analysis — Quo vadis?
NASA Astrophysics Data System (ADS)
Klügel, Jens-Uwe
2008-05-01
The paper is dedicated to the review of methods of seismic hazard analysis currently in use, analyzing the strengths and weaknesses of different approaches. The review is performed from the perspective of a user of the results of seismic hazard analysis for different applications such as the design of critical and general (non-critical) civil infrastructures, technical and financial risk analysis. A set of criteria is developed for and applied to an objective assessment of the capabilities of different analysis methods. It is demonstrated that traditional probabilistic seismic hazard analysis (PSHA) methods have significant deficiencies, thus limiting their practical applications. These deficiencies have their roots in the use of inadequate probabilistic models and insufficient understanding of modern concepts of risk analysis, as have been revealed in some recent large scale studies. These deficiencies result in the lack of ability of a correct treatment of dependencies between physical parameters and finally, in an incorrect treatment of uncertainties. As a consequence, results of PSHA studies have been found to be unrealistic in comparison with empirical information from the real world. The attempt to compensate these problems by a systematic use of expert elicitation has, so far, not resulted in any improvement of the situation. It is also shown that scenario-earthquakes developed by disaggregation from the results of a traditional PSHA may not be conservative with respect to energy conservation and should not be used for the design of critical infrastructures without validation. Because the assessment of technical as well as of financial risks associated with potential damages of earthquakes need a risk analysis, current method is based on a probabilistic approach with its unsolved deficiencies. Traditional deterministic or scenario-based seismic hazard analysis methods provide a reliable and in general robust design basis for applications such as the design of critical infrastructures, especially with systematic sensitivity analyses based on validated phenomenological models. Deterministic seismic hazard analysis incorporates uncertainties in the safety factors. These factors are derived from experience as well as from expert judgment. Deterministic methods associated with high safety factors may lead to too conservative results, especially if applied for generally short-lived civil structures. Scenarios used in deterministic seismic hazard analysis have a clear physical basis. They are related to seismic sources discovered by geological, geomorphologic, geodetic and seismological investigations or derived from historical references. Scenario-based methods can be expanded for risk analysis applications with an extended data analysis providing the frequency of seismic events. Such an extension provides a better informed risk model that is suitable for risk-informed decision making.
Johnson Space Center's Risk and Reliability Analysis Group 2008 Annual Report
NASA Technical Reports Server (NTRS)
Valentine, Mark; Boyer, Roger; Cross, Bob; Hamlin, Teri; Roelant, Henk; Stewart, Mike; Bigler, Mark; Winter, Scott; Reistle, Bruce; Heydorn,Dick
2009-01-01
The Johnson Space Center (JSC) Safety & Mission Assurance (S&MA) Directorate s Risk and Reliability Analysis Group provides both mathematical and engineering analysis expertise in the areas of Probabilistic Risk Assessment (PRA), Reliability and Maintainability (R&M) analysis, and data collection and analysis. The fundamental goal of this group is to provide National Aeronautics and Space Administration (NASA) decisionmakers with the necessary information to make informed decisions when evaluating personnel, flight hardware, and public safety concerns associated with current operating systems as well as with any future systems. The Analysis Group includes a staff of statistical and reliability experts with valuable backgrounds in the statistical, reliability, and engineering fields. This group includes JSC S&MA Analysis Branch personnel as well as S&MA support services contractors, such as Science Applications International Corporation (SAIC) and SoHaR. The Analysis Group s experience base includes nuclear power (both commercial and navy), manufacturing, Department of Defense, chemical, and shipping industries, as well as significant aerospace experience specifically in the Shuttle, International Space Station (ISS), and Constellation Programs. The Analysis Group partners with project and program offices, other NASA centers, NASA contractors, and universities to provide additional resources or information to the group when performing various analysis tasks. The JSC S&MA Analysis Group is recognized as a leader in risk and reliability analysis within the NASA community. Therefore, the Analysis Group is in high demand to help the Space Shuttle Program (SSP) continue to fly safely, assist in designing the next generation spacecraft for the Constellation Program (CxP), and promote advanced analytical techniques. The Analysis Section s tasks include teaching classes and instituting personnel qualification processes to enhance the professional abilities of our analysts as well as performing major probabilistic assessments used to support flight rationale and help establish program requirements. During 2008, the Analysis Group performed more than 70 assessments. Although all these assessments were important, some were instrumental in the decisionmaking processes for the Shuttle and Constellation Programs. Two of the more significant tasks were the Space Transportation System (STS)-122 Low Level Cutoff PRA for the SSP and the Orion Pad Abort One (PA-1) PRA for the CxP. These two activities, along with the numerous other tasks the Analysis Group performed in 2008, are summarized in this report. This report also highlights several ongoing and upcoming efforts to provide crucial statistical and probabilistic assessments, such as the Extravehicular Activity (EVA) PRA for the Hubble Space Telescope service mission and the first fully integrated PRAs for the CxP's Lunar Sortie and ISS missions.
Reducing the Risk of Human Space Missions with INTEGRITY
NASA Technical Reports Server (NTRS)
Jones, Harry W.; Dillon-Merill, Robin L.; Tri, Terry O.; Henninger, Donald L.
2003-01-01
The INTEGRITY Program will design and operate a test bed facility to help prepare for future beyond-LEO missions. The purpose of INTEGRITY is to enable future missions by developing, testing, and demonstrating advanced human space systems. INTEGRITY will also implement and validate advanced management techniques including risk analysis and mitigation. One important way INTEGRITY will help enable future missions is by reducing their risk. A risk analysis of human space missions is important in defining the steps that INTEGRITY should take to mitigate risk. This paper describes how a Probabilistic Risk Assessment (PRA) of human space missions will help support the planning and development of INTEGRITY to maximize its benefits to future missions. PRA is a systematic methodology to decompose the system into subsystems and components, to quantify the failure risk as a function of the design elements and their corresponding probability of failure. PRA provides a quantitative estimate of the probability of failure of the system, including an assessment and display of the degree of uncertainty surrounding the probability. PRA provides a basis for understanding the impacts of decisions that affect safety, reliability, performance, and cost. Risks with both high probability and high impact are identified as top priority. The PRA of human missions beyond Earth orbit will help indicate how the risk of future human space missions can be reduced by integrating and testing systems in INTEGRITY.
Review of Reliability-Based Design Optimization Approach and Its Integration with Bayesian Method
NASA Astrophysics Data System (ADS)
Zhang, Xiangnan
2018-03-01
A lot of uncertain factors lie in practical engineering, such as external load environment, material property, geometrical shape, initial condition, boundary condition, etc. Reliability method measures the structural safety condition and determine the optimal design parameter combination based on the probabilistic theory. Reliability-based design optimization (RBDO) is the most commonly used approach to minimize the structural cost or other performance under uncertainty variables which combines the reliability theory and optimization. However, it cannot handle the various incomplete information. The Bayesian approach is utilized to incorporate this kind of incomplete information in its uncertainty quantification. In this paper, the RBDO approach and its integration with Bayesian method are introduced.
NASA-STD-7009 Guidance Document for Human Health and Performance Models and Simulations
NASA Technical Reports Server (NTRS)
Walton, Marlei; Mulugeta, Lealem; Nelson, Emily S.; Myers, Jerry G.
2014-01-01
Rigorous verification, validation, and credibility (VVC) processes are imperative to ensure that models and simulations (MS) are sufficiently reliable to address issues within their intended scope. The NASA standard for MS, NASA-STD-7009 (7009) [1] was a resultant outcome of the Columbia Accident Investigation Board (CAIB) to ensure MS are developed, applied, and interpreted appropriately for making decisions that may impact crew or mission safety. Because the 7009 focus is engineering systems, a NASA-STD-7009 Guidance Document is being developed to augment the 7009 and provide information, tools, and techniques applicable to the probabilistic and deterministic biological MS more prevalent in human health and performance (HHP) and space biomedical research and operations.
Risk in nuclear power plants due to natural hazard phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, S.C.
1995-12-01
For the safety of nuclear power plants, it is important to identify potential areas of vulnerabilities to internal as well as external events to which nuclear power plants are exposed. This paper summarizes the risk in nuclear power plants due to natural hazard phenomena such as earthquakes, winds and tornadoes, floods, etc. The reported results are based on a limited number of probabilistic risk assessments (PRAS) performed for a few of the operating nuclear power plants within the United States. The summary includes an importance ranking of various natural hazard phenomena based on their contribution to the plant risk alongmore » with insights observed from the PRA studies.« less
Relational approach in managing construction project safety: a social capital perspective.
Koh, Tas Yong; Rowlinson, Steve
2012-09-01
Existing initiatives in the management of construction project safety are largely based on normative compliance and error prevention, a risk management approach. Although advantageous, these approaches are not wholly successful in further lowering accident rates. A major limitation lies with the approaches' lack of emphasis on the social and team processes inherent in construction project settings. We advance the enquiry by invoking the concept of social capital and project organisational processes, and their impacts on project safety performance. Because social capital is a primordial concept and affects project participants' interactions, its impact on project safety performance is hypothesised to be indirect, i.e. the impact of social capital on safety performance is mediated by organisational processes in adaptation and cooperation. A questionnaire survey was conducted within Hong Kong construction industry to test the hypotheses. 376 usable responses were received and used for analyses. The results reveal that, while the structural dimension is not significant, the mediational thesis is generally supported with the cognitive and relational dimensions affecting project participants' adaptation and cooperation, and the latter two processes affect safety performance. However, the cognitive dimension also directly affects safety performance. The implications of these results for project safety management are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components
NASA Technical Reports Server (NTRS)
1999-01-01
Probabilistic Structural Analysis Methods (PSAM) are described for the probabilistic structural analysis of engine components for current and future space propulsion systems. Components for these systems are subjected to stochastic thermomechanical launch loads. Uncertainties or randomness also occurs in material properties, structural geometry, and boundary conditions. Material property stochasticity, such as in modulus of elasticity or yield strength, exists in every structure and is a consequence of variations in material composition and manufacturing processes. Procedures are outlined for computing the probabilistic structural response or reliability of the structural components. The response variables include static or dynamic deflections, strains, and stresses at one or several locations, natural frequencies, fatigue or creep life, etc. Sample cases illustrates how the PSAM methods and codes simulate input uncertainties and compute probabilistic response or reliability using a finite element model with probabilistic methods.
Processing of probabilistic information in weight perception and motor prediction.
Trampenau, Leif; van Eimeren, Thilo; Kuhtz-Buschbeck, Johann
2017-02-01
We studied the effects of probabilistic cues, i.e., of information of limited certainty, in the context of an action task (GL: grip-lift) and of a perceptual task (WP: weight perception). Normal subjects (n = 22) saw four different probabilistic visual cues, each of which announced the likely weight of an object. In the GL task, the object was grasped and lifted with a pinch grip, and the peak force rates indicated that the grip and load forces were scaled predictively according to the probabilistic information. The WP task provided the expected heaviness related to each probabilistic cue; the participants gradually adjusted the object's weight until its heaviness matched the expected weight for a given cue. Subjects were randomly assigned to two groups: one started with the GL task and the other one with the WP task. The four different probabilistic cues influenced weight adjustments in the WP task and peak force rates in the GL task in a similar manner. The interpretation and utilization of the probabilistic information was critically influenced by the initial task. Participants who started with the WP task classified the four probabilistic cues into four distinct categories and applied these categories to the subsequent GL task. On the other side, participants who started with the GL task applied three distinct categories to the four cues and retained this classification in the following WP task. The initial strategy, once established, determined the way how the probabilistic information was interpreted and implemented.
Weickert, Thomas W.; Goldberg, Terry E.; Egan, Michael F.; Apud, Jose A.; Meeter, Martijn; Myers, Catherine E.; Gluck, Mark A; Weinberger, Daniel R.
2010-01-01
Background While patients with schizophrenia display an overall probabilistic category learning performance deficit, the extent to which this deficit occurs in unaffected siblings of patients with schizophrenia is unknown. There are also discrepant findings regarding probabilistic category learning acquisition rate and performance in patients with schizophrenia. Methods A probabilistic category learning test was administered to 108 patients with schizophrenia, 82 unaffected siblings, and 121 healthy participants. Results Patients with schizophrenia displayed significant differences from their unaffected siblings and healthy participants with respect to probabilistic category learning acquisition rates. Although siblings on the whole failed to differ from healthy participants on strategy and quantitative indices of overall performance and learning acquisition, application of a revised learning criterion enabling classification into good and poor learners based on individual learning curves revealed significant differences between percentages of sibling and healthy poor learners: healthy (13.2%), siblings (34.1%), patients (48.1%), yielding a moderate relative risk. Conclusions These results clarify previous discrepant findings pertaining to probabilistic category learning acquisition rate in schizophrenia and provide the first evidence for the relative risk of probabilistic category learning abnormalities in unaffected siblings of patients with schizophrenia, supporting genetic underpinnings of probabilistic category learning deficits in schizophrenia. These findings also raise questions regarding the contribution of antipsychotic medication to the probabilistic category learning deficit in schizophrenia. The distinction between good and poor learning may be used to inform genetic studies designed to detect schizophrenia risk alleles. PMID:20172502
Probabilistic finite elements for fracture mechanics
NASA Technical Reports Server (NTRS)
Besterfield, Glen
1988-01-01
The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.
