Sample records for affecting seed yield

  1. [Effects of sowing date and planting density on the seed yield and oil content of winter oilseed rape].

    PubMed

    Zhang, Shu-Jie; Li, Ling; Zhang, Chun-Lei

    2012-05-01

    A field experiment was conducted to investigate the effects of different sowing date and planting density on the seed yield and seed oil content of winter oilseed rape (Brassica napus). Sowing date mainly affected the seed yield of branch raceme, while planting density affected the seed yields of both branch raceme and main raceme. The seed oil content was less affected by sowing date. The proportion of the seed yield of main raceme to the seed yield per plant increased with increasing planting density, and the seed oil content of main raceme was about 1% higher than that of branch raceme. Consequently, the seed oil production per plot increased significantly with increasing planting density. In the experimental region, the sowing date of winter oilseed rape should be earlier than mid-October. When sowing in late October, the seed yield would be decreased significantly. A planting density of 36-48 plants x m(-2) could improve the seed yield and oil content of winter oilseed rape.

  2. Comparison of gamma and electron beam irradiation in reducing populations of E. coli artificially inoculated on Mung Bean, clover and Fenugreek Seeds, and affecting germination and growth of seeds

    USDA-ARS?s Scientific Manuscript database

    Sprouts have frequently been implicated in outbreaks of foodborne illnesses, mostly due to contaminated seeds. Intervention technologies to decontaminate seeds without affecting sprout yield are needed. In the present study, we compared gamma rays with electron beam in inactivating E. coli artifici...

  3. Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas

    PubMed Central

    Sun, Yanwei; Wang, Chunming; Wang, Ning; Jiang, Xiyuan; Mao, Huizhu; Zhu, Changxiang; Wen, Fujiang; Wang, Xianghua; Lu, Zhijun; Yue, Genhua; Xu, Zengfu; Ye, Jian

    2017-01-01

    Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in controlling seed size and seed yield. Through Virus Induced Gene Silencing (VIGS), we found that JcARF19 was a positive upstream modulator in auxin signaling and may control plant organ size in J. curcas. Importantly, transgenic overexpression of JcARF19 significantly increased seed size and seed yield in plants Arabidopsis thaliana and J. curcas, indicating the importance of auxin pathway in seed yield controlling in dicot plants. Transcripts analysis indicated that ectopic expression of JcARF19 in J. curcas upregulated auxin responsive genes encoding essential regulators in cell differentiation and cytoskeletal dynamics of seed development. Our data suggested the potential of improving seed traits by precisely engineering auxin signaling in woody perennial plants. PMID:28102350

  4. Imidacloprid seed treatments affect individual ant behavior and community structure but not egg predation, pest abundance or soybean yield.

    PubMed

    Penn, Hannah J; Dale, Andrew M

    2017-08-01

    Neonicotinoid seed treatments are under scrutiny because of their variable efficacy against crop pests and for their potential negative impacts on non-target organisms. Ants provide important biocontrol services in agroecosystems and can be indicators of ecosystem health. This study tested for effects of exposure to imidacloprid plus fungicide or fungicide-treated seeds on individual ant survival, locomotion and foraging capabilities and on field ant community structure, pest abundance, ant predation and yield. Cohorts of ants exposed to either type of treated seed had impaired locomotion and a higher incidence of morbidity and mortality but no loss of foraging capacity. In the field, we saw no difference in ant species richness, regardless of seed treatment. Blocks with imidacloprid did have higher species evenness and diversity, probably owing to variable effects of the insecticide on different ant species, particularly Tetramorium caespitum. Ant predation on sentinel eggs, pest abundance and soybean growth and yield were similar in the two treatments. Both seed treatments had lethal and sublethal effects on ant individuals, and the influence of imidacloprid seed coating in the field was manifested in altered ant community composition. Those effects, however, were not strong enough to affect egg predation, pest abundance or soybean yield in field blocks. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Reaction of maturity group V soybean plant introductions to Phomopsis Seed Decay in Arkansas Mississippi and Missouri 2009

    USDA-ARS?s Scientific Manuscript database

    In 2009, Soybean Phomopsis seed decay (PSD) caused over 12 million bushels of yield loss in 16 southern states. This disease severely affects soybean seed quality due to the reduction of seed viability, oil content, and alteration of seed composition, and it may also increase moldy and/or split seed...

  6. Effects of physical agitation on yield of greenhouse-grown soybean

    NASA Technical Reports Server (NTRS)

    Jones, R. S.; Mitchell, C. A.

    1992-01-01

    Agronomic and horticultural crop species experience reductions in growth and harvestable yield after exposure to physical agitation (also known as mechanical stress), as by wind or rain. A greenhouse study was conducted to test the influence of mechanical stress on soybean yield and to determine if exposure to mechanical stress during discrete growth periods has differential effects on seed yield. A modified rotatory shaker was used to apply seismic (i.e., shaking) stress. Brief, periodic episodes of seismic stress reduced stem length, total seed dry weight, and seed number of soybean [Glycine max (L.) Merr.]. Lodging resistance was greater for plants stressed during vegetative growth or throughout vegetative and reproductive growth than during reproductive growth only. Seed dry weight yield was reduced regardless of the timing or duration of stress application, but was lowest when applied during reproductive development. Seismic stress applied during reproductive growth stages R1 to R2 (Days 3 to 4) was as detrimental to seed dry weight accumulation as was stress applied during growth stages R1 to R6 (Days 39 to 42). Seed dry weight per plant was highly correlated with seed number per plant, and seed number was correlated with the seed number of two- and three-seeded pods. Dry weight per 100 seeds was unaffected by seismic-stress treatment. Growth and yield reductions resulting from treatments applied only during the vegetative stage imply that long-term mechanical effects were induced, from which the plants did not fully recover. It is unclear which yield-controlling physiological processes were affected by mechanical stress. Both transient and long-term effects on yield-controlling processes remain to be elucidated.

  7. Evaluation of seeding depth and guage-wheel load effects on maize emergence and yield

    USDA-ARS?s Scientific Manuscript database

    Planting represents perhaps the most important field operation with errors likely to negatively affect crop yield and thereby farm profitability. Performance of row-crop planters are evaluated by their ability to accurately place seeds into the soil at an adequate and pre-determined depth, the goal ...

  8. Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology.

    PubMed

    Nazir, Sadaf; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad

    2017-05-01

    Aqueous extraction of basil seed mucilage was optimized using response surface methodology. A Central Composite Rotatable Design (CCRD) for modeling of three independent variables: temperature (40-91 °C); extraction time (1.6-3.3 h) and water/seed ratio (18:1-77:1) was used to study the response for yield. Experimental values for extraction yield ranged from 7.86 to 20.5 g/100 g. Extraction yield was significantly ( P  < 0.05) affected by all the variables. Temperature and water/seed ratio were found to have pronounced effect while the extraction time was found to have minor possible effects. Graphical optimization determined the optimal conditions for the extraction of mucilage. The optimal condition predicted an extraction yield of 20.49 g/100 g at 56.7 °C, 1.6 h, and a water/seed ratio of 66.84:1. Optimal conditions were determined to obtain highest extraction yield. Results indicated that water/seed ratio was the most significant parameter, followed by temperature and time.

  9. Evaluation of maturity group III soybean lines for resistance to purple seed stain in Mississippi, 2010

    USDA-ARS?s Scientific Manuscript database

    Purple seed stain (PSS) of soybean is an important disease caused by Cercospora kikuchii. PSS reduces seed quality and market grade, affects seed germination and vigor, and has been reported wherever soybeans are grown worldwide. In 2009, PSS caused 6.4 million bushels of yield losses in 16 southern...

  10. Reaction of maturity group V soybean lines to purple seed stains in Mississippi 2010

    USDA-ARS?s Scientific Manuscript database

    In 2009, soybean purple seed stain (PSS) caused 6.4 million bushels of yield losses in 16 southern states. This disease severely reduces seed market grade and affects seed germination and vigor. PSS is caused by Cercospora kikuchii and is an economy important disease. To identify new sources of resi...

  11. Evaluation of maturity group IV soybean lines for resistance to purple seed stains in Mississippi 2010

    USDA-ARS?s Scientific Manuscript database

    Purple seed stain (PSS) of soybean is an important disease caused by Cercospora kikuchii. PSS reduces seed quality and market grade, affects seed germination and vigor, and has been reported wherever soybeans are grown worldwide. In 2009, PSS caused 6.4 million bushels of yield losses in 16 southern...

  12. Extra soil fertilization of mother plants increases botanical seed yield but not long-term germination in wild Solanum (potato) species

    USDA-ARS?s Scientific Manuscript database

    Potato has about 100 wild species relatives that are multiplied in the form of botanical seed populations by genebanks, and distributed for use in research and breeding, so factors that affect long term seed germination are of interest. In 1987 the US Potato Genebank conducted routine seed multiplic...

  13. [Effects of flower bud removal and artificial pollination on growth and yield of Tulipa edulis].

    PubMed

    Miao, Yuan-Yuan; Zhu, Zai-Biao; Guo, Qiao-Sheng; Ma, Hong-Liang; Yang, Ying; Zhu, Li-Fang

    2014-06-01

    The study was conducted to explore the response of growth and yield of Tulipa edulis to flower bud removal and artificial pollination. And flower bud removal and artificial pollination were carried out in the squaring period and bloom stage respectively. The morphological index and biomass indicators were determined and the yield was counted in harvest time. Result showed that flower bud removal was beneficial to the growth of T. edulis, resulting in increasing growth index, biomass as well as the yield of bulb. The diameter and dry weight of T. edulis fruit by artificial pollination were increased significantly compared with the control. Seed setting percentage increased to 100%, and the number of seed as well as the single grain weight increased by 69.03% and 16.48%, respectively, which did not significantly affect the bulb production. In conclusion, Flower bud removal treatment accelerates bulb biomass increase, so as to improve its yield. Artificial pollination raised significantly seed setting percentage, seed number as well as the single grain weight.

  14. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation.

    PubMed

    Zhang, H X; Hodson, J N; Williams, J P; Blumwald, E

    2001-10-23

    Transgenic Brassica napus plants overexpressing AtNHX1, a vacuolar Na(+)/H(+) antiport from Arabidopsis thaliana, were able to grow, flower, and produce seeds in the presence of 200 mM sodium chloride. Although the transgenic plants grown in high salinity accumulated sodium up to 6% of their dry weight, growth of the these plants was only marginally affected by the high salt concentration. Moreover, seed yields and the seed oil quality were not affected by the high salinity of the soil. Our results demonstrate the potential use of these transgenic plants for agricultural use in saline soils. Our findings, showing that the modification of a single trait significantly improved the salinity tolerance of this crop plant, suggest that with a combination of breeding and transgenic plants it could be possible to produce salt-tolerant crops with far fewer target traits than had been anticipated.

  15. Advances in disease-resistant varieties

    USDA-ARS?s Scientific Manuscript database

    Soybean yields worldwide are reduced by a variety of diseases that affect plant stands, seed development, and/or seed quality, but soybean breeders, pathologists, and genomicists have made considerable progress in the identification, characterization and utilization of sources of resistance genes. M...

  16. Efficacy of Rice Insecticide Seed Treatments at Selected Nitrogen Rates for Control of the Rice Water Weevil (Coleoptera: Curculionidae).

    PubMed

    Everett, Mallory; Lorenz, Gus; Slaton, Nathan; Hardke, Jarrod

    2015-08-01

    Seed-applied insecticides are the standard control method used in the United States to minimize rice water weevil (Lissorhoptrus oryzophilus Kuschel) injury to rice (Oryza sativa L.) roots, and often results in greater yields than rice that receives no seed-applied insecticide. Yield increases from seed-applied insecticides often occur even when insect pressure is low and should not cause yield loss. The research objective was to evaluate the effect of urea-nitrogen rate and seed-applied insecticide on number of rice water weevil larvae, nitrogen uptake, and rice grain yield. Six trials were conducted at the Pine Tree Research Station (PTRS) and the Rice Research Extension Center (RREC) to examine the response of rice plants receiving different insecticide-seed treatments and urea-nitrogen rate combinations. Insecticide-seed treatments included label rates of clothianidin, thiamethoxam, and a no-insecticide (fungicide only) control, in combination with season-total nitrogen rates of 0, 50, 100, 150, and 200 kg urea-nitrogen/ha. Rice seed that was treated with clothianidin or thiamethoxam generally had equal numbers of rice water weevil larvae, which were significantly fewer compared with rice that received no insecticide with an equivalent urea-nitrogen rate. Nitrogen uptake at panicle differentiation was not affected by insecticide-seed treatments at four of six sites and usually increased positively and linearly as urea-nitrogen rate increased. As urea-nitrogen rate increased, grain yield increased either linearly or nonlinearly. Averaged across urea-nitrogen rates, both insecticide seed treatments had similar yields that were 4 to 7% greater than the grain yields of rice that received no insecticide at four of the five harvested sites. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Thiamethoxam Seed Treatments Have No Impact on Pest Numbers or Yield in Cultivated Sunflowers.

    PubMed

    Bredeson, Michael M; Lundgren, Jonathan G

    2015-12-01

    The use of neonicotinoid seed treatments is a nearly ubiquitous practice in sunflower (Helianthus annuus) pest management. Sunflowers have a speciose pest complex, but also harbor a diverse and abundant community of beneficial, nontarget organisms which may be negatively affected by pest management practices. Here, we investigate how the foliar and subterranean arthropod pest communities in sunflower fields were affected by a thiamethoxam seed treatment over three site years (two years on one farm, and another year at an additional field in the second year). Thiamethoxam and its metabolite clothianidin in leaf tissue were quantified throughout the growing season, and yield differences between treatments were measured. Across site years, foliar herbivores and key pests of sunflowers were unaffected by the seed treatment. Likewise, subterranean herbivores were unaffected. Thiamethoxam was measurable in leaf tissue through the R1 plant stage, while its metabolite clothianidin was detected throughout flowering (R6). No difference in sunflower yield was observed between treatments across site years. This research suggests that neonicotinoid seed treatments in sunflowers do not always provide economic benefits to farmers in the form of pest reductions or yield improvements. Future research should focus on sunflower integrated pest management strategies that limit nontarget effects of agrochemicals, while providing greater economic returns to farmers. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  18. Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosate-resistant soybean.

    PubMed

    Duke, Stephen O; Rimando, Agnes M; Reddy, Krishna N; Cizdziel, James V; Bellaloui, Nacer; Shaw, David R; Williams, Martin M; Maul, Jude E

    2018-05-01

    There has been controversy as to whether the glyphosate resistance gene and/or glyphosate applied to glyphosate-resistant (GR) soybean affect the content of cationic minerals (especially Mg, Mn and Fe), yield and amino acid content of GR soybean. A two-year field study (2013 and 2014) examined these questions at sites in Mississippi, USA. There were no effects of glyphosate, the GR transgene or field crop history (for a field with both no history of glyphosate use versus one with a long history of glyphosate use) on grain yield. Furthermore, these factors had no consistent effects on measured mineral (Al, As, Ba, Cd, Ca, Co, Cr, Cs, Cu, Fe, Ga, K, Li, Mg, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, V, Zn) content of leaves or harvested seed. Effects on minerals were small and inconsistent between years, treatments and mineral, and appeared to be random false positives. No notable effects on free or protein amino acids of the seed were measured, although glyphosate and its degradation product, aminomethylphosphonic acid (AMPA), were found in the seed in concentrations consistent with previous studies. Neither glyphosate nor the GR transgene affect the content of the minerals measured in leaves and seed, harvested seed amino acid composition, or yield of GR soybean. Furthermore, soils with a legacy of GR crops have no effects on these parameters in soybean. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. [Effects of simulated acid rain on oilseed rape (Brassica napus) physiological characteristics at flowering stage and yield].

    PubMed

    Cao, Chun-Xin; Zhou, Qin; Han, Liang-Liang; Zhang, Pei; Jiang, Hai-Dong

    2010-08-01

    A pot experiment was conducted to study the effects of different acidity simulated acid rain on the physiological characteristics at flowering stage and yield of oilseed rape (B. napus cv. Qinyou 9). Comparing with the control (pH 6.0), weak acidity (pH = 4.0-5.0) simulated acid rain stimulated the rape growth to some extent, but had less effects on the plant biomass, leaf chlorophyll content, photosynthetic characteristics, and yield. With the further increase of acid rain acidity, the plant biomass, leaf chlorophyll content, photosynthetic rate, antioxidative enzyme activities, and non-enzyme antioxidant contents all decreased gradually, while the leaf malonyldialdehyde (MDA) content and relative conductivity increased significantly. As the results, the pod number per plant, seed number per pod, seed weight, and actual yield decreased. However, different yield components showed different sensitivity to simulated acid rain. With the increasing acidity of simulated acid rain, the pod number per plant and the seed number per pod decreased significantly, while the seed weight was less affected.

  20. Salt-induced modulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.).

    PubMed

    Siddiqi, Ejaz Hussain; Ashraf, Muhammad; Al-Qurainy, Fahad; Akram, Nudrat Aisha

    2011-12-01

    Safflower (Carthamus tinctorius L.) has gained considerable ground as a potential oil-seed crop. However, its yield and oil production are adversely affected under saline conditions. The present study was conducted to appraise the influence of salt (NaCl) stress on yield, accumulation of different inorganic elements, free proline and activities of some key antioxidant enzymes in plant tissues as well as seed oil components in safflower. Two safflower accessions differing in salt tolerance (Safflower-33 (salt sensitive) and Safflower-39 (salt tolerant)) were grown under saline (150 mmol L(-1) ) conditions and salt-induced changes in the earlier-mentioned physiological attributes were determined. Salt stress enhanced leaf and root Na(+) , Cl(-) and proline accumulation and activities of leaf superoxide dismutase, catalase and peroxidase, while it decreased K(+) , Ca(2+) and K(+) /Ca(2+) and Ca(2+) /Na(+) ratios and seed yield, 100-seed weight, number of seeds, as well as capitula, seed oil contents and oil palmitic acid. No significant effect of salt stress was observed on seed oil α-tocopherols, stearic acid, oleic acid or linoleic acid contents. Of the two safflower lines, salt-sensitive Safflower-33 was higher in leaf and root Na(+) and Cl(-) , while Safflower-39 was higher in leaf and root K(+) , K(+) /Ca(2+) and Ca(2+) /Na(+) and seed yield, 100-seed weight, catalase activity, seed oil contents, seed oil α-tocopherol and palmitic acid. Other attributes remained almost unaffected in both accessions. Overall, high salt tolerance of Safflower-39 could be attributed to Na(+) and Cl(-) exclusion, high accumulation of K(+) and free proline, enhanced CAT activity, seed oil α-tocopherols and palmitic acid contents. Copyright © 2011 Society of Chemical Industry.

  1. Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth.

    PubMed

    Li, Shuangcheng; Li, Wenbo; Huang, Bin; Cao, Xuemei; Zhou, Xingyu; Ye, Shumei; Li, Chengbo; Gao, Fengyan; Zou, Ting; Xie, Kailong; Ren, Yun; Ai, Peng; Tang, Yangfan; Li, Xuemei; Deng, Qiming; Wang, Shiquan; Zheng, Aiping; Zhu, Jun; Liu, Huainian; Wang, Lingxia; Li, Ping

    2013-01-01

    Grain number, panicle seed setting rate, panicle number and grain weight are the most important components of rice grain yield. To date, several genes related to grain weight, grain number and panicle number have been described in rice. However, no genes regulating the panicle seed setting rate have been functionally characterized. Here we show that the domestication-related POLLEN TUBE BLOCKED 1 (PTB1), a RING-type E3 ubiquitin ligase, positively regulates the rice panicle seed setting rate by promoting pollen tube growth. The natural variation in expression of PTB1 which is affected by the promoter haplotype and the environmental temperature, correlates with the rice panicle seed setting rate. Our results support the hypothesis that PTB1 is an important maternal sporophytic factor of pollen tube growth and a key modulator of the rice panicle seed setting rate. This finding has implications for the improvement of rice yield.

  2. Insecticide use in hybrid onion seed production affects pre- and postpollination processes.

    PubMed

    Gillespie, Sandra; Long, Rachael; Seitz, Nicola; Williams, Neal

    2014-02-01

    Research on threats to pollination service in agro-ecosystems has focused primarily on the negative impacts of land use change and agricultural practices such as insecticide use on pollinator populations. Insecticide use could also affect the pollination process, through nonlethal impacts on pollinator attraction and postpollination processes such as pollen viability or pollen tube growth. Hybrid onion seed (Allium cepa L., Alliaceae) is an important pollinator-dependent crop that has suffered yield declines in California, concurrent with increased insecticide use. Field studies suggest that insecticide use reduces pollination service in this system. We conducted a field experiment manipulating insecticide use to examine the impacts of insecticides on 1) pollinator attraction, 2) pollen/stigma interactions, and 3) seed set and seed quality. Select insecticides had negative impacts on pollinator attraction and pollen/stigma interactions, with certain products dramatically reducing pollen germination and pollen tube growth. Decreased pollen germination was not associated with reduced seed set; however, reduced pollinator attraction was associated with lower seed set and seed quality, for one of the two female lines examined. Our results highlight the importance of pesticide effects on the pollination process. Overuse may lead to yield reductions through impacts on pollinator behavior and postpollination processes. Overall, in hybrid onion seed production, moderation in insecticide use is advised when controlling onion thrips, Thrips tabaci, on commercial fields.

  3. Hydrodistillation time affects dill seed essential oil yield, composition, and bioactivity

    USDA-ARS?s Scientific Manuscript database

    Dill (Anethum graveolens L.) essential oil is widely used by the food and pharmaceutical industries. We hypothesized that the chemical constituents of dill seed essential oil are eluted at different times during the hydrodistillation process, resulting in oils with different composition and bioactiv...

  4. Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.).

    PubMed

    Zhang, Xue; Wang, Li; Ma, Fang; Yang, Jixian; Su, Meng

    2017-07-01

    The importance of arbuscular mycorrhizal fungi (AMF) for nutrient uptake and growth in rice has been widely recognized. However, little is known about the distribution of carbon (C) and nitrogen (N) in rice under AMF inoculation, which can affect grain yield and quality. This study was conducted to investigate the distribution of C and N within rice plants under AMF inoculation and the effects on grain yield and quality. AMF inoculation significantly increased N accumulation and distribution in vegetative tissues at tillering, and N translocation into seeds from heading to maturity. Consequently, AMF inoculation more strongly impacted the distribution of N than that of C in seeds, with significantly reduced C:N ratios and increased protein content (by 7.4%). Additionally, AMF inoculation significantly increased grain yield by 28.2% through increasing the grain:straw ratio by 18.4%. In addition, the roots of inoculated rice exhibited greater change in C distribution, with significantly higher C concentrations, C accumulations, and C:N ratios at tillering and maturity. AMF inoculation affected the distribution of N in seeds and C in roots. As such, AMF inoculation may be a potential method for improving grain yield and quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Thiamethoxam seed treatments hav no impact on pest numbers or yield in cultivated sunflowers

    USDA-ARS?s Scientific Manuscript database

    The use of neonicotinoid seed treatments is a nearly ubiquitous practice in sunflower (Helianthus annuus) pest management. Sunflowers have a speciose pest complex, but also harbor a diverse and abundant community of beneficial, non-target organisms which may be negatively affected by pest management...

  6. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield

    PubMed Central

    2012-01-01

    Background Lipids extracted from seeds of Camelina sativa have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and low fertilizer requirement of Camelina sativa allow it to grow on marginal lands. Improving the species growth and seed yield by genetic engineering is therefore a target for the biofuels industry. In Arabidopsis, overexpression of purple acid phosphatase 2 encoded by Arabidopsis (AtPAP2) promotes plant growth by modulating carbon metabolism. Overexpression lines bolt earlier and produce 50% more seeds per plant than wild type. In this study, we explored the effects of overexpressing AtPAP2 in Camelina sativa. Results Under controlled environmental conditions, overexpression of AtPAP2 in Camelina sativa resulted in longer hypocotyls, earlier flowering, faster growth rate, higher photosynthetic rate and stomatal conductance, increased seed yield and seed size in comparison with the wild-type line and null-lines. Similar to transgenic Arabidopsis, activity of sucrose phosphate synthase in leaves of transgenic Camelina was also significantly up-regulated. Sucrose produced in photosynthetic tissues supplies the building blocks for cellulose, starch and lipids for growth and fuel for anabolic metabolism. Changes in carbon flow and sink/source activities in transgenic lines may affect floral, architectural, and reproductive traits of plants. Conclusions Lipids extracted from the seeds of Camelina sativa have been used as a major constituent of aviation biofuels. The improved growth rate and seed yield of transgenic Camelina under controlled environmental conditions have the potential to boost oil yield on an area basis in field conditions and thus make Camelina-based biofuels more environmentally friendly and economically attractive. PMID:22472516

  7. Alfalfa (Medicago sativa L.) seed yield in relation to phosphorus fertilization and honeybee pollination.

    PubMed

    Al-Kahtani, Saad Naser; Taha, El-Kazafy Abdou; Al-Abdulsalam, Mohammed

    2017-07-01

    This investigation was conducted at the Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Ahsa, Saudi Arabia, during the alfalfa growing season in 2014. The study aimed to evaluate the impact of phosphorus fertilization and honeybee pollination on alfalfa seed production. The experiment was divided into 9 treatments of open pollination, honeybee pollination, and non-pollination with three different levels (0, 300 or 600 kg P 2 O 5 /ha/year) of triple super phosphate. All vegetative growth attributes of Hassawi alfalfa were significantly higher in the non-insect pollination plots, while the yield and yield component traits were significantly higher with either open pollination or honeybee pollination in parallel with the increasing level of phosphorus fertilizer up to 600 kg P 2 O 5 /ha/year in light salt-affected loamy sand soils. There was no seed yield in Hassawi alfalfa without insect pollination. Therefore, placing honeybee colonies near the fields of Hassawi alfalfa and adding 600 kg P 2 O 5 /ha/year can increase seed production.

  8. Effect of mechanical extraction parameters on the yield and quality of tobacco (Nicotiana tabacum L.) seed oil.

    PubMed

    Sannino, M; Del Piano, L; Abet, Massimo; Baiano, S; Crimaldi, M; Modestia, F; Raimo, F; Ricciardiello, G; Faugno, S

    2017-11-01

    The aim of this study was to investigate how the combination of extraction parameters, such as extraction temperature seeds preheating and screw rotation speed, influenced the yield and chemical quality of tobacco seed oil (TSO). For its peculiar properties, TSO can be used for several purposes, as raw material in the manufacturing of soap, paints, resins, lubricants, biofuels and also as edible oil. TSO was obtained using a mechanical screw press and the quality of the oil was evaluated by monitoring the free fatty acids (FFA), the peroxide value (PV), the spectroscopic indices K 232 , K 270 and ΔK and the fatty acid composition. The maximum extraction yield, expressed as percent of oil mechanically extracted respect to the oil content in the seeds, determined by solvent extraction, was obtained with the combination of the highest extraction temperature, the slowest screw rotation speed and seeds preheating. Under these conditions yield was 80.28 ± 0.33% (w/w), 25% higher than the lowest yield obtained among investigated conditions. The extraction temperature and seed preheating showed a significant effect on FFA, on spectroscopic indices K 232 , K 270 and ΔK values. The average values of these parameters slightly increased rising the temperature and in presence of preheating, the screw rotation speed did not affect the chemical characteristic tested. In the extraction conditions investigated no significant changes in PV and fatty acids composition of oil were observed.

  9. Optimization of mucilage extraction from chia seeds (Salvia hispanica L.) using response surface methodology.

    PubMed

    Orifici, Stefania C; Capitani, Marianela I; Tomás, Mabel C; Nolasco, Susana M

    2018-02-25

    Chia mucilage has potential application as a functional ingredient; advances on maximizing its extraction yield could represent a significant technological and economic impact for the food industry. Thus, first, the effect of mechanical agitation time (1-3 h) on the exudation of chia mucilage was analyzed. Then, response surface methodology was used to determine the optimal combination of the independent variables temperature (15-85 °C) and seed: water ratio (1: 12-1: 40.8 w/v) for the 2 h exudation that give maximum chia mucilage yield. Experiments were designed according to central composite rotatable design. A second-order polynomial model predicted the variation in extraction mucilage yield with the variables temperature and seed: water ratio. The optimal operating conditions were found to be temperature 85 °C and a seed: water ratio of 1: 31 (w/v), reaching an experimental extraction yield of 116 ± 0.21 g kg -1 (dry basis). The mucilage obtained exhibited good functional properties, mainly in terms of water-holding capacity, emulsifying activity, and emulsion stability. The results obtained show that temperature, seed: water ratio, and exudation time are important variables of the process that affect the extraction yield and the quality of the chia mucilage, determined according to its physicochemical and functional properties. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon

    USDA-ARS?s Scientific Manuscript database

    Lack of seed dormancy in cereal crops such as barley and wheat is a common problem affecting farming areas around the world, causing losses in yield and quality due to pre-harvest sprouting. Control of seed dormancy has been investigated extensively using various approaches in different species incl...

  11. Super-optimal CO2 reduces seed yield but not vegetative growth in wheat

    NASA Technical Reports Server (NTRS)

    Grotenhuis, T. P.; Bugbee, B.

    1997-01-01

    Although terrestrial atmospheric CO2 levels will not reach 1000 micromoles mol-1 (0.1%) for decades, CO2 levels in growth chambers and greenhouses routinely exceed that concentration. CO2 levels in life support systems in space can exceed 10000 micromoles mol-1(1%). Numerous studies have examined CO2 effects up to 1000 micromoles mol-1, but biochemical measurements indicate that the beneficial effects of CO2 can continue beyond this concentration. We studied the effects of near-optimal (approximately 1200 micromoles mol-1) and super-optimal CO2 levels (2400 micromoles mol-1) on yield of two cultivars of hydroponically grown wheat (Triticum aestivum L.) in 12 trials in growth chambers. Increasing CO2 from sub-optimal to near-optimal (350-1200 micromoles mol-1) increased vegetative growth by 25% and seed yield by 15% in both cultivars. Yield increases were primarily the result of an increased number of heads per square meter. Further elevation of CO2 to 2500 micromoles mol-1 reduced seed yield by 22% (P < 0.001) in cv. Veery-10 and by 15% (P < 0.001) in cv. USU-Apogee. Super-optimal CO2 did not decrease the number of heads per square meter, but reduced seeds per head by 10% and mass per seed by 11%. The toxic effect of CO2 was similar over a range of light levels from half to full sunlight. Subsequent trials revealed that super-optimal CO2 during the interval between 2 wk before and after anthesis mimicked the effect of constant super-optimal CO2. Furthermore, near-optimal CO2 during the same interval mimicked the effect of constant near-optimal CO2. Nutrient concentration of leaves and heads was not affected by CO2. These results suggest that super-optimal CO2 inhibits some process that occurs near the time of seed set resulting in decreased seed set, seed mass, and yield.

  12. Yield and seed oil content response of dwarf, rapid-cycling Brassica to nitrogen treatments, planting density, and carbon dioxide enrichment

    NASA Technical Reports Server (NTRS)

    Frick, J.; Nielsen, S. S.; Mitchell, C. A.

    1994-01-01

    Effects of N level (15 to 30 mM), time of N increase (14 to 28 days after planting), and planting density (1163 to 2093 plants/m2) were determined for crop yield responses of dwarf, rapid-cycling brassica (Brassica napus L., CrGC 5-2, Genome: ACaacc). Crops were grown in solid-matrix hydroponic systems and under controlled-environment conditions, including nonsupplemented (ambient) or elevated CO2 concentrations (998 +/- 12 micromoles mol-1). The highest seed yield rate obtained (4.4 g m-2 day-1) occurred with the lowest N level (15 mM) applied at the latest treatment time (day 28). In all trials, CO2 enrichment reduced seed yield rate and harvest index by delaying the onset of flowering and senescence and stimulating vegetative shoot growth. The highest shoot biomass accumulation rate (55.5 g m-2 day-1) occurred with the highest N level (30 mM) applied at the earliest time (day 14). Seed oil content was not significantly affected by CO2 enrichment. Maximum seed oil content (30% to 34%, dry weight basis) was obtained using the lowest N level (15 mM) initiated at the latest treatment time (day 28). In general, an increase in seed oil content was accompanied by a decrease in seed protein. Seed carbohydrate, moisture, and ash contents did not vary significantly in response to experimental treatments. Effects of N level and time of N increase were consistently significant for most crop responses. Planting density was significant only under elevated CO2 conditions.

  13. The effect of temperature on reproduction in the summer and winter annual Arabidopsis thaliana ecotypes Bur and Cvi

    PubMed Central

    Huang, Ziyue; Footitt, Steven; Finch-Savage, William E.

    2014-01-01

    Background and Aims Seed yield and dormancy status are key components of species fitness that are influenced by the maternal environment, in particular temperature. Responses to environmental conditions can differ between ecotypes of the same species. Therefore, to investigate the effect of maternal environment on seed production, this study compared two contrasting Arabidopsis thaliana ecotypes, Cape Verdi Isle (Cvi) and Burren (Bur). Cvi is adapted to a hot dry climate and Bur to a cool damp climate, and they exhibit winter and summer annual phenotypes, respectively. Methods Bur and Cvi plants were grown in reciprocal controlled environments that simulated their native environments. Reproductive development, seed production and subsequent germination behaviour were investigated. Measurements included: pollen viability, the development of floral structure, and germination at 10 and 25 °C in the light to determine dormancy status. Floral development was further investigated by applying gibberellins (GAs) to alter the pistil:stamen ratio. Key Results Temperature during seed development determined seed dormancy status. In addition, seed yield was greatly reduced by higher temperature, especially in Bur (>90 %) compared with Cvi (approx. 50 %). The reproductive organs (i.e. stamens) of Bur plants were very sensitive to high temperature during early flowering. Viability of pollen was unaffected, but limited filament extension relative to that of the pistils resulted in failure to pollinate. Thus GA applied to flowers to enhance filament extension largely overcame the effect of high temperature on yield. Conclusions High temperature in the maternal environment reduced dormancy and negatively affected the final seed yield of both ecotypes; however, the extent of these responses differed, demonstrating natural variation. Reduced seed yield in Bur resulted from altered floral development not reduced pollen viability. Future higher temperatures will impact on seed performance, but the consequences may differ significantly between ecotypes of the same species. PMID:24573642

  14. Reintroduction of rare arable plants by seed transfer. What are the optimal sowing rates?

    PubMed

    Lang, Marion; Prestele, Julia; Fischer, Christina; Kollmann, Johannes; Albrecht, Harald

    2016-08-01

    During the past decades, agro-biodiversity has markedly declined and some species are close to extinction in large parts of Europe. Reintroduction of rare arable plant species in suitable habitats could counteract this negative trend. The study investigates optimal sowing rates of three endangered species (Legousia speculum-veneris (L.) Chaix, Consolida regalis Gray, and Lithospermum arvense L.), in terms of establishment success, seed production, and crop yield losses.A field experiment with partial additive design was performed in an organically managed winter rye stand with study species added in ten sowing rates of 5-10,000 seeds m(-2). They were sown as a single species or as a three-species mixture (pure vs. mixed sowing) and with vs. without removal of spontaneous weeds. Winter rye was sown at a fixed rate of 350 grains m(-2). Performance of the study species was assessed as plant establishment and seed production. Crop response was determined as grain yield.Plant numbers and seed production were significantly affected by the sowing rate, but not by sowing type (pure vs. mixed sowing of the three study species), and weed removal. All rare arable plant species established and reproduced at sowing rates >25 seeds m(-2), with best performance of L. speculum-veneris. Negative density effects occurred to some extent for plant establishment and more markedly for seed production.The impact of the three study species on crop yield followed sigmoidal functions. Depending on the species, a yield loss of 10% occurred at >100 seeds m(-2). Synthesis and applications: The study shows that reintroduction of rare arable plants by seed transfer is a suitable method to establish them on extensively managed fields, for example, in organic farms with low nutrient level and without mechanical weed control. Sowing rates of 100 seeds m(-2) for C. regalis and L. arvense, and 50 seeds m(-2) for L. speculum-veneris are recommended, to achieve successful establishment with negligible crop yield losses.

  15. The slow and fast pyrolysis of cherry seed.

    PubMed

    Duman, Gozde; Okutucu, Cagdas; Ucar, Suat; Stahl, Ralph; Yanik, Jale

    2011-01-01

    The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate.

    PubMed

    Broussard, Melissa Ann; Mas, Flore; Howlett, Brad; Pattemore, David; Tylianakis, Jason M

    2017-01-01

    Approximately one-third of our food globally comes from insect-pollinated crops. The dependence on pollinators has been linked to yield instability, which could potentially become worse in a changing climate. Insect-pollinated crops produced via hybrid breeding (20% of fruit and vegetable production globally) are especially at risk as they are even more reliant on pollinators than open-pollinated plants. We already observe a wide range of fruit and seed yields between different cultivars of the same crop species, and it is unknown how existing variation will be affected in a changing climate. In this study, we examined how three hybrid carrot varieties with differential performance in the field responded to three temperature regimes (cooler than the historical average, average, and warmer that the historical average). We tested how temperature affected the plants' ability to set seed (seed set, pollen viability) as well as attract pollinators (nectar composition, floral volatiles). We found that there were significant intrinsic differences in nectar phenolics, pollen viability, and seed set between the carrot varieties, and that higher temperatures did not exaggerate those differences. However, elevated temperature did negatively affect several characteristics relating to the attraction and reward of pollinators (lower volatile production and higher nectar sugar concentration) across all varieties, which may decrease the attractiveness of this already pollinator-limited crop. Given existing predictions of lower pollinator populations in a warmer climate, reduced attractiveness would add yet another challenge to future food production.

  17. Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate

    PubMed Central

    Mas, Flore; Howlett, Brad; Pattemore, David; Tylianakis, Jason M.

    2017-01-01

    Approximately one-third of our food globally comes from insect-pollinated crops. The dependence on pollinators has been linked to yield instability, which could potentially become worse in a changing climate. Insect-pollinated crops produced via hybrid breeding (20% of fruit and vegetable production globally) are especially at risk as they are even more reliant on pollinators than open-pollinated plants. We already observe a wide range of fruit and seed yields between different cultivars of the same crop species, and it is unknown how existing variation will be affected in a changing climate. In this study, we examined how three hybrid carrot varieties with differential performance in the field responded to three temperature regimes (cooler than the historical average, average, and warmer that the historical average). We tested how temperature affected the plants' ability to set seed (seed set, pollen viability) as well as attract pollinators (nectar composition, floral volatiles). We found that there were significant intrinsic differences in nectar phenolics, pollen viability, and seed set between the carrot varieties, and that higher temperatures did not exaggerate those differences. However, elevated temperature did negatively affect several characteristics relating to the attraction and reward of pollinators (lower volatile production and higher nectar sugar concentration) across all varieties, which may decrease the attractiveness of this already pollinator-limited crop. Given existing predictions of lower pollinator populations in a warmer climate, reduced attractiveness would add yet another challenge to future food production. PMID:28665949

  18. Value of neonicotinoid seed treatments to US soybean farmers.

    PubMed

    Hurley, Terrance; Mitchell, Paul

    2017-01-01

    The benefits of neonicotinoid seed treatment to soybean farmers have received increased scrutiny. Rather than use data from small-plot experiments, this research uses survey data from 500 US farmers to estimate the benefit of neonicotinoid seed treatments to them. As seed treatment users, farmers are familiar with their benefits in the field and have economic incentives to only use them if they provide value. Of the surveyed farmers, 51% used insecticide seed treatments, averaging 87% of their soybean area. Farmers indicated that human and environmental safety is an important consideration affecting their pest management decisions and reported aphids as the most managed and important soybean pest. Asking farmers who used seed treatments to state how much value they provided gives an estimate of $US 28.04 ha -1 treated in 2013, net of seed treatment costs. Farmer-reported average yields provided an estimated average yield gain of 128.0 kg ha -1 treated in 2013, or about $US 42.20 ha -1 treated, net of seed treatment costs. These estimates using different data and methods are consistent and suggest the value of insecticide seed treatments to the US soybean farmers who used them in 2013 was around $US 28-42 ha -1 treated, net of seed treatment costs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Comparison of HeNe laser and sinusoidal non-uniform magnetic field seed pre-sowing treatment effect on Glycine max (Var 90-I) germination, growth and yield.

    PubMed

    Asghar, Tehseen; Iqbal, Munawar; Jamil, Yasir; Zia-Ul-Haq; Nisar, Jan; Shahid, Muhammad

    2017-01-01

    Recently, laser and magnetic field pre-sowing seed treatments attracted the attention of the scientific community in response to their positive effect on plant characteristics and the present study was exemplified for Glycine max Var 90-I. Seeds were exposed to laser (HeNe-wave length 632nm and density power of 1mW/cm 2 ) and magnetic field (sinusoidal non-uniform-50, 75 and 100mT for 3, 5min with exposure) and seed germination, seedling growth and yield attributes were compared. The germination (mean germination, germination percentage, emergence index, germination speed, relative germination coefficient, emergence coefficient of uniformity) growth (root dry weight, root length, shoot fresh weight and shoot dry weight, leaf dry & fresh weight, root fresh weight, leaf area, shoot length, plant total dry weight at different stages, stem diameter, number of leaves, vigor index I & II), biochemical (essential oil) and yield attributes (seed weight, count) were enhanced significantly in response to both laser and magnetic field treatments. However, magnetic field treatment furnished slightly higher response versus laser except relative water contents, whole plant weight and shoot length. Results revealed that both laser and magnetic field pre-sowing seed treatments affect the germination, seedling growth, and yield characteristics positively and could possibly be used to enhance Glycine max productivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Repeated quick hot-and-chilling treatments for the inactivation of Escherichia coli O157:H7 in mung bean and radish seeds.

    PubMed

    Bari, Md Latiful; Sugiyama, Jun; Kawamoto, Shinnichi

    2009-01-01

    The majority of the seed sprout-related outbreaks have been associated with Escherichia coli O157:H7. Therefore, it is necessary to find an effective method to inactivate these organisms on the seeds prior to sprouting. This study was conducted to assess the effectiveness of repeated quick hot-and-chilling treatments with various chemicals to inactivate E. coli O157:H7 populations inoculated onto mung bean and radish seeds intended for sprout production and to determine the effect of these treatments on seed germination. The treatment time was 20 sec for quick hot and 20 sec for quick chilling in one repeat. Likewise up to five repeats were done throughout the experiments. The chemicals used for this study were electrolyzed acidic (EO) water, phytic acid (0.05%), oxalic acid (3%), surfcera(R), and alpha-torino water(R), and distilled water was used as control. The quick hot treatment was done with 75 degrees C, 70 degrees C, and 60 degrees C, and the chilling temperature was 0 degrees C. The treated seeds were then assessed for the efficacy of this treatment in reducing populations of the pathogens and the effects of repeated quick hot-and-chilling treatments on germination yield. It was found that repeating treatment at 75 degrees C for two or three repeats with phytic acid and oxalic acid could reduce 4.38-log colony-forming unit (CFU)/g of E. coli O157:H7 in mung bean seeds. EO water and distilled water were found equally effective at 75 degrees C for four or five repeats to inactivate E. coli O157:H7 in mung bean seeds. However, alpha-torino water(R) and surfcera(R) were not found effective in comparison to other sanitizers used in this experiment. Irrespective of sanitizer used, the germination yield of the mung bean seed was not affected significantly. On the other hand, distilled water, EO water, and alpha-torino water(R) at 75 degrees C for five repeats were found effective in reducing 5.80-log CFU/g of E. coli O157:H7 in radish seeds; however, the germination yield of the seed was affected significantly. Therefore, repeated quick hot-and-chilling treatments could be useful to decontaminate mung bean seeds intended for sprout production.

  1. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice.

    PubMed

    Wu, Yongzhen; Fu, Yongcai; Zhao, Shuangshuang; Gu, Ping; Zhu, Zuofeng; Sun, Chuanqing; Tan, Lubin

    2016-01-01

    Panicle architecture and seed size are important agronomic traits that directly determine grain yield in rice (Oryza sativa L.). Although a number of key genes controlling panicle architecture and seed size have been cloned and characterized in recent years, their genetic and molecular mechanisms remain unclear. In this study, we identified a mutant that produced panicles with fascicled primary branching and reduced seeds in size. We isolated the underlying CLUSTERED PRIMARY BRANCH 1 (CPB1) gene, a new allele of DWARF11 (D11) encoding a cytochrome P450 protein involved in brassinosteroid (BR) biosynthesis pathway. Genetic transformation experiments confirmed that a His360Leu amino acid substitution residing in the highly conserved region of CPB1/D11 was responsible for the panicle architecture and seed size changes in the cpb1 mutants. Overexpression of CPB1/D11 under the background of cpb1 mutant not only rescued normal panicle architecture and plant height, but also had a larger leaf angle and seed size than the controls. Furthermore, the CPB1/D11 transgenic plants driven by panicle-specific promoters can enlarge seed size and enhance grain yield without affecting other favourable agronomic traits. These results demonstrated that the specific mutation in CPB1/D11 influenced development of panicle architecture and seed size, and manipulation of CPB1/D11 expression using the panicle-specific promoter could be used to increase seed size, leading to grain yield improvement in rice. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Heterosis and correlation in interspecific and intraspecific hybrids of cotton.

    PubMed

    Munir, S; Hussain, S B; Manzoor, H; Quereshi, M K; Zubair, M; Nouman, W; Shehzad, A N; Rasul, S; Manzoor, S A

    2016-06-24

    Interspecific and intraspecific hybrids show varying degrees of heterosis for yield and yield components. Yield-component traits have complex genetic relationships with each other. To determine the relationship of yield-component traits and fiber traits with seed cotton yield, six lines (Bt. CIM-599, CIM-573, MNH-786, CIM-554, BH-167, and GIZA-7) and three test lines (MNH-886, V4, and CIM-557) were crossed in a line x tester mating design. Heterosis was observed for seed cotton yield, fiber traits, and for other yield-component traits. Heterosis in interspecific hybrids for seed cotton yield was more prominent than in intraspecific hybrids. The interspecific hybrid Giza-7 x MNH-886 had the highest heterosis (114.77), while among intraspecific hybrids, CIM-554 x CIM-557 had the highest heterosis (61.29) for seed cotton yield. A major trait contributing to seed cotton yield was bolls/plant followed by boll weight. Correlation studies revealed that bolls/plant, boll weight, lint weight/boll, lint index, seed index, lint/seed, staple length, and staple strength were significantly and positively associated with seed cotton yield. Selection based on boll weight, boll number, lint weight/boll, and lint index will be helpful for improving cotton seed yield.

  3. Evidence for Proteomic and Metabolic Adaptations Associated with Alterations of Seed Yield and Quality in Sulfur-limited Brassica napus L*

    PubMed Central

    D'Hooghe, Philippe; Dubousset, Lucie; Gallardo, Karine; Kopriva, Stanislav; Avice, Jean-Christophe; Trouverie, Jacques

    2014-01-01

    In Brassica napus, seed yield and quality are related to sulfate availability, but the seed metabolic changes in response to sulfate limitation remain largely unknown. To address this question, proteomics and biochemical studies were carried out on mature seeds obtained from plants grown under low sulfate applied at the bolting (LS32), early flowering (LS53), or start of pod filling (LS70) stage. The protein quality of all low-sulfate seeds was reduced and associated with a reduction of S-rich seed storage protein accumulation (as Cruciferin Cru4) and an increase of S-poor seed storage protein (as Cruciferin BnC1). This compensation allowed the protein content to be maintained in LS70 and LS53 seeds but was not sufficient to maintain the protein content in LS32 seeds. The lipid content and quality of LS53 and LS32 seeds were also affected, and these effects were primarily associated with a reduction of C18-derivative accumulation. Proteomics changes related to lipid storage, carbohydrate metabolism, and energy (reduction of caleosins, phosphoglycerate kinase, malate synthase, ATP-synthase β-subunit, and thiazole biosynthetic enzyme THI1 and accumulation of β-glucosidase and citrate synthase) provide insights into processes that may contribute to decreased oil content and altered lipid composition (in favor of long-chain fatty acids in LS53 and LS32 seeds). These data indicate that metabolic changes associated with S limitation responses affect seed storage protein composition and lipid quality. Proteins involved in plant stress response, such as dehydroascorbate reductase and Cu/Zn-superoxide dismutase, were also accumulated in LS53 and LS32 seeds, and this might be a consequence of reduced glutathione content under low S availability. LS32 treatment also resulted in (i) reduced germination vigor, as evidenced by lower germination indexes, (ii) reduced seed germination capacity, related to a lower seed viability, and (iii) a strong decrease of glyoxysomal malate synthase, which is essential for the use of fatty acids during seedling establishment. PMID:24554741

  4. High-NOx Photooxidation of n-Dodecane: Temperature Dependence of SOA Formation.

    PubMed

    Lamkaddam, Houssni; Gratien, Aline; Pangui, Edouard; Cazaunau, Mathieu; Picquet-Varrault, Bénédicte; Doussin, Jean-François

    2017-01-03

    The temperature and concentration dependence of secondary organic aerosol (SOA) yields has been investigated for the first time for the photooxidation of n-dodecane (C 12 H 26 ) in the presence of NO x in the CESAM chamber (French acronym for "Chamber for Atmospheric Multiphase Experimental Simulation"). Experiments were performed with and without seed aerosol between 283 and 304.5 K. In order to quantify the SOA yields, a new parametrization is proposed to account for organic vapor loss to the chamber walls. Deposition processes were found to impact the aerosol yields by a factor from 1.3 to 1.8 between the lowest and the highest value. As with other photooxidation systems, experiments performed without seed and at low concentration of oxidant showed a lower SOA yield than other seeded experiments. Temperature did not significantly influence SOA formation in this study. This unforeseen behavior indicates that the SOA is dominated by sufficiently low volatility products for which a change in their partitioning due to temperature would not significantly affect the condensed quantities.

  5. Laccase-13 Regulates Seed Setting Rate by Affecting Hydrogen Peroxide Dynamics and Mitochondrial Integrity in Rice.

    PubMed

    Yu, Yang; Li, Quan-Feng; Zhang, Jin-Ping; Zhang, Fan; Zhou, Yan-Fei; Feng, Yan-Zhao; Chen, Yue-Qin; Zhang, Yu-Chan

    2017-01-01

    Seed setting rate is one of the most important components of rice grain yield. To date, only several genes regulating setting rate have been identified in plant. In this study, we showed that laccase-13 ( OsLAC13 ), a member of laccase family genes which are known for their roles in modulating phenylpropanoid pathway and secondary lignification in cell wall, exerts a regulatory function in rice seed setting rate. OsLAC13 expressed in anthers and promotes hydrogen peroxide production both in vitro and in the filaments and anther connectives. Knock-out of OsLAC13 showed significantly increased seed setting rate, while overexpression of this gene exhibited induced mitochondrial damage and suppressed sugar transportation in anthers, which in turn affected seed setting rate. OsLAC13 also induced H 2 O 2 production and mitochondrial damage in the root tip cells which caused the lethal phenotype. We also showed that high abundant of OsmiR397, the suppressor of OsLAC13 mRNA, increased the seed setting rate of rice plants, and restrains H 2 O 2 accumulation in roots during oxidative stress. Our results suggested a novel regulatory role of OsLAC13 gene in regulating seed setting rate by affecting H 2 O 2 dynamics and mitochondrial integrity in rice.

  6. The Seeding and Cultivation of a Tropical Species of Filamentous Ulva for Algal Biomass Production

    PubMed Central

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A.

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially ‘seeded’ under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m-1 rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day−1 between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0±8.8 g dry weight m−1 (228.7±115.4 g fresh weight m−1) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5±7.3 g dry weight m−1 (120.2±71.8 g fresh weight m−1) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems. PMID:24897115

  7. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    PubMed

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  8. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capareda, Sergio; El-Halwagi, Mahmoud; Hall, Kenneth R.

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previousmore » findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields significantly exceed those of multiple-cut high biomass sorghum systems. Our agronomic yield and quality data will be uploaded to the Bioenergy KDF Website before the end of February 2013, with a date for public access to be determined pending peer-reviewed publication of our findings.« less

  9. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil.

    PubMed

    Shao, Dongyan; Atungulu, Griffiths G; Pan, Zhongli; Yue, Tianli; Zhang, Ang; Li, Xuan

    2012-08-01

    Value of tomato seed has not been fully recognized. The objectives of this research were to establish suitable processing conditions for extracting oil from tomato seed by using solvent, determine the impact of processing conditions on yield and antioxidant activity of extracted oil, and elucidate kinetics of the oil extraction process. Four processing parameters, including time, temperature, solvent-to-solid ratio and particle size were studied. A second order model was established to describe the oil extraction process. Based on the results, increasing temperature, solvent-to-solid ratio, and extraction time increased oil yield. In contrast, larger particle size reduced the oil yield. The recommended oil extraction conditions were 8 min of extraction time at temperature of 25 °C, solvent-to-solids ratio of 5/1 (v/w) and particle size of 0.38 mm, which gave oil yield of 20.32% with recovery rate of 78.56%. The DPPH scavenging activity of extracted oil was not significantly affected by the extraction parameters. The inhibitory concentration (IC(50) ) of tomato seed oil was 8.67 mg/mL which was notably low compared to most vegetable oils. A 2nd order model successfully described the kinetics of tomato oil extraction process and parameters of extraction kinetics including initial extraction rate (h), equilibrium concentration of oil (C(s) ), and the extraction rate constant (k) could be precisely predicted with R(2) of at least 0.957. The study revealed that tomato seed which is typically treated as a low value byproduct of tomato processing has great potential in producing oil with high antioxidant capability. The impact of processing conditions including time, temperature, solvent-to-solid ratio and particle size on yield, and antioxidant activity of extracted tomato seed oil are reported. Optimal conditions and models which describe the extraction process are recommended. The information is vital for determining the extraction processing conditions for industrial production of high quality tomato seed oil. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.

  10. Ozone dose-response relationships for spring oilseed rape and broccoli

    NASA Astrophysics Data System (ADS)

    De Bock, Maarten; Op de Beeck, Maarten; De Temmerman, Ludwig; Guisez, Yves; Ceulemans, Reinhart; Vandermeiren, Karine

    2011-03-01

    Tropospheric ozone is an important air pollutant with known detrimental effects for several crops. Ozone effects on seed yield, oil percentage, oil yield and 1000 seed weight were examined for spring oilseed rape ( Brassica napus cv. Ability). For broccoli ( Brassica oleracea L. cv. Italica cv. Monaco) the effects on fresh marketable weight and total dry weight were studied. Current ozone levels were compared with an increase of 20 and 40 ppb during 8 h per day, over the entire growing season. Oilseed rape seed yield was negatively correlated with ozone dose indices calculated from emergence until harvest. This resulted in an R2 of 0.24 and 0.26 ( p < 0.001) for the accumulated hourly O 3 exposure over a threshold of 40 ppb (AOT40) and the phytotoxic ozone dose above a threshold of 6 nmol m -2 s -1 (POD 6) respectively. Estimated critical levels, above which 5% yield reduction is expected, were 3.7 ppm h and 4.4 mmol m -2 respectively. Our results also confirm that a threshold value of 6 nmol s -1 m -2 projected leaf area, as recommended for agricultural crops (UNECE, Mills, 2004), can indeed be applied for spring oilseed rape. The reduction of oilseed rape yield showed the highest correlation with the ozone uptake during the vegetative growth stage: when only the first 47 days after emergence were used to calculate POD 6, R2 values increased up to 0.476 or even 0.545 when the first 23 days were excluded. The highest ozone treatments, corresponding to the future ambient level by 2100 (IPCC, Meehl et al., 2007), led to a reduction of approximately 30% in oilseed rape seed yield in comparison to the current ozone concentrations. Oil percentage was also significantly reduced in response to ozone ( p < 0.001). As a consequence oil yield was even more severely affected by elevated ozone exposure compared to seed yield: critical levels for oil yield dropped to 3.2 ppm h and 3.9 mmol m -2. For broccoli the applied ozone doses had no effect on yield.

  11. Environmental effect on yield, composition and technological seed traits of some Italian ecotypes of grass pea (Lathyrus sativus L.).

    PubMed

    Piergiovanni, Angela R; Lupo, Francesco; Zaccardelli, Massimo

    2011-01-15

    Grass pea seeds are a good source of vegetable proteins, but the presence of toxic and antinutritional compounds represents a barrier to their large-scale use as food or animal feed. How much growing location and/or seasonal climate might affect the storage of these factors has been little investigated. Fourteen Italian ecotypes of grass pea were cultivated in two locations in southern Italy characterised by different climatic conditions. The seven ecotypes with the best yields and/or seed quality were investigated for a further two growing seasons. From a statistical point of view the physicochemical and nutritional traits among ecotypes were not the same from one year to the next. Moreover, a significant positive correlation was found between β-oxalyl-diamino-propionic acid and trypsin inhibitor contents. The lowest levels of both these compounds were associated with the highest amount of rainfall during the plant vegetative cycle. Principal component analysis of the data showed that the overall seed composition was affected by the growing location. Consequently, each grass pea genotype should also be carefully investigated in relation to different environments before being considered for release as safe for widespread human or animal consumption. Copyright © 2010 Society of Chemical Industry.

  12. Indirect Effects of Field Management on Pollination Service and Seed Set in Hybrid Onion Seed Production.

    PubMed

    Gillespie, Sandra; Long, Rachael; Williams, Neal

    2015-12-01

    Pollination in crops, as in native ecosystems, is a stepwise process that can be disrupted at any stage. Healthy pollinator populations are critical for adequate visitation, but pollination still might fail if crop management interferes with the attraction and retention of pollinators. Farmers must balance the direct benefits of applying insecticide and managing irrigation rates against their potential to indirectly interfere with the pollination process. We investigated these issues in hybrid onion seed production, where previous research has shown that high insecticide use reduces pollinator attraction. We conducted field surveys of soil moisture, nectar production, pollinator visitation, pollen-stigma interactions, and seed set at multiple commercial fields across 2 yr. We then examined how management actions, such as irrigation rate (approximated by soil moisture), or insecticide use could affect the pollination process. Onions produced maximum nectar at intermediate soil moisture, and high nectar production attracted more pollinators. Insecticide use weakly affected pollinator visitation, but when applied close to bloom reduced pollen germination and pollen tube growth. Ultimately, neither soil moisture nor insecticide use directly affected seed set, but the high correlation between pollinator visitation and seed set suggests that crop management will ultimately affect yields via indirect effects on the pollination process. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Interactive effect of supplemental ultraviolet B and elevated ozone on seed yield and oil quality of two cultivars of linseed (Linum usitatissimum L.) carried out in open top chambers.

    PubMed

    Tripathi, Ruchika; Agrawal, Shashi B

    2013-03-30

    Current scenarios of global climate change predict a significant increase in ultraviolet B (UV-B) and tropospheric ozone (O₃) in the near future. Both UV-B and O₃ can have detrimental effects on the productivity and yield quality of important agricultural crops. The present study was conducted to investigate the individual and interactive effects of supplemental UV-B (sUV-B) (ambient + 7.2 kJ m⁻² day⁻¹) and O₃ (ambient + 10 ppb) on the yield and oil quality of two cultivars of linseed (Linum usitatissimum L.). The mean monthly ambient O₃ concentration varied from 27.7 to 59.0 ppb during the experimental period. O₃ affected fruit formation, while sUV-B was mainly responsible for ovule abortion. Seed sugar and protein contents showed maximum reduction in O₃-treated plants, while mineral nutrient levels were most affected by sUV-B + O₃ treatment. Rancid oil of low nutritional quality and containing long-chain fatty acids was favoured along with a decrease in oil content. sUV-B and O₃ individually as well as in combination caused deterioration of the yield and quality of oil and seeds of linseed. However, the individual effect of O₃ was more damaging than the effect of sUV-B or sUV-B + O₃, and cultivar T-397 performed better than Padmini. © 2012 Society of Chemical Industry.

  14. Ecophysiological variables influencing Aleppo pine seed and cone production: a review.

    PubMed

    Ayari, Abdelaziz; Khouja, Mohamed Larbi

    2014-04-01

    The most interesting factors associated with seed and cone production of Aleppo pine were largely reviewed to identify broad patterns and potential effectiveness of reforestation efforts and planning. Aleppo pine cone production and seed yields are relatively variable, with differences between spatial and temporal influences. These differences are considered, mainly between (i) year, (ii) stand characteristics and (iii) individual tree measurements. Annual variability among populations was recorded for cone production per tree, based on influencing factors such as genetic characteristics, wetness, nutrient availability, insect pests and disease. In addition, some factors may affect Aleppo pine tree growth directly but may be affecting seed and cone production indirectly. Therefore, reduced stand density results in less competition among Aleppo pine trees and accompanying understory flora, which subsequently increases the stem diameter and other tree dimensions, including seed production. This review suggests that reforestation planning, particularly thinning, will result in improved tree morphology that will increase Aleppo pine seed and cone crops. Wildfire intensity and stand conditions such as light and soil nutrient status are also examined.

  15. Optimization for ultrasound-assisted extraction of polysaccharides with chemical composition and antioxidant activity from the Artemisia sphaerocephala Krasch seeds.

    PubMed

    Zheng, Quan; Ren, Daoyuan; Yang, Nana; Yang, Xingbin

    2016-10-01

    Artemisia sphaerocephala Krasch seeds polysaccharides have been reported to have a variety of important biological activities. However, effective extraction of Artemisia sphaerocephala Krasch seeds polysaccharides is still an unsolved issue. In this study, the orthogonal rotatable central composite design was employed to optimize ultrasound-assisted extraction conditions of Artemisia sphaerocephala Krasch seeds polysaccharides. Based on a single-factor analysis method, ultrasonic power, extraction time, solid-liquid ratio and extraction temperature were shown to significantly affect the yield of polysaccharides extracted from the A. sphaerocephala Krasch seeds. The optimal conditions for extraction of Artemisia sphaerocephala Krasch seeds polysaccharides were determined as following: ultrasonic power 243W, extraction time 125min, solid-liquid ratio 64:1 and extraction temperature 64°C, where the experimental yield was 14.78%, which was well matched with the predicted value of 14.81%. Furthermore, ASKP was identified as a typical heteropolysaccharide with d-galacturonic acid (38.8%) d-galactose (20.2%) and d-xylose (15.5%) being the main constitutive monosaccharides. Moreover, Artemisia sphaerocephala Krasch seeds polysaccharides exhibited high total reducing power and considerable scavenging activities on DPPH, hydroxyl and superoxide radicals, in a concentration-dependent manner in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region.

    PubMed

    Kamran, Muhammad; Wennan, Su; Ahmad, Irshad; Xiangping, Meng; Wenwen, Cui; Xudong, Zhang; Siwei, Mou; Khan, Aaqil; Qingfang, Han; Tiening, Liu

    2018-03-19

    A field experiment was conducted to investigate the effects of paclobutrazol on ear characteristics and grain yield by regulating root growth and root-bleeding sap of maize crop. Seed-soaking at rate of 0 (CK1), 200 (S1), 300 (S2), and 400 (S3) mg L -1 , and seed-dressing at rate of 0 (CK2), 1.5 (D1), 2.5 (D2), and 3.5 (D3) g kg -1 were used. Our results showed that paclobutrazol improved the ear characteristics and grain yield, and were consistently higher than control during 2015-2016. The average grain yield of S1, S2 and S3 were 18.9%, 61.3%, and 45.9% higher, while for D1, D2 and D3 were 20.2%, 33.3%, and 45.2%, compared to CK, respectively. Moreover, paclobutrazol-treated maize had improved root-length density (RLD), root-surface area density (RSD) and root-weight density (RWD) at most of the soil profiles (0-70 cm for seed-soaking, 0-60 cm for seed-dressing) and was attributed to enhancing the grain yield. In addition, root-activity, root-bleeding sap, root dry weight, diameter and root/shoot ratio increased by paclobutrazol, with highest values achieved in S2 and D3 treatments, across the whole growth stages in 2015-2016. Our results suggested that paclobutrazol could efficiently be used to enhance root-physiological and morphological characteristics, resulting in higher grain yield.

  17. Mapping quantitative trait loci affecting Arabidopsis thaliana seed morphology features extracted computationally from images.

    PubMed

    Moore, Candace R; Gronwall, David S; Miller, Nathan D; Spalding, Edgar P

    2013-01-01

    Seeds are studied to understand dispersal and establishment of the next generation, as units of agricultural yield, and for other important reasons. Thus, elucidating the genetic architecture of seed size and shape traits will benefit basic and applied plant biology research. This study sought quantitative trait loci (QTL) controlling the size and shape of Arabidopsis thaliana seeds by computational analysis of seed phenotypes in recombinant inbred lines derived from the small-seeded Landsberg erecta × large-seeded Cape Verde Islands accessions. On the order of 10(3) seeds from each recombinant inbred line were automatically measured with flatbed photo scanners and custom image analysis software. The eight significant QTL affecting seed area explained 63% of the variation, and overlapped with five of the six major-axis (length) QTL and three of the five minor-axis (width) QTL, which accounted for 57% and 38% of the variation in those traits, respectively. Because the Arabidopsis seed is exalbuminous, lacking an endosperm at maturity, the results are relatable to embryo length and width. The Cvi allele generally had a positive effect of 2.6-4.0%. Analysis of variance showed heritability of the three traits ranged between 60% and 73%. Repeating the experiment with 2.2 million seeds from a separate harvest of the RIL population and approximately 0.5 million seeds from 92 near-isogenic lines confirmed the aforementioned results. Structured for download are files containing phenotype measurements, all sets of seed images, and the seed trait measuring tool.

  18. Regulated partitioning of fixed carbon (14C), sodium (Na+), potassium (K+) and glycine betaine determined salinity stress tolerance of gamma irradiated pigeonpea [Cajanus cajan (L.) Millsp].

    PubMed

    Kumar, Pankaj; Sharma, Vasundhara; Atmaram, Chobhe Kapil; Singh, Bhupinder

    2017-03-01

    Soil salinity is a major constraint that limits legume productivity. Pigeonpea is a salt sensitive crop. Seed gamma irradiation at a very low dose (2.5 Gy) is known to enhance seedling establishment, plant growth and yield of cereals and other crops. The present study conducted using two genetically diverse varieties of pigeonpea viz., Pusa-991 and Pusa-992 aimed at establishing the role of pre-sowing seed gamma irradiation at 0, 0.0025, 0.005, 0.01, 0.02, 0.05 and 0.1 kGy on plant growth, seed yield and seed quality under salt stress at 0, 80 and 100 mM NaCl (soil solution EC equivalent 1.92, 5.86 and 8.02 dS/m, respectively) imposed right from the beginning of the experiment. Changes in carbon flow dynamics between shoot and root and concentration of osmolyte, glycine betaine, plant uptake and shoot and root partitioning of Na + and K + and activity of protein degrading enzyme protease were measured under the combined effect of gamma irradiation and salt stress. Positive affect of pre-sowing exposure of seed to low dose of gamma irradiation (<0.01 kGy) under salt stress was evident in pigeonpea. Pigeonpea variety, Pusa-992 showed a better salt tolerance response than Pusa-991 and that the radiated plants performed better than the unirradiated plants even at increasing salinity level. Seed yield and seed protein and iron content were also positively affected by the low dose gamma irradiation under NaCl stress. Multiple factors interacted to determine physiological salt tolerance response of pigeonpea varieties. Gamma irradiation caused a favourable alteration in the source-sink (shoot-root) partitioning of recently fixed carbon ( 14 C) under salt stress in pigeonpea. Gamma irradiation of seeds prior to sowing enhanced glycine betaine content and reduced protease activity at 60-day stage under various salt stress regimes. Lower partitioning of Na + and relatively higher accumulation of K + under irradiation treatment was the other important determinants that differentiated between salt-tolerant and salt-susceptible variety of pigeonpea. The study provides evidence and physiological basis for exploring exploitation of pre-sowing exposure of seeds with low-dose gamma ray for enhancing the salt tolerance response of crop plants.

