Sample records for affecting soil microbial

  1. The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale

    USGS Publications Warehouse

    Waldrop, Mark P.; Holloway, JoAnn M.; Smith, David; Goldhaber, Martin B.; Drenovsky, R.E.; Scow, K.M.; Dick, R.; Howard, Daniel M.; Wylie, Bruce K.; Grace, James B.

    2017-01-01

    Soil microbial communities control critical ecosystem processes such as decomposition, nutrient cycling, and soil organic matter formation. Continental scale patterns in the composition and functioning of microbial communities are related to climatic, biotic, and edaphic factors such as temperature and precipitation, plant community composition, and soil carbon, nitrogen, and pH. Although these relationships have been well explored individually, the examination of the factors that may act directly on microbial communities vs. those that may act indirectly through other ecosystem properties has not been well developed. To further such understanding, we utilized structural equation modeling (SEM) to evaluate a set of hypotheses about the direct and indirect effects of climatic, biotic, and edaphic variables on microbial communities across the continental United States. The primary goals of this work were to test our current understanding of the interactions among climate, soils, and plants in affecting microbial community composition, and to examine whether variation in the composition of the microbial community affects potential rates of soil enzymatic activities. A model of interacting factors created through SEM shows several expected patterns. Distal factors such as climate had indirect effects on microbial communities by influencing plant productivity, soil mineralogy, and soil pH, but factors related to soil organic matter chemistry had the most direct influence on community composition. We observed that both plant productivity and soil mineral composition were important indirect influences on community composition at the continental scale, both interacting to affect organic matter content and microbial biomass and ultimately community composition. Although soil hydrolytic enzymes were related to the moisture regime and soil carbon, oxidative enzymes were also affected by community composition, reflected in the abundance of soil fungi. These results highlight that soil microbial communities can be modeled within the context of multiple interacting ecosystem properties acting both directly and indirectly on their composition and function, and this provides a rich and informative context with which to examine communities. This work also highlights that variation in climate, microbial biomass, and microbial community composition can affect maximum rates of soil enzyme activities, potentially influencing rates of decomposition and nutrient mineralization in soils.

  2. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador.

    PubMed

    Tischer, Alexander; Potthast, Karin; Hamer, Ute

    2014-05-01

    Global change phenomena, such as forest disturbance and land-use change, significantly affect elemental balances as well as the structure and function of terrestrial ecosystems. However, the importance of shifts in soil nutrient stoichiometry for the regulation of belowground biota and soil food webs have not been intensively studied for tropical ecosystems. In the present account, we examine the effects of land-use change and soil depth on soil and microbial stoichiometry along a land-use sequence (natural forest, pastures of different ages, secondary succession) in the tropical mountain rainforest region of southern Ecuador. Furthermore, we analyzed (PLFA-method) whether shifts in the microbial community structure were related to alterations in soil and microbial stoichiometry. Soil and microbial stoichiometry were affected by both land-use change and soil depth. After forest disturbance, significant decreases of soil C:N:P ratios at the pastures were followed by increases during secondary succession. Microbial C:N ratios varied slightly in response to land-use change, whereas no fixed microbial C:P and N:P ratios were observed. Shifts in microbial community composition were associated with soil and microbial stoichiometry. Strong positive relationships between PLFA-markers 18:2n6,9c (saprotrophic fungi) and 20:4 (animals) and negative associations between 20:4 and microbial N:P point to land-use change affecting the structure of soil food webs. Significant deviations from global soil and microbial C:N:P ratios indicated a major force of land-use change to alter stoichiometric relationships and to structure biological systems. Our results support the idea that soil biotic communities are stoichiometrically flexible in order to adapt to alterations in resource stoichiometry.

  3. Factors Affecting Soil Microbial Community Structure in Tomato Cropping Systems

    USDA-ARS?s Scientific Manuscript database

    Soil and rhizosphere microbial communities in agroecosystems may be affected by soil, climate, plant species, and management. We identified some of the most important factors controlling microbial biomass and community structure in an agroecosystem utilizing tomato plants with the following nine tre...

  4. Effects of forest conversion on soil microbial communities depend on soil layer on the eastern Tibetan Plateau of China.

    PubMed

    He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li; Xu, Zhenfeng

    2017-01-01

    Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion.

  5. Soil Microbial Properties and Plant Growth Responses to Carbon and Water Addition in a Temperate Steppe: The Importance of Nutrient Availability

    PubMed Central

    Guo, Chengyuan; Wang, Renzhong; Xiao, Chunwang

    2012-01-01

    Background Global climatic change is generally expected to stimulate net primary production, and consequently increase soil carbon (C) input. The enhanced C input together with potentially increased precipitation may affect soil microbial processes and plant growth. Methodology/Principal Findings To examine the effects of C and water additions on soil microbial properties and plant growth, we conducted an experiment lasting two years in a temperate steppe of northeastern China. We found that soil C and water additions significantly affected microbial properties and stimulated plant growth. Carbon addition significantly increased soil microbial biomass and activity but had a limited effect on microbial community structure. Water addition significantly increased soil microbial activity in the first year but the response to water decreased in the second year. The water-induced changes of microbial activity could be ascribed to decreased soil nitrogen (N) availability and to the shift in soil microbial community structure. However, no water effect on soil microbial activity was visible under C addition during the two years, likely because C addition alleviated nutrient limitation of soil microbes. In addition, C and water additions interacted to affect plant functional group composition. Water addition significantly increased the ratio of grass to forb biomass in C addition plots but showed only minor effects under ambient C levels. Our results suggest that soil microbial activity and plant growth are limited by nutrient (C and N) and water availability, and highlight the importance of nutrient availability in modulating the responses of soil microbes and plants to potentially increased precipitation in the temperate steppe. Conclusions/Significance Increased soil C input and precipitation would show significant effects on soil microbial properties and plant growth in the temperate steppe. These findings will improve our understanding of the responses of soil microbes and plants to the indirect and direct climate change effects. PMID:22496905

  6. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function. ?? 2006 Springer Science+Business Media, Inc.

  7. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet-up and between seasons and treatments. Overall, microbial activity may directly (C respiration) and indirectly (enzyme potential) reduce soil organic matter pools less in drier soils, and soil C sequestration potential (CUE) may be higher in soils with a history of extended dry periods between rainfall events. The implications include that soil C loss may be reduced or compensated for via different mechanisms at varying time scales, and that microbial taxa with better stress tolerance or growth efficiency may be associated with these functional shifts.

  8. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest

    USGS Publications Warehouse

    Waldrop, M.P.; Harden, J.W.

    2008-01-01

    Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short-term effects of wildfire to the long-term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration in incubation studies. Taken together, these results indicate that reductions in fungal biomass in postfire soils and lower soil moisture in nonpermafrost soils reduced the potential of soil heterotrophs to decompose soil carbon. Although in the field increased rates of microbial respiration can be observed in postfire soils due to warmer soil conditions, reductions in fungal biomass and activity may limit rates of decomposition. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing.

  9. Effects of forest conversion on soil microbial communities depend on soil layer on the eastern Tibetan Plateau of China

    PubMed Central

    He, Ruoyang; Yang, Kaijun; Li, Zhijie; Schädler, Martin; Yang, Wanqin; Wu, Fuzhong; Tan, Bo; Zhang, Li

    2017-01-01

    Forest land-use changes have long been suggested to profoundly affect soil microbial communities. However, how forest type conversion influences soil microbial properties remains unclear in Tibetan boreal forests. The aim of this study was to explore variations of soil microbial profiles in the surface organic layer and subsurface mineral soil among three contrasting forests (natural coniferous forest, NF; secondary birch forest, SF and spruce plantation, PT). Soil microbial biomass, activity and community structure of the two layers were investigated by chloroform fumigation, substrate respiration and phospholipid fatty acid analysis (PLFA), respectively. In the organic layer, both NF and SF exhibited higher soil nutrient levels (carbon, nitrogen and phosphorus), microbial biomass carbon and nitrogen, microbial respiration, PLFA contents as compared to PT. However, the measured parameters in the mineral soils often did not differ following forest type conversion. Irrespective of forest types, the microbial indexes generally were greater in the organic layer than in the mineral soil. PLFAs biomarkers were significantly correlated with soil substrate pools. Taken together, forest land-use change remarkably altered microbial community in the organic layer but often did not affect them in the mineral soil. The microbial responses to forest land-use change depend on soil layer, with organic horizons being more sensitive to forest conversion. PMID:28982191

  10. Effects of Plant Diversity, Functional Group Composition, and Fertilization on Soil Microbial Properties in Experimental Grassland

    PubMed Central

    Strecker, Tanja; Barnard, Romain L.; Niklaus, Pascal A.; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Scheu, Stefan; Eisenhauer, Nico

    2015-01-01

    Background Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. Methodology/Principal Findings We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. Conclusions/Significance Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and nutrient inputs for soil processes. PMID:25938580

  11. Context dependency and saturating effects of loss of rare soil microbes on plant productivity.

    PubMed

    Hol, W H Gera; de Boer, Wietse; de Hollander, Mattias; Kuramae, Eiko E; Meisner, Annelein; van der Putten, Wim H

    2015-01-01

    Land use intensification is associated with loss of biodiversity and altered ecosystem functioning. Until now most studies on the relationship between biodiversity and ecosystem functioning focused on random loss of species, while loss of rare species that usually are the first to disappear received less attention. Here we test if the effect of rare microbial species loss on plant productivity depends on the origin of the microbial soil community. Soils were sampled from three land use types at two farms. Microbial communities with increasing loss of rare species were created by inoculating sterilized soils with serially diluted soil suspensions. After 8 months of incubation, the effects of the different soil communities on abiotic soil properties, soil processes, microbial community composition, and plant productivity was measured. Dilution treatments resulted in increasing species loss, which was in relation to abundance of bacteria in the original field soil, without affecting most of the other soil parameters and processes. Microbial species loss affected plant biomass positively, negatively or not at all, depending on soil origin, but not on land use history. Even within fields the effects of dilution on plant biomass varied between replicates, suggesting heterogeneity in microbial community composition. The effects of medium and severe species loss on plant biomass were similar, pointing toward a saturating effect of species loss. We conclude that changes in the composition of the soil microbial community, including rare species loss, can affect plant productivity, depending on the composition of the initial microbial community. Future work on the relation between function and species loss effects should address this variation by including multiple sampling origins.

  12. Genomic and metagenomic analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami.

    PubMed

    Hiraoka, Satoshi; Machiyama, Asako; Ijichi, Minoru; Inoue, Kentaro; Oshima, Kenshiro; Hattori, Masahira; Yoshizawa, Susumu; Kogure, Kazuhiro; Iwasaki, Wataru

    2016-01-14

    The Great East Japan Earthquake of 2011 triggered large tsunami waves, which flooded broad areas of land along the Pacific coast of eastern Japan and changed the soil environment drastically. However, the microbial characteristics of tsunami-affected soil at the genomic level remain largely unknown. In this study, we isolated microbes from a soil sample using general low-nutrient and seawater-based media to investigate microbial characteristics in tsunami-affected soil. As expected, a greater proportion of strains isolated from the tsunami-affected soil than the unaffected soil grew in the seawater-based medium. Cultivable strains in both the general low-nutrient and seawater-based media were distributed in the genus Arthrobacter. Most importantly, whole-genome sequencing of four of the isolated Arthrobacter strains revealed independent losses of siderophore-synthesis genes from their genomes. Siderophores are low-molecular-weight, iron-chelating compounds that are secreted for iron uptake; thus, the loss of siderophore-synthesis genes indicates that these strains have adapted to environments with high-iron concentrations. Indeed, chemical analysis confirmed the investigated soil samples to be rich in iron, and culture experiments confirmed weak cultivability of some of these strains in iron-limited media. Furthermore, metagenomic analyses demonstrated over-representation of denitrification-related genes in the tsunami-affected soil sample, as well as the presence of pathogenic and marine-living genera and genes related to salt-tolerance. Collectively, the present results would provide an example of microbial characteristics of soil disturbed by the tsunami, which may give an insight into microbial adaptation to drastic environmental changes. Further analyses on microbial ecology after a tsunami are envisioned to develop a deeper understanding of the recovery processes of terrestrial microbial ecosystems.

  13. Microbial response to salinity stress in a tropical sandy soil amended with native shrub residues or inorganic fertilizer.

    PubMed

    Sall, Saïdou Nourou; Ndour, Ndèye Yacine Badiane; Diédhiou-Sall, Siré; Dick, Richard; Chotte, Jean-Luc

    2015-09-15

    Soil degradation and salinization caused by inappropriate cultivation practices and high levels of saltwater intrusion are having an adverse effect on agriculture in Central Senegal. The residues of Piliostigma reticulatum, a local shrub that coexists with crops, were recently shown to increase particulate organic matter and improve soil quality and may be a promising means of alleviating the effects of salinization. This study compared the effects of inorganic fertilizer and P. reticulatum residues on microbial properties and the ability of soil to withstand salinity stress. We hypothesized that soils amended with P. reticulatum would be less affected by salinity stress than soils amended with inorganic fertilizer and control soil. Salinity stress was applied to soil from a field site that had been cultivated for 5 years under a millet/peanut crop rotation when microbial biomass, phospholipid fatty acid (PLFA) community profile, catabolic diversity, microbial activities were determined. Microbial biomass, nitrification potential and dehydrogenase activity were higher by 20%, 56% and 69% respectively in soil with the organic amendment. With salinity stress, the structure and activities of the microbial community were significantly affected. Although the biomass of actinobacteria community increased with salinity stress, there was a substantial reduction in microbial activity in all soils. The soil organically amended was, however, less affected by salinity stress than the control or inorganic fertilizer treatment. This suggests that amendment using P. reticulatum residues may improve the ability of soils to respond to saline conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effects of interactions between Collembola and soil microbial community on the degradation of glyphosate-based herbicide

    NASA Astrophysics Data System (ADS)

    Wee, J.; Lee, Y. S.; Son, J.; Kim, Y.; Nam, T. H.; Cho, K.

    2017-12-01

    Glyphosate is the most widely used herbicide because of its broad spectrum activity and effectiveness, however, little is known about adverse effects on non-target species and their interactions. Therefore, in this study, we investigated the effects of glyphosate on interactions between Collembola and soil microbial community and the effect of Collembola on degradation of glyphosate. The experiment carried out in PS container filled with 30g of soil according to OECD 232 guidelines. Investigating the effects of soil microbial community and Collembola on degradation of glyphosate, we prepared defaunated field soil (only maintaining soil microbial community, sampling in May and September, 2016.) and autoclaved soil with 0, 10, 30 adults of Paronychiurus kimi (Collembola) respectively. Survived adults and hatched juveniles of P. kimi were counted after 28-day exposures in both soils spiked with 100 mg/kg of glyphosate. Glyphosate in soil of 7, 14, 21, 28 days after spiking of glyphosate based herbicide was analyzed by spectrophotometer (Jan et al., 2009). Also soil microbial community structure was investigated using phospholipid fatty acids (PLFAs) composition analysis of soils following the procedures given by the Sherlock Microbial Identification System (MIDI Inc., Newark, DE). Glyphosate (100mg/kg soil) has no effects on reproduction and survival of P. kimi in any soils. Also, glyphosate in soils with Collembola was more rapidly degraded. Rapid increase of soil microbial biomass(PLFAs) was shown in soil with Collembola addition. This result showed that glyphosate affected interactions between Collembola and soil microorganisms, and also soil microbial community affected by Collembola changed degradation of glyphosate.

  15. Land-use change and soil type are drivers of fungal and archaeal communities in the Pampa biome.

    PubMed

    Lupatini, Manoeli; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Suleiman, Afnan Khalil Ahmad; Fulthorpe, Roberta R; Roesch, Luiz Fernando Würdig

    2013-02-01

    The current study aimed to test the hypothesis that both land-use change and soil type are responsible for the major changes in the fungal and archaeal community structure and functioning of the soil microbial community in Brazilian Pampa biome. Soil samples were collected at sites with different land-uses (native grassland, native forest, Eucalyptus and Acacia plantation, soybean and watermelon field) and in a typical toposequence in Pampa biome formed by Paleudult, Albaqualf and alluvial soils. The structure of soil microbial community (archaeal and fungal) was evaluated by ribosomal intergenic spacer analysis and soil functional capabilities were measured by microbial biomass carbon and metabolic quotient. We detected different patterns in microbial community driven by land-use change and soil type, showing that both factors are significant drivers of fungal and archaeal community structure and biomass and microbial activity. Fungal community structure was more affected by land-use and archaeal community was more affected by soil type. Irrespective of the land-use or soil type, a large percentage of operational taxonomic unit were shared among the soils. We accepted the hypothesis that both land-use change and soil type are drivers of archaeal and fungal community structure and soil functional capabilities. Moreover, we also suggest the existence of a soil microbial core.

  16. Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland

    PubMed Central

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860

  17. Microbial community variation and its relationship with nitrogen mineralization in historically altered forests

    Treesearch

    Jennifer M. Fraterrigo; Teri C. Balser; Monica g. Turner

    2006-01-01

    Past land use can impart soil legacies that have important implications for ecosystem function. Although these legacies have been linked with microbially mediated processes, little is known about the long-term influence of land use on soil microbial communities themselves. We examined whether historical land use affected soil microbial community composition (lipid...

  18. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes.

    PubMed

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-06

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH 4 -N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO 3 -N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  19. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-03-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems.

  20. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes

    PubMed Central

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Ganjurjav, Hasbagan; Wang, Xuexia; Su, Xukun; Wu, Xiaoyu

    2017-01-01

    To understand effects of soil microbes on soil biochemistry in alpine grassland ecosystems under environmental changes, we explored relationships between soil microbial diversity and soil total nitrogen, organic carbon, available nitrogen and phosphorus, soil microbial biomass and soil enzyme activities in alpine meadow, alpine steppe and cultivated grassland on the Qinghai-Tibetan plateau under three-year warming, enhanced precipitation and yak overgrazing. Soil total nitrogen, organic carbon and NH4-N were little affected by overgrazing, warming or enhanced precipitation in three types of alpine grasslands. Soil microbial biomass carbon and phosphorus along with the sucrase and phosphatase activities were generally stable under different treatments. Soil NO3-N, available phosphorus, urease activity and microbial biomass nitrogen were increased by overgrazing in the cultivated grassland. Soil bacterial diversity was positively correlated with, while soil fungal diversity negatively with soil microbial biomass and enzyme activities. Soil bacterial diversity was negatively correlated with, while soil fungal diversity positively with soil available nutrients. Our findings indicated soil bacteria and fungi played different roles in affecting soil nutrients and microbiological activities that might provide an important implication to understand why soil biochemistry was generally stable under environmental changes in alpine grassland ecosystems. PMID:28262753

  1. Mechanistic modeling of thermo-hydrological processes and microbial interactions at pore to profile scales resolve methane emission dynamics from permafrost soil

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Or, Dani

    2017-04-01

    The sensitivity of the Earth's polar regions to raising global temperatures is reflected in rapidly changing hydrological processes with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and the stimulation of other soil-borne GHG emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and a host of other environmental factors. Soil structural elements such as aggregates and layering and hydration status affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hotspots or hot-layers). We developed a mechanistic individual based model to quantify microbial activity dynamics within soil pore networks considering, hydration, temperature, transport processes and enzymatic activity associated with methane production in soil. The model was the upscaled from single aggregates (or hotspots) to quantifying emissions from soil profiles in which freezing/thawing processes provide macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged parts of the profile) for resolving methane production and oxidation rates. Methane transport pathways through soil by diffusion and ebullition of bubbles vary with hydration dynamics and affect emission patterns. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability, enzyme activity, PH) on long term methane emissions and carbon decomposition rates in the rapidly changing polar regions.