Probabilistic Structural Analysis Methods (PSAM) for select space propulsion systems components
NASA Technical Reports Server (NTRS)
1991-01-01
Summarized here is the technical effort and computer code developed during the five year duration of the program for probabilistic structural analysis methods. The summary includes a brief description of the computer code manuals and a detailed description of code validation demonstration cases for random vibrations of a discharge duct, probabilistic material nonlinearities of a liquid oxygen post, and probabilistic buckling of a transfer tube liner.
A Hough Transform Global Probabilistic Approach to Multiple-Subject Diffusion MRI Tractography
2010-04-01
distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT A global probabilistic fiber tracking approach based on the voting process provided by...umn.edu 2 ABSTRACT A global probabilistic fiber tracking approach based on the voting process provided by the Hough transform is introduced in...criteria for aligning curves and particularly tracts. In this work, we present a global probabilistic approach inspired by the voting procedure provided
The Importance of Human Reliability Analysis in Human Space Flight: Understanding the Risks
NASA Technical Reports Server (NTRS)
Hamlin, Teri L.
2010-01-01
HRA is a method used to describe, qualitatively and quantitatively, the occurrence of human failures in the operation of complex systems that affect availability and reliability. Modeling human actions with their corresponding failure in a PRA (Probabilistic Risk Assessment) provides a more complete picture of the risk and risk contributions. A high quality HRA can provide valuable information on potential areas for improvement, including training, procedural, equipment design and need for automation.
2013-08-27
University of New Jersey, Newark, New Jersey, United States of America, 3 Department of Psychology , Rutgers, The State University of New Jersey...United States of America, 5 Marcs Institute for Brain and Behaviour & School of Social Sciences and Psychology , University of Western Sydney, Sydney...for current, severe PTSD symptoms (PTSS) were tested on a probabilistic classification task [19] that interleaves reward learning and punishment
Developing safety performance functions incorporating reliability-based risk measures.
Ibrahim, Shewkar El-Bassiouni; Sayed, Tarek
2011-11-01
Current geometric design guides provide deterministic standards where the safety margin of the design output is generally unknown and there is little knowledge of the safety implications of deviating from these standards. Several studies have advocated probabilistic geometric design where reliability analysis can be used to account for the uncertainty in the design parameters and to provide a risk measure of the implication of deviation from design standards. However, there is currently no link between measures of design reliability and the quantification of safety using collision frequency. The analysis presented in this paper attempts to bridge this gap by incorporating a reliability-based quantitative risk measure such as the probability of non-compliance (P(nc)) in safety performance functions (SPFs). Establishing this link will allow admitting reliability-based design into traditional benefit-cost analysis and should lead to a wider application of the reliability technique in road design. The present application is concerned with the design of horizontal curves, where the limit state function is defined in terms of the available (supply) and stopping (demand) sight distances. A comprehensive collision and geometric design database of two-lane rural highways is used to investigate the effect of the probability of non-compliance on safety. The reliability analysis was carried out using the First Order Reliability Method (FORM). Two Negative Binomial (NB) SPFs were developed to compare models with and without the reliability-based risk measures. It was found that models incorporating the P(nc) provided a better fit to the data set than the traditional (without risk) NB SPFs for total, injury and fatality (I+F) and property damage only (PDO) collisions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Air traffic surveillance and control using hybrid estimation and protocol-based conflict resolution
NASA Astrophysics Data System (ADS)
Hwang, Inseok
The continued growth of air travel and recent advances in new technologies for navigation, surveillance, and communication have led to proposals by the Federal Aviation Administration (FAA) to provide reliable and efficient tools to aid Air Traffic Control (ATC) in performing their tasks. In this dissertation, we address four problems frequently encountered in air traffic surveillance and control; multiple target tracking and identity management, conflict detection, conflict resolution, and safety verification. We develop a set of algorithms and tools to aid ATC; These algorithms have the provable properties of safety, computational efficiency, and convergence. Firstly, we develop a multiple-maneuvering-target tracking and identity management algorithm which can keep track of maneuvering aircraft in noisy environments and of their identities. Secondly, we propose a hybrid probabilistic conflict detection algorithm between multiple aircraft which uses flight mode estimates as well as aircraft current state estimates. Our algorithm is based on hybrid models of aircraft, which incorporate both continuous dynamics and discrete mode switching. Thirdly, we develop an algorithm for multiple (greater than two) aircraft conflict avoidance that is based on a closed-form analytic solution and thus provides guarantees of safety. Finally, we consider the problem of safety verification of control laws for safety critical systems, with application to air traffic control systems. We approach safety verification through reachability analysis, which is a computationally expensive problem. We develop an over-approximate method for reachable set computation using polytopic approximation methods and dynamic optimization. These algorithms may be used either in a fully autonomous way, or as supporting tools to increase controllers' situational awareness and to reduce their work load.
Misfortune may be a blessing in disguise: Fairness perception and emotion modulate decision making.
Liu, Hong-Hsiang; Hwang, Yin-Dir; Hsieh, Ming H; Hsu, Yung-Fong; Lai, Wen-Sung
2017-08-01
Fairness perception and equality during social interactions frequently elicit affective arousal and affect decision making. By integrating the dictator game and a probabilistic gambling task, this study aimed to investigate the effects of a negative experience induced by perceived unfairness on decision making using behavioral, model fitting, and electrophysiological approaches. Participants were randomly assigned to the neutral, harsh, or kind groups, which consisted of various asset allocation scenarios to induce different levels of perceived unfairness. The monetary gain was subsequently considered the initial asset in a negatively rewarded, probabilistic gambling task in which the participants were instructed to maintain as much asset as possible. Our behavioral results indicated that the participants in the harsh group exhibited increased levels of negative emotions but retained greater total game scores than the participants in the other two groups. Parameter estimation of a reinforcement learning model using a Bayesian approach indicated that these participants were more loss aversive and consistent in decision making. Data from simultaneous ERP recordings further demonstrated that these participants exhibited larger feedback-related negativity to unexpected outcomes in the gambling task, which suggests enhanced reward sensitivity and signaling of reward prediction error. Collectively, our study suggests that a negative experience may be an advantage in the modulation of reward-based decision making. © 2017 Society for Psychophysiological Research.
Selective attention, diffused attention, and the development of categorization.
Deng, Wei Sophia; Sloutsky, Vladimir M
2016-12-01
How do people learn categories and what changes with development? The current study attempts to address these questions by focusing on the role of attention in the development of categorization. In Experiment 1, participants (adults, 7-year-olds, and 4-year-olds) were trained with novel categories consisting of deterministic and probabilistic features, and their categorization and memory for features were tested. In Experiment 2, participants' attention was directed to the deterministic feature, and in Experiment 3 it was directed to the probabilistic features. Attentional cueing affected categorization and memory in adults and 7-year-olds: these participants relied on the cued features in their categorization and exhibited better memory of cued than of non-cued features. In contrast, in 4-year-olds attentional cueing affected only categorization, but not memory: these participants exhibited equally good memory for both cued and non-cued features. Furthermore, across the experiments, 4-year-olds remembered non-cued features better than adults. These results coupled with computational simulations provide novel evidence (1) pointing to differences in category representation and mechanisms of categorization across development, (2) elucidating the role of attention in the development of categorization, and (3) suggesting an important distinction between representation and decision factors in categorization early in development. These issues are discussed with respect to theories of categorization and its development. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Barrera, A.; Altava-Ortiz, V.; Llasat, M. C.; Barnolas, M.
2007-09-01
Between the 11 and 13 October 2005 several flash floods were produced along the coast of Catalonia (NE Spain) due to a significant heavy rainfall event. Maximum rainfall achieved values up to 250 mm in 24 h. The total amount recorded during the event in some places was close to 350 mm. Barcelona city was also in the affected area where high rainfall intensities were registered, but just a few small floods occurred, thanks to the efficient urban drainage system of the city. Two forecasting methods have been applied in order to evaluate their capability of prediction regarding extreme events: the deterministic MM5 model and a probabilistic model based on the analogous method. The MM5 simulation allows analysing accurately the main meteorological features with a high spatial resolution (2 km), like the formation of some convergence lines over the region that partially explains the maximum precipitation location during the event. On the other hand, the analogous technique shows a good agreement among highest probability values and real affected areas, although a larger pluviometric rainfall database would be needed to improve the results. The comparison between the observed precipitation and from both QPF (quantitative precipitation forecast) methods shows that the analogous technique tends to underestimate the rainfall values and the MM5 simulation tends to overestimate them.
30 CFR 56.19107 - Precautions for work in compartment affected by hoisting operation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Precautions for work in compartment affected by hoisting operation. 56.19107 Section 56.19107 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND...
30 CFR 57.19107 - Precautions for work in compartment affected by hoisting operation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Precautions for work in compartment affected by hoisting operation. 57.19107 Section 57.19107 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL...
Hofer, Florian; Achelrod, Dmitrij; Stargardt, Tom
2016-12-01
Chronic obstructive pulmonary disease (COPD) poses major challenges for health care systems. Previous studies suggest that telemonitoring could be effective in preventing hospitalisations and hence reduce costs. The aim was to evaluate whether telemonitoring interventions for COPD are cost-effective from the perspective of German statutory sickness funds. A cost-utility analysis was conducted using a combination of a Markov model and a decision tree. Telemonitoring as add-on to standard treatment was compared with standard treatment alone. The model consisted of four transition stages to account for COPD severity, and a terminal stage for death. Within each cycle, the frequency of exacerbations as well as outcomes for 2015 costs and quality adjusted life years (QALYs) for each stage were calculated. Values for input parameters were taken from the literature. Deterministic and probabilistic sensitivity analyses were conducted. In the base case, telemonitoring led to an increase in incremental costs (€866 per patient) but also in incremental QALYs (0.05 per patient). The incremental cost-effectiveness ratio (ICER) was thus €17,410 per QALY gained. A deterministic sensitivity analysis showed that hospitalisation rate and costs for telemonitoring equipment greatly affected results. The probabilistic ICER averaged €34,432 per QALY (95 % confidence interval 12,161-56,703). We provide evidence that telemonitoring may be cost-effective in Germany from a payer's point of view. This holds even after deterministic and probabilistic sensitivity analyses.
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures is a major activity at Lewis Research Center. Recent activities have focused on extending the methods to include the combined uncertainties in several factors on structural response. This paper briefly describes recent progress on composite load spectra models, probabilistic finite element structural analysis, and probabilistic strength degradation modeling. Progress is described in terms of fundamental concepts, computer code development, and representative numerical results.
Probabilistic structural analysis of aerospace components using NESSUS
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Nagpal, Vinod K.; Chamis, Christos C.
1988-01-01
Probabilistic structural analysis of a Space Shuttle main engine turbopump blade is conducted using the computer code NESSUS (numerical evaluation of stochastic structures under stress). The goal of the analysis is to derive probabilistic characteristics of blade response given probabilistic descriptions of uncertainties in blade geometry, material properties, and temperature and pressure distributions. Probability densities are derived for critical blade responses. Risk assessment and failure life analysis is conducted assuming different failure models.
Sayers, Adrian; Ben-Shlomo, Yoav; Blom, Ashley W; Steele, Fiona
2016-01-01
Abstract Studies involving the use of probabilistic record linkage are becoming increasingly common. However, the methods underpinning probabilistic record linkage are not widely taught or understood, and therefore these studies can appear to be a ‘black box’ research tool. In this article, we aim to describe the process of probabilistic record linkage through a simple exemplar. We first introduce the concept of deterministic linkage and contrast this with probabilistic linkage. We illustrate each step of the process using a simple exemplar and describe the data structure required to perform a probabilistic linkage. We describe the process of calculating and interpreting matched weights and how to convert matched weights into posterior probabilities of a match using Bayes theorem. We conclude this article with a brief discussion of some of the computational demands of record linkage, how you might assess the quality of your linkage algorithm, and how epidemiologists can maximize the value of their record-linked research using robust record linkage methods. PMID:26686842
Probabilistic Structural Analysis Theory Development
NASA Technical Reports Server (NTRS)
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
Ibrahim, Shewkar E; Sayed, Tarek; Ismail, Karim
2012-11-01
Several earlier studies have noted the shortcomings with existing geometric design guides which provide deterministic standards. In these standards the safety margin of the design output is generally unknown and there is little knowledge of the safety implications of deviating from the standards. To mitigate these shortcomings, probabilistic geometric design has been advocated where reliability analysis can be used to account for the uncertainty in the design parameters and to provide a mechanism for risk measurement to evaluate the safety impact of deviations from design standards. This paper applies reliability analysis for optimizing the safety of highway cross-sections. The paper presents an original methodology to select a suitable combination of cross-section elements with restricted sight distance to result in reduced collisions and consistent risk levels. The purpose of this optimization method is to provide designers with a proactive approach to the design of cross-section elements in order to (i) minimize the risk associated with restricted sight distance, (ii) balance the risk across the two carriageways of the highway, and (iii) reduce the expected collision frequency. A case study involving nine cross-sections that are parts of two major highway developments in British Columbia, Canada, was presented. The results showed that an additional reduction in collisions can be realized by incorporating the reliability component, P(nc) (denoting the probability of non-compliance), in the optimization process. The proposed approach results in reduced and consistent risk levels for both travel directions in addition to further collision reductions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Leader-member exchange and safety citizenship behavior: The mediating role of coworker trust.