  19. TaCYP78A5 regulates seed size in wheat (Triticum aestivum).

    PubMed

    Ma, Meng; Zhao, Huixian; Li, Zhaojie; Hu, Shengwu; Song, Weining; Liu, Xiangli

    2016-03-01

    Seed size is an important agronomic trait and a major component of seed yield in wheat. However, little is known about the genes and mechanisms that determine the final seed size in wheat. Here, we isolated TaCYP78A5, the orthologous gene of Arabidopsis CYP78A5/KLUH in wheat, from wheat cv. Shaan 512 and demonstrated that the expression of TaCYP78A5 affects seed size. TaCYP78A5 encodes the cytochrome P450 (CYP) 78A5 protein in wheat and rescued the phenotype of the Arabidopsis deletion mutant cyp78a5. By affecting the extent of integument cell proliferation in the developing ovule and seed, TaCYP78A5 influenced the growth of the seed coat, which appears to limit seed growth. TaCYP78A5 silencing caused a 10% reduction in cell numbers in the seed coat, resulting in a 10% reduction in seed size in wheat cv. Shaan 512. By contrast, the overexpression of TaCYP78A5 increased the number of cells in the seed coat, resulting in seed enlargement of ~11-35% in Arabidopsis. TaCYP78A5 activity was positively correlated with the final seed size. However, TaCYP78A5 overexpression significantly reduced seed set in Arabidopsis, possibly due to an ovule development defect. TaCYP78A5 also influenced embryo development by promoting embryo integument cell proliferation during seed development. Accordingly, a working model of the influence of TaCYP7A5 on seed size was proposed. This study provides direct evidence that TaCYP78A5 affects seed size and is a potential target for crop improvement. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. The effects of planting methods and head pruning on seed yield and yield components of medicinal pumpkin (Cucurbita pepo subsp. Pepo convar. Pepo var. styriaca) at low temperature areas.

    PubMed

    Bahrami, R Nikkhah; Khodadadi, M; Pirivatlo, S Piry; Hassanpanah, D

    2009-03-15

    This experiment carried out to evaluate the effects of planting methods (seed sowing and transplanting) and head pruning (no pruning, pruning after 12th node and pruning after 16th node) on yield and yield components such as number of branches (sub-branches) per plant, fruits per plant, growth, fruit size, weight of fresh fruit, weight of seeds per fruit, number of seeds per fruit and seed yield of medicinal pumpkin. The experiment was carried out based of factorial experiment with Randomized Completely Blocks Design (RCBD) by three replications in Ardabil Agricultural and Natural Resources Researches Station at 2007. Seedlings were grown in heated greenhouse. When the climatic condition became suitable and seedlings were at the four leaves stage, both seeds and seedlings were planted at the same time in the farm. Maintenance operations were done during the growth season. Head pruning treatments were done the forecast time. The results showed that the planting methods had significant effect on the number of ripen fruits per plant, fruits diameter, weight of seeds per fruit, weight of 1000 seeds and seed yield and had no significant effect on the other traits. Also the results indicated that head pruning treatments had significant effects on the number of branches per plant, growth and seed yield and no significant on the other traits. In this experiment the most seed yield (997.8 kg ha(-1)) obtained from transplanting method with head pruning after 12th node and the least seed yield obtained from control.

  1. Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L.

    PubMed

    Jhanji, Shalini; Setia, R C; Kaur, Navjyot; Kaur, Parminder; Setia, Neelam

    2012-11-01

    Experiments were carried out to study the effect of cadmium (Cd) and exogenous nitric oxide (NO) on growth, photosynthetic attributes, yield components and structural features of Brassica napus L. (cv. GSL 1). Cadmium in the growth medium at different levels (1, 2 and 4 Mm) retarded plant growth viz. shoot (27%) and root (51%) length as compared to control. The accumulation of total dry matter and its partitioning to different plant parts was also reduced by 31% due to Cd toxicity. Photosynthetic parameters viz., leaf area plant(-1) (51%), total Chl (27%), Chl a / Chl b ratio (22%) and Hill reaction activity of chloroplasts (42%) were greatly reduced in Cd-treated plants. Cd treatments adversely affected various yield parameters viz., number of branches (23) and siliquae plant(-1) (246), seed number siliqua(-1) (10.3), 1000-seed weight (2.30g) and seed yield plant(-1) (7.09g). Different Cd treatments also suppressed the differentiation of various tissues like vessels in the root with a maximum inhibition caused by 4mM Cd. Exogenous application of nitric oxide (NO) improved the various morpho-physiological and photosynthetic parameters in control as well as Cd-treated plants.

  2. Changes in growth and antioxidant status of alfalfa sprouts during sprouting as affected by gamma irradiation of seeds.

    PubMed

    Fan, Xuetong; Thayer, Donald W; Sokorai, Kimberly J B

    2004-03-01

    Viking 3000 alfalfa seeds irradiated with gamma rays to doses of 0, 1, 2, 3, or 4 kGy were sprouted and allowed to grow for up to 8 days at 23 degrees C. Germination, growth (yield and length), antioxidant capacity, and ascorbic acid (AA) were measured during sprouting. Results showed percent germination of the seeds and the rates of growth of the sprouts were inversely related to the radiation dose absorbed by the seeds. Both antioxidant capacity and AA content expressed on a fresh weight basis decreased during growth of the sprouts. Sprouts grown from irradiated seeds had greater antioxidant capacity and AA content on a fresh weight basis than those grown from nonirradiated seeds. However, when the nutritive values were expressed on a per gram of seed basis, irradiation had no effect on the nutritive values of sprouts.

  3. Improved Resistance to Controlled Deterioration in Transgenic Seeds1[W][OA

    PubMed Central

    Prieto-Dapena, Pilar; Castaño, Raúl; Almoguera, Concepción; Jordano, Juan

    2006-01-01

    We show that seed-specific overexpression of the sunflower (Helianthus annuus) HaHSFA9 heat stress transcription factor (HSF) in tobacco (Nicotiana tabacum) enhances the accumulation of heat shock proteins (HSPs). Among these proteins were HSP101 and a subset of the small HSPs, including proteins that accumulate only during embryogenesis in the absence of thermal stress. Levels of late embryogenesis abundant proteins or seed oligosaccharides, however, were not affected. In the transgenic seeds, a high basal thermotolerance persisted during the early hours of imbibition. Transgenic seeds also showed significantly improved resistance to controlled deterioration in a stable and transgene-dependent manner. Furthermore, overexpression of HaHSFA9 did not have detrimental effects on plant growth or development, including seed morphology and total seed yield. Our results agree with previous work tentatively associating HSP gene expression with phenotypes important for seed longevity. These findings might have implications for improving seed longevity in economically important crops. PMID:16998084

  4. Novel Insights into the Influence of Seed Sarcotesta Photosynthesis on Accumulation of Seed Dry Matter and Oil Content in Torreya grandis cv. “Merrillii”

    PubMed Central

    Hu, Yuanyuan; Zhang, Yongling; Yu, Weiwu; Hänninen, Heikki; Song, Lili; Du, Xuhua; Zhang, Rui; Wu, Jiasheng

    2018-01-01

    Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars. PMID:29375592

  5. Constitutively overexpressing a tomato fructokinase gene (lefrk1) in cotton (Gossypium hirsutum L. cv. coker 312) positively affects plant vegetative growth, boll number and seed cotton yield.

    USDA-ARS?s Scientific Manuscript database

    Increasing fructokinase (FRK) activity in cotton (Gossypium hirsutum L.) plants may reduce fructose inhibition of sucrose synthase (Sus) and lead to improved fibre yield and quality. Cotton was transformed with a tomato (Solanum lycopersicum L.) fructokinase gene (LeFRK1) under the control of the C...

  6. Influence of Harvest Aid Herbicides on Seed Germination, Seedling Vigor and Milling Quality Traits of Red Lentil (Lens culinaris L.).

    PubMed

    Subedi, Maya; Willenborg, Christian J; Vandenberg, Albert

    2017-01-01

    Most red lentil produced worldwide is consumed in dehulled form, and post-harvest milling and splitting qualities are major concerns in the secondary processing industry. Lentil producers in northern temperate regions usually apply pre-harvest desiccants as harvest aids to accelerate the lentil crop drying process and facilitate harvesting operations. This paper reports on field studies conducted at Scott and Saskatoon, Saskatchewan, Canada in the 2012 and 2013 cropping seasons to evaluate whether herbicides applied as harvest aids alone or tank mixed with glyphosate affect seed germination, seedling vigor, milling, and splitting qualities. The site-year by desiccant treatment interaction for seed germination, vigor, and milling recovery yields was significant. Glyphosate applied alone or as tank mix with other herbicides (except diquat) reduced seed germination and seedling vigor at Saskatoon and Scott in 2012 only. Pyraflufen-ethyl (20 g ai ha -1 ) applied with glyphosate as well as saflufenacil (36 g ai ha -1 ) decreased dehulling efficiency, while saflufenacil and/or glufosinate with glyphosate reduced milling recovery and football recovery, although these effects were inconsistent. Application of diquat alone or in combination with glyphosate exhibited more consistent dehulling efficiency gains and increases in milling recovery yield. Significant but negative associations were observed between glyphosate residue in seeds and seed germination ( r = -0.84, p < 0.001), seed vigor ( r = -0.62, p < 0.001), dehulling efficiency ( r = -0.55, p < 0.001), and milling recovery ( r = -0.62, p < 0.001). These results indicate application of diquat alone or in combination with glyphosate may be a preferred option for lentil growers to improve milling recovery yield.

  7. Influence of Harvest Aid Herbicides on Seed Germination, Seedling Vigor and Milling Quality Traits of Red Lentil (Lens culinaris L.)

    PubMed Central

    Subedi, Maya; Willenborg, Christian J.; Vandenberg, Albert

    2017-01-01

    Most red lentil produced worldwide is consumed in dehulled form, and post-harvest milling and splitting qualities are major concerns in the secondary processing industry. Lentil producers in northern temperate regions usually apply pre-harvest desiccants as harvest aids to accelerate the lentil crop drying process and facilitate harvesting operations. This paper reports on field studies conducted at Scott and Saskatoon, Saskatchewan, Canada in the 2012 and 2013 cropping seasons to evaluate whether herbicides applied as harvest aids alone or tank mixed with glyphosate affect seed germination, seedling vigor, milling, and splitting qualities. The site-year by desiccant treatment interaction for seed germination, vigor, and milling recovery yields was significant. Glyphosate applied alone or as tank mix with other herbicides (except diquat) reduced seed germination and seedling vigor at Saskatoon and Scott in 2012 only. Pyraflufen-ethyl (20 g ai ha−1) applied with glyphosate as well as saflufenacil (36 g ai ha−1) decreased dehulling efficiency, while saflufenacil and/or glufosinate with glyphosate reduced milling recovery and football recovery, although these effects were inconsistent. Application of diquat alone or in combination with glyphosate exhibited more consistent dehulling efficiency gains and increases in milling recovery yield. Significant but negative associations were observed between glyphosate residue in seeds and seed germination (r = −0.84, p < 0.001), seed vigor (r = −0.62, p < 0.001), dehulling efficiency (r = −0.55, p < 0.001), and milling recovery (r = −0.62, p < 0.001). These results indicate application of diquat alone or in combination with glyphosate may be a preferred option for lentil growers to improve milling recovery yield. PMID:28352275

  8. Synchronicity of pollination and inoculation with Claviceps africana and its effects on pollen-pistil compatibility and seed production in sorghum.

    PubMed

    Cisneros-López, Ma Eugenia; Mendoza-Onofre, Leopoldo E; González-Hernández, Víctor A; Zavaleta-Mancera, H Araceli; Mora-Aguilera, Gustavo; Hernández-Martínez, Miguel; Córdova-Téllez, Leobigildo

    2010-04-01

    Sorghum ergot (caused by Claviceps africana) is a disease that affects sorghum seed development and yield. The interaction between pollen tube growth and hyphal development determines whether ovaries will be fertilized or colonized. Thus their respective deposition times on the stigma are critical. The effect of the time interval between pollination and inoculation on stigma receptivity and seed production was measured under field conditions in the male-sterile line A9 at Montecillo, State of México (2240m altitude). Pollination and inoculation treatments, from simultaneous application to 2 and 4h difference, were imposed when all stigmas on the panicle had emerged. Control panicles were either only pollinated or only inoculated. Eighteen hours later, pollen grains that adhered to, and germinated within the stigma, pollen tubes in the style and ovary, and fertilized pistils were counted. Pistils showing some disease expression (germinated spores, mycelium growth, or tissue necrosis) at 18, 48, and 72h were recorded. The number of diseased florets was registered at the dough growth stage, while number of seeds, grain yield and 100-seeds weight was measured at the physiological maturity. The pathogen applied in a water suspension of macro and secondary conidia caused a decrease in stigma receptivity; the greatest decrease (40-60%) occurred when the pollen and the inoculum were deposited almost simultaneously, regardless of which was deposited first. The route of the pollen tube was also the route for fungal infection. On average, treatments first inoculated had 60% more diseased florets and 36% less grain yield, 30% fewer seeds and seed size decreased 8%, than those first pollinated. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. OsGRF4 controls grain shape, panicle length and seed shattering in rice

    PubMed Central

    Sun, Pingyong; Zhang, Wuhan; Wang, Yihua; He, Qiang; Shu, Fu; Liu, Hai; Wang, Jie; Wang, Jianmin; Yuan, Longping

    2016-01-01

    Abstract Traits such as grain shape, panicle length and seed shattering, play important roles in grain yield and harvest. In this study, the cloning and functional analysis of PANICLE TRAITS 2 (PT2), a novel gene from the Indica rice Chuandali (CDL), is reported. PT2 is synonymous with Growth‐Regulating Factor 4 (OsGRF4), which encodes a growth‐regulating factor that positively regulates grain shape and panicle length and negatively regulates seed shattering. Higher expression of OsGRF4 is correlated with larger grain, longer panicle and lower seed shattering. A unique OsGRF4 mutation, which occurs at the OsmiRNA396 target site of OsGRF4, seems to be associated with high levels of OsGRF4 expression, and results in phenotypic difference. Further research showed that OsGRF4 regulated two cytokinin dehydrogenase precursor genes (CKX5 and CKX1) resulting in increased cytokinin levels, which might affect the panicle traits. High storage capacity and moderate seed shattering of OsGRF4 may be useful in high‐yield breeding and mechanized harvesting of rice. Our findings provide additional insight into the molecular basis of panicle growth. PMID:26936408

  10. A Risk Assessment Framework for Seed Degeneration: Informing an Integrated Seed Health Strategy for Vegetatively Propagated Crops.

    PubMed

    Thomas-Sharma, S; Andrade-Piedra, J; Carvajal Yepes, M; Hernandez Nopsa, J F; Jeger, M J; Jones, R A C; Kromann, P; Legg, J P; Yuen, J; Forbes, G A; Garrett, K A

    2017-10-01

    Pathogen buildup in vegetative planting material, termed seed degeneration, is a major problem in many low-income countries. When smallholder farmers use seed produced on-farm or acquired outside certified programs, it is often infected. We introduce a risk assessment framework for seed degeneration, evaluating the relative performance of individual and combined components of an integrated seed health strategy. The frequency distribution of management performance outcomes was evaluated for models incorporating biological and environmental heterogeneity, with the following results. (1) On-farm seed selection can perform as well as certified seed, if the rate of success in selecting healthy plants for seed production is high; (2) when choosing among within-season management strategies, external inoculum can determine the relative usefulness of 'incidence-altering management' (affecting the proportion of diseased plants/seeds) and 'rate-altering management' (affecting the rate of disease transmission in the field); (3) under severe disease scenarios, where it is difficult to implement management components at high levels of effectiveness, combining management components can be synergistic and keep seed degeneration below a threshold; (4) combining management components can also close the yield gap between average and worst-case scenarios. We also illustrate the potential for expert elicitation to provide parameter estimates when empirical data are unavailable. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

  11. Wheat miR9678 Affects Seed Germination by Generating Phased siRNAs and Modulating Abscisic Acid/Gibberellin Signaling[OPEN

    PubMed Central

    Sun, Fenglong; Cao, Jie; Huo, Na; Wuda, Bala; Du, Jinkun; Peng, Huiru; Ni, Zhongfu; Sun, Qixin

    2018-01-01

    Seed germination is important for grain yield and quality and rapid, near-simultaneous germination helps in cultivation; however, cultivars that germinate too readily can undergo preharvest sprouting (PHS), which causes substantial losses in areas that tend to get rain around harvest time. Moreover, our knowledge of mechanisms regulating seed germination in wheat (Triticum aestivum) remains limited. In this study, we analyzed function of a wheat-specific microRNA 9678 (miR9678), which is specifically expressed in the scutellum of developing and germinating seeds. Overexpression of miR9678 delayed germination and improved resistance to PHS in wheat through reducing bioactive gibberellin (GA) levels; miR9678 silencing enhanced germination rates. We provide evidence that miR9678 targets a long noncoding RNA (WSGAR) and triggers the generation of phased small interfering RNAs that play a role in the delay of seed germination. Finally, we found that abscisic acid (ABA) signaling proteins bind the promoter of miR9678 precursor and activate its expression, indicating that miR9678 affects germination by modulating the GA/ABA signaling. PMID:29567662

  12. Raman Hyperspectral Imaging for Detection of Watermelon Seeds Infected with Acidovorax citrulli.

    PubMed

    Lee, Hoonsoo; Kim, Moon S; Qin, Jianwei; Park, Eunsoo; Song, Yu-Rim; Oh, Chang-Sik; Cho, Byoung-Kwan

    2017-09-23

    The bacterial infection of seeds is one of the most important quality factors affecting yield. Conventional detection methods for bacteria-infected seeds, such as biological, serological, and molecular tests, are not feasible since they require expensive equipment, and furthermore, the testing processes are also time-consuming. In this study, we use the Raman hyperspectral imaging technique to distinguish bacteria-infected seeds from healthy seeds as a rapid, accurate, and non-destructive detection tool. We utilize Raman hyperspectral imaging data in the spectral range of 400-1800 cm -1 to determine the optimal band-ratio for the discrimination of watermelon seeds infected by the bacteria Acidovorax citrulli using ANOVA. Two bands at 1076.8 cm -1 and 437 cm -1 are selected as the optimal Raman peaks for the detection of bacteria-infected seeds. The results demonstrate that the Raman hyperspectral imaging technique has a good potential for the detection of bacteria-infected watermelon seeds and that it could form a suitable alternative to conventional methods.

  13. Raman Hyperspectral Imaging for Detection of Watermelon Seeds Infected with Acidovorax citrulli

    PubMed Central

    Lee, Hoonsoo; Kim, Moon S.; Qin, Jianwei; Park, Eunsoo; Song, Yu-Rim; Oh, Chang-Sik

    2017-01-01

    The bacterial infection of seeds is one of the most important quality factors affecting yield. Conventional detection methods for bacteria-infected seeds, such as biological, serological, and molecular tests, are not feasible since they require expensive equipment, and furthermore, the testing processes are also time-consuming. In this study, we use the Raman hyperspectral imaging technique to distinguish bacteria-infected seeds from healthy seeds as a rapid, accurate, and non-destructive detection tool. We utilize Raman hyperspectral imaging data in the spectral range of 400–1800 cm−1 to determine the optimal band-ratio for the discrimination of watermelon seeds infected by the bacteria Acidovorax citrulli using ANOVA. Two bands at 1076.8 cm−1 and 437 cm−1 are selected as the optimal Raman peaks for the detection of bacteria-infected seeds. The results demonstrate that the Raman hyperspectral imaging technique has a good potential for the detection of bacteria-infected watermelon seeds and that it could form a suitable alternative to conventional methods. PMID:28946608

  14. Effect of ground poppy seed as a fat replacer on meat burgers.

    PubMed

    Gök, Veli; Akkaya, Levent; Obuz, Ersel; Bulut, Sait

    2011-12-01

    Poppy seed paste was used in koefte production as an animal fat replacer and efficacy of using poppy seed was investigated. The use of ground poppy seed in formulation of meat burgers had no effect on the moisture content of uncooked meat burgers; however, it did have a significant effect (p<0.05) on the fat content of meat burgers. Ground poppy seed addition significantly affected (p<0.05) cooking yield, moisture retention, and fat retention of meat burgers. Ground poppy seed addition significantly decreased (p<0.05) saturated fatty acid contents as the amount of ground poppy seed increased in meat burgers. A strong significant decrease (p<0.05) on the cholesterol content of meat burgers with ground poppy seed addition was observed. Samples having 20% ground poppy seed had significantly better texture and juiciness score (p<0.05) than any other sample which could be explained by increased moisture retention. Replacing animal fat with ground poppy seed paste is effective and may pave the way for an innovative meat product. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield.

    PubMed

    Reis, Sara; Pavia, Ivo; Carvalho, Ana; Moutinho-Pereira, José; Correia, Carlos; Lima-Brito, José

    2018-07-01

    Currently, the biofortification of crops like wheat with micronutrients such as iron (Fe) and zinc (Zn) is extremely important due to the deficiencies of these micronutrients in the human diet and in soils. Agronomic biofortification with Fe and Zn can be done through different exogenous strategies such as soil application, foliar spraying, and seed priming. However, the excess of these micronutrients can be detrimental to the plants. Therefore, in the last decade, a high number of studies focused on the evaluation of their phytotoxic effects to define the best strategies for biofortification of bread wheat. In this study, we investigated the effects of seed priming with different dosages (1 mg L -1 to 8 mg L -1 ) of Fe and/or Zn in germination, mitosis and yield of bread wheat cv. 'Jordão' when compared with control. Overall, our results showed that: micronutrient dosages higher than 4 mg L -1 negatively affect the germination; Fe and/or Zn concentrations higher than 2 mg L -1 significantly decrease the mitotic index and increase the percentage of dividing cells with anomalies; treatments performed with 8 mg L -1 of Fe and/or 8 mg L -1 Zn caused negative effects in germination, mitosis and grain yield. Moreover, seed priming with 2 mg L -1 Fe + 2 mg L -1 Zn has been shown to be non-cytotoxic, ensuring a high rate of germination (80%) and normal dividing cells (90%) as well as improving tillering and grain yield. This work revealed that seed priming with Fe and Zn micronutrients constitutes a useful and alternative approach for the agronomic biofortification of bread wheat.

  16. Comparison of gamma and electron beam irradiation in reducing populations of E. coli artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds

    NASA Astrophysics Data System (ADS)

    Fan, Xuetong; Sokorai, Kimberly; Weidauer, André; Gotzmann, Gaby; Rögner, Frank-Holm; Koch, Eckhard

    2017-01-01

    Sprouts have frequently been implicated in outbreaks of foodborne illnesses, mostly due to contaminated seeds. Intervention technologies to decontaminate seeds without affecting sprout yield are needed. In the present study, we compared gamma rays with electron beam in inactivating E. coli artificially inoculated on three seeds (fenugreek, clover and mung bean) that differed in size and surface morphology. Furthermore, the germination and growth of irradiated seeds were evaluated. Results showed that the D10 values (dose required to achieve 1 log reduction) for E. coli K12 on mung bean, clover, and fenugreek were 1.11, 1.21 and 1.40 kGy, respectively. To achieve a minimum 5-log reduction of E. coli, higher doses were needed on fenugreek than on mung bean or clover. Electron beam treatment at doses up to 12 kGy could not completely inactivate E. coli inoculated on all seeds even though most of the seeds were E. coli-free after 4-12 kGy irradiation. Gamma irradiation at doses up to 6 kGy did not significantly affect the germination rate of clover and fenugreek seeds but reduced the germination rate of mung bean seeds. Doses of 2 kGy gamma irradiation did not influence the growth of seeds while higher doses of gamma irradiation reduced the growth rate. Electron beam treatment at doses up to 12 kGy did not have any significant effect on germination or growth of the seeds. SEM imaging indicated there were differences in surface morphology among the three seeds, and E. coli resided in cracks and openings of seeds, making surface decontamination of seeds with low energy electron beam a challenge due to the low penetration ability. Overall, our results suggested that gamma rays and electron beam had different effects on E. coli inactivation and germination or growth of seeds. Future efforts should focus on optimization of electron bean parameters to increase penetration to inactivate E. coli without causing damage to the seeds.

  17. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus.

    PubMed

    Leff, Jonathan W; Lynch, Ryan C; Kane, Nolan C; Fierer, Noah

    2017-04-01

    Root and rhizosphere microbial communities can affect plant health, but it remains undetermined how plant domestication may influence these bacterial and fungal communities. We grew 33 sunflower (Helianthus annuus) strains (n = 5) that varied in their extent of domestication and assessed rhizosphere and root endosphere bacterial and fungal communities. We also assessed fungal communities in the sunflower seeds to investigate the degree to which root and rhizosphere communities were influenced by vertical transmission of the microbiome through seeds. Neither root nor rhizosphere bacterial communities were affected by the extent of sunflower domestication, but domestication did affect the composition of rhizosphere fungal communities. In particular, more modern sunflower strains had lower relative abundances of putative fungal pathogens. Seed-associated fungal communities strongly differed across strains, but several lines of evidence suggest that there is minimal vertical transmission of fungi from seeds to the adult plants. Our results indicate that plant-associated fungal communities are more strongly influenced by host genetic factors and plant breeding than bacterial communities, a finding that could influence strategies for optimizing microbial communities to improve crop yields. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, P. S.

    2010-02-01

    Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.

  19. Phytotoxicity assay for seed production using Brassica rapa L.

    EPA Science Inventory

    Although pesticide drift can affect crop yield adversely, current plant testing protocols emphasize only the potential impacts on vegetative plant growth. The present study was conducted to determine whether a plant species with a short life cycle, such as Brassica rapa L. Wiscon...

  20. Quantifying the thermal heat requirement of Brassica in assessing biophysical parameters under semi-arid microenvironments

    NASA Astrophysics Data System (ADS)

    Adak, Tarun; Chakravarty, N. V. K.

    2010-07-01

    Evaluation of the thermal heat requirement of Brassica spp. across agro-ecological regions is required in order to understand the further effects of climate change. Spatio-temporal changes in hydrothermal regimes are likely to affect the physiological growth pattern of the crop, which in turn will affect economic yields and crop quality. Such information is helpful in developing crop simulation models to describe the differential thermal regimes that prevail at different phenophases of the crop. Thus, the current lack of quantitative information on the thermal heat requirement of Brassica crops under debranched microenvironments prompted the present study, which set out to examine the response of biophysical parameters [leaf area index (LAI), dry biomass production, seed yield and oil content] to modified microenvironments. Following 2 years of field experiments on Typic Ustocrepts soils under semi-arid climatic conditions, it was concluded that the Brassica crop is significantly responsive to microenvironment modification. A highly significant and curvilinear relationship was observed between LAI and dry biomass production with accumulated heat units, with thermal accumulation explaining ≥80% of the variation in LAI and dry biomass production. It was further observed that the economic seed yield and oil content, which are a function of the prevailing weather conditions, were significantly responsive to the heat units accumulated from sowing to 50% physiological maturity. Linear regression analysis showed that growing degree days (GDD) could indicate 60-70% variation in seed yield and oil content, probably because of the significant response to differential thermal microenvironments. The present study illustrates the statistically strong and significant response of biophysical parameters of Brassica spp. to microenvironment modification in semi-arid regions of northern India.

  1. Elevated temperature during reproductive development affects cone traits and progeny performance in Picea glauca x engelmannii complex.

    PubMed

    Webber, Joe; Ott, Peter; Owens, John; Binder, Wolfgang

    2005-10-01

    Two temperature regimes were applied during reproductive development of seed and pollen cones of interior spruce (Picea glauca (Moench) Voss and Picea engelmannii (Parry) complex) to determine temperature effects on the adaptive traits of progeny. In Experiment 1, identical crosses were made on potted interior spruce using untreated pollen followed by exposure to a day/night temperature of 22/8 or 14/8 degrees C with a 12-h photoperiod during the stages of reproductive development from post-pollination to early embryo development. Frost hardiness and growth of progeny from seed produced in the two temperature treatments were measured over a 4-year period. Elevated temperature significantly affected both seed-cone development and the adaptive properties of the progeny. Seed cones exposed to the 22/8 degrees C treatment reached the early embryo stage in 53 days versus 92 days in the 14/8 degrees C treatment. Seed yields, cotyledon emergence and percent germination were also significantly enhanced by the 22/8 degrees C treatment. Progeny from seed produced in the higher temperature treatment showed significantly reduced spring and fall frost hardiness, but the elevated temperature treatment had no significant effects on time of bud burst, growth patterns or final heights. In Experiment 2, single ramets of the same clone were subjected to a day/night temperature of 20/8 or 10/8 degrees C during pollen cone development, starting from meiosis and ending at pollen shedding. The two populations of pollen were then crossed with untreated seed cones. Compared with pollen cones exposed to the 10/8 degrees C treatment, pollen cones exposed to the 20/8 degrees C treatment during development reached the shedding stage 2-4 weeks earlier, whereas pollen yields, in vitro viability and fertility (seed set) were significantly lower; however, the resulting progeny displayed no treatment differences in frost hardiness or growth after 1 year. Results suggest that seed orchard after-effects could be caused by temperature differences between orchard site and parent tree origin and that this effect acts on maternal development. Gametophytic (pollen or megagametophyte or both) and early embryo (sporophytic) selection are possible mechanisms that may explain the observed results. Although the effects are biologically significant, they are relatively small and do not justify changes in current deployment strategies for seed orchard seed.

  2. Yield and quality of seed from yellow birch progenies.

    Treesearch

    Knud E. Clausen

    1980-01-01

    Seed yield in 8- ad 9-year-old yellow birch varied among families and years but averaged more than 1,500 seeds per tree. Long catkins contained more seed than short ones. Seed quality was poor due to insufficient pollination and to differences among trees in flowering phenology.

  3. Response of Pea Varieties to Damage Degree of Pea Weevil, Bruchus pisorum L.

    PubMed Central

    Nikolova, Ivelina Mitkova

    2016-01-01

    A study was conducted to determine the response of five pea varieties (Pisum sativum L.) to damage degree of Bruchus pisorum: Glyans, Modus, Kamerton, and Svit (Ukrainian cultivars) and Pleven 4 (Bulgarian cultivar). The seeds were classified into three types: healthy seeds (type 1), damaged seeds with parasitoid emergence hole (type 2), and damaged seeds with bruchid emergence hole (type 3) and they were sown. It was found that the weight of 1000 seeds did not affect the field germination of the pea varieties. Healthy and damaged seeds with parasitoid emergence holes (first and second seed types) provide a very good opportunity for growth and development while plants from damaged seeds with bruchid emergence holes had poor germination and vigor and low productivity. These seeds cannot provide the creation of well-garnished seeding and stable crop yields. Among tested varieties, the Ukrainian variety Glyans had considerably higher seed weight, field germination, and index germination and weak egg-laying activity of B. pisorum compared to others. Use of spring pea cultivars that are weakly preferred by the pea weevil in breeding programs would reduce losses due to pea weevil and provide an environmentally safer option to its control. PMID:27042379

  4. OsGRF4 controls grain shape, panicle length and seed shattering in rice.

    PubMed

    Sun, Pingyong; Zhang, Wuhan; Wang, Yihua; He, Qiang; Shu, Fu; Liu, Hai; Wang, Jie; Wang, Jianmin; Yuan, Longping; Deng, Huafeng

    2016-10-01

    Traits such as grain shape, panicle length and seed shattering, play important roles in grain yield and harvest. In this study, the cloning and functional analysis of PANICLE TRAITS 2 (PT2), a novel gene from the Indica rice Chuandali (CDL), is reported. PT2 is synonymous with Growth-Regulating Factor 4 (OsGRF4), which encodes a growth-regulating factor that positively regulates grain shape and panicle length and negatively regulates seed shattering. Higher expression of OsGRF4 is correlated with larger grain, longer panicle and lower seed shattering. A unique OsGRF4 mutation, which occurs at the OsmiRNA396 target site of OsGRF4, seems to be associated with high levels of OsGRF4 expression, and results in phenotypic difference. Further research showed that OsGRF4 regulated two cytokinin dehydrogenase precursor genes (CKX5 and CKX1) resulting in increased cytokinin levels, which might affect the panicle traits. High storage capacity and moderate seed shattering of OsGRF4 may be useful in high-yield breeding and mechanized harvesting of rice. Our findings provide additional insight into the molecular basis of panicle growth. © 2016 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  5. Effect of modifying agents on the hydrophobicity and yield of zinc borate synthesized by zinc oxide

    NASA Astrophysics Data System (ADS)

    Acarali, Nil Baran; Bardakci, Melek; Tugrul, Nurcan; Derun, Emek Moroydor; Piskin, Sabriye

    2013-06-01

    The aim of this study was to synthesize zinc borate using zinc oxide, reference boric acid, and reference zinc borate (reference ZB) as the seed, and to investigate the effects of modifying agents and reaction parameters on the hydrophobicity and yield, respectively. The reaction parameters include reaction time (1-5 h), reactant ratio (H3BO3/ZnO by mass: 2-5), seed ratio (seed crystal/(H3BO3+ZnO) by mass: 0-2wt%), reaction temperature (50-120°C), cooling temperature (10-80°C), and stirring rate (400-700 r/min); the modifying agents involve propylene glycol (PG, 0-6wt%), kerosene (1wt%-6wt%), and oleic acid (OA, 1wt%-6wt%) with solvents (isopropyl alcohol (IPA), ethanol, and methanol). The results of reaction yield obtained from either magnetically or mechanically stirred systems were compared. Zinc borate produced was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and contact angle tests to identify the hydrophobicity. In conclusion, zinc borate is synthesized successfully under the optimized reaction conditions, and the different modifying agents with various solvents affect the hydrophobicity of zinc borate.

  6. Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters.

    PubMed

    Tripathi, Ruchika; Agrawal, S B

    2012-11-01

    Tropospheric ozone (O(3)) has become a serious threat to growth and yield of important agricultural crops over Asian regions including India. Effect of elevated O(3) (ambient+10ppb) was studied on Brassica campestris L. (cv. Sanjukta and Vardan) in open top chambers under natural field conditions. Eight hourly mean ambient O(3) concentration varied from 26.3ppb to 69.5ppb during the growth period. Plants under O(3) exposure showed reductions in photosynthetic rate, reproductive parameters, yield as well as seed and oil quality. Cultivar Sanjukta showed more reduction in photosynthetic characteristics, reproductive structures and seed and oil quality. However, total yield was more affected in Vardan. Exposure of O(3) increased the degree of unsaturation and level of PUFA, ω-6fatty acid, linolenic acid and erucic acid in oil indicating the deterioration of its quality. The study further confirmed that there is a correspondence between O(3) induced change in photosynthetic processes, reproductive development and yield and did not find any compensatory response in the final yield. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Variability of arginine content and yield components in Valencia peanut germplasm.

    PubMed

    Aninbon, Chorkaew; Jogloy, Sanun; Vorasoot, Nimitr; Nuchadomrong, Suporn; Holbrook, C Corley; Kvien, Craig; Puppala, Naveen; Patanothai, Aran

    2017-06-01

    Peanut seeds are rich in arginine, an amino acid that has several positive effects on human health. Establishing the genetic variability of arginine content in peanut will be useful for breeding programs that have high arginine as one of their goals. The objective of this study was to evaluate the variation of arginine content, pods/plant, seeds/pod, seed weight, and yield in Valencia peanut germplasm. One hundred and thirty peanut genotypes were grown under field condition for two years. A randomized complete block design with three replications was used for this study. Arginine content was analyzed in peanut seeds at harvest using spectrophotometry. Yield and yield components were recorded for each genotype. Significant differences in arginine content and yield components were found in the tested Valencia peanut germplasm. Arginine content ranged from 8.68-23.35 μg/g seed. Kremena was the best overall genotype of high arginine content, number of pods/plant, 100 seed weight and pod yield.

  8. Phenology and Seed Yield Performance of Determinate Soybean Cultivars Grown at Elevated Temperatures in a Temperate Region.

    PubMed

    Choi, Doug-Hwan; Ban, Ho-Young; Seo, Beom-Seok; Lee, Kyu-Jong; Lee, Byun-Woo

    2016-01-01

    Increased temperature means and fluctuations associated with climate change are predicted to exert profound effects on the seed yield of soybean. We conducted an experiment to evaluate the impacts of global warming on the phenology and yield of two determinate soybean cultivars in a temperate region (37.27°N, 126.99°E; Suwon, South Korea). These two soybean cultivars, Sinpaldalkong [maturity group (MG) IV] and Daewonkong (MG VI), were cultured on various sowing dates within a four-year period, under no water-stress conditions. Soybeans were kept in greenhouses controlled at the current ambient temperature (AT), AT+1.5°C, AT+3.0°C, and AT+5.0°C throughout the growth periods. Growth periods (VE-R7) were significantly prolonged by the elevated temperatures, especially the R1-R5 period. Cultivars exhibited no significant differences in seed yield at the AT+1.5°C and AT+3.0°C treatments, compared to AT, while a significant yield reduction was observed at the AT+5.0°C treatment. Yield reductions resulted from limited seed number, which was due to an overall low numbers of pods and seeds per pod. Heat stress conditions induced a decrease in pod number to a greater degree than in seed number per pod. Individual seed weight exhibited no significant variation among temperature elevation treatments; thus, seed weight likely had negligible impacts on overall seed yield. A boundary line analysis (using quantile regression) estimated optimum temperatures for seed number at 26.4 to 26.8°C (VE-R5) for both cultivars; the optimum temperatures (R5-R7) for single seed weight were estimated at 25.2°C for the Sinpaldalkong smaller-seeded cultivar, and at 22.3°C for the Daewonkong larger-seeded cultivar. The optimum growing season (VE-R7) temperatures for seed yield, which were estimated by combining the two boundary lines for seed number and seed weight, were 26.4 and 25.0°C for the Sinpaldalkong and Daewonkong cultivars, respectively. Considering the current soybean growing season temperature, which ranges from 21.7 (in the north) to 24.6°C (in the south) in South Korea, and the temperature response of potential soybean yields, further warming of less than approximately 1°C would not become a critical limiting factor for soybean production in South Korea.

  9. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil concentration with no significant impact on seed protein concentration.

  10. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular markers associated with oil-related QTL in this study, which also have positive effects on other important traits such as seed yield and protein concentration, could be used in the soybean marker breeding programs aimed at developing either higher seed yield and oil concentration or higher seed protein and oil concentration per hectare. Alternatively, selecting complementary parents with greater breeding values due to positive epistatic interactions could lead to the development of higher oil soybean cultivars.

  11. Seed set in guayule (Parthenium argentatum, Asteraceae) in relation to insect pollination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamood, A.N.; Waller, G.D.; Ray, D.T.

    Guayule (Parthenium argentatum, Asteraceae) is one of two major plant species grown for natural rubber. Studies were conducted to determine the effect of honey bee (Apis mellifera) pollination and season on seed set and total seed yield/ha. The experiments involved four pollination treatments: plants caged with bees; plants caged without bees; plants open pollinated (uncovered); and plants individually covered. Seeds were harvested monthly July-September 1984, and May-September 1985. Plots with bees produced at least 150% more seeds than plots without bees, and there were no qualitative differences in the seed weights among treatments. Highest seed yield was in May andmore » September. Results indicate that (1) insect pollination in guayule increases seed yield and (2) fewer seeds are produced in the warmest months.« less

  12. Increased Activity of the Vacuolar Monosaccharide Transporter TMT1 Alters Cellular Sugar Partitioning, Sugar Signaling, and Seed Yield in Arabidopsis1[OA

    PubMed Central

    Wingenter, Karina; Schulz, Alexander; Wormit, Alexandra; Wic, Stefan; Trentmann, Oliver; Hoermiller, Imke I.; Heyer, Arnd G.; Marten, Irene; Hedrich, Rainer; Neuhaus, H. Ekkehard

    2010-01-01

    The extent to which vacuolar sugar transport activity affects molecular, cellular, and developmental processes in Arabidopsis (Arabidopsis thaliana) is unknown. Electrophysiological analysis revealed that overexpression of the tonoplast monosaccharide transporter TMT1 in a tmt1-2::tDNA mutant led to increased proton-coupled monosaccharide import into isolated mesophyll vacuoles in comparison with wild-type vacuoles. TMT1 overexpressor mutants grew faster than wild-type plants on soil and in high-glucose (Glc)-containing liquid medium. These effects were correlated with increased vacuolar monosaccharide compartmentation, as revealed by nonaqueous fractionation and by chlorophyllab-binding protein1 and nitrate reductase1 gene expression studies. Soil-grown TMT1 overexpressor plants respired less Glc than wild-type plants and only about half the amount of Glc respired by tmt1-2::tDNA mutants. In sum, these data show that TMT activity in wild-type plants limits vacuolar monosaccharide loading. Remarkably, TMT1 overexpressor mutants produced larger seeds and greater total seed yield, which was associated with increased lipid and protein content. These changes in seed properties were correlated with slightly decreased nocturnal CO2 release and increased sugar export rates from detached source leaves. The SUC2 gene, which codes for a sucrose transporter that may be critical for phloem loading in leaves, has been identified as Glc repressed. Thus, the observation that SUC2 mRNA increased slightly in TMT1 overexpressor leaves, characterized by lowered cytosolic Glc levels than wild-type leaves, provided further evidence of a stimulated source capacity. In summary, increased TMT activity in Arabidopsis induced modified subcellular sugar compartmentation, altered cellular sugar sensing, affected assimilate allocation, increased the biomass of Arabidopsis seeds, and accelerated early plant development. PMID:20709831

  13. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates* #

    PubMed Central

    Hussain, Nazim; Li, Hui; Jiang, Yu-xiao; Jabeen, Zahra; Shamsi, Imran Haider; Ali, Essa; Jiang, Li-xi

    2014-01-01

    Tocopherols (Tocs) are vital scavengers of reactive oxygen species (ROS) and important seed oil quality indicators. Nitrogen (N) is one of the most important fertilizers in promoting biomass and grain yield in crop production. However, the effect of different sources and application rates of N on seed Toc contents in oilseed rape is poorly understood. In this study, pot trials were conducted to evaluate the effect of two sources of N fertilizer (urea and ammonium nitrate). Each source was applied to five oilseed rape genotypes (Zheshuang 72, Jiu-Er-1358, Zheshuang 758, Shiralee, and Pakola) at three different application rates (0.41 g/pot (N1), 0.81 g/pot (N2), and 1.20 g/pot (N3)). Results indicated that urea increased α-, γ-, and total Toc (T-Toc) more than did ammonium nitrate. N3 was proven as the most efficient application rate, which yielded high contents of γ-Toc and T-Toc. Highly significant correlations were observed between Toc isomers, T-Toc, and α-/γ-Toc ratio. These results clearly demonstrate that N sources and application rates significantly affect seed Toc contents in oilseed rape. PMID:24510711

  14. Efficacy of Selected Insecticides Applied to Hybrid Rice Seed

    PubMed Central

    Adams, A.; Gore, J.; Musser, F.; Cook, D.; Walker, T.; Dobbins, C.

    2016-01-01

    Hybrid rice and insecticide seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel, have altered the landscape of rice production. The effect of reduced seeding rates on seed treatment efficacy in hybrid rice has not been studied. During 2011 and 2012, an experiment was conducted at seven locations to determine the relationship between low seeding rates used in hybrid rice and efficacy of selected insecticidal seed treatments as measured by rice water weevil densities and yield. Labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin were compared with higher rates of these products to determine if labeled rates provide an acceptable level of control of the rice water weevil. Study locations were divided into low, moderate, and high groups based on rice water weevil larval densities. All seed treatments and seed treatment rates reduced rice water weevil densities. However, there was no observed yield or economic benefit from the use of an insecticidal seed treatment in areas of low pressure. Differences in yield were observed among seed treatments and seed treatment rates in moderate and high pressure locations, and all seed treatments yielded better than the untreated plots, but these differences were not always economical. All seed treatments showed an economic advantage in areas of high weevil pressure, and there were no differences among seed treatment products or rates, suggesting that currently labeled seed treatment rates in hybrid rice are effective for rice water weevil management. PMID:26537671

  15. Multigene Engineering of Triacylglycerol Metabolism Boosts Seed Oil Content in Arabidopsis1[W][OPEN

    PubMed Central

    van Erp, Harrie; Kelly, Amélie A.; Menard, Guillaume; Eastmond, Peter J.

    2014-01-01

    Increasing the yield of oilseed crops is an important objective for biotechnologists. A number of individual genes involved in triacylglycerol metabolism have previously been reported to enhance the oil content of seeds when their expression is altered. However, it has yet to be established whether specific combinations of these genes can be used to achieve an additive effect and whether this leads to enhanced yield. Using Arabidopsis (Arabidopsis thaliana) as an experimental system, we show that seed-specific overexpression of WRINKLED1 (a transcriptional regulator of glycolysis and fatty acid synthesis) and DIACYLGLYCEROL ACYLTRANSFERASE1 (a triacylglycerol biosynthetic enzyme) combined with suppression of the triacylglycerol lipase SUGAR-DEPENDENT1 results in a higher percentage seed oil content and greater seed mass than manipulation of each gene individually. Analysis of total seed yield per plant suggests that, despite a reduction in seed number, the total yield of oil is also increased. PMID:24696520

  16. Impact of Thiamethoxam Seed Treatment on Growth and Yield of Rice, Oryza sativa.

    PubMed

    Lanka, S K; Senthil-Nathan, S; Blouin, D J; Stout, M J

    2017-04-01

    Neonicotinoid seed treatments are widely used in agriculture. In rice, Oryza sativa L., in the southern United States, neonicotinoid seed treatments are used to manage early-season populations of the rice water weevil, Lissorhoptrus oryzophilus Kuschel. In addition to their effects on pests, neonicotinoid seed treatments may benefit crop plants directly by increasing plant growth or altering plant responses to stresses. As part of an effort to assess the overall benefits of thiamethoxam seed treatment in rice, rice emergence, growth, and yield were evaluated. In a growth chamber, rice emergence from the soil was 1-2 d more rapid from treated than untreated seeds. These laboratory results were supported by field experiments that revealed higher stand counts from thiamethoxam-treated plots than from untreated plots. Yields from thiamethoxam treatments were no higher than those from untreated plots under conditions in which weevil larvae were absent, a result inconsistent with the hypothesis that thiamethoxam imparts direct yield benefits. In a series of field experiments conducted to compare the relationship between weevil larval densities and rice yields in plots treated with several rates of thiamethoxam or chlorantraniliprole (another widely used seed treatment insecticide), the relationship between weevil density and yield did not differ markedly among both seed treatments. Overall yields from both seed treatments did not differ significantly, despite more effective control in chlorantraniliprole-treated plots. These results provide strong support for effect of thiamethoxam on early-season growth of rice, but only weak support for its direct effect on rice yields. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress

    USDA-ARS?s Scientific Manuscript database

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms...

  18. The impact of volunteer rice infestation on rice yield and grain quality

    USDA-ARS?s Scientific Manuscript database

    Volunteer rice (Oryza sativa L.) is a crop stand which emerges from shattered seeds of the previous crop. When present at sufficiently high levels, it can potentially affect the commercial market value of cultivated rice products, especially if it produces kernels with quality, uniformity, or size ...

  19. Elevated CO2 alters distribution of nodal leaf area and enhances nitrogen uptake contributing to yield increase of soybean cultivars grown in Mollisols.

    PubMed

    Jin, Jian; Li, Yansheng; Liu, Xiaobing; Wang, Guanghua; Tang, Caixian; Yu, Zhenhua; Wang, Xiaojuan; Herbert, Stephen J

    2017-01-01

    Understanding how elevated CO2 affects dynamics of nodal leaf growth and N assimilation is crucial for the construction of high-yielding canopy via breeding and N management to cope with the future climate change. Two soybean cultivars were grown in two Mollisols differing in soil organic carbon (SOC), and exposed to ambient CO2 (380 ppm) or elevated CO2 (580 ppm) throughout the growth stages. Elevated CO2 induced 4-5 more nodes, and nearly doubled the number of branches. Leaf area duration at the upper nodes from R5 to R6 was 4.3-fold greater and that on branches 2.4-fold higher under elevated CO2 than ambient CO2, irrespective of cultivar and soil type. As a result, elevated CO2 markedly increased the number of pods and seeds at these corresponding positions. The yield response to elevated CO2 varied between the cultivars but not soils. The cultivar-specific response was likely attributed to N content per unit leaf area, the capacity of C sink in seeds and N assimilation. Elevated CO2 did not change protein concentration in seeds of either cultivar. These results indicate that elevated CO2 increases leaf area towards the upper nodes and branches which in turn contributes yield increase.

  20. Neck blast disease influences grain yield and quality traits of aromatic rice.

    PubMed

    Khan, Mohammad Ashik Iqbal; Bhuiyan, Md Rejwan; Hossain, Md Shahadat; Sen, Partha Pratim; Ara, Anjuman; Siddique, Md Abubakar; Ali, Md Ansar

    2014-11-01

    A critical investigation was conducted to find out the effect of neck blast disease on yield-contributing characters, and seed quality traits of aromatic rice in Bangladesh. Both healthy and neck-blast-infected panicles of three aromatic rice cultivars (high-yielding and local) were collected and investigated at Plant Pathology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh. All of the tested varieties were highly susceptible to neck blast disease under natural conditions, though no leaf blast symptoms appear on leaves. Neck blast disease increased grain sterility percentages, reduced grain size, yield and quality traits of seeds. The degrees of yield and seed quality reduction depended on disease severity and variety's genetic make-up. Unfilled grains were the main source of seed-borne pathogen, especially for blast in the seed lot. Transmission of blast pathogen from neck (panicle base) to seed was very poor. These findings are important, especially concerning the seed certification programme in which seed lots are certified on the basis of field inspection. Finally, controlled experiments are needed to draw more critical conclusions. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. Effects of fungicide seed treatments on germination, population, and yield of maize grown from seed infected with fungal pathogens

    USDA-ARS?s Scientific Manuscript database

    Seedborne fungi can reduce survival, growth, and yield of maize (Zea mays L.). Laboratory, field, and growth chamber experiments were conducted to determine the effects of the seed treatment fungicides fludioxonil, mefenoxam, and azoxystrobin on germination, plant population, and grain yield of maiz...

  2. Quantitative genetic studies relating to the domestication of meadowfoam (Limnanthes spp. ) as a new oil crop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abuelgasim, E.H.

    1982-01-01

    Meadowfoam (Limnanthes spp.) has recently aroused interest as a promising new source of industrial oil that is a good substitute for sperm whale oil. Fourteen natural populations of Limnanthes, involving two species and five taxonomic varieties, were studied for 12 quantitative characters, during two seasons. The objectives were: to evaluate the potential use of the populations for domestication purposes, study the interrelationships among characters, and to obtain heritability estimates for some of the important characters. A great deal of variability among the populations was observed for all the characters studied. Although no single taxon or population had all the desiredmore » characters combined, nevertheless, three populations of L. douglasii var. nivea and one population of L. douglasii var. sulphurea, gave consistently higher values for seed yield, seed number, plant dry weight, harvest index and fertility index, than L. alba or L. douglasii var. douglasii populations. The nivea group was also the earliest to flower, however, this group together with var. sulphurea population, suffer from severe seed shattering at maturity. In both seasons, seed yield was positively and highly significantly correlated with all of the other characters with the exception of days to the first flower and days to flower, which showed a highly significant negative correlation with seed yield. Stepwise multiple regression and path-coefficient analyses showed that seed number was the most important character in contribution to variation in seed yield; it accounted for over 85% of the variation in seed yield. The four characters: seed number, 100-seed weight, plant dry weight and harvest index, in that order, were the most important characters to be included in a multiple regression equation for determination of seed yield.« less

  3. Bioinoculants: A sustainable approach to maximize the yield of Ethiopian mustard (Brassica carinata L.) under low input of chemical fertilizers.

    PubMed

    Nosheen, Asia; Bano, Asghari; Ullah, Faizan

    2016-02-01

    This study aimed to find out the effect of plant growth-promoting rhizobacteria (PGPR; Azospirillum brasilense and Azotobacter vinelandii) either alone or in combination with different doses of nitrogen and phosphate fertilizers on growth, seed yield, and oil quality of Brassica carinata (L.) cv. Peela Raya. PGPR were applied as seed inoculation at 10(6) cells/mL(-1) so that the number of bacterial cells per seed was 2.6 × 10(5) cells/seed. The chemical fertilizers, namely, urea and diammonium phosphate (DAP) were applied in different doses (full dose (urea 160 kg ha(-1) + DAP 180 kg ha(-1)), half dose (urea 80 kg ha(-1) + DAP 90 kg ha(-1)), and quarter dose (urea 40 kg ha(-1) + DAP 45 kg ha(-1)). The chemical fertilizers at full and half dose significantly increased the chlorophyll, carotenoids, and protein content of leaves and the seed yield (in kilogram per hectare) but had no effect on the oil content of seed. The erucic acid (C22:1) content present in the seed was increased. Azospirillum performed better than Azotobacter and its effect was at par with full dose of chemical fertilizers (CFF) for pigments and protein content of leaves when inoculated in the presence of half dose of chemical fertilizers (SPH). The seed yield and seed size were greater. Supplementing Azospirillum with SPH assisted Azospirillum to augment the growth and yield, reduced the erucic acid (C22:1) and glucosinolates contents, and increased the unsaturation in seed oil. It is inferred that A. brasilense could be applied as an efficient bioinoculant for enhancing the growth, seed yield, and oil quality of Ethiopian mustard at low fertilizer costs and sustainable ways. © The Author(s) 2013.

  4. Relation between salt tolerance and biochemical changes in cumin (Cuminum cyminum L.) seeds.

    PubMed

    Bettaieb Rebey, Iness; Bourgou, Soumaya; Rahali, Fatma Zohra; Msaada, Kamel; Ksouri, Riadh; Marzouk, Brahim

    2017-04-01

    In this study, the effects of salinity on growth, fatty acid, essential oil, and phenolic composition of cumin (Cuminum cyminum L.) seeds as well as the antioxidant activities of their extracts were investigated. Plants were treated with different concentrations of NaCl treatment: 0, 50, 75, and 125 mmoL. Plant growth was significantly reduced with the severity of saline treatment. This also caused important reductions in the seed yield and yield components. Besides, NaCl treatments affected fatty acid composition. Petroselinic and linoleic acids proportions diminished consistently with the increase in NaCl concentration, whereas palmitic acid proportion increased. Furthermore, NaCl enhanced essential oil production in C. cyminum seeds and induced marked changes on the essential oil quality. Essential oil chemotype was modified from γ-terpinene/1-phenyl-1,2 ethanediol in control to γ-terpinene/β-pinene in salt stressed plants. Total polyphenol content was higher in treated seeds, and salinity improved the amount of individual phenolic compounds. Moreover, antioxidant activities of the extracts were determined by four different test systems, namely 2,2-diphenyl-1-picrylhydrazyl, β-carotene/linoleic acid chelating, and reducing power assays. The highest antioxidant activities were reveled in severe stressed plants. In this case, cumin seeds produced under saline conditions may function as a potential source of essential oil and antioxidant compounds, which could support the utilization of this plant in a large field of applications such as food industry. Copyright © 2016. Published by Elsevier B.V.

  5. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions.

    PubMed

    Huang, Jian; Ji, Feng

    2015-07-01

    Understanding the effects of climatic change on phenological phases of cotton (Gossypium hirsutum L.) in oasis of arid regions may help optimize management schemes to increase productivity. This study assessed the impacts of climatic changes on the phenological phases and productivity of spring cotton. The results showed that climatic warming led the dates of sowing seed, seeding emergence, three-leaf, five-leaf, budding, anthesis, full bloom, cleft boll, boll-opening, boll-opening filling, and stop-growing become earlier by 24.42, 26.19, 24.75, 23.28, 22.62, 15.75, 14.58, 5.37, 2.85, 8.04, and 2.16 days during the period of 1981-2010, respectively. The growth period lengths from sowing seed to seeding emergence and from boll-opening to boll-opening filling were shortened by 1.76 and 5.19 days, respectively. The other growth period lengths were prolonged by 2-9.71 days. The whole growth period length was prolonged by 22.26 days. The stop-growing date was delayed by 2.49-3.46 days for every 1 °C rise in minimum, maximum, and mean temperatures; however, other development dates emerged earlier by 2.17-4.76 days. Rising temperatures during the stage from seeding emergence to three-leaf reduced seed cotton yields. However, rising temperatures increased seed cotton yields in the two stages from anthesis to cleft boll and from boll-opening filling to the stop-growing. Increasing accumulated temperatures (AT) had different impacts on different development stages. During the vegetative phase, rising AT led to reduced seed cotton yields, but rising AT during reproductive stage increased seed cotton yields. In conclusion, climatic warming helpfully obtained more seed cotton yields in oasis of arid regions in northwest China. Changing the sowing date is another way to enhance yields for climate change in the future.

  6. Optimizing Hill Seeding Density for High-Yielding Hybrid Rice in a Single Rice Cropping System in South China

    PubMed Central

    Wang, Danying; Chen, Song; Wang, Zaiman; Ji, Chenglin; Xu, Chunmei; Zhang, Xiufu; Chauhan, Bhagirath Singh

    2014-01-01

    Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice. PMID:25290342

  7. Interactive effects of pests increase seed yield.

    PubMed

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  8. Epichloë uncinata Infection and Loline Content Protect Festulolium Grasses From Crickets (Orthoptera: Gryllidae).

    PubMed

    Barker, Gary M; Patchett, Brian J; Cameron, Nicholas E

    2015-04-01

    Experiments with artificial diets demonstrated that black field cricket (Teleogryllus commodus (Walker)) and Lepidogryllus sp. were highly responsive to presence of lolines in their diet-quantities of diet consumed declined exponentially with increasing loline concentration. Amount consumed by black field cricket and Lepidogryllus sp. on diet containing 5,600 µg/g lolines was only 8 and 2% relative to those on loline-free diet, respectively. Additional experiments with Festulolium seeds demonstrated that both cricket species predated heavily on endophyte-free seed but largely avoided Epichloë uncinata-infected seed. By 12 h, black field cricket had destroyed 98.8% of endophyte-free but only 24.8% of E. uncinata-infected, loline-containing seed. By 36 h, Lepidogryllus sp. crickets had destroyed 40% of endophyte-free but had not fed on E. uncinata-infected, loline-containing seed. Glasshouse experiments demonstrated this aversion to lolines greatly reduces the damage potential of black field cricket in E. uncinata-infected Festulolium. When microswards were sown with E. uncinata-infected Festulolium, seedling numbers were reduced 25-26%, and yields 29-40%, by black field crickets relative to microswards sown without insect infestation. This contrasts with 70-78% reduction in seedling numbers and 67-80% reduction in yields in microswards sown to either endophyte-free Festulolium, endophyte-free perennial ryegrass, or Epichloë festucae var. lolii-infected Festulolium. Yields of mature E. uncinata-infected Festulolium plants were not adversely affected by black field crickets, irrespective of the presence of the endophyte-free standard Festulolium sown as a companion. In contrast, yields of endophyte-free Festulolium, endophyte-free perennial ryegrass, and E. festucae var. lolii-infected Festulolium plants were reduced by 56-61% by crickets. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  10. Sorghum seed maturity affects the weight and feeding duration of immature corn earworm, Helicoverpa zea, and fall armyworm, Spodoptera frugiperda, in the laboratory.

    PubMed

    Soper, Alysha M; Whitworth, R Jeff; McCornack, Brian P

    2013-01-01

    Corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), and fall armyworm, Spodoptera frugiperda J.E. Smith, are occasional pests in sorghum, Sorghum bicolor L. Moench (Poales: Poaceae), and can be economically damaging when conditions are favorable. Despite the frequent occurrence of mixed-species infestations, the quantitative data necessary for developing yield loss relationships for S. frugiperda are not available. Although these species share similar biological characteristics, it is unknown whether their damage potentials in developing grain sorghum panicles are the same. Using no-choice feeding assays in the laboratory, this study examined larval growth and feeding duration for H. zea and S. frugiperda in the absence of competition. Each species responded positively when exposed to sorghum seed in the soft-dough stage, supporting evidence for the interactions between host-quality and larval growth and development. The results of this study also confirmed the suitability of using laboratory-reared H. zea to develop sorghum yield loss estimates in the field, and provided insights into the biological responses of S. frugiperda feeding on developing sorghum seed.

  11. Sorghum Seed Maturity Affects the Weight and Feeding Duration of Immature Corn Earworm, Helicoverpa zea, and Fall Armyworm, Spodoptera frugiperda, in the Laboratory

    PubMed Central

    Soper, Alysha M.; Whitworth, R. Jeff; McCornack, Brian P.

    2013-01-01

    Corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), and fall armyworm, Spodoptera frugiperda J.E. Smith, are occasional pests in sorghum, Sorghum bicolor L. Moench (Poales: Poaceae), and can be economically damaging when conditions are favorable. Despite the frequent occurrence of mixed-species infestations, the quantitative data necessary for developing yield loss relationships for S. frugiperda are not available. Although these species share similar biological characteristics, it is unknown whether their damage potentials in developing grain sorghum panicles are the same. Using no-choice feeding assays in the laboratory, this study examined larval growth and feeding duration for H. zea and S. frugiperda in the absence of competition. Each species responded positively when exposed to sorghum seed in the soft-dough stage, supporting evidence for the interactions between host-quality and larval growth and development. The results of this study also confirmed the suitability of using laboratory-reared H. zea to develop sorghum yield loss estimates in the field, and provided insights into the biological responses of S. frugiperda feeding on developing sorghum seed. PMID:24219328

  12. [Response of seed reproduction of two dominant lakeside species to experimental warming in a typical plateau wetland in Northwestern Yunnan Plateau, China].

    PubMed

    Wang, Zhi Bao; Sun, Mei; Liu, Zhen Ya; Zhang, Xiao Ning; Wang, Hang; Zhang, Yun; Xiao, De Rong

    2018-03-01

    Based on the forecasted warming scenarios by IPCC, we studied the impacts of warming (increased by 2.0 and 3.5 ℃) on seed reproduction of two lakeside dominant species (Schoeno-plectus tabernaemontani and Sparganium stoloniferum) in a typical plateau wetland (Napahai) in Northwestern Yunnan, by using "open-top chamber" technique. The results showed that warming had significant effects on the seed setting rate of both species, though with interspecific variation. The seed setting rate of S. tabernaemontani was significantly increased under two warming treatments, while that of S. stoloniferum was significantly decreased under the 2.0 ℃ warming treatment and had no variation under the 3.5 ℃ warming treatment. Warming promoted the spike growth of both species. For S. tabernaemontani, under the warming of 2.0 and 3.5 ℃ treatments, the spike length was increased by 82.9% and 89.0%, the spikelet number was increased by 133.3% and 150.0%, the biomass of each individual was increased by 10.1% and 89.6%, and the rate between biomass of per plant panicle and total biomass was increased by 79.5% and 409.3%, respectively. For S. stoloniferum, under the warming of 2.0 and 3.5 ℃ treatments, the spike length was increased by 66.1% and 95.2%, and the rate between biomass of per plant panicle and total biomass was increased by 878.8% and 1052.6%, respectively. Warming significantly increased seed yield of both species. Under the warming of 2.0 and 3.5 ℃ treatments, the seed yield per panicle of S. tabernaemontani was increased by 33.7% and 58.3%, respectively. For S. stoloniferum, the seed yield was increased by 3.4% and 69.5%, respectively. Under the warming of 2.0 and 3.5 ℃ treatments, the seed length of S. tabernaemontani was increased by 5.4% and 6.9%, and the seed length/width was increased by 9.1% and 5.3%, respectively. Warming had no significant effects on the seed shape of S. stoloniferum. The maximum and minimum temperatures were dominant factors affecting seed reproductions of both species. The advance of growing season, the prolonging of nutrition growing period, and accumulation of organic matter induced by warming would provide sufficient nutrient and energy accumulation for the reproduction and development of plants, which would promote seed reproduction capability of both species under the warming conditions.

  13. Irrigation and cultivar effect on flax fiber and seed yield in the southeast USA

    USDA-ARS?s Scientific Manuscript database

    Flax (Linum usitatissimum L.) is a potential winter crop for the Southeast USA that can be grown for both seed and fiber. The objective of this research was to evaluate the effect of irrigation on flax straw, fiber, and seed yield of fiber-type and seed-type cultivars at different flax growth stage...

  14. Effect of high concentrations of inorganic seed aerosols on secondary organic aerosol formation in the m-xylene/NO x photooxidation system

    NASA Astrophysics Data System (ADS)

    Lu, Zifeng; Hao, Jiming; Takekawa, Hideto; Hu, Lanhua; Li, Junhua

    High concentrations (>15 μm 3 cm -3) of CaSO 4, Ca(NO 3) 2 and (NH 4) 2SO 4 were selected as surrogates of dry neutral, aqueous neutral and dry acidic inorganic seed aerosols, respectively, to study the effects of inorganic seeds on secondary organic aerosol (SOA) formation in irradiated m-xylene/NO x photooxidation systems. The results indicate that neither ozone formation nor SOA formation is significantly affected by the presence of neutral aerosols (both dry CaSO 4 and aqueous Ca(NO 3) 2), even at elevated concentrations. The presence of high concentrations of (NH 4) 2SO 4 aerosols (dry acidic) has no obvious effect on ozone formation, but it does enhance SOA generation and increase SOA yields. In addition, the effect of dry (NH 4) 2SO 4 on SOA yield is found to be positively correlated with the (NH 4) 2SO 4 surface concentration, and the effect is pronounced only when the surface concentration reaches a threshold value. Further, it is proposed that the SOA generation enhancement is achieved by particle-phase heterogeneous reactions induced and catalyzed by the acidity of dry (NH 4) 2SO 4 seed aerosols.

  15. Genotyping-by-Sequencing-Based Investigation of the Genetic Architecture Responsible for a ∼Sevenfold Increase in Soybean Seed Stearic Acid.

    PubMed

    Heim, Crystal B; Gillman, Jason D

    2017-01-05

    Soybean oil is highly unsaturated but oxidatively unstable, rendering it nonideal for food applications. Until recently, the majority of soybean oil underwent partial chemical hydrogenation, which produces trans fats as an unavoidable consequence. Dietary intake of trans fats and most saturated fats are conclusively linked to negative impacts on cholesterol levels and cardiovascular health. Two major soybean oil breeding targets are: (1) to reduce or eliminate the need for chemical hydrogenation, and (2) to replace the functional properties of partially hydrogenated soybean oil. One potential solution is the elevation of seed stearic acid, a saturated fat which has no negative impacts on cardiovascular health, from 3 to 4% in typical cultivars to > 20% of the seed oil. We performed QTL analysis of a population developed by crossing two mutant lines, one with a missense mutation affecting a stearoyl-acyl-carrier protein desaturase gene resulting in ∼11% seed stearic acid crossed to another mutant, A6, which has 24-28% seed stearic acid. Genotyping-by-sequencing (GBS)-based QTL mapping identified 21 minor and major effect QTL for six seed oil related traits and plant height. The inheritance of a large genomic deletion affecting chromosome 14 is the basis for largest effect QTL, resulting in ∼18% seed stearic acid. This deletion contains SACPD-C and another gene(s); loss of both genes boosts seed stearic acid levels to ≥ 18%. Unfortunately, this genomic deletion has been shown in previous studies to be inextricably correlated with reduced seed yield. Our results will help inform and guide ongoing breeding efforts to improve soybean oil oxidative stability. Copyright © 2017 Heim and Gillman.

  16. Root xylem plasticity to improve water use and yield in water-stressed soybean

    PubMed Central

    Prince, Silvas J.; Murphy, Mackensie; Durnell, Lorellin A.; Shannon, J. Grover

    2017-01-01

    Abstract We tested the hypothesis that increasing the number of metaxylem vessels would enhance the efficiency of water uptake in soybean (Glycine max) and decrease the yield gap in water-limited environments. A panel of 41 soybean accessions was evaluated in greenhouse, rainout shelter, and rain-fed field environments. The metaxylem number influenced the internal capture of CO2 and improved stomatal conductance, enhancing water uptake/use in soybeans exposed to stress during the reproductive stage. We determined that other root anatomical features, such as cortex cell area and the percentage of stele that comprised cortical cells, also affected seed yield under similar growth parameters. Seed yield was also impacted by pod retention rates under drought stress (24–80 pods/plant). We surmise that effective biomass allocation, that is, the transport of available photosynthates to floral structures at late reproductive growth stages (R6–R7), enables yield protection under drought stress. A mesocosm study of contrasting lines for yield under drought stress and root anatomical features revealed that increases in metaxylem number as an adaptation to drought in the high-yielding lines improved root hydraulic conductivity, which reduced the metabolic cost of exploring water in deeper soil strata and enhanced water transport. This allowed the maintenance of shoot physiological processes under water-limited conditions. PMID:28064176

  17. Fresh and Stored Pollen From Slash and Loblolly Pines Compared For Seed Yields

    Treesearch

    John F. Kraus; Davie L. Hunt

    1970-01-01

    Seed yields showed no consistent differences between fresh and stored pollen from 8 years of controlled pollination on slash pine and 4 years on loblolly pine. Collection of male strobili at the proper stage of pollen maturity was an important factor in obtaining good seed yields from stored pollen. Criteria are described which were useful in determining when to...