  2. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics.

    PubMed

    Ren, Chengjie; Zhang, Wei; Zhong, ZeKun; Han, Xinhui; Yang, Gaihe; Feng, Yongzhong; Ren, Guangxin

    2018-01-01

    Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare those with plant and soil characteristics. Illumina sequencing of the 16S rRNA gene and ITS gene was used to analyze soil microbial (bacterial and fungal) diversity and composition, and fumigation-extraction was used to determine microbial biomass; the plant community metrics (i.e., percent cover, Shannon-Wiener, grass biomass, and carbon/nitrogen in leaf and biomass) and soil properties (i.e., soil moisture, soil temperature, bulk density, organic carbon, total nitrogen, and available nitrogen) were determined. The results showed that carbon/nitrogen in microbial biomass was higher at medium altitude and was positively related to carbon and nitrogen in both soil and grass biomass along the altitudinal gradients. Soil bacterial alpha diversity was significantly higher at medium altitude but fungal alpha diversity did not affected by altitudinal gradients; the effect of altitudinal gradients on bacterial beta diversity was larger than that on fungal beta diversity, although both groups were significantly affected by altitudinal gradients. Moreover, Alpha-proteobacteria, Beta-proteobacteria, and Gemmatimonadetes were significantly more abundant in higher altitude than in lower altitude, both Acidobacteria and Actinobacteria significantly declined with increasing altitude; other bacterial taxa such as Chloroflexi, Nitrospirae, Gamma-proteobacteria, and Delta-proteobacteria were significantly higher at medium altitudes. For fungal taxa, Basidiomycota and Ascomycota were the dominant phyla and responded insignificantly to the altitudinal gradients. The responses of microbial alpha diversity were mostly associated with plant Shannon index, organic carbon, and total nitrogen, whereas microbial beta diversity and composition mainly depended on soil moisture and temperature. Overall, these results suggest that soil bacteria rather than fungi can reflect changes in plant and soil characteristics along altitudinal gradients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    PubMed

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p < 0.05). We also found a high ratio of fungal-to-bacterial PLFAs in black soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p < 0.05). These results indicated that the application of corn straw positively influences soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of plant diversity on microbial nitrogen and phosphorus dynamics in soil

    NASA Astrophysics Data System (ADS)

    Prommer, Judith; Braun, Judith; Daly, Amanda; Gorka, Stefan; Hu, Yuntao; Kaiser, Christina; Martin, Victoria; Meyerhofer, Werner; Walker, Tom W. N.; Wanek, Wolfgang; Wasner, Daniel; Wiesenbauer, Julia; Zezula, David; Zheng, Qing; Richter, Andreas

    2017-04-01

    There is a general consensus that plant diversity affects many ecosystem functions. One example of such an effect is the enhanced aboveground and belowground plant biomass production with increasing species richness, with implications for carbon and nutrient distribution in soil. The Jena Experiment (http://www.the-jena-experiment.de/), a grassland biodiversity experiment established in 2002 in Germany, comprises different levels of plant species richness and different numbers of plant functional groups. It provides the opportunity to examine how changes in biodiversity impact on microbially-mediated nutrient cycling processes. We here report on plant diversity and plant functional composition effects on growth and nitrogen and phosphorus transformation rates, including nitrogen use efficiency, of microbial communities. Microbial growth rates and microbial biomass were positively affected by increasing plant species richness. Amino acid and ammonium concentrations in soil were also positively affected by plant species richness, while phosphate concentrations in contrast were negatively affected. The cycling of organic N in soils (estimated as gross protein depolymerization rates) increased about threefold with plant diversity, while gross N and P mineralization were not significantly affected by either species or functional richness. Microbial nitrogen use efficiency did not respond to different levels of plant diversity but was very high (0.96 and 0.98) across all levels of plant species richness, demonstrating a low N availability for microbes. Taken together this indicates that soil microbial communities were able to meet the well-documented increase in plant N content with species richness, and also the higher N demand of the microbial community by increasing the recycling of organic N such as proteins. In fact, the microbial community even overcompensated the increased plant and microbial N demand, as evidenced by increased levels of free amino acids and ammonium in the soil solution at higher species richness. A possible explanation for increased organic nitrogen transformation rates is the increased microbial biomass, which has previously been related to higher quantity and variety of plant derived compounds that are available to the microbial communities at higher plant diversity. Given that this explanation is right, it is interesting to note that the additional (plant-derived) microbial biomass at higher species richness, did not translate in higher soil P mineralization rates or phosphate availability.

  5. [Influences of biochar and nitrogen fertilizer on soil nematode assemblage of upland red soil].

    PubMed

    Lu, Yan-yan; Wang, Ming-wei; Chen, Xiao-vun; Liu, Man-qiang; Chen, Xiao-min; Cheng, Yan-hong; Huang, Qian-ru; Hu, Feng

    2016-01-01

    The use of biochar as soil remediation amendment has received more and more concerns, but little attention has been paid to its effect on soil fauna. Based on the field experiment in an upland red soil, we studied the influences of different application rates of biochar (0, 10, 20, 30, 40 t · hm⁻²) and nitrogen fertilizer (60, 90, 120 kg N · hm⁻²) on soil basic properties and nematode assemblages during drought and wet periods. Our results showed that the biochar amendment significantly affect soil moisture and pH regardless of drought or wet period. With the increasing of biochar application, soil pH significantly increased, while soil moisture increased first and then decreased. Soil microbial properties (microbial biomass C, microbial biomass N, microbial biomass C/N, basal respiration) were also significantly affected by the application of biochar and N fertilizer. Low doses of biochar could stimulate the microbial activity, while high doses depressed microbial activity. For example, averaged across different N application rates, biochar amendment at less than 30 t · hm⁻² could increase microbial activity in the drought and wet periods. Besides, the effects of biochar also depended on wet or drought period. When the biochar application rate higher than 30 t · hm⁻², the microbial biomass C was significantly higher in the drought period than the control, but no differences were observed in the wet period. On the contrary, microbial biomass N showed a reverse pattern. Dissolved organic matter and mineral N were affected by biochar and N fertilizer significantly in the drought period, however, in the wet period they were only affected by N fertilizer rather than biochar. There was significant interaction between biochar and N fertilizer on soil nematode abundance and nematode trophic composition independent of sampling period. Combined high doses of both biochar and N fertilization promoted soil nematode abundance. Moreover, the biochar amendment increased the proportion of fungivores especially in the drought period, suggesting the biochar was the preferred fungal energy channel in comparison to soil without biochar addition. In summary, complex patterns occurred not only due to the application rate of biochar as well as their interactions with N fertilization but also due to the drought and wet periods. It is, therefore, necessary to consider different ecological factors when evaluating the effects of biochar in future.

  6. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Treesearch

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  7. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  8. Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M.) forest stands

    NASA Astrophysics Data System (ADS)

    Hedo, J.; Lucas-Borja, M. E.; Wic, C.; Andrés-Abellán, M.; de Las Heras, J.

    2015-02-01

    Wildfires affecting forest ecosystems and post-fire silvicultural treatments may cause considerable changes in soil properties. The capacity of different microbial groups to recolonise soil after disturbances is crucial for proper soil functioning. The aim of this work was to investigate some microbial soil properties and enzyme activities in semiarid and dry Aleppo pine (Pinus halepensis M.) forest stands. Different plots affected by a wildfire event 17 years ago without or with post-fire silvicultural treatments 5 years after the fire event were selected. A mature Aleppo pine stand, unaffected by wildfire and not thinned was used as a control. Physicochemical soil properties (soil texture, pH, carbonates, organic matter, electrical conductivity, total N and P), soil enzymes (urease, phosphatase, β-glucosidase and dehydrogenase activities), soil respiration and soil microbial biomass carbon were analysed in the selected forests areas and plots. The main finding was that long time after this fire event produces no differences in the microbiological soil properties and enzyme activities of soil after comparing burned and thinned, burned and not thinned, and mature plots. Moreover, significant site variation was generally seen in soil enzyme activities and microbiological parameters. We conclude that total vegetation recovery normalises post-fire soil microbial parameters, and that wildfire and post-fire silvicultural treatments are not significant factors affecting soil properties after 17 years.

  9. Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time*

    PubMed Central

    Shentu, Jia-li; He, Zhen-li; Yang, Xiao-e; Li, Ting-qiang

    2008-01-01

    Effects of cadmium (Cd) on microbial biomass, activity and community diversity were assessed in a representative variable charge soil (Typic Aquult) using an incubation study. Cadmium was added as Cd(NO3)2 to reach a concentration range of 0~16 mg Cd/kg soil. Soil extractable Cd generally increased with Cd loading rate, but decreased with incubation time. Soil microbial biomass was enhanced at low Cd levels (0.5~1 mg/kg), but was inhibited consistently with increasing Cd rate. The ratio of microbial biomass C/N varied with Cd treatment levels, decreasing at low Cd rate (<0.7 mg/kg available Cd), but increasing progressively with Cd loading. Soil respiration was restrained at low Cd loading (<1 mg/kg), and enhanced at higher Cd levels. Soil microbial metabolic quotient (MMQ) was generally greater at high Cd loading (1~16 mg/kg). However, the MMQ is also affected by other factors. Cd contamination reduces species diversity of soil microbial communities and their ability to metabolize different C substrates. Soils with higher levels of Cd contamination showed decreases in indicator phospholipids fatty acids (PLFAs) for Gram-negative bacteria and actinomycetes, while the indicator PLFAs for Gram-positive bacteria and fungi increased with increasing levels of Cd contamination. PMID:18357628

  10. Microbial control over carbon cycling in soil

    PubMed Central

    Schimel, Joshua P.; Schaeffer, Sean M.

    2012-01-01

    A major thrust of terrestrial microbial ecology is focused on understanding when and how the composition of the microbial community affects the functioning of biogeochemical processes at the ecosystem scale (meters-to-kilometers and days-to-years). While research has demonstrated these linkages for physiologically and phylogenetically “narrow” processes such as trace gas emissions and nitrification, there is less conclusive evidence that microbial community composition influences the “broad” processes of decomposition and organic matter (OM) turnover in soil. In this paper, we consider how soil microbial community structure influences C cycling. We consider the phylogenetic level at which microbes form meaningful guilds, based on overall life history strategies, and suggest that these are associated with deep evolutionary divergences, while much of the species-level diversity probably reflects functional redundancy. We then consider under what conditions it is possible for differences among microbes to affect process dynamics, and argue that while microbial community structure may be important in the rate of OM breakdown in the rhizosphere and in detritus, it is likely not important in the mineral soil. In mineral soil, physical access to occluded or sorbed substrates is the rate-limiting process. Microbial community influences on OM turnover in mineral soils are based on how organisms allocate the C they take up – not only do the fates of the molecules differ, but they can affect the soil system differently as well. For example, extracellular enzymes and extracellular polysaccharides can be key controls on soil structure and function. How microbes allocate C may also be particularly important for understanding the long-term fate of C in soil – is it sequestered or not? PMID:23055998

  11. Correlation of soil microbes and soil micro-environment under long-term safflower (Carthamus tinctorius L.) plantation in China.

    PubMed

    Lu, Shuang; Quan, Wang; Wang, Shao-Ming; Liu, Hong-Ling; Tan, Yong; Zeng, Guang-Ping; Zhang, Xia

    2013-04-01

    Microbial community structure and ecological functions are influenced by interactions between above and belowground biota. There is an urgent need for intensive monitoring of microbes feedback of soil micro-ecosystem for setting up a good agricultural practice. Recent researches have revealed that many soils characteristic can effect microbial community structure. In the present study factors affecting microbial community structure and soil in Carthamus tinctorius plantations in arid agricultural ecosystem of northern Xinjiang, China were identified. The result of the study revealed that soil type was the key factor in safflower yield; Unscientific field management resulted high fertility level (bacteria dominant) of soil to turn to low fertility level (fungi dominant), and Detruded Canonical Correspondence Analysis (DCCA) showed that soil water content, organic matter, available N, P and K were the dominant factors affecting distribution of microbial community. Soil water content showed a significant positive correlation with soil microbes quantity (P < 0.01), while others showed a significant quantity correlation with soil microbe quantity (P < 0.05).

  12. High Microbial Diversity Promotes Soil Ecosystem Functioning.

    PubMed

    Maron, Pierre-Alain; Sarr, Amadou; Kaisermann, Aurore; Lévêque, Jean; Mathieu, Olivier; Guigue, Julien; Karimi, Battle; Bernard, Laetitia; Dequiedt, Samuel; Terrat, Sébastien; Chabbi, Abad; Ranjard, Lionel

    2018-05-01

    In soil, the link between microbial diversity and carbon transformations is challenged by the concept of functional redundancy. Here, we hypothesized that functional redundancy may decrease with increasing carbon source recalcitrance and that coupling of diversity with C cycling may change accordingly. We manipulated microbial diversity to examine how diversity decrease affects the decomposition of easily degradable (i.e., allochthonous plant residues) versus recalcitrant (i.e., autochthonous organic matter) C sources. We found that a decrease in microbial diversity (i) affected the decomposition of both autochthonous and allochthonous carbon sources, thereby reducing global CO 2 emission by up to 40%, and (ii) shaped the source of CO 2 emission toward preferential decomposition of most degradable C sources. Our results also revealed that the significance of the diversity effect increases with nutrient availability. Altogether, these findings show that C cycling in soil may be more vulnerable to microbial diversity changes than expected from previous studies, particularly in ecosystems exposed to nutrient inputs. Thus, concern about the preservation of microbial diversity may be highly relevant in the current global-change context assumed to impact soil biodiversity and the pulse inputs of plant residues and rhizodeposits into the soil. IMPORTANCE With hundreds of thousands of taxa per gram of soil, microbial diversity dominates soil biodiversity. While numerous studies have established that microbial communities respond rapidly to environmental changes, the relationship between microbial diversity and soil functioning remains controversial. Using a well-controlled laboratory approach, we provide empirical evidence that microbial diversity may be of high significance for organic matter decomposition, a major process on which rely many of the ecosystem services provided by the soil ecosystem. These new findings should be taken into account in future studies aimed at understanding and predicting the functional consequences of changes in microbial diversity on soil ecosystem services and carbon storage in soil. Copyright © 2018 American Society for Microbiology.

  13. Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage

    USDA-ARS?s Scientific Manuscript database

    Soil microorganisms play essential roles in soil organic matter dynamics and nutrient cycling in agroecosystems and have been used as soil quality indicators. The response of soil microbial communities to land management is complex and the long-term impacts of cropping systems on soil microbes is l...

  14. The influence of e-waste recycling on the molecular ecological network of soil microbial communities in Pakistan and China.

    PubMed

    Jiang, Longfei; Cheng, Zhineng; Zhang, Dayi; Song, Mengke; Wang, Yujie; Luo, Chunling; Yin, Hua; Li, Jun; Zhang, Gan

    2017-12-01

    Primitive electronic waste (e-waste) recycling releases large amounts of organic pollutants and heavy metals into the environment. As crucial moderators of geochemical cycling processes and pollutant remediation, soil microbes may be affected by these contaminants. We collected soil samples heavily contaminated by e-waste recycling in China and Pakistan, and analyzed the indigenous microbial communities. The results of this work revealed that the microbial community composition and diversity, at both whole and core community levels, were affected significantly by polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and heavy metals (e.g., Cu, Zn, and Pb). The geographical distance showed limited impacts on microbial communities compared with geochemical factors. The constructed ecological network of soil microbial communities illustrated microbial co-occurrence, competition and antagonism across soils, revealing the response of microbes to soil properties and pollutants. Two of the three main modules constructed with core operational taxonomic units (OTUs) were sensitive to nutrition (total organic carbon and total nitrogen) and pollutants. Five key OTUs assigned to Acidobacteria, Proteobacteria, and Nitrospirae in ecological network were identified. This is the first study to report the effects of e-waste pollutants on soil microbial network, providing a deeper understanding of the ecological influence of crude e-waste recycling activities on soil ecological functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Repeated application of composted tannery sludge affects differently soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms.

    PubMed

    Araújo, Ademir Sérgio Ferreira; Lima, Luciano Moura; Santos, Vilma Maria; Schmidt, Radomir

    2016-10-01

    Repeated application of composted tannery sludge (CTS) changes the soil chemical properties and, consequently, can affect the soil microbial properties. The aim of this study was to evaluate the responses of soil microbial biomass and ammonia-oxidizing organisms to repeated application of CTS. CTS was applied repeatedly during 6 years, and, at the sixth year, the soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms were determined in the soil. The treatments consisted of 0 (without CTS application), 2.5, 5, 10, and 20 t ha(-1) of CTS (dry basis). Soil pH, EC, SOC, total N, and Cr concentration increased with the increase in CTS rate. Soil microbial biomass did not change significantly with the amendment of 2.5 Mg ha(-1), while it decreased at the higher rates. Total and specific enzymes activity responded differently after CTS application. The abundance of bacteria did not change with the 2.5-Mg ha(-1) CTS treatment and decreased after this rate, while the abundance of archaea increased significantly with the 2.5-Mg ha(-1) CTS treatment. Repeated application of different CTS rates for 6 years had different effects on the soil microbial biomass and ammonia-oxidizing organisms as a response to changes in soil chemical properties.

  16. Relationships among plants, soils and microbial communities along a hydrological gradient in the New Jersey Pinelands, USA

    PubMed Central

    Yu, Shen; Ehrenfeld, Joan G.

    2010-01-01

    Background and Aims Understanding the role of different components of hydrology in structuring wetland communities is not well developed. A sequence of adjacent wetlands located on a catenary sequence of soils and receiving the same sources and qualities of water is used to examine specifically the role of water-table median position and variability in affecting plant and microbial community composition and soil properties. Methods Two replicates of three types of wetland found adjacent to each other along a hydrological gradient in the New Jersey Pinelands (USA) were studied. Plant-community and water-table data were obtained within a 100-m2 plot in each community (pine swamp, maple swamp and Atlantic-white-cedar swamp). Monthly soil samples from each plot were analysed for soil moisture, organic matter, extractable nitrogen fractions, N mineralization rate and microbial community composition. Multivariate ordination methods were used to compare patterns among sites within and between data sets. Key Results The maple and pine wetlands were more similar to each other in plant community composition, soil properties and microbial community composition than either was to the cedar swamps. However, maple and pine wetlands differed from each other in water-table descriptors as much as they differed from the cedar swamps. All microbial communities were dominated by Gram-positive bacteria despite hydrologic differences among the sites. Water-table variability was as important as water-table level in affecting microbial communities. Conclusions Water tables affect wetland communities through both median level and variability. Differentiation of both plant and microbial communities are not simple transforms of differences in water-table position, even when other hydrologic factors are kept constant. Rather, soil genesis, a result of both water-table position and geologic history, appears to be the main factor affecting plant and microbial community similarities. PMID:19643908

  17. Microbial community responses to 17 years of altered precipitation are seasonally dependent and coupled to co-varying effects of water content on vegetation and soil C

    USGS Publications Warehouse

    Sorensen, Patrick O.; Germino, Matthew J.; Feris, Kevin P.

    2013-01-01

    Precipitation amount and seasonal timing determine the duration and distribution of water available for plant and microbial activity in the cold desert sagebrush steppe. In this study, we sought to determine if a sustained shift in the amount and timing of precipitation would affect soil microbial diversity, community composition, and soil carbon (C) storage. Field plots were irrigated (+200 mm) during the dormant or growing-season for 17 years. Microbial community responses were assessed over the course of a year at two depths (15–20 cm, 95–100 cm) by terminal restriction fragment length polymorphism (T-RFLP), along with co-occurring changes in plant cover and edaphic properties. Bacterial richness, Shannon Weaver diversity, and composition in shallow soils (15–20 cm) as well as evenness in deep soils (95–100 cm) differed across irrigation treatments during July. Irrigation timing affected fungal community diversity and community composition during the dormant season and most strongly in deep soils (95–100 cm). Dormant-season irrigation increased the ratio of shrubs to forbs and reduced soil C in shallow soils by 16% relative to ambient conditions. It is unclear whether or not soil C will continue to decline with continued treatment application or if microbial adaptation could mitigate sustained soil C losses. Future changes in precipitation timing will affect soil microbes in a seasonally dependent manner and be coupled to co-varying effects of water content on vegetation and soil C.