Jiang, Li; Li, Feng; Li, YongJuan; Li, Rui
2017-01-01
To achieve high safety levels, mere compliance with safety regulations is not sufficient; employees must be proactive and demonstrate safety citizenship behaviors. Trust is considered as a mechanism for facilitating the effects of a leader on employee citizenship behaviors. Increasingly research has focused on the role of trust in a safety context; however, the role of coworker trust has been overlooked. The mediating role of coworker trust in the relationship between the leader-member exchange and safety citizenship behavior is the focus of this field study. Front-line employees from an air traffic control center and an airline maintenance department completed surveys measuring leader-member exchange, co-worker trust, and safety citizenship behavior. Structural Equation Modeling revealed affective and cognitive trust in coworkers is influenced by leader-member exchange. A trust-based mediation model where cognitive trust and affective trust mediate the relationship between the leader-member exchange and safety citizenship behavior emerged. Results of this study add to our understanding of the relationship between leader-member exchange and safety behavior. The effect of co-worker trust and the extent to which employees participate in workplace safety practice were identified as critical factors. The findings show that managers need to focus on developing cognitive and affective coworker trust to improve safety citizenship behaviors.
Ghasemi, Fakhradin; Kalatpour, Omid; Moghimbeigi, Abbas; Mohhamadfam, Iraj
2018-06-01
Unsafe behavior is closely related to occupational accidents. Work pressure is one the main factors affecting employees' behavior. The aim of the present study was to provide a path analysis model for explaining how work pressure affects safety behavior. Using a self-administered questionnaire, six variables supposed to affect safety employees' behavior were measured. The path analysis model was constructed based on several hypotheses. The goodness of fit of the model was assessed using both absolute and comparative fit indices. Work pressure was determined not to influence safety behavior directly. However, it negatively influenced other variables. Group attitude and personal attitude toward safety were the main factors mediating the effect of work pressure on safety behavior. Among the variables investigated in the present study, group attitude, personal attitude and work pressure had the strongest effects on safety behavior. Managers should consider that in order to improve employees' safety behavior, work pressure should be reduced to a reasonable level, and concurrently a supportive environment, which ensures a positive group attitude toward safety, should be provided. Replication of the study is recommended.
NASA Technical Reports Server (NTRS)
Townsend, John S.; Peck, Jeff; Ayala, Samuel
2000-01-01
NASA has funded several major programs (the Probabilistic Structural Analysis Methods Project is an example) to develop probabilistic structural analysis methods and tools for engineers to apply in the design and assessment of aerospace hardware. A probabilistic finite element software code, known as Numerical Evaluation of Stochastic Structures Under Stress, is used to determine the reliability of a critical weld of the Space Shuttle solid rocket booster aft skirt. An external bracket modification to the aft skirt provides a comparison basis for examining the details of the probabilistic analysis and its contributions to the design process. Also, analysis findings are compared with measured Space Shuttle flight data.
A New Approach to Extreme Value Estimation Applicable to a Wide Variety of Random Variables
NASA Technical Reports Server (NTRS)
Holland, Frederic A., Jr.
1997-01-01
Designing reliable structures requires an estimate of the maximum and minimum values (i.e., strength and load) that may be encountered in service. Yet designs based on very extreme values (to insure safety) can result in extra material usage and hence, uneconomic systems. In aerospace applications, severe over-design cannot be tolerated making it almost mandatory to design closer to the assumed limits of the design random variables. The issue then is predicting extreme values that are practical, i.e. neither too conservative or non-conservative. Obtaining design values by employing safety factors is well known to often result in overly conservative designs and. Safety factor values have historically been selected rather arbitrarily, often lacking a sound rational basis. To answer the question of how safe a design needs to be has lead design theorists to probabilistic and statistical methods. The so-called three-sigma approach is one such method and has been described as the first step in utilizing information about the data dispersion. However, this method is based on the assumption that the random variable is dispersed symmetrically about the mean and is essentially limited to normally distributed random variables. Use of this method can therefore result in unsafe or overly conservative design allowables if the common assumption of normality is incorrect.
NASA Astrophysics Data System (ADS)
Mueller, M.; Mahoney, K. M.; Holman, K. D.
2015-12-01
The Bureau of Reclamation (Reclamation) is responsible for the safety of Taylor Park Dam, located in central Colorado at an elevation of 9300 feet. A key aspect of dam safety is anticipating extreme precipitation, runoff and the associated inflow of water to the reservoir within a probabilistic framework for risk analyses. The Cooperative Institute for Research in Environmental Sciences (CIRES) has partnered with Reclamation to improve understanding and estimation of precipitation in the western United States, including the Taylor Park watershed. A significant challenge is that Taylor Park Dam is located in a relatively data-sparse region, surrounded by mountains exceeding 12,000 feet. To better estimate heavy precipitation events in this basin, a high-resolution modeling approach is used. The Weather Research and Forecasting (WRF) model is employed to simulate events that have produced observed peaks in streamflow at the location of interest. Importantly, an ensemble of model simulations are run on each event so that uncertainty bounds (i.e., forecast error) may be provided such that the model outputs may be more effectively used in Reclamation's risk assessment framework. Model estimates of precipitation (and the uncertainty thereof) are then used in rainfall runoff models to determine the probability of inflows to the reservoir for use in Reclamation's dam safety risk analyses.
Operational Performance Risk Assessment in Support of A Supervisory Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denning, Richard S.; Muhlheim, Michael David; Cetiner, Sacit M.
Supervisory control system (SCS) is developed for multi-unit advanced small modular reactors to minimize human interventions in both normal and abnormal operations. In SCS, control action decisions made based on probabilistic risk assessment approach via Event Trees/Fault Trees. Although traditional PRA tools are implemented, their scope is extended to normal operations and application is reversed; success of non-safety related system instead failure of safety systems this extended PRA approach called as operational performance risk assessment (OPRA). OPRA helps to identify success paths, combination of control actions for transients and to quantify these success paths to provide possible actions without activatingmore » plant protection system. In this paper, a case study of the OPRA in supervisory control system is demonstrated within the context of the ALMR PRISM design, specifically power conversion system. The scenario investigated involved a condition that the feed water control valve is observed to be drifting to the closed position. Alternative plant configurations were identified via OPRA that would allow the plant to continue to operate at full or reduced power. Dynamic analyses were performed with a thermal-hydraulic model of the ALMR PRISM system using Modelica to evaluate remained safety margins. Successful recovery paths for the selected scenario are identified and quantified via SCS.« less
NASA Astrophysics Data System (ADS)
Riyadi, Eko H.
2014-09-01
Initiating event is defined as any event either internal or external to the nuclear power plants (NPPs) that perturbs the steady state operation of the plant, if operating, thereby initiating an abnormal event such as transient or loss of coolant accident (LOCA) within the NPPs. These initiating events trigger sequences of events that challenge plant control and safety systems whose failure could potentially lead to core damage or large early release. Selection for initiating events consists of two steps i.e. first step, definition of possible events, such as by evaluating a comprehensive engineering, and by constructing a top level logic model. Then the second step, grouping of identified initiating event's by the safety function to be performed or combinations of systems responses. Therefore, the purpose of this paper is to discuss initiating events identification in event tree development process and to reviews other probabilistic safety assessments (PSA). The identification of initiating events also involves the past operating experience, review of other PSA, failure mode and effect analysis (FMEA), feedback from system modeling, and master logic diagram (special type of fault tree). By using the method of study for the condition of the traditional US PSA categorization in detail, could be obtained the important initiating events that are categorized into LOCA, transients and external events.
Probabilistic Prediction of Lifetimes of Ceramic Parts
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Gyekenyesi, John P.; Jadaan, Osama M.; Palfi, Tamas; Powers, Lynn; Reh, Stefan; Baker, Eric H.
2006-01-01
ANSYS/CARES/PDS is a software system that combines the ANSYS Probabilistic Design System (PDS) software with a modified version of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) Version 6.0 software. [A prior version of CARES/Life was reported in Program for Evaluation of Reliability of Ceramic Parts (LEW-16018), NASA Tech Briefs, Vol. 20, No. 3 (March 1996), page 28.] CARES/Life models effects of stochastic strength, slow crack growth, and stress distribution on the overall reliability of a ceramic component. The essence of the enhancement in CARES/Life 6.0 is the capability to predict the probability of failure using results from transient finite-element analysis. ANSYS PDS models the effects of uncertainty in material properties, dimensions, and loading on the stress distribution and deformation. ANSYS/CARES/PDS accounts for the effects of probabilistic strength, probabilistic loads, probabilistic material properties, and probabilistic tolerances on the lifetime and reliability of the component. Even failure probability becomes a stochastic quantity that can be tracked as a response variable. ANSYS/CARES/PDS enables tracking of all stochastic quantities in the design space, thereby enabling more precise probabilistic prediction of lifetimes of ceramic components.
PCEMCAN - Probabilistic Ceramic Matrix Composites Analyzer: User's Guide, Version 1.0
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Mital, Subodh K.; Murthy, Pappu L. N.
1998-01-01
PCEMCAN (Probabalistic CEramic Matrix Composites ANalyzer) is an integrated computer code developed at NASA Lewis Research Center that simulates uncertainties associated with the constituent properties, manufacturing process, and geometric parameters of fiber reinforced ceramic matrix composites and quantifies their random thermomechanical behavior. The PCEMCAN code can perform the deterministic as well as probabilistic analyses to predict thermomechanical properties. This User's guide details the step-by-step procedure to create input file and update/modify the material properties database required to run PCEMCAN computer code. An overview of the geometric conventions, micromechanical unit cell, nonlinear constitutive relationship and probabilistic simulation methodology is also provided in the manual. Fast probability integration as well as Monte-Carlo simulation methods are available for the uncertainty simulation. Various options available in the code to simulate probabilistic material properties and quantify sensitivity of the primitive random variables have been described. The description of deterministic as well as probabilistic results have been described using demonstration problems. For detailed theoretical description of deterministic and probabilistic analyses, the user is referred to the companion documents "Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composite Behavior," NASA TP-3602, 1996 and "Probabilistic Micromechanics and Macromechanics for Ceramic Matrix Composites", NASA TM 4766, June 1997.
Summing up the noise in gene networks
NASA Astrophysics Data System (ADS)
Paulsson, Johan
2004-01-01
Random fluctuations in genetic networks are inevitable as chemical reactions are probabilistic and many genes, RNAs and proteins are present in low numbers per cell. Such `noise' affects all life processes and has recently been measured using green fluorescent protein (GFP). Two studies show that negative feedback suppresses noise, and three others identify the sources of noise in gene expression. Here I critically analyse these studies and present a simple equation that unifies and extends both the mathematical and biological perspectives.
Analysing uncertainties of supply and demand in the future use of hydrogen as an energy vector
NASA Astrophysics Data System (ADS)
Lenel, U. R.; Davies, D. G. S.; Moore, M. A.
An analytical technique (Analysis with Uncertain Qualities), developed at Fulmer, is being used to examine the sensitivity of the outcome to uncertainties in input quantities in order to highlight which input quantities critically affect the potential role of hydrogen. The work presented here includes an outline of the model and the analysis technique, along with basic considerations of the input quantities to the model (demand, supply and constraints). Some examples are given of probabilistic estimates of input quantities.