  18. From the Soil to the Seed. Metal Transport in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerinot, Mary Lou

    2015-02-27

    Deficiencies of micronutrients such as Fe, Mn, and Zn commonly limit plant growth and crop yields. The long-term goals of our program are to understand how plants acquire metal micronutrients from the soil and distribute them while protecting themselves from the potential redox damage metals can cause to living tissues. Metals serve as important co-factors for photosynthesis and respiration, yet we still know very little about metal transport. Our approach combines experimental and computational tools from the physical sciences with biochemistry and molecular biology. Specifically, we combine mutant analysis with synchrotron X-ray fluorescence (SXRF) spectroscopy, a technique that allows usmore » to image the elemental composition of living plant material in 3-D. By analyzing the phenotypes of lines carrying mutations in various metal transporters, we have identified the genes responsible for uptake of zinc from the soil as well as genes involved in loading the seeds with metal micronutrients. Several of these transporters affect the localization of metals in the seed without affecting the overall metal content. Understanding how seeds obtain and store nutrients is key to developing crops with higher agronomic and nutritional value.« less

  19. Effect of salinity stress on phenotypic plasticity, yield stability, and signature of stable isotopes of carbon and nitrogen in safflower.

    PubMed

    Hussain, Muhammad Iftikhar; Al-Dakheel, Abdullah J

    2018-06-05

    Salinity is one of the major factors contributing in land degradation, disturbance of soil biology, a structure that leads to unproductive land with low crop yield potential especially in arid and semiarid regions of the world. Appropriate crops with sufficient stress tolerance capacity and non-conventional water resources should have to be managed in a sustainable way to bring these marginal lands under cultivation for future food security. The goal of the present study was to evaluate salinity tolerant potential (0, 7, and 14 dS m -1 ) of six safflower genotypes that can be adapted to the hyper arid climate of UAE and its marginal soil. Several agro-morphological and physiological traits such as plant dry biomass (PDM), number of branches (BN), number of capitula (CN), seed yield (SY), stable isotope composition of nitrogen (δ 15 N) and carbon (δ 13 C), intercellular CO 2 concentration from inside to ambient air (Ci/Ca), intrinsic water use efficiency (iWUE), carbon (C%) and nitrogen (N %), and harvest index (HI) were evaluated as indicative of the functional performance of safflower genotypes under salt stress. Results indicated that salinity significantly affected the seed yield at all levels and varied significantly among genotypes. The BN, PDM, CN, and δ 13 C attributes showed clear differentiation between tolerant and susceptible genotypes. The δ 13 C results indicate that the tolerant genotypes suffer less from stress, may be due to better rooting. Tolerant genotypes showed lower iWUE values but possess higher yield. Safflower genotypes (PI248836 and PI167390) proved to be salt tolerant, stable, and higher seed and biomass yielder. There was no G × E interaction but the genotypes that produce higher yield under control were still best even under salt stress conditions. Although salinity reduced crop yield, some tolerant genotypes demonstrate adaptation and good yield potential under saline marginal environment.

  20. Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.)*

    PubMed Central

    Tian, Chang; Zhou, Xuan; Liu, Qiang; Peng, Jian-wei; Wang, Wen-ming; Zhang, Zhen-hua; Yang, Yong; Song, Hai-xing; Guan, Chun-yun

    2016-01-01

    Background: Nitrogen (N), phosphorous (P), and potassium (K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause excessive nutrient losses in the field environment, and also adversely affect the soil, water and air quality, human health, and biodiversity. Methods: Field experiments were conducted to study the effects of controlled-release fertilizer (CRF) on seed yield, plant growth, nutrient uptake, and fertilizer usage efficiency for early ripening rapeseed (Xiangzayou 1613) in the red-yellow soil of southern China during 2011–2013. It was grown using a soluble fertilizer (SF) and the same amounts of CRF, such as SF1/CRF1 (3750 kg/hm2), SF2/CRF2 (3000 kg/hm2), SF3/CRF3 (2250 kg/hm2), SF4/CRF4 (1500 kg/hm2), SF5/CRF5 (750 kg/hm2), and also using no fertilizer (CK). Results: CRF gave higher seed yields than SF in both seasons by 14.51%. CRF4 and SF3 in each group achieved maximum seed yield (2066.97 and 1844.50 kg/hm2, respectively), followed by CRF3 (1929.97 kg/hm2) and SF4 (1839.40 kg/hm2). There were no significant differences in seed yield among CK, SF1, and CRF1 (P>0.05). CRF4 had the highest profit (7126.4 CNY/hm2) and showed an increase of 12.37% in seed yield, and it decreased by 11.01% in unit fertilizer rate compared with SF4. The branch number, pod number, and dry matter weight compared with SF increased significantly under the fertilization of CRF (P<0.05). The pod number per plant was the major contributor to seed yield. On the other hand, the N, P, and K uptakes increased at first and then decreased with increasing the fertilizer rate at maturity, and the N, P, and K usage efficiency decreased with increasing the fertilizer rate. The N, P, and K uptakes and usage efficiencies of the CRF were significantly higher than those of SF (P<0.05). The N accumulation and N usage efficiency of CRF increased by an average of 13.66% and 9.74 percentage points, respectively, compared to SF. In conclusion, CRF significantly promoted the growth of rapeseed with using total N as the base fertilizer, by providing sufficient N in the later growth stages, and last by reducing the residual N in the soil and increasing the N accumulation and N usage efficiency. PMID:27704747

  1. Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.).

    PubMed

    Tian, Chang; Zhou, Xuan; Liu, Qiang; Peng, Jian-Wei; Wang, Wen-Ming; Zhang, Zhen-Hua; Yang, Yong; Song, Hai-Xing; Guan, Chun-Yun

    Nitrogen (N), phosphorous (P), and potassium (K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause excessive nutrient losses in the field environment, and also adversely affect the soil, water and air quality, human health, and biodiversity. Field experiments were conducted to study the effects of controlled-release fertilizer (CRF) on seed yield, plant growth, nutrient uptake, and fertilizer usage efficiency for early ripening rapeseed (Xiangzayou 1613) in the red-yellow soil of southern China during 2011-2013. It was grown using a soluble fertilizer (SF) and the same amounts of CRF, such as SF1/CRF1 (3750 kg/hm 2 ), SF2/CRF2 (3000 kg/hm 2 ), SF3/CRF3 (2250 kg/hm 2 ), SF4/CRF4 (1500 kg/hm 2 ), SF5/CRF5 (750 kg/hm 2 ), and also using no fertilizer (CK). CRF gave higher seed yields than SF in both seasons by 14.51%. CRF4 and SF3 in each group achieved maximum seed yield (2066.97 and 1844.50 kg/hm 2 , respectively), followed by CRF3 (1929.97 kg/hm 2 ) and SF4 (1839.40 kg/hm 2 ). There were no significant differences in seed yield among CK, SF1, and CRF1 (P>0.05). CRF4 had the highest profit (7126.4 CNY/hm 2 ) and showed an increase of 12.37% in seed yield, and it decreased by 11.01% in unit fertilizer rate compared with SF4. The branch number, pod number, and dry matter weight compared with SF increased significantly under the fertilization of CRF (P<0.05). The pod number per plant was the major contributor to seed yield. On the other hand, the N, P, and K uptakes increased at first and then decreased with increasing the fertilizer rate at maturity, and the N, P, and K usage efficiency decreased with increasing the fertilizer rate. The N, P, and K uptakes and usage efficiencies of the CRF were significantly higher than those of SF (P<0.05). The N accumulation and N usage efficiency of CRF increased by an average of 13.66% and 9.74 percentage points, respectively, compared to SF. In conclusion, CRF significantly promoted the growth of rapeseed with using total N as the base fertilizer, by providing sufficient N in the later growth stages, and last by reducing the residual N in the soil and increasing the N accumulation and N usage efficiency.

  2. Changes in the germination process and growth of pea in effect of laser seed irradiation

    NASA Astrophysics Data System (ADS)

    Podleśna, Anna; Gładyszewska, Bożena; Podleśny, Janusz; Zgrajka, Wojciech

    2015-10-01

    The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.

  3. Yield and quality attributes of faba bean inbred lines grown under marginal environmental conditions of Sudan.

    PubMed

    Gasim, Seif; Hamad, Solafa A A; Abdelmula, Awadalla; Mohamed Ahmed, Isam A

    2015-11-01

    Faba beans (Vicia faba L.) represent an essential source of food protein for many people in Sudan, especially those who cannot afford to buy animal meat. The demand for faba bean seeds is greatly increased in recent years, and consequently its production area was extended southward where the climate is marginally suitable. Therefore, this study was aimed to evaluate seed yield and nutritional quality of five faba bean inbred lines grown under marginal environmental conditions of Sudan. The inbred lines have considerable (P ≤ 0.05) variability in yield and yield components, and seed chemical composition. The mean carbohydrate content was very high (501.1 g kg(-1)) and negatively correlated with seed yield, whereas the average protein content was relatively high (253.1 g kg(-1)) and positively correlated with seed yield. Globulin was the significant fraction (613.5 g kg(-1)protein) followed by albumin (200.2 g kg(-1)protein). Biplot analysis indicates that inbred lines Hudeiba/93-S5 and Ed-damar-S5 outscore other lines in terms of seed yield and nutritional quality. This study demonstrates that Hudeiba/93-S5 and Ed-damar-S5 are useful candidates in faba bean breeding program to terminate the protein deficiency malnutrition and provide healthy and nutritious meal for people living in subtropical areas.

  4. Influence of pine straw harvesting, prescribed fire, and fertilization on a Louisiana longleaf pine site

    Treesearch

    James D. Haywood

    2009-01-01

    This research was initiated in a 34-year-old, direct-seeded stand of longleaf pine (Pinus palustris Mill.) to study how pine straw management practices (harvesting, fire, and fertilization) affected the longleaf pine overstory and pine straw yields. A randomized complete block split-plot design was installed with two main plot treatments...

  5. Integrated utilization of red radish seeds for the efficient production of seed oil and sulforaphene.

    PubMed

    Zhang, Jie; Zhou, Xing; Fu, Min

    2016-02-01

    Supercritical CO2 was used to obtain seed oil from red radish seeds. The influence of pressure, temperature, CO2 flow rate and time on extraction yield of oil were investigated in detail. The maximum extraction yield of oil was 92.07 ± 0.76% at the optimal extraction conditions. The physicochemical properties and fatty acid composition of oil indicated that the seed oil can be used as a dietary oil. Meanwhile, the high purity sulforaphene (96.84 ± 0.17%) was separated by solvent extraction coupled with preparative high performance liquid chromatography from red radish seed meal. The initial pH, R, extraction temperature and extraction time for each cycle had a considerable influence both on the extraction yield and purity of sulforaphene of crude product. The extraction of oil was directly responsible for an increase of 18.32% in the yield of sulforaphene. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).

    PubMed

    Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R

    2016-03-01

    Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).

  7. Estimating nutrient uptake requirements for soybean using QUEFTS model in China

    PubMed Central

    Yang, Fuqiang; Xu, Xinpeng; Wang, Wei; Ma, Jinchuan; Wei, Dan; He, Ping; Pampolino, Mirasol F.; Johnston, Adrian M.

    2017-01-01

    Estimating balanced nutrient requirements for soybean (Glycine max [L.] Merr) in China is essential for identifying optimal fertilizer application regimes to increase soybean yield and nutrient use efficiency. We collected datasets from field experiments in major soybean planting regions of China between 2001 and 2015 to assess the relationship between soybean seed yield and nutrient uptake, and to estimate nitrogen (N), phosphorus (P), and potassium (K) requirements for a target yield of soybean using the quantitative evaluation of the fertility of tropical soils (QUEFTS) model. The QUEFTS model predicted a linear–parabolic–plateau curve for the balanced nutrient uptake with a target yield increased from 3.0 to 6.0 t ha−1 and the linear part was continuing until the yield reached about 60–70% of the potential yield. To produce 1000 kg seed of soybean in China, 55.4 kg N, 7.9 kg P, and 20.1 kg K (N:P:K = 7:1:2.5) were required in the above-ground parts, and the corresponding internal efficiencies (IE, kg seed yield per kg nutrient uptake) were 18.1, 126.6, and 49.8 kg seed per kg N, P, and K, respectively. The QUEFTS model also simulated that a balanced N, P, and K removal by seed which were 48.3, 5.9, and 12.2 kg per 1000 kg seed, respectively, accounting for 87.1%, 74.1%, and 60.8% of the total above-ground parts, respectively. These results were conducive to make fertilizer recommendations that improve the seed yield of soybean and avoid excessive or deficient nutrient supplies. Field validation indicated that the QUEFTS model could be used to estimate nutrient requirements which help develop fertilizer recommendations for soybean. PMID:28498839

  8. Combining ability analysis for within-boll yield components in upland cotton (Gossypium hirsutum L.).

    PubMed

    Imran, M; Shakeel, A; Azhar, F M; Farooq, J; Saleem, M F; Saeed, A; Nazeer, W; Riaz, M; Naeem, M; Javaid, A

    2012-08-24

    Cotton is an important cash crop worldwide, accounting for a large percentage of world agricultural exports; however, yield per acre is still poor in many countries, including Pakistan. Diallel mating system was used to identify parents for improving within-boll yield and fiber quality parameters. Combining ability analysis was employed to obtain suitable parents for this purpose. The parental genotypes CP-15/2, NIAB Krishma, CIM-482, MS-39, and S-12 were crossed in complete diallel mating under green house conditions during 2009. The F₀ seed of 20 hybrids and five parents were planted in the field in randomized complete block design with three replications during 2010. There were highly significant differences among all F₁ hybrids and their parents. Specific combining ability (SCA) variance was greater than general combining ability (GCA) variance for bolls per plant (9.987), seeds per boll (0.635), seed density (5.672), lint per seed (4.174), boll size (3.69), seed cotton yield (0.315), and lint percentage (0.470), showing predominance of non-additive genes; while seed volume (3.84) was controlled by additive gene action based on maximum GCA variance. Cultivar MS-39 was found to be the best general combiner for seed volume (0.102), seeds per boll (0.448), and lint per seed (0.038) and its utilization produced valuable hybrids, including MS-39 x NIAB Krishma and MS-39 x S-12. The parental line CIM-482 had high GCA effects for boll size (0.33) and seeds per boll (0.90). It also showed good SCA with S-12 and NIAB Krishma for bolls per plant, with CP- 15/2 for boll size, and with MS-39 for seeds per boll. The hybrids, namely, CP-15/2 x NIAB Krishma, NIAB Krishma x S-12, NIAB Krishma x CIM-482, MS-39 x NIAB Krishma, MS-39 x CP-15/2, and S-12 x MS-39 showed promising results. Correlation analysis revealed that seed cotton yield showed significant positive correlation with bolls per plant, boll size and seeds per boll while it showed negative correlation with lint percentage and lint per seed. Seed volume showed significant negative correlation with seed density. Seeds per boll were positively correlated with boll size and negatively correlated with bolls per plant lint percentage and lint per seed. Similarly, lint per seed exhibited positive correlation with lint percentage and boll size showed significantly negative correlation with bolls per plant. Presence of non-additive genetic effects in traits like bolls per plant, seeds per boll, lint per seed, seed cotton yield, and lint percentage is indicative of later generation selection or heterosis breeding may be adopted. For boll size, seed volume and seed density early generation selection may be followed because of the presence of additive gene action. The parental material used in this study and cross combinations obtained from these parents may be exploited in future breeding endeavors.

  9. The importance of key floral bioactive compounds to honey bees for the detection and attraction of hybrid vegetable crops and increased seed yield.

    PubMed

    Mas, Flore; Harper, Aimee; Horner, Rachael; Welsh, Taylor; Jaksons, Peter; Suckling, David M

    2018-02-15

    Crop breeding programmes generally select for traits for improved yield and human consumption preferences. Yet, they often overlook one fundamental trait essential for insect-pollinated crops: pollinator attraction. This is even more critical for hybrid plants that rely on cross-pollination between the male-fertile line and the male-sterile line to set seeds. This study investigated the role of floral odours for honey bee pollination that could explain the poor seed yield in hybrid crops. The key floral bioactive compounds that honey bees detect were identified for three vegetable hybrid crops. It was found that 30% of the variation in bioactive compound quantities was explained by variety. Differences in quantities of the bioactive compounds triggered different degrees of olfactory response and were also associated with varied appetitive response. Correlating the abundance of each bioactive compound with seed yield, it was found that aldehydes such as nonanal and decanal can have a strong negative influence on seed yield with increasing quantity. Using these methodologies to identify relevant bioactive compounds associated with honey bee pollination, plant breeding programmes should also consider selecting for floral traits attractive to honey bees to improve crop pollination for enhanced seed yield. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Evaluation of Alternatives to an Organophosphate Insecticide with Selected Cultural Practices: Effects on Thrips, Frankliniella fusca, and Incidence of Spotted Wilt in Peanut Farmscapes.

    PubMed

    Marasigan, K; Toews, M; Kemerait, R; Abney, M R; Culbreath, A; Srinivasan, R

    2018-05-28

    Peanut growers use a combination of tactics to manage spotted wilt disease caused by thrips-transmitted Tomato spotted wilt virus (TSWV). They include planting TSWV-resistant cultivars, application of insecticides, and various cultural practices. Two commonly used insecticides against thrips are aldicarb and phorate. Both insecticides exhibit broad-spectrum toxicity. Recent research has led to the identification of potential alternatives to aldicarb and phorate. In this study, along with reduced-risk, alternative insecticides, we evaluated the effect of conventional versus strip tillage; single versus twin row seeding pattern; and 13 seed/m versus 20 seed/m on thips density, feeding injury, and spotted wilt incidence. Three field trials were conducted in Georgia in 2012 and 2013. Thrips counts, thrips feeding injuriy, and incidence of spotted wilt were less under strip tillage than under conventional tillage. Reduced feeding injury from thrips was observed on twin-row plots compared with single-row plots. Thrips counts, thrips feeding injury, and incidence of spotted wilt did not vary by seeding rate. Yield from twin-row plots was greater than yield from single-row plots only in 2012. Yield was not affected by other cultural practices. Alternative insecticides, including imidacloprid and spinetoram, were as effective as phorate in suppressing thrips and reducing incidence of spotted wilt in conjunction with cultural practices. Results suggest that cultural practices and reduced-risk insecticides (alternatives to aldicarb and phorate) can effectively suppress thrips and incidence of spotted wilt in peanut.

  11. Modeling of extraction process of crude polysaccharides from Basil seeds (Ocimum basilicum l.) as affected by process variables.

    PubMed

    Salehi, Fakhreddin; Kashaninejad, Mahdi; Tadayyon, Ali; Arabameri, Fatemeh

    2015-08-01

    Basil seed (Ocimum basilicum L.) has practical amounts of gum with good functional properties. In this work, extraction of gum from Basil seed was studied. Effect of pH, temperature and water/seed ratio on the kinetic and thermodynamic parameters; entropy, enthalpy and free energy of extraction were investigated. The maximum gum yield was 17.95 % at 50 °C for pH=7 and water/seed ratio 30:1. In this study, the experimental data were fitted to a mathematical model of mass transfer and equations constants were obtained. The kinetic of Basil seed gum extraction was found to be a first order mass transfer model. Statistical results indicated that the model used in this study will be able to predict the gum extraction from Basil seed adequately. It also found that ΔH and ΔS were positive and ΔG was negative indicating that the extraction process was spontaneous, irreversible and endothermic. The ΔH, ΔS and ΔG values were 0.26-7.87 kJ/mol, 8.12-33.2 J/mol K and 1.62-4.42 kJ/mol, respectively.

  12. SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis.

    PubMed

    Tanabata, Takanari; Shibaya, Taeko; Hori, Kiyosumi; Ebana, Kaworu; Yano, Masahiro

    2012-12-01

    Seed shape and size are among the most important agronomic traits because they affect yield and market price. To obtain accurate seed size data, a large number of measurements are needed because there is little difference in size among seeds from one plant. To promote genetic analysis and selection for seed shape in plant breeding, efficient, reliable, high-throughput seed phenotyping methods are required. We developed SmartGrain software for high-throughput measurement of seed shape. This software uses a new image analysis method to reduce the time taken in the preparation of seeds and in image capture. Outlines of seeds are automatically recognized from digital images, and several shape parameters, such as seed length, width, area, and perimeter length, are calculated. To validate the software, we performed a quantitative trait locus (QTL) analysis for rice (Oryza sativa) seed shape using backcrossed inbred lines derived from a cross between japonica cultivars Koshihikari and Nipponbare, which showed small differences in seed shape. SmartGrain removed areas of awns and pedicels automatically, and several QTLs were detected for six shape parameters. The allelic effect of a QTL for seed length detected on chromosome 11 was confirmed in advanced backcross progeny; the cv Nipponbare allele increased seed length and, thus, seed weight. High-throughput measurement with SmartGrain reduced sampling error and made it possible to distinguish between lines with small differences in seed shape. SmartGrain could accurately recognize seed not only of rice but also of several other species, including Arabidopsis (Arabidopsis thaliana). The software is free to researchers.

  13. Effect of lamp type and temperature on development, carbon partitioning and yield of soybean

    NASA Astrophysics Data System (ADS)

    Dougher, T. A. O.; Bugbee, B.

    1997-01-01

    Soybeans grown in controlled environments are commonly taller than field-grown plants. In controlled environments, including liquid hydroponics, height of the dwarf cultivar ``Hoyt'' was reduced from 46 to 33 cm when plants were grown under metal halide lamps compared to high pressure sodium lamps at the same photosynthetic photon flux. Metal halide lamps reduced total biomass 14% but did not significantly reduce seed yield. Neither increasing temperature nor altering the difference between day/night temperature affected plant height. Increasing temperature from 21 to 27 degC increased yield 32%. High temperature significantly increased carbon partitioning to stems and increased harvest index.

  14. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species

    PubMed Central

    2013-01-01

    Background Jatropha curcas L. is an oil seed producing non-leguminous tropical shrub that has good potential to be a fuel plant that can be cultivated on marginal land. Due to the low nutrient content of the targeted plantation area, the requirement for fertilizer is expected to be higher than other plants. This factor severely affects the commercial viability of J. curcas. Results We explored the feasibility to use endophytic nitrogen-fixing bacteria that are native to J. curcas to improve plant growth, biomass and seed productivity. We demonstrated that a novel N-fixing endophyte, Enterobacter sp. R4-368, was able to colonize in root and stem tissues and significantly promoted early plant growth and seed productivity of J. curcas in sterilized and non-sterilized soil. Inoculation of young seedling led to an approximately 57.2% increase in seedling vigour over a six week period. At 90 days after planting, inoculated plants showed an average increase of 25.3%, 77.7%, 27.5%, 45.8% in plant height, leaf number, chlorophyll content and stem volume, respectively. Notably, inoculation of the strain led to a 49.0% increase in the average seed number per plant and 20% increase in the average single seed weight when plants were maintained for 1.5 years in non-sterilized soil in pots in the open air. Enterobacter sp. R4-368 cells were able to colonize root tissues and moved systemically to stem tissues. However, no bacteria were found in leaves. Promotion of plant growth and leaf nitrogen content by the strain was partially lost in nifH, nifD, nifK knockout mutants, suggesting the presence of other growth promoting factors that are associated with this bacterium strain. Conclusion Our results showed that Enterobacter sp. R4-368 significantly promoted growth and seed yield of J. curcas. The application of the strains is likely to significantly improve the commercial viability of J. curcas due to the reduced fertilizer cost and improved oil yield. PMID:24083555

  15. Individual and combined application of dry heat with high hydrostatic pressure to inactivate Salmonella and Escherichia coli O157:H7 on alfalfa seeds.

    PubMed

    Neetoo, Hudaa; Chen, Haiqiang

    2011-02-01

    Alfalfa sprouts are recurrently implicated in outbreaks of food-borne illnesses as a result of contamination with Salmonella or Escherichia coli O157:H7. In the majority of these outbreaks, the seeds themselves have been shown to be the most likely source of contamination. The aims of this study were to comparatively assess the efficacy of dry heat treatments alone or in conjunction with high hydrostatic pressure (HHP) to eliminate a ∼5 log CFU/g load of Salmonella and E. coli O157:H7 on alfalfa seeds. Dry heat treatments at mild temperatures of 55 and 60 °C achieved ≤1.6 and 2.2 log CFU/g reduction in the population of Salmonella spp. after a 10-d treatment, respectively. However, subjecting alfalfa seeds to more aggressive temperatures of 65 °C for 10 days or 70 °C for 24 h eliminated a ∼5 log population of Salmonella and E. coli O157:H7. We subsequently showed that the sequential application of dry heating followed by HHP could substantially reduce the dry heating exposure time while achieving equivalent decontamination results. Dry heating at 55, 60, 65 and 70 °C for 96, 24, 12 and 6 h, respectively followed by a pressure treatment of 600 MPa for 2 min at 35 °C were able to eliminate a ∼5 log CFU/g initial population of both pathogens. Finally, we evaluated the impact of selected treatments on the seed germination percentages and yield ratios and showed that dry heating at 65 °C for 10 days did not bring about any considerable decrease in the germination percentage. However, the sprout yield of treated alfalfa seeds was reduced by 21%. Dry heating at 60 and 65 °C for 24 and 12 h respectively followed by the pressure treatment of 600 MPa for 2 min at 35 °C did not significantly (P > 0.05) affect the germination percentage of alfalfa seeds although a reduction in the sprouting yield was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Towards integrated pest management in red clover seed production.

    PubMed

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Bommarco, Riccardo

    2012-10-01

    The development of integrated pest management is hampered by lack of information on how insect pest abundances relate to yield losses, and how pests are affected by control measures. In this study, we develop integrated pest management tactics for Apion spp. weevils (Coleoptera: Brentidae) in seed production of red clover, Trifolium pratense L. We tested a method to forecast pest damage, quantified the relationship between pest abundance and yield, and evaluated chemical and biological pest control in 29 Swedish red clover fields in 2008 and 2011. Pest inflorescence abundance, which had a highly negative effect on yield, could be predicted with pan trap catches of adult pests. In 2008, chemical control with typically one application of pyrethroids was ineffective both in decreasing pest abundances and in increasing yields. In 2011, when chemical control included applications of the neonicotinoid thiacloprid, pest abundances decreased and yields increased considerably in treated field zones. A post hoc analysis indicated that using pyrethroids in addition to thiacloprid was largely redundant. Infestation rates by parasitoids was higher and reached average levels of around 40% in insecticide treated field zones in 2011, which is a level of interest for biological pest control. Based on the data presented, an economic threshold for chemical control is developed, and guidelines are provided on minimum effective chemical pest control.

  17. Effects of prepartum diets supplemented with rolled oilseeds on calf birth weight, postpartum health, feed intake, milk yield, and reproductive performance of dairy cows.

    PubMed

    Salehi, R; Colazo, M G; Oba, M; Ambrose, D J

    2016-05-01

    The objectives were to determine the effects of supplemental fat (no oilseed vs. oilseed) during late gestation and the source of fat (canola vs. sunflower seed), on dry matter intake (DMI), plasma metabolite concentrations, milk production and composition, calf birth weight, postpartum health disorders, ovarian function and reproductive performance in dairy cows. Pregnant Holstein cows, blocked by body condition and parity, were assigned to 1 of 3 diets containing rolled canola seed (high in oleic acid; n=43) or sunflower (high in linoleic acid; n=45) at 8% of dry matter, or no oilseed (control; n=43), for the last 35±2 d of pregnancy. After calving, all cows received a common lactation diet. Blood samples were collected at wk -3 (i.e., 2 wk after initiation of prepartum diets) and at wk +1, +2, +3, +4 and +5 postpartum to determine the concentration of fatty acids (mEq/dL), β-hydroxybutyrate (mg/dL), and glucose (mg/dL). Ovarian ultrasonography was performed twice weekly to determine the first appearance of dominant (10mm) and preovulatory-size (≥16mm) follicles, and ovulation. Uterine inflammatory status based on the proportion of polymorphonuclear leukocytes (PMN; subclinical endometritis: >8% PMN) was assessed at d 25±1 postpartum. Significant parity by treatment interactions were observed for DMI and milk yield. Prepartum oilseed supplementation, more specifically sunflower seed supplementation, increased postpartum DMI in primiparous cows without affecting prepartum DMI or milk yield. Contrarily, in multiparous cows, prepartum oilseed supplementation decreased both prepartum and postpartum DMI and milk yield during the first 2 wk. Regardless of parity, prepartum feeding of canola reduced postpartum DMI compared with those fed sunflower. Mean fatty acids concentrations at wk -3 were greater in cows given supplemental oilseed than those fed no oilseeds. Gestation length and calf birth weight were increased in cows given supplemental oilseed prepartum compared with cows fed no oilseeds, and a disproportionate increase in the birth weight of female calves was evident in cows fed oilseed. Total reproductive disorders tended to be greater in cows fed supplemental oilseed than those fed no oilseed (42 vs. 23%). Furthermore, cows fed sunflower seed had greater incidences of dystocia (35 vs. 18%) and total health disorders (52 vs. 32%) than those fed canola seed. Added oilseed and type of oilseed did not affect uterine inflammation at 25±1 d postpartum. Oilseed supplementation did not alter the intervals from calving to establishment of the first dominant follicle, preovulatory-size follicle, and ovulation, nor did it affect fertility (conception rate to first artificial insemination and proportion of pregnant cows by 150 d after calving). In summary, prepartum oilseed supplementation (6.2 to 7.4% ether extract, % of dietary dry matter) decreased DMI during the entire experimental period (pre- and postpartum), decreased milk yield during early lactation in multiparous cows, and increased calf birth weight with no significant improvement in ovarian function and reproductive performance. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.)

    PubMed Central

    2014-01-01

    Background The aim of this study was to evaluate the effect of nano silver and silver nitrate on yield of seed in basil plant. The study was carried out in a randomized block design with three replications. Results Four levels of either silver nitrate (0, 100, 200 and 300 ppm) or nano silver (0, 20, 40, and 60 ppm) were sprayed on basil plant at seed growth stage. The results showed that there was no significant difference between 100 ppm of silver nitrate and 60 ppm concentration of nano silver on the shoot silver concentration. However, increasing the concentration of silver nitrate from 100 to 300 ppm caused a decrease in seed yield. In contrast, a raise in the concentration of nano silver from 20 to 60 ppm has led to an improvement in the seed yield. Additionally, the lowest amount of seed yield was found with control plants. Conclusions Finally, with increasing level of silver nitrate, the polyphenol compound content was raised but the enhancing level of nano silver resulting in the reduction of these components. In conclusion, nano silver can be used instead of other compounds of silver. PMID:25383311

  19. Nonlethal Thrips Damage to Slash Pine Flowers Reduces Seed Yields

    Treesearch

    Gary L. DeBarr; John A. Williams

    1971-01-01

    Nonlethal damage to female flowers of slash pine (Pinus elliottii Engelm.) by a thrips, Gnophothrips fuscus Morgan, was examined a Florida seed orchard. Thrips-damaged flowers developed into crooked mature cones with areas of sunken, deformed cone scales. Damaged cones were significantly shorter, yielded fewer total seed and...

  20. Estimates of genetics and phenotypics parameters for the yield and quality of soybean seeds.

    PubMed

    Zambiazzi, E V; Bruzi, A T; Guilherme, S R; Pereira, D R; Lima, J G; Zuffo, A M; Ribeiro, F O; Mendes, A E S; Godinho, S H M; Carvalho, M L M

    2017-09-27

    Estimating genotype x environment (GxE) parameters for quality and yield in soybean seed grown in different environments in Minas Gerais State was the goal of this study, as well as to evaluate interaction effects of GxE for soybean seeds yield and quality. Seeds were produced in three locations in Minas Gerais State (Lavras, Inconfidentes, and Patos de Minas) in 2013/14 and 2014/15 seasons. Field experiments were conducted in randomized blocks in a factorial 17 x 6 (GxE), and three replications. Seed yield and quality were evaluated for germination in substrates paper and sand, seedling emergence, speed emergency index, mechanical damage by sodium hypochlorite, electrical conductivity, speed aging, vigor and viability of seeds by tetrazolium test in laboratory using completely randomized design. Quadratic component genotypic, GXE variance component, genotype determination coefficient, genetic variation coefficient and environmental variation coefficient were estimated using the Genes software. Percentage analysis of genotypes contribution, environments and genotype x environment interaction were conducted by sites combination two by two and three sites combination, using the R software. Considering genotypes selection of broad adaptation, TMG 1179 RR, CD 2737 RR, and CD 237 RR associated better yield performance at high physical and physiological potential of seed. Environmental effect was more expressive for most of the characters related to soybean seed quality. GxE interaction effects were expressive though genotypes did not present coincidental behavior in different environments.

  1. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean.

    PubMed

    Wang, Xianzhi; Jiang, Guo-Liang; Green, Marci; Scott, Roy A; Song, Qijian; Hyten, David L; Cregan, Perry B

    2014-10-01

    Soybean seeds contain high levels of oil and protein, and are the important sources of vegetable oil and plant protein for human consumption and livestock feed. Increased seed yield, oil and protein contents are the main objectives of soybean breeding. The objectives of this study were to identify and validate quantitative trait loci (QTLs) associated with seed yield, oil and protein contents in two recombinant inbred line populations, and to evaluate the consistency of QTLs across different environments, studies and genetic backgrounds. Both the mapping population (SD02-4-59 × A02-381100) and validation population (SD02-911 × SD00-1501) were phenotyped for the three traits in multiple environments. Genetic analysis indicated that oil and protein contents showed high heritabilities while yield exhibited a lower heritability in both populations. Based on a linkage map constructed previously with the mapping population and using composite interval mapping and/or interval mapping analysis, 12 QTLs for seed yield, 16 QTLs for oil content and 11 QTLs for protein content were consistently detected in multiple environments and/or the average data over all environments. Of the QTLs detected in the mapping population, five QTLs for seed yield, eight QTLs for oil content and five QTLs for protein content were confirmed in the validation population by single marker analysis in at least one environment and the average data and by ANOVA over all environments. Eight of these validated QTLs were newly identified. Compared with the other studies, seven QTLs for seed yield, eight QTLs for oil content and nine QTLs for protein content further verified the previously reported QTLs. These QTLs will be useful for breeding higher yield and better quality cultivars, and help effectively and efficiently improve yield potential and nutritional quality in soybean.

  2. Performance of some Ethiopian fenugreek (Trigonella foenum-graecum L.) germplasm collections as compared with the commercial variety Challa.

    PubMed

    Fikreselassie, Million

    2012-05-01

    Systematic breeding efforts on fenugreek have so far been neglected in Ethiopia. For this, 143 random samples of fenugreek accessions along with a commercial variety were used in this study to evaluate the potential of the land races. The field experiment was conducted at Haramaya University research station during 2011 main cropping season. Treatments were arranged in a 12x12 simple lattice design. The highest biomass and seed yielding accessions were generally concentrated more in the categories of yellow and green seed colors. When compared with the commercial variety, above 27% of the tested accessions performed significantly better in terms of seed yield indicating that significant yield gains could be secured by simple selection. However, further evaluation over wider environments is necessary to arrive at conclusive points for such quantitative traits. Green and yellow seeded accessions are widely distributed over all the country and over half of the accessions (63%) had green seed color. High seed yield bearing accessions were those collected from northwest and central part of Ethiopia, while accessions collected from eastern and northwestern Ethiopia were strikingly bold seed size. This variability would provide a basis for improving the crop in breeding program.

  3. A shrunken-2 Transgene Increases Maize Yield by Acting in Maternal Tissues to Increase the Frequency of Seed Development[W

    PubMed Central

    Hannah, L. Curtis; Futch, Brandon; Bing, James; Shaw, Janine R.; Boehlein, Susan; Stewart, Jon D.; Beiriger, Robert; Georgelis, Nikolaos; Greene, Thomas

    2012-01-01

    The maize (Zea mays) shrunken-2 (Sh2) gene encodes the large subunit of the rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase. Expression of a transgenic form of the enzyme with enhanced heat stability and reduced phosphate inhibition increased maize yield up to 64%. The extent of the yield increase is dependent on temperatures during the first 4 d post pollination, and yield is increased if average daily high temperatures exceed 33°C. As found in wheat (Triticum aestivum) and rice (Oryza sativa), this transgene increases maize yield by increasing seed number. This result was surprising, since an entire series of historic observations at the whole-plant, enzyme, gene, and physiological levels pointed to Sh2 playing an important role only in the endosperm. Here, we present several lines of evidence that lead to the conclusion that the Sh2 transgene functions in maternal tissue to increase seed number and, in turn, yield. Furthermore, the transgene does not increase ovary number; rather, it increases the probability that a seed will develop. Surprisingly, the number of fully developed seeds is only ∼50% of the number of ovaries in wild-type maize. This suggests that increasing the frequency of seed development is a feasible agricultural target, especially under conditions of elevated temperatures. PMID:22751213

  4. The effect of organic solvent, temperature and mixing time on the production of oil from Moringa oleifera seeds

    NASA Astrophysics Data System (ADS)

    Ghazali, Q.; Yasin, N. H. M.

    2016-06-01

    The effect of three different organic solvent, temperature and mixing time on the production of oil from M.oleifera seeds were studied to evaluate the effectiveness in obtaining the high oil yield based on the percentage of oil production. The modified version of Soxhlet extraction method was carried out to extract the oil from M.oleifera seeds by using hexane, heptane and ethanol as the organic solvent. Among the three solvents, it is found that heptane yield higher oil from M.oleifera seeds with maximum oil yield of 36.37% was obtained followed by hexane and ethanol with 33.89% and 18.46%, respectively. By using heptane as a solvent, the temperature (60oC, 70oC, 80oC) and mixing time (6 h, 7 h, and 8 h) were investigated to ensure the high oil yield over the experimental ranges employed and high oil yield was obtained at 600C for 6 h with percentage oil yield of 36.37%. The fatty acid compositions of M.oleifera seeds oil were analyzed using Gas Chromatography/Mass Spectrometry (GC-MS). The main components of fatty acid contained in the oil extracted from M.oleifera seeds was oleic acid, followed by palmitic acid and arachidic acid, and small amount of behenic acid and margaric acid.

  5. Yield potential of pigeon pea cultivars

    USDA-ARS?s Scientific Manuscript database

    Yield potential of twelve vegetable pigeon pea (Cajanus cajun) cultivars was evaluated at two locations in eastern Kenya during 2012 and 2013 cropping years. Pigeon pea pod numbers, seeds per pod, seed mass, grain yield and shelling percentage were quantified in three replicated plots, arranged in a...

  6. Value of Neonicotinoid Insecticide Seed Treatments in Mid-South Corn (Zea mays) Production Systems.

    PubMed

    North, J H; Gore, J; Catchot, A L; Stewart, S D; Lorenz, G M; Musser, F R; Cook, D R; Kerns, D L; Leonard, B R; Dodds, D M

    2018-02-09

    Neonicotinoid seed treatments are one of several effective control options used in corn, Zea mays L., production in the Mid-South for early season insect pests. An analysis was performed on 91 insecticide seed treatment trials from Arkansas, Louisiana, Mississippi, and Tennessee to determine the value of neonicotinoids in corn production systems. The analysis compared neonicotinoid insecticide treated seed plus a fungicide to seed only with the same fungicide. When analyzed by state, corn yields were significantly higher when neonicotinoid seed treatments were used compared to fungicide only treated seed in Louisiana and Mississippi. Corn seed treated with neonicotinoid seed treatments yielded 111, 1,093, 416, and 140 kg/ha, higher than fungicide only treatments for Arkansas, Louisiana, Mississippi, and Tennessee, respectively. Across all states, neonicotinoid seed treatments resulted in a 700 kg/ha advantage compared to fungicide only treated corn seed. Net returns for corn treated with neonicotinoid seed treatment were $1,446/ha compared with $1,390/ha for fungicide only treated corn seed across the Mid-South. Economic returns for neonicotinoid seed treated corn were significantly greater than fungicide-only-treated corn seed in 8 out of 14 yr. When analyzed by state, economic returns for neonicotinoid seed treatments were significantly greater than fungicide-only-treated seed in Louisiana. In some areas, dependent on year, neonicotinoid seed treatments provide significant yield and economic benefits in Mid-South corn. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Potential of multiseeded mutant (msd) to boost sorghum grain yield

    USDA-ARS?s Scientific Manuscript database

    Seed number per plant is an important determinant of the grain yield in cereal and other crops. We have isolated a class of multiseeded (msd) sorghum (Sorghum bicolor L. Moench) mutants that are capable of producing three times the seed number and twice the seed weight per panicle as compared with t...

  8. Cone and seed yields from controlled breeding of southern pines

    Treesearch

    E. B. Snyder; A. E. Squillace

    1966-01-01

    Over a 10-year period, survivals of cones from controlled cross-pollinations were less than 40 percent, and seed yields per cone averaged about half those from wind-pollinations. Self-pollinations produced about 15 percent as much seed as cross-pollinations. Interspecific pollinations were generally less productive than intraspecific pollinations.

  9. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia.

    PubMed

    Frey, Anne; Godin, Béatrice; Bonnet, Magda; Sotta, Bruno; Marion-Poll, Annie

    2004-04-01

    The role of maternally derived abscisic acid (ABA) during seed development has been studied using ABA-deficient mutants of Nicotiana plumbaginifolia Viviani. ABA deficiency induced seed abortion, resulting in reduced seed yield, and delayed growth of the remaining embryos. Mutant grafting onto wild-type stocks and reciprocal crosses indicated that maternal ABA, synthesized in maternal vegetative tissues and translocated to the seed, promoted early seed development and growth. Moreover ABA deficiency delayed both seed coat pigmentation and capsule dehiscence. Mutant grafting did not restore these phenotypes, indicating that ABA synthesized in the seed coat and capsule envelope may have a positive effect on capsule and testa maturation. Together these results shed light on the positive role of maternal ABA during N. plumbaginifolia seed development.

  10. Stabilization of pH in solid-matrix hydroponic systems

    NASA Technical Reports Server (NTRS)

    Frick, J.; Mitchell, C. A.

    1993-01-01

    2-[N-morpholino]ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome : ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 mM) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite : 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g m-2 day-1) were about double that of the control (8.2 g m-2 day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g m-2 day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mM MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.

  11. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice

    PubMed Central

    Sugimoto, Kazuhiko; Takeuchi, Yoshinobu; Ebana, Kaworu; Miyao, Akio; Hirochika, Hirohiko; Hara, Naho; Ishiyama, Kanako; Kobayashi, Masatomo; Ban, Yoshinori; Hattori, Tsukaho; Yano, Masahiro

    2010-01-01

    Seed dormancy provides a strategy for flowering plants to survive adverse natural conditions. It is also an important agronomic trait affecting grain yield, quality, and processing performance. We cloned a rice quantitative trait locus, Sdr4, which contributes substantially to differences in seed dormancy between japonica (Nipponbare) and indica (Kasalath) cultivars. Sdr4 expression is positively regulated by OsVP1, a global regulator of seed maturation, and in turn positively regulates potential regulators of seed dormancy and represses the expression of postgerminative genes, suggesting that Sdr4 acts as an intermediate regulator of dormancy in the seed maturation program. Japonica cultivars have only the Nipponbare allele (Sdr4-n), which endows reduced dormancy, whereas both the Kasalath allele (Srd4-k) and Sdr4-n are widely distributed in the indica group, indicating prevalent introgression. Srd4-k also is found in the wild ancestor Oryza rufipogon, whereas Sdr4-n appears to have been produced through at least two mutation events from the closest O. rufipogon allele among the accessions examined. These results are discussed with respect to possible selection of the allele during the domestication process. PMID:20220098

  12. Identifying yield-optimizing environments for two cowpea breeding lines by manipulating photoperiod and harvest scenario

    NASA Technical Reports Server (NTRS)

    Ohler, T. A.; Mitchell, C. A.

    1996-01-01

    Photoperiod and harvest scenario of cowpea (Vigna unguiculata L. Walp) canopies were manipulated to optimize productivity for use in future controlled ecological life-support systems. Productivity was measured by edible yield rate (EYR:g m-2 day-1), shoot harvest index (SHI: g edible biomass [g total shoot dry weight]), and yield-efficiency rate (YER:g edible biomass m-2 day-1 per[g nonedible shoot dry weight]). Breeding lines 'IT84S-2246' (S-2246) and "IT82D-889' (D-889) were grown in a greenhouse under 8-, 12-, or 24-h photoperiods. S-2246 was short-day and D-889 was day-neutral for flowering. Under each photoperiod, cowpeas were harvested either for leaves only, seeds only, or leaves plus seeds (mixed harvest). Photoperiod did not affect EYR of either breeding line for any harvest scenario tested. Averaged over both breeding lines, seed harvest gave the highest EYR at 6.7 g m-2 day-1. The highest SHI (65%) and YER (94 mg m-2 day-1 g-1) were achieved for leaf-only harvest of D-889 under an 8-h photoperiod. For leaf-only harvest of S-2246, both SHI and YER increased with increasing photoperiod, but declined for seed-only and mixed harvests. However, photoperiod had no effect on SHI or YER for D-889 for any harvest scenario. A second experiment utilized the short-day cowpea breeding line 'IT89KD-288' (D-288) and the day-neutral breeding line 'IT87D-941-1' (D-941) to compare yield parameters using photoperiod extension under differing lamp types. This experiment confirmed the photoperiod responses of D-889 and S-2246 to a mixed-harvest scenario and indicated that daylength extension with higher irradiance from high pressure sodium lamps further suppressed EYR, SHI, and YER of the short-day breeding line D-288.

  13. Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum L.): Growth Analysis.

    PubMed

    Ma, Xiaoyan; Wu, Hanwen; Jiang, Weili; Ma, Yajie; Ma, Yan

    2015-01-01

    Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m(-1) of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m(-1) of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20-0.33 weed plant m(-1) of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m(-1) of cotton row, redroot pigweed produced about 626,000 seeds m(-2). Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430-2,250 g dry weight by harvest. Redroot pigweed biomass ha(-1) tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m(-1) of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management.

  14. Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum L.): Growth Analysis

    PubMed Central

    Ma, Xiaoyan; Wu, Hanwen; Jiang, Weili; Ma, Yajie; Ma, Yan

    2015-01-01

    Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m-1 of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m-1 of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20–0.33 weed plant m-1 of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m-1 of cotton row, redroot pigweed produced about 626,000 seeds m-2. Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430–2,250 g dry weight by harvest. Redroot pigweed biomass ha-1 tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m-1 of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management. PMID:26057386

  15. Change of arginine content and some physiological traits under midseason drought in peanut genotypes with different levels of drought resistance

    USDA-ARS?s Scientific Manuscript database

    Peanut production areas frequently suffer from drought, which can cause severe yield losses, increased aflatoxin, and compositional changes in seed. Midseason drought is generally the most detrimental to seed yields and in altering seed protein composition. The purpose of this study was to investi...

  16. Screening soybean germplasm and commerical varieties for resistance to Phomopsis seed decay: results from 2012 trials

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) causes poor seed quality and suppresses yield in most soybean production areas of the United States. In 2009, PSD caused a yield loss of over 12 million bushels in 16 southern states. The disease is primarily caused by Phomopsis longicolla along with other Phomopsi...

  17. Reaction of maturity group IV soybean plant introductions to Phomopsis Seed Decay in Arkansas Mississippi and Missouri 2009

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) causes poor seed quality and suppresses yield in most of soybean-growing states in United States. In 2009, PSD caused over 12 million bushel yield loss in 16 southern states. The disease is primarily caused by Phomopsis longicolla along with other Phomopsis and Dia...

  18. Identification of soybean accessions with resistance to Phomopsis seed decay: joint effort from USDA and university scientists

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) is primarily caused by Phomopsis longicolla along with other Phomopsis and Diaporthe spp. This disease causes poor seed quality and suppresses yield in most soybean-growing states in the United States. In 2009, PSD caused yield loss of over 12 million bushels in 16...

  19. Evaluation of exotically-derived soybean breeding lines for seed yield, germination, damage, and composition under dryland production in the midsouthern USA

    USDA-ARS?s Scientific Manuscript database

    Although the Early Soybean Production System (ESPS) in the Midsouthern USA increased seed yield under irrigated and non-irrigated conditions, heat stress and drought still lead to poor seed quality in heat sensitive soybean cultivars. Our goal was to identify breeding lines that possess high germin...

  20. Effect of weed management and seed rate on crop growth under direct dry seeded rice systems in Bangladesh.

    PubMed

    Ahmed, Sharif; Salim, Muhammad; Chauhan, Bhagirath S

    2014-01-01

    Weeds are a major constraint to the success of dry-seeded rice (DSR). The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet) seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free) and rice seeding rate (20, 40, 60, 80, and 100 kg ha(-1)) on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha(-1) in the 2012 and 2013 seasons, respectively) were obtained at the seeding rate of 40 kg ha(-1) and thereafter, yield decreased slightly beyond 40 kg seed ha(-1). Under partially-weedy conditions, yield increased by 30 to 33% (2.0-2.2 and 2.9-3.2 t ha(-1) in the 2012 and 2013 seasons, respectively) with increase in seeding rate from 20 to 100 kg ha(-1). In the partially-weedy plots, weed biomass decreased by 41-60% and 54-56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha(-1). Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition.

  1. Copper oxide nanoparticles and bulk copper oxide, combined with indole-3-acetic acid, alter aluminum, boron, and iron in Pisum sativum seeds.

    PubMed

    Ochoa, Loren; Zuverza-Mena, Nubia; Medina-Velo, Illya A; Flores-Margez, Juan Pedro; Peralta-Videa, José R; Gardea-Torresdey, Jorge L

    2018-09-01

    The interaction of CuO nanoparticles (nCuO), a potential nanopesticide, with the growth hormone indole-3-acetic acid (IAA) is not well understood. This study aimed to evaluate the nutritional components in seeds of green pea (Pisum sativum) cultivated in soil amended with nCuO at 50 or 100mgkg -1 , with/without IAA at 10 or 100μM. Similar treatments including bulk CuO (bCuO) and CuCl 2 were set as controls. Bulk CuO at 50mgkg -1 reduced seed yield (52%), compared with control. Bulk CuO at 50mgkg -1 and nCuO at 100mgkg -1 , plus IAA at 100μM, increased iron in seeds (41 and 42%, respectively), while nCuO at 50mgkg -1 , plus IAA at 100μM reduced boron (80%, respect to control and 63%, respect to IAA at 100μM). IAA, at 10μM increased seed protein (33%), compared with control (p≤0.05). At both concentrations IAA increased sugar in seeds (20%). Overall, nCuO, plus IAA at 10μM, does not affect the production or nutritional quality of green pea seeds. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies

    PubMed Central

    Koester, Robert P.; Skoneczka, Jeffrey A.; Cary, Troy R.; Diers, Brian W.; Ainsworth, Elizabeth A.

    2014-01-01

    Soybean (Glycine max Merr.) is the world’s most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha–1 year–1, and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. PMID:24790116

  3. Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells.

    PubMed

    Wilson, Hannah K; Canfield, Scott G; Hjortness, Michael K; Palecek, Sean P; Shusta, Eric V

    2015-05-21

    Brain microvascular-like endothelial cells (BMECs) derived from human pluripotent stem cells (hPSCs) have significant promise as tools for drug screening and studying the structure and function of the BBB in health and disease. The density of hPSCs is a key factor in regulating cell fate and yield during differentiation. Prior reports of hPSC differentiation to BMECs have seeded hPSCs in aggregates, leading to non-uniform cell densities that may result in differentiation heterogeneity. Here we report a singularized-cell seeding approach compatible with hPSC-derived BMEC differentiation protocols and evaluate the effects of initial hPSC seeding density on the subsequent differentiation, yield, and blood-brain barrier (BBB) phenotype. A range of densities of hPSCs was seeded and differentiated, with the resultant endothelial cell yield quantified via VE-cadherin flow cytometry. Barrier phenotype of purified hPSC-derived BMECs was measured via transendothelial electrical resistance (TEER), and purification protocols were subsequently optimized to maximize TEER. Expression of characteristic vascular markers, tight junction proteins, and transporters was confirmed by immunocytochemistry and quantified by flow cytometry. P-glycoprotein and MRP-family transporter activity was assessed by intracellular accumulation assay. The initial hPSC seeding density of approximately 30,000 cells/cm(2) served to maximize the yield of VE-cadherin+ BMECs per input hPSC. BMECs displayed the highest TEER (>2,000 Ω × cm(2)) within this same range of initial seeding densities, although optimization of the BMEC purification method could minimize the seeding density dependence for some lines. Localization and expression levels of tight junction proteins as well as efflux transporter activity were largely independent of hPSC seeding density. Finally, the utility of the singularized-cell seeding approach was demonstrated by scaling the differentiation and purification process down from 6-well to 96-well culture without impacting BBB phenotype. Given the yield and barrier dependence on initial seeding density, the singularized-cell seeding approach reported here should enhance the reproducibility and scalability of hPSC-derived BBB models, particularly for the application to new pluripotent stem cell lines.

  4. Guidelines for Estimating Cone and Seed Yields of Southern Pines

    Treesearch

    James P. Barnett

    1999-01-01

    Our ability to predict cone and seed yields of southern pines (Pinus spp.) prior to collection is important when scheduling and allocating resources. Many managers have enough historical data to predict their orchards' yield; but such data are generally unavailable for some species and for collections outside of orchards. Guidelines are...

  5. Effectiveness of a spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157:H7 on contaminated broccoli and radish seeds.

    PubMed

    Landry, Kyle S; Micheli, Sean; McClements, David Julian; McLandsborough, Lynne

    2015-10-01

    The incidence of foodborne illness associated with the consumption of fresh produce has continued to increase over the past decade. Sprouts, such as mung bean, alfalfa, radish, and broccoli, are minimally processed and have been sources for foodborne illness. Currently, a 20,000 ppm calcium hypochlorite soak is recommended for the treatment of sprouting seeds. In this study, the efficacy of an antimicrobial carvacrol nanoemulsion was tested against Salmonella enterica subspecies enterica serovar Enteritidis (ATCC BAA-1045) or EGFP expressing Escherichia coli O157:H7 (ATCC 42895) contaminated sprouting seeds. Antimicrobial treatments were performed by soaking inoculated seeds in nanoemulsions (4000 or 8000 ppm) for 30 or 60 min. Following treatment, surviving cells were determined by performing plate counts and/or Most Probable Number (MPN) enumeration. Treated seeds were sprouted and tested for the presence of pathogens. Treatment successfully inactivated low levels (2 and 3 log CFU/g) of S. Enteritidis and E. coli on radish seeds when soaked for 60 min at concentrations ≥4000 (0.4%) ppm carvacrol. This treatment method was not affective on contaminated broccoli seeds. Total sprout yield was not influenced by any treatments. These results show that carvacrol nanoemulsions may be an alternative treatment method for contaminated radish seeds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Source of the PB1 Gene in Influenza Vaccine Reassortants Selectively Alters the Hemagglutinin Content of the Resulting Seed Virus

    PubMed Central

    Cobbin, Joanna C. A.; Verity, Erin E.; Gilbertson, Brad P.; Rockman, Steven P.

    2013-01-01

    The yields of egg-grown influenza vaccines are maximized by the production of a seed strain using a reassortment of the seasonal influenza virus isolate with a highly egg-adapted strain. The seed virus is selected based on high yields of viral hemagglutinin (HA) and expression of the surface antigens from the seasonal isolate. The remaining proteins are usually derived from the high-growth parent. However, a retrospective analysis of vaccine seeds revealed that the seasonal PB1 gene was selected in more than 50% of reassortment events. Using the model seasonal H3N2 virus A/Udorn/307/72 (Udorn) virus and the high-growth A/Puerto Rico/8/34 (PR8) virus, we assessed the influence of the source of the PB1 gene on virus growth and vaccine yield. Classical reassortment of these two strains led to the selection of viruses that predominantly had the Udorn PB1 gene. The presence of Udorn PB1 in the seed virus, however, did not result in higher yields of virus or HA compared to the yields in the corresponding seed virus with PR8 PB1. The 8-fold-fewer virions produced with the seed virus containing the Udorn PB1 were somewhat compensated for by a 4-fold increase in HA per virion. A higher HA/nucleoprotein (NP) ratio was found in past vaccine preparations when the seasonal PB1 was present, also indicative of a higher HA density in these vaccine viruses. As the HA viral RNA (vRNA) and mRNA levels in infected cells were similar, we propose that PB1 selectively alters the translation of viral mRNA. This study helps to explain the variability of vaccine seeds with respect to HA yield. PMID:23468502

  7. Engineering Camelina sativa (L.) Crantz for enhanced oil and seed yields by combining diacylglycerol acyltransferase1 and glycerol-3-phosphate dehydrogenase expression.

    PubMed

    Chhikara, Sudesh; Abdullah, Hesham M; Akbari, Parisa; Schnell, Danny; Dhankher, Om Parkash

    2018-05-01

    Plant seed oil-based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum-derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co-expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol-3-phosphate dehydrogenase (GPD1) genes under the control of seed-specific promoters. Plants co-expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild-type plants. Further, DGAT1- and GDP1-co-expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild-type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1- and GPD1-co-expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Quality of Lupinus albus L. (white lupin) seed: extent of genotypic and environmental effects.

    PubMed

    Annicchiarico, Paolo; Manunza, Patrizia; Arnoldi, Anna; Boschin, Giovanna

    2014-07-16

    White lupin seed can be used for traditional and functional foods or as animal feed. This study aimed to support lupin breeders and production stakeholders by assessing the extent of genotypic, environmental, and genotype × environment (GE) interaction effects on seed contents of oil, tocopherols (TOC), and quinolizidine alkaloids (QA), grain yield, and seed weight of eight elite genotypes grown in two climatically contrasting Italian locations for two cropping years. On average, plants in the subcontinental climate site exhibited higher grain yield and seed size, about 8% lower oil content, and almost 85% higher QA content than those in the Mediterranean climate site. The range of genotype means was 2.97-5.14 t/ha for yield, 92-110 mg/g for oil, and 0.121-0.133 mg/g for TOC. TOC amount was largely unpredictable and featured large GE interactions that hinder its genetic improvement. Oil and alkaloid contents and seed size are more predictable and offer potential for selection.

  9. Effect of Weed Management and Seed Rate on Crop Growth under Direct Dry Seeded Rice Systems in Bangladesh

    PubMed Central

    Ahmed, Sharif; Salim, Muhammad; Chauhan, Bhagirath S.

    2014-01-01

    Weeds are a major constraint to the success of dry-seeded rice (DSR). The main means of managing these in a DSR system is through chemical weed control using herbicides. However, the use of herbicides alone may not be sustainable in the long term. Approaches that aim for high crop competitiveness therefore need to be exploited. One such approach is the use of high rice seeding rates. Experiments were conducted in the aman (wet) seasons of 2012 and 2013 in Bangladesh to evaluate the effect of weed infestation level (partially-weedy and weed-free) and rice seeding rate (20, 40, 60, 80, and 100 kg ha−1) on weed and crop growth in DSR. Under weed-free conditions, higher crop yields (5.1 and 5.2 t ha−1 in the 2012 and 2013 seasons, respectively) were obtained at the seeding rate of 40 kg ha−1 and thereafter, yield decreased slightly beyond 40 kg seed ha−1. Under partially-weedy conditions, yield increased by 30 to 33% (2.0–2.2 and 2.9–3.2 t ha−1 in the 2012 and 2013 seasons, respectively) with increase in seeding rate from 20 to 100 kg ha−1. In the partially-weedy plots, weed biomass decreased by 41–60% and 54–56% at 35 days after sowing and at crop anthesis, respectively, when seeding rate increased from 20 to 100 kg ha−1. Results from our study suggest that increasing seeding rates in DSR can suppress weed growth and reduce grain yield losses from weed competition. PMID:25000520

  10. Impact of Water Management on Efficacy of Insecticide Seed Treatments Against Rice Water Weevil (Coleoptera: Curculionidae) in Mississippi Rice

    PubMed Central

    Adams, A.; Gore, J.; Musser, F.; Cook, D.; Catchot, A.; Walker, T.; Awuni, G. A.

    2015-01-01

    Two experiments were conducted at the Delta Research and Extension Center in Stoneville, MS, during 2011 and 2012 to determine the impact of water management practices on the efficacy of insecticidal seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel. Larval densities and yield were compared for plots treated with labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin and an untreated control. In the first experiment, plots were subjected to flood initiated at 6 and 8 wk after planting. Seed treatments significantly reduced larval densities with the 8-wk flood timing, but not the 6-wk flood timing. Overall, the treated plots yielded higher than the control plots. In the second experiment, the impact of multiple flushes on the efficacy of insecticidal seed treatments was evaluated. Plots were subjected to zero, one, or two flushes with water. All seed treatments reduced larval densities compared with the untreated control. Significantly fewer larvae were observed in plots that received one or two flushes compared with plots that did not receive a flush. All seed treatments resulted in higher yields compared to the untreated control in the zero and one flush treatments. When two flushes were applied, yield from the thiamethoxam and clothianidin treated plots was not significantly different from those of the control plots, while the chlorantraniliprole treated plots yielded significantly higher than the control. These data suggest that time from planting to flood did not impact the efficacy of seed treatments, but multiple flushes reduced the efficacy of thiamethoxam and clothianidin. PMID:26470232

  11. Preliminary Studies of the Performance of Quinoa (Chenopodium quinoa Willd.) Genotypes under Irrigated and Rainfed Conditions of Central Malawi.

    PubMed

    Maliro, Moses F A; Guwela, Veronica F; Nyaika, Jacinta; Murphy, Kevin M

    2017-01-01

    The goal of sustainable intensification of agriculture in Malawi has led to the evaluation of innovative, regionally novel or under-utilized crop species. Quinoa ( Chenopodium quinoa Willd.) has the potential to provide a drought tolerant, nutritious alternative to maize. We evaluated 11 diverse varieties of quinoa for their yield and agronomic performance at two locations, Bunda and Bembeke, in Malawi. The varieties originated from Ecuador, Chile and Bolivia in South America; the United States and Canada in North America; and, Denmark in Europe, and were chosen based on their variation in morphological and agronomic traits, and their potential for adaptation to the climate of Malawi. Plant height, panicle length, days to maturity, harvest index, and seed yield were recorded for each variety under irrigation at Bunda and Bembeke, and under rainfed conditions at Bunda. Plant height was significantly influenced by both genotype and environment. There were also significant differences between the two locations for panicle length whereas genotype and genotype × environment (G × E) interaction were not significantly different. Differences were found for genotype and G × E interaction for harvest index. Notably, differences for genotype, environment and G × E were found for grain yield. Seed yield was higher at Bunda (237-3019 kg/ha) than Bembeke (62-692 kg/ha) under irrigated conditions. The highest yielding genotype at Bunda was Titicaca (3019 kg/ha) whereas Multi-Hued was the highest (692 kg/ha) at Bembeke. Strong positive correlations between seed yield and (1) plant height ( r = 0.74), (2) days to maturity ( r = 0.76), and (3) biomass ( r = 0.87) were found under irrigated conditions. The rainfed evaluations at Bunda revealed significant differences in seed yield, plant biomass, and seed size among the genotypes. The highest yielding genotype was Black Seeded (2050 kg/ha) followed by Multi-Hued (1603 kg/ha) and Bio-Bio (1446 kg/ha). Ecuadorian (257 kg/ha) was the lowest yielding genotype. In general the seed yields of the genotypes were lower under rainfed conditions than under irrigated conditions at Bunda. The results also highlight the need to continue evaluating a diverse number of cultivars to select for genotypes adapted to specific agro-ecological areas and across seasons in Malawi.

  12. Preliminary Studies of the Performance of Quinoa (Chenopodium quinoa Willd.) Genotypes under Irrigated and Rainfed Conditions of Central Malawi

    PubMed Central

    Maliro, Moses F. A.; Guwela, Veronica F.; Nyaika, Jacinta; Murphy, Kevin M.

    2017-01-01

    The goal of sustainable intensification of agriculture in Malawi has led to the evaluation of innovative, regionally novel or under-utilized crop species. Quinoa (Chenopodium quinoa Willd.) has the potential to provide a drought tolerant, nutritious alternative to maize. We evaluated 11 diverse varieties of quinoa for their yield and agronomic performance at two locations, Bunda and Bembeke, in Malawi. The varieties originated from Ecuador, Chile and Bolivia in South America; the United States and Canada in North America; and, Denmark in Europe, and were chosen based on their variation in morphological and agronomic traits, and their potential for adaptation to the climate of Malawi. Plant height, panicle length, days to maturity, harvest index, and seed yield were recorded for each variety under irrigation at Bunda and Bembeke, and under rainfed conditions at Bunda. Plant height was significantly influenced by both genotype and environment. There were also significant differences between the two locations for panicle length whereas genotype and genotype × environment (G × E) interaction were not significantly different. Differences were found for genotype and G × E interaction for harvest index. Notably, differences for genotype, environment and G × E were found for grain yield. Seed yield was higher at Bunda (237–3019 kg/ha) than Bembeke (62–692 kg/ha) under irrigated conditions. The highest yielding genotype at Bunda was Titicaca (3019 kg/ha) whereas Multi-Hued was the highest (692 kg/ha) at Bembeke. Strong positive correlations between seed yield and (1) plant height (r = 0.74), (2) days to maturity (r = 0.76), and (3) biomass (r = 0.87) were found under irrigated conditions. The rainfed evaluations at Bunda revealed significant differences in seed yield, plant biomass, and seed size among the genotypes. The highest yielding genotype was Black Seeded (2050 kg/ha) followed by Multi-Hued (1603 kg/ha) and Bio-Bio (1446 kg/ha). Ecuadorian (257 kg/ha) was the lowest yielding genotype. In general the seed yields of the genotypes were lower under rainfed conditions than under irrigated conditions at Bunda. The results also highlight the need to continue evaluating a diverse number of cultivars to select for genotypes adapted to specific agro-ecological areas and across seasons in Malawi. PMID:28289421

  13. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies.

    PubMed

    Koester, Robert P; Skoneczka, Jeffrey A; Cary, Troy R; Diers, Brian W; Ainsworth, Elizabeth A

    2014-07-01

    Soybean (Glycine max Merr.) is the world's most widely grown leguminous crop and an important source of protein and oil for food and feed. Soybean yields have increased substantially throughout the past century, with yield gains widely attributed to genetic advances and improved cultivars as well as advances in farming technology and practice. Yet, the physiological mechanisms underlying the historical improvements in soybean yield have not been studied rigorously. In this 2-year experiment, 24 soybean cultivars released between 1923 and 2007 were grown in field trials. Physiological improvements in the efficiencies by which soybean canopies intercepted light (εi), converted light energy into biomass (εc), and partitioned biomass into seed (εp) were examined. Seed yield increased by 26.5kg ha(-1) year(-1), and the increase in seed yield was driven by improvements in all three efficiencies. Although the time to canopy closure did not change in historical soybean cultivars, extended growing seasons and decreased lodging in more modern lines drove improvements in εi. Greater biomass production per unit of absorbed light resulted in improvements in εc. Over 84 years of breeding, soybean seed biomass increased at a rate greater than total aboveground biomass, resulting in an increase in εp. A better understanding of the physiological basis for yield gains will help to identify targets for soybean improvement in the future. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.).

    PubMed

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  15. Validation of mega-environment universal and specific QTL associated with seed yield and agronomic traits in soybeans.