  18. Role of soil microbial processes in integrated pest management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, A.J.

    1987-01-01

    Soil microorganisms play a significant role in the carbon, nitrogen, phosphorus, and sulfur cycles in nature and are critical to the functioning of ecosystems. Microorganisms affect plant growth directly by regulating the availability of plant nutrients in soil, or indirectly by affecting the population dynamics of plant pathogens in soil. Any adverse effect on soil microorganisms or on the microbial processes will affect the soil fertility, availability of plant nutrients and the overall biogeochemical cycling of elements in nature. Soil microorganisms are responsible for the degradation and detoxification of pesticides; they control many insect pests, nematodes, and other plant pathogenicmore » microorganisms by parasitism, competition, production of antibiotics and other toxic substances. Also, they regulate the availability of major and minor nutrients as well as essential elements. The long-term effects of continuous and, in some instances, excessive application of pesticides on soil fertility is not fully understood. Although much information is available on the integrated pest management (IPM) system, we have very little understanding of the extent of soil microbial processes which modulate the overall effectiveness of various strategies employed in IPM. The purpose of this paper is to review briefly the key microbial processes and their relationship to the IPM system.« less

  19. Impacts of anaerobic soil disinfestation and chemical fumigation on soil microbial communities in field tomato production system

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD), a potential alternative to chemical fumigation for controlling soilborne pathogens, has been demonstrated in several agricultural production systems. Soil microbial community as affected by ASD is considered one of the major factors responsible for pathogen suppr...

  20. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    PubMed

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  1. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study

    PubMed Central

    Molaei, Ali; Haghnia, Gholamhosain; Astaraei, Alireza; Rasouli-Sadaghiani, MirHassan; Teresa Ceccherini, Maria; Datta, Rahul

    2017-01-01

    Oxytetracycline (OTC) and sulfamethoxazole (SMX) are two of most widely used antibiotics in livestock and poultry industry. After consumption of antibiotics, a major portion of these compounds is excreted through the feces and urine of animals. Land application of antibiotic-treated animal wastes has caused increasing concern about their adverse effects on ecosystem health. In this regard, inconsistent results have been reported regarding the effects of antibiotics on soil microbial activities. This study was conducted based on the completely randomized design to the measure microbial biomass carbon, cumulative respiration and iron (III) reduction bioassays. Concentrations of OTC and SMX including 0, 1, 10, 25, 50, and 100 mg/kg were spiked in triplicate to a sandy loam soil and incubated for 21 days at 25°C. Results showed that the effects of OTC and SMX antibiotics on cumulative respiration and microbial biomass carbon were different. SMX antibiotic significantly affected soil microbial biomass carbon and cumulative respiration at different treatments compared to control with increasing incubation time. OTC antibiotic, on the other hand, negatively affected cumulative respiration compared to control treatment throughout the incubation period. Although OTC antibiotic positively affected microbial biomass carbon at day one of incubation, there was no clear trend in microbial biomass carbon between different treatments of this antibiotic after that time period. Nevertheless, sulfamethoxazole and oxytetracycline antibiotics had similar effects on iron (III) reduction such that they considerably affected iron (III) reduction at 1 and 10 mg/kg, and iron (III) reduction was completely inhibited at concentrations above 10 mg/kg. Hence, according to our results, microbial biomass carbon and cumulative respiration experiments are not able alone to exhibit the effect of antibiotics on soil microbial activity, but combination of these two experiments with iron (III) reduction test could well display the effects of sulfamethoxazole (SMX) and oxytetracycline (OTC) antibiotics on soil biochemical activities. PMID:28683144

  2. Plants regulate the effects of experimental warming on the soil microbial community in an alpine scrub ecosystem.

    PubMed

    Ma, Zhiliang; Zhao, Wenqiang; Zhao, Chunzhang; Wang, Dong; Liu, Mei; Li, Dandan; Liu, Qing

    2018-01-01

    Information on how soil microbial communities respond to warming is still scarce for alpine scrub ecosystems. We conducted a field experiment with two plant treatments (plant removal or undisturbed) subjected to warmed or unwarmed conditions to examine the effects of warming and plant removal on soil microbial community structures during the growing season in a Sibiraea angustata scrubland of the eastern Qinghai-Tibetan Plateau. The results indicate that experimental warming significantly influenced soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), but the warming effects were dependent on the plant treatments and sampling seasons. In the plant-removal plots, warming did not affect most of the microbial variables, while in the undisturbed plots, warming significantly increased the abundances of actinomycete and Gram-positive bacterial groups during the mid-growing season (July), but it did not affect the fungi groups. Plant removal significantly reduced fungal abundance throughout the growing season and significantly altered the soil microbial community structure in July. The interaction between warming and plant removal significantly influenced the soil MBC and MBN and the abundances of total microbes, bacteria and actinomycete throughout the growing season. Experimental warming significantly reduced the abundance of rare taxa, while the interaction between warming and plant removal tended to have strong effects on the abundant taxa. These findings suggest that the responses of soil microbial communities to warming are regulated by plant communities. These results provide new insights into how soil microbial community structure responds to climatic warming in alpine scrub ecosystems.

  3. Plants regulate the effects of experimental warming on the soil microbial community in an alpine scrub ecosystem

    PubMed Central

    Ma, Zhiliang; Zhao, Wenqiang; Zhao, Chunzhang; Wang, Dong; Liu, Mei; Li, Dandan

    2018-01-01

    Information on how soil microbial communities respond to warming is still scarce for alpine scrub ecosystems. We conducted a field experiment with two plant treatments (plant removal or undisturbed) subjected to warmed or unwarmed conditions to examine the effects of warming and plant removal on soil microbial community structures during the growing season in a Sibiraea angustata scrubland of the eastern Qinghai–Tibetan Plateau. The results indicate that experimental warming significantly influenced soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), but the warming effects were dependent on the plant treatments and sampling seasons. In the plant-removal plots, warming did not affect most of the microbial variables, while in the undisturbed plots, warming significantly increased the abundances of actinomycete and Gram-positive bacterial groups during the mid-growing season (July), but it did not affect the fungi groups. Plant removal significantly reduced fungal abundance throughout the growing season and significantly altered the soil microbial community structure in July. The interaction between warming and plant removal significantly influenced the soil MBC and MBN and the abundances of total microbes, bacteria and actinomycete throughout the growing season. Experimental warming significantly reduced the abundance of rare taxa, while the interaction between warming and plant removal tended to have strong effects on the abundant taxa. These findings suggest that the responses of soil microbial communities to warming are regulated by plant communities. These results provide new insights into how soil microbial community structure responds to climatic warming in alpine scrub ecosystems. PMID:29668711

  4. Mechanistic modeling of microbial interactions at pore to profile scale resolve methane emission dynamics from permafrost soil

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Or, Dani

    2017-05-01

    The sensitivity of polar regions to raising global temperatures is reflected in rapidly changing hydrological processes associated with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and stimulation of other soil-borne greenhouse gas emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and other environmental factors. Soil structural elements such as aggregates and layering affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hot spots). We developed a mechanistic individual-based model to quantify microbial activity dynamics in soil pore networks considering transport processes and enzymatic activity associated with methane production in soil. The model was upscaled from single aggregates to the soil profile where freezing/thawing provides macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged profile) for resolving methane production and oxidation rates. Methane transport pathways by diffusion and ebullition of bubbles vary with hydration dynamics. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability and enzyme activity) on long-term methane emissions and carbon decomposition rates in the rapidly changing polar regions.

  5. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. [Effects of different straw recycling and tillage methods on soil respiration and microbial activity].

    PubMed

    Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia

    2015-06-01

    To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.

  7. Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes-to-Amazon elevation gradient

    PubMed Central

    Whitaker, Jeanette; Ostle, Nicholas; Nottingham, Andrew T; Ccahuana, Adan; Salinas, Norma; Bardgett, Richard D; Meir, Patrick; McNamara, Niall P; Austin, Amy

    2014-01-01

    1. The Andes are predicted to warm by 3–5 °C this century with the potential to alter the processes regulating carbon (C) cycling in these tropical forest soils. This rapid warming is expected to stimulate soil microbial respiration and change plant species distributions, thereby affecting the quantity and quality of C inputs to the soil and influencing the quantity of soil-derived CO2 released to the atmosphere. 2. We studied tropical lowland, premontane and montane forest soils taken from along a 3200-m elevation gradient located in south-east Andean Peru. We determined how soil microbial communities and abiotic soil properties differed with elevation. We then examined how these differences in microbial composition and soil abiotic properties affected soil C-cycling processes, by amending soils with C substrates varying in complexity and measuring soil heterotrophic respiration (RH). 3. Our results show that there were consistent patterns of change in soil biotic and abiotic properties with elevation. Microbial biomass and the abundance of fungi relative to bacteria increased significantly with elevation, and these differences in microbial community composition were strongly correlated with greater soil C content and C:N (nitrogen) ratios. We also found that RH increased with added C substrate quality and quantity and was positively related to microbial biomass and fungal abundance. 4. Statistical modelling revealed that RH responses to changing C inputs were best predicted by soil pH and microbial community composition, with the abundance of fungi relative to bacteria, and abundance of gram-positive relative to gram-negative bacteria explaining much of the model variance. 5. Synthesis. Our results show that the relative abundance of microbial functional groups is an important determinant of RH responses to changing C inputs along an extensive tropical elevation gradient in Andean Peru. Although we do not make an experimental test of the effects of climate change on soil, these results challenge the assumption that different soil microbial communities will be ‘functionally equivalent’ as climate change progresses, and they emphasize the need for better ecological metrics of soil microbial communities to help predict C cycle responses to climate change in tropical biomes. PMID:25520527

  8. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes. © 2014 John Wiley & Sons Ltd.

  9. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  10. Carbon and nitrogen inputs affect soil microbial community structure and function

    NASA Astrophysics Data System (ADS)

    Liu, X. J. A.; Mau, R. L.; Hayer, M.; Finley, B. K.; Schwartz, E.; Dijkstra, P.; Hungate, B. A.

    2016-12-01

    Climate change has been projected to increase energy and nutrient inputs to soils, affecting soil organic matter (SOM) decomposition (priming effect) and microbial communities. However, many important questions remain: how do labile C and/or N inputs affect priming and microbial communities? What is the relationship between them? To address these questions, we applied N (NH4NO3 ; 100 µg N g-1 wk-1), C (13C glucose; 1000 µg C g-1 wk-1), C+N to four different soils for five weeks. We found: 1) N showed no effect, whereas C induced the greatest priming, and C+N had significantly lower priming than C. 2) C and C+N additions increased the relative abundance of actinobacteria, proteobacteria, and firmicutes, but reduced relative abundance of acidobacteria, chloroflexi, verrucomicrobia, planctomycetes, and gemmatimonadetes. 3) Actinobacteria and proteobacteria increased relative abundance over time, but most others decreased over time. 4) substrate additions (N, C, C+N) significantly reduced microbial alpha diversity, which also decreased over time. 5) For beta diversity, C and C+N formed significantly different communities compare to the control and N treatments. Overtime, microbial community structure significantly altered. Four soils have drastically different community structures. These results indicate amounts of substrate C were determinant factors in modulating the rate of SOM decomposition and microbial communities. Variable responses of different microbial communities to labile C and N inputs indicate that complex relationships between priming and microbial functions. In general, we demonstrate that energy inputs can quickly accelerate SOM decomposition whereas extra N input can slow this process, though both had similar microbial community responses.

  11. RELATIONSHIPS BETWEEN CULTURABLE SOIL MICROBIAL POPULATIONS AND GROSS NITROGEN TRANSFORMATION PROCESSES IN A CLAY LOAM SOIL ACROSS ECOSYSTEMS

    EPA Science Inventory

    The size and quality of soil organic matter (SOM) pool can vary between ecosystems and can affect many soil properties. The objective of this study was to examine the relationship between gross N transformation rates and microbial populations and to investigate the role that SOM...

  12. Soil microbial characteristics and seed bank dynamics of stock-piled top soils in ther western Rio Grande Plains

    USDA-ARS?s Scientific Manuscript database

    Increased energy extraction has impacted rangelands throughout the western U.S. Ecological restoration can be enhanced with proper management of affected top soils. Little information exists on effects of stockpiling on soil microbial community composition and functionality and seed bank dynamics. T...

  13. [Effects of biochar on microbial ecology in agriculture soil: a review].

    PubMed

    Ding, Yan-Li; Liu, Jie; Wang, Ying-Ying

    2013-11-01

    Biochar, as a new type of soil amendment, has been obtained considerable attention in the research field of environmental sciences worldwide. The studies on the effects of biochar in improving soil physical and chemical properties started quite earlier, and already covered the field of soil microbial ecology. However, most of the studies considered the soil physical and chemical properties and the microbial ecology separately, with less consideration of their interactions. This paper summarized and analyzed the interrelationships between the changes of soil physical and chemical properties and of soil microbial community after the addition of biochar. Biochar can not only improve soil pH value, strengthen soil water-holding capacity, increase soil organic matter content, but also affect soil microbial community structure, and alter the abundance of soil bacteria and fungi. After the addition of biochar, the soil environment and soil microorganisms are interacted each other, and promote the improvement of soil microbial ecological system together. This review was to provide a novel perspective for the in-depth studies of the effects of biochar on soil microbial ecology, and to promote the researches on the beneficial effects of biochar to the environment from ecological aspect. The methods to improve the effectiveness of biochar application were discussed, and the potential applications of biochar in soil bioremediation were further analyzed.

  14. Long-term effects of potato cropping system strategies on soilborne diseases and soil microbial communities

    USDA-ARS?s Scientific Manuscript database

    Cropping systems incorporating soil health management practices, such as longer rotations, disease-suppressive crops, reduced tillage, and/or organic amendments can substantially affect soil microbial communities, and potentially reduce soilborne potato diseases and increase productivity, but long-t...

  15. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling.

    PubMed

    Berthrong, Sean T; Buckley, Daniel H; Drinkwater, Laurie E

    2013-07-01

    We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose ((13)C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 (-) as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N.

  16. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau.

    PubMed

    Zhang, Yong; Dong, Shikui; Gao, Qingzhu; Liu, Shiliang; Zhou, Huakun; Ganjurjav, Hasbagan; Wang, Xuexia

    2016-08-15

    Alpine ecosystems are known to be sensitive to climate change and human disturbances. However, the knowledge about the changes of their underground microbial communities is inadequate. We explored the diversity and structure of soil bacterial and fungal communities using Ilumina MiSeq sequencing in native alpine grasslands (i.e. the alpine meadow, alpine steppe) and cultivated grassland of the Qinghai-Tibetan Plateau (QTP) under three-year treatments of overgrazing, warming and enhanced rainfall. Enhanced rainfall rather than warming significantly reduced soil microbial diversity in native alpine grasslands. Variable warming significantly reduced it in the cultivated grassland. Over 20% and 40% variations of microbial diversity could be explained by soil nutrients and moisture in the alpine meadow and cultivated grassland, separately. Soil microbial communities could be clustered into different groups according to different treatments in the alpine meadow and cultivated grassland. For the alpine steppe, with the lowest soil nutrients and moistures, <10% variations of microbial diversity was explained by soil properties; and the soil microbial communities among different treatments were similar. The soil microbial community in the cultivated grassland was varied from it in native grasslands. Over 50% variations of soil microbial communities among different treatments were explained by soil nutrients and moisture in each grassland type. Our results suggest that climate change and human activities strongly affected soil microbial communities by changing soil nutrients and moistures in alpine grassland ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  18. [Soil microbial community structure of monoculture and mixed plantation stands of native tree species in south subtropical China].

    PubMed

    Luo, Da; Shi, Zuo-Min; Tang, Jing-Chao; Liu, Shi-Rong; Lu, Li-Hua

    2014-09-01

    The effects of three plantation stands, Erythrophleumf ordii (EF), Pinus massoniana (PM), and their mixed plantation (MP), on soil microbial biomass and microbial community structure in south subtropical China were studied by the method of phospholipid fatty acids (PLFAs) analysis. The results showed that the amounts of microbial total PLFAs and PLFAs of each microbial group in these three plantation stand soils were significantly higher in dry season than in rainy season. In dry season, the amounts of microbial total PLFAs, bacteria PLFAs, fungi PLFAs, and actinomycetes PLFAs were the highest in the PM soil, moderate in the MP soil, and the lowest in the EF soil. But in rainy season, the amounts of microbial total PLFAs, bacteria PLFAs, fungi PLFAs, and arbuscular mycorrhizal fungi (AMF) PLFAs in the EF soil were higher than in the MP soil, and were significantly higher than in the PM soil. Principal component analysis (PCA) indicated that the variations in soil microbial community structure composition were affected by both plantation types and seasons. Redundancy analysis (RDA) of soil microbial community structure and environmental factors showed that soil temperature and moisture, pH, total nitrogen content, and ammonium nitrogen content had significant correlations with PLFA signatures. In addition, the ratio of fungi PLFAs to bacteria PLFAs in the MP soil was the highest among the three stand soils within the whole year, indicating that mixed plantation stands could facilitate the stability of the soil ecosystem.

  19. Bioavailability of five hydrophobic organic compounds to earthworms from sterile and non-sterile artificial soils.

    PubMed

    Šmídová, Klára; Kim, Sooyeon; Hofman, Jakub

    2017-07-01

    Bioaccumulation factors (BAFs) of organic pollutants to soil biota, often required by risk assessment, are mostly obtained in non-sterile laboratory-contaminated artificial soils. However, microbial degradation has been indicated by many authors to influence the fate of hydrophobic organic compounds (HOCs) in soils. A question arises if the microbial community of peat which is used for artificial soil preparation affects the measured values of BAFs. In this study the effect of soil microorganisms on bioavailability of HOCs was studied and a portion of each soil was sterilized by gamma irradiation. Results indicated that the sterilization process significantly affected the fate of polycyclic aromatic hydrocarbons (PAHs; phenanthrene and pyrene) and increased bioavailability of these compounds to earthworms with BAFs several times higher in the sterile soils compared to their non-sterile variants. This suggests that sterilization of soils can be used as the "worst-case scenario" for laboratory tests of toxicity or bioaccumulation of biodegradable HOCs such as PAHs. It represents a situation of limited microbial degradation resulting in higher bioavailable fractions to other organisms (e.g. invertebrates). This may be the case in soils where microbial communities face stresses caused by contamination or land management. The bioavailability of chlorinated HOCs (lindane, 4,4'-DDT and PCB 153) was not affected by sterilization, as their BAFs were similar in the sterile and non-sterile soils during the experiment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The soil microbial community composition and soil microbial carbon uptake are more affected by soil type than by different vegetation types (C3 and C4 plants) and seasonal changes

    NASA Astrophysics Data System (ADS)

    Griselle Mellado Vazquez, Perla; Lange, Markus; Gleixner, Gerd

    2016-04-01

    This study investigates the influence of different vegetation types (C3 and C4 plants), soil type and seasonal changes on the soil microbial biomass, soil microbial community composition and soil microbial carbon (C) uptake. We collected soil samples in winter (non-growing season) and summer (growing season) in 2012 from an experimental site cropping C3 and C4 plants for 6 years on two different soil types (sandy and clayey). The amount of phospholipid fatty acids (PLFAs) and their compound-specific δ13C values were used to determined microbial biomass and the flow of C from plants to soil microorganisms, respectively. Higher microbial biomass was found in the growing season. The microbial community composition was mainly explained by soil type. Higher amounts of SOC were driving the predominance of G+ bacteria, actinobacteria and cyclic G- bacteria in sandy soils, whereas root biomass was significantly related to the increased proportions of G- bacteria in clayey soils. Plant-derived C in G- bacteria increased significantly in clayey soils in the growing season. This increase was positively and significantly driven by root biomass. Moreover, changes in plant-derived C among microbial groups pointed to specific capabilities of different microbial groups to decompose distinct sources of C. We concluded that soil texture and favorable growth conditions driven by rhizosphere interactions are the most important factors controlling the soil microbial community. Our results demonstrate that a change of C3 plants vs. C4 plants has only a minor effect on the soil microbial community. Thus, such experiments are well suited to investigate soil organic matter dynamics as they allow to trace the C flow from plants into the soil microbial community without changing the community abundance and composition.