Ardestani, Marzieh M; Moazen, Mehran; Maniei, Ehsan; Jin, Zhongmin
2015-04-01
Commercially available fixed bearing knee prostheses are mainly divided into two groups: posterior stabilized (PS) versus cruciate retaining (CR). Despite the widespread comparative studies, the debate continues regarding the superiority of one type over the other. This study used a combined finite element (FE) simulation and principal component analysis (PCA) to evaluate "reliability" and "sensitivity" of two PS designs versus two CR designs over a patient population. Four fixed bearing implants were chosen: PFC (DePuy), PFC Sigma (DePuy), NexGen (Zimmer) and Genesis II (Smith & Nephew). Using PCA, a large probabilistic knee joint motion and loading database was generated based on the available experimental data from literature. The probabilistic knee joint data were applied to each implant in a FE simulation to calculate the potential envelopes of kinematics (i.e. anterior-posterior [AP] displacement and internal-external [IE] rotation) and contact mechanics. The performance envelopes were considered as an indicator of performance reliability. For each implant, PCA was used to highlight how much the implant performance was influenced by changes in each input parameter (sensitivity). Results showed that (1) conformity directly affected the reliability of the knee implant over a patient population such that lesser conformity designs (PS or CR), had higher kinematic variability and were more influenced by AP force and IE torque, (2) contact reliability did not differ noticeably among different designs and (3) CR or PS designs affected the relative rank of critical factors that influenced the reliability of each design. Such investigations enlighten the underlying biomechanics of various implant designs and can be utilized to estimate the potential performance of an implant design over a patient population. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
A generalized sizing method for revolutionary concepts under probabilistic design constraints
NASA Astrophysics Data System (ADS)
Nam, Taewoo
Internal combustion (IC) engines that consume hydrocarbon fuels have dominated the propulsion systems of air-vehicles for the first century of aviation. In recent years, however, growing concern over rapid climate changes and national energy security has galvanized the aerospace community into delving into new alternatives that could challenge the dominance of the IC engine. Nevertheless, traditional aircraft sizing methods have significant shortcomings for the design of such unconventionally powered aircraft. First, the methods are specialized for aircraft powered by IC engines, and thus are not flexible enough to assess revolutionary propulsion concepts that produce propulsive thrust through a completely different energy conversion process. Another deficiency associated with the traditional methods is that a user of these methods must rely heavily on experts' experience and advice for determining appropriate design margins. However, the introduction of revolutionary propulsion systems and energy sources is very likely to entail an unconventional aircraft configuration, which inexorably disqualifies the conjecture of such "connoisseurs" as a means of risk management. Motivated by such deficiencies, this dissertation aims at advancing two aspects of aircraft sizing: (1) to develop a generalized aircraft sizing formulation applicable to a wide range of unconventionally powered aircraft concepts and (2) to formulate a probabilistic optimization technique that is able to quantify appropriate design margins that are tailored towards the level of risk deemed acceptable to a decision maker. A more generalized aircraft sizing formulation, named the Architecture Independent Aircraft Sizing Method (AIASM), was developed for sizing revolutionary aircraft powered by alternative energy sources by modifying several assumptions of the traditional aircraft sizing method. Along with advances in deterministic aircraft sizing, a non-deterministic sizing technique, named the Probabilistic Aircraft Sizing Method (PASM), was developed. The method allows one to quantify adequate design margins to account for the various sources of uncertainty via the application of the chance-constrained programming (CCP) strategy to AIASM. In this way, PASM can also provide insights into a good compromise between cost and safety.
Relative Gains, Losses, and Reference Points in Probabilistic Choice in Rats
Marshall, Andrew T.; Kirkpatrick, Kimberly
2015-01-01
Theoretical reference points have been proposed to differentiate probabilistic gains from probabilistic losses in humans, but such a phenomenon in non-human animals has yet to be thoroughly elucidated. Three experiments evaluated the effect of reward magnitude on probabilistic choice in rats, seeking to determine reference point use by examining the effect of previous outcome magnitude(s) on subsequent choice behavior. Rats were trained to choose between an outcome that always delivered reward (low-uncertainty choice) and one that probabilistically delivered reward (high-uncertainty). The probability of high-uncertainty outcome receipt and the magnitudes of low-uncertainty and high-uncertainty outcomes were manipulated within and between experiments. Both the low- and high-uncertainty outcomes involved variable reward magnitudes, so that either a smaller or larger magnitude was probabilistically delivered, as well as reward omission following high-uncertainty choices. In Experiments 1 and 2, the between groups factor was the magnitude of the high-uncertainty-smaller (H-S) and high-uncertainty-larger (H-L) outcome, respectively. The H-S magnitude manipulation differentiated the groups, while the H-L magnitude manipulation did not. Experiment 3 showed that manipulating the probability of differential losses as well as the expected value of the low-uncertainty choice produced systematic effects on choice behavior. The results suggest that the reference point for probabilistic gains and losses was the expected value of the low-uncertainty choice. Current theories of probabilistic choice behavior have difficulty accounting for the present results, so an integrated theoretical framework is proposed. Overall, the present results have implications for understanding individual differences and corresponding underlying mechanisms of probabilistic choice behavior. PMID:25658448
Health economics and outcomes methods in risk-based decision-making for blood safety.
Custer, Brian; Janssen, Mart P
2015-08-01
Analytical methods appropriate for health economic assessments of transfusion safety interventions have not previously been described in ways that facilitate their use. Within the context of risk-based decision-making (RBDM), health economics can be important for optimizing decisions among competing interventions. The objective of this review is to address key considerations and limitations of current methods as they apply to blood safety. Because a voluntary blood supply is an example of a public good, analyses should be conducted from the societal perspective when possible. Two primary study designs are recommended for most blood safety intervention assessments: budget impact analysis (BIA), which measures the cost to implement an intervention both to the blood operator but also in a broader context, and cost-utility analysis (CUA), which measures the ratio between costs and health gain achieved, in terms of reduced morbidity and mortality, by use of an intervention. These analyses often have important limitations because data that reflect specific aspects, for example, blood recipient population characteristics or complication rates, are not available. Sensitivity analyses play an important role. The impact of various uncertain factors can be studied conjointly in probabilistic sensitivity analyses. The use of BIA and CUA together provides a comprehensive assessment of the costs and benefits from implementing (or not) specific interventions. RBDM is multifaceted and impacts a broad spectrum of stakeholders. Gathering and analyzing health economic evidence as part of the RBDM process enhances the quality, completeness, and transparency of decision-making. © 2015 AABB.
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework.
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.
2003-01-01
The SAE G-11 RMSL Division and Probabilistic Methods Committee meeting during October 6-8 at the Best Western Sterling Inn, Sterling Heights (Detroit), Michigan is co-sponsored by US Army Tank-automotive & Armaments Command (TACOM). The meeting will provide an industry/government/academia forum to review RMSL technology; reliability and probabilistic technology; reliability-based design methods; software reliability; and maintainability standards. With over 100 members including members with national/international standing, the mission of the G-11's Probabilistic Methods Committee is to "enable/facilitate rapid deployment of probabilistic technology to enhance the competitiveness of our industries by better, faster, greener, smarter, affordable and reliable product development."
A Markov Chain Approach to Probabilistic Swarm Guidance
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Bayard, David S.
2012-01-01
This paper introduces a probabilistic guidance approach for the coordination of swarms of autonomous agents. The main idea is to drive the swarm to a prescribed density distribution in a prescribed region of the configuration space. In its simplest form, the probabilistic approach is completely decentralized and does not require communication or collabo- ration between agents. Agents make statistically independent probabilistic decisions based solely on their own state, that ultimately guides the swarm to the desired density distribution in the configuration space. In addition to being completely decentralized, the probabilistic guidance approach has a novel autonomous self-repair property: Once the desired swarm density distribution is attained, the agents automatically repair any damage to the distribution without collaborating and without any knowledge about the damage.
A look-ahead probabilistic contingency analysis framework incorporating smart sampling techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Etingov, Pavel V.; Ren, Huiying
2016-07-18
This paper describes a framework of incorporating smart sampling techniques in a probabilistic look-ahead contingency analysis application. The predictive probabilistic contingency analysis helps to reflect the impact of uncertainties caused by variable generation and load on potential violations of transmission limits.
Error Discounting in Probabilistic Category Learning
ERIC Educational Resources Information Center
Craig, Stewart; Lewandowsky, Stephan; Little, Daniel R.
2011-01-01
The assumption in some current theories of probabilistic categorization is that people gradually attenuate their learning in response to unavoidable error. However, existing evidence for this error discounting is sparse and open to alternative interpretations. We report 2 probabilistic-categorization experiments in which we investigated error…
DOT National Transportation Integrated Search
2009-10-13
This paper describes a probabilistic approach to estimate the conditional probability of release of hazardous materials from railroad tank cars during train accidents. Monte Carlo methods are used in developing a probabilistic model to simulate head ...
Probabilistic sizing of laminates with uncertainties
NASA Technical Reports Server (NTRS)
Shah, A. R.; Liaw, D. G.; Chamis, C. C.
1993-01-01
A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions.
NASA Astrophysics Data System (ADS)
Fei, Cheng-Wei; Bai, Guang-Chen
2014-12-01
To improve the computational precision and efficiency of probabilistic design for mechanical dynamic assembly like the blade-tip radial running clearance (BTRRC) of gas turbine, a distribution collaborative probabilistic design method-based support vector machine of regression (SR)(called as DCSRM) is proposed by integrating distribution collaborative response surface method and support vector machine regression model. The mathematical model of DCSRM is established and the probabilistic design idea of DCSRM is introduced. The dynamic assembly probabilistic design of aeroengine high-pressure turbine (HPT) BTRRC is accomplished to verify the proposed DCSRM. The analysis results reveal that the optimal static blade-tip clearance of HPT is gained for designing BTRRC, and improving the performance and reliability of aeroengine. The comparison of methods shows that the DCSRM has high computational accuracy and high computational efficiency in BTRRC probabilistic analysis. The present research offers an effective way for the reliability design of mechanical dynamic assembly and enriches mechanical reliability theory and method.
Superposition-Based Analysis of First-Order Probabilistic Timed Automata
NASA Astrophysics Data System (ADS)
Fietzke, Arnaud; Hermanns, Holger; Weidenbach, Christoph
This paper discusses the analysis of first-order probabilistic timed automata (FPTA) by a combination of hierarchic first-order superposition-based theorem proving and probabilistic model checking. We develop the overall semantics of FPTAs and prove soundness and completeness of our method for reachability properties. Basically, we decompose FPTAs into their time plus first-order logic aspects on the one hand, and their probabilistic aspects on the other hand. Then we exploit the time plus first-order behavior by hierarchic superposition over linear arithmetic. The result of this analysis is the basis for the construction of a reachability equivalent (to the original FPTA) probabilistic timed automaton to which probabilistic model checking is finally applied. The hierarchic superposition calculus required for the analysis is sound and complete on the first-order formulas generated from FPTAs. It even works well in practice. We illustrate the potential behind it with a real-life DHCP protocol example, which we analyze by means of tool chain support.
Toet, Alexander; van Schaik, Martin; Theunissen, Nicolet C. M.
2013-01-01
Background Desktop virtual environments (VEs) are increasingly deployed to study the effects of environmental qualities and interventions on human behavior and safety related concerns in built environments. For these applications it is essential that users appraise the affective qualities of the VE similar to those of its real world counterpart. Previous studies have shown that factors like simulated lighting, sound and dynamic elements all contribute to the affective appraisal of a desktop VE. Since ambient odor is known to affect the affective appraisal of real environments, and has been shown to increase the sense of presence in immersive VEs, it may also be an effective tool to tune the affective appraisal of desktop VEs. This study investigated if exposure to ambient odor can modulate the affective appraisal of a desktop VE with signs of public disorder. Method Participants explored a desktop VE representing a suburban neighborhood with signs of public disorder (neglect, vandalism and crime), while being exposed to either room air or subliminal levels of unpleasant (tar) or pleasant (cut grass) ambient odor. Whenever they encountered signs of disorder they reported their safety related concerns and associated affective feelings. Results Signs of crime in the desktop VE were associated with negative affective feelings and concerns for personal safety and personal property. However, there was no significant difference between reported safety related concerns and affective connotations in the control (no-odor) and in each of the two ambient odor conditions. Conclusion Ambient odor did not affect safety related concerns and affective connotations associated with signs of disorder in the desktop VE. Thus, semantic congruency between ambient odor and a desktop VE may not be sufficient to influence its affective appraisal, and a more realistic simulation in which simulated objects appear to emit scents may be required to achieve this goal. PMID:24250810
Toet, Alexander; van Schaik, Martin; Theunissen, Nicolet C M
2013-01-01
Desktop virtual environments (VEs) are increasingly deployed to study the effects of environmental qualities and interventions on human behavior and safety related concerns in built environments. For these applications it is essential that users appraise the affective qualities of the VE similar to those of its real world counterpart. Previous studies have shown that factors like simulated lighting, sound and dynamic elements all contribute to the affective appraisal of a desktop VE. Since ambient odor is known to affect the affective appraisal of real environments, and has been shown to increase the sense of presence in immersive VEs, it may also be an effective tool to tune the affective appraisal of desktop VEs. This study investigated if exposure to ambient odor can modulate the affective appraisal of a desktop VE with signs of public disorder. Participants explored a desktop VE representing a suburban neighborhood with signs of public disorder (neglect, vandalism and crime), while being exposed to either room air or subliminal levels of unpleasant (tar) or pleasant (cut grass) ambient odor. Whenever they encountered signs of disorder they reported their safety related concerns and associated affective feelings. Signs of crime in the desktop VE were associated with negative affective feelings and concerns for personal safety and personal property. However, there was no significant difference between reported safety related concerns and affective connotations in the control (no-odor) and in each of the two ambient odor conditions. Ambient odor did not affect safety related concerns and affective connotations associated with signs of disorder in the desktop VE. Thus, semantic congruency between ambient odor and a desktop VE may not be sufficient to influence its affective appraisal, and a more realistic simulation in which simulated objects appear to emit scents may be required to achieve this goal.