    PubMed

    Palomeque, Laura; Liu, Li-Jun; Li, Wenbin; Hedges, Bradley R; Cober, Elroy R; Smid, Mathew P; Lukens, Lewis; Rajcan, Istvan

    2010-03-01

    The value of quantitative trait loci (QTL) is dependent on the strength of association with the traits of interest, allelic diversity at the QTL and the effect of the genetic background on the expression of the QTL. A number of recent studies have identified QTL associated with traits of interest that appear to be independent of the environment but dependent on the genetic background in which they are found. Therefore, the objective of this study was to validate universal and/or mega-environment-specific seed yield QTL that have been previously reported in an independent recombinant inbred line (RIL) population derived from the cross between an elite Chinese and Canadian parent. The population was evaluated at two field environments in China and in five environments in Canada in 2005 and 2006. Of the seven markers linked to seed yield QTL reported by our group in a previous study, four were polymorphic between the two parents. No association between seed yield and QTL was observed. The result could imply that seed yield QTL were either not stable in this particular genetic background or harboured different alleles than the ones in the original mapping population. QTL(U) Satt162 was associated with several agronomic traits of which lodging was validated. Both the non-adapted and adapted parent contributed favourable alleles to the progeny. Therefore, plant introductions have been validated as a source of favourable alleles that could increase the genetic variability of the soybean germplasm pool and lead to further improvements in seed yield and other agronomic traits.

  16. Use of remote sensing, geographic information systems, and spatial statistics to assess spatio-temporal population dynamics of Heterodera glycines and soybean yield quantity and quality

    NASA Astrophysics Data System (ADS)

    Moreira, Antonio Jose De Araujo

    Soybean, Glycine max (L.) Merr., is an important source of oil and protein worldwide, and soybean cyst nematode (SCN), Heterodera glycines, is among the most important yield-limiting factors in soybean production worldwide. Early detection of SCN is difficult because soybean plants infected by SCN often do not exhibit visible symptoms. It was hypothesized, however, that reflectance data obtained by remote sensing from soybean canopies may be used to detect plant stress caused by SCN infection. Moreover, reflectance measurements may be related to soybean growth and yield. Two field experiments were conducted from 2000 to 2002 to study the relationships among reflectance data, quantity and quality of soybean yield, and SCN population densities. The best relationships between reflectance and the quantity of soybean grain yield occurred when reflectance data were obtained late August to early September. Similarly, reflectance was best related to seed oil and seed protein content and seed size when measured during late August/early September. Grain quality-reflectance relationships varied spatially and temporally. Reflectance measured early or late in the season had the best relationships with SCN population densities measured at planting. Soil properties likely affected reflectance measurements obtained at the beginning of the season and somehow may have been related to SCN population densities at planting. Reflectance data obtained at the end of the growing season likely was affected by early senescence of SCN-infected soybeans. Spatio-temporal aspects of SCN population densities in both experiments were assessed using spatial statistics and regression analyses. In the 2000 and 2001 growing seasons, spring-to-fall changes in SCN population densities were best related to SCN population densities at planting for both experiments. However, within-season changes in SCN population densities were best related to SCN population densities at harvest for both experiments in 2002. Variograms were fitted to the data to describe the spatial characteristics of SCN population densities in both fields at planting and at harvest from 2000 to 2003 and these parameters varied within seasons and during overwinter periods in both experiments. Distinct relationships between temporal and spatial changes in SCN population densities were not detected.

  17. Onion Hybrid Seed Production: Relation with Nectar Composition and Flower Traits.

    PubMed

    Soto, Veronica C; Caselles, Cristian A; Silva, Maria F; Galmarini, Claudio R

    2018-05-28

    Onion (Allium cepa L.) is one of the main vegetable crops. Pollinators are required for onion seed production, being honeybees the most used. Around the world, two types of onion varieties are grown: open pollinated (OP) and hybrids. Hybrids offer numerous advantages to growers, but usually have lower seed yields than OP cultivars, which in many cases compromise the success of new hybrids. As pollination is critical for seed set, understanding the role of floral rewards and attractants to pollinator species is the key to improve crop seed yield. In this study, the correlation of nectar-analyzed compounds, floral traits, and seed yield under open field conditions in two experimental sites was determined. Nectar composition was described through the analysis of sugars, phenol, and alkaloid compounds. Length and width of the style and tepals of the flowers were measured to describe floral traits. Floral and nectar traits showed differences among the studied lines. For nectar traits, we found a significant influence of the environment where plants were cultivated. Nonetheless, flower traits were not influenced by the experimental sites. The OP and the male-sterile lines (MSLs) showed differences in nectar chemical composition and floral traits. In addition, there were differences between and within MSLs, some of which were correlated with seed yield, bringing the opportunity to select the most productive MSL, using simple determinations of morphological characters like the length of the style or tepals size.

  18. Impact of Lygus spp. (Hemiptera: Miridae) on damage, yield and quality of lesquerella (Physaria fendleri), a potential new oil-seed crop.

    PubMed

    Naranjo, Steven E; Ellsworth, Peter C; Dierig, David A

    2011-10-01

    Lesquerella, Physaria fendleri (A. Gray) S. Watson, is a mustard native to the western United States and is currently being developed as a commercial source of valuable hydroxy fatty acids that can be used in a number of industrial applications, including biolubricants, biofuel additives, motor oils, resins, waxes, nylons, plastics, corrosion inhibitors, cosmetics, and coatings. The plant is cultivated as a winter-spring annual and in the desert southwest it harbors large populations of arthropods, several of which could be significant pests once production expands. Lygus spp. (Hemiptera: Miridae) are common in lesquerella and are known pests of a number of agronomic and horticultural crops where they feed primarily on reproductive tissues. A 4-yr replicated plot study was undertaken to evaluate the probable impact of Lygus spp. on production of this potential new crop. Plant damage and subsequent seed yield and quality were examined relative to variable and representative densities of Lygus spp. (0.3-4.9 insects per sweep net) resulting from variable frequency and timing of insecticide applications. Increasing damage to various fruiting structures (flowers [0.9-13.9%], buds [1.2-7.1%], and seed pods [19.4-42.5%]) was significantly associated with increasing pest abundance, particularly the abundance of nymphs, in all years. This damage, however, did not consistently translate into reductions in seed yield (481-1,336 kg/ha), individual seed weight (0.5-0.7 g per 1,000 seed), or seed oil content (21.8-30.4%), and pest abundance generally explained relatively little of the variation in crop yield and quality. Negative effects on yield were not sensitive to the timing of pest damage (early versus late season) but were more pronounced during years when potential yields were lower due to weed competition and other agronomic factors. Results suggest that if the crop is established and managed in a more optimal fashion, Lygus spp. may not significantly limit yield. Nonetheless, additional work will be needed once more uniform cultivars become available and yield effects can be more precisely measured. Densities of Lygus spp. in unsprayed lesquerella are on par with those in other known agroecosystem level sources of this pest (e.g., forage and seed alfalfa, Medicago sativa L.). Thus, lesquerella production may introduce new challenges to pest management in crops such as cotton.

  19. Blackleg (Leptosphaeria maculans) Severity and Yield Loss in Canola in Alberta, Canada

    PubMed Central

    Hwang, Sheau-Fang; Strelkov, Stephen E.; Peng, Gary; Ahmed, Hafiz; Zhou, Qixing; Turnbull, George

    2016-01-01

    Blackleg, caused by Leptosphaeria maculans, is an important disease of oilseed rape (Brassica napus L.) in Canada and throughout the world. Severe epidemics of blackleg can result in significant yield losses. Understanding disease-yield relationships is a prerequisite for measuring the agronomic efficacy and economic benefits of control methods. Field experiments were conducted in 2013, 2014, and 2015 to determine the relationship between blackleg disease severity and yield in a susceptible cultivar and in moderately resistant to resistant canola hybrids. Disease severity was lower, and seed yield was 120%–128% greater, in the moderately resistant to resistant hybrids compared with the susceptible cultivar. Regression analysis showed that pod number and seed yield declined linearly as blackleg severity increased. Seed yield per plant decreased by 1.8 g for each unit increase in disease severity, corresponding to a decline in yield of 17.2% for each unit increase in disease severity. Pyraclostrobin fungicide reduced disease severity in all site-years and increased yield. These results show that the reduction of blackleg in canola crops substantially improves yields. PMID:27447676

  20. Influence of metal-mediated aerosol-phase oxidation on secondary organic aerosol formation from the ozonolysis and OH-oxidation of α-pinene

    PubMed Central

    Chu, Biwu; Liggio, John; Liu, Yongchun; He, Hong; Takekawa, Hideto; Li, Shao-Meng; Hao, Jiming

    2017-01-01

    The organic component is the most abundant fraction of atmospheric submicron particles, while the formation mechanisms of secondary organic aerosol (SOA) are not fully understood. The effects of sulfate seed aerosols on SOA formation were investigated with a series of experiments carried out using a 9 m3 smog chamber. The presence of FeSO4 or Fe2(SO4)3 seed aerosols decreased SOA yields and increased oxidation levels in both ozonolysis and OH-oxidation of α-pinene compared to that in the presence of ZnSO4 or (NH4)2SO4. These findings were explained by metal-mediated aerosol-phase oxidation of organics: reactive radicals were generated on FeSO4 or Fe2(SO4)3 seed aerosols and reacted further with the organic mass. This effect would help to explain the high O/C ratios of organics in ambient particles that thus far cannot be reproduced in laboratory and model studies. In addition, the gap in the SOA yields between experiments with different seed aerosols was more significant in OH-oxidation experiments compared to ozonolysis experiments, while the gap in estimated O/C ratios was less obvious. This may have resulted from the different chemical compositions and oxidation levels of the SOA generated in the two systems, which affect the branching ratio of functionalization and fragmentation during aerosol oxidation. PMID:28059151

  1. Influence of metal-mediated aerosol-phase oxidation on secondary organic aerosol formation from the ozonolysis and OH-oxidation of α-pinene.

    PubMed

    Chu, Biwu; Liggio, John; Liu, Yongchun; He, Hong; Takekawa, Hideto; Li, Shao-Meng; Hao, Jiming

    2017-01-06

    The organic component is the most abundant fraction of atmospheric submicron particles, while the formation mechanisms of secondary organic aerosol (SOA) are not fully understood. The effects of sulfate seed aerosols on SOA formation were investigated with a series of experiments carried out using a 9 m 3 smog chamber. The presence of FeSO 4 or Fe 2 (SO 4 ) 3 seed aerosols decreased SOA yields and increased oxidation levels in both ozonolysis and OH-oxidation of α-pinene compared to that in the presence of ZnSO 4 or (NH 4 ) 2 SO 4 . These findings were explained by metal-mediated aerosol-phase oxidation of organics: reactive radicals were generated on FeSO 4 or Fe 2 (SO 4 ) 3 seed aerosols and reacted further with the organic mass. This effect would help to explain the high O/C ratios of organics in ambient particles that thus far cannot be reproduced in laboratory and model studies. In addition, the gap in the SOA yields between experiments with different seed aerosols was more significant in OH-oxidation experiments compared to ozonolysis experiments, while the gap in estimated O/C ratios was less obvious. This may have resulted from the different chemical compositions and oxidation levels of the SOA generated in the two systems, which affect the branching ratio of functionalization and fragmentation during aerosol oxidation.

  2. Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species.

    PubMed

    Ozga, Jocelyn A; Kaur, Harleen; Savada, Raghavendra P; Reinecke, Dennis M

    2017-04-01

    Legume crops are grown throughout the world and provide an excellent food source of digestible protein and starch, as well as dietary fibre, vitamins, minerals, and flavonoids. Fruit and seeds from legumes are also an important source of vegetables for a well-balanced diet. A trend in elevated temperature as a result of climate change increases the risk of a heat stress-induced reduction in legume crop yield. High temperatures during the crop reproductive development phase are particularly detrimental to fruit/seed production because the growth and development of the reproductive tissues are sensitive to small changes in temperature. Hormones are signalling molecules that play important roles in a plant's ability to integrate different environmental inputs and modify their developmental processes to optimize growth, survival, and reproduction. This review focuses on the hormonal regulation of reproductive development and heat stress-induced alteration of this regulation during (i) pollination, (ii) early fruit set, and (iii) seed development that affects fruit/seed yield in legume and other model crops. Further understanding of hormone-regulated reproductive growth under non-stress and heat-stress conditions can aid in trait selection and the development of gene modification strategies and cultural practices to improve heat tolerance in legume crops contributing to improved food security. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Recent Genetic Gains in Nitrogen Use Efficiency in Oilseed Rape

    PubMed Central

    Stahl, Andreas; Pfeifer, Mara; Frisch, Matthias; Wittkop, Benjamin; Snowdon, Rod J.

    2017-01-01

    Nitrogen is essential for plant growth, and N fertilization allows farmers to obtain high yields and produce sufficient agricultural commodities. On the other hand, nitrogen losses potentially cause adverse effects to ecosystems and to human health. Increasing nitrogen use efficiency (NUE) is vital to solve the conflict between productivity, to secure the demand of a growing world population, and the protection of the environment. To ensure this, genetic improvement is considered to be a paramount aspect toward ecofriendly crop production. Winter oilseed rape (Brassica napus L.) is the second most important oilseed crop in the world and is cultivated in many regions across the temperate zones. To our knowledge, this study reports the most comprehensive field-based data generated to date for an empirical evaluation of genetic improvement in winter oilseed rape varieties under two divergent nitrogen fertilization levels (NFLs). A collection of 30 elite varieties registered between 1989 and 2014, including hybrids and open pollinated varieties, was tested in a 2-year experiment in 10 environments across Germany for changes in seed yield and seed quality traits. Furthermore, NUE was calculated. We observed a highly significant genetics-driven increase in seed yield per-se and, thus, increased NUE at both NFLs. On average, seed yield from modern open-pollinated varieties and modern hybrids was higher than from old open-pollinated varieties and old hybrids. The annual yield progress across all tested varieties was ~35 kg ha−1 year−1 at low nitrogen and 45 kg ha−1 year−1 under high nitrogen fertilization. Furthermore, in modern varieties an increased oil concentration and decreased protein concentration was observed. Despite, the significant effects of nitrogen fertilization, a surprisingly low average seed yield gap of 180 kg N ha−1 was noted between high and low nitrogen fertilization. Due to contrary effects of N fertilization on seed yield per-se and seed oil concentration an oil yield of 2.04 t ha−1 was measured at both N levels. Collectively, the data reveal that genetic improvement through modern breeding techniques in conjunction with reduced N fertilizer inputs has a tremendous potential to increase NUE of oilseed rape. PMID:28638399

  4. Effects of sulfur, zinc, iron, copper, manganese, and boron applications on sunflower yield and plant nutrient concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilton, B.R.; Zubriski, J.C.

    1985-01-01

    Sulfur, zinc, iron, copper, manganese, and boron application did not affect the seed yield or oil percentage of sunflower (Helianthus annuus L.) on both dryland and irrigated soils in North Dakota in 1981. Field averages indicated significant Zn, Mn, and B uptake by sunflower at the 12-leaf stage as a result of fertilization with these elements. Increased Zn uptake was also observed in the uppermost mature leaf at anthesis from zinc fertilization. Although sunflower yield from boron fertilization was not significantly different from the check, a trend was observed in which boron fertilization seemed to decrease sunflower yield. Sunflower yieldsmore » from the boron treatment were the lowest out of seven treatments in three out of four fields. Also, sunflower yield from the boron treatment was significantly lower than both iron and sulfur treatments when all fields were combined.« less

  5. Image-Based Rapid Phenotyping Method of Chickpeas Seed Size Characterization

    USDA-ARS?s Scientific Manuscript database

    The value of a chickpea crop is influenced by both total seed yield and also by the size of the harvested seed. Larger seeds are used for canning, salads, and fresh markets and have a higher value than smaller seeds, which are typically processed into hummus. The standard method for determining seed...

  6. Preparation and mechanism analysis of an environment-friendly maize seed coating agent.

    PubMed

    Zeng, Defang; Fan, Zhao; Tian, Xu; Wang, Wenjin; Zhou, Mingchun; Li, Haochuan

    2018-06-01

    Traditional seed coating agents often contain toxic ingredients, which contaminate the environment and threaten human health. This paper expounds a method of preparing a novel environment-friendly seed coating agent for maize and researches its mechanism of action. The natural polysaccharide polymer, which is the main active ingredient of this environment-friendly seed coating agent, has the characteristics of innocuity and harmlessness, and it can replace the toxic ingredients used in traditional seed coating agents. This environment-friendly seed coating agent for maize was mainly made up of the natural polysaccharide polymer and other additives. The field trials results showed that the control efficacy of Helminthosporium maydis came to 93.72%, the anti-feeding rate of cutworms came to 81.29%, and the maize yield was increased by 17.75%. Besides, the LD 50 value (half the lethal dose in rats) of this seed coating agent was 10 times higher than that of the traditional seed coating agents. This seed coating agent could improve the activity of plant protective enzymes (peroxidase, catalase and superoxidase dismutase) and increase the chlorophyll content. This seed coating agent has four characteristics of disease prevention, desinsectization, increasing yield and safety. Results of mechanism analyses showed that this seed coating agent could enhance disease control effectiveness by improving plant protective enzymes activity and increase maize yield by improving chlorophyll content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Seed Nutrition and Quality, Seed Coat Boron and Lignin Are Influenced by Delayed Harvest in Exotically-Derived Soybean Breeding Lines under High Heat.

    PubMed

    Bellaloui, Nacer; Smith, James R; Mengistu, Alemu

    2017-01-01

    The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and lignin, and inform growers of the importance of timely harvest for maintaining high seed quality.

  8. Improving Plant Nitrogen Use Efficiency through Alteration of Amino Acid Transport Processes1[OPEN

    PubMed Central

    Perchlik, Molly

    2017-01-01

    Improving the efficiency of nitrogen (N) uptake and utilization in plants could potentially increase crop yields while reducing N fertilization and, subsequently, environmental pollution. Within most plants, N is transported primarily as amino acids. In this study, pea (Pisum sativum) plants overexpressing AMINO ACID PERMEASE1 (AAP1) were used to determine if and how genetic manipulation of amino acid transport from source to sink affects plant N use efficiency. The modified plants were grown under low, moderate, or high N fertilization regimes. The results showed that, independent of the N nutrition, the engineered plants allocate more N via the vasculature to the shoot and seeds and produce more biomass and higher seed yields than wild-type plants. Dependent on the amount of N supplied, the AAP1-overexpressing plants displayed improved N uptake or utilization efficiency, or a combination of the two. They also showed significantly increased N use efficiency in N-deficient as well as in N-rich soils and, impressively, required half the amount of N to produce as many fruits and seeds as control plants. Together, these data support that engineering N allocation from source to sink presents an effective strategy to produce crop plants with improved productivity as well as N use efficiency in a range of N environments. PMID:28733388

  9. Comparison of a diurnal vs steady-state ozone exposure profile on growth and yield of oilseed rape (Brassica napus L.) in open-top chambers in the Yangtze Delta, China.

    PubMed

    Wang, Xiaoke; Zheng, Qiwei; Feng, Zhaozhong; Xie, Juqing; Feng, Zongwei; Ouyang, Zhiyun; Manning, William J

    2008-11-01

    Most available exposure-response relationships for assessing crop loss due to elevated ozone (O(3)) have been established using data from chamber and open-top chamber experiments, using a simulated constant O(3) concentration exposure (square wave), which is not consistent with the diurnal variation of O(3) concentration that occurs in nature. We investigated the response of oilseed rape (Brassica napus L.) to O(3) as affected by two exposure regimes: one with a diurnal variation (CF100D) and another with a constant concentration (CF100). Although the two exposure regimes have the same mean O(3) concentration and accumulated O(3) concentration above 40 ppb (AOT40), our results show that O(3) at CF100D reduced biomass and number of pods/plant more than O(3) at CF100. Both O(3) exposures resulted in larger seed weights/100 pods compared to CF. Numbers of seeds/100 pods were reduced by CF100, while numbers of seeds/100 pods in the CF100D chambers were comparable to those in CF. Our results suggest that chamber experiments that use a constant O(3) exposure may underestimate O(3) effects on biomass and yields.

  10. The effect of nano-silica fertilizer concentration and rice hull ash doses on soybean (Glycine max (L.) Merrill) growth and yield

    NASA Astrophysics Data System (ADS)

    Suciaty, T.; Purnomo, D.; Sakya, A. T.; Supriyadi

    2018-03-01

    Agriculture is facing a number of challenges included limited water supply, low nutrient use efficiency, etc affected by climate change. Nano-silica is a product of nanotechnology, the frontier technologies to enhance crop productivity under climate change threats. The purpose of the research was to investigate the effects of nano silica concentration and rice hull ash on growth and yield of soybean. The experiment was conducted at Gagasari village, Cirebon, West Java from March until June 2017. The treatments were arranged by using factorial completely randomized block design with two factors. The first factor was a concentration of nano silica fertilizer consisted of four levels i.e., 0, 1.75, 2.5, and 3.75 ml.l‑1. The second factor was doses of rice hull ash consisted of four levels i.e., 0, 1, 2, and 3 ton.ha‑1. Each treatment combinations was repeated three times. The result showed that concentration of nano silica individually affected the number of leaves and number of branches, NAR and RGR, productive branches at 21, 30-45, and 35 daps, respectively. It also affected the seed dry weight plant‑1 and plot‑1. Meanwhile, doses of rice hull ash affected LAI, NAR, and RGR, 15-30, and 30-45 dap, respectively. Dry seed weight plot‑1 was also affected by doses of rice hull ash. There was an interaction effect between nano-silica concentration and doses of rice hull ash on number pods.plant‑1. Combinations of 2.5 ml.l‑1 nano-silica and 3 ton.ha‑1 of rice hull ash gave the highest number pods.plant‑1.

  11. Seed wasp invasions promoted by unregulated seed trade affect vegetal and animal biodiversity.

    PubMed

    Auger-Rozenberg, Marie-Anne; Roques, Alain

    2012-09-01

    Cone and seed insects are considered the most important predators of tree seeds during the pre-dispersal phase of development. Among them, exotic seed chalcids in the genus Megastigmus invaded Europe as a result of the rapidly-increasing and mostly unregulated seed trade for afforestation and ornamental plantations. Unlike their economic impact in seed orchards, until recently, little attention was paid to the ecological impact of these insects. In the present study, selected case studies of alien Megastigmus spp. were considered to assess their specific impact on the potential of natural regeneration of native woody plants and on the native entomofauna competing for seed resource. We re-analyzed data from former studies that did not focus on these ecological interactions and, here, present previously unpublished results. Seeds of Douglas-fir, true cedars, true firs and wild roses were sampled all over Europe, and the relative importance of the native and invasive chalcid species was assessed as well as their specific impact on seed yield. In most cases, the recent arrival of alien chalcids resulted in a significant decrease in the regeneration potential of the host trees. In the absence of competitors, alien chalcids occupied the entire seed niche in Douglas-fir, but their impact tended to decrease after the arrival of invasive seed bugs. In firs, alien chalcids tended to displace the native chalcids, but not in wild roses and cedars, where their damage was increasing. Different biological traits that might explain invasive success of alien chalcids are discussed. However, no general invasive patterns seem to exist. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  12. Effects of methanol-to-oil ratio, catalyst amount and reaction time on the FAME yield by in situ transesterification of rubber seeds (Hevea brasiliensis)

    NASA Astrophysics Data System (ADS)

    Abdulkadir, Bashir Abubakar; Uemura, Yoshimitsu; Ramli, Anita; Osman, Noridah B.; Kusakabe, Katsuki; Kai, Takami

    2014-10-01

    In this research, biodiesel is produced by in situ transesterification (direct transesterification) method from the rubber seeds using KOH as a catalyst. The influence of methanol to seeds mass ratio, duration of reaction, and catalyst loading was investigated. The result shows that, the best ratio of seeds to methanol is 1:6 (10 g seeds with 60 g methanol), 120 minutes reaction time and catalyst loading of 3.0 g. The maximum FAME yield obtain was 70 %. This findings support FAME production from the seeds of rubber tree using direct transesterifcation method from the seeds of rubber tree as an alternative to diesel fuel. Also, significant properties of biodiesel such as cloud point, density, pour point, specific gravity, and viscosity were investigated.

  13. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean.

    PubMed

    Baghel, Lokesh; Kataria, Sunita; Guruprasad, Kadur Narayan

    2016-10-01

    The effectiveness of magnetopriming was assessed for alleviation of salt-induced adverse effects on soybean growth. Soybean seeds were pre-treated with static magnetic field (SMF) of 200 mT for 1 h to evaluate the effect of magnetopriming on growth, carbon and nitrogen metabolism, and yield of soybean plants under different salinity levels (0, 25, and 50 mM NaCl). The adverse effect of NaCl-induced salt stress was found on growth, yield, and various physiological attributes of soybeans. Results indicate that SMF pre-treatment significantly increased plant growth attributes, number of root nodules, nodules, fresh weight, biomass accumulation, and photosynthetic performance under both non-saline and saline conditions as compared to untreated seeds. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at J-I-P phase. Nitrate reductase activity, PIABS , photosynthetic pigments, and net rate of photosynthesis were also higher in plants that emerged from SMF pre-treated seeds as compared to untreated seeds. Leghemoglobin content and hemechrome content in root nodules were also increased by SMF pre-treatment. Thus pre-sowing exposure of seeds to SMF enhanced carbon and nitrogen metabolism and improved the yield of soybeans in terms of number of pods, number of seeds, and seed weight under saline as well as non-saline conditions. Consequently, SMF pre-treatment effectively mitigated adverse effects of NaCl on soybeans. It indicates that magnetopriming of dry soybean seeds can be effectively used as a pre-sowing treatment for alleviating salinity stress. Bioelectromagnetics. 37:455-470, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Seed-Specific Expression of OsDWF4, a Rate-Limiting Gene Involved in Brassinosteroids Biosynthesis, Improves Both Grain Yield and Quality in Rice.

    PubMed

    Li, Qian-Feng; Yu, Jia-Wen; Lu, Jun; Fei, Hong-Yuan; Luo, Ming; Cao, Bu-Wei; Huang, Li-Chun; Zhang, Chang-Quan; Liu, Qiao-Quan

    2018-04-18

    Brassinosteroids (BRs) are essential plant-specific steroidal hormones that regulate diverse growth and developmental processes in plants. We evaluated the effects of OsDWF4, a gene that encodes a rate-limiting enzyme in BR biosynthesis, on both rice yield and quality when driven by the Gt1 or Ubi promoter, which correspond to seed-specific or constitutive expression, respectively. Generally, transgenic plants expressing OsDWF4 showed increased grain yield with more tillers and longer and heavier seeds. Moreover, the starch physicochemical properties of the transgenic rice were also improved. Interestingly, OsDWF4 was found to exert different effects on either rice yield or quality when driven by the different promoters. The overall performance of the pGt1::OsDWF4 lines was better than that of the pUbi::OsDWF4 lines. Our data not only demonstrate the effects of OsDWF4 overexpression on both rice yield and quality but also suggest that a seed-specific promoter is a good choice in BR-mediated rice breeding programs.

  15. Pre- and Post-harvest Influences on Seed Dormancy Status of an Australian Goodeniaceae species, Goodenia fascicularis

    PubMed Central

    Hoyle, Gemma L.; Steadman, Kathryn J.; Daws, Matthew I.; Adkins, Steve W.

    2008-01-01

    Background and Aims The period during which seeds develop on the parent plant has been found to affect many seed characteristics, including dormancy, through interactions with the environment. Goodenia fascicularis (Goodeniaceae) seeds were used to investigate whether seeds of an Australian native forb, harvested from different environments and produced at different stages of the reproductive period, differ in dormancy status. Methods During the reproductive phase, plants were grown ex situ in warm (39/21 °C) or cool (26/13 °C) conditions, with adequate or limited water availability. The physiological dormancy of resulting seeds was measured in terms of the germination response to warm stratification (34/20 °C, 100 % RH, darkness). Key Results Plants in the cool environment were tall and had high above-ground biomass, yet yielded fewer seeds over a shorter, later harvest period when compared with plants in the warm environment. Seeds from the cool environment also had higher viability and greater mass, despite a significant proportion (7 % from the cool-wet environment) containing no obvious embryo. In the warm environment, the reproductive phase was accelerated and plants produced more seeds despite being shorter and having lower above-ground biomass than those in the cool environment. Ten weeks of warm stratification alleviated physiological dormancy in seeds from all treatments resulting in 80–100 % germination. Seeds that developed at warm temperatures were less dormant (i.e. germination percentages were higher) than seeds from the cool environment. Water availability had less effect on plant and seed traits than air temperature, although plants with reduced soil moisture were shorter, had lower biomass and produced fewer, less dormant seeds than plants watered regularly. Conclusions Goodenia fascicularis seeds are likely to exhibit physiological dormancy regardless of the maternal environment. However, seeds collected from warm, dry environments are likely to be more responsive to warm stratification than seeds from cooler, wetter environments. PMID:18430743

  16. Tomato seeds as a novel by-product feed for lactating dairy cows.

    PubMed

    Cassinerio, C A; Fadel, J G; Asmus, J; Heguy, J M; Taylor, S J; DePeters, E J

    2015-07-01

    Whole tomato seeds, a novel by-product feedstuff, were fed to lactating Holstein cows to determine the nutritive value of whole tomato seeds by replacing whole cottonseed in the total mixed ration. Four primiparous and 4 multiparous Holstein cows were used in a 4×4 Latin square design and fed 1 of 4 total mixed rations. Whole tomato seeds replaced whole cottonseed on a weight-to-weight basis for lipid. The proportion of whole tomato seeds to whole cottonseed in the diets were 100:0, 50:50, 25:75, and 0:100 on a lipid basis. Thus, tomato seeds were 4.0, 2.4, 1.1, and 0% of the ration dry matter, respectively. Milk yield and the concentrations and yields of protein, lactose, and solids-not-fat did not differ for the effect of diet. However, milk fat concentration decreased and milk fat yield tended to decrease as whole tomato seeds replaced whole cottonseed. Intakes of dry matter, lipid, and crude protein did not differ. Whole-tract apparent digestibility of dry matter and ash-free neutral detergent fiber did not differ, but digestibility of total fatty acids and crude protein decreased with increasing proportion of whole tomato seeds. Urea concentration in milk and plasma both decreased with increasing whole tomato seeds. Fecal concentration of linoleic and α-linolenic acids increased with increasing whole tomato seeds, suggesting that seeds were passing out of the digestive tract undigested. The concentrations of C18:2n-6 and C18:3n-3 in milk fat had small increases, but their yields were not different, suggesting that only a small amount of whole-tomato-seed lipid might have been digested postruminally. Amounts of trans C18:1 fatty acids in milk fat were higher with increasing whole cottonseed, which might suggest a shift in rumen biohydrogenation pathways. At the level of feeding used in the current study, whole tomato seeds replaced whole cottonseed in the diet of lactating dairy cows without a change in production. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.).

    PubMed

    Kelly, Amélie A; Shaw, Eve; Powers, Stephen J; Kurup, Smita; Eastmond, Peter J

    2013-04-01

    Increasing the productivity of oilseed crops is an important challenge for plant breeders and biotechnologists. To date, attempts to increase oil production in seeds via metabolic pathway engineering have focused on boosting synthetic capacity. However, in the tissues of many organisms, it is well established that oil levels are determined by both anabolism and catabolism. Indeed, the oil content of rapeseed (Brassica napus L.) has been reported to decline by approximately 10% in the final stage of development, as the seeds desiccate. Here, we show that RNAi suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase gene family during seed development results in up to an 8% gain in oil yield on either a seed, plant or unit area basis in the greenhouse, with very little adverse impact on seed vigour. Suppression of lipolysis could therefore constitute a new method for enhancing oil yield in oilseed crops. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  18. Modeling Biometric Traits, Yield and Nutritional and Antioxidant Properties of Seeds of Three Soybean Cultivars Through the Application of Biostimulant Containing Seaweed and Amino Acids

    PubMed Central

    Kocira, Sławomir; Szparaga, Agnieszka; Kocira, Anna; Czerwińska, Ewa; Wójtowicz, Agnieszka; Bronowicka-Mielniczuk, Urszula; Koszel, Milan; Findura, Pavol

    2018-01-01

    In recent years, attempts have been made to use preparations that allow obtaining high and good quality yields, while reducing the application of pesticides and mineral fertilizers. These include biostimulants that are safe for the natural environment and contribute to the improvement of yield size and quality, especially after the occurrence of stressors. Their use is advisable in the case of crops sensitive to such biotic stress factors like low temperatures or drought. One of these is soybean which is a very important plant from the economic viewpoint. Field experiments were established in the years 2014-2016 in a random block design in four replicates on experimental plots of 10 m2. Three soybean cultivars: Annushka, Mavka, and Atlanta were planted in the third decade of April. Fylloton biostimulant was used at 0.7% or 1% concentrations as single spraying (BBCH 13-15) or double spraying (BBCH 13-15, BBCH 61) in the vegetation period. The number of seeds per 1 m2, seed yield, thousand seed weight, number of pods per plant, number of nodes in the main shoot, height of plants, and protein and fat contents in seeds were determined. The content of phenolic compounds, antioxidant capacity and antioxidant effect of soybean seeds were assayed as well. Foliar treatment of soybean with Fylloton stimulated the growth and yield of plants without compromising their nutritional and nutraceutical properties. The double application of the higher concentration of Fylloton was favorable for the plant height, seed number and soybean yield. Moreover, the highest number of pods was obtained after single treatment of plants with the lower biostimulant concentration. There was also a positive effect of using this biostimulant on the content and activity of some bioactive compounds, such as phenolics and flavonoids, and on the reducing power. PMID:29636764

  19. Modeling Biometric Traits, Yield and Nutritional and Antioxidant Properties of Seeds of Three Soybean Cultivars Through the Application of Biostimulant Containing Seaweed and Amino Acids.

    PubMed

    Kocira, Sławomir; Szparaga, Agnieszka; Kocira, Anna; Czerwińska, Ewa; Wójtowicz, Agnieszka; Bronowicka-Mielniczuk, Urszula; Koszel, Milan; Findura, Pavol

    2018-01-01

    In recent years, attempts have been made to use preparations that allow obtaining high and good quality yields, while reducing the application of pesticides and mineral fertilizers. These include biostimulants that are safe for the natural environment and contribute to the improvement of yield size and quality, especially after the occurrence of stressors. Their use is advisable in the case of crops sensitive to such biotic stress factors like low temperatures or drought. One of these is soybean which is a very important plant from the economic viewpoint. Field experiments were established in the years 2014-2016 in a random block design in four replicates on experimental plots of 10 m 2 . Three soybean cultivars: Annushka, Mavka, and Atlanta were planted in the third decade of April. Fylloton biostimulant was used at 0.7% or 1% concentrations as single spraying (BBCH 13-15) or double spraying (BBCH 13-15, BBCH 61) in the vegetation period. The number of seeds per 1 m 2 , seed yield, thousand seed weight, number of pods per plant, number of nodes in the main shoot, height of plants, and protein and fat contents in seeds were determined. The content of phenolic compounds, antioxidant capacity and antioxidant effect of soybean seeds were assayed as well. Foliar treatment of soybean with Fylloton stimulated the growth and yield of plants without compromising their nutritional and nutraceutical properties. The double application of the higher concentration of Fylloton was favorable for the plant height, seed number and soybean yield. Moreover, the highest number of pods was obtained after single treatment of plants with the lower biostimulant concentration. There was also a positive effect of using this biostimulant on the content and activity of some bioactive compounds, such as phenolics and flavonoids, and on the reducing power.

  20. Phomopsis seed decay of soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) causes poor seed quality and suppresses yield in most soybean-growing countries. The disease is caused primarily by the fungal pathogen Phomopsis longicolla along with other Phomopsis and Diaporthe spp. Infected seed range from symptomless to shriveled, elongated, ...

  1. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain.

    PubMed

    de Leonardis, Anna Maria; Fragasso, Mariagiovanna; Beleggia, Romina; Ficco, Donatella Bianca Maria; de Vita, Pasquale; Mastrangelo, Anna Maria

    2015-12-19

    Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: "Primadur", an elite cultivar with high yellow index, and "T1303", an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in "Primadur", with a general decrease in "T1303". Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways.

  2. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain

    PubMed Central

    de Leonardis, Anna Maria; Fragasso, Mariagiovanna; Beleggia, Romina; Ficco, Donatella Bianca Maria; de Vita, Pasquale; Mastrangelo, Anna Maria

    2015-01-01

    Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: “Primadur”, an elite cultivar with high yellow index, and “T1303”, an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in “Primadur”, with a general decrease in “T1303”. Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways. PMID:26703576

  3. Assessing the Potential Oleoresin Yields of Slash Pine Progenies at Juvenile Ages

    Treesearch

    A.E. Squillace; Charles R. Gansel

    1968-01-01

    The potential oleoresin yields of slash pine progenies can be assessed at juvenile ages, 7 to 8 years earlier than with previous methods. Seeds are sown in peat pots, outplanted shortly after germination at a spacing of 14 by 3 feet, and given intensive cultural treatment. At 26 years from seed, when the trees average about 9 feet tall, their potential yields are...

  4. Effects of irrigation on seed production and vegetative characteristics of four moist-soil plants on impounded wetlands in California

    USGS Publications Warehouse

    Mushet, D.M.; Euliss, N.H.; Harris, S.W.

    1992-01-01

    We examined the effects of irrigation on 4 moist-soil plants commonly managed for waterfowl in the Sacramento Valley, California. Irrigation resulted in taller and heavier swamp timothy (Heleochloa schoenoides), pricklegrass (Crypsis niliaca), and sprangletop (Leptochloa fasicularis). Barnyardgrass (Echinochloa crusgalli) grew taller in irrigated wetlands, but no significant difference in weight was detected. Only sprangletop yielded larger seed masses in response to irrigation. Without irrigation, swamp timothy and pricklegrass assumed a typical prostrate growth form, but with irrigation, they assumed a vertical growth form. Irrigation did not significantly affect plant density. Because of rising water costs, wetland managers should consider wildlife management objectives and plant responses before implementing irrigation practices.

  5. Very high CO2 reduces photosynthesis, dark respiration and yield in wheat

    NASA Technical Reports Server (NTRS)

    Reuveni, J.; Bugbee, B.

    1997-01-01

    Although terrestrial CO2 concentrations, [CO2] are not expected to reach 1000 micromoles mol-1 for many decades, CO2 levels in closed systems such as growth chambers and glasshouses, can easily exceed this concentration. CO2 levels in life support systems in space can exceed 10000 micromoles mol-1 (1%). Here we studied the effect of six CO2 concentrations, from ambient up to 10000 micromoles mol-1, on seed yield, growth and gas exchange of two wheat cultivars (USU-Apogee and Veery-l0). Elevating [CO2] from 350 to 1000 micromoles mol-1 increased seed yield (by 33%), vegetative biomass (by 25%) and number of heads m-2 (by 34%) of wheat plants. Elevation of [CO2] from 1000 to 10000 micromoles mol-1 decreased seed yield (by 37%), harvest index (by 14%), mass per seed (by 9%) and number of seeds per head (by 29%). This very high [CO2] had a negligible, non-significant effect on vegetative biomass, number of heads m-2 and seed mass per head. A sharp decrease in seed yield, harvest index and seeds per head occurred by elevating [CO2] from 1000 to 2600 micromoles mol-1. Further elevation of [CO2] from 2600 to 10000 micromoles mol-1 caused a further but smaller decrease. The effect of CO2 on both wheat cultivars was similar for all growth parameters. Similarly there were no differences in the response to high [CO2] between wheat grown hydroponically in growth chambers under fluorescent lights and those grown in soilless media in a glasshouse under sunlight and high pressure sodium lamps. There was no correlation between high [CO2] and ethylene production by flag leaves or by wheat heads. Therefore, the reduction in seed set in wheat plants is not mediated by ethylene. The photosynthetic rate of whole wheat plants was 8% lower and dark respiration of the wheat heads 25% lower when exposed to 2600 micromoles mol-1 CO2 compared to ambient [CO2]. It is concluded that the reduction in the seed set can be mainly explained by the reduction in the dark respiration in wheat heads, when most of the respiration is functional and is needed for seed development.

  6. Nitrogen Source and Rate Management Improve Maize Productivity of Smallholders under Semiarid Climates.

    PubMed

    Amanullah; Iqbal, Asif; Ali, Ashraf; Fahad, Shah; Parmar, Brajendra

    2016-01-01

    Nitrogen is one of the most important factor affecting maize ( Zea mays L.) yield and income of smallholders under semiarid climates. Field experiments were conducted to investigate the impact of different N-fertilizer sources [urea, calcium ammonium nitrate (CAN), and ammonium sulfate (AS)] and rates (50, 100, 150, and 200 kg ha -1 ) on umber of rows ear -1 (NOR ear -1 ), number of seeds row -1 (NOS row -1 ), number of seeds ear -1 (NOS ear -1 ), number of ears per 100 plants (NOEP 100 plants -1 ), grain yield plant -1 , stover yield (kg ha -1 ), and shelling percentage (%) of maize genotypes "Local cultivars (Azam and Jalal) vs. hybrid (Pioneer-3025)." The experiment was conducted at the Agronomy Research Farm of the University of Agriculture Peshawar during summers of 2008 (year one) and 2010 (year two). The results revealed that the N treated (rest) plots (the average of all the experimental plots treated with N) had produced higher yield and yield components, and shelling percentage over N-control plots (plots where N was not applied). Application of nitrogen at the higher rate increased yield and yield components in maize (200 > 150 > 100 > 50 kg N ha -1 ). Application of AS and CAN had more beneficial impact on yield and yield components of maize as compared to urea (AS > CAN > urea). Hybrid maize (P-3025) produced significantly higher yield and yield components as well as higher shelling percentage than the two local cultivars (P-3025 > Jalal = Azam). Application of ammonium sulfate at the rate of 200 kg N ha -1 to hybrid maize was found most beneficial in terms of higher productivity and grower's income in the study area. For the two local cultivars, application of 150 kg N ha -1 was found more beneficial over 120 kg N ha -1 (recommended N rate) in terms of greater productivity and growers income.

  7. Nitrogen Source and Rate Management Improve Maize Productivity of Smallholders under Semiarid Climates

    PubMed Central

    Amanullah; Iqbal, Asif; Ali, Ashraf; Fahad, Shah; Parmar, Brajendra

    2016-01-01

    Nitrogen is one of the most important factor affecting maize (Zea mays L.) yield and income of smallholders under semiarid climates. Field experiments were conducted to investigate the impact of different N-fertilizer sources [urea, calcium ammonium nitrate (CAN), and ammonium sulfate (AS)] and rates (50, 100, 150, and 200 kg ha−1) on umber of rows ear−1 (NOR ear−1), number of seeds row−1 (NOS row−1), number of seeds ear−1 (NOS ear−1), number of ears per 100 plants (NOEP 100 plants−1), grain yield plant−1, stover yield (kg ha−1), and shelling percentage (%) of maize genotypes “Local cultivars (Azam and Jalal) vs. hybrid (Pioneer-3025).” The experiment was conducted at the Agronomy Research Farm of the University of Agriculture Peshawar during summers of 2008 (year one) and 2010 (year two). The results revealed that the N treated (rest) plots (the average of all the experimental plots treated with N) had produced higher yield and yield components, and shelling percentage over N-control plots (plots where N was not applied). Application of nitrogen at the higher rate increased yield and yield components in maize (200 > 150 > 100 > 50 kg N ha−1). Application of AS and CAN had more beneficial impact on yield and yield components of maize as compared to urea (AS > CAN > urea). Hybrid maize (P-3025) produced significantly higher yield and yield components as well as higher shelling percentage than the two local cultivars (P-3025 > Jalal = Azam). Application of ammonium sulfate at the rate of 200 kg N ha−1 to hybrid maize was found most beneficial in terms of higher productivity and grower's income in the study area. For the two local cultivars, application of 150 kg N ha−1 was found more beneficial over 120 kg N ha−1 (recommended N rate) in terms of greater productivity and growers income. PMID:27965685

  8. Seed yield, development, and variation in diverse poa pratensis accessions

    USDA-ARS?s Scientific Manuscript database

    Post harvest residue removal is critical for continued high seed production of Kentucky bluegrass (Poa pratensis L.). Previous work showed some accessions have little or no yield reduction with mechanical residue removal compared with the controversial practice of open field burning. Using 10 of t...

  9. β-Sitosterol: supercritical carbon dioxide extraction from sea buckthorn (Hippophae rhamnoides L.) seeds.

    PubMed

    Sajfrtová, Marie; Licková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdenek

    2010-04-22

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15-60 MPa and temperatures of 40-80 degrees C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 degrees C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 degrees C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide.

  10. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting

    NASA Technical Reports Server (NTRS)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.

  11. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull.

    PubMed

    Yang, Wenjie; Guo, Fengling; Wan, Zhengjie

    2013-10-01

    Oyster mushroom (Pleurotus ostreatus) was cultivated on rice straw basal substrate, wheat straw basal substrate, cotton seed hull basal substrate, and wheat straw or rice straw supplemented with different proportions (15%, 30%, and 45% in rice straw substrate, 20%, 30%, and 40% in wheat straw substrate) of cotton seed hull to find a cost effective substrate. The effect of autoclaved sterilized and non-sterilized substrate on growth and yield of oyster mushroom was also examined. Results indicated that for both sterilized substrate and non-sterilized substrate, oyster mushroom on rice straw and wheat basal substrate have faster mycelial growth rate, comparatively poor surface mycelial density, shorter total colonization period and days from bag opening to primordia formation, lower yield and biological efficiency, lower mushroom weight, longer stipe length and smaller cap diameter than that on cotton seed hull basal substrate. The addition of cotton seed hull to rice straw and wheat straw substrate slowed spawn running, primordial development and fruit body formation. However, increasing the amount of cotton seed hull can increase the uniformity and white of mycelium, yield and biological efficiency, and increase mushroom weight, enlarge cap diameter and shorten stipe length. Compared to the sterilized substrate, the non-sterilized substrate had comparatively higher mycelial growth rate, shorter total colonization period and days from bag opening to primordia formation. However, the non-sterilized substrate did not gave significantly higher mushroom yield and biological efficiency than the sterilized substrate, but some undesirable characteristics, i.e. smaller mushroom cap diameter and relatively long stipe length.

  12. Impact of combined exposure of chemical, fertilizer, bio-fertilizer and compost on growth, physiology and productivity of Brassica campestries in old alluvial soil.

    PubMed

    Datta, J K; Banerjee, A; Sikdar, M Saha; Gupta, S; Mondal, N K

    2009-09-01

    Field experiment was carried out during November 2006 to February 2007 under old alluvial soil to evaluate the impact of combined dose of chemical fertilizer, biofertilizer in combination with compost for the yellow sarson (Brassica campestries cv. B9) in a randomized block design replicated thrice. Various morpho-physiological parameters viz., plant population, length of shoot and root, leaf area index (LAI), crop growth rate (CGR), net assimilation rate (NAR), yield attributes viz., number of siliquae per plant, number of seeds/siliquae, 1000 seed weight (test weight), seed yield, stover yield and physiological and biochemical parameters viz., pigment content, sugar, amino acid, protein, ascorbic acid content in physiologically active leaf were performed. The treatment T1 i.e., 40% less N fertilizer 25% less P fertilizer K fertilizer constant + 12 kg ha(-1) biofertilizer (Azophos) and organic manure (compost) @ 5Mt ha(-1), showed the maximum chlorophyll accumulation (10. 231 mg g(-1) freshweight), highest seed/siliquae (25.143), test weight of seeds (4. 861g) and highest seed yield (10.661 tha(-1)). A comparison between all the morphological, anatomical, physiological and biochemical parameters due to application of chemical fertilizer; bio-fertilizer and compost alone and in combination and their impact on soil microorganism, flora and fauna will throw a sound environmental information.

  13. Resistance to Phomopsis Seed Decay in soybean

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean is caused primarily by the fungal pathogen, Phomopsis longicolla T.W. Hobbs along with other Phomopsis and Diaporthe spp. This disease causes poor seed quality and suppresses yield in most soybean-growing countries. Infected soybean seeds can be symptomless, but...

  14. Evaluation of Exotically-Derived Soybean Breeding Lines for Seed Yield, Germination, Damage, and Composition under Dryland Production in the Midsouthern USA

    PubMed Central

    Bellaloui, Nacer; Smith, James R.; Mengistu, Alemu; Ray, Jeffery D.; Gillen, Anne M.

    2017-01-01

    Although the Early Soybean Production System (ESPS) in the Midsouthern USA increased seed yield under irrigated and non-irrigated conditions, heat stress and drought still lead to poor seed quality in heat sensitive soybean cultivars. Our breeding goal was to identify breeding lines that possess high germination, nutritional quality, and yield potential under high heat and dryland production conditions. Our hypothesis was that breeding lines derived from exotic germplasm might possess physiological and genetic traits allowing for higher seed germinability under high heat conditions. In a 2-year field experiment, breeding lines derived from exotic soybean accessions, previously selected for adaptability to the ESPS in maturity groups (MG) III and IV, were grown under non-irrigated conditions. Results showed that three exotic breeding lines had consistently superior germination across 2 years. These lines had a mean germination percentage of >80%. Two (25-1-1-4-1-1 and 34-3-1-2-4-1) out of the three lines with ≥80% germination in both years maintained high seed protein, oleic acid, N, P, K, B, Cu, and Mo in both years. Significant (P < 0.05) positive correlations were found between germination and oleic acid and with K and Cu in both years. Significant negative correlations were found between germination and linoleic acid, Ca, and hard seed in both years. There were positive correlations between germination and N, P, B, Mo, and palmitic acid only in 2013. A negative correlation was found between germination and green seed damage and linolenic acid in 2013 only. Seed wrinkling was significantly negatively correlated with germination in 2012 only. A lower content of Ca in the seed of high germinability genotypes may explain the lower rates of hard seed in those lines, which could lead to higher germination. Many of the differences in yield, germination, diseases, and seed composition between years are likely due to heat and rainfall differences between years. The results also showed the potential roles of seed minerals, especially K, Ca, B, Cu, and Mo, in maintaining high seed quality. The knowledge gained from this research will help breeders to select for soybean with high seed nutritional qualities and high germinability. PMID:28289420

  15. Phosphorus and Compost Management Influence Maize (Zea mays) Productivity Under Semiarid Condition with and without Phosphate Solubilizing Bacteria.

    PubMed

    Amanullah; Khan, Adil

    2015-01-01

    Phosphorus (P) unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB) on the yield and yield components of maize (Zea mays L., cv. Azam). The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1) inoculated seed with PSB (+) and (2) seed not inoculated with PSB (- or control)] and three compost application times (30, 15, and 0 days before sowing) combination (six treatments) were used as main plot factor, while four P levels (25, 50, 75, and 100 kg P ha(-1)) used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha(-1)) had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+) had tremendously increased yield and yield components of maize over PSB-control plots (-) under semiarid condition.

  16. Phosphorus and Compost Management Influence Maize (Zea mays) Productivity Under Semiarid Condition with and without Phosphate Solubilizing Bacteria

    PubMed Central

    Amanullah

    2015-01-01

    Phosphorus (P) unavailability and lack of organic matter in the soils under semiarid climates are the two major constraints for low crop productivity. Field trial was conducted to study the effects of P levels, compost application times and seed inoculation with phosphate solubilizing bacteria (PSB) on the yield and yield components of maize (Zea mays L., cv. Azam). The experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar-Pakistan during summer 2014. The experiment was laid out in randomized complete block design with split plot arrangement using three replications. The two PSB levels [(1) inoculated seed with PSB (+) and (2) seed not inoculated with PSB (- or control)] and three compost application times (30, 15, and 0 days before sowing) combination (six treatments) were used as main plot factor, while four P levels (25, 50, 75, and 100 kg P ha-1) used as subplot factor. The results confirmed that compost applied at sowing time and P applied at the two higher rates (75 and 100 kg P ha-1) had significantly increased yield and yield components of maize under semiarid condition. Maize seed inoculated with PSB (+) had tremendously increased yield and yield components of maize over PSB-control plots (-) under semiarid condition. PMID:26697038

  17. Distillation time as tool for improved antimalarial activity and differential oil composition of cumin seed oil

    USDA-ARS?s Scientific Manuscript database

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given...

  18. Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: yield, fatty acid composition and triacylglycerol profile.

    PubMed

    Samaram, Shadi; Mirhosseini, Hamed; Tan, Chin Ping; Ghazali, Hasanah Mohd

    2013-10-10

    The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.

  19. Dissection of genotype × environment interactions for mucilage and seed yield in Plantago species: Application of AMMI and GGE biplot analyses

    PubMed Central

    Shahriari, Zolfaghar; Dadkhodaie, Ali

    2018-01-01

    Genotype × environment interaction (GEI) is an important aspect of both plant breeding and the successful introduction of new cultivars. In the present study, additive main effects and multiplicative interactions (AMMI) and genotype (G) main effects and genotype (G) × environment (E) interaction (GGE) biplot analyses were used to identify stable genotypes and to dissect GEI in Plantago. In total, 10 managed field trials were considered as environments to analyze GEI in thirty genotypes belonging to eight Plantago species. Genotypes were evaluated in a drought stress treatment and in normal irrigation conditions at two locations in Shiraz (Bajgah) for three years (2013-2014- 2015) and Kooshkak (Marvdasht, Fars, Iran) for two years (2014–2015). Three traits, seed yield and mucilage yield and content, were measured at each experimental site and in natural Plantago habitats. AMMI2 biplot analyses identified genotypes from several species with higher stability for seed yield and other genotypes with stable mucilage content and yield. P. lanceolata (G26), P. officinalis (G10), P. ovata (G14), P. ampleexcaulis (G11) and P. major (G4) had higher stability for seed yield. For mucilage yield, G21, G18 and G20 (P. psyllium), G1, G2 and G4 (P. major), G9 and G10 (P. officinalis) and P. lanceolata were identified as stable. G13 (P. ovata), G5 and G6 (P. major) and G30 (P. lagopus) had higher stability for mucilage content. No one genotype was found to have high levels of stability for more than one trait but some species had more than one genotype exhibiting stable trait performance. Based on trait variation, GGE biplot analysis identified two representative environments, one for seed yield and one for mucilage yield and content, with good discriminating ability. The identification of stable genotypes and representative environments should assist the breeding of new Plantago cultivars. PMID:29715274

  20. Dissection of genotype × environment interactions for mucilage and seed yield in Plantago species: Application of AMMI and GGE biplot analyses.

    PubMed

    Shahriari, Zolfaghar; Heidari, Bahram; Dadkhodaie, Ali

    2018-01-01

    Genotype × environment interaction (GEI) is an important aspect of both plant breeding and the successful introduction of new cultivars. In the present study, additive main effects and multiplicative interactions (AMMI) and genotype (G) main effects and genotype (G) × environment (E) interaction (GGE) biplot analyses were used to identify stable genotypes and to dissect GEI in Plantago. In total, 10 managed field trials were considered as environments to analyze GEI in thirty genotypes belonging to eight Plantago species. Genotypes were evaluated in a drought stress treatment and in normal irrigation conditions at two locations in Shiraz (Bajgah) for three years (2013-2014- 2015) and Kooshkak (Marvdasht, Fars, Iran) for two years (2014-2015). Three traits, seed yield and mucilage yield and content, were measured at each experimental site and in natural Plantago habitats. AMMI2 biplot analyses identified genotypes from several species with higher stability for seed yield and other genotypes with stable mucilage content and yield. P. lanceolata (G26), P. officinalis (G10), P. ovata (G14), P. ampleexcaulis (G11) and P. major (G4) had higher stability for seed yield. For mucilage yield, G21, G18 and G20 (P. psyllium), G1, G2 and G4 (P. major), G9 and G10 (P. officinalis) and P. lanceolata were identified as stable. G13 (P. ovata), G5 and G6 (P. major) and G30 (P. lagopus) had higher stability for mucilage content. No one genotype was found to have high levels of stability for more than one trait but some species had more than one genotype exhibiting stable trait performance. Based on trait variation, GGE biplot analysis identified two representative environments, one for seed yield and one for mucilage yield and content, with good discriminating ability. The identification of stable genotypes and representative environments should assist the breeding of new Plantago cultivars.

  1. The Genetic Basis of Natural Variation in Kernel Size and Related Traits Using a Four-Way Cross Population in Maize.

    PubMed

    Chen, Jiafa; Zhang, Luyan; Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang

    2016-01-01

    Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.

  2. The Genetic Basis of Natural Variation in Kernel Size and Related Traits Using a Four-Way Cross Population in Maize

    PubMed Central

    Liu, Songtao; Li, Zhimin; Huang, Rongrong; Li, Yongming; Cheng, Hongliang; Li, Xiantang; Zhou, Bo; Wu, Suowei; Chen, Wei; Wu, Jianyu; Ding, Junqiang

    2016-01-01

    Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed. PMID:27070143

  3. Copper phytoextraction in tandem with oilseed production using commercial cultivars and mutant lines of sunflower.

    PubMed

    Kolbas, A; Mench, M; Herzig, R; Nehnevajova, E; Bes, C M

    2011-01-01

    Use of sunflower (Helianthus annuus L.) for Cu phytoextraction and oilseed production on Cu-contaminated topsoils was investigated in afield trial at a former wood preservation site. Six commercial cultivars and two mutant lines were cultivated in plots with and without the addition of compost (5% w/w) and dolomitic limestone (0.2% w/w). Total soil Cu ranged from 163 to 1170 mg kg(-1). In soil solutions, Cu concentration varied between 0.16-0.93 mg L(-1). The amendment increased soil pH, reduced Cu exposure and promoted sunflower growth. Stem length, shoot and capitulum biomasses, seed yield, and shoot and leaf Cu concentrations were measured. At low total soil Cu, shoot Cu mineralomass was higher in commercial cultivars, Le., Salut, Energic, and Countri, whereas competition and shading affected morphological traits of mutants. Based on shoot yield (7 Mg DW ha(-1)) and Cu concentration, the highest removal was 59 g Cu ha(-1). At high total soil Cu, shoot Cu mineralomass peaked for mutants (e.g., 52 g Cu ha(-1) for Mutant 1 line) and cultivars Energic and Countri. Energic seed yield (3.9 Mg air-DW ha(-1)) would be sufficient to produce oil Phenotype traits and shoot Cu removal depended on sunflower types and Cu exposure.

  4. The effect of microwave power on the production of biodiesel from nyamplung

    NASA Astrophysics Data System (ADS)

    Qadariyah, L.; Mujaddid, F.; Raka; Dhonny, S. B.; Mahfud, M.

    2017-12-01

    Today, energy needs in Indonesia still rely on fossil energy sources that its availability in the world is increasingly depleted. Therefore, the research for alternative energy of petroleum must be developed, one of them is biodiesel. The use of microwave as energy source of biodiesel production can speed up the reaction time. So the microwave is considered more efficient. Seeds of nyamplung has an oil content of 71.4% (w/w) by weight. With the oil content of the nyamplung seeds has great potential when used as a raw material for biodiesel production. The aim of this research to study the effect of microwave power on the production of biodisel from nyamplung oil. Microwave power affects density, viscosity and yield of the product. The used of alkali catalyst, with higher the power, the lower the density and viscosity of the resulting product, but the resulting yield is 300 W. The power of more than 300 W is the opposite, resulting in the production of biodiesel using the optimum base catalyst at 300 W power.

  5. Proteomic analysis of Metarhizium anisopliae secretion in the presence of the insect pest Callosobruchus maculatus.

    PubMed

    Murad, André M; Noronha, Eliane F; Miller, Robert N G; Costa, Fabio T; Pereira, Caroline D; Mehta, Angela; Caldas, Ruy A; Franco, Octávio L

    2008-12-01

    Crop improvement in agriculture generally focuses on yield, seed quality and nutritional characteristics, as opposed to resistance to biotic stresses. Consequently, natural antifeedant toxins are often rare in seed material, with commercial crops being prone to insect pest predation. In the specific case of cowpea (Vigna unguiculata), smallholder cropping is affected by insect pests that reproduce inside the stored seeds. Entomopathogenic organisms can offer an alternative to conventional pesticides for pest control, producing hydrolases that degrade insect exoskeleton. In this study, protein secretions of the ascomycete Metarhizium anisopliae, which conferred bioinsecticidal activity against Callosobruchus maculatus, were characterized via 2D electrophoresis and mass spectrometry. Proteases, reductases and acetyltransferase enzymes were detected. These may be involved in degradation and nutrient uptake from dehydrated C. maculatus. Proteins identified in this work allowed description of metabolic pathways. Their potential applications in biotechnology include both novel compound development and production of genetically modified plants resistant to insect pests.

  6. Dynamic changes of genome-wide DNA methylation during soybean seed development

    USDA-ARS?s Scientific Manuscript database

    Seed development is programmed by expression of many genes in plants. Seed maturation is an important developmental process to soybean seed quality and yield. DNA methylation is a major epigenetic modification regulating gene expression. However, little is known about the dynamic nature of DNA me...

  7. Soil quality assessment in long-term direct seed

    USDA-ARS?s Scientific Manuscript database

    Producers in the Pacific Northwest are adopting direct seed farming to reduce soil erosion, improve soil quality and increase water infiltration. Some direct seed producers are concerned with reaching the yield and profit potential expected with long-term direct seed, and this may be due to soil st...

  8. Role of Soybean mosaic virus-encoded proteins in seed and aphid transmission in soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean, Glycine max. The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing chimeric recombinants between SMV 413 (efficien...

  9. β-Sitosterol: Supercritical Carbon Dioxide Extraction from Sea Buckthorn (Hippophae rhamnoides L.) Seeds

    PubMed Central

    Sajfrtová, Marie; Ličková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdeněk

    2010-01-01

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15–60 MPa and temperatures of 40–80 °C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 °C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 °C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide. PMID:20480045

  10. Preinoculation of Soybean Seeds Treated with Agrichemicals up to 30 Days before Sowing: Technological Innovation for Large-Scale Agriculture

    PubMed Central

    da Cruz, Sonia Purin; Martin, Thomas Newton; Nakatani, André Shigueyoshi; Nogueira, Marco Antonio; Hungria, Mariangela

    2017-01-01

    The cultivation of soybean in Brazil experienced an expressive growth in the last decades. Soybean is highly demanding on nitrogen (N) that must come from fertilizers or from biological fixation. The N supply to the soybean crop in Brazil relies on the inoculation with elite strains of Bradyrhizobium japonicum, B. elkanii, and B. diazoefficiens, which are able to fulfill the crop's N requirements and enrich the soil for the following crop. The effectiveness of the association between N2-fixing bacteria and soybean plants depends on the efficacy of the inoculation process. Seed treatment with pesticides, especially fungicides or micronutrients, may rapidly kill the inoculated bacteria, affecting the establishment and outcome of the symbiosis. The development of technologies that allow inoculation to become a successful component of industrial seed treatment represents a valuable tool for the seed industry, as well as for the soybean crop worldwide. In this article, we report the results of new technologies, developed by the company Total Biotecnologia Indústria e Comércio S/A of Brazil, for preinoculation of soybean seeds with bradyrhizobia, in the presence of agrichemicals. Our results demonstrate improved bacterial survival for up to 30 days after inoculation, without compromising nodulation, N2-fixation, and yield in the field. PMID:29129977

  11. Preinoculation of Soybean Seeds Treated with Agrichemicals up to 30 Days before Sowing: Technological Innovation for Large-Scale Agriculture.

    PubMed

    Araujo, Ricardo Silva; da Cruz, Sonia Purin; Souchie, Edson Luiz; Martin, Thomas Newton; Nakatani, André Shigueyoshi; Nogueira, Marco Antonio; Hungria, Mariangela

    2017-01-01

    The cultivation of soybean in Brazil experienced an expressive growth in the last decades. Soybean is highly demanding on nitrogen (N) that must come from fertilizers or from biological fixation. The N supply to the soybean crop in Brazil relies on the inoculation with elite strains of Bradyrhizobium japonicum, B. elkanii, and B. diazoefficiens , which are able to fulfill the crop's N requirements and enrich the soil for the following crop. The effectiveness of the association between N 2 -fixing bacteria and soybean plants depends on the efficacy of the inoculation process. Seed treatment with pesticides, especially fungicides or micronutrients, may rapidly kill the inoculated bacteria, affecting the establishment and outcome of the symbiosis. The development of technologies that allow inoculation to become a successful component of industrial seed treatment represents a valuable tool for the seed industry, as well as for the soybean crop worldwide. In this article, we report the results of new technologies, developed by the company Total Biotecnologia Indústria e Comércio S/A of Brazil, for preinoculation of soybean seeds with bradyrhizobia, in the presence of agrichemicals. Our results demonstrate improved bacterial survival for up to 30 days after inoculation, without compromising nodulation, N 2 -fixation, and yield in the field.

  12. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations.

    PubMed

    Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D; Flint-Garcia, Sherry A

    2016-08-09

    Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. Copyright © 2016 Liu et al.

  13. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations

    PubMed Central

    Liu, Zhengbin; Garcia, Arturo; McMullen, Michael D.; Flint-Garcia, Sherry A.

    2016-01-01

    Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays) kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis). In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL) for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits. PMID:27317774

  14. Agronomic and chemical evaluation of smooth sumac, Rhus glabra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, T.A.

    Smooth sumac (Rhus glabra) is a potential whole-plant source of polyphenol and oil. In a 2-yr evaluation of progenies from 14 Maryland, 1 northern Virginia, and 2 Georgia populations, highly significant variation (1% level) in vigor, number of plants surviving the seeding year, dry matter yield the seeding year, and number of tillers produced the second year was observed. In 15 entries, highly significant variation (1% level) in polyphenol + oil and in gallotannins was observed. Dry matter yields, extrapolated to Mg ha/sup -1/, ranged from 0.02 to 1.4 (for a single harvest), % polyphenol + oil from 19.4-31.1, andmore » % gallotannins (a class of polyphenols) from 9.8 to 15.7. It is suggested that significantly improved lines could be developed through breeding. Based on estimated ratios of sigma/sup 2//sub Entries//sigma/sup 2//sub Entries/ + sigma/sup 2/, genetic variation for most agronomic traits could be estimated with fair precision whereas variation for chemical traits could be affected substantially by nongenetic factors. Factor analysis indicated plants that would perform reasonably well over a 2-yr period could be selected on the basis of early seeding-year vigor scores. Selection for high amount of polyphenol + oil and gallotannins would have to be done independently of agronomic selection. Cutting frequencies should not exceed 2 x yr/sup -1/ or serious stand loss would occur.« less

  15. Adaptation of six shallots varieties to phosphate solubilizing bacteria on the flower formation, seeds fromation, and yields on the lowland

    NASA Astrophysics Data System (ADS)

    Triharyanto, E.; Sudadi; Rawandari, S.

    2018-03-01

    Using seeds as planting materials is a solution to improve the quality and quantity of shallot. This study aims to determine the interaction between shallot varieties and Phosphate- Solubilizing Bacteria (PSB) on the flowering and shallot yield on the lowlands. The research was conducted in Mijil Village, Jaten, Karanganyar, 98 m altitude with Vertisol-type soil order in June to December 2016, using Randomized Complete Block Design (RCBD) with two factors. Shallot varieties used as factors are Bima, Manjung, Ilokos, Bima (bulb seeds), Mentes and Rubaru. PSB factors are control and with PSB inoculation. Observed variables included plant height, number of leaves, flowering percentage, seed formation and shallot bulb yield. Results showed that there was no interaction between varieties and PSB inoculation on all observed variables. However, PSB inoculation were able to increase the number of flowering plants and seed weight per plot. Bima variety have the highest average yield compared to other varieties in terms of number of leaves, number of bulbs per plant and bulb weight per plot (fresh harvest weight 317.74 g equivalent to 17.65 ton per hectare and dry weight 288.16 g consumption equivalent to 16 ton per hectare).

  16. Increased effectiveness of competitive rhizobium strains upon inoculation of Cajanus cajan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, B.S.; Poth, M.; Focht, D.D.

    A field study was conducted in lysimeters containing /sup 15/N-enriched soil to determine the effects of four competitive rhizobium strains upon yield parameters of pigeon peas (Cajanus cajan). The greatest differences observed were in seed yields; strain P132 effected the highest seed yield (121 +/- 20 g per plant), and the control strain (indigenous rhizobia) effected the lowest yield (43.9 +/- 8 g per plant). With the exception of seeds and pods, the dry matter weights were not different. Although there appeared to be no effect by inoculum strains on the fractional content of N derived from biological nitrogen fixationmore » when the total plant biomass was considered, strains P132 and 401 partitioned more of the N derived from fixation into seeds and leaves than did the other strains. Because the seeds comprised the major portion of plant N, more total N and more N derived from biological nitrogen fixation (about half of total N) were found in plants inoculated with P132, whereas the smallest amount was found in the uninoculated controls. P132 was also the best competitor with respect to indigenous rhizobia and accounted for all of the nodules found on the plants in which it was inoculated.« less

  17. Cone and seed yields in white spruce seed production areas

    Treesearch

    John A. Pitcher

    1966-01-01

    The source of seed is an important consideration in the reforestation program on the National Forests in the North Central Region. Thirty-five seed production areas have been set up in the Region, along the lines proposed by the North Central Forest Experiment Station, to provide control of seed source. Red pine, white pine, shortleaf and loblolly pine, and white...