  1. Native soil organic matter conditions the response of microbial communities to organic inputs with different stability

    NASA Astrophysics Data System (ADS)

    Yanardaǧ, Ibrahim H.; Zornoza, Raúl; Bastida, Felipe; Büyükkiliç-Yanardaǧ, Asuman; Acosta, Jose A.; García, Carlos; Faz, Ángel; Mermut, Ahmet R.

    2017-04-01

    The response of soil microbial communities from soils with different soil organic matter (SOM) content to organic inputs with different stability is still poorly understood. Thus, an incubation experiment was designed to study how the addition of pig slurry (PS), its manure (M) and its biochar (BC) affect soil microbial community and activity in three soils differing in SOM content (Regosol, Luvisol and Kastanozem). The evolution of different C and N fractions, microbial biomass C and N, enzyme activities and microbial community structure by the use of phospholipid fatty acid (PLFA) analysis was assessed for 60 days. Results showed that the different amendments had different effect on microbial properties depending on the soil type. The addition of M caused the highest increase in all microbial properties in the three soils, followed by PS. These changes were more intense in the soil with the lowest SOM (Regosol). The addition of M and PS caused changes in the microbial community structure in all soils, which were more related to the presence of available sources of N than to the labile fractions of C. The addition of BC was followed by increases in the proportions of fungi and Gram positive bacteria in the Regosol, while enhanced the proportion of actinobacteria in all soil types, related to increments in pH and soil C recalcitrance. Thus, native SOM determined the response of microbial communities to external inputs with different stability, soils with low SOM being more prone to increase microbial biomass and activity and change microbial community structure.

  2. Dynamics of organic matter and microbial populations in amended soil: a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Gigliotti, Giovanni; Pezzolla, Daniela; Zadra, Claudia; Albertini, Emidio; Marconi, Gianpiero; Turchetti, Benedetta; Buzzini, Pietro

    2013-04-01

    The application of organic amendments to soils, such as pig slurry, sewage sludge and compost is considered a tool for improving soil fertility and enhancing C stock. The addition of these different organic materials allows a good supply of nutrients for plants but also contributes to C sequestration, affects the microbial activity and the transformation of soil organic matter (SOM). Moreover, the addition of organic amendment has gained importance as a source of greenhouse gas (GHG) emissions and then as a cause of the "Global Warming". Therefore, it is important to investigate the factors controlling the SOM mineralization in order to improve soil C sequestration and decreasing at the same time the GHG emissions. The quality of organic matter added to the soil will play an important role in these dynamics, affecting the microbial activity and the changes in microbial community structure. A laboratory, multidisciplinary experiment was carried out to test the effect of the amendment by anaerobic digested livestock-derived organic materials on labile organic matter evolution and on dynamics of microbial population, this latter both in terms of consistence of microbial biomass, as well as in terms of microbial biodiversity. Different approaches were used to study the microbial community structure: chemical (CO2 fluxes, WEOC, C-biomass, PLFA), microbiological (microbial enumeration) and molecular (DNA extraction and Roche 454, Next Generation Sequencing, NGS). The application of fresh digestate, derived from the anaerobic treatment of animal wastes, affected the short-term dynamics of microbial community, as reflected by the increase of CO2 emissions immediately after the amendment compared to the control soil. This is probably due to the addition of easily available C added with the digestate, demonstrating that this organic material was only partially stabilized by the anaerobic process. In fact, the digestate contained a high amounts of available C, which led to increase WEOC concentration in digestate treated soil compared to the control soil. The depletion of C, likely due to the microbial activity, was confirmed by the gradual decrease of WEOC concentration in soils amended with digestate. The SUVA254 measurement showed an influence of digestate on the quality of soil WEOM, with higher values in the control rather than in the digestate amended soil, indicating a great amount of aromatic compounds in native SOM. The results of the PLFAs showed that the addition of digestate did not lead overall changes in the microbial community structure compared to the control, except for a shallow decrease of fungi. This probably suggests that the slow rate of mineralization of the organic matter added with digestate does not induce to a rapid shift of microbial community structure. The NGS showed the most important bacterial phyla and fungi species that were involved in the SOM turnover. Furthermore, this approach might be useful to trace the residence time of microbial pathogens supplied with digestates.

  3. Microbial Growth and Carbon Use Efficiency in the Rhizosphere and Root-Free Soil

    PubMed Central

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Anderson, Traute-Heidi; Kuzyakov, Yakov

    2014-01-01

    Plant-microbial interactions alter C and N balance in the rhizosphere and affect the microbial carbon use efficiency (CUE)–the fundamental characteristic of microbial metabolism. Estimation of CUE in microbial hotspots with high dynamics of activity and changes of microbial physiological state from dormancy to activity is a challenge in soil microbiology. We analyzed respiratory activity, microbial DNA content and CUE by manipulation the C and nutrients availability in the soil under Beta vulgaris. All measurements were done in root-free and rhizosphere soil under steady-state conditions and during microbial growth induced by addition of glucose. Microorganisms in the rhizosphere and root-free soil differed in their CUE dynamics due to varying time delays between respiration burst and DNA increase. Constant CUE in an exponentially-growing microbial community in rhizosphere demonstrated the balanced growth. In contrast, the CUE in the root-free soil increased more than three times at the end of exponential growth and was 1.5 times higher than in the rhizosphere. Plants alter the dynamics of microbial CUE by balancing the catabolic and anabolic processes, which were decoupled in the root-free soil. The effects of N and C availability on CUE in rhizosphere and root-free soil are discussed. PMID:24722409

  4. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.

    PubMed

    Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D

    2012-11-15

    This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions.

    PubMed

    Bandopadhyay, Sreejata; Martin-Closas, Lluis; Pelacho, Ana M; DeBruyn, Jennifer M

    2018-01-01

    Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs) offer an environmentally sustainable alternative to conventional polyethylene (PE) mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films) and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability.

  6. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    PubMed

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Water regime history drives responses of soil Namib Desert microbial communities to wetting events

    NASA Astrophysics Data System (ADS)

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.

    2015-07-01

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  8. Water regime history drives responses of soil Namib Desert microbial communities to wetting events.

    PubMed

    Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A

    2015-07-21

    Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel "dry condition" control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.

  9. Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank

    PubMed Central

    Leite, Márcio F. A.; Pan, Yao; Bloem, Jaap; Berge, Hein ten; Kuramae, Eiko E.

    2017-01-01

    Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake. PMID:28198425

  10. Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank.

    PubMed

    Leite, Márcio F A; Pan, Yao; Bloem, Jaap; Berge, Hein Ten; Kuramae, Eiko E

    2017-02-15

    Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake.

  11. [Effect of long-term fertilization on microbial community functional diversity in black soil].

    PubMed

    Liu, Jing-xin; Chi, Feng-qin; Xu, Xiu-hong; Kuang, En-jun; Zhang, Jiu-ming; Su, Qing-rui; Zhou, Bao-ku

    2015-10-01

    In order to study the effects of long-term different fertilization on microbial community functional diversity in arable black. soil, we examined microbial metabolic activities in two soil la- yers (0-20 cm, 20-40 cm) under four treatments (CK, NPK, M, MNPK) from a 35-year continuous fertilization field at the Ministry of Agriculture Key Field Observation Station of Harbin Black Soil Ecology Environment using Biolog-ECO method. The results showed that: in the 0-20 cm soil layer, combined application of organic and inorganic fertilizer(MNPK) increased the rate of soil microbial carbon source utilization and community metabolism richness, diversity and dominance; In the 20-40 cm layer, these indices of the MNPK treatment was lower than that of the NPK treat- ment; while NPK treatment decreased soil microbial community metabolism evenness in both layers. Six groups of carbon sources used by soil microbes of all the treatments were different between the two soil layers, and the difference was significant among all treatments in each soil layer (P < 0.05) , while the variations among treatments were different in the two soil layers. Canonical correspondence analysis (CCA) showed that soil microbial community metabolic function of all the treatments was different between the two soil layers, and there was difference among all treatments in each soil layer, while the influences of soil nutrients on soil microbial community metabolic function of all treatments were similar in each soil layer. It was concluded that long-term different fertilization affected soil microbial community functional diversity in both tillage soil layer and down soil layers, and chemical fertilization alone had a larger influence on the microbial community functional diversity in the 20-40 cm layer.

  12. Microbial biomass carbon and enzyme activities of urban soils in Beijing.

    PubMed

    Wang, Meie; Markert, Bernd; Shen, Wenming; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2011-07-01

    To promote rational and sustainable use of soil resources and to maintain the urban soil quality, it is essential to assess urban ecosystem health. In this study, the microbiological properties of urban soils in Beijing and their spatial distribution patterns across the city were evaluated based on measurements of microbial biomass carbon and urease and invertase activities of the soils for the purpose of assessing the urban ecosystem health of Beijing. Grid sampling design, normal Kriging technique, and the multiple comparisons among different land use types were used in soil sampling and data treatment. The inherent chemical characteristics of urban soils in Beijing, e.g., soil pH, electronic conductivity, heavy metal contents, total N, P and K contents, and soil organic matter contents were detected. The size and diversity of microbial community and the extent of microbial activity in Beijing urban soils were measured as the microbial biomass carbon content and the ratio of microbial biomass carbon content to total soil organic carbon. The microbial community health measured in terms of microbial biomass carbon, urease, and invertase activities varied with the organic substrate and nutrient contents of the soils and were not adversely affected by the presence of heavy metals at p < 0.01. It was shown that the older and the biologically more stable part of city exhibited higher microbial activity levels than the more recently developed part of the city and the road areas of heavy traffic. It was concluded that the land use patterns in Beijing urban soils influenced the nature and activities of the microbial communities.

  13. Habitat Fragmentation can Modulate Drought Effects on the Plant-soil-microbial System in Mediterranean Holm Oak (Quercus ilex) Forests.

    PubMed

    Flores-Rentería, Dulce; Curiel Yuste, Jorge; Rincón, Ana; Brearley, Francis Q; García-Gil, Juan Carlos; Valladares, Fernando

    2015-05-01

    Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation.

  14. Effects of hurricane-felled tree trunks on soil carbon, nitrogen, microbial biomass, and root length in a wet tropical forest

    Treesearch

    D. Jean Lodge; Dirk Winter; Grizelle Gonzalez; Naomi Clum

    2016-01-01

    Decaying coarse woody debris can affect the underlying soil either by augmenting nutrients that can be exploited by tree roots, or by diminishing nutrient availability through stimulation of microbial nutrient immobilization. We analyzed C, N, microbial biomass C and root length in closely paired soil samples taken under versus 20–50 cm away from large trunks of two...

  15. Historical Contingencies in Microbial Responses to Drought

    NASA Astrophysics Data System (ADS)

    Hawkes, C.; Waring, B.; Rocca, J.; Kivlin, S.; Giauque, H.; Averill, C.

    2014-12-01

    Although water is a primary controller of microbial function and we expect climate change to alter water availability in the future, our understanding of how microbial communities respond to a change in moisture and what that means for soil carbon cycling remain poorly understood. In part, this uncertainty arises from a lack of understanding of microbial response mechanisms and how those lead to aggregate soil function. Environmental tracking would be facilitated if microbial communities respond to new climatic conditions via rapid physiological acclimatization, shifts in community composition, or adaptation. In contrast, historical contingencies could be created by dispersal limitation or local adaptation to previous conditions. To address environmental tracking vs. legacies, we examined how soil microbial communities were affected by precipitation at multiple scales and asked whether rainfall was a primary driver of the observed responses. We leveraged a local steep rainfall gradient with field surveys, lab incubations, reciprocal transplants, and rainfall manipulations to approach this problem. Across a steep rainfall gradient, we found that soil microbial communities were strongly associated with historical rainfall, with two-thirds of the variation in community composition explained by mean annual precipitation. In 12-month experimental lab manipulations of soil moisture, soil functional responses were constrained by historical rainfall, with greater activity in soils subjected to their original moisture condition. The constraints of historical rainfall held even after 18 months in reciprocal transplant common gardens along the rainfall gradient and with manipulated dispersal of regional microbial communities. Yet, when water was manipulated at a single site over 4 years, legacies did not develop. Overall, these findings are consistent with long-term rainfall acting as a strong habitat filter and resulting in a legacy of both microbial community composition and physiological capacity that can affect soil carbon cycling. Placing the ecological and evolutionary dynamics of microbial communities in the context of historical and future environmental variation may thus provide us with a framework for improving prediction of ecosystem responses to climate change.

  16. Importance of Soil Temperature for the Growth of Temperate Crops under a Tropical Climate and Functional Role of Soil Microbial Diversity.

    PubMed

    Sabri, Nurul Syazwani Ahmad; Zakaria, Zuriati; Mohamad, Shaza Eva; Jaafar, A Bakar; Hara, Hirofumi

    2018-04-28

    A soil cooling system that prepares soil for temperate soil temperatures for the growth of temperate crops under a tropical climate is described herein. Temperate agriculture has been threatened by the negative impact of temperature increases caused by climate change. Soil temperature closely correlates with the growth of temperate crops, and affects plant processes and soil microbial diversity. The present study focuses on the effects of soil temperatures on lettuce growth and soil microbial diversity that maintains the growth of lettuce at low soil temperatures. A model temperate crop, loose leaf lettuce, was grown on eutrophic soil under soil cooling and a number of parameters, such as fresh weight, height, the number of leaves, and root length, were evaluated upon harvest. Under soil cooling, significant differences were observed in the average fresh weight (P<0.05) and positive development of the roots, shoots, and leaves of lettuce. Janthinobacterium (8.142%), Rhodoplanes (1.991%), Arthrospira (1.138%), Flavobacterium (0.857%), Sphingomonas (0.790%), Mycoplana (0.726%), and Pseudomonas (0.688%) were the dominant bacterial genera present in cooled soil. Key soil fungal communities, including Pseudaleuria (18.307%), Phoma (9.968%), Eocronartium (3.527%), Trichosporon (1.791%), and Pyrenochaeta (0.171%), were also recovered from cooled soil. The present results demonstrate that the growth of temperate crops is dependent on soil temperature, which subsequently affects the abundance and diversity of soil microbial communities that maintain the growth of temperate crops at low soil temperatures.

  17. Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates.

    PubMed

    Patel, Vrutika; Sharma, Anukriti; Lal, Rup; Al-Dhabi, Naif Abdullah; Madamwar, Datta

    2016-03-22

    Gauging the microbial community structures and functions become imperative to understand the ecological processes. To understand the impact of long-term oil contamination on microbial community structure soil samples were taken from oil fields located in different industrial regions across Kadi, near Ahmedabad, India. Soil collected was hence used for metagenomic DNA extraction to study the capabilities of intrinsic microbial community in tolerating the oil perturbation. Taxonomic profiling was carried out by two different complementary approaches i.e. 16S rDNA and lowest common ancestor. The community profiling revealed the enrichment of phylum "Proteobacteria" and genus "Chromobacterium," respectively for polluted soil sample. Our results indicated that soil microbial diversity (Shannon diversity index) decreased significantly with contamination. Further, assignment of obtained metagenome reads to Clusters of Orthologous Groups (COG) of protein and Kyoto Encyclopedia of Genes and Genomes (KEGG) hits revealed metabolic potential of indigenous microbial community. Enzymes were mapped on fatty acid biosynthesis pathway to elucidate their roles in possible catalytic reactions. To the best of our knowledge this is first study for influence of edible oil on soil microbial communities via shotgun sequencing. The results indicated that long-term oil contamination significantly affects soil microbial community structure by acting as an environmental filter to decrease the regional differences distinguishing soil microbial communities.

  18. ACID RAIN AND SOIL MICROBIAL ACTIVITY: EFFECTS AND THEIR MECHANISMS

    EPA Science Inventory

    In the investigation, our aim was to determine if acid rain affects soil microbial activity and to identify possible mechanisms of observed effects. A Sierran forest soil (pH 6.4) planted with Ponderosa pine seedlings was exposed to simulated rain (pH 2.0, 3.0, 4.0 and 5.6) with ...

  19. Responses of redwood soil microbial community structure and N transformations to climate change

    Treesearch

    Damon C. Bradbury; Mary K. Firestone

    2012-01-01

    Soil microorganisms perform critical ecosystem functions, including decomposition, nitrogen (N) mineralization and nitrification. Soil temperature and water availability can be critical determinants of the rates of these processes as well as microbial community composition and structure. This research examined how changes in climate affect bacterial and fungal...

  20. Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.

    The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO 2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils.more » The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO 2 produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO 2 flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.« less

  1. Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences.

    PubMed

    Kurm, Viola; van der Putten, Wim H; Pineda, Ana; Hol, W H Gera

    2018-02-12

    Plant growth-promoting rhizobacteria (PGPR) strains can influence plant-insect interactions. However, little is known about the effect of changes in the soil bacterial community in general and especially the loss of rare soil microbes on these interactions. Here, the influence of rare soil microbe reduction on induced systemic resistance (ISR) in a wild ecotype of Arabidopsis thaliana against the aphid Myzus persicae was investigated. To create a gradient of microbial abundances, soil was inoculated with a serial dilution of a microbial community and responses of Arabidopsis plants that originated from the same site as the soil microbes were tested. Plant biomass, transcription of genes involved in plant defences, and insect performance were measured. In addition, the effects of the PGPR strain Pseudomonas fluorescens SS101 on plant and insect performance were tested under the influence of the various soil dilution treatments. Plant biomass showed a hump-shaped relationship with soil microbial community dilution, independent of aphid or Pseudomonas treatments. Both aphid infestation and inoculation with Pseudomonas reduced plant biomass, and led to downregulation of PR1 (salicylic acid-responsive gene) and CYP79B3 (involved in synthesis of glucosinolates). Aphid performance and gene transcription were unaffected by soil dilution. Neither the loss of rare microbial species, as caused by soil dilution, nor Pseudomonas affect the resistance of A. thaliana against M. persicae. However, both Pseudomonas survival and plant biomass respond to rare species loss. Thus, loss of rare soil microbial species can have a significant impact on both above- and below-ground organisms. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Combinational effects of sulfomethoxazole and copper on soil microbial community and function.