The Impact of Market Orientation on Patient Safety Climate Among Hospital Nurses.
Weng, Rhay-Hung; Chen, Jung-Chien; Pong, Li-Jung; Chen, Li-Mei; Lin, Tzu-Chi
2016-03-01
Improving market orientation and patient safety have become the key concerns of nursing management. For nurses, establishing a patient safety climate is the key to enhancing nursing quality. This study explores how market orientation affects the climate of patient safety among hospital nurses. We proposed adopting a cross-sectional research design and using questionnaires to collect responses from nurses working in two Taiwanese hospitals. Three-hundred and forty-three valid samples were obtained. Multiple regression and path analyses were conducted to test the study. Market orientation was defined as the combination of customer orientation, competitor orientation, and interfunctional coordination. Customer orientation directly affects the climate of patient safety. Although the findings only supported Hypothesis 1, competitor orientation and interfunctional coordination positively affected the patient safety climate through the mediating effects of hospital support for staff. Health care managers could encourage nurses to adopt customer-oriented perspectives to enhance their nursing care. In addition, to enhance competitor orientation, interfunctional coordination, and the patient safety climate, hospital managers could strengthen their support for staff members. © The Author(s) 2014.
Deterministic or Probabilistic - Robustness or Resilience: How to Respond to Climate Change?
NASA Astrophysics Data System (ADS)
Plag, H.; Earnest, D.; Jules-Plag, S.
2013-12-01
Our response to climate change is dominated by a deterministic approach that emphasizes the interaction between only the natural and the built environment. But in the non-ergodic world of unprecedented climate change, social factors drive recovery from unforeseen Black Swans much more than natural or built ones. Particularly the sea level rise discussion focuses on deterministic predictions, accounting for uncertainties in major driving processes with a set of forcing scenarios and public deliberations on which of the plausible trajectories is most likely. Science focuses on the prediction of future climate change, and policies focus on mitigation of both climate change itself and its impacts. The deterministic approach is based on two basic assumptions: 1) Climate change is an ergodic process; 2) The urban coast is a robust system. Evidence suggests that these assumptions may not hold. Anthropogenic changes are pushing key parameters of the climate system outside of the natural range of variability from the last 1 Million years, creating the potential for environmental Black Swans. A probabilistic approach allows for non-ergodic processes and focuses more on resilience, hence does not depend on the two assumptions. Recent experience with hurricanes revealed threshold limitations of the built environment of the urban coast, which, once exceeded, brought to the forefront the importance of the social fabric and social networking in evaluating resilience. Resilience strongly depends on social capital, and building social capital that can create resilience must be a key element in our response to climate change. Although social capital cannot mitigate hazards, social scientists have found that communities rich in strong norms of cooperation recover more quickly than communities without social capital. There is growing evidence that the built environment can affect the social capital of a community, for example public health and perceptions of public safety. This suggests an intriguing hypothesis: disaster risk reduction programs need to account for whether they also facilitate the public trust, cooperation, and communication needed to recover from a disaster. Our work in the Hampton Roads area, where the probability of hazardous flooding and inundation events exceeding the thresholds of the infrastructure is high, suggests that to facilitate the paradigm shift from the deterministic to a probabilistic approach, natural sciences have to focus on hazard probabilities, while engineering and social sciences have to work together to understand how interactions of the built and social environments impact robustness and resilience. The current science-policy relationship needs to be augmented by social structures that can learn from previous unexpected events. In this response to climate change, science does not have the primary goal to reduce uncertainties and prediction errors, but rather to develop processes that can utilize uncertainties and surprises to increase robustness, strengthen resilience, and reduce fragility of the social systems during times when infrastructure fails.
Predicting Drug Safety and Communicating Risk: Benefits of a Bayesian Approach.
Lazic, Stanley E; Edmunds, Nicholas; Pollard, Christopher E
2018-03-01
Drug toxicity is a major source of attrition in drug discovery and development. Pharmaceutical companies routinely use preclinical data to predict clinical outcomes and continue to invest in new assays to improve predictions. However, there are many open questions about how to make the best use of available data, combine diverse data, quantify risk, and communicate risk and uncertainty to enable good decisions. The costs of suboptimal decisions are clear: resources are wasted and patients may be put at risk. We argue that Bayesian methods provide answers to all of these problems and use hERG-mediated QT prolongation as a case study. Benefits of Bayesian machine learning models include intuitive probabilistic statements of risk that incorporate all sources of uncertainty, the option to include diverse data and external information, and visualizations that have a clear link between the output from a statistical model and what this means for risk. Furthermore, Bayesian methods are easy to use with modern software, making their adoption for safety screening straightforward. We include R and Python code to encourage the adoption of these methods.
Long-Term Marine Traffic Monitoring for Environmental Safety in the Aegean Sea
NASA Astrophysics Data System (ADS)
Giannakopoulos, T.; Gyftakis, S.; Charou, E.; Perantonis, S.; Nivolianitou, Z.; Koromila, I.; Makrygiorgos, A.
2015-04-01
The Aegean Sea is characterized by an extremely high marine safety risk, mainly due to the significant increase of the traffic of tankers from and to the Black Sea that pass through narrow straits formed by the 1600 Greek islands. Reducing the risk of a ship accident is therefore vital to all socio-economic and environmental sectors. This paper presents an online long-term marine traffic monitoring work-flow that focuses on extracting aggregated vessel risks using spatiotemporal analysis of multilayer information: vessel trajectories, vessel data, meteorological data, bathymetric / hydrographic data as well as information regarding environmentally important areas (e.g. protected high-risk areas, etc.). A web interface that enables user-friendly spatiotemporal queries is implemented at the frontend, while a series of data mining functionalities extracts aggregated statistics regarding: (a) marine risks and accident probabilities for particular areas (b) trajectories clustering information (c) general marine statistics (cargo types, etc.) and (d) correlation between spatial environmental importance and marine traffic risk. Towards this end, a set of data clustering and probabilistic graphical modelling techniques has been adopted.
Chand, Sai; Dixit, Vinayak V
2018-03-01
The repercussions from congestion and accidents on major highways can have significant negative impacts on the economy and environment. It is a primary objective of transport authorities to minimize the likelihood of these phenomena taking place, to improve safety and overall network performance. In this study, we use the Hurst Exponent metric from Fractal Theory, as a congestion indicator for crash-rate modeling. We analyze one month of traffic speed data at several monitor sites along the M4 motorway in Sydney, Australia and assess congestion patterns with the Hurst Exponent of speed (H speed ). Random Parameters and Latent Class Tobit models were estimated, to examine the effect of congestion on historical crash rates, while accounting for unobserved heterogeneity. Using a latent class modeling approach, the motorway sections were probabilistically classified into two segments, based on the presence of entry and exit ramps. This will allow transportation agencies to implement appropriate safety/traffic countermeasures when addressing accident hotspots or inadequately managed sections of motorway. Copyright © 2017 Elsevier Ltd. All rights reserved.
Application Side Casing on Open Deck RoRo to Improve Ship Stability
NASA Astrophysics Data System (ADS)
Hasanudin; K. A. P Utama, I.; Chen, Jeng-Horng
2018-03-01
RoRo is a vessel that can transport passengers, cargo, container and cars. Open Car Deck is favourite RoRo Vessel in developing countries due to its small GT, small tax and spacious car deck, but it has poor survival of stability. Many accident involve Open Car Deck RoRo which cause fatalities and victim. In order to ensure the safety of the ship, IMO had applied intact stability criteria IS Code 2008 which adapted from Rahola’s Research, but since 2008 IMO improved criteria become probabilistic damage stability SOLAS 2009. The RoRo type Open Car Deck has wide Breadth (B), small Draft (D) and small freeboard. It has difficulties to satisfy the ship’s stability criteria. Side Casings which has been applied in some RoRo have be known reduce freeboard or improve ship’s safety. In this paper investigated the effect side casings to survival of intact dan damage ship’s stability. Calculation has been conducted for four ships without, existing and full side casings. The investigation results shows that defect stability of Open Deck RoRo can be reduce with fitting side casing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Hirt, Evelyn H.; Veeramany, Arun
This research report summaries the development and evaluation of a prototypic enhanced risk monitor (ERM) methodology (framework) that includes alternative risk metrics and uncertainty analysis. This updated ERM methodology accounts for uncertainty in the equipment condition assessment (ECA), the prognostic result, and the probabilistic risk assessment (PRA) model. It is anticipated that the ability to characterize uncertainty in the estimated risk and update the risk estimates in real time based on equipment condition assessment (ECA) will provide a mechanism for optimizing plant performance while staying within specified safety margins. These results (based on impacting active component O&M using real-time equipmentmore » condition information) are a step towards ERMs that, if integrated with AR supervisory plant control systems, can help control O&M costs and improve affordability of advanced reactors.« less
Safe Onboard Guidance and Control Under Probabilistic Uncertainty
NASA Technical Reports Server (NTRS)
Blackmore, Lars James
2011-01-01
An algorithm was developed that determines the fuel-optimal spacecraft guidance trajectory that takes into account uncertainty, in order to guarantee that mission safety constraints are satisfied with the required probability. The algorithm uses convex optimization to solve for the optimal trajectory. Convex optimization is amenable to onboard solution due to its excellent convergence properties. The algorithm is novel because, unlike prior approaches, it does not require time-consuming evaluation of multivariate probability densities. Instead, it uses a new mathematical bounding approach to ensure that probability constraints are satisfied, and it is shown that the resulting optimization is convex. Empirical results show that the approach is many orders of magnitude less conservative than existing set conversion techniques, for a small penalty in computation time.
Wu, James X; Sacks, Greg D; Dawes, Aaron J; DeUgarte, Daniel; Lee, Steven L
2017-07-01
Several studies have demonstrated the safety and short-term success of nonoperative management in children with acute, uncomplicated appendicitis. Nonoperative management spares the patients and their family the upfront cost and discomfort of surgery, but also risks recurrent appendicitis. Using decision-tree software, we evaluated the cost-effectiveness of nonoperative management versus routine laparoscopic appendectomy. Model variables were abstracted from a review of the literature, Healthcare Cost and Utilization Project, and Medicare Physician Fee schedule. Model uncertainty was assessed using both one-way and probabilistic sensitivity analyses. We used a $100,000 per quality adjusted life year (QALY) threshold for cost-effectiveness. Operative management cost $11,119 and yielded 23.56 quality-adjusted life months (QALMs). Nonoperative management cost $2277 less than operative management, but yielded 0.03 fewer QALMs. The incremental cost-to-effectiveness ratio of routine laparoscopic appendectomy was $910,800 per QALY gained. This greatly exceeds the $100,000/QALY threshold and was not cost-effective. One-way sensitivity analysis found that operative management would become cost-effective if the 1-year recurrence rate of acute appendicitis exceeded 39.8%. Probabilistic sensitivity analysis indicated that nonoperative management was cost-effective in 92% of simulations. Based on our model, nonoperative management is more cost-effective than routine laparoscopic appendectomy for children with acute, uncomplicated appendicitis. Cost-Effectiveness Study: Level II. Published by Elsevier Inc.
Plumb, Jenny; Pigat, Sandrine; Bompola, Foteini; Cushen, Maeve; Pinchen, Hannah; Nørby, Eric; Astley, Siân; Lyons, Jacqueline; Kiely, Mairead; Finglas, Paul
2017-03-23
eBASIS (Bioactive Substances in Food Information Systems), a web-based database that contains compositional and biological effects data for bioactive compounds of plant origin, has been updated with new data on fruits and vegetables, wheat and, due to some evidence of potential beneficial effects, extended to include meat bioactives. eBASIS remains one of only a handful of comprehensive and searchable databases, with up-to-date coherent and validated scientific information on the composition of food bioactives and their putative health benefits. The database has a user-friendly, efficient, and flexible interface facilitating use by both the scientific community and food industry. Overall, eBASIS contains data for 267 foods, covering the composition of 794 bioactive compounds, from 1147 quality-evaluated peer-reviewed publications, together with information from 567 publications describing beneficial bioeffect studies carried out in humans. This paper highlights recent updates and expansion of eBASIS and the newly-developed link to a probabilistic intake model, allowing exposure assessment of dietary bioactive compounds to be estimated and modelled in human populations when used in conjunction with national food consumption data. This new tool could assist small- and medium-sized enterprises (SMEs) in the development of food product health claim dossiers for submission to the European Food Safety Authority (EFSA).