  18. The Impact of Insects on Second-Year Cone Crops in Red Pine Seed-Production Areas

    Treesearch

    William J. Mattson

    1968-01-01

    Second-year cone crops in red pine seed-production areas have been severely damaged by five species of insects. Control of the two most destructive pests could increase present seed yields in most areas by at least 50 percent. Some seed-production areas may not produce harvestable seed crops until cone-insect populations are suppressed.

  19. Estimating Cone and Seed Production and Monitoring Pest Damage in Southern Pine Seed Orchards

    Treesearch

    Carl W. Fatzinger; H. David Muse; Thomas Miller; Helen T. Bhattacharyya

    1988-01-01

    Field sampling procedures and computer programs are described for monitoring seed production and pest damage in southern pine seed orchards. The system estimates total orchard yields of female strobili and seeds, quantifies pest damage, determines times of year when losses occur, and produces life tables for female strobili. An example is included to illustrate the...

  20. Status and use of important native grasses adapted to sagebrush communities

    Treesearch

    Thomas A. Jones; Steven R. Larson

    2005-01-01

    Due to the emphasis on restoration, native cool-season grass species are increasing in importance in the commercial seed trade in the Western U.S. Cultivated seed production of these native grasses has often been hampered by seed dormancy, seed shattering, and pernicious awns that are advantageous outside of cultivation. Relatively low seed yields and poor seedling...

  1. Method for obtaining three products with different properties from fennel (Foeniculum vulgare) seed

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to determine the effects of distillation time (DT; 15-1080 min) on yield, composition, and antioxidant capacity of fennel (Foeniculum vulgare) seed essential oil (EO) as well as on the yield, composition, and properties of lipids extracted from steam-distilled fenne...

  2. Bio-ecological consequences of crop seeds treatment with metal nano-powders

    NASA Astrophysics Data System (ADS)

    Churilov, G.

    2015-11-01

    As a result of our investigations we have determined the optimal concentrations of ferrum, cobalt and cuprum nano-powders recommended to be used as micro-fertilizers increasing the yield and feed value of crops at the expense of accumulating biologically active combinations by 25-35%. In unfavorable climate conditions, for example in a case of excess moisture or heat and drought, the plants development and ripening suffer. Our investigations have shown that the stimulating effect of nano-powders has lowered the effect of stress situations on plants development and simultaneously increased the rape seeds yield and quality. Treating the seeds with the drugs being studied has provided the high crop protection. If consider that the maximum efficiency of protectants Chinuk, SK (20 kg/t of seeds) and Cruiser, KS (10 kg/t of seeds) then for the same effect one needs nano-powders 0.1 g per hectare norm of seeds planting.

  3. Sensitivity of Polygonum aviculare Seeds to Light as Affected by Soil Moisture Conditions

    PubMed Central

    Batlla, Diego; Nicoletta, Marcelo; Benech-Arnold, Roberto

    2007-01-01

    Background and Aims It has been hypothesized that soil moisture conditions could affect the dormancy status of buried weed seeds, and, consequently, their sensitivity to light stimuli. In this study, an investigation is made of the effect of different soil moisture conditions during cold-induced dormancy loss on changes in the sensitivity of Polygonum aviculare seeds to light. Methods Seeds buried in pots were stored under different constant and fluctuating soil moisture environments at dormancy-releasing temperatures. Seeds were exhumed at regular intervals during storage and were exposed to different light treatments. Changes in the germination response of seeds to light treatments during storage under the different moisture environments were compared in order to determine the effect of soil moisture on the sensitivity to light of P. aviculare seeds. Key Results Seed acquisition of low-fluence responses during dormancy release was not affected by either soil moisture fluctuations or different constant soil moisture contents. On the contrary, different soil moisture environments affected seed acquisition of very low fluence responses and the capacity of seeds to germinate in the dark. Conclusions The results indicate that under field conditions, the sensitivity to light of buried weed seeds could be affected by the soil moisture environment experienced during the dormancy release season, and this could affect their emergence pattern. PMID:17430979

  4. Arabidopsis cpSRP54 regulates carotenoid accumulation in Arabidopsis and Brassica napus

    PubMed Central

    Gruber, Margaret Y.; Hannoufa, Abdelali

    2012-01-01

    An Arabidopsis thaliana mutant, cbd (carotenoid biosynthesis deficient), was recovered from a mutant population based on its yellow cotyledons, yellow-first true leaves, and stunted growth. Seven-day-old seedlings and mature seeds of this mutant had lower chlorophyll and total carotenoids than the wild type (WT). Genetic and molecular characterization revealed that cbd was a recessive mutant caused by a T-DNA insertion in the gene cpSRP54 encoding the 54kDa subunit of the chloroplast signal recognition particle. Transcript levels of most of the main carotenoid biosynthetic genes in cbd were unchanged relative to WT, but expression increased in carotenoid and abscisic acid catabolic genes. The chloroplasts of cbd also had developmental defects that contributed to decreased carotenoid and chlorophyll contents. Transcription of AtGLK1 (Golden 2-like 1), AtGLK2, and GUN4 appeared to be disrupted in the cbd mutant suggesting that the plastid-to-nucleus retrograde signal may be affected, regulating the changes in chloroplast functional and developmental states and carotenoid content flux. Transformation of A. thaliana and Brassica napus with a gDNA encoding the Arabidopsis cpSRP54 showed the utility of this gene in enhancing levels of seed carotenoids without affecting growth or seed yield. PMID:22791829

  5. Effect of seed age on gold nanorod formation. A microfluidic, real-time investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watt, John; Hance, Bradley G.; Anderson, Rachel S.

    We report a real time investigation into the effect of seed age on the growth of gold nanorods using a microfluidic reaction apparatus. Through small-angle X-ray scattering (SAXS) and ultraviolet–visible spectroscopy (UV–vis) analysis, we observe the seeds aging in accordance with Ostwald ripening. A seed solution is then aged in situ and continuously injected into a microfluidic chip to initiate rod growth. We track nanorod formation in real time using in-line ultraviolet–visible and near-infrared (UV–vis–NIR) monitoring and observe a dramatic decrease in yield with increasing seed age. We then demonstrate that, by diluting the gold seed solution immediately following synthesis,more » the rate of aging can be reduced and nanorods synthesized continuously, in good yield. As a result, these findings suggest ultrasmall, catalytically active seeds, which are rapidly lost due to ripening and are critical for the formation of gold nanorods.« less

  6. Effect of seed age on gold nanorod formation. A microfluidic, real-time investigation

    DOE PAGES

    Watt, John; Hance, Bradley G.; Anderson, Rachel S.; ...

    2015-09-02

    We report a real time investigation into the effect of seed age on the growth of gold nanorods using a microfluidic reaction apparatus. Through small-angle X-ray scattering (SAXS) and ultraviolet–visible spectroscopy (UV–vis) analysis, we observe the seeds aging in accordance with Ostwald ripening. A seed solution is then aged in situ and continuously injected into a microfluidic chip to initiate rod growth. We track nanorod formation in real time using in-line ultraviolet–visible and near-infrared (UV–vis–NIR) monitoring and observe a dramatic decrease in yield with increasing seed age. We then demonstrate that, by diluting the gold seed solution immediately following synthesis,more » the rate of aging can be reduced and nanorods synthesized continuously, in good yield. As a result, these findings suggest ultrasmall, catalytically active seeds, which are rapidly lost due to ripening and are critical for the formation of gold nanorods.« less

  7. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size.

    PubMed

    Ma, Meng; Wang, Qian; Li, Zhanjie; Cheng, Huihui; Li, Zhaojie; Liu, Xiangli; Song, Weining; Appels, Rudi; Zhao, Huixian

    2015-07-01

    Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  8. Floral longevity and autonomous selfing are altered by pollination and water availability in Collinsia heterophylla.

    PubMed

    Jorgensen, Rachael; Arathi, H S

    2013-09-01

    A plant investing in reproduction partitions resources between flowering and seed production. Under resource limitation, altered allocations may result in floral trait variations, leading to compromised fecundity. Floral longevity and timing of selfing are often the traits most likely to be affected. The duration of corolla retention determines whether fecundity results from outcrossing or by delayed selfing-mediated reproductive assurance. In this study, the role of pollination schedules and soil water availability on floral longevity and seed production is tested in Collinsia heterophylla (Plantaginaceae). Using three different watering regimes and pollination schedules, effects on floral longevity and seed production were studied in this protandrous, flowering annual. The results reveal that soil water status and pollination together influence floral longevity with low soil water and hand-pollinations early in the floral lifespan reducing longevity. However, early pollinations under excess water did not extend longevity, implying that resource surplus does not lengthen the outcrossing period. The results also indicate that pollen receipt, a reliable cue for fecundity, accelerates flower drop. Early corolla abscission under drought stress could potentially exacerbate sexual conflict in this protandrous, hermaphroditic species by ensuring self-pollen paternity and enabling male control of floral longevity. While pollination schedules did not affect fecundity, water stress reduced per-capita seed numbers. Unmanipulated flowers underwent delayed autonomous selfing, producing very few seeds, suggesting that inbreeding depression may limit benefits of selfing. In plants where herkogamy and dichogamy facilitate outcrossing, floral longevity determines reproductive success and mating system. Reduction in longevity under drought suggests a strong environmental effect that could potentially alter the preferred breeding mode in this mixed-mated species. Extrapolating the findings to unpredictable global drought cycles, it is suggested that in addition to reducing yield, water stress may influence the evolutionary trajectory of plant mating system.

  9. Low-energy N-ion beam biotechnology application in the induction of Thai jasmine rice mutant with improved seed storability

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Techarang, Jiranat; Yu, Liangdeng; Phanchaisri, Boonrak

    2018-06-01

    Low-energy heavy-ion beam is a novel biotechnology used for mutation induction in plants. We used a low-energy N-ion beam to induce mutations in Thai jasmine rice (Oryza sativa L. cv. KDML 105) to improve the yield and seed quality. Seeds of BKOS6, a Thai jasmine rice mutant previously induced by ion beams, were re-bombarded with 60-kV-accelerated N-ions (N++N2+) to fluences of 1-2 × 1016 ions/cm2. The resulting mutant, named HyKOS21, exhibited photoperiod insensitivity, semi-dwarfness, and high yield potential. Seed storability of the mutant was studied in natural and accelerated ageing conditions and compared to that of KDML 105 and six other Thai rice varieties. In both testing conditions, HyKOS21 mutant had the highest seed storability among the tested varieties. After storage in the natural condition for 18 months, HyKOS21 had a seed germination percentage nearly two times as that of the original KDML 105. Biochemical analysis showed that the lipid peroxidation level of the mutant seeds was the lowest among those of the tested varieties. Furthermore, an expression analysis of genes encoding lipoxygenase isoenzyme (lox1, lox2, and lox3) revealed that the mutant lacked expression of lox1 and lox2 and expressed only lox3 in seeds. These results may explain the improved seed longevity of the mutant after storage. This work provides further evidence of the modification of biological materials using a low-energy ion beam to produce rice mutants with improved yield and seed storability. The benefits of this technology, to create new varieties with improved values, could serve for local economic development.

  10. Comparative effects of using black seed (Nigella sativa), cumin seed (Cuminum cyminum), probiotic or prebiotic on growth performance, blood haematology and serum biochemistry of broiler chicks.

    PubMed

    Alimohamadi, K; Taherpour, K; Ghasemi, H A; Fatahnia, F

    2014-06-01

    A 42-day trial was conducted to compare the effects of the following seven experimental diets, which varied in black seed, cumin seed, probiotic or prebiotic concentrations, on the broiler chicks: control (no additives), diet BS1 (4 g/kg black seed), diet BS2 (8 g/kg black seed), diet CS1 (4 g/kg cumin seed), diet CS2 (8 g/kg cumin seed), diet Pro (1 g/kg probiotic Primalac(®)) and diet Pre (2 g/kg prebiotic Fermacto(®)). A total of 420 1-day-old male broiler chicks, initially weighing an average of 43 g, were distributed into 28 floor pens at a stocking density of 15 birds per pen. At 28 day of age, the body weight in the birds fed diets BS2, CS2 and Pro was significantly higher than in the control group, but final body weight was not affected. Additionally, the birds fed diets BS2, Pro and Pre exhibited better feed conversion ratio than control birds from 0 to 42 day of age. Diets BS2, CS2 and Pro also statistically increased the relative weight of thymus and bursa of Fabricius, whereas only diet Pro decreased the abdominal fat percentage compared with control diet. Regarding the haematological parameters, feeding diet BS2 yielded a significant increase in red blood cell count, haemoglobin concentration and haematocrit percentage compared with control diet. Serum total cholesterol and low-density lipoprotein cholesterol levels in the birds fed diets BS2, Pro and Pre were also significantly lower than in the birds fed the control diet. Without exception, no diets affected feed intake, internal organs weights, carcass characteristics, antibody titres against Newcastle and influenza viruses and leucocyte subsets. In general, current study showed promising results regarding the use of spice additives as growth and health promoters, especially at higher levels of their incorporation in the diets, which were comparable to the probiotic- or prebiotic-containing diets. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  11. The impact of sulfate restriction on seed yield and quality of winter oilseed rape depends on the ability to remobilize sulfate from vegetative tissues to reproductive organs

    PubMed Central

    Girondé, Alexandra; Dubousset, Lucie; Trouverie, Jacques; Etienne, Philippe; Avice, Jean-Christophe

    2014-01-01

    Our current knowledge about sulfur (S) management by winter oilseed rape to satisfy the S demand of developing seeds is still scarce, particularly in relation to S restriction. Our goals were to determine the physiological processes related to S use efficiency that led to maintain the seed yield and quality when S limitation occurred at the bolting or early flowering stages. To address these questions, a pulse-chase 34SO2−4 labeling method was carried out in order to study the S fluxes from uptake and remobilization at the whole plant level. In response of S limitation at the bolting or early flowering stages, the leaves are the most important source organ for S remobilization during reproductive stages. By combining 34S-tracer with biochemical fractionation in order to separate sulfate from other S-compounds, it appeared that sulfate was the main form of S remobilized in leaves at reproductive stages and that tonoplastic SULTR4-type transporters were specifically involved in the sulfate remobilisation in case of low S availability. In response to S limitation at the bolting stage, the seed yield and quality were dramatically reduced compared to control plants. These data suggest that the increase of both S remobilization from source leaves and the root proliferation in order to maximize sulfate uptake capacities, were not sufficient to maintain the seed yield and quality. When S limitation occurred at the early flowering stage, oilseed rape can optimize the mobilization of sulfate reserves from vegetative organs (leaves and stem) to satisfy the demand of seeds and maintain the seed yield and quality. Our study also revealed that the stem may act as a transient storage organ for remobilized S coming from source leaves before its utilization by seeds. The physiological traits (S remobilization, root proliferation, transient S storage in stem) observed under S limitation could be used in breeding programs to select oilseed rape genotypes with high S use efficiency. PMID:25566272

  12. Cone Analysis of Southern Pines - A Guidebook

    Treesearch

    D.L. Bramlett; E.W. Belcher; G.L. DeBarr; G.D. Hertel; Robert P. Karrfalt; C.W. Lantz; T. Miller; K.D. Ware; H.O. Yates

    1977-01-01

    Southern pine tree improvement programs require an ample supply of improved seeds, but productron from southern pine seed orchards has often been disappointing. If high productron is to be malntained yields must be monitored and causes of seed losses must be identified. Techniques for determining seed efficiency were first used for red pine, Pinus resinosa...

  13. Embryo and endosperm development in wheat (Triticum aestivum L.) kernels subjected to drought stress.

    PubMed

    Fábián, Attila; Jäger, Katalin; Rakszegi, Mariann; Barnabás, Beáta

    2011-04-01

    The aim of the present work was to reveal the histological alterations triggered in developing wheat kernels by soil drought stress during early seed development resulting in yield losses at harvest. For this purpose, observations were made on the effect of drought stress, applied in a controlled environment from the 5th to the 9th day after pollination, on the kernel morphology, starch content and grain yield of the drought-sensitive Cappelle Desprez and drought-tolerant Plainsman V winter wheat (Triticum aestivum L.) varieties. As a consequence of water withdrawal, there was a decrease in the size of the embryos and the number of A-type starch granules deposited in the endosperm, while the development of aleurone cells and the degradation of the cell layers surrounding the ovule were significantly accelerated in both genotypes. In addition, the number of B-type starch granules per cell was significantly reduced. Drought stress affected the rate of grain filling shortened the grain-filling and ripening period and severely reduced the yield. With respect to the recovery of vegetative tissues, seed set and yield, the drought-tolerant Plainsman V responded significantly better to drought stress than Cappelle Desprez. The reduction in the size of the mature embryos was significantly greater in the sensitive genotype. Compared to Plainsman V, the endosperm cells of Cappelle Desprez accumulated significantly fewer B-type starch granules. In stressed kernels of the tolerant genotype, the accumulation of protein bodies occurred significantly earlier than in the sensitive variety.

  14. Effect of the type and level of hydration of alcoholic solvents on the simultaneous extraction of oil and chlorogenic acids from sunflower seed press cake.

    PubMed

    Scharlack, Nayara K; Aracava, Keila K; Rodrigues, Christianne Ec

    2017-10-01

    The present study aimed to evaluate the replacement of hexane by alcoholic solvents in oil extraction from sunflower seed press cake. The use of ethanol and isopropanol has important advantages, including low toxicity and good operational safety. Thus, in the present study, solid-liquid extractions were performed in a single stage from 60 to 90 °C and in consecutive extractions in three stages at 90 °C. Solvent hydration negatively affected the extraction of oil but favored the extraction of chlorogenic acids (CAs), especially when ethanol was used. Regarding oxidative stability, the oils extracted using ethanol presented long induction times, which could be related to the high levels of not only CAs and tocopherols, but also phospholipids. Alcoholic solvents can be used for extraction to produce sunflower seed oil containing minor compounds that give it greater oxidative stability. In addition, the results obtained using hydrous ethanol showed that this solvent can yield defatted sunflower seed meal with a low content of CAs, enabling future use of the protein fraction. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Integrating Soil Silicon Amendment into Management Programs for Insect Pests of Drill-Seeded Rice

    PubMed Central

    Way, Michael O.; Pearson, Rebecca A.; Stout, Michael J.

    2017-01-01

    Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety. PMID:28805707

  16. Integrating Soil Silicon Amendment into Management Programs for Insect Pests of Drill-Seeded Rice.

    PubMed

    Villegas, James M; Way, Michael O; Pearson, Rebecca A; Stout, Michael J

    2017-08-13

    Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety.

  17. Use of Direct and Indirect Estimates of Crown Dimensions to Predict One Seed Juniper Woody Biomass Yield for Alternative Energy Uses

    USDA-ARS?s Scientific Manuscript database

    Throughout the western United States there is increased interest in utilizing woodland biomass as an alternative energy source. We conducted a pilot study to predict one seed juniper (Juniperus monosperma) chip yield from tree-crown dimensions measured on the ground or derived from Very Large Scale ...

  18. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    USDA-ARS?s Scientific Manuscript database

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  19. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    PubMed

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Report on Progress Toward Security and Stability in Afghanistan and United States Plan for Sustaining the Afghanistan National Security Forces

    DTIC Science & Technology

    2011-04-01

    Ug99 stem rust resistant wheat breeder seed to MAIL, which will be released to farmers for commercial planting in fall 2011. Poppy yields decreased...level continues to improve the Afghan Government’s overall agricultural sector. Wheat is a key staple in Afghanistan, accounting for over one-half of...tight global supply could affect the country’s food security. Afghanistan’s wheat production routinely does not meet demand and is subject to sizable

  1. Ion beam texturing of surfaces

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Textured surfaces, typically with conical structures, have been produced previously by simultaneously etching a surface and seeding that surface with another material. A theory based on surface diffusion predicts a variation in cone spacing with surface temperature, as well as a critical temperature below which cones will not form. Substantial agreement with theory has been found for several combinations of seed and surface materials, including one with a high sputter yield seed on a low sputter yield surface (gold on aluminum). Coning with this last combination was predicted by the theory for a sufficiently mobile seed material. The existence of a minimum temperature for the formation of cones should also be important to those interested in ion-beam machining smooth surfaces. Elements contained in the environmental contaminants or in the sputtered alloys or compounds may serve as seed material.

  2. Ultrahigh-yield growth of GaN via halogen-free vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Nakamura, Daisuke; Kimura, Taishi

    2018-06-01

    The material yield of Ga during GaN growth via halogen-free vapor-phase epitaxy (HF-VPE) was systematically investigated and found to be much higher than that obtained using conventional hydride VPE. This is attributed to the much lower process pressure and shorter seed-to-source distance, owing to the inherent chemical reactions and corresponding reactor design used for HF-VPE growth. Ultrahigh-yield GaN growth was demonstrated on a 4-in.-diameter sapphire seed substrate.

  3. Seed vigour and crop establishment: extending performance beyond adaptation.

    PubMed

    Finch-Savage, W E; Bassel, G W

    2016-02-01

    Seeds are central to crop production, human nutrition, and food security. A key component of the performance of crop seeds is the complex trait of seed vigour. Crop yield and resource use efficiency depend on successful plant establishment in the field, and it is the vigour of seeds that defines their ability to germinate and establish seedlings rapidly, uniformly, and robustly across diverse environmental conditions. Improving vigour to enhance the critical and yield-defining stage of crop establishment remains a primary objective of the agricultural industry and the seed/breeding companies that support it. Our knowledge of the regulation of seed germination has developed greatly in recent times, yet understanding of the basis of variation in vigour and therefore seed performance during the establishment of crops remains limited. Here we consider seed vigour at an ecophysiological, molecular, and biomechanical level. We discuss how some seed characteristics that serve as adaptive responses to the natural environment are not suitable for agriculture. Past domestication has provided incremental improvements, but further actively directed change is required to produce seeds with the characteristics required both now and in the future. We discuss ways in which basic plant science could be applied to enhance seed performance in crop production. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

    PubMed Central

    Potts, Simon G.; Steffan-Dewenter, Ingolf; Vaissière, Bernard E.; Woyciechowski, Michal; Krewenka, Kristin M.; Tscheulin, Thomas; Roberts, Stuart P.M.; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations. PMID:24749007

  5. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification.

    PubMed

    Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.

  6. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.

    PubMed

    de Figueiredo, Marislaine A; Boldrin, Paulo F; Hart, Jonathan J; de Andrade, Messias J B; Guilherme, Luiz R G; Glahn, Raymond P; Li, Li

    2017-02-01

    Common beans (Phaseolus vulgaris) are the most important legume crops. They represent a major source of micronutrients and a target for essential trace mineral enhancement (i.e. biofortification). To investigate mineral accumulation during seed maturation and to examine whether it is possible to biofortify seeds with multi-micronutrients without affecting mineral bioavailability, three common bean cultivars were treated independently with zinc (Zn) and selenium (Se), the two critical micronutrients that can be effectively enhanced via fertilization. The seed mineral concentrations during seed maturation and the seed Fe bioavailability were analyzed. Common bean seeds were found to respond positively to Zn and Se treatments in accumulating these micronutrients. While the seed pods showed a decrease in Zn and Se along with Fe content during pod development, the seeds maintained relatively constant mineral concentrations during seed maturation. Selenium treatment had minimal effect on the seed accumulation of phytic acid and polyphenols, the compounds affecting Fe bioavailability. Zinc treatment reduced phytic acid level, but did not dramatically affect the concentrations of total polyphenols. Iron bioavailability was found not to be greatly affected in seeds biofortified with Se and Zn. In contrast, the inhibitory polyphenol compounds in the black bean profoundly reduced Fe bioavailability. These results provide valuable information for Se and Zn enhancement in common bean seeds and suggest the possibility to biofortify with these essential nutrients without greatly affecting mineral bioavailability to increase the food quality of common bean seeds. Published by Elsevier Masson SAS.

  7. Functional morphology and seed anatomy of the invasive weed, benghal dayflower (Commelina benghalensis): Implications for dispersal by mourning doves

    USDA-ARS?s Scientific Manuscript database

    Benghal dayflower (BD) is an exotic weed that reduces yields in many agricultural crops. Potential dispersal of this weed by migratory Mourning doves was investigated in this study. Evidence shows that doves feed on BD seeds, with some birds containing hundreds of seeds. Seeds extracted from harvest...

  8. Genome-Wide Analysis of the Complex Transcriptional Networks of Rice Developing Seeds

    PubMed Central

    Xue, Liang-Jiao; Zhang, Jing-Jing; Xue, Hong-Wei

    2012-01-01

    Background The development of rice (Oryza sativa) seed is closely associated with assimilates storage and plant yield, and is fine controlled by complex regulatory networks. Exhaustive transcriptome analysis of developing rice embryo and endosperm will help to characterize the genes possibly involved in the regulation of seed development and provide clues of yield and quality improvement. Principal Findings Our analysis showed that genes involved in metabolism regulation, hormone response and cellular organization processes are predominantly expressed during rice development. Interestingly, 191 transcription factor (TF)-encoding genes are predominantly expressed in seed and 59 TFs are regulated during seed development, some of which are homologs of seed-specific TFs or regulators of Arabidopsis seed development. Gene co-expression network analysis showed these TFs associated with multiple cellular and metabolism pathways, indicating a complex regulation of rice seed development. Further, by employing a cold-resistant cultivar Hanfeng (HF), genome-wide analyses of seed transcriptome at normal and low temperature reveal that rice seed is sensitive to low temperature at early stage and many genes associated with seed development are down-regulated by low temperature, indicating that the delayed development of rice seed by low temperature is mainly caused by the inhibition of the development-related genes. The transcriptional response of seed and seedling to low temperature is different, and the differential expressions of genes in signaling and metabolism pathways may contribute to the chilling tolerance of HF during seed development. Conclusions These results provide informative clues and will significantly improve the understanding of rice seed development regulation and the mechanism of cold response in rice seed. PMID:22363552

  9. Seed priming and transgenerational drought memory improves tolerance against salt stress in bread wheat.

    PubMed

    Tabassum, Tahira; Farooq, Muhammad; Ahmad, Riaz; Zohaib, Ali; Wahid, Abdul

    2017-09-01

    This study was conducted to evaluate the potential of seed priming following terminal drought on tolerance against salt stress in bread wheat. Drought was imposed in field sown wheat at reproductive stage (BBCH growth stage 49) and was maintained till physiological maturity (BBCH growth stage 83). Seeds of bread wheat, collected from crop raised under terminal drought and/or well-watered conditions, were subjected to hydropriming and osmopriming (with 1.5% CaCl 2 ) and were sown in soil-filled pots. After stand establishment, salt stress treatments viz. 10 mM NaCl (control) and 100 mM NaCl were imposed. Seed from terminal drought stressed source had less fat (5%), and more fibers (11%), proteins (22%) and total soluble phenolics (514%) than well-watered seed source. Salt stress reduced the plant growth, perturbed water relations and decreased yield. However, an increase in osmolytes accumulation (4-18%), malondialdehyde (MDA) (27-35%) and tissue Na + contents (149-332%) was observed under salt stress. The seeds collected from drought stressed crop had better tolerance against salt stress as indicated by better yield (28%), improved water relations (3-18%), osmolytes accumulation (21-33%), and less MDA (8%) and Na contents (35%) than progeny of well-watered crop. Seed priming, osmopriming in particular, further improved the tolerance against salt stress through improvement in leaf area, water relations, leaf proline, glycine betaine and grain yield while lowering MDA and Na + contents. In conclusion, changed seed composition during terminal drought and seed priming improved the salt tolerance in wheat by modulating the water relations, osmolytes accumulation and lipid peroxidation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.

    PubMed

    Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild

    2015-01-01

    The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  11. Soil nitrogen dynamics in switchgrass seeded to a marginally yielding cropland of South Dakota

    USDA-ARS?s Scientific Manuscript database

    Soil nitrate (NO3-), nitrate leaching, and nitrous oxide (N2O) emissions for 2009 through 2015 were monitored to explore N dynamics in switchgrass (Panicum virgatum L.) seeded to a marginally yielding cropland. Our findings indicated that N rate impacted soil NO3- (0-5 cm depth) and soil surface N2O...

  12. Processing scale-up of sicklepod (Senna obtusifolia L.) seed.

    PubMed

    Harry-O'Kuru, Rogers E; Mohamed, Abdellatif

    2009-04-08

    Sicklepod (Senna obtusifolia L.) is an invasive weed species especially of soybean and other field crops in the southeastern United States. The seeds contain a small amount (5-7%) of a highly colored fat as well as various phenolics, proteins, and galactomannans. The color of sicklepod seed oil is such that the presence of a small amount of the weed seed in a soybean crush lowers the quality of the soybean oil. Sicklepod is very prolific, and even volunteer stands yield >1000 lb of seed per acre, and prudence calls for tapping the potential of this weed as an alternative economic crop in the affected region. Pursuant to this, we have shown in laboratory-scale work the feasibility of separating the components of sicklepod seed. However, at kilogram and higher processing quantities, difficulties arise leading to modification of the earlier approach in order to efficiently separate components of the defatted seed meal. In a version for cleanly separating the proteins, the defatted meal was extracted with 0.5 M NaCl solution to remove globular proteins. Prolamins were extracted from the pellet left after salt extraction using 80% ethanol, and glutelins were then obtained in 0.1 N alkali from the residual solids left from ethanol treatment. In a pilot-scale version for water-soluble polysaccharides, the defatted meal was stirred with deionized water (DI) and centrifuged. The pooled centrifugates were heated to 92 degrees C (20-25 min), filtered, cooled to room temperature, and passed through a column of Amberlite XAD-4 to separate the polysaccharides from the anthraquinones. Senna obtusifolia L. is a one-stop-shop of a seed (from food components to medicinals).

  13. Development of a biologically based fertilizer, incorporating Bacillus megaterium A6, for improved phosphorus nutrition of oilseed rape.

    PubMed

    Hu, Xiaojia; Roberts, Daniel P; Xie, Lihua; Maul, Jude E; Yu, Changbing; Li, Yinshui; Zhang, Shujie; Liao, Xing

    2013-04-01

    Sustainable methods with diminished impact on the environment need to be developed for the production of oilseed rape in China and other regions of the world. A biological fertilizer consisting of Bacillus megaterium A6 cultured on oilseed rape meal improved oilseed rape seed yield (P < 0.0001) relative to the nontreated control in 2 greenhouse pot experiments using natural soil. This treatment resulted in slightly greater yield than oilseed rape meal without strain A6 in 1 of 2 experiments, suggesting a role for strain A6 in improving yield. Strain A6 was capable of solubilizing phosphorus from rock phosphate in liquid culture and produced enzymes capable of mineralizing organic phosphorus (acid phosphatase, phytase) in liquid culture and in the biological fertilizer. The biologically based fertilizer, containing strain A6, improved plant phosphorus nutrition in greenhouse pot experiments resulting in significantly greater available phosphorus in natural soil and in significantly greater plant phosphorus content relative to the nontreated control. Seed yield and available phosphorus in natural soil were significantly greater with a synthetic chemical fertilizer treatment, reduced in phosphorus content, than the biological fertilizer treatment, but a treatment containing the biological fertilizer combined with the synthetic fertilizer provided the significantly greatest seed yield, available phosphorus in natural soil, and plant phosphorus content. These results suggest that the biological fertilizer was capable of improving oilseed rape seed yield, at least in part, through the phosphorus-solubilizing activity of B. megaterium A6.

  14. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment

    NASA Technical Reports Server (NTRS)

    Stanciel, K.; Mortley, D. G.; Hileman, D. R.; Loretan, P. A.; Bonsi, C. K.; Hill, W. A.

    2000-01-01

    The effects of elevated CO2 on growth, pod, and seed yield, and gas exchange of 'Georgia Red' peanut (Arachis hypogaea L.) were evaluated under controlled environmental conditions. Plants were exposed to concentrations of 400 (ambient), 800, and 1200 micromoles mol-1 CO2 in reach-in growth chambers. Foliage fresh and dry weights increased with increased CO2 up to 800 micromoles mol-1, but declined at 1200 micromoles mol-1. The number and the fresh and dry weights of pods also increased with increasing CO2 concentration. However, the yield of immature pods was not significantly influenced by increased CO2. Total seed yield increased 33% from ambient to 800 micromoles mol-1 CO2, and 4% from 800 to 1200 micromoles mol-1 CO2. Harvest index increased with increasing CO2. Branch length increased while specific leaf area decreased linearly as CO2 increased from ambient to 1200 micromoles mol-1. Net photosynthetic rate was highest among plants grown at 800 micromoles mol-1. Stomatal conductance decreased with increased CO2. Carboxylation efficiency was similar among plants grown at 400 and 800 micromoles mol-1 and decreased at 1200 micromoles mol-1 CO2. These results suggest that CO2 enrichment from 400 to 800 micromoles mol-1 had positive effects on peanut growth and yield, but above 800 micromoles mol-1 enrichment seed yield increased only marginally.

  15. The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice1[OPEN

    PubMed Central

    Lan, Liu; Wang, Hongze; Xu, Yuancheng; Yang, Xiaohong; Li, Wenqiang; Tong, Hao; Xiao, Yingjie; Pan, Qingchun; Qiao, Feng; Raihan, Mohammad Sharif; Liu, Haijun; Yang, Ning; Wang, Xiaqing; Deng, Min; Jin, Minliang; Zhao, Lijun; Luo, Xin; Zhan, Wei; Liu, Nannan; Wang, Hong; Chen, Gengshen

    2017-01-01

    Maize (Zea mays) is a major staple crop. Maize kernel size and weight are important contributors to its yield. Here, we measured kernel length, kernel width, kernel thickness, hundred kernel weight, and kernel test weight in 10 recombinant inbred line populations and dissected their genetic architecture using three statistical models. In total, 729 quantitative trait loci (QTLs) were identified, many of which were identified in all three models, including 22 major QTLs that each can explain more than 10% of phenotypic variation. To provide candidate genes for these QTLs, we identified 30 maize genes that are orthologs of 18 rice (Oryza sativa) genes reported to affect rice seed size or weight. Interestingly, 24 of these 30 genes are located in the identified QTLs or within 1 Mb of the significant single-nucleotide polymorphisms. We further confirmed the effects of five genes on maize kernel size/weight in an independent association mapping panel with 540 lines by candidate gene association analysis. Lastly, the function of ZmINCW1, a homolog of rice GRAIN INCOMPLETE FILLING1 that affects seed size and weight, was characterized in detail. ZmINCW1 is close to QTL peaks for kernel size/weight (less than 1 Mb) and contains significant single-nucleotide polymorphisms affecting kernel size/weight in the association panel. Overexpression of this gene can rescue the reduced weight of the Arabidopsis (Arabidopsis thaliana) homozygous mutant line in the AtcwINV2 gene (Arabidopsis ortholog of ZmINCW1). These results indicate that the molecular mechanisms affecting seed development are conserved in maize, rice, and possibly Arabidopsis. PMID:28811335

  16. The Conserved and Unique Genetic Architecture of Kernel Size and Weight in Maize and Rice.

    PubMed

    Liu, Jie; Huang, Juan; Guo, Huan; Lan, Liu; Wang, Hongze; Xu, Yuancheng; Yang, Xiaohong; Li, Wenqiang; Tong, Hao; Xiao, Yingjie; Pan, Qingchun; Qiao, Feng; Raihan, Mohammad Sharif; Liu, Haijun; Zhang, Xuehai; Yang, Ning; Wang, Xiaqing; Deng, Min; Jin, Minliang; Zhao, Lijun; Luo, Xin; Zhou, Yang; Li, Xiang; Zhan, Wei; Liu, Nannan; Wang, Hong; Chen, Gengshen; Li, Qing; Yan, Jianbing

    2017-10-01

    Maize ( Zea mays ) is a major staple crop. Maize kernel size and weight are important contributors to its yield. Here, we measured kernel length, kernel width, kernel thickness, hundred kernel weight, and kernel test weight in 10 recombinant inbred line populations and dissected their genetic architecture using three statistical models. In total, 729 quantitative trait loci (QTLs) were identified, many of which were identified in all three models, including 22 major QTLs that each can explain more than 10% of phenotypic variation. To provide candidate genes for these QTLs, we identified 30 maize genes that are orthologs of 18 rice ( Oryza sativa ) genes reported to affect rice seed size or weight. Interestingly, 24 of these 30 genes are located in the identified QTLs or within 1 Mb of the significant single-nucleotide polymorphisms. We further confirmed the effects of five genes on maize kernel size/weight in an independent association mapping panel with 540 lines by candidate gene association analysis. Lastly, the function of ZmINCW1 , a homolog of rice GRAIN INCOMPLETE FILLING1 that affects seed size and weight, was characterized in detail. ZmINCW1 is close to QTL peaks for kernel size/weight (less than 1 Mb) and contains significant single-nucleotide polymorphisms affecting kernel size/weight in the association panel. Overexpression of this gene can rescue the reduced weight of the Arabidopsis ( Arabidopsis thaliana ) homozygous mutant line in the AtcwINV2 gene (Arabidopsis ortholog of ZmINCW1 ). These results indicate that the molecular mechanisms affecting seed development are conserved in maize, rice, and possibly Arabidopsis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L.) Seeds Using LED-Induced Hyperspectral Reflectance Imaging

    PubMed Central

    Mo, Changyeun; Kim, Giyoung; Lee, Kangjin; Kim, Moon S.; Cho, Byoung-Kwan; Lim, Jongguk; Kang, Sukwon

    2014-01-01

    In this study, we developed a viability evaluation method for pepper (Capsicum annuum L.) seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA) model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB), which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm) yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm) yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting. PMID:24763251

  18. An Economic Analysis of Pigeonpea Seed Production Technology and Its Adoption Behavior: Indian Context.

    PubMed

    Pal, Govind; Channanamchery, Radhika; Singh, R K; Kethineni, Udaya Bhaskar; Ram, H; Prasad, S Rajendra

    2016-01-01

    The present study was based on primary data collected from 100 farmers in Gulbarga district of Karnataka, India, during the agricultural year 2013-2014. Study shows that average land holding size of pigeonpea seed farmers was higher in comparison to grain farmers and district average. The study illustrates a ratio of 32 : 68 towards fixed and variable costs in pigeonpea certified seed production with a total cost of ₹ 39436 and the gross and net returns were ₹ 73300 and ₹ 33864 per hectare, respectively. The total cost of cultivation, gross return, and net return in pigeonpea seed production were higher by around 23, 32, and 44 percent than grain production, respectively. Hence, production of certified seed has resulted in a win-win situation for the farmers with higher yield and increased returns. The decision of the farmer on adoption of seed production technology was positively influenced by his education, age, land holding, irrigated land, number of crops grown, and extension contacts while family size was influencing negatively. Higher yield and profitability associated with seed production can be effectively popularized among farmers, resulting in increased certified seed production.

  19. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging.

    PubMed

    Mo, Changyeun; Kim, Giyoung; Lee, Kangjin; Kim, Moon S; Cho, Byoung-Kwan; Lim, Jongguk; Kang, Sukwon

    2014-04-24

    In this study, we developed a viability evaluation method for pepper (Capsicum annuum L.) seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400-700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares-discriminant analysis (PLS-DA) model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB), which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400-700 nm) yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600-700 nm) yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  20. Screening Allelochemical-Resistant Species of the Alien Invasive Mikania micrantha for Restoration in South China

    PubMed Central

    Wu, Ai-Ping; Li, Zi-Li; He, Fei-Fei; Wang, Yan-Hong; Dong, Ming

    2015-01-01

    To screen allelochemical-resistant species of the alien invasive weed Mikania micrantha, we studied the allelopathic inhibition effects of the leaf aqueous extract (LAE) of Mikania on seed germination and seedling growth of the 26 species native or naturalized in the invaded region in South China. Seed germination was more strongly negatively affected by LAE than seedling growth. Responses of seed germination and seed growth to LAE differed differently among the target species. LAE more strongly negatively affected seed germination, but less strongly negatively affected seedling growth, in non-legume species than in legume species. LAE more strongly negatively affected seed germination and seedling growth in native species than naturalized exotic species. Therefore, naturalized exotic non-legume seedlings are more suitable than seeds of native legume species for restoration of Mikania-invaded habitats. PMID:26177031

  1. Screening Allelochemical-Resistant Species of the Alien Invasive Mikania micrantha for Restoration in South China.

    PubMed

    Wu, Ai-Ping; Li, Zi-Li; He, Fei-Fei; Wang, Yan-Hong; Dong, Ming

    2015-01-01

    To screen allelochemical-resistant species of the alien invasive weed Mikania micrantha, we studied the allelopathic inhibition effects of the leaf aqueous extract (LAE) of Mikania on seed germination and seedling growth of the 26 species native or naturalized in the invaded region in South China. Seed germination was more strongly negatively affected by LAE than seedling growth. Responses of seed germination and seed growth to LAE differed differently among the target species. LAE more strongly negatively affected seed germination, but less strongly negatively affected seedling growth, in non-legume species than in legume species. LAE more strongly negatively affected seed germination and seedling growth in native species than naturalized exotic species. Therefore, naturalized exotic non-legume seedlings are more suitable than seeds of native legume species for restoration of Mikania-invaded habitats.

  2. Biobased lubricants and functional products from Cuphea oil

    USDA-ARS?s Scientific Manuscript database

    Cuphea (Lythraceae) is an annual plant that produces a small seed rich in saturated medium-chain triacylglycerols (TAGs). With the need for higher seed yields, oil content, and less seed shattering, Oregon State University began developing promising cuphea crosses. Cuphea PSR23 is a hybrid between C...

  3. A comparison of the toxicity of landfill leachate exposure at the seed soaking and germination stages on Zea mays L. (maize).

    PubMed

    Li, Guangke; Chen, Junyan; Yan, Wei; Sang, Nan

    2017-05-01

    To compare the toxicity of landfill leachate exposure at the early stages of seed soaking and germination on maize, a field experiment was conducted to evaluate the physiological aspects of growth, yield and potential clastogenicity of root-tip cells. The maizes were treated with leachate at levels of 2%, 10%, 20%, 30% or 50% (V/V). First, the change of physiological indexes, including chlorophyll (Chl), Malondialdehyde (MDA) and Reactive oxygen species (ROS) levels, combined with yield all showed that soaking with leachate, but not germination, generated a greater ecological risk on maize. After a soaking treatment of maize with 50% leachate, the Chl, MDA and ROS levels during a vigorous growth period were 47.3%, 149.8% and 309.7%, respectively, of the control, whereas the yield decreased to 68.6% of the control. In addition, our results demonstrated that the leachate at lower levels could promote growth. This is mainly embodied in that the yield of maize treated with 10% leachate at the soaking stage increased to 116.0% of the control. Moreover, the cytological analysis experiment also demonstrated that the ecological risk of leachate still exists in both cases. Furthermore, the gray relational analysis showed that the ear row number and tassel branch number were the major factors affecting the yield of maize treated with 50% leachate at the stages of soaking and germination, respectively. In general, these results are helpful in understanding the phytotoxicity of leachate, which provides additional reference data for risk assessment and management of leachate. Copyright © 2016. Published by Elsevier B.V.

  4. Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L . Orrock; B. J. Danielson; M. J. Burns

    2003-02-03

    J.L. Orrock, B.J. Danielson, M.J. Burns, and D.J. Levey. 2003. Spatial ecology of predator-prey interactions: corridors and patch shape influence seed predation. Ecology, 84(10):2589-2599. Abstract: Corridors that connect patches of disjunct habitat may be promising tools for mediating the negative impacts of habitat fragmentation, but little is known about how corridors affect ecological interactions. In eight 12-ha experimental landscapes, we examined how corridors affect the impact of invertebrate, rodent, and avian seed predators on pokeweed, Phytolacca americana. Over 13 months in 2000 and 2001, we quantified the effects of patch shape, connectivity, and predator type on the number of seedsmore » germinating in the field (germinants), seed removal, and the viability of remaining seeds. Corridors did not affect the number of P. americana germinants in experimental exclosures or the viability of seeds remaining in exclosures. However, corridors affected the removal of seeds in a predator-specific manner: invertebrates removed more seeds in unconnected patches, whereas rodents removed more seeds in connected patches. Seed removal by birds was similar in connected and unconnected patches. Total seed removal by all seed predators was not affected by corridors, because invertebrates removed more seeds where rodents removed fewer seeds, and vice versa. Overall, seed predation signi®cantly reduced the number and viability of remaining seeds, and reduced the number of germinants in 2000 but not in 2001. The abundance of naturally occurring P. americana plants in our experimental patches in 2000 decreased with increasing seed removal from exclosures but was not related to viability or germinants in 2000, suggesting that seed removal may shape the distribution and abundance of this species. Complementary patterns of seed removal by rodents and invertebrates suggest that corridors alter the effects of these predator taxa by changing the relative amounts of edge and core (nonedge) habitats in a patch. Because invertebrates and rodents do not completely overlap in the seeds they consume, corridors may change predation pressure on seeds that are primarily consumed by one predator type, with potential consequences for the composition of plant and seed predator communities.« less

  5. Effects of Boron foliar-fertilization on irrigated soybean (Glycine max L. Merr.) in the Mississippi River Valley Delta of the midsouth, USA

    USDA-ARS?s Scientific Manuscript database

    Irrigated soybeans in the Mississippi Delta have been reported to with increased seed yields when fertilized with a boron (B). Furrow irrigated soybean cultivars were foliar fertilized with a B solution at growth stages R3 and/or R5. No consistent trends in yield or seed weight were noted. No phy...

  6. Seed-to-seed growth of superdwarf wheat and arabidopsis using red light-emitting diodes (LED's): A report on baseline tests conducted for NASA's proposed Plant Research Unit (PRU)

    NASA Technical Reports Server (NTRS)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.

    1996-01-01

    To determine the influence of narrow-spectrum red light-emitting diodes (LED's) on plant growth and seed production, wheat (Triticum aestivum L.cv Superdwarf) and Arabidopsis (Arabidopsis thaliana (L.) Heynh, race Columbia) plants were grown under red LED's (peak emission 660 nm) and compared to plants grown under daylight fluorescent (white) light and red LED's supplemented with either 1 percent or 10 percent blue fluorescent (BF) light. Wheat growth under red LED's alone appeared normal, whereas Arabidopsis under red LED's alone developed curled leaf margins and a spiraling growth pattern. Both wheat and Arabidopsis under red LED's alone or red LED's + 1 percent BF light had significantly lower seed yield than plants grown under white light. However, the addition of 10 percent BF light to red LED's partially alleviated the adverse effect of red LED's on yield. Irrespective of the light treatment, viable seeds were produced by wheat(75-92 percent germination rate) and Arabidopsis (85-100 percent germination rate). These results indicate that wheat, and to a lesser extent Arabidopsis, can be successfully grown under red LED's alone, but supplemental blue light is required with red LED's to sufficiently match the growth characteristics and seed yield associated with plants grown under white light.

  7. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity.

    PubMed

    Stoknes, Ketil; Beyer, David M; Norgaard, Erik

    2013-07-01

    Source-separated food waste is increasingly being treated by means of hygienisation followed by anaerobic digestion. The fibrous digester residue (digestate) is a potential mushroom substrate, while heat from the biogas can provide steam for the cultivation process. Using bag experiments the present study explored digestate as a full substitute for chicken manure conventionally used in mushroom composts. After mixing, a rapid temperature development in the compost was stimulated by a small amount of chicken manure, as aerobic microbial seeding. Mechanical elimination of lumps was essential for full mycelial colonisation. Three straw digestate composts had Agaricus bisporus mushroom yields above 370 g kg⁻¹ substrate. The optimal compost water content was 600 g kg⁻¹ at inoculation, and high digestate content (up to 500 g kg⁻¹ by dry weight) did not affect yield for this species. High yields of A. subrufescens (200 g kg⁻¹) were related to drier composts of lower digestate content (more straw) and lower pH values at inoculation. Digestate successfully substituted chicken manure in straw composts without affecting mushroom yields for both species. There were no clear differences between straw digestate and control composts in terms of mushroom dry matter, size, nitrogen or ash content. © 2012 Society of Chemical Industry.

  8. Efficient Isoprene Secondary Organic Aerosol Formation from a Non-IEPOX Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiumeng; D’Ambro, Emma L.; Lee, Ben H.

    2016-09-20

    With a large global emission rate and high reactivity, isoprene has a profound effect upon atmospheric chemistry and composition. The atmospheric pathways by which isoprene converts to secondary organic aerosol (SOA) and how anthropogenic pollutants such as nitrogen oxides and sulfur affect this process are a subject of intense research because particles affect Earth’s climate and local air quality. In the absence of both nitrogen oxides and reactive aqueous seed particles, we measure SOA mass yields from isoprene photochemical oxidation of up to 15%, which are factors of 2, or more, higher than those typically used in coupled chemistry-climate models.more » SOA yield is initially constant with the addition of increasing amounts of nitric oxide (NO) but then sharply decreases for input concentrations above 10 ppbv. Online measurements of aerosol molecular composition show that the fate of second-generation RO2 radicals is key to understanding the efficient SOA formation and the NOx dependent yields described here and in the literature. These insights allow for improved quantitative estimates of SOA formation in the pre-industrial atmosphere and in biogenic-rich regions with limited anthropogenic impacts and suggest a more complex representation of NOx dependent SOA yields may be important in models.« less

  9. Effect of ultrasound pre-treatment of hemp (Cannabis sativa L.) seed on supercritical CO2 extraction of oil.

    PubMed

    Da Porto, C; Natolino, A; Decorti, D

    2015-03-01

    Ultrasound pre-treatment of intact hemp seeds without any solvent assistance was carried out for 10, 20 and 40 min prior to SCCO2 extraction at 40 °C, 300 bar and 45 kg CO2/kg feed. Sonication time effect on SC-CO2 extraction was investigated by the extraction kinetics. The maximum extraction yield was estimated to be 24.03 (% w/w) after 10 min of ultrasonic pre-treatment. The fatty acid compositions of the oils extracted by SC-CO2 without and with ultrasound pre-treatments was analyzed using gas chromatography. It was shown that the content of linoleic, α-linolenic and oleic acids (the most abundant unsaturated fatty acids) of the hemp seed oils were not affected significantly by the application of ultrasound. UV spectroscopy indices (K232 and K268) and antiradical capacity were used to follow the quality of oils. Significant were the changes in their antiradical capacity due to ultrasound treatment. A comparison with the oil extracted by Soxhlet was also given.

  10. Brachypodium seed - a potential model for studying grain development of cereal crops

    USDA-ARS?s Scientific Manuscript database

    Seeds of small grains are important resources for human and animal food. The understanding of seed biology is essential for crop improvement by increasing grain yields and nutritional value. In the last decade, Brachypodium distachyon has been developed as a model plant for temperate cereal grasses...

  11. Improving sustainable seed yield in Wyoming big sagebrush

    Treesearch

    Jeremiah C. Armstrong

    2007-01-01

    As part of the Great Basin Restoration Initiative, the effects of browsing, competition removal, pruning, fertilization and seed collection methods on increasing seed production in Wyoming big sagebrush (Artemisia tridentata Nutt. spp wyomingensis Beetle & Young) were studied. Study sites were located in Idaho, Nevada, and Utah. A split-plot...

  12. Nitric oxide and plant iron homeostasis.

    PubMed

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. © 2015 New York Academy of Sciences.

  13. The Douglas-fir seed-source movement trial yields early results

    Treesearch

    Constance A. Harrington; Brad St. Clair

    2017-01-01

    Climate change in the 21st century is likely to dramatically alter the growing conditions that Pacific Northwest tree species experience. It has been suggested that foresters plan for these changes by moving seed sources to locations where the seed-source environment and the future climate will be similar. Some people have called this type of seed-source movement “...

  14. Effects of foliar boron application on seed composition, cell wall boron, and seed delta 15N and delta 13C isotopes in soybean are influenced by water stress

    USDA-ARS?s Scientific Manuscript database

    Although the effect of foliar boron (B) application on yield and quality is well established for crops, limited information and controversial results still exist on the effects of foliar B application on soybean seed composition (seed protein, oil, fatty acids, and sugars). The objective of this res...

  15. Mass production alternatives for fast-growing spruce hybrids

    Treesearch

    Hans Nienstaedt

    1977-01-01

    A reciptrocal crossing program of Picea glauca and P. omorika, and P. mariana and P. omorika with adequate intraspecific control crosses was carried out. Yields of full seed/cone ranged from 0 to 2.6 for the P. glauca-P. omorika combination. These low seed sets and a 9-day difference in female receptivity rule out producing this hybrid via seed. The full seed/cone...

  16. Heterotic patterns in rapeseed (Brassica napus L.): I. Crosses between spring and Chinese semi-winter lines.

    PubMed

    Qian, W; Sass, O; Meng, J; Li, M; Frauen, M; Jung, C

    2007-06-01

    Chinese semi-winter rapeseed is genetically diverse from Canadian and European spring rapeseed. This study was conducted to evaluate the potential of semi-winter rapeseed for spring rapeseed hybrid breeding, to assess the genetic effects involved, and to estimate the correlation of parental genetic distance (GD) with hybrid performance, heterosis, general combining ability (GCA) and specific combining ability (SCA) in crosses between spring and semi-winter rapeseed lines. Four spring male sterile lines from Germany and Canada as testers were crossed with 13 Chinese semi-winter rapeseed lines to develop 52 hybrids, which were evaluated together with their parents and commercial hybrids for seed yield and oil content in three sets of field trials with 8 environments in Canada and Europe. The Chinese parental lines were not adapted to local environmental conditions as demonstrated by poor seed yields per se. However, the hybrids between the Chinese parents and the adapted spring rapeseed lines exhibited high heterosis for seed yield. The average mid-parent heterosis was 15% and ca. 50% of the hybrids were superior to the respective hybrid control across three sets of field trials. Additive gene effects mainly contributed to hybrid performance since the mean squares of GCA were higher as compared to SCA. The correlation between parental GD and hybrid performance and heterosis was found to be low whereas the correlation between GCA((f + m)) and hybrid performance was high and significant in each set of field trials, with an average of r = 0.87 for seed yield and r = 0.89 for oil content, indicating that hybrid performance can be predicted by GCA((f + m)). These results demonstrate that Chinese semi-winter rapeseed germplasm has a great potential to increase seed yield in spring rapeseed hybrid breeding programs in Canada and Europe.

  17. Effects of inbreeding on coastal Douglas fir growth and yield in operational plantations: a model-based approach.

    PubMed

    Wang, Tongli; Aitken, Sally N; Woods, Jack H; Polsson, Ken; Magnussen, Steen

    2004-04-01

    In advanced generation seed orchards, tradeoffs exist between genetic gain obtained by selecting the best related individuals for seed orchard populations, and potential losses due to subsequent inbreeding between these individuals. Although inbreeding depression for growth rate is strong in most forest tree species at the individual tree level, the effect of a small proportion of inbreds in seed lots on final stand yield may be less important. The effects of inbreeding on wood production of mature stands cannot be assessed empirically in the short term, thus such effects were simulated for coastal Douglas fir [ Pseudotsuga menziesii var. menziesii (Mirb.) Franco] using an individual-tree growth and yield model TASS (Tree and Stand Simulator). The simulations were based on seed set, nursery culling rates, and 10-year-old field test performance for trees resulting from crosses between unrelated individuals and for inbred trees produced through mating between half-sibs, full-sibs, parents and offspring and self-pollination. Results indicate that inclusion of a small proportion of related clones in seed orchards will have relatively low impacts on stand yields due to low probability of related individuals mating, lower probability of producing acceptable seedlings from related matings than from unrelated matings, and a greater probability of competition-induced mortality for slower growing inbred individuals than for outcrossed trees. Thus, competition reduces the losses expected due to inbreeding depression at harvest, particularly on better sites with higher planting densities and longer rotations. Slightly higher breeding values for related clones than unrelated clones would offset or exceed the effects of inbreeding resulting from related matings. Concerns regarding the maintenance of genetic diversity are more likely to limit inclusion of related clones in orchards than inbreeding depression for final stand yield.

  18. Alfalfa seed germination and yield ratio and alfalfa sprout microbial keeping quality following irradiation of seeds and sprouts.

    PubMed

    Rajkowski, K T; Thayer, D W

    2001-12-01

    Foods can be treated with gamma radiation, a nonthermal food process, to inactivate foodborne pathogens and fungi, to kill insects on or in fruits and vegetables, and to increase shelf life. Gamma irradiation is especially well suited for these treatments because of its ability to penetrate commercial pallets of foods. Irradiated fruits, vegetables, poultry, and hamburger have been received favorably by the public and are now available in supermarkets. The use of irradiation on fresh alfalfa sprouts was studied to determine its effect on keeping quality as related to aerobic microbial load. After an irradiation dose of 2 kGy, the total aerobic count decreased from 10(5-8) to 10(3-5) CFU/g, and the total coliform counts decreased from 10(5-8) to 10(3-0) CFU/g. The results showed that the sprouts maintained their structure after irradiation, and the keeping quality was extended to 21 days, which is an increase of 10 days from the usual shelf life. The effect of various doses of irradiation on alfalfa seeds as measured by percent germination and yield ratio (wt/wt) of sprouts was determined. There was little effect on the percent germination, but as the dose increased, the yield ratio of alfalfa sprouts decreased. As the length of growing time increased, so did the yield ratio of the lower dose irradiated seeds (1 to 2 kGy). The irradiation process can be used to increase the shelf life of alfalfa sprouts, and irradiating alfalfa seeds at doses up to 2 kGy does not unacceptably decrease the yield ratio for production of alfalfa sprouts.

  19. Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set.

    PubMed

    Pang, Jiayin; Turner, Neil C; Khan, Tanveer; Du, Yan-Lei; Xiong, Jun-Lan; Colmer, Timothy D; Devilla, Rosangela; Stefanova, Katia; Siddique, Kadambot H M

    2017-04-01

    Flower and pod production and seed set of chickpea (Cicer arietinum L.) are sensitive to drought stress. A 2-fold range in seed yield was found among a large number of chickpea genotypes grown at three dryland field sites in south-western Australia. Leaf water potential, photosynthetic characteristics, and reproductive development of two chickpea genotypes with contrasting yields in the field were compared when subjected to terminal drought in 106kg containers of soil in a glasshouse. The terminal drought imposed from early podding reduced biomass, reproductive growth, harvest index, and seed yield of both genotypes. Terminal drought at least doubled the percentage of flower abortion, pod abscission, and number of empty pods. Pollen viability and germination decreased when the fraction of transpirable soil water (FTSW) decreased below 0.18 (82% of the plant-available soil water had been transpired); however, at least one pollen tube in each flower reached the ovary. The young pods which developed from flowers produced when the FTSW was 0.50 had viable embryos, but contained higher abscisic acid (ABA) concentrations than those of the well-watered plants; all pods ultimately aborted in the drought treatment. Cessation of seed set at the same soil water content at which stomata began to close and ABA increased strongly suggested a role for ABA signalling in the failure to set seed either directly through abscission of developing pods or seeds or indirectly through the reduction of photosynthesis and assimilate supply to the seeds. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Integration of soil application and seed treatment formulations of Trichoderma species for management of wet root rot of mungbean caused by Rhizoctonia solani.

    PubMed

    Dubey, Sunil C; Bhavani, Ranganaicker; Singh, Birendra

    2011-09-01

    The efficacy of seed dressing and soil application formulations from the isolates of Trichoderma viride (IARI P1; MTCC 5369), T. virens (IARI P3; MTCC 5370) and T. harzianum (IARI P4; MTCC 5371) were evaluated individually and in combination in pot and field experiments during the rainy seasons of 2005, 2006 and 2007 for the management of wet root rot (Rhizoctonia solani) and improvement in the yield of mungbean. A seed dressing formulation, Pusa 5SD, and soil application formulations, Pusa Biogranule 6 (PBG 6) and Pusa Biopellet 16G (PBP 16G), based on Trichoderma virens, were found to be superior to other formulations in reducing disease incidence and increasing seed germination and shoot and root lengths in mungbean. In field experiments, a combination of soil application with PBP 16G (T. virens) and seed treatment with Pusa 5SD (T. virens) + carboxin was superior to any of these formulations individually in increasing seed germination, shoot and root lengths and grain yield and reducing wet root rot incidence in mungbean. Seed treatment was more effective than soil application for all the evaluated parameters. The combined application of Pusa 5SD and carboxin was also superior to individual treatment. The efficacy of the evaluated formulations against wet root rot of mungbean proved that the integration of soil application of PBP 16G and seed treatment with Pusa 5SD + carboxin is highly effective for the management of wet root rot, increasing plant growth and grain yield of mungbean. Copyright © 2011 Society of Chemical Industry.

  1. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    DOE PAGES

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; ...

    2016-05-23

    Soybean ( Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCNmore » resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Furthermore, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.« less

  2. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan

    Soybean ( Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCNmore » resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Furthermore, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.« less

  3. Seed population dynamics on abandoned slopes in the hill and gully Loess Plateau region of China

    NASA Astrophysics Data System (ADS)

    Yu, Weijie; Jiao, Juying

    2017-04-01

    Recovery of natural vegetation is an effective but slow approach to control the soil erosion in the Chinese hill and gully Loess Plateau region. As seed stage is particularly vulnerable to environmental conditions, characteristics of seed population should be needed to study for determining whether the recovery of natural vegetation is limited during this stage on the abandoned slopes in this region. The study was performed on three abandoned slopes in a watershed with an area of 8.27 km2in the Shaanxi province of China. The differences in soil seed banks were investigated in two different points in time, late March2011 and early April 2013. Main factors of seed population dynamics, such as seed yield of dominant species, seed inputs by seed rain as well as seed outputs through seed loss by overland flow and seedling emergence, were monitored from late March 2011 to early April 2013. In this study, seed rain densities of the main later successional species, i.e., Lespedeza davurica, Stipa bungeana and Artemisia gmelinii accounted for 51.5-71.6% of their own seed yields. The soil seed bank density in early April 2013 was larger than that in late March 2011. The density of seed inputs by seed rain was 10186 seeds•m-2, and the total seed bank, including seed rain and seeds present in the soil seed bank in late March 2011, reached a density of 15018 seeds•m-2 during the study period. Seed densities of loss due to overland flow and seedling emergence were 79 seeds•m-2 from 20 species and 938 seedlings•m-2 that belonged to 38 species during a study period, and the seed output through them accounted for 0.5% and 6.3% of the total seed bank, respectively. The study concluded that overland flow could not result in large numbers of seeds loss and seeds were accumulating in the soil seed bank due to seed rain, and vegetation succession might be limited by curbed spatial seed dispersal and seedling establishment.

  4. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.

    PubMed

    Lu, Guangwen; Coneva, Viktoriya; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Nambara, Eiji; Bi, Yong-Mei; Rothstein, Steven J

    2015-09-01

    Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. Strategies for soil-based precision agriculture in cotton

    NASA Astrophysics Data System (ADS)

    Neely, Haly L.; Morgan, Cristine L. S.; Stanislav, Scott; Rouze, Gregory; Shi, Yeyin; Thomasson, J. Alex; Valasek, John; Olsenholler, Jeff

    2016-05-01

    The goal of precision agriculture is to increase crop yield while maximizing the use efficiency of farm resources. In this application, UAV-based systems are presenting agricultural researchers with an opportunity to study crop response to environmental and management factors in real-time without disturbing the crop. The spatial variability soil properties, which drive crop yield and quality, cannot be changed and thus keen agronomic choices with soil variability in mind have the potential to increase profits. Additionally, measuring crop stress over time and in response to management and environmental conditions may enable agronomists and plant breeders to make more informed decisions about variety selection than the traditional end-of-season yield and quality measurements. In a previous study, seed-cotton yield was measured over 4 years and compared with soil variability as mapped by a proximal soil sensor. It was found that soil properties had a significant effect on seed-cotton yield and the effect was not consistent across years due to different precipitation conditions. However, when seed-cotton yield was compared to the normalized difference vegetation index (NDVI), as measured using a multispectral camera from a UAV, predictions improved. Further improvement was seen when soil-only pixels were removed from the analysis. On-going studies are using UAV-based data to uncover the thresholds for stress and yield potential. Long-term goals of this research include detecting stress before yield is reduced and selecting better adapted varieties.

  6. Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity

    NASA Astrophysics Data System (ADS)

    Liu, Tengyu; Huang, Dan Dan; Li, Zijun; Liu, Qianyun; Chan, ManNin; Chan, Chak K.

    2018-04-01

    The formation of secondary organic aerosol (SOA) has been widely studied in the presence of dry seed particles at low relative humidity (RH). At higher RH, initially dry seed particles can exist as wet particles due to water uptake by the seeds as well as the SOA. Here, we investigated the formation of SOA from the photooxidation of toluene using an oxidation flow reactor in the absence of NOx under a range of OH exposures on initially wet or dry ammonium sulfate (AS) seed particles at an RH of 68 %. The ratio of the SOA yield on wet AS seeds to that on dry AS seeds, the relative SOA yield, decreased from 1.31 ± 0.02 at an OH exposure of 4.66 × 1010 molecules cm-3 s to 1.01 ± 0.01 at an OH exposure of 5.28 × 1011 molecules cm-3 s. This decrease may be due to the early deliquescence of initially dry AS seeds after being coated by highly oxidized toluene-derived SOA. SOA formation lowered the deliquescence RH of AS and resulted in the uptake of water by both AS and SOA. Hence the initially dry AS seeds contained aerosol liquid water (ALW) soon after SOA formed, and the SOA yield and ALW approached those of the initially wet AS seeds as OH exposure and ALW increased, especially at high OH exposure. However, a higher oxidation state of the SOA on initially wet AS seeds than that on dry AS seeds was observed at all levels of OH exposure. The difference in mass fractions of m / z 29, 43 and 44 of SOA mass spectra, obtained using an aerosol mass spectrometer (AMS), indicated that SOA formed on initially wet seeds may be enriched in earlier-generation products containing carbonyl functional groups at low OH exposures and later-generation products containing acidic functional groups at high exposures. Our results suggest that inorganic dry seeds become at least partially deliquesced particles during SOA formation and hence that ALW is inevitably involved in the SOA formation at moderate RH. More laboratory experiments conducted with a wide variety of SOA precursors and inorganic seeds under different NOx and RH conditions are warranted.

  7. Biochemical methane potential, biodegradability, alkali treatment and influence of chemical composition on methane yield of yard wastes.

    PubMed

    Gunaseelan, Victor Nallathambi

    2016-03-01

    In this study, the biochemical CH4 potential, rate, biodegradability, NaOH treatment and the influence of chemical composition on CH4 yield of yard wastes generated from seven trees were examined. All the plant parts were sampled for their chemical composition and subjected to the biochemical CH4 potential assay. The component parts exhibited significant variation in biochemical CH4 potential, which was reflected in their ultimate CH4 yields that ranged from 109 to 382 ml g(-1) volatile solids added and their rate constants that ranged from 0.042 to 0.173 d(-1). The biodegradability of the yard wastes ranged from 0.26 to 0.86. Variation in the biochemical CH4 potential of the yard wastes could be attributed to variation in the chemical composition of the different fractions. In the Thespesia yellow withered leaf, Tamarindus fruit pericarp and Albizia pod husk, NaOH treatment enhanced the ultimate CH4 yields by 17%, 77% and 63%, respectively, and biodegradability by 15%, 77% and 61%, respectively, compared with the untreated samples. The effectiveness of NaOH treatment varied for different yard wastes, depending on the amounts of acid detergent fibre content. Gliricidia petals, Prosopis leaf, inflorescence and immature pod, Tamarindus seeds, Albizia seeds, Cassia seeds and Delonix seeds exhibited CH4 yields higher than 300 ml g(-1) volatile solids added. Multiple linear regression models for predicting the ultimate CH4 yield and biodegradability of yard wastes were designed from the results of this work. © The Author(s) 2016.

  8. Effects of diets containing grape seed, linseed, or both on milk production traits, liver and kidney activities, and immunity of lactating dairy ewes.