    PubMed

    Liu, Aiju; Cao, Huansheng; Yang, Yan; Ma, Xiaoxuan; Liu, Xiao

    2016-03-01

    Sulfonamides and Cu are largely used feed additives in poultry farm. Subsequently, they are spread onto agricultural soils together with contaminated manure used as fertilizer. Both sulfonamides and Cu affect the soil microbial community. However, an interactive effect of sulfonamides and Cu on soil microorganisms is not well understood. Therefore, a short-time microcosm experiment was conducted to investigate the interaction of veterinary antibiotic sulfomethoxazole (SMX) and Cu on soil microbial structure composition and functions. To this end, selected concentrations of SMX (0, 5, and 50 mg kg(-1)) and Cu (0, 300, and 500 mg kg(-1)) were combined, respectively. Clear dose-dependent effects of SMX on microbial biomass and basal respiration were determined, and these effects were amplified in the presence of additional Cu. For activities of soil enzymes including β-glucosidase, urease, and protease, clear reducing effects were determined in soil samples containing 5 or 50 mg kg(-1) of SMX, and the interaction of SMX and Cu was significant, particularly in soil samples containing 50 mg kg(-1) SMX or 500 mg kg(-1) Cu. SMX amendments, particularly in combination with Cu, significantly reduced amounts of the total, bacterial, and fungal phospholipid fatty acids (PLFAs) in soil. Moreover, the derived ratio of bacteria to fungi decreased significantly with incremental SMX and Cu, and principal component analysis of the PLFAs showed that soil microbial composition was significantly affected by SMX interacted with Cu at 500 mg kg(-1). All of these results indicated that the interaction of SMX and Cu was synergistic to amplify the negative effect of SMX on soil microbial biomass, structural composition, and even the enzymatic function.

  3. Shifts in indigenous microbial communities during the anaerobic degradation of pentachlorophenol in upland and paddy soils from southern China.

    PubMed

    Chen, Yating; Tao, Liang; Wu, Ke; Wang, Yongkui

    2016-11-01

    Pentachlorophenol (PCP) is a common persistent pesticide in soil that has generated a significant environmental problem worldwide. Therefore, anaerobic degradation of PCP by the soil indigenous microbial community has gained increasing attention. However, little information is available concerning the functional microorganisms and the potential shifts in the microbial community associated with PCP degradation. In this study, we conducted a set of experiments to determine which components of the indigenous microbial community were capable of degrading PCP in soils of two land use types (upland and paddy soils) in southern China. Our results showed that the PCP degradation rate was significantly higher in paddy soils than that in upland soils. 16S ribosomal RNA (rRNA) high-throughput sequencing revealed significant differences in microbial taxonomic composition between the soil with PCP and blank (soil without PCP) with Acinetobacter, Clostridium, Coprococcus, Oxobacter, and Sedimentibacter dominating the PCP-affected communities. Acinetobacter was also apparently enriched in the paddy soils with PCP (up to 52.2 %) indicated this genus is likely to play an important role in PCP degradation. Additionally, the Fe(III)-reducing bacteria Clostridium may also be involved in PCP degradation. Our data further revealed hitherto unknown metabolisms of potential PCP degradation by microorganisms including Coprococcus, Oxobacter, and Ruminiclostridium. Overall, these findings indicated that land use types may affect the PCP anaerobic degradation rate via the activities of indigenous bacterial populations and extend our knowledge of the bacterial populations responsible for PCP degradation.

  4. The effect of biochar amendment on the soil microbial community - PLFA analyses and 13C labeling results

    NASA Astrophysics Data System (ADS)

    Watzinger, A.; Feichtmair, S.; Rempt, F.; Anders, E.; Wimmer, B.; Kitzler, B.; Zechmeister-Boltenstern, S.; Horacek, M.; Zehetner, F.; Kloss, S.; Richoz, S.; Soja, G.

    2012-04-01

    The effects of biochar amendment on plant growth and on the chemical / physical soil characteristics are well explored but only few studies have investigated the impact on soil microorganisms. The response of the soil microbial community to biochar amendment was investigated by phospholipid fatty acid (PLFA) analysis in (i) a large scale pot experiment, (ii) a small scale pot experiment using 13C labeled biochar and (iii) an incubation study using 13C labeled biochar. In the large scale pot experiment, three different agricultural soils from Austria (Planosol, Cambisol, Chernozem) and four different types of biochar were investigated. In total, 25 treatments with 5 replicates each were set up and monitored over a year. The results from the pot experiments showed no significant influence of biochar amendment on the total microbial biomass in the first 100 days after biochar addition. However, discriminant analysis showed a distinction of biochar and control soils as well as a strong effect of the pyrolysis temperature on the microbial composition. The effect of biochar was dependent on the type of soil. In the Planosol, some PLFAs were affected positively, especially when adding biochar with a low pyrolysis temperature, in the first month. In the long term, microbial community composition altered. Growth of fungi and gram negative bacteria was enhanced. In the Chernozem, PLFAs from various microbial groups decreased in the long term. Variability in the incubation study was low. Consequently, many PLFAs were significantly affected by biochar amendment. Again, in the Planosol, gram negative bacteria, actinomycetes and, after 2 weeks, gram positive bacteria increased under biochar amendment whereas in the chernozem total microbial biomass and gram positive bacteria were negatively affected in the long term. The 13C labeling studies confirmed the low degradability of the biochar, i.e. no alteration of the content and the δ13C in the soil organic matter within 100 days, decreased CO2 emission after biochar addition and little 13C signature from the biochar in the respired CO2. The uptake of the labeled biochar into the microbial PLFAs was analysed and will provide an evidence if biochar was used as a carbon source. In addition, the long term effect of biochar amendment (beyond 100 days) on the soil microbial community is currently investigated. These results will be also presented in the oncoming meeting.

  5. The influence of nitrogen fertilization on the magnitude of rhizosphere effects

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Panke-Buisse, K.; Kao-Kniffin, J.

    2012-12-01

    The labile carbon released from roots to the rhizosphere enhances soil microbial activity and nutrient availability, but factors that regulate such "rhizosphere effects" are poorly understood. Nitrogen fertilization may suppress rhizosphere effects by reducing plant carbon allocation belowground. Here we investigated the impact of nitrogen fertilization (+100 mg NH4NO3-N kg soil-1) on the magnitude of rhizosphere effects of two grass species (Bermuda grass Cynodon dactylon and smooth crabgrass Digitaria ischaemum) grown in a nutrient-poor soil for 80-100 days inside a growth chamber. Rhizosphere effects were estimated by the percentage difference between the planted soil (rhizosphere soil) and the unplanted soil (bulk soil) for several assays. We found that the rhizosphere soil of both plants had higher pH (+ 0.5~0.7 units), similar microbial biomass carbon, but lower microbial biomass nitrogen (- 27~37%) compared to the bulk soil. The rate of net N mineralization and the activity of three soil enzymes that degrade chitin (NAG), protein (LAP) and lignin (peroxidase) and produce mineral nitrogen were generally enhanced by the rhizosphere effects (up to 80%). Although nitrogen fertilization significantly increased plant biomass, it generally affected microbial biomass, activity and net N mineralization rate to a similar extent between rhizosphere soil and bulk soil, and thus did not significantly impact the magnitude of rhizosphere effects. Moreover, the community structure of soil bacteria (indicated by T-RFLP) showed remarkable divergence between the planted and unplanted soils, but not between the control and fertilized soils. Collectively, these results suggest that grass roots affects soil microbial activity and community structure, but short-term nitrogen fertilization may not significantly influence these rhizosphere effects.

  6. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Seasonal Variation in Soil Microbial Biomass, Bacterial Community Composition and Extracellular Enzyme Activity in Relation to Soil Respiration in a Northern Great Plains Grassland

    NASA Astrophysics Data System (ADS)

    Wilton, E.; Flanagan, L. B.

    2014-12-01

    Soil respiration rate is affected by seasonal changes in temperature and moisture, but is this a direct effect on soil metabolism or an indirect effect caused by changes in microbial biomass, bacterial community composition and substrate availability? In order to address this question, we compared continuous measurements of soil and plant CO2 exchange made with an automatic chamber system to analyses conducted on replicate soil samples collected on four dates during June-August. Microbial biomass was estimated from substrate-induced respiration rate, bacterial community composition was determined by 16S rRNA amplicon pyrosequencing, and β-1,4-N-acetylglucosaminidase (NAGase) and phenol oxidase enzyme activities were assayed fluorometrically or by absorbance measurements, respectively. Soil microbial biomass declined from June to August in strong correlation with a progressive decline in soil moisture during this time period. Soil bacterial species richness and alpha diversity showed no significant seasonal change. However, bacterial community composition showed a progressive shift over time as measured by Bray-Curtis dissimilarity. In particular, the change in community composition was associated with increasing relative abundance in the alpha and delta classes, and declining abundance of the beta and gamma classes of the Proteobacteria phylum during June-August. NAGase showed a progressive seasonal decline in potential activity that was correlated with microbial biomass and seasonal changes in soil moisture. In contrast, phenol oxidase showed highest potential activity in mid-July near the time of peak soil respiration and ecosystem photosynthesis, which may represent a time of high input of carbon exudates into the soil from plant roots. This input of exudates may stimulate the activity of phenol oxidase, a lignolytic enzyme involved in the breakdown of soil organic matter. These analyses indicated that seasonal change in soil respiration is a complex interaction between temporal changes in soil environmental factors and biological changes in the plant and microbial community that affect soil respiratory metabolism.

  8. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions

    PubMed Central

    Bandopadhyay, Sreejata; Martin-Closas, Lluis; Pelacho, Ana M.; DeBruyn, Jennifer M.

    2018-01-01

    Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs) offer an environmentally sustainable alternative to conventional polyethylene (PE) mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films) and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability. PMID:29755440

  9. Changes in Microbial Community Structure and Soil Biological Properties in Mined Dune Areas During Re-vegetation.

    PubMed

    Escobar, Indra Elena C; Santos, Vilma M; da Silva, Danielle Karla A; Fernandes, Marcelo F; Cavalcante, Uided Maaze T; Maia, Leonor C

    2015-06-01

    The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas.

  10. Habitat management affects soil chemistry and allochthonous organic inputs mediating microbial structure and exo-enzyme activity in Wadden Sea salt-marsh soils

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (Δ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus slowing down C turnover, and indirectly changes microbial structure, namely relative fungal abundance, by reducing high-quality marine organic matter inputs.

  11. Microbial Ecology in Vineyards

    USDA-ARS?s Scientific Manuscript database

    Soil health affects grapevine health, which, in turn, affects fruit quality. Soil health has chemical, physical, and biological components. The chemical components are the best understood, and there are relatively convenient methods to both evaluate and amend chemical soil fertility. The physical...

  12. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region.

    PubMed

    Liu, Xin; Zhang, Bo; Zhao, Wenrui; Wang, Ling; Xie, Dejin; Huo, Wentong; Wu, Yanwen; Zhang, Jinchi

    2017-12-01

    Acid rain is mainly caused by dissolution of sulfur dioxide and nitrogen oxides in the atmosphere, and has a significant negative effect on ecosystems. The relative composition of acid rain is changing gradually from sulfuric acid rain (SAR) to nitric acid rain (NAR) with the rapidly growing amount of nitrogen deposition. In this study, we investigated the impact of simulated SAR and NAR on litter decomposition and the soil microbial community over four seasons since March 2015. Results first showed that the effects of acid rain on litter decomposition and soil microbial were positive in the early period of the experiment, except for SAR on soil microbes. Second, soil pH with NAR decreased more rapidly with the amount of acid rain increased in summer than with SAR treatments. Only strongly acid rain (both SAR and NAR) was capable of depressing litter decomposition and its inhibitory effect was stronger on leaf than on fine root litter. Meanwhile, NAR had a higher inhibitory effect on litter decomposition than SAR. Third, in summer, autumn and winter, PLFAs were negatively impacted by the increased acidity level resulting from both SAR and NAR. However, higher acidity level of NAR (pH=2.5) had the strongest inhibitory impact on soil microbial activity, especially in summer. In addition, Gram-negative bacteria (cy19:0) and fungi (18:1ω9) were more sensitive to both SAR and NAR, and actinomycetes was more sensitive to SAR intensity. Finally, soil total carbon, total nitrogen and pH were the most important soil property factors affecting soil microbial activity, and high microbial indices (fungi/bacteria) with high soil pH. Our results suggest that the ratio of SO 4 2- to NO 3 - in acid rain is an important factor which could affect litter decomposition and soil microbial in subtropical forest of China. Copyright © 2017. Published by Elsevier B.V.

  13. PLFA profiling of microbial community structure and seasonal shifts in soils of a Douglas-fir chronosequence

    Treesearch

    Jennifer Moore-Kucera; Richard P. Dick

    2008-01-01

    The impact and frequency of forest harvesting could significantly affect soil microbial community (SMC) structure and functioning. The ability of soil microorganisms to perform biogeochemical processes is critical for sustaining forest productivity and has a direct impact on decomposition dynamics and carbon storage potential. The Wind River Canopy Crane Research...

  14. Exotic cheatgrass and loss of soil biota decrease the performance of a native grass

    Treesearch

    Suzanne M. Owen; Carolyn Hull Sieg; Nancy Collins Johnson; Catherine A. Gehring

    2013-01-01

    Soil disturbances can alter microbial communities including arbuscular mycorrhizal (AM) fungi, which may in turn, affect plant community structure and the abundance of exotic species. We hypothesized that altered soil microbial populations owing to disturbance would contribute to invasion by cheatgrass (Bromus tectorum), an exotic annual grass, at the expense of the...

  15. Will anticipated future climatic conditions affect belowground C utilization? - Insights into the role of microbial functional groups in a temperate heath/grassland.

    NASA Astrophysics Data System (ADS)

    Reinsch, Sabine; Michelsen, Anders; Sárossy, Zsuzsa; Egsgaard, Helge; Kappel Schmidt, Inger; Jakobsen, Iver; Ambus, Per

    2013-04-01

    The global terrestrial soil organic matter stock is the biggest terrestrial carbon pool (1500 Pg C) of which about 4 % is turned over annually. Thus, terrestrial ecosystems have the potential to accelerate or diminish atmospheric climate change effects via belowground carbon processes. We investigated the effect of elevated CO2 (510 ppm), prolonged spring/summer droughts and increased temperature (1 ˚C) on belowground carbon allocation and on the recovery of carbon by the soil microbial community. An in-situ 13C-carbon pulse-labeling experiment was carried out in a temperate heath/grassland (Denmark) in May 2011. Recently assimilated 13C-carbon was traced into roots, soil and microbial biomass 1, 2 and 8 days after pulse-labeling. The importance of the microbial community in C utilization was investigated using 13C enrichment patterns in microbial functional groups on the basis of phospholipid fatty acids (PLFAs) in roots. Gram-negative and gram-positive bacteria were distinguished from the decomposer groups of actinomycetes (belonging to the group of gram-positive bacteria) and saprophytic fungi. Mycorrhizal fungi specific PLFAs were not detected probably due to limited sample size in combination with restricted sensitivity of the used GC-c-IRMS setup. Climate treatments did not affect 13C allocation into roots, soil and microbial biomass carbon and also the total microbial biomass size stayed unchanged as frequently observed. However, climate treatments changed the composition of the microbial community: elevated CO2 significantly reduced the abundance of gram-negative bacteria (17:0cy) but did not affect the abundance of decomposers. Drought favored the bacterial community whereas increased temperatures showed reduced abundance of gram-negative bacteria (19:0cy) and changed the actinomycetes community (10Me16:0, 10Me18:0). However, not only the microbial community composition was affected by the applied climatic conditions, but also the activity of microbial functional groups in their utilization of recently assimilated carbon. Particularly the negative effect of the future treatment combination (CO2×T×D) on actinomycetes activity was surprising. By means of activity patterns of gram-negative bacteria, we observed the fastest carbon turnover rate under elevated CO2, and the slowest under extended drought conditions. A changed soil microbial community in combination with altered activities of different microbial functional groups leads to the conclusion that carbon allocation belowground was different under ambient and future climatic conditions and indicated reduced utilization of soil organic matter in the future due to a change of actinomycetes abundance and activity.

  16. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    PubMed Central

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  17. Limited recovery of soil microbial activity after transient exposure to gasoline vapors.

    PubMed

    Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K

    2016-09-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effects of biochar amendments on soil microbial biomass and activity.

    PubMed

    Zhang, H; Voroney, R P; Price, G W

    2014-11-01

    Environmental benefits reported in the literature of using biochar as a soil amendment are generally increased microbial activity and reduced greenhouse gas (GHG) emissions. This study determined the effects of amendment with biomass feedstocks (spent coffee grounds, wood pellets, and horse bedding compost) and that of biochars (700°C) produced from these feedstocks on soil microbial biomass (C and N) and activity. Soils were amended with these substrates at 0.75% by weight and incubated for up to 175 d under laboratory conditions. Biochar residual effects on soil microbial activity were also studied by amending these soils with either ammonium nitrate (NHNO, 35 mg N kg) or with glucose (864 mg C kg) plus NHNO. Soil microbial biomass C and N, net N mineralization, and CO, NO, and CH emissions were measured. Amendment with biomass feedstocks significantly increased soil microbial biomass and activity, whereas amendment with the biochars had no significant effect. Also, biochar amendment had no significant effect on either net N mineralization or NO and CH emissions from soil. These results indicate that production of biochars at this high temperature eliminated potential substrates. Microbial biomass C in biochar-amended and unamended soils was not significantly different following additions of NHNO or glucose plus NHNO, suggesting that microbial access to otherwise labile C and N was not affected. This study shows that biochars produced at 700°C, regardless of feedstock source, do not enhance soil microbial biomass or activity. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests

    Treesearch

    Daniela F. Cusack; Whendee L. Silver; Margaret S. Torn; Sarah D. Burton; Mary K. Firestone

    2011-01-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of...

  20. Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region.

    PubMed

    Wu, Wencheng; Dong, Changxun; Wu, Jiahui; Liu, Xiaowen; Wu, Yingxin; Chen, Xianbin; Yu, Shixiao

    2017-12-01

    Soil microbes play vital roles in ecosystem functions, and soil microbial communities may be strongly structured by land use patterns associated with electronic waste (e-waste) recycling activities, which can increase the heavy metal concentration in soils. In this study, a suite of soils from five land use types (paddy field, vegetable field, dry field, forest field, and e-waste recycling site) were collected in Longtang Town, Guangdong Province, South China. Soil physicochemical properties and heavy metal concentrations were measured, and the indigenous microbial assemblages were profiled using 16S rRNA high-throughput sequencing and clone library analyses. The results showed that mercury concentration was positively correlated with both Faith's PD and Chao1 estimates, suggesting that the soil microbial alpha diversity was predominantly regulated by mercury. In addition, redundancy analysis indicated that available phosphorus, soil moisture, and mercury were the three major drivers affecting the microbial assemblages. Overall, the microbial composition was determined primarily by land use patterns, and this study provides a novel insight on the composition and diversity of microbial communities in soils associated with e-waste recycling activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Rhizospheric effects on the microbial community of e-waste-contaminated soils using phospholipid fatty acid and isoprenoid glycerol dialkyl glycerol tetraether analyses.

    PubMed

    Song, Mengke; Cheng, Zhineng; Luo, Chunling; Jiang, Longfei; Zhang, Dayi; Yin, Hua; Zhang, Gan

    2018-04-01

    We performed the study of rhizospheric effects on soil microbial community structure, including bacteria, fungi, actinomycete, and archaea, at an electronic waste (e-waste) recycling site by analyzing the phospholipid fatty acid (PLFA) and isoprenoid glycerol dialkyl glycerol tetraether (GDGT) contents. By comparing PLFA and isoprenoid GDGT profiles of rhizospheric and surrounding bulk soils of 11 crop species, we observed distinct microbial community structures. The total PLFA concentration was significantly higher in rhizospheric soils than in non-rhizospheric soils, whereas no obvious difference was found in the total isoprenoid GDGT concentrations. The microbial community structure was also different, with higher ratios of fungal-to-bacterial PLFAs (F/B) and lower relative abundance of Gram-positive bacteria in rhizospheric soils. The extent of rhizospheric effects varied among plant species, and Colocasia esculenta L. had the greatest positive effects on the total microbial biomass. Dissolved organic carbon and pH were the main environmental factors affecting the microbial community represented by PLFAs, while the archaeal community was influenced by copper and zinc in all soils. These results offer a comprehensive view of rhizospheric effects on microbes in heavy metal and persistent organic pollutant co-contaminated soil, and provide fundamental knowledge regarding microbial ecology in e-waste-contaminated soils.