Scheres, Anouk; Dijkstra, Marianne; Ainslie, Eleanor; Balkan, Jaclyn; Reynolds, Brady; Sonuga-Barke, Edmund; Castellanos, F Xavier
2006-01-01
This study investigated whether age and ADHD symptoms affected choice preferences in children and adolescents when they chose between (1) small immediate rewards and larger delayed rewards and (2) small certain rewards and larger probabilistic uncertain rewards. A temporal discounting (TD) task and a probabilistic discounting (PD) task were used to measure the degree to which the subjective value of a large reward decreased as one had to wait longer for it (TD), and as the probability of obtaining it decreased (PD). Rewards used were small amounts of money. In the TD task, the large reward (10 cents) was delayed by between 0 and 30s, and the immediate reward varied in magnitude (0-10 cents). In the PD task, receipt of the large reward (10 cents) varied in likelihood, with probabilities of 0, 0.25, 0.5, 0.75, and 1.0 used, and the certain reward varied in magnitude (0-10 cents). Age and diagnostic group did not affect the degree of PD of rewards: All participants made choices so that total gains were maximized. As predicted, young children, aged 6-11 years (n = 25) demonstrated steeper TD of rewards than adolescents, aged 12-17 years (n = 21). This effect remained significant even when choosing the immediate reward did not shorten overall task duration. This, together with the lack of interaction between TD task version and age, suggests that steeper discounting in young children is driven by reward immediacy and not by delay aversion. Contrary to our predictions, participants with ADHD (n = 22) did not demonstrate steeper TD of rewards than controls (n = 24). These results raise the possibility that strong preferences for small immediate rewards in ADHD, as found in previous research, depend on factors such as total maximum gain and the use of fixed versus varied delay durations. The decrease in TD as observed in adolescents compared to children may be related to developmental changes in the (dorsolateral) prefrontal cortex. Future research needs to investigate these possibilities.
2011-01-01
flooded) is within tidal areas and occurs mainly on mangrove areas . These soils are subject to Affected Environment Environmental Assessment for...requires that Federal agencies identify and assess environmental health and safety risks that might disproportionately affect children. The Proposed...Action would not pose any adverse or disproportionate environmental health or safety risks to children living near the base. Safety precautions
Topics in Probabilistic Judgment Aggregation
ERIC Educational Resources Information Center
Wang, Guanchun
2011-01-01
This dissertation is a compilation of several studies that are united by their relevance to probabilistic judgment aggregation. In the face of complex and uncertain events, panels of judges are frequently consulted to provide probabilistic forecasts, and aggregation of such estimates in groups often yield better results than could have been made…
Cognitive Development Effects of Teaching Probabilistic Decision Making to Middle School Students
ERIC Educational Resources Information Center
Mjelde, James W.; Litzenberg, Kerry K.; Lindner, James R.
2011-01-01
This study investigated the comprehension and effectiveness of teaching formal, probabilistic decision-making skills to middle school students. Two specific objectives were to determine (1) if middle school students can comprehend a probabilistic decision-making approach, and (2) if exposure to the modeling approaches improves middle school…
Generative Topic Modeling in Image Data Mining and Bioinformatics Studies
ERIC Educational Resources Information Center
Chen, Xin
2012-01-01
Probabilistic topic models have been developed for applications in various domains such as text mining, information retrieval and computer vision and bioinformatics domain. In this thesis, we focus on developing novel probabilistic topic models for image mining and bioinformatics studies. Specifically, a probabilistic topic-connection (PTC) model…
Probabilistic Cue Combination: Less Is More
ERIC Educational Resources Information Center
Yurovsky, Daniel; Boyer, Ty W.; Smith, Linda B.; Yu, Chen
2013-01-01
Learning about the structure of the world requires learning probabilistic relationships: rules in which cues do not predict outcomes with certainty. However, in some cases, the ability to track probabilistic relationships is a handicap, leading adults to perform non-normatively in prediction tasks. For example, in the "dilution effect,"…
Is Probabilistic Evidence a Source of Knowledge?
ERIC Educational Resources Information Center
Friedman, Ori; Turri, John
2015-01-01
We report a series of experiments examining whether people ascribe knowledge for true beliefs based on probabilistic evidence. Participants were less likely to ascribe knowledge for beliefs based on probabilistic evidence than for beliefs based on perceptual evidence (Experiments 1 and 2A) or testimony providing causal information (Experiment 2B).…
Yendiki, Anastasia; Panneck, Patricia; Srinivasan, Priti; Stevens, Allison; Zöllei, Lilla; Augustinack, Jean; Wang, Ruopeng; Salat, David; Ehrlich, Stefan; Behrens, Tim; Jbabdi, Saad; Gollub, Randy; Fischl, Bruce
2011-01-01
We have developed a method for automated probabilistic reconstruction of a set of major white-matter pathways from diffusion-weighted MR images. Our method is called TRACULA (TRActs Constrained by UnderLying Anatomy) and utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual interaction with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. In this paper we illustrate the application of the method on data from a schizophrenia study and investigate whether the inclusion of both patients and healthy subjects in the training set affects our ability to reconstruct the pathways reliably. We show that, since our method does not constrain the exact spatial location or shape of the pathways but only their trajectory relative to the surrounding anatomical structures, a set a of healthy training subjects can be used to reconstruct the pathways accurately in patients as well as in controls. PMID:22016733
Sanni, Steinar; Lyng, Emily; Pampanin, Daniela M
2017-06-01
Offshore oil and gas activities are required not to cause adverse environmental effects, and risk based management has been established to meet environmental standards. In some risk assessment schemes, Risk Indicators (RIs) are parameters to monitor the development of risk affecting factors. RIs have not yet been established in the Environmental Risk Assessment procedures for management of oil based discharges offshore. This paper evaluates the usefulness of biomarkers as RIs, based on their properties, existing laboratory biomarker data and assessment methods. Data shows several correlations between oil concentrations and biomarker responses, and assessment principles exist that qualify biomarkers for integration into risk procedures. Different ways that these existing biomarkers and methods can be applied as RIs in a probabilistic risk assessment system when linked with whole organism responses are discussed. This can be a useful approach to integrate biomarkers into probabilistic risk assessment related to oil based discharges, representing a potential supplement to information that biomarkers already provide about environmental impact and risk related to these kind of discharges. Copyright © 2016 Elsevier Ltd. All rights reserved.
Probabilistic Analysis of Aircraft Gas Turbine Disk Life and Reliability
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Zaretsky, Erwin V.; August, Richard
1999-01-01
Two series of low cycle fatigue (LCF) test data for two groups of different aircraft gas turbine engine compressor disk geometries were reanalyzed and compared using Weibull statistics. Both groups of disks were manufactured from titanium (Ti-6Al-4V) alloy. A NASA Glenn Research Center developed probabilistic computer code Probable Cause was used to predict disk life and reliability. A material-life factor A was determined for titanium (Ti-6Al-4V) alloy based upon fatigue disk data and successfully applied to predict the life of the disks as a function of speed. A comparison was made with the currently used life prediction method based upon crack growth rate. Applying an endurance limit to the computer code did not significantly affect the predicted lives under engine operating conditions. Failure location prediction correlates with those experimentally observed in the LCF tests. A reasonable correlation was obtained between the predicted disk lives using the Probable Cause code and a modified crack growth method for life prediction. Both methods slightly overpredict life for one disk group and significantly under predict it for the other.
NASA Astrophysics Data System (ADS)
Teoh, Lay Eng; Khoo, Hooi Ling
2013-09-01
This study deals with two major aspects of airlines, i.e. supply and demand management. The aspect of supply focuses on the mathematical formulation of an optimal fleet management model to maximize operational profit of the airlines while the aspect of demand focuses on the incorporation of mode choice modeling as parts of the developed model. The proposed methodology is outlined in two-stage, i.e. Fuzzy Analytic Hierarchy Process is first adopted to capture mode choice modeling in order to quantify the probability of probable phenomena (for aircraft acquisition/leasing decision). Then, an optimization model is developed as a probabilistic dynamic programming model to determine the optimal number and types of aircraft to be acquired and/or leased in order to meet stochastic demand during the planning horizon. The findings of an illustrative case study show that the proposed methodology is viable. The results demonstrate that the incorporation of mode choice modeling could affect the operational profit and fleet management decision of the airlines at varying degrees.
Probabilistic Structural Analysis of the SRB Aft Skirt External Fitting Modification
NASA Technical Reports Server (NTRS)
Townsend, John S.; Peck, J.; Ayala, S.
1999-01-01
NASA has funded several major programs (the PSAM Project is an example) to develop Probabilistic Structural Analysis Methods and tools for engineers to apply in the design and assessment of aerospace hardware. A probabilistic finite element design tool, known as NESSUS, is used to determine the reliability of the Space Shuttle Solid Rocket Booster (SRB) aft skirt critical weld. An external bracket modification to the aft skirt provides a comparison basis for examining the details of the probabilistic analysis and its contributions to the design process.
Reliability and risk assessment of structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1991-01-01
Development of reliability and risk assessment of structural components and structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) the evaluation of the various uncertainties in terms of cumulative distribution functions for various structural response variables based on known or assumed uncertainties in primitive structural variables; (2) evaluation of the failure probability; (3) reliability and risk-cost assessment; and (4) an outline of an emerging approach for eventual certification of man-rated structures by computational methods. Collectively, the results demonstrate that the structural durability/reliability of man-rated structural components and structures can be effectively evaluated by using formal probabilistic methods.
Fully probabilistic control design in an adaptive critic framework.
Herzallah, Randa; Kárný, Miroslav
2011-12-01
Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper. Copyright © 2011 Elsevier Ltd. All rights reserved.
Road weather management best practices : version 3.0.
DOT National Transportation Integrated Search
2013-01-01
The impacts of weather on the nations road system greatly affect safety, mobility, and productivity. Weather affects roadway safety through increased crash risk, as well as exposure to weather-related hazards. On average 7,130 fatalities and 629,0...
A Probabilistic Typhoon Risk Model for Vietnam
NASA Astrophysics Data System (ADS)
Haseemkunju, A.; Smith, D. F.; Brolley, J. M.
2017-12-01
Annually, the coastal Provinces of low-lying Mekong River delta region in the southwest to the Red River Delta region in Northern Vietnam is exposed to severe wind and flood risk from landfalling typhoons. On average, about two to three tropical cyclones with a maximum sustained wind speed of >=34 knots make landfall along the Vietnam coast. Recently, Typhoon Wutip (2013) crossed Central Vietnam as a category 2 typhoon causing significant damage to properties. As tropical cyclone risk is expected to increase with increase in exposure and population growth along the coastal Provinces of Vietnam, insurance/reinsurance, and capital markets need a comprehensive probabilistic model to assess typhoon risk in Vietnam. In 2017, CoreLogic has expanded the geographical coverage of its basin-wide Western North Pacific probabilistic typhoon risk model to estimate the economic and insured losses from landfalling and by-passing tropical cyclones in Vietnam. The updated model is based on 71 years (1945-2015) of typhoon best-track data and 10,000 years of a basin-wide simulated stochastic tracks covering eight countries including Vietnam. The model is capable of estimating damage from wind, storm surge and rainfall flooding using vulnerability models, which relate typhoon hazard to building damageability. The hazard and loss models are validated against past historical typhoons affecting Vietnam. Notable typhoons causing significant damage in Vietnam are Lola (1993), Frankie (1996), Xangsane (2006), and Ketsana (2009). The central and northern coastal provinces of Vietnam are more vulnerable to wind and flood hazard, while typhoon risk in the southern provinces are relatively low.
NASA Astrophysics Data System (ADS)
Aleardi, Mattia
2018-01-01
We apply a two-step probabilistic seismic-petrophysical inversion for the characterization of a clastic, gas-saturated, reservoir located in offshore Nile Delta. In particular, we discuss and compare the results obtained when two different rock-physics models (RPMs) are employed in the inversion. The first RPM is an empirical, linear model directly derived from the available well log data by means of an optimization procedure. The second RPM is a theoretical, non-linear model based on the Hertz-Mindlin contact theory. The first step of the inversion procedure is a Bayesian linearized amplitude versus angle (AVA) inversion in which the elastic properties, and the associated uncertainties, are inferred from pre-stack seismic data. The estimated elastic properties constitute the input to the second step that is a probabilistic petrophysical inversion in which we account for the noise contaminating the recorded seismic data and the uncertainties affecting both the derived rock-physics models and the estimated elastic parameters. In particular, a Gaussian mixture a-priori distribution is used to properly take into account the facies-dependent behavior of petrophysical properties, related to the different fluid and rock properties of the different litho-fluid classes. In the synthetic and in the field data tests, the very minor differences between the results obtained by employing the two RPMs, and the good match between the estimated properties and well log information, confirm the applicability of the inversion approach and the suitability of the two different RPMs for reservoir characterization in the investigated area.