    PubMed

    Nudda, A; Correddu, F; Marzano, A; Battacone, G; Nicolussi, P; Bonelli, P; Pulina, G

    2015-02-01

    This study aimed to evaluate the effects of the dietary inclusion of grape seed, alone or in combination with linseed, on milk production traits, immune response, and liver and kidney metabolic activity of lactating ewes. Twenty-four Sarda dairy ewes were randomly assigned to 4 dietary treatments consisting of a control diet (CON), a diet containing 300 g/d per head of grape seed (GS), a diet containing 220 g/d per head of extruded linseed (LIN), and a diet containing a mix of 300 g/d per head of grape seed and 220 g/d per head of extruded linseed (MIX). The study lasted 10 wk, with 2 wk of adaptation period and 8 wk of experimental period. Milk yield was measured and samples were collected weekly and analyzed for fat, protein, casein, lactose, pH, milk urea nitrogen, and somatic cell count. Blood samples were collected every 2 wk by jugular vein puncture and analyzed for hematological parameters, for albumin, alkaline phosphatase, bilirubin, creatinine, gamma glutamyltransferase, aspartate aminotransferase, alanine aminotransferase, protein, blood urea nitrogen, and for anti-albumin IgG, IL-6, and lymphocyte T-helper (CD4(+)) and lymphocyte T-cytotoxic (CD8(+)) cells. On d 0, 45, and 60 of the trial, lymphocyte response to phytohemagglutinin was determined in vivo on each animal by measuring skin-fold thickness (SFT) at the site of phytohemagglutinin injection. Humoral response to chicken egg albumin was stimulated by a subcutaneous injection with albumin. Dietary treatments did not affect milk yield and composition. Milk urea nitrogen and lactose were affected by diet × period. Diets did not influence hematological, kidney, and liver parameters, except for blood urea nitrogen, which decreased in LIN and increased in MIX compared with CON and GS. Dietary treatments did not alter CD4(+), CD8(+), and CD4(+)-to-CD8(+) ratio. The SFT was reduced in GS and MIX and increased in LIN compared with CON. The IgG and IL-6 were affected by diet × period. The reduction in IgG on d 60 and SFT in ewes fed GS suggests an immunomodulatory effect of this residue. The limited variation in milk and hematological and metabolic parameters suggests that GS and LIN can be included, alone or in combination, in the diet of dairy ewes without adverse effects on milk production and health status. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Process optimisation of microwave-assisted extraction of peony ( Paeonia suffruticosa Andr .) seed oil using hexane-ethanol mixture and its characterisation

    Treesearch

    Xiaoli Sun; Wengang Li; Jian Li; Yuangang Zu; Chung-Yun Hse; Jiulong Xie; Xiuhua Zhao

    2016-01-01

    Ethanol and hexane mixture agent microwave-assisted extraction (MAE) method was conducted to extract peony (Paeonia suffruticosa Andr.) seed oil (PSO). The aim of the study was to optimise the extraction for both yield and energy consumption in mixture agent MAE. The highest oil yield (34.49%) and lowest unit energy consumption (14 125.4 J g -1)...

  10. Experimental study of bioethanol production using mixed cassava and durian seed

    NASA Astrophysics Data System (ADS)

    Seer, Q. H.; Nandong, J.; Shanon, T.

    2017-06-01

    The production of biofuels using conventional fermentation feedstocks, such as sugar-and starch-based agricultural crops will in the long-term lead to a serious competition with human-animal food consumption. To avoid this competition, it is important to explore various alternative feedstocks especially those from inedible waste materials. Potentially, fruit wastes such as damaged fruits, peels and seeds represent alternative cheap feedstocks for biofuel production. In this work, an experimental study was conducted on ethanol production using mixed cassava and durian seeds through fermentation by Saccharomyces cerevisiae yeast. The effects of pH, temperature and ratio of hydrolyzed cassava to durian seeds on the ethanol yield, substrate consumption and product formation rates were analyzed in the study. In flask-scale fermentation using the mixed cassava-durian seeds, it was found that the highest ethanol yield of 45.9 and a final ethanol concentration of 24.92 g/L were achieved at pH 5.0, temperature 35°C and 50:50 volume ratio of hydrolyzed cassava to durian seeds for a batch period of 48 hours. Additionally, the ethanol, glucose and biomass concentration profiles in a lab-scale bioreactor were examined for the fermentation using the proposed materials under the flask-scale optimum conditions. The ethanol yield of 35.7 and a final ethanol concentration of 14.61 g/L were obtained over a period of 46 hours where the glucose was almost fully consumed. It is worth noting that both pH and temperature have significant impacts on the fermentation process using the mixed cassava-durian seeds.

  11. A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa

    DOE PAGES

    Dalal, Jyoti; Lopez, Harry; Vasani, Naresh B.; ...

    2015-10-29

    Camelina sativa is an oilseed crop with great potential for biofuel production on marginal land. The seed oil from camelina has been converted to jet fuel and improved fuel efficiency in commercial and military test flights. Hydrogenation-derived renewable diesel from camelina is environmentally superior to that from canola due to lower agricultural inputs, and the seed meal is FDA approved for animal consumption. However, relatively low yield makes its farming less profitable. Our study is aimed at increasing camelina seed yield by reducing carbon loss from photorespiration via a photorespiratory bypass. Genes encoding three enzymes of the Escherichia coli glycolatemore » catabolic pathway were introduced: glycolate dehydrogenase (GDH), glyoxylate carboxyligase (GCL) and tartronic semialdehyde reductase (TSR). These enzymes compete for the photorespiratory substrate, glycolate, convert it to glycerate within the chloroplasts, and reduce photorespiration. As a by-product of the reaction, CO 2 is released in the chloroplast, which increases photosynthesis. Camelina plants were transformed with either partial bypass (GDH), or full bypass (GDH, GCL and TSR) genes. Furthermore, transgenic plants were evaluated for physiological and metabolic traits.« less

  12. A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalal, Jyoti; Lopez, Harry; Vasani, Naresh B.

    Camelina sativa is an oilseed crop with great potential for biofuel production on marginal land. The seed oil from camelina has been converted to jet fuel and improved fuel efficiency in commercial and military test flights. Hydrogenation-derived renewable diesel from camelina is environmentally superior to that from canola due to lower agricultural inputs, and the seed meal is FDA approved for animal consumption. However, relatively low yield makes its farming less profitable. Our study is aimed at increasing camelina seed yield by reducing carbon loss from photorespiration via a photorespiratory bypass. Genes encoding three enzymes of the Escherichia coli glycolatemore » catabolic pathway were introduced: glycolate dehydrogenase (GDH), glyoxylate carboxyligase (GCL) and tartronic semialdehyde reductase (TSR). These enzymes compete for the photorespiratory substrate, glycolate, convert it to glycerate within the chloroplasts, and reduce photorespiration. As a by-product of the reaction, CO 2 is released in the chloroplast, which increases photosynthesis. Camelina plants were transformed with either partial bypass (GDH), or full bypass (GDH, GCL and TSR) genes. Furthermore, transgenic plants were evaluated for physiological and metabolic traits.« less

  13. Genome-Wide Association of Rice Blast Disease Resistance and Yield-Related Components of Rice.

    PubMed

    Wang, Xueyan; Jia, Melissa H; Ghai, Pooja; Lee, Fleet N; Jia, Yulin

    2015-12-01

    Robust disease resistance may require an expenditure of energy that may limit crop yield potential. In the present study, a subset of a United States Department of Agriculture rice core collection consisting of 151 accessions was selected using a major blast resistance (R) gene, Pi-ta, marker and was genotyped with 156 simple sequence repeat (SSR) markers. Disease reactions to Magnaporthe oryzae, the causal agent of rice blast disease, were evaluated under greenhouse and field conditions, and heading date, plant height, paddy and brown seed weight in two field environments were analyzed, using an association mapping approach. A total of 21 SSR markers distributed among rice chromosomes 2 to 12 were associated with blast resistance, and 16 SSR markers were associated with seed weight, heading date, and plant height. Most noticeably, shorter plants were significantly correlated with resistance to blast, rice genomes with Pi-ta were associated with lighter seed weights, and the susceptible alleles of RM171 and RM6544 were associated with heavier seed weight. These findings unraveled a complex relationship between disease resistance and yield-related components.

  14. Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes.

    PubMed

    Teh, Sue-Siang; Birch, Edward John

    2014-01-01

    The effectiveness of ultrasonic extraction of phenolics and flavonoids from defatted hemp, flax and canola seed cakes was compared to the conventional extraction method. Ultrasonic treatment at room temperature showed increased polyphenol extraction yield and antioxidant capacity by two-fold over the conventional extraction method. Different combinations of ultrasonic treatment parameters consisting of solvent volume (25, 50, 75 and 100 mL), extraction time (20, 30 and 40 min) and temperature (40, 50, 60 and 70 °C) were selected for polyphenol extractions from the seed cakes. The chosen parameters had a significant effect (p<0.05) on the polyphenol extraction yield and subsequent antioxidant capacity from the seed cakes. Application of heat during ultrasonic extraction yielded higher polyphenol content in extracts compared to the non-heated extraction. From an orthogonal design test, the best combination of parameters was 50 mL of solvent volume, 20 min of extraction time and 70 °C of ultrasonic temperature. Copyright © 2013. Published by Elsevier B.V.

  15. Effects of boron nutrition and water stress on nitrogen fixation, seed d15N and d13C daynamics, and seed composition in soybean cultivars differing in maturities

    USDA-ARS?s Scientific Manuscript database

    Water stress is a major abiotic stress factor, resulting in a major yield loss and poor seed quality. Little information is available on the effects of B nutrition on seed composition under water stress. Therefore, the objective of the current research was to investigate the effects of foliar B nutr...

  16. Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds.

    PubMed

    Ghafoor, Kashif; Al-Juhaimi, Fahad Y; Choi, Yong Hee

    2012-12-01

    Supercritical fluid extraction (SFE) technique was applied and optimized for temperature, CO₂ pressure and ethanol (modifier) concentration using orthogonal array design and response surface methodology for the extract yield, total phenols and antioxidants from grape (Vitis labrusca B.) seeds. Effects of extraction temperature and pressure were found to be significant for all these response variables in SFE process. Optimum SFE conditions (44 ~ 46 °C temperature and 153 ~ 161 bar CO₂ pressure) along with ethanol (<7 %) as modifier, for the maximum predicted values of extract yield (12.09 %), total phenols (2.41 mg GAE/ml) and antioxidants (7.08 mg AAE/ml), were used to obtain extracts from grape seeds. The predicted values matched well with the experimental values (12.32 % extract yield, 2.45 mg GAE/ml total phenols and 7.08 mg AAE/ml antioxidants) obtained at optimum SFE conditions. The antiradical assay showed that SFE extracts of grape seeds can scavenge more than 85 % of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The grape seeds extracts were also analyzed for hydroxybenzoic acids which included gallic acid (1.21 ~ 3.84 μg/ml), protocatechuic acid (3.57 ~ 11.78 μg/ml) and p-hydroxybenzoic acid (206.72 ~ 688.18 μg/ml).

  17. Identification of soybean genotypes adaptive to tropical area and suitable for industry

    NASA Astrophysics Data System (ADS)

    Adie, M. M.; Krisnawati, A.

    2018-01-01

    Soybeans in Indonesia are mostly used for raw material of tempeh industry. This study aims to identify 150 soybean genotypes for their suitability for raw materials of tempeh and adaptability to be developed in tropical area of Indonesia. The research material consisted of 150 soybean genotypes. The field research was conducted in Malang from February to May 2016, using a randomized block design with two replicates. The identification of 150 soybean genotypes showed 30.67% of super early maturity (<75 days), 50% of early maturity (76 - 79 days), and 19.33% were medium maturity (80 - 90 days). In the group of super early maturity, 11 genotypes were yielded between 3.01 - 3.69 t/ha and the 100 seed weight ranged from 15.27 - 20.18 g. In the early maturity group, there were 23 genotypes with seed yields between 3.01 - 3.66 t/ha, and the 100 seed weight ranged from 13.90 - 20.23 g. In Indonesia, tempeh industry requires soybeans with large seed size. In this research, G511H/Anj//Anj////Anjs-8-5 was suitable to be developed in Indonesia’s tropical climate and also preferred by industry for tempeh raw material due to its high yield, super early days to maturity, and large seed size.

  18. Cold adaptation generates mutations associated with the growth of influenza B vaccine viruses.

    PubMed

    Kim, Hyunsuh; Velkov, Tony; Camuglia, Sarina; Rockman, Steven P; Tannock, Gregory A

    2015-10-26

    Seasonal inactivated influenza vaccines are usually trivalent or quadrivalent and are prepared from accredited seed viruses. Yields of influenza A seed viruses can be enhanced by gene reassortment with high-yielding donor strains, but similar approaches for influenza B seed viruses have been largely unsuccessful. For vaccine manufacture influenza B seed viruses are usually adapted for high-growth by serial passage. Influenza B antigen yields so obtained are often unpredictable and selection of influenza B seed viruses by this method can be a rate-limiting step in seasonal influenza vaccine manufacture. We recently have shown that selection of stable cold-adapted mutants from seasonal epidemic influenza B viruses is associated with improved growth. In this study, specific mutations were identified that were responsible for growth enhancement as a consequence of adaptation to growth at lower temperatures. Molecular analysis revealed that the following mutations in the HA, NP and NA genes are required for enhanced viral growth: G156/N160 in the HA, E253, G375 in the NP and T146 in the NA genes. These results demonstrate that the growth of seasonal influenza B viruses can be optimized or improved significantly by specific gene modifications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. [Sowing date of corn in semiarid region of Jilin Province, Northeast China in adapting to climate change].

    PubMed

    Jin, Ying-Hua; Zhou, Dao-Wei; Qin, Li-Jie

    2012-10-01

    Under the background of global climate change, the climate in semiarid region of west Jilin Province changed greatly, producing a profound impact on the corn production in this region. In this study, the corn seeds were under three treatments (accelerating germination at 10 and 25 degrees C, and dry seeds), and a field experiment with early sowing and traditional sowing was conducted in 2008 to investigate the effects of early sowing these seeds on the seedling emergence, growth, and yield, and compare the effects of early sowing and traditional sowing dates on the corn production and yield. In 1961-2010, the first day of the growth season of corn in semiarid region of west Jilin Province was advanced, the air temperature increased significantly, and the precipitation displayed a decreasing trend. At present, the corn sowing date in this region could be advanced to 11th, April. Accelerating germination at 10 degrees C, directly sowing dry seeds, and bed-irrigation sowing all benefited the seedling emergence and cold resistance of early-sown seeds, and the corn plant height and leaf area under early sowing were significantly higher, with the yield increased by 35% - 48%, compared with those under traditional sowing.

  20. 7 CFR 457.112 - Hybrid sorghum seed crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... seed test. Insurable interest. Your share of the financial loss that occurs in the event seed... by the price election you select and subtracting any minimum guaranteed payment, not to exceed the... value to dollars by multiplying it by the price election you selected. Approved yield. In lieu of the...

  1. Fine phenotyping of pod and seed traits in Arachis germplasm accessions using digital image analysis

    USDA-ARS?s Scientific Manuscript database

    Reliable and objective phenotyping of peanut pod and seed traits is important for cultivar selection and genetic mapping of yield components. To develop useful and efficient methods to quantitatively define peanut pod and seed traits, a group of peanut germplasm with high levels of phenotypic varia...

  2. DNA fingerprinting of maize seed lots to establish genetic purity using SSR markers.

    USDA-ARS?s Scientific Manuscript database

    Most countries in sub-Saharan Africa (SSA) grow open pollinated maize varieties (OPVs) because seed of maize OPVs can be recycled for several seasons with minimal yield reduction due to inbreeding as compared to hybrids. However, OPVs are heterogeneous, and some local seed suppliers attempt to take ...

  3. Multi-population selective genotyping to identify soybean (Glycine max (L.) Merr.) seed protein and oil QTLs

    USDA-ARS?s Scientific Manuscript database

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which in soybean [Glycine max (L.) Merr.] is seed protein and oil. Identification of genetic loci governing those two traits would facilitate that effort, and though genome-wide asso...

  4. The Importance of Seed Characteristics in the Dispersal of Splash-Cup Plants

    NASA Astrophysics Data System (ADS)

    Eklof, Joel; Pepper, Rachel Pepper; Echternach, Juliana

    2016-11-01

    Splash-cup plants disperse their seeds by exploiting the kinetic energy of raindrops. When raindrops impact the splash-cup, a 3-5 mm vessel that holds seeds, the seeds are projected up to 1 m away from the parent plant. It has been established, using 3D printed models, that a 40°cone angle maximizes dispersal distance when seeds are not present in the cup. We therefore use 40°cups with the addition of different types of seeds to determine the effect that seeds of varying characteristics have on the dispersal and splash dynamics of splash-cup plants. Splash characteristics and dispersal distances of seeds with differing characteristics such as size, shape, texture, density, and hydrophobicity were compared to one another, as well as to the case of having no seeds present. We found that the presence of seeds dramatically decreased dispersal distance and changed splash characteristics (are measured by the angle and velocity of the resulting splash). In addition, different types of seeds yielded splashes with differing dispersal distance and splash characteristics. Splash characteristics and dispersal distances of glass beads of differing hydrophobicity were compared to determine the effect hydrophobicity has on dispersal and splash dynamics. These beads yielded some differences in dispersal distance, but no notable difference in splash dynamics. Models of the conical fruit bodies of the splash-cups were 3D printed and high-speed video was used to find splash characteristics, and dispersal distance was calculated by measuring the distance from the model to the final resting position of the seeds and droplets.

  5. Connecting Source with Sink: The Role of Arabidopsis AAP8 in Phloem Loading of Amino Acids1[OPEN

    PubMed Central

    Santiago, James P.; Tegeder, Mechthild

    2016-01-01

    Allocation of large amounts of nitrogen to developing organs occurs in the phloem and is essential for plant growth and seed development. In Arabidopsis (Arabidopsis thaliana) and many other plant species, amino acids represent the dominant nitrogen transport forms in the phloem, and they are mainly synthesized in photosynthetically active source leaves. Following their synthesis, a broad spectrum of the amino nitrogen is actively loaded into the phloem of leaf minor veins and transported within the phloem sap to sinks such as developing leaves, fruits, or seeds. Controlled regulation of the source-to-sink transport of amino acids has long been postulated; however, the molecular mechanism of amino acid phloem loading was still unknown. In this study, Arabidopsis AMINO ACID PERMEASE8 (AAP8) was shown to be expressed in the source leaf phloem and localized to the plasma membrane, suggesting its function in phloem loading. This was further supported by transport studies with aap8 mutants fed with radiolabeled amino acids and by leaf exudate analyses. In addition, biochemical and molecular analyses revealed alterations in leaf nitrogen pools and metabolism dependent on the developmental stage of the mutants. Decreased amino acid phloem loading and partitioning to sinks led to decreased silique and seed numbers, but seed protein levels were unchanged, demonstrating the importance of AAP8 function for sink development rather than seed quality. Overall, these results show that AAP8 plays an important role in source-to-sink partitioning of nitrogen and that its function affects source leaf physiology and seed yield. PMID:27016446

  6. Fatty acids characterization, oxidative perspectives and consumer acceptability of oil extracted from pre-treated chia (Salvia hispanica L.) seeds.

    PubMed

    Imran, Muhammad; Nadeem, Muhammad; Manzoor, Muhammad Faisal; Javed, Amna; Ali, Zafar; Akhtar, Muhammad Nadeem; Ali, Muhammad; Hussain, Yasir

    2016-09-20

    Chia (Salvia hispanica L.) seeds have been described as a good source of lipids, protein, dietary fiber, polyphenolic compounds and omega-3 polyunsaturated fatty acids. The consumption of chia seed oil helps to improve biological markers related to metabolic syndrome diseases. The oil yield and fatty acids composition of chia oil is affected by several factors such as pre-treatment method and size reduction practices. Therefore, the main mandate of present investigate was to study the effect of different seed pre-treatments on yield, fatty acids composition and sensory acceptability of chia oil at different storage intervals and conditions. Raw chia seeds were characterized for proximate composition. Raw chia seeds after milling were passed through sieves to obtain different particle size fractions (coarse, seed particle size ≥ 10 mm; medium, seed particle size ≥ 5 mm; fine, seed particle size ≤ 5 mm). Heat pre-treatment of chia seeds included the water boiling (100 C°, 5 min), microwave roasting (900 W, 2450 MHz, 2.5 min), oven drying (105 ± 5 °C, 1 h) and autoclaving (121 °C, 15 lbs, 15 min) process. Extracted oil from pre-treated chia seeds were stored in Tin cans at 25 ± 2 °C and 4 ± 1 °C for 60-days and examined for physical (color, melting point, refractive index), oxidative (iodine value, peroxide value, free fatty acids), fatty acids (palmitic, stearic, oleic, linoleic, α-linolenic) composition and sensory (appearance, flavor, overall acceptability) parameters, respectively. The proximal composition of chia seeds consisted of 6.16 ± 0.24 % moisture, 34.84 ± 0.62 % oil, 18.21 ± 0.45 % protein, 4.16 ± 0.37 % ash, 23.12 ± 0.29 % fiber, and 14.18 ± 0.23 % nitrogen contents. The oil yield as a result of seed pre-treatments was found in the range of 3.43 ± 0.22 % (water boiled samples) to 32.18 ± 0.34 % (autoclaved samples). The oil samples at day 0 indicated the maximum color (R and Y Lovibond scale) value for oven drying while at storage day 60 (25 ± 2 °C), the highest color value was found for autoclave pre-treatment. The slightly increasing trend of color values for all treatments was observed during the storage period. The lowest iodine value (182.83 ± 1.18 g/100 g at storage day 0 & 173.49 ± 1.21 g/100 g at storage day 60, 25 ± 2 °C) was calculated for autoclaved samples while the maximum iodine value (193.42 ± 1.14 g/100 g at storage day 0 & 190.36 ± 1.17 g/100 g at storage day 60, 25 ± 2 °C) was recorded for raw chia samples. The significant increasing trend for all treatments was observed in case of peroxide value and free fatty acids production during storage. Maximum decrease in linoleic (35 %) and α-linolenic (18 %) fatty acids was observed in autoclaved samples. The oil from pre-treated seed samples obtained decreasing scores for sensory parameters throughout the storage period at different conditions. As a result, chia seeds are an important source of lipids and essential fatty acids. The water boiling and high temperature processing of chia seeds provides instability to lipids during storage at room temperature. However, detailed investigation is required on the processing performance and storage stability of food products supplemented with pre-treated chia seeds and furthers their effect on biological system.

  7. Inactivation of escherichia coli 0157:H7 and Salmonella on mung beans, alfalfa, and other seed types destined for sprout production by using an oxychloro-based sanitizer.

    PubMed

    Kumar, M; Hora, R; Kostrzynska, M; Waites, W M; Warriner, K

    2006-07-01

    The efficacy of a stabilized oxychloro-based food grade sanitizer to decontaminate seeds destined for sprout production has been evaluated. By using mung bean seeds as a model system, it was demonstrated that the sanitizer could be used to inactivate a five-strain cocktail of Escherichia coli O157:H7 or Salmonella introduced onto beans at 10(3) to 10(4) CFU/g. Salmonella was more tolerant to stabilized oxychloro than was E. coli O157:H7, with sanitizer levels of >150 and >50 ppm, respectively, being required to ensure pathogen-free sprouts. The decontamination efficacy was also found to be dependent on treatment time (>8 h optimal) and the seed-to-sanitizer ratio (>1:4 optimal). Stabilized oxychloro treatment did not exhibit phytotoxic effects, as germination and sprout yields were not significantly (P > 0.05) different as compared with untreated controls. Although human pathogens could be effectively eliminated from mung beans, the aerobic plate count of native microflora on sprouts grown from treated seed was not significantly (P > 0.05) different from the controls. The diversity of microbial populations (determined through 16S rRNA denaturing gradient gel electrophoresis analysis) associated with bean sprouts was not significantly affected by the sanitizer treatment. However, it was noted that Klebsiella and Herbasprillum (both common plant endophytes) were absent in sprouts derived from decontaminated seed but were present in control sprouts. When a further range of seed types was evaluated, it was found that alfalfa, cress, flax, and soybean could be decontaminated with the stabilized oxychloro sanitizer. However, the decontamination efficacy with other seed types was less consistent. It appears that the rate of seed germination and putative activity of sanitizer sequestering system(s), in addition to other factors, may limit the efficacy of the decontamination method.

  8. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis.

    PubMed

    He, Hanzi; de Souza Vidigal, Deborah; Snoek, L Basten; Schnabel, Sabine; Nijveen, Harm; Hilhorst, Henk; Bentsink, Leónie

    2014-12-01

    Seed performance after dispersal is highly dependent on parental environmental cues, especially during seed formation and maturation. Here we examine which environmental factors are the most dominant in this respect and whether their effects are dependent on the genotypes under investigation. We studied the influence of light intensity, photoperiod, temperature, nitrate, and phosphate during seed development on five plant attributes and thirteen seed attributes, using 12 Arabidopsis genotypes that have been reported to be affected in seed traits. As expected, the various environments during seed development resulted in changed plant and/or seed performances. Comparative analysis clearly indicated that, overall, temperature plays the most dominant role in both plant and seed performance, whereas light has a prominent impact on plant traits. In comparison to temperature and light, nitrate mildly affected some of the plant and seed traits while phosphate had even less influence on those traits. Moreover, clear genotype-by-environment interactions were identified. This was shown by the fact that individual genotypes responded differentially to the environmental conditions. Low temperature significantly increased seed dormancy and decreased seed longevity of NILDOG1 and cyp707a1-1, whereas low light intensity increased seed dormancy and decreased seed longevity of NILDOG3 and NILDOG6. This also indicates that different genetic and molecular pathways are involved in the plant and seed responses. By identifying environmental conditions that affect the dormancy vs longevity correlation in the same way as previously identified naturally occurring loci, we have identified selective forces that probably shaped evolution for these important seed traits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil.

    PubMed

    Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions.

  10. Camelina Seed Yield and Fatty Acids as Influenced by Genotype and Environment

    DOE PAGES

    Obour, Augustine K.; Obeng, Eric; Mohammed, Yesuf A.; ...

    2017-05-05

    Camelina (Camelina sativa L. Crantz) is an alternative oilseed crop with potential for fallow replacement in dryland cereal-based crop production systems in the semiarid Great Plains. The interaction between genotype and environment was investigated on camelina seed yield, oil content, and fatty acid composition across two locations in the U.S. Great Plains. Treatments were three spring camelina genotypes (cultivars Blaine Creek, Pronghorn, and Shoshone), three growing seasons (2013, 2014, and 2015) and two locations (at Hays, KS, and Moccasin, MT). Our results showed camelina grown at Hays yielded 54% less than that at Moccasin. Blaine Creek yielded 17 and 42%more » more than Pronghorn and Shoshone at Hays but yields were not different among genotypes at Moccasin. Oil content ranged from 262 g kg -1 at Hays to 359 g kg -1 at Moccasin. The proportion of polyunsaturated fatty acids (PUFAs) ranged from 51% at Hays to 55% at Moccasin, whereas monounsaturated fatty acid (MUFA) and saturated fatty acid (SFA) contents were greater at Hays. The linolenic acid content ranged from 26% when Pronghorn was planted at Hays to 35% when planted at Moccasin. In general, the variations in seed yield and fatty acid profile corresponded well with growing season precipitation and temperatures at each environment.« less

  11. Camelina Seed Yield and Fatty Acids as Influenced by Genotype and Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obour, Augustine K.; Obeng, Eric; Mohammed, Yesuf A.

    Camelina (Camelina sativa L. Crantz) is an alternative oilseed crop with potential for fallow replacement in dryland cereal-based crop production systems in the semiarid Great Plains. The interaction between genotype and environment was investigated on camelina seed yield, oil content, and fatty acid composition across two locations in the U.S. Great Plains. Treatments were three spring camelina genotypes (cultivars Blaine Creek, Pronghorn, and Shoshone), three growing seasons (2013, 2014, and 2015) and two locations (at Hays, KS, and Moccasin, MT). Our results showed camelina grown at Hays yielded 54% less than that at Moccasin. Blaine Creek yielded 17 and 42%more » more than Pronghorn and Shoshone at Hays but yields were not different among genotypes at Moccasin. Oil content ranged from 262 g kg -1 at Hays to 359 g kg -1 at Moccasin. The proportion of polyunsaturated fatty acids (PUFAs) ranged from 51% at Hays to 55% at Moccasin, whereas monounsaturated fatty acid (MUFA) and saturated fatty acid (SFA) contents were greater at Hays. The linolenic acid content ranged from 26% when Pronghorn was planted at Hays to 35% when planted at Moccasin. In general, the variations in seed yield and fatty acid profile corresponded well with growing season precipitation and temperatures at each environment.« less

  12. Mathematical and statistical analysis of the effect of boron on yield parameters of wheat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawashdeh, Hamzeh; Sala, Florin; Boldea, Marius

    The main objective of this research is to investigate the effect of foliar applications of boron at different growth stages on yield and yield parameters of wheat. The contribution of boron in achieving yield parameters is described by second degree polynomial equations, with high statistical confidence (p<0.01; F theoretical < F calculated, according to ANOVA test, for Alfa = 0.05). Regression analysis, based on R{sup 2} values obtained, made it possible to evaluate the particular contribution of boron to the realization of yield parameters. This was lower for spike length (R{sup 2} = 0.812), thousand seeds weight (R{sup 2} =more » 0.850) and higher in the case of the number of spikelets (R{sup 2} = 0.936) and the number of seeds on a spike (R{sup 2} = 0.960). These results confirm that boron plays an important part in achieving the number of seeds on a spike in the case of wheat, as the contribution of this element to the process of flower fertilization is well-known. In regards to productivity elements, the contribution of macroelements to yield quantity is clear, the contribution of B alone being R{sup 2} = 0.868.« less

  13. In vitro propagation of peanut (Arachis hypogaea L.) by shoot tip culture.

    PubMed

    Ozudogru, Elif Aylin; Kaya, Ergun; Lambardi, Maurizio

    2013-01-01

    Peanut (Arachis hypogaea L.), also known as groundnut, is the most important species of Arachis genus, originating from Brazil and Peru. Peanut seeds contain high seed oil, proteins, amino acids, and vitamin E, and are consumed worldwide as edible nut, peanut butter, or candy, and peanut oil extracted from the seeds. The meal remaining after oil extraction is also used for animal feed. However, its narrow germplasm base, together with susceptibility to diseases, pathogens, and weeds, decreases yield and seed quality and causes great economic losses annually. Hence, the optimization of efficient in vitro propagation procedures would be highly effective for peanut propagation, as it would raise yield and improve seed quality and flavor. Earlier reports on traditional micropropagation methods, based on axillary bud proliferation which guarantees the multiplication of true-to-type plants, are still limited. This chapter describes a micropropagation protocol to improve multiple shoot formation from shoot-tip explants by using AgNO(3) in combination with plant growth regulators.

  14. Endocarp thickness affects seed removal speed by small rodents in a warm-temperate broad-leafed deciduous forest, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmao; Zhang, Zhibin

    2008-11-01

    Seed traits are important factors affecting seed predation by rodents and thereby the success of recruitment. Seeds of many tree species have hard hulls. These are thought to confer mechanical protection, but the effect of endocarp thickness on seed predation by rodents has not been well investigated. Wild apricot ( Prunus armeniaca), wild peach ( Amygdalus davidiana), cultivated walnut ( Juglans regia), wild walnut ( Juglans mandshurica Maxim) and Liaodong oak ( Quercus liaotungensis) are very common tree species in northwestern Beijing city, China. Their seeds vary greatly in size, endocarp thickness, caloric value and tannin content. This paper aims to study the effects of seed traits on seed removal speed of these five tree species by small rodents in a temperate deciduous forest, with emphasis on the effect of endocarp thickness. The results indicated that speed of removal of seeds released at stations in the field decreased significantly with increasing endocarp thickness. We found no significant correlations between seed removal speed and other seed traits such as seed size, caloric value and tannin content. In seed selection experiments in small cages, Père David's rock squirrel ( Sciurotamias davidianus), a large-bodied, strong-jawed rodent, selected all of the five seed species, and the selection order among the five seed species was determined by endocarp thickness and the ratio of endocarp mass/seed mass. In contrast, the Korean field mouse ( Apodemus peninsulae) and Chinese white-bellied rat ( Niviventer confucianus), with relatively small bodies and weak jaws, preferred to select small seeds like acorns of Q. liaotungensis and seeds of P. armeniaca, indicating that rodent body size is also an important factor affecting food selection based on seed size. These results suggest endocarp thickness significantly reduces seed removal speed by rodents and then negatively affects dispersal fitness of seeds before seed removal of tree species in the study region. However, effect of endocarp thickness on final dispersal fitness needs further investigation because it may increase seed caching and survival after seed removal.

  15. Vapor Wall Deposition in Chambers: Theoretical Considerations

    NASA Astrophysics Data System (ADS)

    McVay, R.; Cappa, C. D.; Seinfeld, J.

    2014-12-01

    In order to constrain the effects of vapor wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, Zhang et al. (2014) varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area. Using a coupled vapor-particle dynamics model, we examine the extent to which this increase is the result of vapor wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic timescales of gas-phase reaction, vapor wall deposition, and gas-particle equilibration. The gas-particle equilibration timescale depends on the gas-particle accommodation coefficient αp. Regardless of the extent of kinetic limitation, vapor wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor wall deposition and kinetic limitations must be taken into account.

  16. Reduced abscisic acid content is responsible for enhanced sucrose accumulation by potassium nutrition in vegetable soybean seeds.

    PubMed

    Tu, Bingjie; Liu, Changkai; Tian, Bowen; Zhang, Qiuying; Liu, Xiaobing; Herbert, Stephen J

    2017-05-01

    In order to understand the physiological mechanism of potassium (K) application in enhancing sugar content of vegetable soybean seeds, pot experiments were conducted in 2014 and 2015 with two vegetable soybean (Glycine max L. Merr.) cultivars (c.v. Zhongkemaodou 1 and c.v. 121) under normal rate of nitrogen and phosphorus application. Three potassium (K) fertilization treatments were imposed: No K application (K0), 120 kg K 2 SO 4 ha -1 at seeding (K1), and 120 kg K 2 SO 4 ha -1 at seedling + 1% K 2 SO 4 foliar application at flowering (K2). Contents of indole-3-acetic acid (IAA), gibberellins (GA), cytokinins (ZR) and abscisic acid (ABA) in seeds were determined from 4 to 8 weeks after flowering. K fertilization increased the contents of IAA, GA, ZR, soluble sugar, sucrose and fresh pod yield, but reduced ABA content consistently. When the contents of soluble sugar and sucrose reached the highest level at 7 weeks after flowering for the 2 cultivars, the contents of IAA、GA、ZR all reached the lowest level in general. The content of ABA in seed was negatively correlated with the sucrose content (P < 0.01, r = -0.749**, -0.768** in 2014 and -0.535**, -0.791** in 2015 for c.v.121 and c.v. Zhongkemaodou 1 respectively). The changes in ratio of the ABA to (IAA + GA + ZR) from 4 to 8 weeks after flowering affected by K application were coincident to the changes of sucrose accumulation. The reduced ratio of ABA/(IAA + GA + ZR) affected by K nutrition particularly reduced abscisic acid content plays a critical role in enhancing sucrose content, which might be a partial mechanism involved in K nutrition to improve the quality of vegetable soybean.

  17. Tillage and residue burning affects weed populations and seed banks.

    PubMed

    Narwal, S; Sindel, B M; Jessop, R S

    2006-01-01

    An integrated weed management approach requires alternative management practices to herbicide use such as tillage, crop rotations and cultural controls to reduce soil weed seed banks. The objective of this study was to examine the value of different tillage practices and stubble burning to exhaust the seed bank of common weeds from the northern grain region of Australia. Five tillage and burning treatments were incorporated in a field experiment, at Armidale (30 degrees 30'S, 151 degrees 40'E), New South Wales, Australia in July 2004 in a randomized block design replicated four times. The trial was continued and treatments repeated in July 2005 with all the mature plants from the first year being allowed to shed seed in their respective treatment plots. The treatments were (i) no tillage (NT), (ii) chisel ploughing (CP), (iii) mould board ploughing (MBP), (iv) wheat straw burning with no tillage (SBNT) and (v) wheat straw burning with chisel ploughing (SBC). Soil samples were collected before applying treatments and before the weeds flowered to establish the seed bank status of the various weeds in the soil. Wheat was sown after the tillage treatments. Burning treatments were only initiated in the second year, one month prior to tillage treatments. The major weeds present in the seed bank before initiating the trial were Polygonum aviculare, Sonchus oleraceus and Avena fatua. Tillage promoted the germination of other weeds like Hibiscus trionum, Medicago sativa, Vicia sp. and Phalaris paradoxa later in the season in 2004 and Convolvulus erubescens emerged as a new weed in 2005. The MBP treatment in 2004 reduced the weed biomass to a significantly lower level of 55 g/m2 than the other treatments of CP (118 g/m2) and NT plots (196 g/m2) (P < 0.05). However, in 2005 SBC and MBP treatments were similar in reducing the weed biomass. In 2004, the grain yield trend of wheat was significantly different between CP and NT, and MBP and NT (P < 0.05) with maximum yield of 5898 kg/ha in CP and 5731 kg/ha in MBP. Rainfall before the start of the second trial season promoted the germination of a large numbers of weeds. SBC and MBP treatments reduced the numbers of most of the individual weed species compared with CP, SBNT and NT. SBC was able to destroy a large proportion of seeds most likely through burning and burying some in the soil and was found to be the best treatment in exhausting the seed bank followed closely by MBP which probably buried large number of seeds deep in the soil and promoted others to germinate. CP might have buried some of the seeds in the top 5-10 cm but also promoted parts of the seed bank to germinate. SBNT and NT provided an ideal medium for weeds to germinate and resulted in heavy infestations of weeds.

  18. Pesticide seed dressings can affect the activity of various soil organisms and reduce decomposition of plant material.

    PubMed

    Zaller, Johann G; König, Nina; Tiefenbacher, Alexandra; Muraoka, Yoko; Querner, Pascal; Ratzenböck, Andreas; Bonkowski, Michael; Koller, Robert

    2016-08-17

    Seed dressing with pesticides is widely used to protect crop seeds from pest insects and fungal diseases. While there is mounting evidence that especially neonicotinoid seed dressings detrimentally affect insect pollinators, surprisingly little is known on potential side effects on soil biota. We hypothesized that soil organisms would be particularly susceptible to pesticide seed dressings as they get in direct contact with these chemicals. Using microcosms with field soil we investigated, whether seeds treated either with neonicotinoid insecticides or fungicides influence the activity and interaction of earthworms, collembola, protozoa and microorganisms. The full-factorial design consisted of the factor Seed dressing (control vs. insecticide vs. fungicide), Earthworm (no earthworms vs. addition Lumbricus terrestris L.) and collembola (no collembola vs. addition Sinella curviseta Brook). We used commercially available wheat seed material (Triticum aesticum L. cf. Lukullus) at a recommended seeding density of 367 m(-2). Seed dressings (particularly fungicides) increased collembola surface activity, increased the number of protozoa and reduced plant decomposition rate but did not affect earthworm activity. Seed dressings had no influence on wheat growth. Earthworms interactively affected the influence of seed dressings on collembola activity, whereas collembola increased earthworm surface activity but reduced soil basal respiration. Earthworms also decreased wheat growth, reduced soil basal respiration and microbial biomass but increased soil water content and electrical conductivity. The reported non-target effects of seed dressings and their interactions with soil organisms are remarkable because they were observed after a one-time application of only 18 pesticide treated seeds per experimental pot. Because of the increasing use of seed dressing in agriculture and the fundamental role of soil organisms in agroecosystems these ecological interactions should receive more attention.

  19. Yield and financial performance estimates of four elite loblolly pine seed sources planted in the Western Gulf Region

    Treesearch

    Michael A. Blazier; A. Gordon Holley

    2015-01-01

    Eastern seed sources of loblolly pine (Pinus taeda L.) have been planted in the Western Gulf region for nearly three decades because they often have higher growth rates than local seed sources. However, productivity gains for eastern families are sometimes offset by poorer survival rates relative to local families.

  20. Study of optimal extraction conditions for achieving high yield and antioxidant activity of tomato seed oil

    USDA-ARS?s Scientific Manuscript database

    Tomato seeds resulting from tomato processing by-product have not been effectively utilized as value-added products. This study investigated the kinetics of oil extraction from tomato seeds and sought to optimize the oil extraction conditions. The oil was extracted by using hexane as solvent for 0 t...

  1. Are seed and cone pathogens causing significant losses in Pacific Northwest seed orchards?

    Treesearch

    E.E. Nelson; W.G. Thies; C.Y. Li

    1986-01-01

    Cones systematically collected in 1983 from eight Douglas-fir seed orchards in western Washington and Oregon yielded large numbers of common molds. Fungi isolated from apparently healthy, developing cones were similar to those from necrotic cones. Necrosis in cones aborted in early stages of development was apparently not associated with pathogenic fungi or bacteria....

  2. Cryopreservation of mouse spermatozoa. I. Effect of seeding on fertilizing ability of cryopreserved spermatozoa.

    PubMed

    Songsasen, N; Leibo, S P

    1997-11-01

    To examine the effect of seeding to induce ice formation during cryopreservation on their survival, spermatozoa from B6D2F1 mice were cooled to and held at -4 degrees C for 30 min in phosphate-buffered saline (PBS) alone, in egg yolk-supplemented PBS, or in PBS with raffinose + glycerol as cryoprotective additives (CPAs). Seeding and holding spermatozoa at -4 degrees C did not affect their viability as judged by vital staining. Egg yolk protected spermatozoa against chilling injury, as cooling them to -4 degrees C in the presence of egg yolk yielded higher survivals than those cooled without egg yolk (34.4 +/- 3.4 v 9.0 +/- 1.3% in three replicates of >400 spermatozoa/replicate). To study effects of seeding on their fertilizing ability, spermatozoa in the raffinose-glycerol-egg yolk solution were frozen to -196 degrees C either without seeding or after seeding at -4 degrees C. Development of 222 oocytes into two-cell embryos after in vitro fertilization (IVF) with spermatozoa frozen without seeding was 43%; development rates of 186, 186, and 207 oocytes after IVF with spermatozoa frozen after seeding and being held at -4 degrees C for 5, 10, or 30 min were 46, 44, and 9%, respectively. In a direct comparison, after IVF with seeded or unseeded spermatozoa the respective cleavage rates into two-cell embryos were 83% of 275 oocytes and 69% of 304 oocytes, a difference that was small but significant by chi2 analysis. An additional 925 oocytes were fertilized with spermatozoa after being seeded and frozen to -196 degrees C in four separate batches of CPA solutions. Overall, after IVF with frozen sperm, 68% of those oocytes cleaved into two-cell embryos and 59% developed into 544 blastocysts. Based on these results, we concluded that embryo production by IVF seemed to be improved using spermatozoa frozen after being seeded. Mouse spermatozoa cryopreserved by the method described here are capable of fertilizing oocytes at a rather high rate. Copyright 1997 Academic Press.

  3. Effect of treated tannery effluent with domestic wastewater and amendments on growth and yield of cotton.

    PubMed

    Jagathjothi, N; Amanullah, M Mohamed; Muthukrishnan, P

    2013-11-15

    Pot culture and field experiments were carried out at the Common Effluent Treatment Plant (CETP), Dindigul during kharif 2011-12 to investigate the influence of irrigation of treated tannery effluent along with domestic wastewater on growth, yield attributes and yield of cotton. The pot culture was in a factorial completely randomized design and field experiment laid out in factorial randomized block design with four replications. The results revealed that the mixing proportion of 25% Treated Tannery Effluent (TTE)+75% domestic wastewater (DWW) application recorded taller plants, higher dry matter production, number of sympodial branches plant(-1), number of fruiting points plant(-1), number of bolls plant(-1) and seed cotton yield with yield reduction of 15.28 and 16.11% compared to normal water irrigation under pot culture and field experiment, respectively. Regarding amendments, gypsum application registered higher seed cotton yield followed by VAM.

  4. Tree-to-tree variation in seed size and its consequences for seed dispersal versus predation by rodents.

    PubMed

    Wang, Bo; Ives, Anthony R

    2017-03-01

    Individual variation in seed size and seed production is high in many plant species. How does this variation affect seed-dispersing animals and, in turn, the fitness of individual plants? In this study, we first surveyed intraspecific variation in seed mass and production in a population of a Chinese white pine, Pinus armandii. For 134 target trees investigated in 2012, there was very high variation in seed size, with mean seed mass varying among trees almost tenfold, from 0.038 to 0.361 g. Furthermore, 30 of the 134 trees produced seeds 2 years later, and for these individuals there was a correlation in seed mass of 0.59 between years, implying consistent differences among individuals. For a subset of 67 trees, we monitored the foraging preferences of scatter-hoarding rodents on a total of 15,301 seeds: 8380 were ignored, 3184 were eaten in situ, 2651 were eaten after being cached, and 395 were successfully dispersed (cached and left intact). At the scale of individual seeds, seed mass affected almost every decision that rodents made to eat, remove, and cache individual seeds. At the level of individual trees, larger seeds had increased probabilities of both predation and successful dispersal: the effects of mean seed size on costs (predation) and benefits (caching) balanced out. Thus, despite seed size affecting rodent decisions, variation among trees in dispersal success associated with mean seed size was small once seeds were harvested. This might explain, at least in part, the maintenance of high variation in mean seed mass among tree individuals.

  5. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.

    PubMed

    Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo

    2018-01-01

    Biotechnology enables the production of high-valued industrial feedstocks from plant seed oil. The plant-derived wax esters with long-chain monounsaturated acyl moieties, like oleyl oleate, have favorite properties for lubrication. For biosynthesis of wax esters using acyl-CoA substrates, expressions of a fatty acyl reductase (FAR) and a wax synthase (WS) in seeds are sufficient. For optimization of the enzymatic activity and subcellular localization of wax ester synthesis enzymes, two fusion proteins were created, which showed wax ester-forming activities in Saccharomyces cerevisiae . To promote the formation of oleyl oleate in seed oil, WSs from Acinetobactor baylyi ( Ab WSD1) and Marinobacter aquaeolei ( Ma WS2), as well as the two created fusion proteins were tested in Arabidopsis to evaluate their abilities and substrate preference for wax ester production. The tested seven enzyme combinations resulted in different yields and compositions of wax esters. Expression of a FAR of Marinobacter aquaeolei ( Ma FAR) with Ab WSD1 or Ma WS2 led to a high incorporation of C 18 substrates in wax esters. The Ma FAR/TM Mm AWAT2- Ab WSD1 combination resulted in the incorporation of more C 18:1 alcohol and C 18:0 acyl moieties into wax esters compared with Ma FAR/ Ab WSD1. The fusion protein of a WS from Simmondsia chinensis ( Sc WS) with MaFAR exhibited higher specificity toward C 20:1 substrates in preference to C 18:1 substrates. Expression of Ma FAR/ Ab WSD1 in the Arabidopsis fad2 fae1 double mutant resulted in the accumulation of oleyl oleate (18:1/18:1) in up to 62 mol% of total wax esters in seed oil, which was much higher than the 15 mol% reached by Ma FAR/ Ab WSD1 in Arabidopsis Col-0 background. In order to increase the level of oleyl oleate in seed oil of Camelina , lines expressing Ma FAR/ Sc WS were crossed with a transgenic high oleate line. The resulting plants accumulated up to >40 mg g seed -1 of wax esters, containing 27-34 mol% oleyl oleate. The overall yields and the compositions of wax esters can be strongly affected by the availability of acyl-CoA substrates and to a lesser extent, by the characteristics of wax ester synthesis enzymes. For synthesis of oleyl oleate in plant seed oil, appropriate wax ester synthesis enzymes with high catalytic efficiency and desired substrate specificity should be expressed in plant cells; meanwhile, high levels of oleic acid-derived substrates need to be supplied to these enzymes by modifying the fatty acid profile of developing seeds.

  6. Genetic architecture, inter-relationship and selection criteria for yield improvement in rice (Oryza sativa L.).

    PubMed

    Yadav, S K; Pandey, P; Kumar, B; Suresh, B G

    2011-05-01

    This study has been conducted to determine the extent of genetic association between yield of Rice (Oryza sativa L.) and its components. The present experiment was carried out with 40 Rice (Oryza sativa L.) genotypes which were evaluated in a randomized block design with 3 replications during wet season of 2007 and 2008. Results showed that sufficient amount of variability was found in the entire gene pool for all traits studied. Higher magnitude of genotypic and phenotypic coefficients of variation was recorded for seed yield, harvest index, biological yield, number of spikelets per panicle, flag leaf length, plant height and number of tillers indicates that these characters are least influence by environment. High heritability coupled with high genetic advance as percent of mean was registered for seed yield, harvest index, number of spikelets per panicle, biological yield and flag leaf length, suggesting preponderance of additive gene action in the expression of these characters. Grain yield was significantly and positively associated with harvest index, number of tillers per hill, number of panicle per plant, panicle length, number of spikelet's per panicle and test weight at both genotypic and phenotypic levels. Path coefficient analysis revealed that harvest index, biological yield, number of tillers per hill, panicle length, number of spikelets per panicle, plant height and test weight had direct positive effect on seed yield, indicating these are the main contributors to yield. From this study it may be concluded that harvest index, number of tillers per hill, panicle length and number of spikelet per panicle and test weight are the most important characters that contributed directly to yield. Thus, these characters may serve selection criteria for improving genetic potential of rice.

  7. Fall rice straw management and winter flooding treatment effects on a subsequent soybean crop

    USGS Publications Warehouse

    Anders, M.M.; Windham, T.E.; McNew, R.W.; Reinecke, K.J.

    2005-01-01

    The effects of fall rice (Oryza sativa L.) straw management and winter flooding on the yield and profitability of subsequent irrigated and dryland soybean [Glycine max (L.) Merr.] crops were studied for 3 years. Rice straw treatments consisted of disking, rolling, or standing stubble. Winter flooding treatments consisted of maintaining a minimum water depth of 10 cm by pumping water when necessary, impounding available rainfall, and draining fields to prevent flooding. The following soybean crop was managed as a conventional-tillage system or no-till system. Tillage system treatments were further divided into irrigated or dryland. Results indicated that there were no significant effects from either fall rice straw management or winter flooding treatments on soybean seed yields. Soybean seed yields for, the conventional tillage system were significantly greater than those for the no-till system for the first 2 yrs and not different in the third year. Irrigated soybean seed yields were significantly greater than those from dryland plots for all years. Net economic returns averaged over the 3 yrs were greatest ($390.00 ha-1) from the irrigated no-till system.

  8. Seed oil extraction from red prickly pear using hexane and supercritical CO2 : assessment of phenolic compound composition, antioxidant and antibacterial activities.

    PubMed

    Koubaa, Mohamed; Mhemdi, Houcine; Barba, Francisco J; Angelotti, Armel; Bouaziz, Fatma; Chaabouni, Semia Ellouz; Vorobiev, Eugène

    2017-01-01

    Investigating Opuntia species for their seed oil content is of much importance owing to their potential use for food and in cosmetic applications. These oils have an important content in unsaturated fatty acids as well as antioxidant compounds (e.g. polyphenols, vitamin E), which have been associated with the prevention of some chronic diseases. Moreover, Opuntia stricta oils possess important antimicrobial activities. For instance, the main focus of this study was to compare the effectiveness of conventional (hexane extraction) and novel (supercritical (SC)-CO 2 ) extraction methods for the recovery of oil and phenolic compounds from O. stricta seeds. The oil yield of both extracts was then compared and the polyphenol content and composition of both extracts were determined by liquid chromatography-high-resolution mass spectrometry. Additionally, antioxidant (DPPH assay) and antimicrobial activities (disc diffusion method) of O. stricta seed oils were determined. The oil yield (based on Soxhlet's method) of O. stricta seeds was determined using SC-CO 2 (49.9 ± 2.2%), and hexane (49.0 ± 1.5%). Although obtaining similar oil extraction yields using the two methods, the extracted oil using SC-CO 2 was more enriched in polyphenols (172.2 ± 11.9 µg gallic acid equivalents (GAE) g -1 oil) than that extracted using hexane (76.0 ± 6.9 µg GAE g -1 of oil). Polyphenol profiles showed that the SC-CO 2 process led to the yield of more compounds (45) than that using hexane extraction (11). Moreover, the antioxidant and antimicrobial activities of SC-CO 2 extract showed a high percentage of inhibition. SC-CO 2 extraction of O. stricta seed oil led to extraction of oil with a similar yield to that with hexane extraction, but with higher polyphenol content. The extract containing polyphenols exhibited high antioxidant and antibacterial properties, demonstrating their great potential as feedstock for high-oil quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds.

    PubMed

    Malik, Meghna R; Yang, Wenyu; Patterson, Nii; Tang, Jihong; Wellinghoff, Rachel L; Preuss, Mary L; Burkitt, Claire; Sharma, Nirmala; Ji, Yuanyuan; Jez, Joseph M; Peoples, Oliver P; Jaworski, Jan G; Cahoon, Edgar B; Snell, Kristi D

    2015-06-01

    Poly-3-hydroxybutyrate (PHB) production in plastids of Camelina sativa seeds was investigated by comparing levels of polymer produced upon transformation of plants with five different binary vectors containing combinations of five seed-specific promoters for expression of transgenes. Genes encoding PHB biosynthetic enzymes were modified at the N-terminus to encode a plastid targeting signal. PHB levels of up to 15% of the mature seed weight were measured in single sacrificed T1 seeds with a genetic construct containing the oleosin and glycinin promoters. A more detailed analysis of the PHB production potential of two of the best performing binary vectors in a Camelina line bred for larger seed size yielded lines containing up to 15% polymer in mature T2 seeds. Transmission electron microscopy showed the presence of distinct granules of PHB in the seeds. PHB production had varying effects on germination, emergence and survival of seedlings. Once true leaves formed, plants grew normally and were able to set seeds. PHB synthesis lowered the total oil but not the protein content of engineered seeds. A change in the oil fatty acid profile was also observed. High molecular weight polymer was produced with weight-averaged molecular weights varying between 600 000 and 1 500 000, depending on the line. Select lines were advanced to later generations yielding a line with 13.7% PHB in T4 seeds. The levels of polymer produced in this study are the highest reported to date in a seed and are an important step forward for commercializing an oilseed-based platform for PHB production. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Seed size variation in the palm Euterpe edulis and the effects of seed predators on germination and seedling survival

    NASA Astrophysics Data System (ADS)

    Pizo, Marco A.; Von Allmen, Christiane; Morellato, L. Patricia C.

    2006-05-01

    Intraspecific variation in seed size is common in wild plant populations and has important consequences for the reproductive success of individual plants. Multiple, often conflicting evolutionary forces mediated by biotic as well as abiotic agents may maintain such a variation. In this paper we assessed seed size variation in a population of the threatened, commercially important palm Euterpe edulis in southeast Brazil. We investigated (i) how this variation affects the probability of attack by vertebrate and invertebrate post-dispersal seed predators, and (ii) if seed size influences the outcome of seeds damaged by beetles in terms of seed germination and early survival of seedlings. Euterpe edulis seeds varied in diameter from 8.3 to 14.1 mm. Neither insects nor rodents selected the seeds they preyed upon based on seed size. Seed germination and total, shoot and root biomasses of one-year seedlings were significantly and positively affected by seed size. Root biomass and seedling survival were negatively affected by seed damage caused by a scolytid beetle ( Coccotrypes palmarum) whose adults bore into seeds to consume part of the endosperm, but do not oviposit on them. Seed size had a marginally significant effect on seedling survival. Therefore, if any advantage is accrued by E. edulis individuals producing large seeds, this is because of greater seed germination success and seedling vigor. If this is so, even a relatively narrow range of variation in seed size as observed in the E. edulis population studied may translate into differential success of individual plants.

  11. Factors Affecting Tocopherol Concentrations in Soybean Seeds.

    PubMed

    Carrera, Constanza S; Seguin, Philippe

    2016-12-21

    Soybean seeds contain several health-beneficial compounds, including tocopherols, which are used by the nutraceutical and functional food industries. Soybean tocopherol concentrations are, however, highly variable. Large differences observed in tocopherol concentrations among soybean genotypes together with the relatively simple biosynthetic pathway involving few genes support the feasibility of selecting for high-tocopherol soybean. Tocopherol concentrations are also highly influenced by environmental factors and field management. Temperature during seed filling and soil moisture appear to be the main factors affecting tocopherol concentrations; other factors such as soil fertility and solar radiation also affect concentrations and composition. Field management decisions including seeding date, row spacing, irrigation, and fertilization also affect tocopherols. Knowledge of factors affecting soybean tocopherols is essential to develop management strategies that will lead to the production of seeds with consistent target concentrations that will meet the needs of the nutraceutical and functional food industries.

  12. Vernonia galamensis, potential new crop source of epoxy acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perdue, R.E. Jr.; Carlson, K.D.; Gilbert, M.G.

    Vernonia galamensis is a good source of seed oil rich in epoxy acid, which can be used to manufacture plastic formulations, protective coatings, and other products. Seed from a natural stand in Ethiopia contained 31% epoxy acid. Under cultivation in Kenya, this unimproved germ plasm produced a substantial yield of seed with 32% epoxy acid. This African species has good natural seed retention and is a promising new crop for semiarid tropical areas. 11 references.

  13. Comparison of Enzymatic and Ultrasonic Extraction of Albumin from Defatted Pumpkin (Cucurbita pepo)
Seed Powder

    PubMed Central

    Tu, Gia Loi; Bui, Thi Hoang Nga; Tran, Thi Thu Tra; Ton, Nu Minh Nguyet

    2015-01-01

    Summary In this study, ultrasound- and enzyme-assisted extractions of albumin (water-soluble protein group) from defatted pumpkin (Cucurbita pepo) seed powder were compared. Both advanced extraction techniques strongly increased the albumin yield in comparison with conventional extraction. The extraction rate was two times faster in the ultrasonic extraction than in the enzymatic extraction. However, the maximum albumin yield was 16% higher when using enzymatic extraction. Functional properties of the pumpkin seed albumin concentrates obtained using the enzymatic, ultrasonic and conventional methods were then evaluated. Use of hydrolase for degradation of cell wall of the plant material did not change the functional properties of the albumin concentrate in comparison with the conventional extraction. The ultrasonic extraction enhanced water-holding, oil-holding and emulsifying capacities of the pumpkin seed albumin concentrate, but slightly reduced the foaming capacity, and emulsion and foam stability. PMID:27904383

  14. Comparison of Enzymatic and Ultrasonic Extraction of Albumin from Defatted Pumpkin (Cucurbita pepo)
Seed Powder.

    PubMed

    Tu, Gia Loi; Bui, Thi Hoang Nga; Tran, Thi Thu Tra; Ton, Nu Minh Nguyet; Man Le, Van Viet

    2015-12-01

    In this study, ultrasound- and enzyme-assisted extractions of albumin (water-soluble protein group) from defatted pumpkin ( Cucurbita pepo ) seed powder were compared. Both advanced extraction techniques strongly increased the albumin yield in comparison with conventional extraction. The extraction rate was two times faster in the ultrasonic extraction than in the enzymatic extraction. However, the maximum albumin yield was 16% higher when using enzymatic extraction. Functional properties of the pumpkin seed albumin concentrates obtained using the enzymatic, ultrasonic and conventional methods were then evaluated. Use of hydrolase for degradation of cell wall of the plant material did not change the functional properties of the albumin concentrate in comparison with the conventional extraction. The ultrasonic extraction enhanced water-holding, oil-holding and emulsifying capacities of the pumpkin seed albumin concentrate, but slightly reduced the foaming capacity, and emulsion and foam stability.

  15. Understanding the relationship between the variability in agrometeorological indices and adaptation practices across the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Chipanshi, A.; Qi, D.; Zhang, Y.; Cherneski, P.

    2017-12-01

    In an attempt to understand how agriculture will adapt to the changing and variable climate, crop based agrometeorological indices including the Effective Growing Degree Days (EGDDs), Growing Season Length (GSL), Heat waves, Water Demand (Precipitation - Evapotranspiration) and the Standardized Precipitation Evapotranspiration Index (SPEI) were analyzed in terms of frequency, duration and trend over a 63-year timeframe (1950 to 2012) from the Canadian Prairies and related to crop production. The heat based indices (EGDD, GSL and Heat waves) increased over the analysis period due to an upward increase in the observed mean temperature. The change was most noticeable in the northern portion of the study area where agriculture is limited by insufficient heat units under the present climate. Heat waves became more frequent in the southern parts of the study area (there were more days above the 30oC threshold). Water availability as assessed from water demand (P-PE) and SPEI trended downward especially in Alberta and Saskatchewan. In spite of the increased severity and frequency in water deficits, there was a noticeable reduction in the variability of crop yield over time. This was attributed to the increased adaptive capacity that has been gained through the use of improved seed hybrids, fertilizer, the use of fungicides and adoption of best management practices such as zero till and direct seeding. After crop yields were de-trended to remove effects of technology, the cumulative precipitation during the growing season explained the majority of the variance in crop yield. This initial analysis has set the stage for analyzing the characteristics of agrometeorological indices under climate change scenarios and how accumulated precipitation during the growing season will affect crop yield and production.

  16. Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines.

    PubMed

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Hatcher, Catherine N; Wuddineh, Wegi A; Rudis, Mary; Tschaplinski, Timothy J; Pantalone, Vincent R; Arelli, Prakash R; Hewezi, Tarek; Chen, Feng; Stewart, Charles Neal

    2016-11-01

    Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1-year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Thus, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Seed Embryo Development Is Regulated via an AN3-MINI3 Gene Cascade

    PubMed Central

    Meng, Lai-Sheng; Wang, Yi-Bo; Loake, Gary J.; Jiang, Ji-Hong

    2016-01-01

    In agriculture, seed mass is one of the most important components related to seed yield. MINISEED3 (MINI3) which encodes the transcriptional activator WRKY10, is thought to be a pivotal regulator of seed mass. In Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 (SHB1) associates with the promoter of MINI3, regulating embryo cell proliferation (both cell division and elongation), which, in turn, modulates seed mass. Furthermore, the recruitment of SHB1 via MINI3 to both its cognate promoter and that of IKU2 implies a two-step amplification for countering the low expression level of IKU2, which is thought to function as a molecular switch for seed cavity enlargement. However, it is largely unknown how embryo cell proliferation, which encompasses both cell division and elongation, is regulated by SHB1 and MINI3 function. Here, we show that a loss of function mutation within the transcriptional coactivator ANGUSTIFOLIA3 (AN3), increases seed mass. Further, AN3 associates with the MINI3 promoter in vivo. Genetic evidence indicates that the absence of MINI3 function suppresses the decrease of cell number observed in an3-4 mutants by regulating cell division and in turn inhibits increased cell size of the an3-4 line by controlling cell elongation. Thus, seed embryo development is modulated via an AN3-MINI3 gene cascade. This regulatory model provides a deeper understanding of seed mass regulation, which may in turn lead to increased crop yields. PMID:27857719

  18. Estimation of genetic parameters and selection of high-yielding, upright common bean lines with slow seed-coat darkening.

    PubMed

    Alvares, R C; Silva, F C; Melo, L C; Melo, P G S; Pereira, H S

    2016-11-21

    Slow seed coat darkening is desirable in common bean cultivars and genetic parameters are important to define breeding strategies. The aims of this study were to estimate genetic parameters for plant architecture, grain yield, grain size, and seed-coat darkening in common bean; identify any genetic association among these traits; and select lines that associate desirable phenotypes for these traits. Three experiments were set up in the winter 2012 growing season, in Santo Antônio de Goiás and Brasília, Brazil, including 220 lines obtained from four segregating populations and five parents. A triple lattice 15 x 15 experimental design was used. The traits evaluated were plant architecture, grain yield, grain size, and seed-coat darkening. Analyses of variance were carried out and genetic parameters such as heritability, gain expected from selection, and correlations, were estimated. For selection of superior lines, a "weight-free and parameter-free" index was used. The estimates of genetic variance, heritability, and gain expected from selection were high, indicating good possibility for success in selection of the four traits. The genotype x environment interaction was proportionally more important for yield than for the other traits. There was no strong genetic correlation observed among the four traits, which indicates the possibility of selection of superior lines with many traits. Considering simultaneous selection, it was not possible to join high genetic gains for the four traits. Forty-four lines that combined high yield, more upright plant architecture, slow darkening grains, and commercial grade size were selected.

  19. An evaluation of eco-friendly naturally coloured cottons regarding seed cotton yield, yield components and major lint quality traits under conditions of East Mediterranean region of Turkey.

    PubMed

    Efe, Lale; Killi, Fatih; Mustafayev, Sefer A

    2009-10-15

    In the study carried out in 2002-2003 in the East Mediterranean region of Turkey (in Kahramanmaras Province), four different naturally coloured cotton (Gossypium hirsutum L.) (dark brown, light brown, cream and green) lines from Azerbaijan and two white linted cotton varieties (Maras-92 and Sayar-314 (G. hirsutum L.)) of the region were used as material. The aim of this study was to determine seed cotton yield and yield components and major lint quality traits of investigated coloured cotton lines comprising white linted local standard cotton varieties. Field trials were established in randomized block design with four blocks. According to two year's results, it was determined that naturally coloured cottons were found similar to both white linted standard cotton varieties for sympodia number and seed cotton yield. For boll number per plant, except green cotton line all coloured cotton lines were similar to standard varieties or even some of them were better than standards. For ginning outturn, dark brown, cream and green cotton lines were found statistically similar to standard Maras-92. But all naturally coloured cotton lines had lower seed cotton weight per boll and generally lower fiber quality than white linted standard varieties. For fiber length and fiber strength cream cotton line was the best coloured cotton. And for fiber fineness only green cotton line was better than both standards. It can be said that naturally coloured cotton lines need to be improved especially for fiber quality characters in the East Mediterranean region of Turkey.

  20. Pine seed tree growth and yield on the Crossett Experimental Forest

    Treesearch

    Don C. Bragg

    2010-01-01

    In late 2002, three small tracts of loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine on the Crossett Experimental Forest in Ashley County, AR, were cut using a seed tree method. Immediately after harvest, these cutting units averaged 7.7 stems and 13.8 square feet of pine basal area per acre. By 2006, live seed tree...

  1. Validation of high-quality potato seed production protocol under controlled conditions (CETS System) in cultivated potato species (Solanum tuberosum L.)

    USDA-ARS?s Scientific Manuscript database

    Low potato yield in Peru and other countries in the region are attributed to the use of low quality seeds and tuber recycling. Therefore, there is consensus on the need of incorporating seed production technologies that are effective and efficient but also consistent with the reality of potato in La...

  2. The struggles of jojoba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shani, A.

    1995-05-01

    In the 1950s jojoba oil was suggested as a substitute for sperm whale oil because of the similarities between the oils. The suggestion was accepted by US authorities, who were looking for ways to increase income for Native Americans on reservations. Unfortunately, the plantations were established without any botanical or agronomic preparation and proved unprofitable. The poor seed yields--barely 300--400 kg/ha--are ultimately traceable to the dioecious nature of the plant: one-half of the seeds yield male shrubs, which do not produce seeds and develop more rapidly than the females, taking over most of the field unless removed in time. Evenmore » after early culling of male shrubs and replacement with female shrubs was instituted, it was impossible to improve seed yields beyond 400--600 kg/ha. Disappointment in this new agroindustrial crop was so strong that today there is no US Federal support for research and development in jojoba. Only in Israel was there a gradual increase in jojoba cultivation, culminating in a great leap forward in the late 1980s and early 1990s. It took some 20--25 years of selection and improvement to obtain female plants and lines producing 3,000--3,500 kg/ha of seeds, close to twice the current rate of yield in the US. This botanical work was accompanied by agronomical studies of drip irrigation and fertilization regimes as well as agrotechnical studies, which eventually led to the design of a special mechanical harvester. Based on an almond pick-up system, the harvester collects up to 90% of the seeds from the ground. Chemical studies were also carried out on the raw wax, its derivatives, and potential applications. Extensive research and development as well as full domestication of the jojoba plant occurred in this 25-year period. The paper gives facts about jojoba, its chemical aspects, by-products from jojoba, the current marketplace and future trends.« less

  3. Branching, flowering and fruiting of Jatropha curcas treated with ethephon or benzyladenine and gibberellins.

    PubMed

    Costa, Anne P; Vendrame, Wagner; Nietsche, Sílvia; Crane, Jonathan; Moore, Kimberly; Schaffer, Bruce

    2016-05-31

    Jatropha curcas L. has been identified for biofuel production but it presents limited commercial yields due to limited branching and a lack of yield uniformity. The objective of this study was to evaluate the effects of single application of ethephon or a combination of 6-benzyladenine (BA) with gibberellic acid isomers A4 and A7 (GA4+7) on branch induction, flowering and fruit production in jatropha plants with and without leaves. Plants with and without leaves showed differences for growth and reproductive variables. For all variables except inflorescence set, there were no significant statistical interactions between the presence of leaves and plant growth regulators concentration. The total number of flowers per inflorescence was reduced as ethephon concentration was increased. As BA + GA4 +7 concentration increased, seed dry weight increased. Thus, ethephon and BA + GA4 +7 applications appeared to affect flowering and seed production to a greater extent than branching. The inability to discern significant treatment effects for most variables might have been due to the large variability within plant populations studied and thus resulting in an insufficient sample size. Therefore, data collected from this study were used for statistical estimations of sample sizes to provide a reference for future studies.