  2. Effects of Different Regeneration Scenarios and Fertilizer Treatments on Soil Microbial Ecology in Reclaimed Opencast Mining Areas on the Loess Plateau, China

    PubMed Central

    Li, Junjian; Zheng, Yuanming; Yan, Junxia; Li, Hongjian; Wang, Xiang; He, Jizheng; Ding, Guangwei

    2013-01-01

    The soil microbial community in reclaimed mining areas is fundamental to vegetative establishment. However, how this community responds to different regeneration scenarios and fertilizer treatments is poorly understood. This research evaluated plant and soil microbial communities from different regeneration scenarios and different fertilizer treatments. Regeneration scenarios significantly influenced soil bacterial, archaeal, and fungal rDNA abundance. The ratios of fungi to bacteria or archaea were increased with fertilizer application. The diversity of both plants and microbes was lowest in Lotus corniculatus grasslands. Regeneration scenario, fertilizer treatment, and their interaction influenced soil microbial richness, diversity and evenness indices. Labile carbon pool 2 was a significant factor affected plant and microbe communities in July, suggesting that plants and microbes may be competing for nutrients. The higher ratios of positive to negative association were found in soil bacteria and total microbe than in archaea and fungi. Stronger clustering of microbial communities from the same regeneration scenario indicated that the vegetative composition of regeneration site may have a greater influence on soil microbial communities than fertilizer treatment. PMID:23658819

  3. Leaf and root C-to-N ratios are poor predictors of soil microbial biomass C and respiration across 32 tree species.

    PubMed

    Ferlian, Olga; Wirth, Christian; Eisenhauer, Nico

    2017-11-01

    Soil microorganisms are the main primary decomposers of plant material and drive biogeochemical processes like carbon and nitrogen cycles. Hence, knowledge of their nutritional demands and limitations for activity and growth is of particular importance. However, potential effects of the stoichiometry of soil and plant species on soil microbial activity and carbon use efficiency are poorly understood. Soil properties and plant traits are assumed to drive microbial carbon and community structure. We investigated the associations between C and N concentrations of leaf, root, and soil as well as their ratios and soil microbial biomass C and activity (microbial basal respiration and specific respiratory quotient) across 32 young native angiosperm tree species at two locations in Central Germany. Correlations between C:N ratios of leaves, roots, and soil were positive but overall weak. Only regressions between root and leaf C:N ratios as well as between root and soil C:N ratios were significant at one site. Soil microbial properties differed significantly between the two sites and were significantly correlated with soil C:N ratio across sites. Soil C concentrations rather than N concentrations drove significant effects of soil C:N ratio on soil microbial properties. No significant correlations between soil microbial properties and leaf as well as root C:N ratios were found. We found weak correlations of C:N ratios between plant aboveground and belowground tissues. Furthermore, microorganisms were not affected by the stoichiometry of plant tissues in the investigated young trees. The results suggest that soil stoichiometry represents a consistent determinant of soil microbial biomass and respiration. Our study indicates that stoichiometric relationships among tree organs can be weak and poor predictors of soil microbial properties in young tree stands. Further research in controlled experimental settings with a wide range of tree species is needed to study the role of plant chemical traits like the composition and stoichiometry of root exudates in determining interactions between above- and belowground compartments.

  4. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils

    PubMed Central

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui

    2016-01-01

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management. PMID:26795428

  5. Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site.

    PubMed

    Sahoo, Prafulla Kumar; Bhattacharyya, Pradip; Tripathy, Subhasish; Equeenuddin, Sk Md; Panigrahi, M K

    2010-07-15

    Assessment of microbial parameters, viz. microbial biomass, fluorescence diacetate, microbial respiration, acid phosphatase, beta-glucosidase and urease with respect to acidity helps in evaluating the quality of soils. This study was conducted to investigate the effects of different forms of acidities on soil microbial parameters in an acid mine drainage contaminated site around coal deposits in Jainta Hills of India. Total potential and exchangeable acidity, extractable and exchangeable aluminium were significantly higher in contaminated soil compared to the baseline (p<0.01). Different forms of acidity were significantly and positively correlated with each other (p<0.05). Further, all microbial properties were positively and significantly correlated with organic carbon and clay (p<0.05). The ratios of microbial parameters with organic carbon were negatively correlated with different forms of acidity. Principal component analysis and cluster analyses showed that the microbial activities are not directly influenced by the total potential acidity and extractable aluminium. Though acid mine drainage affected soils had higher microbial biomass and activities due to higher organic matter content than those of the baseline soils, the ratios of microbial parameters/organic carbon indicated suppression of microbial growth and activities due to acidity stress. 2010 Elsevier B.V. All rights reserved.

  6. Soil microbial and nutrient responses to 7 years of seasonally altered precipitation in a Chihuahuan Desert grassland.

    PubMed

    Bell, Colin W; Tissue, David T; Loik, Michael E; Wallenstein, Matthew D; Acosta-Martinez, Veronica; Erickson, Richard A; Zak, John C

    2014-05-01

    Soil microbial communities in Chihuahuan Desert grasslands generally experience highly variable spatiotemporal rainfall patterns. Changes in precipitation regimes can affect belowground ecosystem processes such as decomposition and nutrient cycling by altering soil microbial community structure and function. The objective of this study was to determine if increased seasonal precipitation frequency and magnitude over a 7-year period would generate a persistent shift in microbial community characteristics and soil nutrient availability. We supplemented natural rainfall with large events (one/winter and three/summer) to simulate increased precipitation based on climate model predictions for this region. We observed a 2-year delay in microbial responses to supplemental precipitation treatments. In years 3-5, higher microbial biomass, arbuscular mycorrhizae abundance, and soil enzyme C and P acquisition activities were observed in the supplemental water plots even during extended drought periods. In years 5-7, available soil P was consistently lower in the watered plots compared to control plots. Shifts in soil P corresponded to higher fungal abundances, microbial C utilization activity, and soil pH. This study demonstrated that 25% shifts in seasonal rainfall can significantly influence soil microbial and nutrient properties, which in turn may have long-term effects on nutrient cycling and plant P uptake in this desert grassland. © 2013 John Wiley & Sons Ltd.

  7. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity.

    PubMed

    Sun, Bingjie; Jia, Shuxia; Zhang, Shixiu; McLaughlin, Neil B; Liang, Aizhen; Chen, Xuewen; Liu, Siyi; Zhang, Xiaoping

    2016-04-01

    Soil microbial community can vary with different agricultural managements, which in turn can affect soil quality. The objective of this work was to evaluate the effects of long-term tillage practice (no tillage (NT) and conventional tillage (CT)) and crop rotation (maize-soybean (MS) rotation and monoculture maize (MM)) on soil microbial community composition and metabolic capacity in different soil layers. Long-term NT increased the soil organic carbon (SOC) and total nitrogen (TN) mainly at the 0-5 cm depth which was accompanied with a greater microbial abundance. The greater fungi-to-bacteria (F/B) ratio was found in NTMS at the 0-5 cm depth. Both tillage and crop rotation had a significant effect on the metabolic activity, with the greatest average well color development (AWCD) value in NTMS soil at all three soil depths. Redundancy analysis (RDA) showed that the shift in microbial community composition was accompanied with the changes in capacity of utilizing different carbon substrates. Therefore, no tillage combined with crop rotation could improve soil biological quality and make agricultural systems more sustainable.

  8. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil.

    PubMed

    Su, Jian-Qiang; Ding, Long-Jun; Xue, Kai; Yao, Huai-Ying; Quensen, John; Bai, Shi-Jie; Wei, Wen-Xue; Wu, Jin-Shui; Zhou, Jizhong; Tiedje, James M; Zhu, Yong-Guan

    2015-01-01

    The influence of long-term chemical fertilization on soil microbial communities has been one of the frontier topics of agricultural and environmental sciences and is critical for linking soil microbial flora with soil functions. In this study, 16S rRNA gene pyrosequencing and a functional gene array, geochip 4.0, were used to investigate the shifts in microbial composition and functional gene structure in paddy soils with different fertilization treatments over a 22-year period. These included a control without fertilizers; chemical nitrogen fertilizer (N); N and phosphate (NP); N and potassium (NK); and N, P and K (NPK). Based on 16S rRNA gene data, both species evenness and key genera were affected by P fertilization. Functional gene array-based analysis revealed that long-term fertilization significantly changed the overall microbial functional structures. Chemical fertilization significantly increased the diversity and abundance of most genes involved in C, N, P and S cycling, especially for the treatments NK and NPK. Significant correlations were found among functional gene structure and abundance, related soil enzymatic activities and rice yield, suggesting that a fertilizer-induced shift in the microbial community may accelerate the nutrient turnover in soil, which in turn influenced rice growth. The effect of N fertilization on soil microbial functional genes was mitigated by the addition of P fertilizer in this P-limited paddy soil, suggesting that balanced chemical fertilization is beneficial to the soil microbial community and its functions. © 2014 John Wiley & Sons Ltd.

  9. Differential sensitivity of total and active soil microbial communities to drought and forest management.

    PubMed

    Bastida, Felipe; Torres, Irene F; Andrés-Abellán, Manuela; Baldrian, Petr; López-Mondéjar, Rubén; Větrovský, Tomáš; Richnow, Hans H; Starke, Robert; Ondoño, Sara; García, Carlos; López-Serrano, Francisco R; Jehmlich, Nico

    2017-10-01

    Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning-that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 6 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community-based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought-plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial community and climate change. © 2017 John Wiley & Sons Ltd.

  10. Antibiotic effects on microbial community characteristics in soils under conservation management practices

    USDA-ARS?s Scientific Manuscript database

    Veterinary antibiotics (VAs) administered to livestock are introduced to agroecosystems via land application of manure, posing a potential human and environmental health risk. These Antibiotics may adversely affect soil microbial communities. The objectives of this research were to investigate poten...

  11. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate.

    PubMed

    Feng, Shuzhen; Huang, Yuan; Ge, Yunhui; Su, Yirong; Xu, Xinwen; Wang, Yongdong; He, Xunyang

    2016-11-15

    The addition of exogenous inorganic carbon (CaCO3) and organic carbon has an important influence on soil organic carbon (SOC) mineralization in karst soil, but the microbial mechanisms underlying the SOC priming effect are poorly understood. We conducted a 100-day incubation experiment involving four treatments of the calcareous soil in southwestern China's karst region: control, (14)C-labeled rice straw addition, (14)C-labeled CaCO3 addition, and a combination of (14)C-labeled rice straw and CaCO3. Changes in soil microbial communities were characterized using denaturing gradient gel electrophoresis with polymerase chain reaction (PCR-DGGE) and real-time quantitative PCR (q-PCR). Both (14)C-rice straw and Ca(14)CO3 addition stimulated SOC mineralization, suggesting that organic and inorganic C affected SOC stability. Addition of straw alone had no significant effect on bacterial diversity; however, when the straw was added in combination with calcium carbonate, it had an inhibitory effect on bacterial and fungal diversity. At the beginning of the experimental period, exogenous additives increased bacterial abundance, although at the end of the 100-day incubation bacterial community abundance had gradually declined. Incubation time, exogenous input, and their interaction significantly affected SOC mineralization (in terms of priming and the cumulative amount of mineralization), microbial biomass carbon (MBC), and microbial community abundance and diversity. Moreover, the key factors influencing SOC mineralization were MBC, bacterial diversity, and soil pH. Overall, these findings support the view that inorganic C is involved in soil C turnover with the participation of soil microbial communities, promoting soil C cycling in the karst region. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Different effects of plant-derived dissolved organic matter (DOM) and urea on the priming of soil organic carbon.

    PubMed

    Qiu, Qingyan; Wu, Lanfang; Ouyang, Zhu; Li, Binbin; Xu, Yanyan

    2016-03-01

    Soil organic carbon (SOC) mineralization is important for the regulation of the global climate and soil fertility. Decomposition of SOC may be significantly affected by the supply of plant-derived labile carbon (C). To investigate the impact of plant-derived dissolved organic matter (DOM) and urea (N) additions on the decomposition of native SOC as well as to elucidate the underlying mechanisms of priming effects (PEs), a batch of incubation experiments was conducted for 250 days by application of (13)C-labeled plant-derived DOM and urea to soils. The direction of PE induced by the addition of DOM was different from the addition of N, i.e. it switched from negative to positive in DOM-amended soils, whereas in the N-treated soil it switched from positive to negative. Adding DOM alone was favorable for soil C sequestration (59 ± 5 mg C per kg soil), whereas adding N alone or together with DOM accelerated the decomposition of native SOC, causing net C losses (-62 ± 4 and -34 ± 31 mg C per kg soil, respectively). These findings indicate that N addition and its interaction with DOM are not favorable for soil C sequestration. Adding DOM alone increased the level of dissolved organic carbon (DOC), but it did not increase the level of soil mineral N. Changes in the ratio of microbial biomass carbon (MBC) to microbial biomass nitrogen (MBN) and microbial metabolic quotient (qCO2) after the addition of DOM and N suggest that a possible shift in the microbial community composition may occur in the present study. Adding DOM with or without N increased the activities of β-glucosidase and urease. Changes in the direction and magnitude of PE were closely related to changes in soil C and N availability. Soil C and N availability might influence the PE through affecting the microbial biomass and extracellular enzyme activity as well as causing a possible shift in the microbial community composition.

  13. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers

    PubMed Central

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. PMID:28611747

  14. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers.

    PubMed

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.

  15. Effects of myclobutanil on soil microbial biomass, respiration, and soil nitrogen transformations.

    PubMed

    Ju, Chao; Xu, Jun; Wu, Xiaohu; Dong, Fengshou; Liu, Xingang; Zheng, Yongquan

    2016-01-01

    A 3-month-long experiment was conducted to ascertain the effects of different concentrations of myclobutanil (0.4 mg kg(-1) soil [T1]; 1.2 mg kg(-1) soil [T3]; and 4 mg kg(-1) soil [T10]) on soil microbial biomass, respiration, and soil nitrogen transformations using two typical agricultural soils (Henan fluvo-aquic soil and Shanxi cinnamon soil). Soil was sampled after 7, 15, 30, 60, and 90 days of incubation to determine myclobutanil concentration and microbial parameters: soil basal respiration (RB), microbial biomass carbon (MBC) and nitrogen (MBN), NO(-)3-N and NH(+)4-N concentrations, and gene abundance of total bacteria, N2-fixing bacteria, fungi, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB). The half-lives of the different doses of myclobutanil varied from 20.3 to 69.3 d in the Henan soil and from 99 to 138.6 d in the Shanxi soil. In the Henan soil, the three treatments caused different degrees of short-term inhibition of RB and MBC, NH(+)4-N, and gene abundance of total bacteria, fungi, N2-fixing bacteria, AOA, and AOB, with the exception of a brief increase in NO(-)3-N content during the T10 treatment. The MBN (immobilized nitrogen) was not affected. In the Shanxi soil, MBC, the populations of total bacteria, fungi, and N2-fixing bacteria, and NH(+)4-N concentration were not significantly affected by myclobutanil. The RB and MBN were decreased transitorily in the T10 treatment. The NO(-)3-N concentrations and the abundance of both AOA and AOB were erratically stimulated by myclobutanil. Regardless of whether stimulation or suppression occurred, the effects of myclobutanil on the two soil types were short term. In summary, myclobutanil had no long-term negative effects on the soil microbial biomass, respiration, and soil nitrogen transformations in the two types of soil, even at 10-fold the recommended dosage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Soil microbial toxicity assessment of a copper-based fungicide in two contrasting soils

    NASA Astrophysics Data System (ADS)

    Dober, Melanie; Deltedesco, Evi; Jöchlinger, Lisa; Schneider, Martin; Gorfer, Markus; Bruckner, Alexander; Zechmeister-Boltenstern, Sophie; Soja, Gerhard; Zehetner, Franz; Keiblinger, Katharina Maria

    2016-04-01

    The infestation with the fungus downy mildew (Plasmopara viticola) causes dramatic losses in wine production. Copper (Cu) based fungicides have been used in viticulture since the end of the 19th century, and until today both conventional and organic viticulture strongly rely on Cu to prevent and reduce fungal diseases. Consequently, Cu has built up in many vineyard soils and it is still unclear how this affects soil functioning. The aim of the present study is the evaluation of the soil microbial toxicity of Cu contamination. Two contrasting agricultural soils, an acidic sandy soil and a calcareous loamy soil, were sampled to conduct an eco-toxicological greenhouse pot experiment. The soils were spiked with a commonly used fungicide based on copper hydroxid in seven concentrations (0, 50, 100, 200, 500, 1500 and 5000 mg Cu kg-1 soil) and Lucerne (Medicago sativa L. cultivar. Plato) was grown in the pots for 3 months. Sampling was conducted at the beginning and at the end of the study period to test copper's soil microbial toxicity in total microbial biomass and basal respiration, as well as enzyme activities, such as exoglucanase, β-glucosidase, exochitinase, phosphatase, protease, phenol-, peroxidase and urease. Additionally, DOC, TN, Cmic, Nmic, NO3 and NH4 were determined to provide further insight into the carbon and nitrogen cycle. Microbial community structure was analysed by phospholipid fatty acids (PLFAs), and ergosterol as a fungal biomarker. In addition, molecular tools were applied by extracting soil DNA and performing real time quantitative polymerase chain reaction (qPCR) and a metagenomic approach using 16S and ITS amplification and sequencing with MiSeq platform for the second sampling. Hydrolytic extracellular enzymes were not clearly affected by rising Cu concentrations, while a trend of increasing activity of oxidative enzymes (phenol- and peroxidase) was observed. Microbial respiration rate as well as the amount of Cmic and Nmic decreased with increasing Cu concentrations. Ergosterol was especially sensitive to Cu and started to decline at even lower concentrations. A shift in the microbial community structure with rising Cu was observed using PLFA. The metagenomics approach enables us to investigate these changes at even finer taxonomic resolution and possible effects on the soil nutrient cycles will be discussed. In summary, our results showed distinct Cu toxicity effects on soil microbial biomass with a larger sensitivity of the loamy soil.

  17. Assessing effects of the entomopathogenic fungus Metarhizium brunneum on soil microbial communities in Agriotes spp. biological pest control.

    PubMed

    Mayerhofer, Johanna; Eckard, Sonja; Hartmann, Martin; Grabenweger, Giselher; Widmer, Franco; Leuchtmann, Adrian; Enkerli, Jürg

    2017-10-01

    The release of large quantities of microorganisms to soil for purposes such as pest control or plant growth promotion may affect the indigenous soil microbial communities. In our study, we investigated potential effects of Metarhizium brunneum ART2825 on soil fungi and prokaryota in bulk soil using high-throughput sequencing of ribosomal markers. Different formulations of this strain, and combinations of the fungus with garlic as efficacy-enhancing agent, were tested over 4 months in a pot and a field experiment carried out for biological control of Agriotes spp. in potatoes. A biocontrol effect was observed only in the pot experiment, i.e. the application of FCBK resulted in 77% efficacy. Colony counts combined with genotyping and marker sequence abundance confirmed the successful establishment of the applied strain. Only the formulated applied strain caused small shifts in fungal communities in the pot experiment. Treatment effects were in the same range as the effects caused by barley kernels, the carrier of the FCBK formulation and temporal effects. Garlic treatments and time affected prokaryotic communities. In the field experiment, only spatial differences affected fungal and prokaryotic communities. Our findings suggest that M. brunneum may not adversely affect soil microbial communities. © FEMS 2017.