Myers, Casey A.; Laz, Peter J.; Shelburne, Kevin B.; Davidson, Bradley S.
2015-01-01
Uncertainty that arises from measurement error and parameter estimation can significantly affect the interpretation of musculoskeletal simulations; however, these effects are rarely addressed. The objective of this study was to develop an open-source probabilistic musculoskeletal modeling framework to assess how measurement error and parameter uncertainty propagate through a gait simulation. A baseline gait simulation was performed for a male subject using OpenSim for three stages: inverse kinematics, inverse dynamics, and muscle force prediction. A series of Monte Carlo simulations were performed that considered intrarater variability in marker placement, movement artifacts in each phase of gait, variability in body segment parameters, and variability in muscle parameters calculated from cadaveric investigations. Propagation of uncertainty was performed by also using the output distributions from one stage as input distributions to subsequent stages. Confidence bounds (5–95%) and sensitivity of outputs to model input parameters were calculated throughout the gait cycle. The combined impact of uncertainty resulted in mean bounds that ranged from 2.7° to 6.4° in joint kinematics, 2.7 to 8.1 N m in joint moments, and 35.8 to 130.8 N in muscle forces. The impact of movement artifact was 1.8 times larger than any other propagated source. Sensitivity to specific body segment parameters and muscle parameters were linked to where in the gait cycle they were calculated. We anticipate that through the increased use of probabilistic tools, researchers will better understand the strengths and limitations of their musculoskeletal simulations and more effectively use simulations to evaluate hypotheses and inform clinical decisions. PMID:25404535
Noradrenergic modulation of risk/reward decision making.
Montes, David R; Stopper, Colin M; Floresco, Stan B
2015-08-01
Catecholamine transmission modulates numerous cognitive and reward-related processes that can subserve more complex functions such as cost/benefit decision making. Dopamine has been shown to play an integral role in decisions involving reward uncertainty, yet there is a paucity of research investigating the contributions of noradrenaline (NA) transmission to these functions. The present study was designed to elucidate the contribution of NA to risk/reward decision making in rats, assessed with a probabilistic discounting task. We examined the effects of reducing noradrenergic transmission with the α2 agonist clonidine (10-100 μg/kg), and increasing activity at α2A receptor sites with the agonist guanfacine (0.1-1 mg/kg), the α2 antagonist yohimbine (1-3 mg/kg), and the noradrenaline transporter (NET) inhibitor atomoxetine (0.3-3 mg/kg) on probabilistic discounting. Rats chose between a small/certain reward and a larger/risky reward, wherein the probability of obtaining the larger reward either decreased (100-12.5 %) or increased (12.5-100 %) over a session. In well-trained rats, clonidine reduced risky choice by decreasing reward sensitivity, whereas guanfacine did not affect choice behavior. Yohimbine impaired adjustments in decision biases as reward probability changed within a session by altering negative feedback sensitivity. In a subset of rats that displayed prominent discounting of probabilistic rewards, the lowest dose of atomoxetine increased preference for the large/risky reward when this option had greater long-term utility. These data highlight an important and previously uncharacterized role for noradrenergic transmission in mediating different aspects of risk/reward decision making and mediating reward and negative feedback sensitivity.
NASA Astrophysics Data System (ADS)
Sohn, Soo-Jin; Min, Young-Mi; Lee, June-Yi; Tam, Chi-Yung; Kang, In-Sik; Wang, Bin; Ahn, Joong-Bae; Yamagata, Toshio
2012-02-01
The performance of the probabilistic multimodel prediction (PMMP) system of the APEC Climate Center (APCC) in predicting the Asian summer monsoon (ASM) precipitation at a four-month lead (with February initial condition) was compared with that of a statistical model using hindcast data for 1983-2005 and real-time forecasts for 2006-2011. Particular attention was paid to probabilistic precipitation forecasts for the boreal summer after the mature phase of El Niño and Southern Oscillation (ENSO). Taking into account the fact that coupled models' skill for boreal spring and summer precipitation mainly comes from their ability to capture ENSO teleconnection, we developed the statistical model using linear regression with the preceding winter ENSO condition as the predictor. Our results reveal several advantages and disadvantages in both forecast systems. First, the PMMP appears to have higher skills for both above- and below-normal categories in the six-year real-time forecast period, whereas the cross-validated statistical model has higher skills during the 23-year hindcast period. This implies that the cross-validated statistical skill may be overestimated. Second, the PMMP is the better tool for capturing atypical ENSO (or non-canonical ENSO related) teleconnection, which has affected the ASM precipitation during the early 1990s and in the recent decade. Third, the statistical model is more sensitive to the ENSO phase and has an advantage in predicting the ASM precipitation after the mature phase of La Niña.
Quan-Hoang, Vuong
2016-10-01
Patients have to acquire information to support their decision on choosing a suitable healthcare provider. But in developing countries like Vietnam, accessibility issues remain an obstacle, thus adversely affect both quality and costliness of healthcare information. Vietnamese use both sources from health professionals and friends/relatives, especially when quality of the Internet-based cheaper sources appear to be still questionable. The search of information from both professionals and friends/relatives incurs some cost, which can be viewed as low or high depending low or high accessibility to the sources. These views potentially affect their choices. To investigate the effects that medical/health services information on perceived expensiveness of patients' labor costs. Two related objectives are a) establishing empirical relations between accessibility to sources and expensiveness; and, b) probabilistic trends of probabilities for perceived expensiveness. There is evidence for established relations among the variables "Convexp" and "Convrel" (all p's < 0.01), indicating that both information sources (experts and friends/relatives) have influence on patients perception of information expensiveness. The use of experts source tends to increase the probability of perceived expensiveness. a) Probabilistic trends show Vietnamese patients have propensity to value healthcare information highly and do not see it as "expensive"; b) The majority of Vietnamese households still take non-professional advices at their own risks; c) There is more for the public healthcare information system to do to reduce costliness and risk of information. The Internet-based health service users communities cannot replace this system.
Cognitive Rehabilitation in Bilateral Vestibular Patients: A Computational Perspective.
Ellis, Andrew W; Schöne, Corina G; Vibert, Dominique; Caversaccio, Marco D; Mast, Fred W
2018-01-01
There is evidence that vestibular sensory processing affects, and is affected by, higher cognitive processes. This is highly relevant from a clinical perspective, where there is evidence for cognitive impairments in patients with peripheral vestibular deficits. The vestibular system performs complex probabilistic computations, and we claim that understanding these is important for investigating interactions between vestibular processing and cognition. Furthermore, this will aid our understanding of patients' self-motion perception and will provide useful information for clinical interventions. We propose that cognitive training is a promising way to alleviate the debilitating symptoms of patients with complete bilateral vestibular loss (BVP), who often fail to show improvement when relying solely on conventional treatment methods. We present a probabilistic model capable of processing vestibular sensory data during both passive and active self-motion. Crucially, in our model, knowledge from multiple sources, including higher-level cognition, can be used to predict head motion. This is the entry point for cognitive interventions. Despite the loss of sensory input, the processing circuitry in BVP patients is still intact, and they can still perceive self-motion when the movement is self-generated. We provide computer simulations illustrating self-motion perception of BVP patients. Cognitive training may lead to more accurate and confident predictions, which result in decreased weighting of sensory input, and thus improved self-motion perception. Using our model, we show the possible impact of cognitive interventions to help vestibular rehabilitation in patients with BVP.
Dinov, Martin; Leech, Robert
2017-01-01
Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses.
Dinov, Martin; Leech, Robert
2017-01-01
Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignment of microstates back onto the EEG timecourse of interest. We perform a fully probabilistic microstate clustering and labeling, to account for these sources of uncertainty using the closest probabilistic analog to KM called Fuzzy C-means (FCM). We train softmax multi-layer perceptrons (MLPs) using the KM and FCM-inferred cluster assignments as target labels, to then allow for probabilistic labeling of the full EEG data instead of the usual correlation-based deterministic microstate label assignment typically used. We assess the merits of the probabilistic analysis vs. the deterministic approaches in EEG data recorded while participants perform real or imagined motor movements from a publicly available data set of 109 subjects. Though FCM group template maps that are almost topographically identical to KM were found, there is considerable uncertainty in the subsequent assignment of microstate labels. In general, imagined motor movements are less predictable on a time point-by-time point basis, possibly reflecting the more exploratory nature of the brain state during imagined, compared to during real motor movements. We find that some relationships may be more evident using FCM than using KM and propose that future microstate analysis should preferably be performed probabilistically rather than deterministically, especially in situations such as with brain computer interfaces, where both training and applying models of microstates need to account for uncertainty. Probabilistic neural network-driven microstate assignment has a number of advantages that we have discussed, which are likely to be further developed and exploited in future studies. In conclusion, probabilistic clustering and a probabilistic neural network-driven approach to microstate analysis is likely to better model and reveal details and the variability hidden in current deterministic and binarized microstate assignment and analyses. PMID:29163110
Wagner, Peter J
2012-02-23
Rate distributions are important considerations when testing hypotheses about morphological evolution or phylogeny. They also have implications about general processes underlying character evolution. Molecular systematists often assume that rates are Poisson processes with gamma distributions. However, morphological change is the product of multiple probabilistic processes and should theoretically be affected by hierarchical integration of characters. Both factors predict lognormal rate distributions. Here, a simple inverse modelling approach assesses the best single-rate, gamma and lognormal models given observed character compatibility for 115 invertebrate groups. Tests reject the single-rate model for nearly all cases. Moreover, the lognormal outperforms the gamma for character change rates and (especially) state derivation rates. The latter in particular is consistent with integration affecting morphological character evolution.
NASA Technical Reports Server (NTRS)
Shih, Ann T.; Ancel, Ersin; Jones, Sharon Monica; Reveley, Mary S.; Luxhoj, James T.
2012-01-01
Aviation is a problem domain characterized by a high level of system complexity and uncertainty. Safety risk analysis in such a domain is especially challenging given the multitude of operations and diverse stakeholders. The Federal Aviation Administration (FAA) projects that by 2025 air traffic will increase by more than 50 percent with 1.1 billion passengers a year and more than 85,000 flights every 24 hours contributing to further delays and congestion in the sky (Circelli, 2011). This increased system complexity necessitates the application of structured safety risk analysis methods to understand and eliminate where possible, reduce, and/or mitigate risk factors. The use of expert judgments for probabilistic safety analysis in such a complex domain is necessary especially when evaluating the projected impact of future technologies, capabilities, and procedures for which current operational data may be scarce. Management of an R&D product portfolio in such a dynamic domain needs a systematic process to elicit these expert judgments, process modeling results, perform sensitivity analyses, and efficiently communicate the modeling results to decision makers. In this paper a case study focusing on the application of an R&D portfolio of aeronautical products intended to mitigate aircraft Loss of Control (LOC) accidents is presented. In particular, the knowledge elicitation process with three subject matter experts who contributed to the safety risk model is emphasized. The application and refinement of a verbal-numerical scale for conditional probability elicitation in a Bayesian Belief Network (BBN) is discussed. The preliminary findings from this initial step of a three-part elicitation are important to project management practitioners as they illustrate the vital contribution of systematic knowledge elicitation in complex domains.
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.