  4. Scatter Hoarding of Seeds Confers Survival Advantages and Disadvantages to Large-Seeded Tropical Plants at Different Life Stages

    PubMed Central

    Kuprewicz, Erin K.

    2015-01-01

    Scatter hoarding of seeds by animals contributes significantly to forest-level processes, including plant recruitment and forest community composition. However, the potential positive and negative effects of caching on seed survival, germination success, and seedling survival have rarely been assessed through experimental studies. Here, I tested the hypothesis that seed burial mimicking caches made by scatter hoarding Central American agoutis (Dasyprocta punctate) enhances seed survival, germination, and growth by protecting seeds from seed predators and providing favorable microhabitats for germination. In a series of experiments, I used simulated agouti seed caches to assess how hoarding affects seed predation by ground-dwelling invertebrates and vertebrates for four plant species. I tracked germination and seedling growth of intact and beetle-infested seeds and, using exclosures, monitored the effects of mammals on seedling survival through time. All experiments were conducted over three years in a lowland wet forest in Costa Rica. The majority of hoarded palm seeds escaped predation by both invertebrates and vertebrates while exposed seeds suffered high levels of infestation and removal. Hoarding had no effect on infestation rates of D. panamensis, but burial negatively affected germination success by preventing endocarp dehiscence. Non-infested palm seeds had higher germination success and produced larger seedlings than infested seeds. Seedlings of A. alatum and I. deltoidea suffered high mortality by seed-eating mammals. Hoarding protected most seeds from predators and enhanced germination success (except for D. panamensis) and seedling growth, although mammals killed many seedlings of two plant species; all seedling deaths were due to seed removal from the plant base. Using experimental caches, this study shows that scatter hoarding is beneficial to most seeds and may positively affect plant propagation in tropical forests, although tradeoffs in seed survival do exist. PMID:25970832

  5. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis

    PubMed Central

    Shakiba, Ehsan; Edwards, Jeremy D.; Jodari, Farman; Duke, Sara E.; Baldo, Angela M.; Korniliev, Pavel; McCouch, Susan R.; Eizenga, Georgia C.

    2017-01-01

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases seed yield. The Rice Diversity Panel 1 (RDP1) is a global collection of over 400 O. sativa accessions representing the five major subpopulations from the INDICA and JAPONICA varietal groups, with a genotypic dataset consisting of 700,000 SNP markers. The objectives of this study were to evaluate the RDP1 accessions for the complex, quantitatively inherited cold tolerance traits at the germination and reproductive stages, and to conduct genome-wide association (GWA) mapping to identify SNPs and candidate genes associated with cold stress at these stages. GWA mapping of the germination index (calculated as percent germination in cold divided by warm treatment) revealed 42 quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage, including 18 in the panel as a whole, seven in temperate japonica, six in tropical japonica, 14 in JAPONICA, and nine in INDICA, with five shared across all subpopulations. Twenty-two of these QTLs co-localized with 32 previously reported cold tolerance QTLs. GWA mapping of cold tolerance at the reproductive stage detected 29 QTLs, including seven associated with percent sterility, ten with seed weight per panicle, 14 with seed weight per plant and one region overlapping for two traits. Fifteen co-localized with previously reported QTLs for cold tolerance or yield components. Candidate gene ontology searches revealed these QTLs were associated with significant enrichment for genes related to with lipid metabolism, response to stimuli, response to biotic stimuli (suggesting cross-talk between biotic and abiotic stresses), and oxygen binding. Overall the JAPONICA accessions were more tolerant to cold stress than INDICA accessions. PMID:28282385

  6. Talc based exopolysaccharides formulation enhancing growth and production of Hellianthus annuus under saline conditions.

    PubMed

    Tewari, S; Arora, K

    2014-12-24

    Stress tolerating strain of Pseudomonas aeruginosa PF07 possessing plant growth promoting activity was screened for the production of exopolysaccharides (EPS). EPS production was monitored in the cell free culture supernatant (CFCS) and extracted EPS was further purified by thin layer chromatography. EPS producing cells were taken to design talc based formulation and its efficacy was checked on oilseed crop sunflower (Hellianthus annuus), under in vivo saline conditions (soil irrigated with 125 mM of saline water). Application of bioformulation significantly enhanced the yield and growth attributes of the plant in comparison to control (untreated seeds) under stress and non—stress conditions. Germination rate, plant length, dry weight and seed weight increased remarkably. The above findings suggest the application and benefits of utilizing EPS formulation in boosting early seedling emergence, enhancing plant growth parameters, increasing seed weight and mitigating stress in saline affected regions. Such bioformulation may enhance RAS/RT (Root Adhering Soil to Root Tissue ratio), texture of the soil, increase porosity, improve uptake of nutrients, and hence may be considered as commercially important formulation for renovation of stressed sites and enhancing plant growth.

  7. Overexpression of phyA and appA Genes Improves Soil Organic Phosphorus Utilisation and Seed Phytase Activity in Brassica napus

    PubMed Central

    Wang, Yi; Ye, Xiangsheng; Ding, Guangda; Xu, Fangsen

    2013-01-01

    Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg–1 seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals. PMID:23573285

  8. Development and Seed Number in Indeterminate Soybean as Affected by Timing and Duration of Exposure to Long Photoperiods after Flowering

    PubMed Central

    Kantolic, Adriana G.; Slafer, Gustavo A.

    2007-01-01

    Background and Aims Long photoperiods from flowering to maturity have been found to delay reproductive development in soybean (Glycine max) and to increase the number of seeds per unit land area. This study was aimed to evaluate whether sensitivity to photoperiod after flowering (a) is quantitatively related to the length of exposure to long days and (b) persists throughout the whole pod-setting period. It was also evaluated whether seed number was related to changes in the duration of post-flowering phenophases. Methods Two field experiments were conducted with an indeterminate cultivar of soybean of maturity group V. In expt 1, photoperiods 2 h longer than natural daylength were applied during different numbers of days from the beginning pod stage (R3) onwards, while in expt 2 these photoperiod extensions were imposed during 9 consecutive days starting at different times between R3 and R6 (full seed) stages. Key Results There was a quantitative response of development to the number of cycles with a long photoperiod. The exposure to long photoperiods from R3 to R5 (beginning of seed growth) increased the duration of R3–R6 regardless of the timing of exposure. The stages of development comprised in the R3–R6 phase were delayed by current as well as by previous exposure to long days. A positive relationship was found between seed number and the duration of R3–R6, irrespective of the timing and length of exposure to the long photoperiod. Conclusions Sensitivity to photoperiod remained high during the reproductive period and was highly and positively coupled with the processes of generation of yield. PMID:17452381

  9. Disturbance frequency and vertical distribution of seeds affect long-term population dynamics: a mechanistic seed bank model.

    PubMed

    Eager, Eric Alan; Haridas, Chirakkal V; Pilson, Diana; Rebarber, Richard; Tenhumberg, Brigitte

    2013-08-01

    Seed banks are critically important for disturbance specialist plants because seeds of these species germinate only in disturbed soil. Disturbance and seed depth affect the survival and germination probability of seeds in the seed bank, which in turn affect population dynamics. We develop a density-dependent stochastic integral projection model to evaluate the effect of stochastic soil disturbances on plant population dynamics with an emphasis on mimicking how disturbances vertically redistribute seeds within the seed bank. We perform a simulation analysis of the effect of the frequency and mean depth of disturbances on the population's quasi-extinction probability, as well as the long-term mean and variance of the total density of seeds in the seed bank. We show that increasing the frequency of disturbances increases the long-term viability of the population, but the relationship between the mean depth of disturbance and the long-term viability of the population are not necessarily monotonic for all parameter combinations. Specifically, an increase in the probability of disturbance increases the long-term viability of the total seed bank population. However, if the probability of disturbance is too low, a shallower mean depth of disturbance can increase long-term viability, a relationship that switches as the probability of disturbance increases. However, a shallow disturbance depth is beneficial only in scenarios with low survival in the seed bank.

  10. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil

    PubMed Central

    Zheljazkov, Valtcho D.; Gawde, Archana; Cantrell, Charles L.; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14–0.5% concentration range), β-pinene (3.7–10.3% range), γ-cymene (5–7.3% range), γ-terpinene (1.8–7.2% range), cumin aldehyde (50–66% range), α-terpinen-7-al (3.8–16% range), and β-terpinen-7-al (12–20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5–60 min DT, and low in the oils obtained at 240–600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0–5 and at 5–7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions. PMID:26641276

  11. Elevated atmospheric carbon dioxide and temperature affect seed composition, mineral nutrition, and 15N and 13C dynamics in soybean genotypes under controlled environments

    USDA-ARS?s Scientific Manuscript database

    Seed nutrition of crops can be affected by global climate changes due to elevated CO2 and elevated temperatures. Information on the effects of elevated CO2 and temperature on seed nutrition is very limited in spite of its importance to seed quality and food security. Therefore, the objective of this...

  12. Effects of seed predators of different body size on seed mortality in Bornean logged forest.

    PubMed

    Hautier, Yann; Saner, Philippe; Philipson, Christopher; Bagchi, Robert; Ong, Robert C; Hector, Andy

    2010-07-19

    The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity. We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species. Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition.

  13. Resource Allocation and Seed Size Selection in Perennial Plants under Pollen Limitation.

    PubMed

    Huang, Qiaoqiao; Burd, Martin; Fan, Zhiwei

    2017-09-01

    Pollen limitation may affect resource allocation patterns in plants, but its role in the selection of seed size is not known. Using an evolutionarily stable strategy model of resource allocation in perennial iteroparous plants, we show that under density-independent population growth, pollen limitation (i.e., a reduction in ovule fertilization rate) should increase the optimal seed size. At any level of pollen limitation (including none), the optimal seed size maximizes the ratio of juvenile survival rate to the resource investment needed to produce one seed (including both ovule production and seed provisioning); that is, the optimum maximizes the fitness effect per unit cost. Seed investment may affect allocation to postbreeding adult survival. In our model, pollen limitation increases individual seed size but decreases overall reproductive allocation, so that pollen limitation should also increase the optimal allocation to postbreeding adult survival. Under density-dependent population growth, the optimal seed size is inversely proportional to ovule fertilization rate. However, pollen limitation does not affect the optimal allocation to postbreeding adult survival and ovule production. These results highlight the importance of allocation trade-offs in the effect pollen limitation has on the ecology and evolution of seed size and postbreeding adult survival in perennial plants.

  14. Effects of Seed Predators of Different Body Size on Seed Mortality in Bornean Logged Forest

    PubMed Central

    Hautier, Yann; Saner, Philippe; Philipson, Christopher; Bagchi, Robert; Ong, Robert C.; Hector, Andy

    2010-01-01

    Background The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity. Methodology/Principal Findings We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species. Conclusions/Significance Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition. PMID:20657841

  15. Modeling the effects of ozone on soybean growth and yield.

    PubMed

    Kobayashi, K; Miller, J E; Flagler, R B; Heck, W W

    1990-01-01

    A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.

  16. Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield.

    PubMed

    Begna, Sultan H; Fielding, Dennis J

    2005-12-01

    Barley, Hordeum vulgare L., is well adapted to subarctic Alaska growing conditions, but little is known about its response to grasshopper defoliation. A field experiment was conducted to study dry matter and grain yield in response to a combination of grasshopper defoliation and weeds in 2002 and 2003 near Delta Junction, AK (63 degrees 55' N, 145 degrees 20' W). Barley plants at third to fourth leaf stage were exposed to a combination of two levels of weeds (present or absent) and four densities of grasshoppers (equivalent to 0, 25, 50, and 75 grasshoppers per m2) of third to fourth instars of Melanoplus sanguinipes (F). Dry matter accumulation by the barley plants was determined at three times during the growing seasons: approximately 10 d after introduction of the grasshoppers, shortly after anthesis, and at maturity. Dry matter accumulation and grain yield were much lower in 2003 than in 2002, probably due to very low levels of soil moisture early in the growing season of 2003. Head clipping accounted for a greater portion of yield loss in 2003 than in 2002. The percentage of reduction in harvestable yield due to grasshoppers remained fairly constant between years (1.9 and 1.4 g per grasshopper per m2 in 2002 and 2003, respectively) despite a large difference in overall yield. Examination of the yield components suggest that yields were reduced by the early season drought in 2003 primarily through fewer seeds per head, whereas grasshoppers in both years reduced average seed weight, but not numbers of seeds.

  17. Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower.

    PubMed

    Kolbas, Aliaksandr; Kidd, Petra; Guinberteau, Jacques; Jaunatre, Renaud; Herzig, Rolf; Mench, Michel

    2015-04-01

    Endophytic bacteria from roots and crude seed extracts of a Cu-tolerant population of Agrostis capillaris were inoculated to a sunflower metal-tolerant mutant line, and their influence on Cu tolerance and phytoextraction was assessed using a Cu-contaminated soil series. Ten endophytic bacterial strains isolated from surface-sterilized A. capillaris roots were mixed to prepare the root endophyte inoculant (RE). In parallel, surface-sterilized seeds of A. capillaris were crushed in MgSO4 to prepare a crude seed extract containing seed endophytes (SE). An aliquot of this seed extract was filtered at 0.2 μm to obtain a bacterial cell-free seed extract (SEF). After surface sterilization, germinated sunflower seeds were separately treated with one of five modalities: no treatment (C), immersion in MgSO4 (CMg) or SEF solutions and inoculation with RE or SE. All plants were cultivated on a Cu-contaminated soil series (13-1020 mg Cu kg(-1)). Cultivable RE strains were mostly members of the Pseudomonas genera, and one strain was closely related to Labrys sp. The cultivable SE strains belonged mainly to the Bacillus genera and some members of the Rhodococcus genera. The treatment effects depended on the soil Cu concentration. Both SE and SEF plants had a higher Cu tolerance in the 13-517 mg Cu kg(-1) soil range as reflected by increased shoot and root DW yields compared to control plants. This was accompanied by a slight decrease in shoot Cu concentration and increase in root Cu concentration. Shoot and root DW yields were more promoted by SE than SEF in the 13-114 mg Cu kg(-1) soil range, which could reflect the influence of seed-located bacterial endophytes. At intermediate soil Cu (416-818 mg Cu kg(-1) soil), the RE and CMg plants had lower shoot Cu concentrations than the control, SE and SEF plants. At high total soil Cu (617-1020 mg Cu kg(-1)), root DW yield of RE plants slightly increased and their root Cu concentration rose by up to 1.9-fold. In terms of phytoextraction efficiency, shoot Cu removal was increased for sunflower plants inoculated with crude and bacterial cell-free seed extracts by 1.3- to 2.2-fold in the 13-416 mg Cu kg(-1) soil range. Such increase was mainly driven by an enhanced shoot DW yield. The number and distribution of endophytic bacteria in the harvested sunflower tissues must be further examined.

  18. Seed after-ripening and dormancy determine adult life history independently of germination timing.

    PubMed

    de Casas, Rafael Rubio; Kovach, Katherine; Dittmar, Emily; Barua, Deepak; Barco, Brenden; Donohue, Kathleen

    2012-05-01

    • Seed dormancy can affect life history through its effects on germination time. Here, we investigate its influence on life history beyond the timing of germination. • We used the response of Arabidopsis thaliana to chilling at the germination and flowering stages to test the following: how seed dormancy affects germination responses to the environment; whether variation in dormancy affects adult phenology independently of germination time; and whether environmental cues experienced by dormant seeds have an effect on adult life history. • Dormancy conditioned the germination response to low temperatures, such that prolonged periods of chilling induced dormancy in nondormant seeds, but stimulated germination in dormant seeds. The alleviation of dormancy through after-ripening was associated with earlier flowering, independent of germination date. Experimental dormancy manipulations showed that prolonged chilling at the seed stage always induced earlier flowering, regardless of seed dormancy. Surprisingly, this effect of seed chilling on flowering time was observed even when low temperatures did not induce germination. • In summary, seed dormancy influences flowering time and hence life history independent of its effects on germination timing. We conclude that the seed stage has a pronounced effect on life history, the influence of which goes well beyond the timing of germination. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  19. Spectral considerations for modeling yield of canola

    USDA-ARS?s Scientific Manuscript database

    Conspicuous yellow flowers that are present in a Brassica oilseed crop such as canola require careful consideration when selecting a spectral index for yield estimation. This study evaluated spectral indices for multispectral sensors that correlate with the seed yield of Brassica oilseed crops. A ...

  20. Mapping QTLs for 100-seed weight in an interspecific soybean cross of Williams 82 (Glycine max) x PI 366121 (Glycine soja)

    USDA-ARS?s Scientific Manuscript database

    100-seed weight is a critical component for soybean quality and yield. The objective of the present study was to identify quantitative trait loci (QTLs) for 100-seed weight using 169 recombinant inbred lines (RILs) derived from the cross of Williams 82 x PI 366121. The parental lines and RILs were g...

  1. Seed origin and size of ponderosa pine planting stock grown at several California nurseries

    Treesearch

    Frank J. Baron; Gilbert H. Schubert

    1963-01-01

    Ponderosa pine planting stock (1-0 and 2-0) grown from five different seed collection zones in the California pine region differed noticeably in size. On the west side of the Sierra Nevada, seeds from zones above 4,000 feet yielded smaller seedlings than those from lower zones, but larger seedlings than those from east-side sources. Average dimensions (seedling weight...

  2. Resistance mechanisms to toxin-mediated charcoal rot infection in maturity group III soybean: role of seed phenol lignin soflavones sugars and seed minerals in charcoal rot resistance

    USDA-ARS?s Scientific Manuscript database

    Charcoal rot is a disease caused by the fungus Macrophomina phaseolina (Tassi) Goid, and thought to infect the plants through roots by a toxin-mediated mechanism, resulting in yield loss and poor seed quality, especially under drought conditions. The mechanism by which this infection occurs is not y...

  3. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction.

    PubMed

    Pires, Mathias M; Galetti, Mauro; Donatti, Camila I; Pizo, Marco A; Dirzo, Rodolfo; Guimarães, Paulo R

    2014-08-01

    The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.

  4. Germination season and watering regime, but not seed morph, affect life history traits in a cold desert diaspore-heteromorphic annual.

    PubMed

    Lu, Juan J; Tan, Dun Y; Baskin, Jerry M; Baskin, Carol C

    2014-01-01

    Seed morph, abiotic conditions and time of germination can affect plant fitness, but few studies have tested their combined effects on plasticity of plant life history traits. Thus, we tested the hypothesis that seed morph, germination season and watering regime influence phenotypic expression of post-germination life history traits in the diaspore-heteromorphic cold desert winter annual/spring ephemeral Diptychocarpus strictus. The two seed morphs were sown in watered and non-watered plots in late summer, and plants derived from them were watered or not-watered throughout the study. Seed morph did not affect phenology, growth and morphology, survival, dry mass accumulation and allocation or silique and seed production. Seeds in watered plots germinated in autumn (AW) and spring (SW) but only in spring for non-watered plots (SNW). A high percentage of AW, SW and SNW plants survived and reproduced, but flowering date and flowering period of autumn- vs. spring-germinated plants differed. Dry mass also differed with germination season/watering regime (AW > SW > SNW). Number of siliques and seeds increased with plant size (AW > SW > SNW), whereas percent dry mass allocated to reproduction was higher in small plants: SNW > SW > AW. Thus, although seed morph did not affect the expression of life history traits, germination season and watering regime significantly affected phenology, plant size and accumulation and allocation of biomass to reproduction. Flexibility throughout the life cycle of D. strictus is an adaptation to the variation in timing and amount of rainfall in its cold desert habitat.

  5. Bioethanol produced from Moringa oleifera seeds husk

    NASA Astrophysics Data System (ADS)

    Ali, E. N.; Kemat, S. Z.

    2017-06-01

    This paper presents the potential of bioethanol production from Moringa oleifera seeds husk which contains lignocellulosic through Simultaneous Saccharification and Fermentation (SSF) process by using Saccharomyces cerevisiae. This paper investigates the parameters which produce optimum bioethanol yield. The husk was hydrolyzed using NaOH and fermented using Saccharomyces cerevisiae yeast. Batch fermentation was performed with different yeast dosage of 1, 3, and 5 g/L, pH value was 4.5, 5.0 and 5.5, and fermentation time of 3, 6, 9 and 12 hours. The temperature of fermentation process in incubator shaker is kept constant at 32ºC. The samples are then filtered using a 0.20 μm nylon filter syringe. The yield of bioethanol produced was analysed using High Performance Liquid Chromatography (HPLC). The results showed that the highest yield of 29.69 g/L was obtained at 3 hours of fermentation time at pH of 4.5 and using 1g/L yeast. This research work showed that Moringa oleifera seeds husk can be considered to produce bioethanol.

  6. Isolation and characterization of hydrophobic compounds from carbohydrate matrix of Pistacia atlantica.

    PubMed

    Samavati, Vahid; Adeli, Mostafa

    2014-01-30

    The present work is focused on the optimization of hydrophobic compounds extraction process from the carbohydrate matrix of Iranian Pistacia atlantica seed at laboratory level using ultrasonic-assisted extraction. Response surface methodology (RSM) was used to optimize oil seed extraction yield. Independent variables were extraction temperature (30, 45, 60, 75 and 90°C), extraction time (10, 15, 20, 25, 30 and 35 min) and power of ultrasonic (20, 40, 60, 80 and 100 W). A second order polynomial equation was used to express the oil extraction yield as a function of independent variables. The responses and variables were fitted well to each other by multiple regressions. The optimum extraction conditions were as follows: extraction temperature of 75°C, extraction time of 25 min, and power of ultrasonic of 80 W. A comparison between seed oil composition extracted by ultrasonic waves under the optimum operating conditions determined by RSM for oil yield and by organic solvent was reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Evaluation of soybean genotypes for resistance to three seed borne diseases

    USDA-ARS?s Scientific Manuscript database

    Seed-borne diseases of soybeans caused by Phomopsis longicolla (Phomopsis seed decay), Cercospora kukuchii (purple seed stain), and M. phaseolina (charcoal rot) are economically important seed-borne diseases that affect seed quality. Commercial cultivars marketed as resistant to all the three disea...

  8. Predicting guar seed splitting by compression between two plates using Hertz theory of contact stresses.

    PubMed

    Vishwakarma, R K; Shivhare, U S; Nanda, S K

    2012-09-01

    Hertz's theory of contact stresses was applied to predict the splitting of guar seeds during uni-axial compressive loading between 2 rigid parallel plates. The apparent modulus of elasticity of guar seeds varied between 296.18 and 116.19 MPa when force was applied normal to hilum joint (horizontal position), whereas it varied between 171.86 and 54.18 MPa when force was applied in the direction of hilum joint (vertical position) with in moisture content range of 5.16% to 15.28% (d.b.). At higher moisture contents, the seeds yielded after considerable deformation, thus showing ductile nature. Distribution of stresses below the point of contact were plotted to predict the location of critical point, which was found at 0.44 to 0.64 mm and 0.37 to 0.53 mm below the contact point in vertical and horizontal loading, respectively, depending upon moisture content. The separation of cotyledons from each other initiated before yielding of cotyledons and thus splitting of seed took place. The relationships between apparent modulus of elasticity, principal stresses with moisture content were described using second-order polynomial equations and validated experimentally. Manufacture of guar gum powder requires dehulling and splitting of guar seeds. This article describes splitting behavior of guar seeds under compressive loading. Results of this study may be used for design of dehulling and splitting systems of guar seeds. © 2012 Institute of Food Technologists®

  9. Molecular mapping and genomics of soybean seed protein: a review and perspective for the future.

    PubMed

    Patil, Gunvant; Mian, Rouf; Vuong, Tri; Pantalone, Vince; Song, Qijian; Chen, Pengyin; Shannon, Grover J; Carter, Tommy C; Nguyen, Henry T

    2017-10-01

    Genetic improvement of soybean protein meal is a complex process because of negative correlation with oil, yield, and temperature. This review describes the progress in mapping and genomics, identifies knowledge gaps, and highlights the need of integrated approaches. Meal protein derived from soybean [Glycine max (L) Merr.] seed is the primary source of protein in poultry and livestock feed. Protein is a key factor that determines the nutritional and economical value of soybean. Genetic improvement of soybean seed protein content is highly desirable, and major quantitative trait loci (QTL) for soybean protein have been detected and repeatedly mapped on chromosomes (Chr.) 20 (LG-I), and 15 (LG-E). However, practical breeding progress is challenging because of seed protein content's negative genetic correlation with seed yield, other seed components such as oil and sucrose, and interaction with environmental effects such as temperature during seed development. In this review, we discuss rate-limiting factors related to soybean protein content and nutritional quality, and potential control factors regulating seed storage protein. In addition, we describe advances in next-generation sequencing technologies for precise detection of natural variants and their integration with conventional and high-throughput genotyping technologies. A syntenic analysis of QTL on Chr. 15 and 20 was performed. Finally, we discuss comprehensive approaches for integrating protein and amino acid QTL, genome-wide association studies, whole-genome resequencing, and transcriptome data to accelerate identification of genomic hot spots for allele introgression and soybean meal protein improvement.

  10. Yield loss assessment due to Alternaria blight and its management in linseed.

    PubMed

    Singh, R B; Singh, H K; Parmar, Arpita

    2014-04-01

    Field experiments were conducted during 2010-11 and 2011-12 to assess the yield losses due to Alternaria blight disease caused by Alternaria lini and A. linicola in recently released cultivars and their management with the integration of Trichoderma viride, fungicides and plant extract. Disease severity on leaves varied from 41.07% (Parvati) to 65.01% (Chambal) while bud damage per cent ranged between 23.56% (Shekhar) to 46.12% (T-397), respectively in different cultivars. Maximum yield loss of 58.44% was recorded in cultivar Neelum followed by Parvati (55.56%), Meera (55.56%) and Chambal (51.72%), respectively while minimum loss was recorded in Kiran (19.99%) and Jeevan (22.22%). Minimum mean disease severity (19.47%) with maximum disease control (69.74%) was recorded with the treatment: seed treatment (ST) with vitavax power (2 g kg(-1) seed) + 2 foliar sprays (FS) of Saaf (a mixture of carbendazim+mancozeb) 0.2% followed by ST with Trichoderma viride (4g kg(-1) seed) + 2 FS of Saaf (0.2%). Minimum bud damage (13.75%) with maximum control (60.94%) was recorded with treatment of ST with vitavax power+2 FS of propiconazole (0.2%). Maximum mean seed yield (1440 kg ha(-1)) with maximum net return (Rs. 15352/ha) and benefit cost ratio (1:11.04) was obtained with treatment ST with vitavax power + 2 FS of Neem leaf extract followed by treatment ST with vitavax power+2 FS of Saaf (1378 kg ha(-1)).

  11. Analysis of how ant behaviors affect germination in a tropical myrmecochore Calathea microcephala (P. & E.) Koernicke (Marantaceae): Microsite selection and aril removal by neotropical ants, Odontomachus, Pachycondyla, and Solenopsis (Formicidae).

    PubMed

    Horvitz, C C

    1981-10-01

    The evolutionary effects of a tropical ant-seed interaction are examined by posing questions about the fate of Calathea seeds carried by neotropical ants. Where do ants take seeds and what do they do with them? How do ant behaviors affect seed germination? Treatment of seeds by ants is determined by a series of seed-fate trials in captive colonies. There is no evidence of seed predation by ants. Odontomachus laticeps, Pachycondyla spp, and Solenopsis geminata rapidly displace seeds to ant nests, determine the microsites of seeds, and remove the seed arils for food. The seed arils are rich in lipids. The effects on germination of microsite selection and aril removal are quantitatively evaluated. Seeds which are immediately taken to a consistently moist spot germinate readily; 72% germinate, with a mean germination speed of 29 days. For such seeds aril removal does not significantly affect germination. In contrast, seeds which experience a delay before encountering appropriate germination conditions seem to exhibit an induced dormancy (sensu, Harper 1977) and a lower germination percentage. They take longer to germinate (up to 85 days) even after conditions become appropriate. It appears that their germination is enhanced by aril removal, which may act as an environmental cue to break dormancy. Such a mechanism would indicate that ant-handling of seeds is predictive of favorable conditions for seedling growth and establishment. The exact nature of such conditions and the effects on plant population dynamics remain to be seen.

  12. Soybean cultivation for Bioregenerative Life Support Systems (BLSSs): The effect of hydroponic system and nitrogen source

    NASA Astrophysics Data System (ADS)

    Paradiso, Roberta; Buonomo, Roberta; Dixon, Mike A.; Barbieri, Giancarlo; De Pascale, Stefania

    2014-02-01

    Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar 'OT8914', inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions. Cultivation on rockwool positively influenced root nodulation and plant growth and yield, without affecting the proximate composition of seeds, compared to NFT. Urea as the sole source of N drastically reduced the seed production and the harvest index of soybean plants, presumably because of ammonium toxicity, even though it enhanced root nodulation and increased the N content of seeds. In the view of large-scale cultivation for space colony on planetary surfaces, the possibility to use porous media, prepared using in situ resources, should be investigated. Urea can be included in the nutrient formulation for soybean in order to promote bacterial activity, however a proper ammonium/nitrate ratio should be maintained.

  13. Unraveling the effect of structurally different classes of insecticide on germination and early plant growth of soybean [Glycine max (L.) Merr].

    PubMed

    Dhungana, Sanjeev Kumar; Kim, Il-Doo; Kwak, Hwa-Sook; Shin, Dong-Hyun

    2016-06-01

    Although a considerable number of studies about the effect of different insecticides on plant physiology and metabolism have been carried out, research work about the comparative action of structurally different classes of insecticide on physiological and biochemical properties of soybean seed germination and early growth has not been found. The objective of this study was to investigate the effect of different classes of insecticides on soybean seed germination and early plant growth. Soybean seeds of Bosuk cultivar were soaked for 24h in distilled water or recommended dose (2mLL(-1), 1mLL(-1), 0.5gL(-1), and 0.5gL(-1) water for insecticides Mepthion, Myungtaja, Actara, and Stonate, respectively) of pesticide solutions of four structurally different classes of insecticides - Mepthion (fenitrothion; organophosphate), Myungtaja (etofenprox; pyrethroid), Actara (thiamethoxam; neonicotinoid), and Stonate (lambda-cyhalothrin cum thiamethoxam; pyrethroid cum neonicotinoid) - which are used for controlling stink bugs in soybean crop. Insecticides containing thiamethoxam and lamda-cyhalothrin cum thiamethoxam showed positive effects on seedling biomass and content of polyphenol and flavonoid, however fenitrothion insecticide reduced the seed germination, seed and seedling vigor, and polyphenol and flavonoid contents in soybean. Results of this study reveal that different classes of insecticide have differential influence on physiologic and metabolic actions like germination, early growth, and antioxidant activities of soybean and this implies that yield and nutrient content also might be affected with the application of different types of insecticide. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Amaranth and Quinoa Seeds Grown in Ontario and Their Overall Contribution to Nutritional Quality.

    PubMed

    Tang, Yao; Li, Xihong; Chen, Peter X; Zhang, Bing; Liu, Ronghua; Hernandez, Marta; Draves, Jamie; Marcone, Massimo F; Tsao, Rong

    2016-02-10

    Various fatty acids, tocopherols, carotenoids, and their respective antioxidant contributions in 7 amaranth seed and 11 quinoa seed samples along with a new evaluation method are reported. The lipid yield was 6.98-7.22% in amaranth seeds and 6.03-6.74% in quinoa seeds, with unsaturated fatty acids (UFAs) being the predominant fatty acids, 71.58-72.44% in amaranth seeds and 81.44-84.49% in quinoa seeds, respectively. Carotenoids, mainly lutein and zeaxanthin, are confirmed for the first time in amaranth seeds, while β-carotene is reported first in quinoa seeds. The predominant tocopherols in amaranth seeds are δ- and α-tocopherol, whereas γ- and α-tocopherol are the primary tocopherols in quinoa seeds. UFAs, carotenoids, and tocopherols showed good correlation with antioxidant activity. All of the amaranth seeds demonstrated lower overall lipophilic quality than quinoa seeds, with the AS1 and QS10 cultivars providing the highest scores for amaranth and quinoa seeds, respectively. Results from this study will contribute to developing quinoa seeds and related functional foods with increased benefits.

  15. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content

    PubMed Central

    Efthimiadou, Aspasia; Katsenios, Nikolaos; Papastylianou, Panayiota; Triantafyllidis, Vassilios; Travlos, Ilias; Bilalis, Dimitrios J.

    2014-01-01

    The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing treatment of tomato seeds in a field experiment for two years. Papimi device (amplitude on the order of 12.5 mT) has been used. The use of pulsed electromagnetic field as a presowing treatment was found to enhance plant growth in tomato plants at certain duration of exposure. Magnetic field treatments and especially the exposure of 10 and 15 minutes gave the best results in all measurements, except plant height and lycopene content. Yield per plant was higher in magnetic field treatments, compared to control. MF-15 treatment yield was 80.93% higher than control treatment. Lycopene content was higher in magnetic field treatments, although values showed no statistically significant differences. PMID:25097875

  16. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima).

    PubMed

    Kocira, Anna; Świeca, Michał; Kocira, Sławomir; Złotek, Urszula; Jakubczyk, Anna

    2018-03-01

    In the present study, application of Ecklonia maxima extract (Kelpak SL - a water soluble concentrate) was optimized and its impact on yield, nutraceutical and nutritional potential of Phaseolus vulgaris L. (var. Aura and Toska) was measured. The study was carried out in 2012 and 2013 in Poland. During the growing season, 0.2% and 0.4% solution of Kelpak SL was applied by single and double spraying of plants. These four treatments with Kelpak SL were compared with the control, where no biostimulator was applied. Kelpak SL treatments stimulated the yield of both cultivars studied. The application of E. maxima extract had no effect on the content of starch, free sugars or proteins in seeds of either of the tested cultivars. The highest level of phenolics was found for double sprayed Toska plants. All the tested variants of Kelpak SL application significantly increased the content of anthocyanins in the seeds. Also, both the reducing power and antiradical ability of Aura seeds were elevated in all the studied treatments. E. maxima extract is a natural, environmentally friendly and safe preparation increasing the yield and nutraceutical quality of beans without any negative effect on their nutritional quality.

  17. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality.

    PubMed

    Yang, William C; Lu, Jiuyi; Kwiatkowski, Chris; Yuan, Hang; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2014-01-01

    Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof-of-concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high-seed fed-batch production cultures. First, we optimized the perfusion N-1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N-1 duration, reaching >40 × 10(6) vc/mL at the end of the perfusion N-1 stage. The cultures were subsequently split into high-seed (10 × 10(6) vc/mL) fed-batch production cultures. This strategy significantly shortened the culture duration. The high-seed fed-batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low-seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N-1 and high-seed fed-batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low-seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers.

  18. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana

    PubMed Central

    Abreu, Maria Elizabeth; Munné-Bosch, Sergi

    2009-01-01

    Salicylic acid-deficient NahG transgenic lines and sid2 mutants were used to evaluate the role of this compound in the development of the short-lived, annual plant Arabidopsis thaliana, with a particular focus on the interplay between salicylic acid and other phytohormones. Low salicylic acid levels led to increased growth, as well as to smaller abscisic acid levels and reduced damage to PSII (as indicated by Fv/Fm ratios) during the reproductive stages in rosette leaves of NahG transgenic lines and sid2 mutants, compared with wild-type plants. Furthermore, salicylic acid deficiency highly influenced seed yield and composition. Seed production increased by 4.4-fold and 3.5-fold in NahG transgenic lines and sid2 mutants, respectively, compared to the wild type. Salicylic acid deficiency also improved seed composition in terms of antioxidant vitamin concentrations, seeds of salicylic acid-deficient plants showing higher levels of α- and γ-tocopherol (vitamin E) and β-carotene (pro-vitamin A) than seeds of wild-type plants. Seeds of salicylic acid-deficient plants also showed higher nitrogen concentrations than seeds of wild-type plants. It is concluded that (i) the sid2 gene, which encodes for isochorismate synthase, plays a central role in salicylic acid biosynthesis during plant development in A. thaliana, (ii) salicylic acid plays a role in the regulation of growth, senescence, and seed production, (iii) there is a cross-talk between salicylic acid and other phytohormones during plant development, and (iv) the concentrations of antioxidant vitamins in seeds may be influenced by the endogenous levels of salicylic acid in plants. PMID:19188277

  19. A High-Resolution InDel (Insertion–Deletion) Markers-Anchored Consensus Genetic Map Identifies Major QTLs Governing Pod Number and Seed Yield in Chickpea

    PubMed Central

    Srivastava, Rishi; Singh, Mohar; Bajaj, Deepak; Parida, Swarup K.

    2016-01-01

    Development and large-scale genotyping of user-friendly informative genome/gene-derived InDel markers in natural and mapping populations is vital for accelerating genomics-assisted breeding applications of chickpea with minimal resource expenses. The present investigation employed a high-throughput whole genome next-generation resequencing strategy in low and high pod number parental accessions and homozygous individuals constituting the bulks from each of two inter-specific mapping populations [(Pusa 1103 × ILWC 46) and (Pusa 256 × ILWC 46)] to develop non-erroneous InDel markers at a genome-wide scale. Comparing these high-quality genomic sequences, 82,360 InDel markers with reference to kabuli genome and 13,891 InDel markers exhibiting differentiation between low and high pod number parental accessions and bulks of aforementioned mapping populations were developed. These informative markers were structurally and functionally annotated in diverse coding and non-coding sequence components of genome/genes of kabuli chickpea. The functional significance of regulatory and coding (frameshift and large-effect mutations) InDel markers for establishing marker-trait linkages through association/genetic mapping was apparent. The markers detected a greater amplification (97%) and intra-specific polymorphic potential (58–87%) among a diverse panel of cultivated desi, kabuli, and wild accessions even by using a simpler cost-efficient agarose gel-based assay implicating their utility in large-scale genetic analysis especially in domesticated chickpea with narrow genetic base. Two high-density inter-specific genetic linkage maps generated using aforesaid mapping populations were integrated to construct a consensus 1479 InDel markers-anchored high-resolution (inter-marker distance: 0.66 cM) genetic map for efficient molecular mapping of major QTLs governing pod number and seed yield per plant in chickpea. Utilizing these high-density genetic maps as anchors, three major genomic regions harboring each of pod number and seed yield robust QTLs (15–28% phenotypic variation explained) were identified on chromosomes 2, 4, and 6. The integration of genetic and physical maps at these QTLs mapped on chromosomes scaled-down the long major QTL intervals into high-resolution short pod number and seed yield robust QTL physical intervals (0.89–2.94 Mb) which were essentially got validated in multiple genetic backgrounds of two chickpea mapping populations. The genome-wide InDel markers including natural allelic variants and genomic loci/genes delineated at major six especially in one colocalized novel congruent robust pod number and seed yield robust QTLs mapped on a high-density consensus genetic map were found most promising in chickpea. These functionally relevant molecular tags can drive marker-assisted genetic enhancement to develop high-yielding cultivars with increased seed/pod number and yield in chickpea. PMID:27695461

  20. Distinguishing plant population and variety with UAV-derived vegetation indices

    NASA Astrophysics Data System (ADS)

    Oakes, Joseph; Balota, Maria

    2017-05-01

    Variety selection and seeding rate are two important choice that a peanut grower must make. High yielding varieties can increase profit with no additional input costs, while seeding rate often determines input cost a grower will incur from seed costs. The overall purpose of this study was to examine the effect that seeding rate has on different peanut varieties. With the advent of new UAV technology, we now have the possibility to use indices collected with the UAV to measure emergence, seeding rate, growth rate, and perhaps make yield predictions. This information could enable growers to make management decisions early in the season based on low plant populations due to poor emergence, and could be a useful tool for growers to use to estimate plant population and growth rate in order to help achieve desired crop stands. Red-Green-Blue (RGB) and near-infrared (NIR) images were collected from a UAV platform starting two weeks after planting and continued weekly for the next six weeks. Ground NDVI was also collected each time aerial images were collected. Vegetation indices were derived from both the RGB and NIR images. Greener area (GGA- the proportion of green pixels with a hue angle from 80° to 120°) and a* (the average red/green color of the image) were derived from the RGB images while Normalized Differential Vegetative Index (NDVI) was derived from NIR images. Aerial indices were successful in distinguishing seeding rates and determining emergence during the first few weeks after planting, but not later in the season. Meanwhile, these aerial indices are not an adequate predictor of yield in peanut at this point.

  1. 7 CFR 52.1844 - Definition of terms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by... appearance, edibility, keeping quality, or shipping quality of the raisins. In seeded Raisins with Seeds...

  2. 7 CFR 52.1844 - Definition of terms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of the branch or main stem. (c) Seeds refers to whole, fully developed seeds which have not been removed during the processing of seeded raisins with seeds. (d) Damaged raisins means raisins affected by... appearance, edibility, keeping quality, or shipping quality of the raisins. In seeded Raisins with Seeds...

  3. Genomics and relative expression analysis identifies key genes associated with high female to male flower ratio in Jatropha curcas L.

    PubMed

    Gangwar, Manali; Sood, Hemant; Chauhan, Rajinder Singh

    2016-04-01

    Jatropha curcas, has been projected as a major source of biodiesel due to high seed oil content (42 %). A major roadblock for commercialization of Jatropha-based biodiesel is low seed yield per inflorescence, which is affected by low female to male flower ratio (1:25-30). Molecular dissection of female flower development by analyzing genes involved in phase transitions and floral organ development is, therefore, crucial for increasing seed yield. Expression analysis of 42 genes implicated in floral organ development and sex determination was done at six floral developmental stages of a J. curcas genotype (IC561235) with inherently higher female to male flower ratio (1:8-10). Relative expression analysis of these genes was done on low ratio genotype. Genes TFL1, SUP, AP1, CRY2, CUC2, CKX1, TAA1 and PIN1 were associated with reproductive phase transition. Further, genes CUC2, TAA1, CKX1 and PIN1 were associated with female flowering while SUP and CRY2 in female flower transition. Relative expression of these genes with respect to low female flower ratio genotype showed up to ~7 folds increase in transcript abundance of SUP, TAA1, CRY2 and CKX1 genes in intermediate buds but not a significant increase (~1.25 folds) in female flowers, thereby suggesting that these genes possibly play a significant role in increased transition towards female flowering by promoting abortion of male flower primordia. The outcome of study has implications in feedstock improvement of J. curcas through functional validation and eventual utilization of key genes associated with female flowering.

  4. Effect of atmospheric plasma treatment on seed germination of rice (Oryza sativa L.)

    NASA Astrophysics Data System (ADS)

    Penado, Keith Nealson M.; Mahinay, Christian Lorenz S.; Culaba, Ivan B.

    2018-01-01

    Multiple methods of improving plant development have been utilized over the past decades. Despite these improvements, there still exists a need for better planting methods due to the increasing population of a global community. Studies have reported that plasma treatment affects the growth and germination of a variety of plant species, including a multitude of grains which often takes the bulk in the diet of the average human being. This study explores the effect of atmospheric air plasma jet treatment on the seed germination of rice (Oryza sativa L.). The seeds were treated using an atmospheric air plasma jet for 1, 2, and 3 s. The effect of plasma exposure shows a reduction of trichomes on the surface of the seed. This caused a possible increase in wettability which significantly affected the seed germ length but did not affect the seed germination count after the germination period of 72 h.

  5. Characteristics of a Direct-Seeded Eastern White Pine Plantation on the Mid-Cumberland Plateau at Four Ages

    Treesearch

    Glendon W. Smalley; James M. Hollingsworth

    1997-01-01

    Growth and yield of a direct-seeded eastern white pine (Pinus strobus L.) plantation established in 1959 on a broad undulating sandstone upland (Landtype 1) are summarized. Average heights of dominant and codominant pines were 35,56,65, and 76 ft at ages 15,25,30, and 34 years, respectively. Equivalent site indices (base age 25 years from seed)...

  6. Effects of seed mass on seedling success in Artocarpus heterophyllus L., a tropical tree species of north-east India

    NASA Astrophysics Data System (ADS)

    Khan, M. L.

    2004-03-01

    I examined the effects of seed mass on performance of seedlings of Artocarpus heterophyllus L. (Moraceae), a large evergreen late successional shade-tolerant tree species in three contrasting light conditions. Seed mass varied many fold from 1.5 to 14 g in A. heterophyllus. Germination and germination time showed a significant correlation with seed mass. Germination differed significantly among three light regimes (50%, 25% and 3%). Seed mass and light level significantly affected seedling survival. The seedlings that emerged from large seeds survived better than those from small seeds under all light regimes. Survival of seedlings was maximum in 25% light regime for all seed mass classes but did not differ significantly from that at 50% light regime. Survival was significantly lower in 3% light as compared to 50% and 25% light regimes. Seedling vigor (expressed in terms of seedling height, leaf area and dry weight) was also significantly affected by seed mass and light regimes. Seedlings that emerged from larger seeds and grew under 50% light regime produced the heaviest seedlings, while those resulting from smaller seeds and grown under 3% light regime produced the lightest seedlings. Resprouting capacity of seedlings after clipping was significantly affected by seed mass and light regime. Seedlings emerging from larger seeds were capable of resprouting several times successively. Resprouting was more pronounced under 50% and 25% light regimes as compared to 3% light. Success of A. heterophyllus regeneration appears to be regulated by an interactive effect of seed mass and light regime.

  7. How early can the seeding dates of spring wheat be under current and future climate in Saskatchewan, Canada?

    PubMed

    He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron

    2012-01-01

    Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.

  8. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species

    PubMed Central

    Ge, Liangfa; Yu, Jianbin; Wang, Hongliang; Luth, Diane; Bai, Guihua; Wang, Kan

    2016-01-01

    Plant organs, such as seeds, are primary sources of food for both humans and animals. Seed size is one of the major agronomic traits that have been selected in crop plants during their domestication. Legume seeds are a major source of dietary proteins and oils. Here, we report a conserved role for the BIG SEEDS1 (BS1) gene in the control of seed size and weight in the model legume Medicago truncatula and the grain legume soybean (Glycine max). BS1 encodes a plant-specific transcription regulator and plays a key role in the control of the size of plant organs, including seeds, seed pods, and leaves, through a regulatory module that targets primary cell proliferation. Importantly, down-regulation of BS1 orthologs in soybean by an artificial microRNA significantly increased soybean seed size, weight, and amino acid content. Our results provide a strategy for the increase in yield and seed quality in legumes. PMID:27791139

  9. Proteomic analysis of tree peony (Paeonia ostii 'Feng Dan') seed germination affected by low temperature.

    PubMed

    Ren, Xiu-Xia; Xue, Jing-Qi; Wang, Shun-Li; Xue, Yu-Qian; Zhang, Ping; Jiang, Hai-Dong; Zhang, Xiu-Xin

    Seed germination is a critical process that is influenced by various factors. In the present study, the effect of low temperature (4 °C) on tree peony seed germination was investigated. Compared to seeds maintained at 25 °C, germination was inhibited when seeds were kept at 4 °C. Furthermore, low-temperature exposure of seeds resulted in a delay in water uptake, starch degradation, and soluble sugar consumption and a subsequent increase in soluble protein levels. Two-dimensional gel electrophoresis (2-DE) proteomic analysis identified 100 protein spots. Comparative analysis indicated that low-temperature exposure apparently mainly affected glycolysis and the tricarboxylic acid (TCA) cycle, while also significantly affecting proteometabolism-related factors. Moreover, low-temperature exposure led to the induction of abscisic acid, whereas the gibberellin pathway was not affected. Further comparison of the two temperature conditions showed that low-temperature exposure delays carbohydrate metabolism, adenosine triphosphate (ATP) production, respiration, and proteolysis and increases defense response factors. To further examine the obtained proteomic findings, four genes were evaluated by quantitative polymerase chain reaction (qPCR). The obtained transcriptional results for the GAPC gene coincided with the translational results, thus further suggesting that the delay in glycolysis may play a key role in low-temperature-induced inhibition of seed germination. However, the other three genes examined, which included FPP synthase, PCNT115, and endochitinase, showed non-correlative transcriptional and translational profiles. Our results suggest that the exposure of tree peony seeds to low temperature results in a delay in the degradation of starch and other metabolites, which in turn affects glycolysis and some other processes, thereby ultimately inhibiting seed germination. Copyright © 2017. Published by Elsevier GmbH.

  10. Agrobacterium tumefaciens-mediated transformation of the soybean pathogen Phomopsis longicolla

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean is caused primarily by the fungal pathogen Phomopsis longicolla. PSD impairs seed germination, reduces seedling vigor, and can substantially reduce stand establishment. In hot and humid conditions, PSD can cause significant yield losses. Few studies have explore...

  11. Environmental Risks and Challenges Associated with Neonicotinoid Insecticides.

    PubMed

    Hladik, Michelle L; Main, Anson R; Goulson, Dave

    2018-03-20

    Neonicotinoid use has increased rapidly in recent years, with a global shift toward insecticide applications as seed coatings rather than aerial spraying. While the use of seed coatings can lessen the amount of overspray and drift, the near universal and prophylactic use of neonicotinoid seed coatings on major agricultural crops has led to widespread detections in the environment (pollen, soil, water, honey). Pollinators and aquatic insects appear to be especially susceptible to the effects of neonicotinoids with current research suggesting that chronic sublethal effects are more prevalent than acute toxicity. Meanwhile, evidence of clear and consistent yield benefits from the use of neonicotinoids remains elusive for most crops. Future decisions on neonicotinoid use will benefit from weighing crop yield benefits versus environmental impacts to nontarget organisms and considering whether there are more environmentally benign alternatives.

  12. Development of formulations of biological agents for management of root rot of lettuce and cucumber.

    PubMed

    Amer, G A; Utkhede, R S

    2000-09-01

    The effect of various carrier formulations of Bacillus subtilis and Pseudomonas putida were tested on germination, growth, and yield of lettuce and cucumber crops in the presence of Pythium aphanidermatum and Fusarium oxysporum f.sp. cucurbitacearum, respectively. Survival of B. subtilis and P. putida in various carriers under refrigeration (about 0 degree C) and at room temperature (about 22 degrees C) was also studied. In all carrier formulations, B. subtilis strain BACT-0 survived up to 45 days. After 45 days of storage at room temperature (about 22 degrees C), populations B. subtilis strain BACT-0 were significantly higher in vermiculite, kaolin, and bacterial broth carriers compared with other carriers. Populations of P. putida were significantly higher in vermiculite, peat moss, wheat bran, and bacterial broth than in other carriers when stored either under refrigeration (about 0 degree C) or at room temperature (about 22 degrees C) for 15 or 45 days. Germination of lettuce seed was not affected in vermiculite, talc, kaolin, and peat moss carriers, but germination was significantly reduced in alginate and bacterial broth carriers of B. subtilis compared to the non-treated control. Germination of cucumber seed was not affected by any of the carriers. Significantly higher fresh lettuce and root weights were observed in vermiculite and kaolin carriers of B. subtilis compared with P. aphanidermatum-inoculated control plants. Lettuce treated with vermiculite, and kaolin carriers of B. subtilis, or non-inoculated control lettuce plants had significantly lower root rot ratings than talc, peat moss, bacterial broth, and P. aphanidermatum-inoculated control plants. Growth and yield of cucumber plants were significantly higher in vermiculite-based carrier of P. putida than the other carriers and Fusarium oxysporum f.sp. cucurbitacearum-inoculated plants.

  13. Genomic Prediction of Testcross Performance in Canola (Brassica napus)

    PubMed Central

    Jan, Habib U.; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A.; Snowdon, Rod J.

    2016-01-01

    Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable potential for pre-selection of promising hybrid combinations prior to resource-intensive field testing over multiple locations and years. PMID:26824924

  14. Monoterpene oxidation in an oxidative flow reactor: SOA yields and the relationship between bulk gas-phase properties and organic aerosol growth

    NASA Astrophysics Data System (ADS)

    Friedman, B.; Link, M.; Farmer, D.

    2016-12-01

    We use an oxidative flow reactor (OFR) to determine the secondary organic aerosol (SOA) yields of five monoterpenes (alpha-pinene, beta-pinene, limonene, sabinene, and terpinolene) at a range of OH exposures. These OH exposures correspond to aging timescales of a few hours to seven days. We further determine how SOA yields of beta-pinene and alpha-pinene vary as a function of seed particle type (organic vs. inorganic) and seed particle mass concentration. We hypothesize that the monoterpene structure largely accounts for the observed variance in SOA yields for the different monoterpenes. We also use high-resolution time-of-flight chemical ionization mass spectrometry to calculate the bulk gas-phase properties (O:C and H:C) of the monoterpene oxidation systems as a function of oxidant concentrations. Bulk gas-phase properties can be compared to the SOA yields to assess the capability of the precursor gas-phase species to inform the SOA yields of each monoterpene oxidation system. We find that the extent of oxygenated precursor gas-phase species corresponds to SOA yield.

  15. Selection and Clonal Propagation of High Artemisinin Genotypes of Artemisia annua

    PubMed Central

    Wetzstein, Hazel Y.; Porter, Justin A.; Janick, Jules; Ferreira, Jorge F. S.; Mutui, Theophilus M.

    2018-01-01

    Artemisinin, produced in the glandular trichomes of Artemisia annua L. is a vital antimalarial drug effective against Plasmodium falciparum resistant to quinine-derived medicines. Although work has progressed on the semi-synthetic production of artemisinin, field production of A. annua remains the principal commercial source of the compound. Crop production of artemisia must be increased to meet the growing worldwide demand for artemisinin combination therapies (ACTs) to treat malaria. Grower artemisinin yields rely on plants generated from seeds from open-pollinated parents. Although selection has considerably increased plant artemisinin concentration in the past 15 years, seed-generated plants have highly variable artemisinin content that lowers artemisinin yield per hectare. Breeding efforts to produce improved F1 hybrids have been hampered by the inability to produce inbred lines due to self-incompatibility. An approach combining conventional hybridization and selection with clonal propagation of superior genotypes is proposed as a means to enhance crop yield and artemisinin production. Typical seed-propagated artemisia plants produce less than 1% (dry weight) artemisinin with yields below 25 kg/ha. Genotypes were identified producing high artemisinin levels of over 2% and possessing improved agronomic characteristics such as high leaf area and shoot biomass production. Field studies of clonally-propagated high-artemisinin plants verified enhanced plant uniformity and an estimated gross primary productivity of up to 70 kg/ha artemisinin, with a crop density of one plant m-2. Tissue culture and cutting protocols for the mass clonal propagation of A. annua were developed for shoot regeneration, rooting, acclimatization, and field cultivation. Proof of concept studies showed that both tissue culture-regenerated plants and rooted cutting performed better than plants derived from seed in terms of uniformity, yield, and consistently high artemisinin content. Use of this technology to produce plants with homogeneously-high artemisinin can help farmers markedly increase the artemisinin yield per cultivated area. This would lead to increased profit to farmers and decreased prices of ACT. PMID:29636758

  16. Hypolipidemic and antioxidant activity of mountain celery (Cryptotaenia japonica Hassk) seed essential oils.

    PubMed

    Cheng, Ming-Ching; Lin, Li-Yun; Yu, Tung-Hsi; Peng, Robert Y

    2008-06-11

    Mountain celery seed essential oils (MC-E) contained 109 compounds, including mainly nine kinds of monoterpenoids, 31 kinds of of sesquiterpenoids, and 22 kinds of alcohols. A successive gel column adsorption with solvent fractionation yielded four fractionates. The pentane fractionate revealed potent hypolipidemic but poor antioxidant activities. The ether fractionate exhibited strong hypolipidemic activity in addition to excellent 1,1-diphenyl-2-picrylhydrazyl free radical- and superoxide anion-scavenging capabilities. The third acetone fractionate only showed moderate superoxide anion-scavenging activity. Finally, the fourth methanol fractionate having a rather high content of gamma-selinene, 2-methylpropanal, and Z-9-octadecenamide uniquely revealed very strong superoxide anion-scavenging capability. All MC diets except the MC-E-added diet simultaneously exhibited both significant hypolipidemic and high-density lipoprotein-cholesterol (HDL-C)-elevating capabilities. However, all diets totally failed to affect the hepatic phospholipid levels. Conclusively, the MC-E can be fractionated by such a separation technology to produce products uniquely possessing hypolipidemic and HDL-C-elevating activities.

  17. Phytochemical screening, total phenolic content and phytotoxic activity of corn (Zea mays) extracts against some indicator species.

    PubMed

    Ahmed, Hiwa M

    2018-03-01

    Allelopathic effects of corn (Zea mays) extracts was studied, against seed germination and seedling growth of Phalaris minor, Helianthus annuus, Triticumaestivum, Sorghum halepense, Z. mays. Bioassay results showed that aqueous extracts of corn root and shoot, markedly affected seed germination, and other parameters compared with related controls. Preliminary phytochemical screening revealed the presence of various phytochemicals such as tannins, phlobatannins, flavonoids, terpenoids and alkaloids in both roots and shoot aqueous extracts. However, saponins were only present in the shoot aqueous extract, while in shoot ethanol extracts, only terpenoids and alkaloids were detected. Additionally, total polyphenolic (TPC) content in aqueous extracts of corn root and shoot, plus ethanol extracts of corn shoot were determined using an Ultraviolet-visible spectroscopy. Results revealed TPC content of the corn shoot aqueous extract showed the highest yield, compared to other extracts. These findings suggest that phytochemicals present in Z. mays extracts may contribute to allelopathy effect.

  18. Seed removal by scatter-hoarding rodents: the effects of tannin and nutrient concentration.

    PubMed

    Wang, Bo; Yang, Xiaolan

    2015-04-01

    The mutualistic interaction between scatter-hoarding rodents and seed plants have a long co-evolutionary history. Plants are believed to have evolved traits that influence the foraging behavior of rodents, thus increasing the probability of seed removal and caching, which benefits the establishment of seedlings. Tannin and nutrient content in seeds are considered among the most essential factors in this plant-animal interaction. However, most previous studies used different species of plant seeds, rendering it difficult to tease apart the relative effect of each single nutrient on rodent foraging behavior due to confounding combinations of nutrient contents across seed species. Hence, to further explore how tannin and different nutritional traits of seed affect scatter-hoarding rodent foraging preferences, we manipulated tannin, fat, protein and starch content levels, and also seed size levels by using an artificial seed system. Our results showed that both tannin and various nutrients significantly affected rodent foraging preferences, but were also strongly affected by seed size. In general, rodents preferred to remove seeds with less tannin. Fat addition could counteract the negative effect of tannin on seed removal by rodents, while the effect of protein addition was weaker. Starch by itself had no effect, but it interacted with tannin in a complex way. Our findings shed light on the effects of tannin and nutrient content on seed removal by scatter-hoarding rodents. We therefore, believe that these and perhaps other seed traits should interactively influence this important plant-rodent interaction. However, how selection operates on seed traits to counterbalance these competing interests/factors merits further study. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Constitutive expression of the K-domain of a Vaccinium corymbosum SOC1-like (VcSOC1-K) MADS-box gene is sufficient to promote flowering in tobacco.

    PubMed

    Song, Guo-qing; Walworth, Aaron; Zhao, Dongyan; Hildebrandt, Britton; Leasia, Michael

    2013-11-01

    The K-domain of a blueberry-derived SOC1 -like gene promotes flowering in tobacco without negatively impacting yield, demonstrating potential for manipulation of flowering time in horticultural crops. The SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and SOC1-likes, belonging to the MIKC(c) (type II) MADS-box gene subfamily, are major floral activators and integrators of plant flowering. Both MADS-domains and K (Keratin)-domains are highly conserved in MIKC(c)-type MADS proteins. While there are many reports on overexpression of intact MIKC(c)-type MADS-box genes, few studies have been conducted to investigate the effects of the K-domains. In this report, a 474-bp K-domain of Vaccinium SOC1-like (VcSOC1-K) was cloned from the cDNA library of the northern highbush blueberry (Vaccinium corymbosum L.). Functional analysis of the VcSOC1-K was conducted by ectopically expressing of 35S:VcSOC1-K in tobacco. Reverse transcription PCR confirmed expression of the VcSOC1-K in T0 plants. Phenotypically, T1 transgenic plants (10 T1 plants/event) flowered sooner after seeding, and were shorter with fewer leaves at the time of flowering, than nontransgenic plants; but seed pod production of transgenic plants was not significantly affected. These results demonstrate that overexpression of the K-domain of a MIKC(c)-type MADS-box gene alone is sufficient to promote early flowering and more importantly without affecting seed production.

  20. Research on purple seed stain of soybean: germplasm screening and genetic resistance

    USDA-ARS?s Scientific Manuscript database

    Soybean purple seed stain (PSS) causes seed decay and purple seed discoloration, resulting in overall poor seed quality and reduced market grade and value. It is a prevalent disease that also affects seed vigor and stand establishment. PSS is caused by the fungus Cercospora kikuchii and other Cercos...

  1. The perspective effects of various seed coating substances on rice seed variety Khao Dawk Mali 105 storability II: the case study of chemical and biochemical properties.

    PubMed

    Thobunluepop, P; Pan-in, W; Pawelzik, E; Vearasilp, S

    2009-04-01

    The aim of this study was to investigate the effects of seed coating substances; chemical fungicide (CA) and biological fungicide polymers [chitosan-lignosulphonate polymer (CL) and eugenol incorporated into chitosan-lignosulphonate polymer (E+CL)] on chemical and biochemical changes of rice seeds cv. KDML 105, which have been studied during storage for 12 months. CA significantly affected the rice seed chemical properties and the associated seed deterioration. After 12 months storage, protein content decreased accompanied by declined of lipid content, increased free fatty acids and activated lipoxygenase enzyme. In the case of biological fungicide coated seeds, the antioxidative scavenging enzymes were ascorbate peroxidase and superoxide dismutase and a high antioxidant activity protected them. Moreover, the sugar content was positive correlated with seed germination and vigor. The biological coated seeds were found to maintain high sugar contents inside the seeds, which resulted high seed storability significantly. In contrast, under fungicide stress (CA), those compounds were lost that directly affected seed vigor during storage.

  2. Developmental Differences in Embryos of High and Low Protein Wheat Seeds during Germination 1

    PubMed Central

    Ching, Te May; Rynd, Lori

    1978-01-01

    Developmental patterns of embryos from high and low protein wheat (Triticum aestivum) grain produced under varied fertilizer conditions were compared. High protein grain produced seedlings 25% heavier with 25% more total RNA, 30% more DNA, 40% more amino acids, 60% more ribosomes, and 80% more soluble protein content than that of low protein seed. Consistently higher glutamine synthetase and α-amylase and lower acid phosphatase activities were observed in high protein seeds, though the isozyme pattern of α-amylase was not different in the two kinds of seeds. The high total ribosomes and particularly, polysome content observed in high protein seeds may be responsible for the rapid growth and high yield of these seeds. PMID:16660627

  3. Fewer not more leaves - Key to obtaining the needed jump in crop yield potential and water use efficiency

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Kumar, P.; Long, S.

    2013-12-01

    Word food and feed supply needs to increase by 75% by 2050 to meet the increasing demands of our growing population. Soybean which is the world`s fourth most important crop in terms of total production at 250 million Mt/yr is a key protein source, and together with rice and wheat, are experiencing declining global yield increases year on year. At present rates of improvement, 2050 targets cannot be reached without new innovations. In this study we demonstrate an innovative approach that could provide a yield jump. While, natural selection favors individual plants to maximize leaf production to maximize light interception and shade competitors, the presence of this trait in domestic crops could be disadvantageous. In addition, rising CO2 causes increased leaf production further exacerbating the problem. Here, we show by mathematical model and field experiment that, a modern cultivar growing at the center of US soy cultivation produces too many leaves and reduction to an optimal level would increase yield. Our model results indicate that an LAI of 3.5 and 3.8 produces maximal rates of net canopy assimilation under ambient and elevated CO2 conditions respectively. However, observed peak LAI values are 6.9 and 7.5 under ambient and elevated CO2 conditions respectively. This results in a NPP loss of 30% and 20% under ambient and elevated CO2 conditions respectively. Furthermore, the optimal LAI results in a decreased transpiration of up to 30% thus increasing water use efficiency. We show that as LAI increases, the tradeoffs between diminishing day time gains in NPP, and increasing losses in respiration is responsible for this effect. By designing a more optimum canopy, we can increase NPP and this potentially translates to increased seed yield. To test this model result, we perform canopy manipulation experiments on soybean plants, where we artificially decrease LAI by periodically removing young and emerging leaves throughout the growing season (after pod onset), and measure the seed yield under ambient and elevated CO2 conditions. Our experimental results show that an LAI reduction of 0.5 results in an increased seed yield of 8.1% validating our model results. We propose that, by achieving a stronger LAI reduction, we can improve seed yields by up to 24% providing the much needed jump in yield to achieve future food security.

  4. Searching for genetic tolerance to choke in orchardgrass germplasm

    USDA-ARS?s Scientific Manuscript database

    The sexual cycle of the endophyte Epichloe typhina can 'choke' seed production in certain forage and turf grasses. Orchardgrass is susceptible to choke in Oregon's Willamette Valley, with seed yield losses several years ago reported at 9%, but now much higher in older fields. Although development ...

  5. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies.

    PubMed

    Gao, Jun-Jie; Qin, Ye-Bo; Zhou, Tao; Cao, Dong-Dong; Xu, Ping; Hochstetter, Danielle; Wang, Yue-Fei

    2013-07-01

    Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1530.67 mg(2)/g and 0.7826 cm(3)/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudo-second-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue.

  6. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies*

    PubMed Central

    Gao, Jun-jie; Qin, Ye-bo; Zhou, Tao; Cao, Dong-dong; Xu, Ping; Hochstetter, Danielle; Wang, Yue-fei

    2013-01-01

    Tea (Camellia sinensis L.) seed shells, the main byproduct of the manufacture of tea seed oil, were used as precursors for the preparation of tea activated carbon (TAC) in the present study. A high yield (44.1%) of TAC was obtained from tea seed shells via a one-step chemical method using ZnCl2 as an agent. The Brunauer-Emmett-Teller (BET) surface area and the total pore volumes of the obtained TAC were found to be 1 530.67 mg2/g and 0.782 6 cm3/g, respectively. The equilibrium adsorption results were complied with Langmuir isotherm model and its maximum monolayer adsorption capacity was 324.7 mg/g for methylene blue. Adsorption kinetics studies indicated that the pseudo-second-order model yielded the best fit for the kinetic data. An intraparticle diffusion model suggested that the intraparticle diffusion was not the only rate-controlling step. Thermodynamics studies revealed the spontaneous and exothermic nature of the sorption process. These results indicate that tea seed shells could be utilized as a renewable resource to develop activated carbon which is a potential adsorbent for methylene blue. PMID:23825151

  7. Overexpression of MYB115, AAD2, or AAD3 in Arabidopsis thaliana seeds yields contrasting omega-7 contents

    PubMed Central

    To, Alexandra; Barthole, Guillaume; Lepiniec, Loïc

    2018-01-01

    Omega-7 monoenoic fatty acids (ω-7 FAs) are increasingly exploited both for their positive effects on health and for their industrial potential. Some plant species produce fruits or seeds with high amounts of ω-7 FAs. However, the low yields and poor agronomic properties of these plants preclude their commercial use. As an alternative, the metabolic engineering of oilseed crops for sustainable ω-7 FA production has been proposed. Two palmitoyl-ACP desaturases (PADs) catalyzing ω-7 FA biosynthesis were recently identified and characterized in Arabidopsis thaliana, together with MYB115 and MYB118, two transcription factors that positively control the expression of the corresponding PAD genes. In the present research, we examine the biotechnological potential of these new actors of ω-7 metabolism for the metabolic engineering of plant-based production of ω-7 FAs. We placed the PAD and MYB115 coding sequences under the control of a promoter strongly induced in seeds and evaluated these different constructs in A. thaliana. Seeds were obtained that exhibit ω-7 FA contents ranging from 10 to >50% of the total FAs, and these major compositional changes have no detrimental effect on seed germination. PMID:29381741

  8. Effects of prolonged exposure of lettuce seeds to HZE particles on orbital stations

    NASA Astrophysics Data System (ADS)

    Nevzgodina, L. V.; Maksimova, E. N.; Kaminskaya, E. V.