  18. The effects of grazing intensity on soil processes in a Mediterranean protected area.

    PubMed

    Panayiotou, Evaggelia; Dimou, Maria; Monokrousos, Nikolaos

    2017-08-08

    We investigated the temporal and among-site differentiation of soil functionality properties in fields under different grazing intensities (heavy and light) and compared them to those found in their adjacent hedgerows, consisting either of wooden shrubs (Rubus canescens) or of high trees (Populus sp.), during the cold and humid seasons of the year. We hypothesized that greater intensity of grazing would result in higher degradation of the soil system. The grazing factor had a significant effect on soil organic C and N, microbial biomass C, microbial biomass N, microbial activity, and β-glucosidase, while acid phosphatase and urease activity were not found to differ significantly among the management systems. The intensity of grazing affected mostly the chemical properties of soil (organic C and N) and altered significantly the composition of the soil microbial community, as lower C:N ratio of the microbial biomass indicates the dominance of bacteria over fungi in the heavily grazed fields. All estimated biological variables presented higher values in the humid period, although the pattern of differentiation was similar at both sampling times, revealing that site-specific variations were more pronounced than the time-specific ones. Our results indicate that not all C, N, and P dynamics were equally affected by grazing. Management plans applied to pastures, in order to improve soil quality properties and accelerate passive reforestation, should aim at the improvement of soil parameters related primarily to C and secondly to N cycle.

  19. Soil microbial properties after long-term swine slurry application to conventional and no-tillage systems in Brazil.

    PubMed

    Balota, Elcio L; Machineski, Oswaldo; Hamid, Karima I A; Yada, Ines F U; Barbosa, Graziela M C; Nakatani, Andre S; Coyne, Mark S

    2014-08-15

    Swine waste can be used as an agricultural fertilizer, but large amounts may accumulate excess nutrients in soil or contaminate the surrounding environment. This study evaluated long-term soil amendment (15 years) with different levels of swine slurry to conventional (plow) tillage (CT) and no tillage (NT) soils. Long-term swine slurry application did not affect soil organic carbon. Some chemical properties, such as calcium, base saturation, and aluminum saturation were significantly different within and between tillages for various application rates. Available P and microbial parameters were significantly affected by slurry addition. Depending on tillage, soil microbial biomass and enzyme activity increased up to 120 m(3) ha(-1) year(-1) in all application rates. The NT system had higher microbial biomass and activity than CT at all application levels. There was an inverse relationship between the metabolic quotient (qCO2) and MBC, and the qCO2 was 53% lower in NT than CT. Swine slurry increased overall acid phosphatase activity, but the phosphatase produced per unit of microbial biomass decreased. A comparison of data obtained in the 3rd and 15th years of swine slurry application indicated that despite slurry application the CT system degraded with time while the NT system had improved values of soil quality indicators. For these Brazilian oxisols, swine slurry amendment was insufficient to maintain soil quality parameters in annual crop production without additional changes in tillage management. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature.

    PubMed

    Fu, Qing-Long; Weng, Nanyan; Fujii, Manabu; Zhou, Dong-Mei

    2018-03-01

    Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Individual-Based Model of Microbial Life on Hydrated Rough Soil Surfaces

    PubMed Central

    Kim, Minsu; Or, Dani

    2016-01-01

    Microbial life in soil is perceived as one of the most interesting ecological systems, with microbial communities exhibiting remarkable adaptability to vast dynamic environmental conditions. At the same time, it is a notoriously challenging system to understand due to its complexity including physical, chemical, and biological factors in synchrony. This study presents a spatially-resolved model of microbial dynamics on idealised rough soil surfaces represented as patches with different (roughness) properties that preserve the salient hydration physics of real surfaces. Cell level microbial interactions are considered within an individual-based formulation including dispersion and various forms of trophic dependencies (competition, mutualism). The model provides new insights into mechanisms affecting microbial community dynamics and gives rise to spontaneous formation of microbial community spatial patterns. The framework is capable of representing many interacting species and provides diversity metrics reflecting surface conditions and their evolution over time. A key feature of the model is its spatial scalability that permits representation of microbial processes from cell-level (micro-metric scales) to soil representative volumes at sub-metre scales. Several illustrative examples of microbial trophic interactions and population dynamics highlight the potential of the proposed modelling framework to quantitatively study soil microbial processes. The model is highly applicable in a wide range spanning from quantifying spatial organisation of multiple species under various hydration conditions to predicting microbial diversity residing in different soils. PMID:26807803

  2. Herbivore species identity and composition affect soil enzymatic activity through altered plant composition in a coastal tallgrass prairie

    USDA-ARS?s Scientific Manuscript database

    Although single species of herbivores are known to affect soil microbial communities, the effects of herbivore species identity and functional composition on soil microbes is unknown. We tested the effects of single species of orthopterans and multiple species combinations on soil enzymatic activity...

  3. Responses of microbial respiration in grazed and ungrazed grasslands to glucose addition

    NASA Astrophysics Data System (ADS)

    Xu, Xingliang; Liu, Qianyuan; Pang, Rui

    2017-04-01

    Grazing can change species composition, alter soil properties, and thus modify microbial activities, affecting biogeochemical processes in grasslands. However, it remains unclear how microbial respiration in grazed and ungrazed grasslands responds to glucose addition. Here we hypothesize that microbial respiration in grazed grasslands will respond more strongly to glucose addition than in ungrazed grasslands because moderate grazing can enhance microbial activity. To examine the hypothesis above, we collected the upper 10 cm soil from grazed and ungrazed grasslands at five sites of China. Three sites (Hulunbuir 1, Hulunbuir 2 and Xielingele) were located in Inner Mongolia and two in the Tibet Plateau) Soils were incubated with low glucose input (50% MBC), high glucose input (150% MBC), and water for 60 days in 21oC. CO2 released from soil was trapped with 1 M NaOH. The results showed that the effect of grazing on microbial respiration has two distinct patterns, depending on soil types and addition amount. After glucose addition, cumulative CO2 efflux from grazed soils was significantly higher than from ungrazed soils in two temperate grasslands (Hulunbuir 1 and Xielingele). This may be ascribed to that moderate grazing promoted microbial activity. On the contrary, microbial respirations from grazed soils were lower than ungrazed soils in two alpine meadows of Haibei and Dangxiong and in Hulunbuir 2. This effect of grazing was not obvious in Hulunbeier 2 soils at low carbon addition level. Grazing may decrease soil organic carbon, nitrogen availability and thus microbial activity in alpine grasslands. These findings indicate that soil microorganisms could have different adaptation mechanisms to grazing in temperate and alpine grasslands.

  4. Response of the soil microbial community and soil nutrient bioavailability to biomass harvesting and reserve tree retention in northern Minnesota aspen-dominated forests

    Treesearch

    Tera E. Lewandowski; Jodi A. Forrester; David J. Mladenoff; Anthony W. D' Amato; Brian J. Palik

    2016-01-01

    Intensive forest biomass harvesting, or the removal of harvesting slash (woody debris from tree branches and tops) for use as biofuel, has the potential to negatively affect the soil microbial community (SMC) due to loss of carbon and nutrient inputs from the slash, alteration of the soil microclimate, and increased nutrient leaching. These effects could result in...

  5. Lignin decomposition and microbial community in paddy soils: effects of alternating redox conditions

    NASA Astrophysics Data System (ADS)

    Cerli, Chiara; Liu, Qin; Hanke, Alexander; Kaiser, Klaus; Kalbitz, Karsten

    2013-04-01

    Paddy soils are characterised by interchanging cycles of anaerobic and aerobic conditions. Such fluctuations cause continuous changes in soil solution chemistry as well as in the composition and physiological responses of the microbial community. Temporary deficiency in oxygen creates conditions favourable to facultative or obligates anaerobic bacteria, while aerobic communities can thrive in the period of water absence. These alterations can strongly affect soil processes, in particular organic matter (OM) accumulation and mineralization. In submerged soils, lignin generally constitutes a major portion of the total OM because of hampered degradation under anoxic conditions. The alternating redox cycles resulting from paddy soil management might promote both degradation and preservation of lignin, affecting the overall composition and reactivity of total and dissolved OM. We sampled soils subjected to cycles of anoxic (rice growing period) and oxic (harvest and growth of other crops) conditions since 700 and 2000 years. We incubated suspended Ap material, sampled from the two paddy plus two corresponding non-paddy control soils under oxic and anoxic condition, for 3 months, interrupted by a short period of three weeks (from day 21 to day 43) with reversed redox conditions. At each sampling time (day 2, 21, 42, 63, 84), we determined lignin-derived phenols (by CuO oxidation) as well as phospholipids fatty acids contents and composition. We aimed to highlight changes in lignin decomposition as related to the potential rapid changes in microbial community composition. Since the studied paddy soils had a long history of wet rice cultivation, the microbial community should be well adapted to interchanging oxic and anoxic cycles, therefore fully expressing its activity at both conditions. In non-paddy soil changes in redox conditions caused modification of quantity and composition of the microbial community. On the contrary, in well-established paddy soils the microbial community appeared to be affected by alternating redox conditions more in quantity that in quality. Bacteria represented the largest portion of the living microorganisms, responding promptly to changes in soil redox status. However we did not detect any sign of lignin biodegradation. Relative short (3 weeks) changes in redox conditions had no effect on lignin decomposition or oxidation state. Also, lignin was not altered during oxic incubation. Since fungi represented only small portion of the microbial biomass in the studied soils, they were obviously not capable to cause much degradation, even under favourable conditions. On the contrary, changes in redox conditions strongly affected lignin extractability, regardless of the initial content and direction of change in both paddy and non-paddy soils. This was likely a result of (partial) dissolution and/or pH-induced changes of the surface properties of Fe and Mn hydrous oxides causing the release of mineral-associated lignin-derived phenols. Thus, we speculate that oxidised lignin fragments produced during the (oxic) dry period do not remain in the soils but percolate with water drainage during the flooding period.

  6. Effects of Plant Functional Group Loss on Soil Microbial Community and Litter Decomposition in a Steppe Vegetation.

    PubMed

    Xiao, Chunwang; Zhou, Yong; Su, Jiaqi; Yang, Fan

    2017-01-01

    Globally, many terrestrial ecosystems are experiencing a rapid loss of biodiversity. Continued improvements in our understanding of interrelationships between plant diversity and soil microbes are critical to address the concern over the consequences of the decline in biodiversity on ecosystem functioning and services. By removing forbs, or grasses, or, to an extreme scenario, both forbs and grasses in a steppe vegetation in Inner Mongolia, we studied how plant functional group (PFG) loss affects soil microbial community composition using phospholipid fatty acid analysis (PLFA) and litter decomposition using a litter-bag method. PFG loss significantly decreased above- and below-ground plant biomass, soil microbial biomass carbon (SMBC) and nitrogen (SMBN), but had no effect on the ratio of SMBC to SMBN. Although the ratio of fungal to bacterial PLFAs remained unaffected, PFG loss significantly reduced the amount of bacterial, fungal, and total PLFAs. PFG loss decreased litter monthly mass loss and decay constant, and such decrease was significant when both forbs and grasses were removed. Our results provide robust evidence that PFG loss in grassland ecosystem can lead to a rapid response of soil microbial activity which may affect litter decomposition and soil nutrient cycling, suggesting that the assessment of plant-microbe interactions in soils is an integral component of ecosystem response to biodiversity loss.

  7. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    PubMed Central

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-01-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change. PMID:25960162

  8. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes.

    PubMed

    Wang, Hui; Boutton, Thomas W; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-11

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two (13)C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  9. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  10. Forest understory plant and soil microbial response to an experimentally induced drought and heat-pulse event: the importance of maintaining the continuum.

    PubMed

    von Rein, Isabell; Gessler, Arthur; Premke, Katrin; Keitel, Claudia; Ulrich, Andreas; Kayler, Zachary E

    2016-08-01

    Drought duration and intensity are expected to increase with global climate change. How changes in water availability and temperature affect the combined plant-soil-microorganism response remains uncertain. We excavated soil monoliths from a beech (Fagus sylvatica L.) forest, thus keeping the understory plant-microbe communities intact, imposed an extreme climate event, consisting of drought and/or a single heat-pulse event, and followed microbial community dynamics over a time period of 28 days. During the treatment, we labeled the canopy with (13) CO2 with the goal of (i) determining the strength of plant-microbe carbon linkages under control, drought, heat and heat-drought treatments and (ii) characterizing microbial groups that are tightly linked to the plant-soil carbon continuum based on (13) C-labeled PLFAs. Additionally, we used 16S rRNA sequencing of bacteria from the Ah horizon to determine the short-term changes in the active microbial community. The treatments did not sever within-plant transport over the experiment, and carbon sinks belowground were still active. Based on the relative distribution of labeled carbon to roots and microbial PLFAs, we determined that soil microbes appear to have a stronger carbon sink strength during environmental stress. High-throughput sequencing of the 16S rRNA revealed multiple trajectories in microbial community shifts within the different treatments. Heat in combination with drought had a clear negative effect on microbial diversity and resulted in a distinct shift in the microbial community structure that also corresponded to the lowest level of label found in the PLFAs. Hence, the strongest changes in microbial abundances occurred in the heat-drought treatment where plants were most severely affected. Our study suggests that many of the shifts in the microbial communities that we might expect from extreme environmental stress will result from the plant-soil-microbial dynamics rather than from direct effects of drought and heat on soil microbes alone. © 2016 John Wiley & Sons Ltd.

  11. Season mediates herbivore effects on litter and soil microbial abundance and activity in a semi-arid woodland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Aimee T; Overby, Stephen; Hart, Stephen C

    2007-01-01

    Herbivores can directly impact ecosystem function by altering litter quality entering an ecosystem or indirectly by affecting a shift in the microbial community that mediate nutrient processes. We examine herbivore susceptibility and resistance effects on litter microarthropod and soil microbial communities to test the general hypothesis that herbivore driven changes in litter inputs will feedback to the microbial community. Our study population consisted of individual trees that are susceptible or resistant to the stem-boring moth (Dioryctria albovittella) and trees that herbivores have been manually removed since 1982. Moth herbivory increased pi on litter nitrogen concentrations (16%) and canopy precipitation infiltrationmore » (28%), both significant factors influencing litter and soil microbial populations. Our research resulted in three major conclusions: 1) In spite of an increase in litter quality, herbivory does not change litter microarthropod abundance or species richness. 2) Herbivore susceptibility alters bulk soil microbial communities, but not soil properties. 3) Season has a strong influence on microbial communities, and their response to herbivore inputs, in this semi-arid ecosystem.« less

  12. Carbon use efficiency (CUE) and biomass turnover of soil microbial communities as affected by bedrock, land management and soil temperature and moisture

    NASA Astrophysics Data System (ADS)

    Zheng, Qing; Hu, Yuntao; Richter, Andreas; Wanek, Wolfgang

    2017-04-01

    Soil microbial carbon use efficiency (CUE), defined as the proportion of organic C taken up that is allocated to microbial growth, represents an important synthetic representation of microbial community C metabolism that describes the flux partitioning between microbial respiration and growth. Therefore, studying microbial CUE is critical for the understanding of soil C cycling. Microbial CUE is thought to vary with environmental conditions (e.g. temperature and soil moisture). Microbial CUE is thought to decrease with increasing temperature and declining soil moisture, as the latter may trigger stress responses (e.g. the synthesis of stress metabolites), which may consequently lower microbial community CUE. However, these effects on microbial CUE have not been adequately measured so far due to methodological restrictions. The most widely used methods for microbial CUE estimation are based on tracing 13C-labeled substrates into microbial biomass and respiratory CO2, approaches that are known to overestimate microbial CUE of native organic matter in soil. Recently, a novel substrate-independent approach based on the measurement of (i) respiration rates and (ii) the incorporation rates of 18O from labelled water into newly formed microbial DNA has been developed in our laboratory for measuring microbial CUE. This approach overcomes the shortcomings of previously used methods and has already been shown to yield realistic estimations of soil microbial CUE. This approach can also be applied to concurrently measure microbial biomass turnover rates, which also influence the sequestration of soil organic C. Microbial turnover rates are also thought to be impacted by environmental factors, but rarely have been directly measured so far. Here, we aimed at determining the short-term effects of environmental factors (soil temperature and soil moisture) on microbial CUE and microbial biomass turnover rates based on the novel 18O approach. Soils from three land-use types (arable fields, pasture and forest) sampled from two geologies (silicate versus limestone) in the same region in Austria were incubated at three temperatures (5, 15 and 25 ˚ C) for 1 day and at three moisture levels (30, 60, 90% water-holding capacity) for 7 days in the laboratory, respectively. We will present the results and discuss major effects of environmental factors as well as of land management and geology on microbial growth, respiration, microbial CUE and microbial biomass turnover, and set those in relation to microbial community composition.

  13. The impact of cotton growing practices on soil microbiology and its relation to plant and soil health

    NASA Astrophysics Data System (ADS)

    Pereg, Lily

    2013-04-01

    Crop production and agricultural practices heavily impact the soil microbial communities, which differ among varying types of soils and environmental conditions. Soil-borne microbial communities in cotton production systems, as in every other cropping system, consist of microbial populations that may either be pathogenic, beneficial or neutral with respect to the cotton crop. Crop production practices have major roles in determining the composition of microbial communities and function of microbial populations in soils. The structure and function of any given microbial community is determined by various factors, including those that are influenced by farming and those not controlled by farming activities. Examples of the latter are environmental conditions such as soil type, temperature, daylight length and UV radiation, air humidity, atmospheric pressure and some abiotic features of the soil. On the other hand, crop production practices may determine other abiotic soil properties, such as water content, density, oxygen levels, mineral and elemental nutrient levels and the load of other crop-related soil amendments. Moreover, crop production highly influences the biotic properties of the soil and has a major role in determining the fate of soil-borne microbial communities associated with the crop plant. Various microbial strains react differently to the presence of certain plants and plant exudates. Therefore, the type of plant and crop rotations are important factors determining microbial communities. In addition, practice management, e.g. soil cultivation versus crop stubble retention, have a major effect on the soil conditions and, thus, on microbial community structure and function. All of the above-mentioned factors can lead to preferential selection of certain microbial population over others. It may affect not only the composition of microbial communities (diversity and abundance of microbial members) but also the function of the community (the ability of different microbes to perform certain activities). Therefore, agricultural practices may determine the ability of beneficial microbes to realise their plant growth promoting potential or the pathogenic expression of others. This presentation will review the current knowledge about the impact of cotton growing practices on microbial communities and soil health in different environments as well as endeavour to identify gaps worthwhile exploring in future research for promoting plant growth in healthy soils.

  14. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration.

    PubMed

    Zwetsloot, Marie J; Kessler, André; Bauerle, Taryn L

    2018-04-01

    Root-soil interactions fundamentally affect the terrestrial carbon (C) cycle and thereby ecosystem feedbacks to climate change. This study addressed the question of whether the secondary metabolism of different temperate forest tree species can affect soil microbial respiration. We hypothesized that phenolics can both increase and decrease respiration depending on their function as food source, mobilizer of other soil resources, signaling compound, or toxin. We analyzed the phenolic compounds from root exudates and root tissue extracts of six tree species grown in a glasshouse using high-performance liquid chromatography. We then tested the effect of individual phenolic compounds, representing the major identified phenylpropanoid compound classes, on microbial respiration through a 5-d soil incubation. Phenolic root profiles were highly species-specific. Of the eight classes identified, flavonoids were the most abundant, with flavanols being the predominating sub-class. Phenolic effects on microbial respiration ranged from a 26% decrease to a 46% increase, with reduced respiration occurring in the presence of compounds possessing a catechol ring. Tree species variation in root phenolic composition influences the magnitude and direction of root effects on microbial respiration. Our data support the hypothesis that functional group rather than biosynthetic class determines the root phenolic effect on soil C cycling. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  15. Intraspecies variation in a widely distributed tree species regulates the responses of soil microbiome to different temperature regimes.