2003-01-01
The SAE G-11 RMSL (Reliability, Maintainability, Supportability, and Logistics) Division activities include identification and fulfillment of joint industry, government, and academia needs for development and implementation of RMSL technologies. Four Projects in the Probabilistic Methods area and two in the area of RMSL have been identified. These are: (1) Evaluation of Probabilistic Technology - progress has been made toward the selection of probabilistic application cases. Future effort will focus on assessment of multiple probabilistic softwares in solving selected engineering problems using probabilistic methods. Relevance to Industry & Government - Case studies of typical problems encountering uncertainties, results of solutions to these problems run by different codes, and recommendations on which code is applicable for what problems; (2) Probabilistic Input Preparation - progress has been made in identifying problem cases such as those with no data, little data and sufficient data. Future effort will focus on developing guidelines for preparing input for probabilistic analysis, especially with no or little data. Relevance to Industry & Government - Too often, we get bogged down thinking we need a lot of data before we can quantify uncertainties. Not True. There are ways to do credible probabilistic analysis with little data; (3) Probabilistic Reliability - probabilistic reliability literature search has been completed along with what differentiates it from statistical reliability. Work on computation of reliability based on quantification of uncertainties in primitive variables is in progress. Relevance to Industry & Government - Correct reliability computations both at the component and system level are needed so one can design an item based on its expected usage and life span; (4) Real World Applications of Probabilistic Methods (PM) - A draft of volume 1 comprising aerospace applications has been released. Volume 2, a compilation of real world applications of probabilistic methods with essential information demonstrating application type and timehost savings by the use of probabilistic methods for generic applications is in progress. Relevance to Industry & Government - Too often, we say, 'The Proof is in the Pudding'. With help from many contributors, we hope to produce such a document. Problem is - not too many people are coming forward due to proprietary nature. So, we are asking to document only minimum information including problem description, what method used, did it result in any savings, and how much?; (5) Software Reliability - software reliability concept, program, implementation, guidelines, and standards are being documented. Relevance to Industry & Government - software reliability is a complex issue that must be understood & addressed in all facets of business in industry, government, and other institutions. We address issues, concepts, ways to implement solutions, and guidelines for maximizing software reliability; (6) Maintainability Standards - maintainability/serviceability industry standard/guidelines and industry best practices and methodologies used in performing maintainability/ serviceability tasks are being documented. Relevance to Industry & Government - Any industry or government process, project, and/or tool must be maintained and serviced to realize the life and performance it was designed for. We address issues and develop guidelines for optimum performance & life.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... Staff Guidance on Implementation of a Seismic Margin Analysis for New Reactors Based on Probabilistic... Seismic Margin Analysis for New Reactors Based on Probabilistic Risk Assessment,'' (Agencywide Documents.../COL-ISG-020 ``Implementation of a Seismic Margin Analysis for New Reactors Based on Probabilistic Risk...
Judging Words by Their Covers and the Company They Keep: Probabilistic Cues Support Word Learning
ERIC Educational Resources Information Center
Lany, Jill
2014-01-01
Statistical learning may be central to lexical and grammatical development. The phonological and distributional properties of words provide probabilistic cues to their grammatical and semantic properties. Infants can capitalize on such probabilistic cues to learn grammatical patterns in listening tasks. However, infants often struggle to learn…
Fully probabilistic control for stochastic nonlinear control systems with input dependent noise.
Herzallah, Randa
2015-03-01
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.
Global/local methods for probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.
1993-01-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Global/local methods for probabilistic structural analysis
NASA Astrophysics Data System (ADS)
Millwater, H. R.; Wu, Y.-T.
1993-04-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Suo, Qinghui; Zhang, Daming
2017-09-01
A sample of 300 migrating peasant workers from 15 Chinese building construction sites completed a demographic questionnaire to investigate the usage of safety footwear. The survey form was constructed based on the theory of planned behaviour, and a total of 12 questions focusing on the workers' past experience, attitudes, subjective norms and perceived behavioural control were included in the survey. It was found that 92% of the participants did not wear safety footwear while working on construction sites, although more than 91% of them believed that safety footwear would protect the foot from injury; none of the participants had been provided free safety footwear by their employer. Regression analysis shows that employers' attitude is the most important factor affecting their usage of safety footwear, 'providing free safety footwear' and 'comfortability of the safety footwear' ranking second and third respectively.
Khosravi, Yahya; Asilian-Mahabadi, Hassan; Hajizadeh, Ebrahim; Hassanzadeh-Rangi, Narmin; Bastani, Hamid; Khavanin, Ali; Mortazavi, Seyed Bagher
2014-01-01
There can be little doubt that the construction is the most hazardous industry in the worldwide. This study was designed to modeling the factors affecting unsafe behavior from the perspective of safety supervisors. The qualitative research was conducted to extract a conceptual model. A structural model was then developed based on a questionnaire survey (n=266) by two stage Structural Equation Model (SEM) approach. An excellent confirmed 12-factors structure explained about 62% of variances unsafe behavior in the construction industry. A good fit structural model indicated that safety climate factors were positively correlated with safety individual factors (P<0.001) and workplace safety condition (P<0.001). The workplace safety condition was found to play a strong mediating role in linking the safety climate and construction workers' engagement in safe or unsafe behavior. In order to improve construction safety performance, more focus on the workplace condition is required.
A Unified Probabilistic Framework for Dose–Response Assessment of Human Health Effects
Slob, Wout
2015-01-01
Background When chemical health hazards have been identified, probabilistic dose–response assessment (“hazard characterization”) quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. Objectives We developed a unified framework for probabilistic dose–response assessment. Methods We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose–response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, “effect metrics” can be specified to define “toxicologically equivalent” sizes for this underlying individual response; and d) dose–response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose–response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Results Probabilistically derived exposure limits are based on estimating a “target human dose” (HDMI), which requires risk management–informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%–10% effect sizes. Conclusions Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions. Citation Chiu WA, Slob W. 2015. A unified probabilistic framework for dose–response assessment of human health effects. Environ Health Perspect 123:1241–1254; http://dx.doi.org/10.1289/ehp.1409385 PMID:26006063
78 FR 52848 - Occupational Safety and Health Standards for Aircraft Cabin Crewmembers
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... [Docket No.: FAA-2012-0953] Occupational Safety and Health Standards for Aircraft Cabin Crewmembers AGENCY... regulation of some occupational safety and health conditions affecting cabin crewmembers on aircraft by the Occupational Safety and Health Administration. This policy statement will enhance occupational safety and...
Griffin, William A.; Li, Xun
2016-01-01
Sequential affect dynamics generated during the interaction of intimate dyads, such as married couples, are associated with a cascade of effects—some good and some bad—on each partner, close family members, and other social contacts. Although the effects are well documented, the probabilistic structures associated with micro-social processes connected to the varied outcomes remain enigmatic. Using extant data we developed a method of classifying and subsequently generating couple dynamics using a Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM). Our findings indicate that several key aspects of existing models of marital interaction are inadequate: affect state emissions and their durations, along with the expected variability differences between distressed and nondistressed couples are present but highly nuanced; and most surprisingly, heterogeneity among highly satisfied couples necessitate that they be divided into subgroups. We review how this unsupervised learning technique generates plausible dyadic sequences that are sensitive to relationship quality and provide a natural mechanism for computational models of behavioral and affective micro-social processes. PMID:27187319
PlayPhysics: An Emotional Games Learning Environment for Teaching Physics
NASA Astrophysics Data System (ADS)
Muñoz, Karla; Kevitt, Paul Mc; Lunney, Tom; Noguez, Julieta; Neri, Luis
To ensure learning, game-based learning environments must incorporate assessment mechanisms, e.g. Intelligent Tutoring Systems (ITSs). ITSs are focused on recognising and influencing the learner's emotional or motivational states. This research focuses on designing and implementing an affective student model for intelligent gaming, which reasons about the learner's emotional state from cognitive and motivational variables using observable behaviour. A Probabilistic Relational Models (PRMs) approach is employed to derive Dynamic Bayesian Networks (DBNs). The model uses the Control-Value theory of 'achievement emotions' as a basis. A preliminary test was conducted to recognise the students' prospective-outcome emotions with results presented and discussed. PlayPhysics is an emotional games learning environment for teaching Physics. Once the affective student model proves effective it will be incorporated into PlayPhysics' architecture. The design, evaluation and postevaluation of PlayPhysics are also discussed. Future work will focus on evaluating the affective student model with a larger population of students, and on providing affective feedback.
NASA Technical Reports Server (NTRS)
Boyce, L.
1992-01-01
A probabilistic general material strength degradation model has been developed for structural components of aerospace propulsion systems subjected to diverse random effects. The model has been implemented in two FORTRAN programs, PROMISS (Probabilistic Material Strength Simulator) and PROMISC (Probabilistic Material Strength Calibrator). PROMISS calculates the random lifetime strength of an aerospace propulsion component due to as many as eighteen diverse random effects. Results are presented in the form of probability density functions and cumulative distribution functions of lifetime strength. PROMISC calibrates the model by calculating the values of empirical material constants.
Probabilistic models of cognition: conceptual foundations.
Chater, Nick; Tenenbaum, Joshua B; Yuille, Alan
2006-07-01
Remarkable progress in the mathematics and computer science of probability has led to a revolution in the scope of probabilistic models. In particular, 'sophisticated' probabilistic methods apply to structured relational systems such as graphs and grammars, of immediate relevance to the cognitive sciences. This Special Issue outlines progress in this rapidly developing field, which provides a potentially unifying perspective across a wide range of domains and levels of explanation. Here, we introduce the historical and conceptual foundations of the approach, explore how the approach relates to studies of explicit probabilistic reasoning, and give a brief overview of the field as it stands today.
A New Scheme for Probabilistic Teleportation and Its Potential Applications
NASA Astrophysics Data System (ADS)
Wei, Jia-Hua; Dai, Hong-Yi; Zhang, Ming
2013-12-01
We propose a novel scheme to probabilistically teleport an unknown two-level quantum state when the information of the partially entangled state is only available for the sender. This is in contrast with the fact that the receiver must know the non-maximally entangled state in previous typical schemes for the teleportation. Additionally, we illustrate two potential applications of the novel scheme for probabilistic teleportation from a sender to a receiver with the help of an assistant, who plays distinct roles under different communication conditions, and our results show that the novel proposal could enlarge the applied range of probabilistic teleportation.
Probabilistic machine learning and artificial intelligence.
Ghahramani, Zoubin
2015-05-28
How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.
NASA Technical Reports Server (NTRS)
Thacker, B. H.; Mcclung, R. C.; Millwater, H. R.
1990-01-01
An eigenvalue analysis of a typical space propulsion system turbopump blade is presented using an approximate probabilistic analysis methodology. The methodology was developed originally to investigate the feasibility of computing probabilistic structural response using closed-form approximate models. This paper extends the methodology to structures for which simple closed-form solutions do not exist. The finite element method will be used for this demonstration, but the concepts apply to any numerical method. The results agree with detailed analysis results and indicate the usefulness of using a probabilistic approximate analysis in determining efficient solution strategies.
Probabilistic machine learning and artificial intelligence
NASA Astrophysics Data System (ADS)
Ghahramani, Zoubin
2015-05-01
How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.
Yavuz, Nilay; Welch, Eric W
2010-01-01
Research has identified several factors that affect fear of crime in public space. However, the extent to which gender moderates the effectiveness of fear-reducing measures has received little attention. Using data from the Chicago Transit Authority Customer Satisfaction Survey of 2003, this study aims to understand whether train transit security practices and service attributes affect men and women differently. Findings indicate that, while the presence of video cameras has a lower effect on women's feelings of safety compared with men, frequent and on-time service matters more to male passengers. Additionally, experience with safety-related problems affects women significantly more than men. Conclusions discuss the implications of the study for theory and gender-specific policies to improve perceptions of transit safety.
Making safety an integral part of 5S in healthcare.
Ikuma, Laura H; Nahmens, Isabelina
2014-01-01
Healthcare faces major challenges with provider safety and rising costs, and many organizations are using Lean to instigate change. One Lean tool, 5S, is becoming popular for improving efficiency of physical work environments, and it can also improve safety. This paper demonstrates that safety is an integral part of 5S by examining five specific 5S events in acute care facilities. We provide two arguments for how safety is linked to 5S:1. Safety is affected by 5S events, regardless of whether safety is a specific goal and 2. Safety can and should permeate all five S's as part of a comprehensive plan for system improvement. Reports of 5S events from five departments in one health system were used to evaluate how changes made at each step of the 5S impacted safety. Safety was affected positively in each step of the 5S through initial safety goals and side effects of other changes. The case studies show that 5S can be a mechanism for improving safety. Practitioners may reap additional safety benefits by incorporating safety into 5S events through a safety analysis before the 5S, safety goals and considerations during the 5S, and follow-up safety analysis.
Probabilistic Simulation of Multi-Scale Composite Behavior
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2012-01-01
A methodology is developed to computationally assess the non-deterministic composite response at all composite scales (from micro to structural) due to the uncertainties in the constituent (fiber and matrix) properties, in the fabrication process and in structural variables (primitive variables). The methodology is computationally efficient for simulating the probability distributions of composite behavior, such as material properties, laminate and structural responses. Bi-products of the methodology are probabilistic sensitivities of the composite primitive variables. The methodology has been implemented into the computer codes PICAN (Probabilistic Integrated Composite ANalyzer) and IPACS (Integrated Probabilistic Assessment of Composite Structures). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in composite typical laminates and comparing the results with the Monte Carlo simulation method. Available experimental data of composite laminate behavior at all scales fall within the scatters predicted by PICAN. Multi-scaling is extended to simulate probabilistic thermo-mechanical fatigue and to simulate the probabilistic design of a composite redome in order to illustrate its versatility. Results show that probabilistic fatigue can be simulated for different temperature amplitudes and for different cyclic stress magnitudes. Results also show that laminate configurations can be selected to increase the redome reliability by several orders of magnitude without increasing the laminate thickness--a unique feature of structural composites. The old reference denotes that nothing fundamental has been done since that time.