    In a study of the biological effects of cosmic HZE particles, lettuce (Lactuca sativa) seeds were flown on the orbital stations Salyut 6 and 7 for varying periods of time (from 40 to 457 days). The dependence of the biological damage on flight duration, physical parameters and the fact of passage of an HZE particle through the seed was estimated using the criterion of the frequency of aberrant cells. The arrangement of the flight biological container Biobloc made it possible to trace the location of tracks of individual HZE particles with Z>=6 and LET 200 keV/um. In seeds hit by HZE particles, for all exposure times, a statistically significant much higher yield of aberrant cells and also of cells containing multiple chromosome aberrations was observed than in the control material. The frequency of aberrant cells is markedly higher (by a factor of 1,5) in seeds hit than in non-hit ones. The changes of the yield of aberrant cells as a function of the absorbed dose (3.2-63.4 mGy) and the fluence (4.8-44.2 particles/cm2) are linear for the exposure duration ranging from 40 to 457 days.

  9. Seed diseases and seedborne pathogens of North America

    Treesearch

    Michelle Cram; Stephen Fraedrich

    2010-01-01

    Seedborne pathogenic fungi can greatly affect seed quality and cause diseases that impact seedling production in nurseries. Management strategies for the control of various seedborne diseases are based on the epidemiology of the diseases and the biology of the host and pathogen. This paper provides a brief review of seedborne fungal problems that affect conifer seeds...

  10. Separating parental environment from seed size effects on next generation growth and development in Arabidopsis.

    PubMed

    Elwell, Angela L; Gronwall, David S; Miller, Nathan D; Spalding, Edgar P; Brooks, Tessa L Durham

    2011-02-01

    Plant growth and development is profoundly influenced by environmental conditions that laboratory experimentation typically attempts to control. However, growth conditions are not uniform between or even within laboratories and the extent to which these differences influence plant growth and development is unknown. Experiments with wild-type Arabidopsis thaliana were designed to quantify the influences of parental environment and seed size on growth and development in the next generation. A single lot of seed was planted in six environmental chambers and grown to maturity. The seed produced was mechanically sieved into small and large size classes then grown in a common environment and subjected to a set of assays spanning the life cycle. Analysis of variance demonstrated that seed size effects were particularly significant early in development, affecting primary root growth and gravitropism, but also flowering time. Parental environment affected progeny germination time, flowering and weight of seed the progeny produced. In some cases, the parental environment affected the magnitude of (interacted with) the observed seed size effects. These data indicate that life history circumstances of the parental generation can affect growth and development throughout the life cycle of the next generation to an extent that should be considered when performing genetic studies. © 2010 Blackwell Publishing Ltd.

  11. Nutritional quality and essential oil compositions of Thaumatococcus danielli (Benn.) tissue and seed.

    PubMed

    Abiodun, O A; Akinoso, R; Olosunde, O O; Adegbite, J A; Omolola, O A

    2014-10-01

    Nutritional quality and essential oil compositions of Thaumatococcus danielli (Benn.) tissue and seed were determined. Oil was extracted from the seed using standard methods while the fatty acids of the oil, chemical and anti-nutritional properties of defatted seed flour were determined. Total fat yield of the seed flour was 12.20%. Defatted seed flour had higher crude fibre (36.92%), carbohydrate (40.07%) and ash (8.17%) contents. Major mineral contents were potassium, calcium, sodium and magnesium. The tissue contain appreciable amount of vitamin C (8.10 mg/100 g). Oleic acid (42.59%) was the major fatty acid in the seed oil and the total unsaturated fatty acid was 62.38%. The seed oil had higher acid and saponification values and low iodine value. Oxalate (11.09 mg/100 g) content was the major anti-nutrient in the defatted seed flour. Defatted T. danielli seed flour serves as good source of dietary fibre and energy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Proximate Composition of Seed and Biomass from Soybean Plants Grown at Different Carbon Dioxide (CO2) Concentrations

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.

    1990-01-01

    Soybean plants were grown for 90 days at 500, 1000, 2000, and 5000 ubar (ppm) carbon dioxide (CO2) and compared for proximate nutritional value. For both cultivars (MC and PX), seed protein levels were highest at 1000 (39.3 and 41.9 percent for MC and PX) and lowest at 2000 (34.7 and 38.9 percent for MC and PX). Seed fat (oil) levels were highest at 2000 (21.2 and 20.9 percent for MC and PX) and lowest at 5000 (13.6 and 16.6 percent for MC and PX). Seed carbohydrate levels were highest at 500 (31.5 and 28.4 percent for MC and PX) and lowest at 2000 (20.9 and 20.8 percent for MC and PX). When adjusted for total seed yield per unit growing area, the highest production of protein and carbohydrate occurred with MC at 1000, while equally high amounts of fat were produced with MC at 1000 and 2000. Seed set and pod development at 2000 were delayed in comparison to other CO2 treatments; thus the proportionately high fat and low protein at 2000 may have been a result of the delay in plant maturity rather than CO2 concentration. Stem crude fiber and carbohydrate levels for both cultivars increased with increased CO2. Leaf protein and crude fiber levels also tended to rise with increased CO2 but leaf carbohydrate levels decreased as CO2 was increased. The results suggest that CO2 effects on total seed yield out-weighed any potential advantages to changes in seed composition.

  13. A transgene design for enhancing oil content in Arabidopsis and Camelina seeds

    DOE PAGES

    Zhu, Yerong; Xie, Linan; Chen, Grace Q.; ...

    2018-02-21

    Background: Increasing the oil yield is a major objective for oilseed crop improvement. Oil biosynthesis and accumulation are influenced by multiple genes involved in embryo and seed development. The leafy cotyledon1 (LEC1) is a master regulator of embryo development that also enhances the expression of genes involved in fatty acid biosynthesis. We speculated that seed oil could be increased by targeted overexpression of a master regulating transcription factor for oil biosynthesis, using a downstream promoter for a gene in the oil biosynthesis pathway. To verify the effect of such a combination on seed oil content, we made constructs with maizemore » (Zea mays) ZmLEC1 driven by serine carboxypeptidase-like (SCPL17) and acyl carrier protein (ACP5) promoters, respectively, for expression in transgenic Arabidopsis thaliana and Camelina sativa. Results: Agrobacterium-mediated transformation successfully generated Arabidopsis and Camelina lines that overexpressed ZmLEC1 under the control of a seed-specific promoter. This overexpression does not appear to be detrimental to seed vigor under laboratory conditions and did not cause observable abnormal growth phenotypes throughout the life cycle of the plants. Overexpression of ZmLEC1 increased the oil content in mature seeds by more than 20% in Arabidopsis and 26% in Camelina. In conclusion: The findings suggested that the maize master regulator, ZmLEC1, driven by a downstream seed-specific promoter, can be used to increase oil production in Arabidopsis and Camelina and might be a promising target for increasing oil yield in oilseed crops.0« less

  14. A transgene design for enhancing oil content in Arabidopsis and Camelina seeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yerong; Xie, Linan; Chen, Grace Q.

    Background: Increasing the oil yield is a major objective for oilseed crop improvement. Oil biosynthesis and accumulation are influenced by multiple genes involved in embryo and seed development. The leafy cotyledon1 (LEC1) is a master regulator of embryo development that also enhances the expression of genes involved in fatty acid biosynthesis. We speculated that seed oil could be increased by targeted overexpression of a master regulating transcription factor for oil biosynthesis, using a downstream promoter for a gene in the oil biosynthesis pathway. To verify the effect of such a combination on seed oil content, we made constructs with maizemore » (Zea mays) ZmLEC1 driven by serine carboxypeptidase-like (SCPL17) and acyl carrier protein (ACP5) promoters, respectively, for expression in transgenic Arabidopsis thaliana and Camelina sativa. Results: Agrobacterium-mediated transformation successfully generated Arabidopsis and Camelina lines that overexpressed ZmLEC1 under the control of a seed-specific promoter. This overexpression does not appear to be detrimental to seed vigor under laboratory conditions and did not cause observable abnormal growth phenotypes throughout the life cycle of the plants. Overexpression of ZmLEC1 increased the oil content in mature seeds by more than 20% in Arabidopsis and 26% in Camelina. In conclusion: The findings suggested that the maize master regulator, ZmLEC1, driven by a downstream seed-specific promoter, can be used to increase oil production in Arabidopsis and Camelina and might be a promising target for increasing oil yield in oilseed crops.0« less

  15. The Influence of Hydrophobicity, Inorganic Amendments and Surfactants on Turfgrass Establishment, Growth and Quality in Constructed Root Zone Mixes

    NASA Astrophysics Data System (ADS)

    McMillan, Mica Franklin

    Soil water repellency (SWR) negatively affects turfgrass growth and quality and impedes uniform distribution of water, particularly in sand-based rootzones. Surfactants and soil amendments such as calcined clay are two approaches to improving soil hydrological properties affected by SWR. However, studying SWR in the field is difficult due to the extreme spatial variability in the soil profile. An objective of this dissertation was to assess two methods to impart SWR on sand and examine SWR amelioration strategies using these procedures under a plant environment and deficit irrigation. To determine effectiveness of artificial hydrophobicity, two methods produced severely hydrophobic substrates: stearic acid sand (HSS) and sand:peat (90:10 sand:peat v/v)(HSP). Greenhouse studies compared the effects of substrates HSS, HSP, 100% sand (SAND), sand:peat (90:10 v/v) (SP), sand:calcined clay (90:10 v/v) (CC) and naturally water repellent sand (NWRS) on bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt Davy] establishment and growth. Results indicate that HSS and HSP were not toxic to turfgrass but initially, hindered bermudagrass growth. At trials end, SWR had declined in both soils. A second greenhouse study assessed surfactant chemistry on substrates. After three dry downs, surfactants generally improved turfgrass quality in SAND and CC but had no significant effect in HSP and SP. Water drop penetration tests deemed CC and SAND wettable and HSP and SP nonwettable. Contact angle analysis found CC and SAND to be subcritically water repellent while HSP and SP were water repellent. Both HSP and HSS could be used to evaluate the influence of SWR on plant growth. However, both methods have disadvantages. CC remained wettable after several dry downs. In another greenhouse study, perennial ryegrass (Lolium perenne) seeds coated with 10% w/w alkyl-terminated block copolymer surfactant seed coating (SC) were evaluated as an amelioration strategy. Seed treated with surfactant yielded similar or greater percent coverage, shoot growth, root weight and increased volumetric water in the majority of substrates when compared to substrates sown with untreated seed. Coating seeds with surfactant may be used as a method to improve seed germination, establishment and enhance soil moisture, particularly under deficit irrigation.

  16. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability.

    PubMed

    Canedo-Júnior, Ernesto Oliveira; Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida

    2017-01-01

    Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management.

  17. Isolated and Community Contexts Produce Distinct Responses by Host Plants to the Presence of Ant-Aphid Interaction: Plant Productivity and Seed Viability

    PubMed Central

    Santiago, Graziele Silva; Zurlo, Luana Fonseca; Ribas, Carla Rodrigues; Carvalho, Rafaela Pereira; Alves, Guilherme Pereira; Carvalho, Mariana Comanucci Silva; Souza, Brígida

    2017-01-01

    Ant-aphid interactions may affect host plants in several ways, however, most studies measure only the amount of fruit and seed produced, and do not test seed viability. Therefore, the aim of this study was to assess the effects of the presence of ant-aphid interactions upon host plant productivity and seed viability in two different contexts: isolated and within an arthropod community. For this purpose we tested the hypothesis that in both isolated and community contexts, the presence of an ant-aphid interaction will have a positive effect on fruit and seed production, seed biomass and rate of seed germination, and a negative effect on abnormal seedling rates, in comparison to plants without ants. We performed a field mesocosm experiment containing five treatments: Ant-aphid, Aphid, Community, Ant-free community and Control. We counted fruits and seeds produced by each treatment, and conducted experiments for seed biomass and germinability. We found that in the community context the presence of an ant-aphid interaction negatively affected fruit and seed production. We think this may be because aphid attendance by tending-ants promotes aphid damage to the host plant, but without an affect on seed weight and viability. On the other hand, when isolated, the presence of an ant-aphid interaction positively affected fruit and seed production. These positive effects are related to the cleaning services offered to aphids by tending-ants, which prevent the development of saprophytic fungi on the surface of leaves, which would cause a decrease in photosynthetic rates. Our study is important because we evaluated some parameters of plant fitness that have not been addressed very well by other studies involving the effects of ant-aphid interactions mainly on plants with short life cycles. Lastly, our context dependent approach sheds new light on how ecological interactions can vary among different methods of crop management. PMID:28141849

  18. How seed orchard culture affects seed quality: experience with the southern pines

    Treesearch

    James P. Barnett

    1996-01-01

    Tree improvement programs have influenced significantly the quality of southern pine seeds produced when compared to collections from native stands. Seed orchard management practices such as fertilization can increase seed size and reduce seed dormancy. These result in the need for less complex pregermination treatments. Repeated cone collections from the same clones...

  19. The benefits of seed banking for red maple (Acer rubrum): maximizing seedling recruitment

    Treesearch

    Janneke Hille Ris Lambers; James S. Clark

    2005-01-01

    Seed banking is assumed to be unimportant for temperate trees, because their seeds are short-lived in soils. However, even short-term seed banking could increase recruitment and affect population dynamics of seed-banking trees. To investigate this possibility, we examined early life-history stages of red maple (Acer rubrum L.), an abundant seed-...

  20. Activity of meadowfoam (Limnanthes alba) seed meal glucolimnanthin degradation products against soilborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Meadowfoam (Limnanthes alba L.) is a herbaceous winter-spring annual grown as a commercial oilseed crop. The meal remaining after oil extraction from the seed contains up to 4% of the glucosinolate glucolimnanthin. Degradation of glucolimnanthin yields toxic breakdown products, and therefore the mea...

  1. Reaction of Diaporthe longicolla to a strain of Sarocladium kiliense

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean [Glycine max (L.) Merr.] is a seedborne fungal disease caused by Diaporthe (syn. Phomopsis) longicolla that causes yield losses and reduced seed quality. Biocontrol of this pathogen by a strain of Acremonium strictum isolated from a culture of D. longicolla was ...

  2. Effect of Fungicide Seed Treatments on Fusarium virguliforme and Sudden Death Syndrome of Soybean

    USDA-ARS?s Scientific Manuscript database

    Sudden death syndrome (SDS) is a yield reducing disease increasing in prevalence across soybean producing states. Recent research indicates the SDS pathogen, Fusarium virguliforme, can infect as early as initial radicle emergence. This suggests fungicide seed treatments could offer some protection a...

  3. 7 CFR 407.15 - Group risk plan for sorghum.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... expected county yield and calculate indemnities. Planted acreage. Land in which the sorghum seed has been... subsequent mechanical incorporation of the sorghum seed is not allowed. 2. Crop Insured (a) The insured crop... application; (2) Properly planted and reported by the acreage reporting date; (3) Planted with the intent to...

  4. 7 CFR 407.15 - Group risk plan for sorghum.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... expected county yield and calculate indemnities. Planted acreage. Land in which the sorghum seed has been... subsequent mechanical incorporation of the sorghum seed is not allowed. 2. Crop Insured (a) The insured crop... application; (2) Properly planted and reported by the acreage reporting date; (3) Planted with the intent to...

  5. Impact of ground speed and varying seeding rates on meter performance

    USDA-ARS?s Scientific Manuscript database

    Achieving optimum planter performance is an important requirement for obtaining higher crop yields. Planter performance depends on several factors but meter speed is an important one which is a function of ground speed, seeding rate and row spacing. A study was conducted to evaluate the influence of...

  6. Effects of nitrogen and planting seed size on cotton growth, development, and yield

    USDA-ARS?s Scientific Manuscript database

    A standardized experiment was conducted during 2009 and 2010 at 20 location-years across U.S. cotton (Gossypium hirsutum L.)-producing states to compare the N use requirement of contemporary cotton cultivars based on their planting seed size. Treatments consisted of three cotton varieties with plant...

  7. Comparison of oilseed yields: a preliminary review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, J.A.; Bagby, M.O.

    It was assumed that for most oilseed crops, 90% of the oil yield might be considered as profit. To compare oil seeds, pertinent portions of the yield and energy paragraphs from a summary published by Dr. Duke for DOE Grant No. 59-2246-1-6-054-0 with Dr. Bagby as ADODR were reproduced. The seed yields ranged from 200 to 14,000 kg/ha, the low one too low to consider and the high one suspiciously high. The yield of 14,000 kg oil per hectare is equivalent to more than 30 barrels of oil per hectare. The energy species included ambrette, tung-oil tree, cashew, wood-oil tree,more » mu-oil tree, peanut, mustard greens; rape, colza; black mustard, turnip, safflower, colocynth, coconut, crambe, African oil palm, soybean, cotton, sunflower, Eastern black walnut, Engligh walnut, meadow foam, flax, macadamia nuts, opium poppy, perilla, almond, castorbean, Chinese tallow tree, sesame, jojoba, yellow mustard, stokes' aster, and Zanzibar oilvine. 1 table. (DP)« less

  8. Effect of domestication on microorganism diversity and anaerobic digestion of food waste.

    PubMed

    Bi, S J; Hong, X J; Wang, G X; Li, Y; Gao, Y M; Yan, L; Wang, Y J; Wang, W D

    2016-08-19

    To accomplish the rapid start-up and stable operation of biogas digesters, an efficient inoculum is required. To obtain such an inoculum for food waste anaerobic digestion, we domesticated dairy manure anaerobic digestion residue by adding food waste every day. After 36 days, the pH and biogas yield stabilized signifying the completion of domestication. During domestication, the microbial communities in the inocula were investigated by constructing 16S rDNA clone libraries. We evaluated the effect of the domesticated inoculum by testing batch food waste anaerobic digestion with a non-domesticated inoculum as a control. The pH and methane yield of the digestion systems were determined as measurement indices. Domestication changed the composition and proportion of bacteria and archaea in the inocula. Of the bacteria, Clostridia (49.3%), Bacteroidales (19.5%), and Anaerolinaceae (8.1%) species were dominant in the seed sludge; Anaerolinaceae (49.0%), Clostridia (28.4%), and Bacteroidales (9.1%), in domestication sludge. Methanosaeta was the dominant genus in both of the seed (94.3%) and domestication (74.3%) sludge. However, the diversity of methanogenic archaea was higher in the domestication than in seed sludge. Methanoculleus, which was absent from the seed sludge, appeared in the domestication sludge (21.7%). When the domesticated inoculum was used, the digestion system worked stably (organic loading rate: 20 gVS/L; methane yield: 292.2 ± 9.8 mL/gVS; VS = volatile solids), whereas the digestion system inoculated with seed sludge failed to generate biogas. The results indicate that inoculum domestication ensures efficient and stable anaerobic digestion by enriching the methanogenic strains.

  9. Genetic evaluation of Jatropha curcas: an important oilseed for biodiesel production.

    PubMed

    Freitas, R G; Missio, R F; Matos, F S; Resende, M D V; Dias, L A S

    2011-01-01

    Jatropha curcas, internationally and locally known, respectively, as physic nut and pinhão manso, is a highly promising species for biodiesel production in Brazil and other countries in the tropics. It is rustic, grows in warm regions and is easily cultivated. These characteristics and high-quality oil yields from the seeds have made this plant a priority for biodiesel programs in Brazil. Consequently, this species merits genetic investigations aimed at improving yields. Some studies have detected genetic variability in accessions in Africa and Asia. We have made the first genetic evaluation of J. curcas collected from Brazil. Our objective was to quantify genetic diversity and to estimate genetic parameters for growth and production traits and seed oil content. We evaluated 75 J. curcas progenies collected from Brazil and three from Cambodia. The mean oil content in the seeds was 31%, ranging from 16 to 45%. No genetic correlation between growth traits and seed oil content was found. However, high coefficients of genetic variation were found for plant height, number of branches, height of branches, and stem diameter. The highest individual narrow-sense heritabilities were found for leaf length (0.35) and width (0.34), stem diameter (0.24) and height of branches (0.21). We used a clustering algorithm to genetically identify the closest and most distant progenies, to assist in the development of new cultivars. Geographical diversity did not necessarily represent the genetic diversity among the accessions collected. These results are important for the continuity of breeding programs, aimed at obtaining cultivars with high grain yield and high oil content in seeds.

  10. Screening of polysaccharides from tamarind, fenugreek and jackfruit seeds as pharmaceutical excipients.

    PubMed

    Nayak, Amit Kumar; Pal, Dilipkumar; Santra, Kousik

    2015-08-01

    The paper describes the isolation and screening of plant polysaccharides namely tamarind seed polysaccharide (TSP), fenugreek seed mucilage (FSM) and jackfruit seed starch (JFSS) from tamarind (Tamarindus indica L.) seeds, fenugreek (Trigonella foenum-graecum L.) seeds and jackfruit (Artocarpus heterophyllus L.) seeds, respectively. The yields of isolated dried TSP, FSM and JFSS were 47.00%, 17.36% and 18.86%, respectively. Various physicochemical properties like colour, odour, taste, solubility in water, pH and viscosity of these isolated plant polysaccharides were assessed. Isolated polysaccharide samples were subjected to some phytochemical identification tests. FTIR and (1)H NMR analyses of isolated polysaccharides were performed, which suggest the presence of sugar residues. Isolated TSP, FSM and JFSS can be used as pharmaceutical excipients in various pharmaceutical formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa

    PubMed Central

    Panuccio, M. R.; Jacobsen, S. E.; Akhtar, S. S.; Muscolo, A.

    2014-01-01

    Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development. PMID:25139769

  12. Food waste composting: its use as a peat replacement.

    PubMed

    Farrell, M; Jones, D L

    2010-01-01

    We successfully co-composted catering waste with green waste and shredded paper to yield two high-nitrogen composts for use in horticulture. Sunflowers (Helianthus annuus L.) were grown in various mixtures of the compost and a commercially available peat-based compost to assess the efficacy of catering waste-based composts for peat replacement. Height, head diameter, seed mass and above-ground biomass were measured, with all mixtures giving a significant increase in yield or size over the commercially available peat-free control compost. We conclude that differences in physical structure governed sunflower growth over substrate chemistry, and none of the compost mixtures were nutrient deficient. We recommend that catering waste co-compost can be substituted to at least 75% within Sphagnum-based traditional growing media, providing a viable replacement for a large proportion of peat used as a growth medium in the horticulture industry. Our catering waste compost yielded similar seed head, seed mass and above-ground biomass values to 100% peat-based compost in all food waste compost blends tested in this study. 2010 Elsevier Ltd. All rights reserved.

  13. Artificial neural network optimization of Althaea rosea seeds polysaccharides and its antioxidant activity.

    PubMed

    Liu, Feng; Liu, Wenhui; Tian, Shuge

    2014-09-01

    A combination of an orthogonal L16(4)4 test design and a three-layer artificial neural network (ANN) model was applied to optimize polysaccharides from Althaea rosea seeds extracted by hot water method. The highest optimal experimental yield of A. rosea seed polysaccharides (ARSPs) of 59.85 mg/g was obtained using three extraction numbers, 113 min extraction time, 60.0% ethanol concentration, and 1:41 solid-liquid ratio. Under these optimized conditions, the ARSP experimental yield was very close to the predicted yield of 60.07 mg/g and was higher than the orthogonal test results (40.86 mg/g). Structural characterizations were conducted using physicochemical property and FTIR analysis. In addition, the study of ARSP antioxidant activity demonstrated that polysaccharides exhibited high superoxide dismutase activity, strong reducing power, and positive scavenging activity on superoxide anion, hydroxyl radical, 2,2-diphenyl-1-picrylhydrazyl, and reducing power. Our results indicated that ANNs were efficient quantitative tools for predicting the total ARSP content. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Compulsory winding in the opposite direction of climbing plants promotes yield.

    PubMed

    Kodama, Yoshiaki; Tezuka, Takafumi

    2004-04-01

    The stem of kidney bean plant (Phaseolus vulgaris L., cv. Kentucky 101), a typical dextrorse climbing plant, was subjected to compulsorily sinistrorse-winding. The compulsory sinistrorse-winding induced changes in physiological activities. The number of pods with immature seeds (used as vegetable) was doubled and the fresh weight of the pods also significantly increased by sinistrorse-winding. Compulsory sinistrorse-winding increased chlorophyll content, photosynthetic rate, respiration, nodule formation, N(2)-fixation, glutamine synthetase [L-glutamate: ammonia ligase (ADP-forming); E.C. 6.3.1.2] activity and protein content. Thus, it seems to affect the basic physiological processes that promote physiological activities though the action mechanism is unknown.

  15. The effect of growth temperature variation on partially bismuth filled carbon nanotubes synthesis using a soft semi-metallic template.

    PubMed

    Sahoo, R K; Jacob, C

    2014-06-01

    The dewetting of a low melting point metal thin film deposited on silicon substrates was studied. The experimental results suggest that the change in the growth temperature affects the nanostructures that form. Based on the experimental results, the temperature which yielded the smallest features for the growth of nanotubes is determined. The mechanism by which these nano-templates become an efficient seeds for the growth of the carbon nanotubes is discussed. The partial bismuth filling inside the CNTs was optimized. Based on the results, a schematic growth model for better understanding of the process parameters has also been proposed.

  16. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  17. Thidiazuron (TDZ) increases fruit set and yield of 'Hosui' and 'Packham's Triumph' pear trees.

    PubMed

    Pasa, Mateus S; Silva, Carina P DA; Carra, Bruno; Brighenti, Alberto F; Souza, André Luiz K DE; Petri, José Luiz

    2017-01-01

    The low fruit set is one of the main factors leading to poor yield of pear orchards in Brazil. The exogenous application of thidiazuron (TDZ) and aminoethoxyvinilglycine (AVG) has shown promising results in some pear cultivars and other temperate fruit trees. The objective of this study was to evaluate the effect of TDZ and AVG on fruit set, yield, and fruit quality of 'Hosui' and 'Packham's Triumph' pears. The study was performed in a commercial orchard located in São Joaquim, SC. Plant material consisted of 'Hosui' and 'Packham's Triumph' pear trees grafted on Pyrus calleryana. Treatments consisted on different rates of TDZ (0 mg L-1, 20 mg L-1, 40 mg L-1 and 60 mg L-1) sprayed at full bloom for both cultivars. An additional treatment of AVG 60 mg L-1 was sprayed one week after full bloom in 'Hosui'. The fruit set, number of fruit per tree, yield, fruit weight, seed number, and fruit quality attributes were assessed. Fruit set and yield of both cultivars are consistently increased by TDZ, within the rates of 20 to 60 mg L-1. Besides, its application increased fruit size of 'Hosui' and did not negatively affect fruit quality attributes of both cultivars.

  18. Extraction of kiwi seed oil: Soxhlet versus four different non-conventional techniques.

    PubMed

    Cravotto, Giancarlo; Bicchi, Carlo; Mantegna, Stefano; Binello, Arianna; Tomao, Valerie; Chemat, Farid

    2011-06-01

    Kiwi seed oil has a nutritionally interesting fatty acid profile, but a rather low oxidative stability, which requires careful extraction procedures and adequate packaging and storage. For these reasons and with the aim to achieve process intensification with shorter extraction time, lower energy consumption and higher yields, four different non-conventional techniques were experimented. Kiwi seeds were extracted in hexane using classic Soxhlet as well as under power ultrasound (US), microwaves (MWs; closed vessel) and MW-integrated Soxhlet. Supercritical CO₂ was also employed and compared to the other techniques in term of yield, extraction time, fatty acid profiles and organoleptic properties. All these non-conventional techniques are fast, effective and safe. A sensory evaluation test showed the presence of off-flavours in oil samples extracted by Soxhlet and US, an indicator of partial degradation.

  19. Environmental risks and challenges associated with neonicotinoid insecticides

    USGS Publications Warehouse

    Hladik, Michelle L.; Main, Anson; Goulson, Dave

    2018-01-01

    Neonicotinoid use has increased rapidly in recent years, with a global shift towards insecticide applications as seed coatings rather than aerial spraying. While the use of seed coatings can lessen the amount of overspray and drift, the near universal and prophylactic use of neonicotinoid seed coatings on major agricultural crops has led to widespread detections in the environment (pollen, soil, water, honey). Pollinators and aquatic insects appear to be especially susceptible to the effects of neonicotinoids with current research suggesting that chronic sub-lethal effects are more prevalent than acute toxicity. Meanwhile, evidence of clear and consistent yield benefits from the use of neonicotinoids remains elusive for most crops. Future decisions on neonicotinoid use will benefit from weighing crop yield benefits versus environmental impacts to non-target organisms and considering whether there are more environmentally benign alternatives.

  20. Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer.

    PubMed

    Maheshwari, D K; Dubey, R C; Aeron, Abhinav; Kumar, Bhavesh; Kumar, Sandeep; Tewari, Sakshi; Arora, Naveen Kumar

    2012-10-01

    Azotobacter chroococcum TRA2, an isolate of wheat rhizosphere displayed plant growth promoting attributes including indole acetic acid, HCN, siderophore production, solubilization of inorganic phosphate and fixation of atmospheric nitrogen. In addition, it showed strong antagonistic effect against Macrophomina phaseolina and Fusarium oxysporum. It also caused degradation and digestion of cell wall components, resulting in hyphal perforations, empty cell (halo) formation, shrinking and lysis of fungal mycelia along with significant degeneration of conidia. Fertilizer adaptive variant strain of A. chroococcum TRA2 was studied with Tn5 induced streptomycin resistant transconjugants of wild type tetracycline-resistant TRA2 (designated TRA2(tetra+strep+)) after different durations. The strain was significantly competent in rhizosphere, as its population increased by 15.29 % in rhizosphere of Sesamum indicum. Seed bacterization with the strain TRA2 resulted in significant increase in vegetative growth parameters and yield of sesame over the non-bacterized seeds. However, application of TRA2 with half dose of fertilizers showed sesame yield almost similar to that obtained by full dose treatment. Moreover, the oil yield increased by 24.20 %, while protein yield increased by 35.92 % in treatment receiving half dose of fertilizer along with TRA2 bacterized seeds, as compared to untreated control.

  1. Response of rice genotypes to weed competition in dry direct-seeded rice in India.

    PubMed

    Mahajan, Gulshan; Ramesha, Mugalodi S; Chauhan, Bhagirath S

    2014-01-01

    The differential weed-competitive abilities of eight rice genotypes and the traits that may confer such attributes were investigated under partial weedy and weed-free conditions in naturally occurring weed flora in dry direct-seeded rice during the rainy seasons of 2011 and 2012 at Ludhiana, Punjab, India. The results showed genotypic differences in competitiveness against weeds. In weed-free plots, grain yield varied from 6.6 to 8.9 t ha(-1) across different genotypes; it was lowest for PR-115 and highest for the hybrid H-97158. In partial weedy plots, grain yield and weed biomass at flowering varied from 3.6 to 6.7 t ha(-1) and from 174 to 419 g m(-2), respectively. In partial weedy plots, grain yield was lowest for PR-115 and highest for PR-120. Average yield loss due to weed competition ranged from 21 to 46% in different rice genotypes. The study showed that early canopy closure, high leaf area index at early stage, and high root biomass and volume correlated positively with competitiveness. This study suggests that some traits (root biomass, leaf area index, and shoot biomass at the early stage) could play an important role in conferring weed competitiveness and these traits can be explored for dry-seeded rice.

  2. Response of Rice Genotypes to Weed Competition in Dry Direct-Seeded Rice in India

    PubMed Central

    Mahajan, Gulshan; Ramesha, Mugalodi S.; Chauhan, Bhagirath S.

    2014-01-01

    The differential weed-competitive abilities of eight rice genotypes and the traits that may confer such attributes were investigated under partial weedy and weed-free conditions in naturally occurring weed flora in dry direct-seeded rice during the rainy seasons of 2011 and 2012 at Ludhiana, Punjab, India. The results showed genotypic differences in competitiveness against weeds. In weed-free plots, grain yield varied from 6.6 to 8.9 t ha−1 across different genotypes; it was lowest for PR-115 and highest for the hybrid H-97158. In partial weedy plots, grain yield and weed biomass at flowering varied from 3.6 to 6.7 t ha−1 and from 174 to 419 g m−2, respectively. In partial weedy plots, grain yield was lowest for PR-115 and highest for PR-120. Average yield loss due to weed competition ranged from 21 to 46% in different rice genotypes. The study showed that early canopy closure, high leaf area index at early stage, and high root biomass and volume correlated positively with competitiveness. This study suggests that some traits (root biomass, leaf area index, and shoot biomass at the early stage) could play an important role in conferring weed competitiveness and these traits can be explored for dry-seeded rice. PMID:25093205

  3. Seed bank characteristics of the Nymphoides peltata population in Lake Taihu

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Chen, Qiuwen; Chen, Kaining

    2015-08-01

    The Nymphoides peltata (N. peltata) population has shown rapid expansion in Lake Taihu, China, in recent years. The core question is whether N. peltata seeds have contributed to the expansion. To address this, we randomly selected three N. peltata stands to investigate the seed bank characteristics of N. peltata in Lake Taihu. Results showed that N. peltata had high seed production, with a maximum seed yield of 1763 seeds per m2. Density of intact and fragmented seeds decreased rapidly with sediment depth. Few intact or fragmented seeds were distributed at depths greater than 4 cm in the sediment. Spatial distribution of the seed bank indicated that most seeds sank to the sediment within the N. peltata stands, and few seeds took advantage of their floating ability. Seeds recovered from the sediment during April to June had a low germination rate, and no seeds germinated during October to April. Cold exposure treatment increased the germination rate remarkably. No seedlings were found in the field from January 2012 to December 2012, indicating that few seeds were successfully established in the surveyed area. The results suggested that sexual reproduction had little direct contribution to the N. peltata expansion in this large shallow lake.

  4. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain.

    PubMed

    Wang, Bin; Zhang, Yinghua; Hao, Baozhen; Xu, Xuexin; Zhao, Zhigan; Wang, Zhimin; Xue, Qingwu

    2016-01-01

    Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP). In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE) and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis) in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike). Wheat was sown in early to mid-November at a high seeding rate of 800-850 seeds m(-2). Average yields of 7.42 t ha(-1) and WUE of 1.84 kg m(-3) were achieved with an average seasonal evapotranspiration (ET) of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW) and harvest index (HI). Among the 3 cultivars, JM22 had 5.9%-8.9% higher yield and 4.2%-9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.

  5. Effects of beneficial microorganisms on lowland rice development.

    PubMed

    Nascente, Adriano Stephan; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; de Sousa, Thatyane Pereira; de Souza, Alan Carlos Alves; da Silva Lobo, Valácia Lemes; da Silva, Gisele Barata

    2017-11-01

    Microorganisms can promote plant growth by increasing phytomass production, nutrient uptake, photosynthesis rates, and grain yield, which can result in higher profits for farmers. However, there is limited information available about the physiological characteristics of lowland rice after treatment with beneficial microorganisms in the tropical region. This study aimed to determine the effects of different beneficial microorganisms and various application forms on phytomass production, gas exchange, and nutrient contents in the lowland rice cultivar 'BRS Catiana' in a tropical region. The experiment was performed under greenhouse conditions utilizing a completely randomized design and a 7 × 3 + 1 factorial scheme with four replications. The treatments consisted of seven microorganisms, including the rhizobacterial isolates BRM 32113, BRM 32111, BRM 32114, BRM 32112, BRM 32109, and BRM 32110 and Trichoderma asperellum pooled isolates UFRA-06, UFRA-09, UFRA-12, and UFRA-52, which were applied using three different methods (microbiolized seed, microbiolized seed + soil drenched with a microorganism suspension at 7 and 15 days after sowing (DAS), and microbiolized seed + plant spraying with a microorganism suspension at 7 and 15 DAS) with a control (water). The use of microorganisms can provide numerous benefits for rice in terms of crop growth and development. The microorganism types and methods of application positively and differentially affected the physiological characteristics evaluated in the experimental lowland rice plants. Notably, the plants treated with the bioagent BRM 32109 on the seeds and on seeds + soil produced plants with the highest dry matter biomass, gas exchange rate, and N, P, Fe, and Mg uptake. Therefore, our findings indicate strong potential for the use of microorganisms in lowland rice cultivation systems in tropical regions. Currently, an additional field experiment is in its second year to validate the beneficial result reported here and the novel input sustainability.

  6. Low temperature conditioning of garlic (Allium sativum L.) "seed" cloves induces alterations in sprouts proteome.

    PubMed

    Dufoo-Hurtado, Miguel D; Huerta-Ocampo, José Á; Barrera-Pacheco, Alberto; Barba de la Rosa, Ana P; Mercado-Silva, Edmundo M

    2015-01-01

    Low-temperature conditioning of garlic "seed" cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that "seed" bulbs from "Coreano" variety conditioned at 5°C for 5 weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic "seed" cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23°C), and the other was conditioned at low temperature (5°C) for 5 weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic "seed" cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous studies.

  7. Allelic interaction of F1 pollen sterility loci and abnormal chromosome behaviour caused pollen sterility in intersubspecific autotetraploid rice hybrids.

    PubMed

    He, J H; Shahid, M Q; Li, Y J; Guo, H B; Cheng, X A; Liu, X D; Lu, Y G

    2011-08-01

    The intersubspecific hybrids of autotetraploid rice has many features that increase rice yield, but lower seed set is a major hindrance in its utilization. Pollen sterility is one of the most important factors which cause intersubspecific hybrid sterility. The hybrids with greater variation in seed set were used to study how the F(1) pollen sterile loci (S-a, S-b, and S-c) interact with each other and how abnormal chromosome behaviour and allelic interaction of F(1) sterility loci affect pollen fertility and seed set of intersubspecific autotetraploid rice hybrids. The results showed that interaction between pollen sterility loci have significant effects on the pollen fertility of autotetraploid hybrids, and pollen fertility further decreased with an increase in the allelic interaction of F(1) pollen sterility loci. Abnormal ultra-structure and microtubule distribution patterns during pollen mother cell (PMC) meiosis were found in the hybrids with low pollen fertility in interphase and leptotene, suggesting that the effect-time of pollen sterility loci interaction was very early. There were highly significant differences in the number of quadrivalents and bivalents, and in chromosome configuration among all the hybrids, and quadrivalents decreased with an increase in the seed set of autotetraploid hybrids. Many different kinds of chromosomal abnormalities, such as chromosome straggling, chromosome lagging, asynchrony of chromosome disjunction, and tri-fission were found during the various developmental stages of PMC meiosis. All these abnormalities were significantly higher in sterile hybrids than in fertile hybrids, suggesting that pollen sterility gene interactions tend to increase the chromosomal abnormalities which cause the partial abortion of male gametes and leads to the decline in the seed set of the autotetraploid rice hybrids. © 2011 The Author(s).

  8. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.

    PubMed

    Bi, Chao; Ma, Yu; Wu, Zhen; Yu, Yong-Tao; Liang, Shan; Lu, Kai; Wang, Xiao-Fang

    2017-05-01

    It has been known that ABA INSENSITIVE 5 (ABI5) plays a vital role in regulating seed germination. In the present study, we showed that inhibition of the catalase activity with 3-amino-1,2,4-triazole (3-AT) inhibits seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines. Compared with Col-0, the seeds of abi5 mutants showed more sensitive to 3-AT during seed germination, while the seeds of ABI5-overexpression transgenic lines showed more insensitive. H 2 O 2 showed the same effect on seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines as 3-AT. These results suggest that ROS is involved in the seed germination mediated by ABI5. Further, we observed that T-DNA insertion mutants of the three catalase members in Arabidopsis displayed 3-AT-insensitive or -hypersensitive phenotypes during seed germination, suggesting that these catalase members regulate ROS homeostasis in a highly complex way. ABI5 affects reactive oxygen species (ROS) homeostasis by affecting CATALASE expression and catalase activity. Furthermore, we showed that ABI5 directly binds to the CAT1 promoter and activates CAT1 expression. Genetic evidence supports the idea that CAT1 functions downstream of ABI5 in ROS signaling during seed germination. RNA-sequencing analysis indicates that the transcription of the genes involved in ROS metabolic process or genes responsive to ROS stress is impaired in abi5-1 seeds. Additionally, expression changes in some genes correlative to seed germination were showed due to the change in ABI5 expression under 3-AT treatment. Together, all the findings suggest that ABI5 regulates seed germination at least partly by affecting ROS homeostasis.

  9. Extraction and characterization of triglycerides from coffeeweed and switchgrass seeds as potential feedstocks for biodiesel production.

    PubMed

    Armah-Agyeman, Grace; Gyamerah, Michael; Biney, Paul O; Woldesenbet, Selamawit

    2016-10-01

    Although switchgrass has been developed as a biofuel feedstock and its potential for bioethanol and bio-oil from fast pyrolysis reported in the literature, the use of the seeds of switchgrass as a source of triglycerides for biodiesel production has not been reported. Similarly, the potential for extracting triglycerides from coffeeweed (an invasive plant of no current economic value) needs to be investigated to ascertain its potential economic use for biodiesel production. The results show that coffeeweed and switchgrass seeds contain known triglycerides which are 983 and 1000 g kg(-1) respectively of the fatty acids found in edible vegetable oils such as sunflower, corn and soybean oils. In addition, the triglyceride yields of 53-67 g kg(-1) of the seed samples are in the range of commercial oil-producing seeds such as corn (42 g kg(-1) ). The results also indicate that the two non-edible oils could be used as substitutes for edible oil for biodiesel production. In addition, the use of seeds of switchgrass for non-edible oil production (as a feedstock for the production of biodiesel) further increases the total biofuel yield when switchgrass is cultivated for use as energy feedstock for pyrolysis oil and biodiesel production. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. A Quick-Test for Biochar Effects on Seed Germination ...

    EPA Pesticide Factsheets

    Biochar is being globally evaluated as a soil amendment to improve soil characteristics (e.g. soil water holding, nutrient exchange, microbiology, pesticides and chemical availability) to increase crop yields. Unfortunately, there are no quick tests to determine what biochar types are most effective at improving soil characteristics amenable for higher crop yields. Seed germination is a critical parameter for plant establishment and may be a quick indicator of biochar quality. We adapted Oregon State University Seed Laboratory procedures to develop a “quick-test” for screening the effects of biochar on seed germination. We used 11.0 cm rectangular x 3.5 cm deep containers fitted with blotter paper. The paper was premoistened with reverse-osmosis water, followed by placement of seeds (25 in a uniform 5 x 5 vacuum-assisted pattern, and biochar mixtures). A Norfolk and Coxville soil series from South Carolina were used. A total of 18 biochars were evaluated that were produced from 6 feedstocks (pine chips, poultry litter, swine solids, switchgrass, and two blends of pine chips and poultry litter); with biochar from each feedstock made by pyrolysis at 350, 500 and 700 ̊ C. Crops were cabbage, cucumber, onion, ryegrass and tomato. Preliminary results from the test indicated differences in seed germination due to soil type and possibly soil x biochar feedstock interactions. Other measurements including shoot dry weight per plate and pH of the soil+ biochar mixtur

  11. Shrinkage and growth compensation in common sunflowers: refining estimates of damage

    USGS Publications Warehouse

    Sedgwick, James A.; Oldemeye, John L.; Swenson, Elizabeth L.

    1986-01-01

    Shrinkage and growth compensation of artificially damaged common sunflowers (Helianthus annuus) were studied in central North Dakota during 1981-1982 in an effort to increase accuracy of estimates of blackbird damage to sunflowers. In both years, as plants matured damaged areas on seedheads shrank at a greater rate than the sunflower heads themselves. This differential shrinkage resulted in an underestimation of the area damaged. Sunflower head and damaged-area shrinkage varied widely by time and degree of damage and by size of the seedhead damaged. Because variation in shrinkage by time of damage was so large, predicting when blackbird damage occurs may be the most important factor in estimating seed loss. Yield'occupied seed area was greater (P < 0.05) for damaged than undamaged heads and tended to increase as degree of damage inflicted increased, indicating growth compensation was occurring in response to lost seeds. Yields of undamaged seeds in seedheads damaged during early seed development were higher than those of heads damaged later. This suggested that there was a period of maximal response to damage when plants were best able to redirect growth to seeds remaining in the head. Sunflowers appear to be able to compensate for damage of ≤ 15% of the total hear area. Estimates of damage can be improved by applying empirical results of differential shrinkage and growth compensations.

  12. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Savois, Vincent; Sommerer, Nicolas; Labas, Valérie; Henry, Céline; Burstin, Judith

    2009-01-01

    Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post-translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.

  13. A Cascade of Sequentially Expressed Sucrose Transporters in the Seed Coat and Endosperm Provides Nutrition for the Arabidopsis Embryo[OPEN

    PubMed Central

    Chen, Li-Qing; Lin, I Winnie; Qu, Xiao-Qing; Sosso, Davide; McFarlane, Heather E.; Londoño, Alejandra; Samuels, A. Lacey; Frommer, Wolf B.

    2015-01-01

    Developing plant embryos depend on nutrition from maternal tissues via the seed coat and endosperm, but the mechanisms that supply nutrients to plant embryos have remained elusive. Sucrose, the major transport form of carbohydrate in plants, is delivered via the phloem to the maternal seed coat and then secreted from the seed coat to feed the embryo. Here, we show that seed filling in Arabidopsis thaliana requires the three sucrose transporters SWEET11, 12, and 15. SWEET11, 12, and 15 exhibit specific spatiotemporal expression patterns in developing seeds, but only a sweet11;12;15 triple mutant showed severe seed defects, which include retarded embryo development, reduced seed weight, and reduced starch and lipid content, causing a “wrinkled” seed phenotype. In sweet11;12;15 triple mutants, starch accumulated in the seed coat but not the embryo, implicating SWEET-mediated sucrose efflux in the transfer of sugars from seed coat to embryo. This cascade of sequentially expressed SWEETs provides the feeding pathway for the plant embryo, an important feature for yield potential. PMID:25794936

  14. New observations on gametogenic development and reproductive experimental tools to support seed yield improvement in cowpea [Vigna unguiculata (L.) Walp].

    PubMed

    Salinas-Gamboa, Rigel; Johnson, Susan D; Sánchez-León, Nidia; Koltunow, Anna M G; Vielle-Calzada, Jean-Philippe

    2016-06-01

    Cowpea reproductive tools. Vigna unguiculata L. Walp. (cowpea) is recognized as a major legume food crop in Africa, but seed yields remain low in most varieties adapted to local conditions. The development of hybrid cowpea seed that could be saved after each generation, enabling significant yield increases, will require manipulation of reproductive development from a sexual to an asexual mode. To develop new technologies that could support the biotechnological manipulation of reproductive development in cowpea, we examined gametogenesis and seed formation in two transformable, African-adapted, day-length-insensitive varieties. Here, we show that these two varieties exhibit distinct morphological and phenological traits but share a common developmental sequence in terms of ovule formation and gametogenesis. We present a reproductive calendar that allows prediction of male and female gametogenesis on the basis of sporophytic parameters related to floral bud size and reproductive organ development, determining that gametogenesis occurs more rapidly in the anther than in the ovule. We also show that the mode of megagametogenesis is of the Polygonum-type and not Oenothera-type, as previously reported. Finally, we developed a whole-mount immunolocalization protocol and applied it to detect meiotic proteins in the cowpea megaspore mother cell, opening opportunities for comparing the dynamics of protein localization during male and female meiosis, as well as other reproductive events in this emerging legume model system.

  15. Gender inequality in predispersal seed predation contributes to female seed set advantage in a gynodioecious species.

    PubMed

    Clarke, Gretel L; Brody, Alison K

    2015-05-01

    Most flowering plants are hermaphrodites. However, in gynodioecious species, some members of the population are male-sterile and reproduce only by setting seed, while others gain fitness through both male and female function. How females compensate for the loss of male function remains unresolved for most gynodioecious species. Here, as with many plants, fitness differences may be influenced by interactions with multiple species. However, whether multiple species interactions result in gender-specific fitness differences remains unknown. Using observational data from 2009-2010, we quantified seed set of the two sex morphs of Polemonium foliosissimu and asked how it is affected by pollination, and seed predation from a dipteran predispersal seed predator (Anthomyiidae: Hylemya sp.). We assessed seed production and losses to predation in 27 populations for one year and in six populations for a second year. Females set significantly more seed than did hermaphrodites in both years. Of the fitness components we assessed, including the number of flowers per plant, fruit set, seeds/fruit, and proportion of fruits destroyed by Hylemya, only fruit destruction differed significantly between the sexes. In one year, seeds/fruit and predation had a stronger effect on seed set for hermaphrodites than for females. Because predispersal seed predators do not pollinate flowers, their effects may depend on successful pollination of flowers on which they oviposit. To examine if genders differed in pollen limitation and seed predation and/or their interactive effects, in 2011 we hand-pollinated flowers and removed seed predator eggs in a fully factorial design. Both sexes were pollen limited, but their degree of pollen limitation did not differ. However, predation reduced.seed set more for hermaphrodites than for females. We found no significant interaction between hand pollen and seed predation, and no interaction between hand pollination and gender. Our results suggest that while interactions with both pollinators and seed predators affect reproductive success, floral enemies can cause inequality in seed set between genders. The next step is to understand how the seed set advantage affects long-term fitness and persistence of females in gynodioecious populations.

  16. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice.

    PubMed

    Ren, Deyong; Rao, Yuchun; Wu, Liwen; Xu, Qiankun; Li, Zizhuang; Yu, Haiping; Zhang, Yu; Leng, Yujia; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Dong, Guojun; Zhang, Guangheng; Guo, Longbiao; Zeng, Dali; Qian, Qian

    2016-06-01

    Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull-like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1-green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes. © 2015 The Authors. Journal of Integrative Plant Biology published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  17. Seed handling practices for southern pines grown in containers

    Treesearch

    William H. Pawuk; James P. Barnett

    1979-01-01

    Cost of producing container-grown seedlings increase when containers are not fully stocked. Best use of containers requires high seed viability and low losses of newly germinated seedlings. Seed handling practices before and after sowing affect germination and seedling survival. This is a summary of seed preperation, sowing rates, disease control, and seed...

  18. Storage requirements for sugar maple seeds

    Treesearch

    Harry W. Yawney; Clayton M., Jr. Carl

    1974-01-01

    Sugar maple seeds, collected from three trees in northern Vermont, were stored at four temperatures (18, 7, 2, and -10ºC) in combination with four seed moisture contents (35, 25, 17, and 10 percent). Seed moisture content and storage temperature significantly affected keeping ability, and these factors were highly interrelated. Seeds from all trees kept best...

  19. Seed birth to death: dual functions of reactive oxygen species in seed physiology.

    PubMed

    Jeevan Kumar, S P; Rajendra Prasad, S; Banerjee, Rintu; Thammineni, Chakradhar

    2015-09-01

    Reactive oxygen species (ROS) are considered to be detrimental to seed viability. However, recent studies have demonstrated that ROS have key roles in seed germination particularly in the release of seed dormancy and embryogenesis, as well as in protection from pathogens. This review considers the functions of ROS in seed physiology. ROS are present in all cells and at all phases of the seed life cycle. ROS accumulation is important in breaking seed dormancy, and stimulating seed germination and protection from pathogens. However, excessive ROS accumulation can be detrimental. Therefore, knowledge of the mechanisms by which ROS influence seed physiology will provide insights that may not only allow the development of seed quality markers but also help us understand how dormancy can be broken in several recalcitrant species. Reactive oxygen species have a dual role in seed physiology. Understanding the relative importance of beneficial and detrimental effects of ROS provides great scope for the improvement and maintenance of seed vigour and quality, factors that may ultimately increase crop yields. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Nitrate affects sensu-stricto germination of after-ripened Sisymbrium officinale seeds by modifying expression of SoNCED5, SoCYP707A2 and SoGA3ox2 genes.

    PubMed

    Carrillo-Barral, Néstor; Matilla, Angel J; Rodríguez-Gacio, María del Carmen; Iglesias-Fernández, Raquel

    2014-03-01

    The influence of nitrate upon the germination of Sisymbrium officinale seeds is not entirely controlled by after-ripening (AR), a process clearly influenced by nitrate. Recently, we have reported that nitrate affects sensu-stricto germination of non-AR (AR0) seeds by modifying the expression of crucial genes involved in the metabolism of GA and ABA. In this study, we demonstrate that nitrate affects also the germination of AR seeds because: (i) the AR negatively alters the ABA sensitivity being the seed more ABA-sensible as the AR is farthest from optimal (AR0 and AR20 versus AR7); in the presence of diniconazole (DZ), a competitive inhibitor of ABA 8'-hydroxylase, testa rupture is affected while the endosperm rupture is not. (ii) AR7 seed-coat rupture is not inhibited by paclobutrazol (PBZ) suggesting that nitrate can act by a mechanism GA-independent. (iii) The germination process is accelerated by nitrate, most probably by the increase in the expression of SoNCED5, SoCYP707A2 and SoGA3ox2 genes. Taken together, these and previous results demonstrate that nitrate promotes germination of AR and non-AR seeds through transcriptional changes of different genes involved in ABA and GA metabolism. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development.

    PubMed

    Dekkers, Bas J W; He, Hanzi; Hanson, Johannes; Willems, Leo A J; Jamar, Diaan C L; Cueff, Gwendal; Rajjou, Loïc; Hilhorst, Henk W M; Bentsink, Leónie

    2016-02-01

    The seed expressed gene DELAY OF GERMINATION (DOG) 1 is absolutely required for the induction of dormancy. Next to a non-dormant phenotype, the dog1-1 mutant is also characterized by a reduced seed longevity suggesting that DOG1 may affect additional seed processes as well. This aspect however, has been hardly studied and is poorly understood. To uncover additional roles of DOG1 in seeds we performed a detailed analysis of the dog1 mutant using both transcriptomics and metabolomics to investigate the molecular consequences of a dysfunctional DOG1 gene. Further, we used a genetic approach taking advantage of the weak aba insensitive (abi) 3-1 allele as a sensitized genetic background in a cross with dog1-1. DOG1 affects the expression of hundreds of genes including LATE EMBRYOGENESIS ABUNDANT and HEAT SHOCK PROTEIN genes which are affected by DOG1 partly via control of ABI5 expression. Furthermore, the content of a subset of primary metabolites, which normally accumulate during seed maturation, was found to be affected in the dog1-1 mutant. Surprisingly, the abi3-1 dog1-1 double mutant produced green seeds which are highly ABA insensitive, phenocopying severe abi3 mutants, indicating that dog1-1 acts as an enhancer of the weak abi3-1 allele and thus revealing a genetic interaction between both genes. Analysis of the dog1 and dog1 abi3 mutants revealed additional seed phenotypes and therefore we hypothesize that DOG1 function is not limited to dormancy but that it is required for multiple aspects of seed maturation, in part by interfering with ABA signalling components. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. Disasters and development in agricultural input markets: bean seed markets in Honduras after Hurricane Mitch.

    PubMed

    Mainville, Denise Y

    2003-06-01

    The bulk of developing countries' populations and poor depend on agriculture for food and income. While rural economies and people are generally the most severely affected by natural disasters, little is known about how disasters and subsequent relief activities affect agricultural markets with differing levels of development. The article addresses this gap, drawing evidence from bean seed markets in Honduras after Hurricane Mitch. Case studies are used to address hypotheses about a disaster's effects on supply and demand in seed markets, farmers' responses and the performance of relief interventions in markets showing differing levels of development. The results show the importance of tailoring relief interventions to the markets that they will affect and to the specific effects of a disaster; the potential to use local and emerging seed distribution channels in a relief intervention; and opportunities for relief activities to strengthen community seed systems.

  3. Genetic Analysis of Seed-Soluble Oligosaccharides in Relation to Seed Storability of Arabidopsis1

    PubMed Central

    Bentsink, Leónie; Alonso-Blanco, Carlos; Vreugdenhil, Dick; Tesnier, Karine; Groot, Steven P.C.; Koornneef, Maarten

    2000-01-01

    Seed oligosaccharides (OSs) and especially raffinose series OSs (RSOs) are hypothesized to play an important role in the acquisition of desiccation tolerance and consequently in seed storability. In the present work we analyzed the seed-soluble OS (sucrose, raffinose, and stachyose) content of several Arabidopsis accessions and thus identified the genotype Cape Verde Islands having a very low RSO content. By performing quantitative trait loci (QTL) mapping in a recombinant inbred line population, we found one major QTL responsible for the practically monogenic segregation of seed stachyose content. This locus also affected the content of the two other OSs, sucrose, and raffinose. Two candidate genes encoding respectively for galactinol synthase and raffinose synthase were located within the genomic region around this major QTL. In addition, three smaller-effect QTL were identified, each one specifically affecting the content of an individual OS. Seed storability was analyzed in the same recombinant inbred line population by measuring viability (germination) under two different seed aging assays: after natural aging during 4 years of dry storage at room temperature and after artificial aging induced by a controlled deterioration test. Thus, four QTL responsible for the variation of this trait were mapped. Comparison of the QTL genetic positions showed that the genomic region containing the major OS locus did not significantly affect the seed storability. We concluded that in the studied material neither RSOs nor sucrose content had a specific effect on seed storability. PMID:11115877

  4. Corridors cause differential seed predation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrock, John L.; Damschen, Ellen I.

    2005-06-01

    Orrock, John, L., and Ellen I. Damschen. 2005. Corridors cause differential seed predation. Ecol. Apps. 15(3):793-798. Abstract. Corridors that connect disjunct populations are heavily debated in conservation, largely because the effects of corridors have rarely been evaluated by replicated, large-scale studies. Using large-scale experimental landscapes, we found that, in addition to documented positive effects, corridors also have negative impacts on bird-dispersed plants by affecting seed predation, and that overall predation is a function of the seeds primary consumer (rodents or arthropods). Both large-seeded Prunus serotina and small-seeded Rubus allegheniensis experienced greater predation in connected patches. However, P. serotina experienced significantlymore » less seed predation compared to R. allegheniensis in unconnected patches, due to decreased impacts of rodent seed predators on this large-seeded species. Viewed in light of previous evidence that corridors have beneficial impacts by increasing pollination and seed dispersal, this work demonstrates that corridors may have both positive and negative effects for the same plant species at different life stages. Moreover, these effects may differentially affect plant species within the same community: seeds primarily consumed by rodents suffer less predation in unconnected patches. By shifting the impact of rodent and arthropod seed predators, corridors constructed for plant conservation could lead to shifts in the seed bank.« less

  5. Effect of fungicide seed treatments on Fusarium virguliforme infection of soybean and development of sudden death syndrome

    USDA-ARS?s Scientific Manuscript database

    Sudden death syndrome (SDS), caused by Fusarium virguliforme (Fv), is a major yield-limiting disease of soybean in North America. Infection of soybean seedling roots by Fv results in severe root damage; therefore, fungicide seed treatments could potentially reduce these early-season infections and r...

  6. Managing phosphorus fertilizer to reduce algae, maintain water quality, and sustain yields in water-seeded rice

    USDA-ARS?s Scientific Manuscript database

    In water-seeded rice systems blue-green algae (cyanobacteria) hinder early-season crop growth by dislodging rice seedlings and reducing light. Since algae are often phosphorus (P) limited, we investigated whether changing the timing of P fertilizer application could reduce algae without reducing cro...

  7. Cone and Seed Maturation of Southern Pines

    Treesearch

    James P. Barnett

    1976-01-01

    If slightly reduced yields and viability are acceptable, loblolly and slash cone collections can begin 2 to 3 weeks before maturity if the cones are stored before processing. Longleaf(P. palestris Mill.) pine cones should be collected only when mature, as storage decreased germination of seeds from immature cones. Biochemical analyses to determine reducing sugar...

  8. Relationship between piercing-sucking insect control and internal lint and seed rot in Southeastern cotton (Gossypium hirsutum)

    USDA-ARS?s Scientific Manuscript database

    In 1999 crop consultants scouting for stink bugs (several Hemiptera spp.) in South Carolina discovered a formerly unobserved seed rot of cotton that caused yield losses ranging from 10 to 15% in certain fields. The same symptoms were subsequently reported in fields throughout the southeastern Cotto...

  9. A transgene design for enhancing oil content in Arabidopsis and Camelina seeds

    USDA-ARS?s Scientific Manuscript database

    Increasing the oil yield is a major objective for oilseed crop improvement. Oil biosynthesis and accumulation are influenced by multiple genes involved in embryo and seed development. The LEAFY COTYLEDON1 (LEC1) is a master regulator of embryo development that also enhances the expression of genes i...

  10. Effect of gypsum application on mineral composition in peanut pod walls and seeds

    USDA-ARS?s Scientific Manuscript database

    Alleviation of soil-Ca deficiency through gypsum amendment increases the yield potential and ensures high seed quality in peanut (Arachis hypogaea L.). The effects of gypsum treatment, plant life cycle stage, and the fruit development stages on the accrual of several essential minerals (Ca, S, Mg, P...

  11. Lesquerella seed yield estimation using color image segmentation to track flowering dynamics under water and nitrogen limitation

    USDA-ARS?s Scientific Manuscript database

    Seed oil from lesquerella (Physaria fendleri (Gray) O'Kane & Al-Shehbaz) can potentially supplement castor oil as a non-petroleum-based chemical feedstock in the production of many industrial products. However, before lesquerella will become commercially viable, further efforts are needed to address...

  12. Development of sunflower oil and composition with respect to seed moisture and physiological maturity

    USDA-ARS?s Scientific Manuscript database

    Desiccants/harvest aids are becoming more commonly used to hasten sunflower harvest. The current recommendation is to apply a desiccant (e.g., glyphosate and paraquat) at 35% or less seed moisture at physiological maturity (PM). Desiccating as early as possible without sacrificing yield may be a des...

  13. Test of pressure transducer for measuring cotton-mass flow

    USDA-ARS?s Scientific Manuscript database

    In this study, a cotton harvester yield monitor was developed based on the relationship between air pressure and the mass of seed cotton conveyed. The sensor theory was verified by laboratory tests. The sensor was tested on a cotton picker with seed cotton at two moisture contents, 5.9% and 8.5% we...

  14. Seed production and establishment of western Oregon native grasses

    Treesearch

    Dale C. Darris

    2005-01-01

    It is well understood that native grasses are ecologically important and provide numerous benefits. However, unfavorable economics, low seed yields for some species, genetic issues, and a lack of experience behind the production and establishment of most western Oregon native grasses remain significant impediments for their expanded use. By necessity, adaptation of...

  15. Neonicotinoid Seed Treatments and Foliar Sprays on Sugarbeet for Control of Severe Curly Top

    USDA-ARS?s Scientific Manuscript database

    Sugarbeet production in semiarid regions is hindered by yield loss caused with Beet severe curly top virus and other closely related species vectored by the beet leafhopper. In 2010, a study was established to investigate the level of control from seed treatments and supplemental foliar insecticide...

  16. Management of curly top in sugarbeet with seed and foliar insecticides

    USDA-ARS?s Scientific Manuscript database

    Curly top in sugarbeet can result in severe yield losses and is caused by Beet severe curly top virus (BSCTV) and other closely related Curtovirus spp. which are vectored by the beet leafhopper. Neonicotinoid seed treatments (Cruiser, NipsIt, and Poncho) have been shown to be an effective supplemen...

  17. Management of curly top in sugar beet with seed and foliar insecticides

    USDA-ARS?s Scientific Manuscript database

    Curly top in sugar beet can result in severe yield losses and is caused by Beet severe curly top virus (BSCTV) and other closely related Curtovirus spp. which are vectored by the beet leafhopper. Neonicotinoid seed treatments (Cruiser, NipsIt, and Poncho) have been shown to be an effective suppleme...

  18. A novel Brassica-rhizotron system to unravel the dynamic changes in root system architecture of oilseed rape under phosphorus deficiency.

    PubMed

    Yuan, Pan; Ding, Guang-Da; Cai, Hong-Mei; Jin, Ke-Mo; Broadley, Martin Roger; Xu, Fang-Sen; Shi, Lei

    2016-08-01

    An important adaptation of plants to phosphorus (P) deficiency is to alter root system architecture (RSA) to increase P acquisition from the soil, but soil-based observations of RSA are technically challenging, especially in mature plants. The aim of this study was to investigate the root development and RSA of oilseed rape (Brassica napus L.) under low and high soil P conditions during an entire growth cycle. A new large Brassica-rhizotron system (approx. 118-litre volume) was developed to study the RSA dynamics of B. napus 'Zhongshuang11' in soils, using top-soils supplemented with low P (LP) or high P (HP) for a full plant growth period. Total root length (TRL), root tip number (RTN), root length density (RLD), biomass and seed yield traits were measured. TRL and RTN increased more rapidly in HP than LP plants from seedling to flowering stages. Both traits declined from flowering to silique stages, and then increased slightly in HP plants; in contrast, root senescence was observed in LP plants. RSA parameters measured from the polycarbonate plates were empirically consistent with analyses of excavated roots. Seed yield and shoot dry weights were closely associated positively with root dry weights, TRL, RLD and RTN at both HP and LP. The Brassica-rhizotron system is an effective method for soil-based root phenotyping across an entire growth cycle. Given that root senescence is likely to occur earlier under low P conditions, crop P deficiency is likely to affect late water and nitrogen uptake, which is critical for efficient resource use and optimal crop yields. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. An invasive slug exploits an ant-seed dispersal mutualism.

    PubMed

    Meadley Dunphy, Shannon A; Prior, Kirsten M; Frederickson, Megan E

    2016-05-01

    Plant-animal mutualisms, such as seed dispersal, are often vulnerable to disruption by invasive species. Here, we show for the first time how a non-ant invasive species negatively affects seed dispersal by ants. We examined the effects of several animal species that co-occur in a temperate deciduous forest-including native and invasive seed-dispersing ants (Aphaenogaster rudis and Myrmica rubra, respectively), an invasive slug (Arion subfuscus), and native rodents-on a native myrmecochorous plant, Asarum canadense. We experimentally manipulated ant, slug, and rodent access to seed depots and measured seed removal. We also video-recorded depots to determine which other taxa interact with seeds. We found that A. rudis was the main disperser of seeds and that A. subfuscus consumed elaiosomes without dispersing seeds. Rodent visitation was rare, and rodent exclusion had no significant effect on seed or elaiosome removal. We then used data obtained from laboratory and field mesocosm experiments to determine how elaiosome robbing by A. subfuscus affects seed dispersal by A. rudis and M. rubra. We found that elaiosome robbing by slugs reduced seed dispersal by ants, especially in mesocosms with A. rudis, which picks up seeds more slowly than M. rubra. Taken together, our results show that elaiosome robbing by an invasive slug reduces seed dispersal by ants, suggesting that invasive slugs can have profound negative effects on seed dispersal mutualisms.

  20. Effect of salinity and sodicity stresses on physiological response and productivity in Helianthus annuus.

    PubMed

    Farghaly, Fatma Aly; Radi, Abeer Ahmed; Abdel-Wahab, Dalia Ahmed; Hamada, Afaf Mohamed

    2016-06-01

    Soil salinity and sodicity (alkalinity) are serious land degradation issues worldwide that are predicted to increase in the future. The objective of the present study is to distinguish the effects of NaCl and Na(2)CO(3) salinity in two concentrations on the growth, lipoxygenase (LOX) activity, membrane integrity, total lipids, yield parameters and fatty acids (FAs) composition of seeds of sunflower cultivar Sakha 53. Plant growth, LOX activity and malondialdehyde (MDA) content were reduced by salts stresses. On the contrary, salinity and alkalinity stress induced stimulatory effects on membrane permeability, leakage of UV-metabolites from leaves and total lipids of sunflower shoots and roots. Crop yield (plant height, head diameter, seed index and number of seeds for each head) that is known as a hallmark of plant stress was decreased by increasing concentrations of NaCl and Na(2)CO(3) in the growth media. Fatty acid methyl esters (FAME) composition of salt-stressed sunflower seeds varied with different levels of NaCl and Na(2)CO(3).

Top