    PubMed

    Zhang, Cui-Jing; Delgado-Baquerizo, Manuel; Drake, John E; Reich, Peter B; Tjoelker, Mark G; Tissue, David T; Wang, Jun-Tao; He, Ji-Zheng; Singh, Brajesh K

    2018-04-01

    Plant characteristics in different provenances within a single species may vary in response to climate change, which might alter soil microbial communities and ecosystem functions. We conducted a glasshouse experiment and grew seedlings of three provenances (temperate, subtropical and tropical origins) of a tree species (i.e., Eucalyptus tereticornis) at different growth temperatures (18, 21.5, 25, 28.5, 32 and 35.5°C) for 54 days. At the end of the experiment, bacterial and fungal community composition, diversity and abundance were characterized. Measured soil functions included surrogates of microbial respiration, enzyme activities and nutrient cycling. Using Permutation multivariate analysis of variance (PerMANOVA) and network analysis, we found that the identity of tree provenances regulated both structure and function of soil microbiomes. In some cases, tree provenances substantially affected the response of microbial communities to the temperature treatments. For example, we found significant interactions of temperature and tree provenance on bacterial community and relative abundances of Chloroflexi and Zygomycota, and inorganic nitrogen. Microbial abundance was altered in response to increasing temperature, but was not affected by tree provenances. Our study provides novel evidence that even a small variation in biotic components (i.e., intraspecies tree variation) can significantly influence the response of soil microbial community composition and specific soil functions to global warming. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Seasonal variability of microbial biomass phosphorus in urban soils.

    PubMed

    Halecki, W; Gąsiorek, M

    2015-01-01

    Urban soils have been formed through human activities. Seasonal evaluation with time-control procedure are essential for plant, and activity of microorganisms. Therefore, these processes are crucial in the urban area due to geochemical changes in the past years. The purpose of this study was to investigate the changes of content of microbial biomass phosphorus (P) in the top layer of soils throughout the season. In this research, the concentration of microbial biomass P ranged from 0.01 to 6.29 mg·kg(-1). We used single-factor repeated-measure analysis of variance to test the effect of season on microbial biomass P content of selected urban soils. We found no statistically significant differences between the concentration of microbial biomass P in the investigated urban and sub-urban soils during the growing season. This analysis explicitly recognised that environmental urban conditions are steady. Specifically, we have studied how vegetation seasonality and ability of microbial biomass P are useful for detecting quality deviations, which affect the equilibrium of urban soil. In conclusion, seasonal variability of the stringency of assurance across the different compounds of soil reveals, as expected, the stable condition of the urban soils. Seasonal responses in microbial biomass P under urban soil use should establish a framework as a reference to the activity of the microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M.) forest stands

    NASA Astrophysics Data System (ADS)

    Hedo, J.; Lucas-Borja, M. E.; Wic, C.; Andrés Abellán, M.; de Las Heras, J.

    2014-10-01

    Wildfires affecting forest ecosystems and post-fire silvicultural treatments may cause considerable changes in soil properties. The capacity of different microbial groups to recolonize soil after disturbances is crucial for proper soil functioning. The aim of this work was to investigate some microbial soil properties and enzyme activities in semiarid and dry Aleppo pine (Pinus halepensis M.) forest stands. Different plots affected by a wildfire event 17 years ago without or with post-fire silvicultural treatments five years after the fire event were selected. A mature Aleppo pine stand unaffected by wildfire and not thinned was used as a control. Physicochemical soil properties (soil texture, pH, carbonates, organic matter, electrical conductivity, total N and P), soil enzymes (urease, phosphatase, β-glucosidase and dehydrogenase activities), soil respiration and soil microbial biomass carbon were analysed in the selected forests areas and plots. The main finding was that long time after this fire event produces no differences in the microbiological soil properties and enzyme activities of soil after comparing burned and thinned, burned and not thinned, and mature plots. Thus, the long-term consequences and post-fire silvicultural management in the form of thinning have a significant effect on the site recovery after fire. Moreover, significant site variation was generally seen in soil enzyme activities and microbiological parameters. We conclude that total vegetation restoration normalises microbial parameters, and that wildfire and post-fire silvicultural treatments are not significant factors of soil properties after 17 years.

  18. Accelerated microbial turnover but constant growth efficiency with warming in soil

    Treesearch

    Shannon B. Hagerty; Kees Jan van Groenigen; Steven D. Allison; Bruce A. Hungate; Egbert Schwartz; George W. Koch; Randall K. Kolka; Paul Dijkstra

    2014-01-01

    Rising temperatures are expected to reduce global soil carbon (C) stocks, driving a positive feedback to climate change1-3. However, the mechanisms underlying this prediction are not well understood, including how temperature affects microbial enzyme kinetics, growth effiency (MGE), and turnover4,5. Here, in a laboratory...

  19. Response of soil microbial activities and microbial community structure to vanadium stress.

    PubMed

    Xiao, Xi-Yuan; Wang, Ming-Wei; Zhu, Hui-Wen; Guo, Zhao-Hui; Han, Xiao-Qing; Zeng, Peng

    2017-08-01

    High levels of vanadium (V) have long-term, hazardous impacts on soil ecosystems and biological processes. In the present study, the effects of V on soil enzymatic activities, basal respiration (BR), microbial biomass carbon (MBC), and the microbial community structure were investigated through 12-week greenhouse incubation experiments. The results showed that V content affected soil dehydrogenase activity (DHA), BR, and MBC, while urease activity (UA) was less sensitive to V stress. The average median effective concentration (EC 50 ) thresholds of V were predicted using a log-logistic dose-response model, and they were 362mgV/kg soil for BR and 417mgV/kg soil for DHA. BR and DHA were more sensitive to V addition and could be used as biological indicators for soil V pollution. According to a polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis, the structural diversity of the microbial community decreased for soil V contents ranged between 254 and 1104mg/kg after 1 week of incubation. As the incubation time increased, the diversity of the soil microbial community structure increased for V contents ranged between 354 and 1104mg/kg, indicating that some new V-tolerant bacterial species might have replicated under these conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus)

    PubMed Central

    Oszust, Karolina; Frąc, Magdalena; Gryta, Agata; Bilińska, Nina

    2014-01-01

    The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions) significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential). Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a) ecological based on the use of probiotic preparations and organic fertilization (b) conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA) was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP) of PCR ammonia monooxygenase α-subunit (amoA) gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application. PMID:24897025

  1. Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities.

    PubMed

    Liu, Jun; He, Xiao-Xin; Lin, Xue-Rui; Chen, Wen-Ce; Zhou, Qi-Xing; Shu, Wen-Sheng; Huang, Li-Nan

    2015-06-02

    The crude processing of electronic waste (e-waste) has led to serious contamination in soils. While microorganisms may play a key role in remediation of the contaminated soils, the ecological effects of combined pollution (heavy metals, polychlorinated biphenyls, and polybrominated diphenyl ethers) on the composition and diversity of microbial communities remain unknown. In this study, a suite of e-waste contaminated soils were collected from Guiyu, China, and the indigenous microbial assemblages were profiled by 16S rRNA high-throughput sequencing and clone library analysis. Our data revealed significant differences in microbial taxonomic composition between the contaminated and the reference soils, with Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes dominating the e-waste-affected communities. Genera previously identified as organic pollutants-degrading bacteria, such as Acinetobacter, Pseudomonas, and Alcanivorax, were frequently detected. Canonical correspondence analysis revealed that approximately 70% of the observed variation in microbial assemblages in the contaminated soils was explained by eight environmental variables (including soil physiochemical parameters and organic pollutants) together, among which moisture content, decabromodiphenyl ether (BDE-209), and copper were the major factors. These results provide the first detailed phylogenetic look at the microbial communities in e-waste contaminated soils, demonstrating that the complex combined pollution resulting from improper e-waste recycling may significantly alter soil microbiota.

  2. The secret life of microbes: soil bacteria and fungi undaunted by the harvesting of fire-killed trees

    Treesearch

    Paul Meznarich; Jane Smith; Tara Jennings

    2013-01-01

    Soil health is fundamental to ecosystem health. Disturbances such as fire and timber harvesting can affect the abundance, activity, and composition of soil microbial communities and thus affect soil productivity. In response to forest managers, scientists with the Pacific Northwest Research Station compared health and productivity indicators between soils disturbed by...

  3. The Microbiome Structure of Oklahoma Cropland and Prairie Soils and its Response to Seasonal Forcing and Management Practices

    NASA Astrophysics Data System (ADS)

    Cornell, C. R.; Peterson, B.; Zhou, J.; Xiao, X.; Wawrik, B.

    2017-12-01

    Greenhouse gases (GHG) emissions from soils are primarily the consequence of microbial processes. Agricultural management of soils is known to affect the structure of microbial communities, and it is likely that dominant GHG emitting microbial activities are impacted via requisite practices. To gain better insight into the impact of seasonal forcing and management practices on the microbiome structure in Oklahoma agricultural soils, a seasonal study was conducted. Over a year period, samples were collected bi-weekly during wet months, and monthly during dry months from two grassland and two managed agricultural sites in El Reno, Oklahoma. Microbial community structure was determined in quadruplicate for each site and time point via 16S rRNA gene sequencing. Measures of soil water content, subsoil nitrate, ammonium, organic matter, total nitrogen, and biomass were also taken for each time point. Data analysis revealed several important trends, indicating greater microbial diversity in native grassland and distinct microbial community changes in response to management practices. The native grassland soils also contained greater microbial biomass than managed soils and both varied in response to rainfall events. Native grassland soils harbor more diverse microbial communities, with the diversity and biomass decreasing along a gradient of agricultural management intensity. These data indicate that microbial community structure in El Reno soils occurs along a continuum in which native grasslands and highly managed agricultural soils (tilling and manure application) form end members. Integration with measurements from eddy flux towers into modelling efforts using the DeNitrification-DeComposition (DNDC) model is currently being explored to improve predictions of GHG emissions from grassland soils.

  4. Environmental context affects microbial ecophysiological mechanisms underpinning soil carbon storage under different land use

    NASA Astrophysics Data System (ADS)

    Malik, A. A.; Puissant, J.; Buckeridge, K. M.; Goodall, T.; Jehmlich, N.; Chowdhury, S.; Gleixner, G.; Griffiths, R.

    2017-12-01

    Soil microorganisms act as gatekeepers for soil-atmosphere carbon exchange by balancing the accumulation and release of organic matter in soil. Increasing evidence now exists to suggest that microbial biomass contributes significantly to soil organic carbon formation. However, we do not fully understand the microbial mechanisms of organic matter processing and this hinders the development of effective land management strategies to enhance soil carbon storage. Here we empirically link key microbial ecophysiological traits to soil carbon storage in temperate grassland habitats ranging in land use from pristine species-rich grasslands to intensive croplands in 56 different soils across Britain. Physiological mechanisms of soil microorganisms were assessed using stable carbon isotope tracing and soil proteomics. Through spatial patterns and path analysis of structural equation modeling we discern two distinct pH-related mechanisms of soil carbon storage and highlight that the response of these mechanistic indicators is shaped by the environmental context. Land use intensification in low pH soils that increases soil pH above a threshold value ( 6.2) leads to loss of carbon due to increased microbial degradation as a result of lower acid retardation of organic matter decomposition. On the contrary, the loss of carbon through intensification in high pH (> 6.2) soils was linked to decreased microbial biomass and reduced carbon use efficiency that was linked to tradeoffs with stress alleviation and resource acquisition. We conclude that land use intensification-induced changes in soil pH can be used as a proxy to determine the effect of land management strategies on microbial soil carbon cycling processes and emphasize that more extensive land management practices at higher soil pH have greater potential for soil carbon storage through increased microbial metabolic efficiency, whereas in acidic soils abiotic factors exert a greater influence on the fate of soil carbon.

  5. The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature

    PubMed Central

    Khachane, Amit; Dungait, Jennifer A. J.; Fraser, Fiona; Hopkins, David W.; Wookey, Philip A.; Singh, Brajesh K.; Freitag, Thomas E.; Hartley, Iain P.; Prosser, James I.

    2016-01-01

    Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited. PMID:27798702

  6. The Role of Microbial Community Composition in Controlling Soil Respiration Responses to Temperature.

    PubMed

    Auffret, Marc D; Karhu, Kristiina; Khachane, Amit; Dungait, Jennifer A J; Fraser, Fiona; Hopkins, David W; Wookey, Philip A; Singh, Brajesh K; Freitag, Thomas E; Hartley, Iain P; Prosser, James I

    2016-01-01

    Rising global temperatures may increase the rates of soil organic matter decomposition by heterotrophic microorganisms, potentially accelerating climate change further by releasing additional carbon dioxide (CO2) to the atmosphere. However, the possibility that microbial community responses to prolonged warming may modify the temperature sensitivity of soil respiration creates large uncertainty in the strength of this positive feedback. Both compensatory responses (decreasing temperature sensitivity of soil respiration in the long-term) and enhancing responses (increasing temperature sensitivity) have been reported, but the mechanisms underlying these responses are poorly understood. In this study, microbial biomass, community structure and the activities of dehydrogenase and β-glucosidase enzymes were determined for 18 soils that had previously demonstrated either no response or varying magnitude of enhancing or compensatory responses of temperature sensitivity of heterotrophic microbial respiration to prolonged cooling. The soil cooling approach, in contrast to warming experiments, discriminates between microbial community responses and the consequences of substrate depletion, by minimising changes in substrate availability. The initial microbial community composition, determined by molecular analysis of soils showing contrasting respiration responses to cooling, provided evidence that the magnitude of enhancing responses was partly related to microbial community composition. There was also evidence that higher relative abundance of saprophytic Basidiomycota may explain the compensatory response observed in one soil, but neither microbial biomass nor enzymatic capacity were significantly affected by cooling. Our findings emphasise the key importance of soil microbial community responses for feedbacks to global change, but also highlight important areas where our understanding remains limited.

  7. Effects of soil water repellency on microbial community structure and functions in Mediterranean pine forests

    NASA Astrophysics Data System (ADS)

    Lozano, Elena; Grayston, Sue J.; Mataix-Solera, Jorge; Arcenegui, Victoria; Jimenez-Pinilla, Patricia; Mataix-Beneyto, Jorge

    2015-04-01

    Soil water repellency (SWR) is a property commonly observed in forest areas showing wettable and water repellent patches with high spatial variability. SWR can greatly influence the hydrology and the ecology of forest soils. The capacity of soil microorganisms to degrade different organic compounds depends upon species composition, so this may affect changes in SWR on the microsite scale (such as the presence of soil water repellent patches; Mülleret al., 2010). In the Mediterranean forest context, SWR has been found to be related to microbial community composition. The accumulation of different hydrophobic compounds might be causing the shifts in microbial community structure (Lozano et al., 2014). In this study we investigated the effects of SWR persistence on soil microbial community structure and enzyme activity under Pinus halepensis forest in three different sites: Petrer, Gorga and Jávea (Alicante, E Spain). Soil samples were classified into three different water repellency classes (wettable, slight or strongly water repellent samples) depending on the SWR persistence. The soil microbial community was determined through phospholipid fatty acids (PLFAs). Enzyme activities chosen for this study were cellulase, β-glucosidase and N-acetyl-β-glucosaminide (NAG). The relationships between microbiological community structure and some soil properties such as pH, Glomalin Related Soil Protein, soil organic matter content and soil respiration were also studied. Redundancy analyses and decomposition of the variances were performed to clarify how microbial community composition and enzyme activities are affected by SWR and soil properties. The effect of SWR on microbial community composition differed between locations. This effect was clearer in the Petrer site. Enzyme activity varied considerably depending on SWR persistence. The highest activities were found in slightly SWR samples and the lowest mostly in the strongly water repellent ones. These preliminary results suggest a possible influence of SWR on microbial structure and its activity in soils. References: Lozano, E., García-Orenes, F., Bárcenas-Moreno, G., Jiménez-Pinilla, P., Mataix-Solera, J., Arcenegui, V., Morugán-Coronado, A., Mataix-Beneyto, J., 2014. Relationships between soil water repellency and microbial community composition under different plant species in a Mediterranean semiarid forest. J. Hydrol. Hydromech., 62, 101-107 Müller, K., Deurer, M., Newton, P.C.D., 2010. Is there a link between elevated atmospheric carbon dioxide concentration, soil water repellency and soil carbon mineralization? Agric. Ecosyst. Environ., 139, 98-109. Acknowledgements: to the "Ministerio de Economía and Competitividad" of Spanish Government for finance the POSTFIRE project (CGL2013- 47862-C2-1-R), Generalitat Valenciana for PhD grant, and Spanish Soil Science Society and FUEGORED for their support.

  8. Influence of geogenic factors on microbial communities in metallogenic Australian soils

    PubMed Central

    Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A

    2012-01-01

    Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures. PMID:22673626

  9. Influence of geogenic factors on microbial communities in metallogenic Australian soils.

    PubMed

    Reith, Frank; Brugger, Joel; Zammit, Carla M; Gregg, Adrienne L; Goldfarb, Katherine C; Andersen, Gary L; DeSantis, Todd Z; Piceno, Yvette M; Brodie, Eoin L; Lu, Zhenmei; He, Zhili; Zhou, Jizhong; Wakelin, Steven A

    2012-11-01

    Links between microbial community assemblages and geogenic factors were assessed in 187 soil samples collected from four metal-rich provinces across Australia. Field-fresh soils and soils incubated with soluble Au(III) complexes were analysed using three-domain multiplex-terminal restriction fragment length polymorphism, and phylogenetic (PhyloChip) and functional (GeoChip) microarrays. Geogenic factors of soils were determined using lithological-, geomorphological- and soil-mapping combined with analyses of 51 geochemical parameters. Microbial communities differed significantly between landforms, soil horizons, lithologies and also with the occurrence of underlying Au deposits. The strongest responses to these factors, and to amendment with soluble Au(III) complexes, was observed in bacterial communities. PhyloChip analyses revealed a greater abundance and diversity of Alphaproteobacteria (especially Sphingomonas spp.), and Firmicutes (Bacillus spp.) in Au-containing and Au(III)-amended soils. Analyses of potential function (GeoChip) revealed higher abundances of metal-resistance genes in metal-rich soils. For example, genes that hybridised with metal-resistance genes copA, chrA and czcA of a prevalent aurophillic bacterium, Cupriavidus metallidurans CH34, occurred only in auriferous soils. These data help establish key links between geogenic factors and the phylogeny and function within soil microbial communities. In particular, the landform, which is a crucial factor in determining soil geochemistry, strongly affected microbial community structures.

  10. Potential microbial contamination during sampling of permafrost soil assessed by tracers

    NASA Astrophysics Data System (ADS)

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.

    2017-02-01

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.

  11. Potential microbial contamination during sampling of permafrost soil assessed by tracers.

    PubMed

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S

    2017-02-23

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.

  12. Potential microbial contamination during sampling of permafrost soil assessed by tracers

    PubMed Central

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.

    2017-01-01

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores. PMID:28230151

  13. Competing for phosphors under changing redox conditions: biological versus geochemical sinks

    NASA Astrophysics Data System (ADS)

    Gross, A.; Pett-Ridge, J.; Silver, W. L.

    2016-12-01

    Competing for phosphorus under changing redox conditions: biological versus geochemical sinksAvner Gross1, Jennifer Pett-Ridge2 and Whendee L Silver1 University of California Berkeley, Department of Environmental Science, Policy, & Management, Berkeley, CA, USA. Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA. The cycling of phosphorous (P) in highly weathered, humid tropical forest soils is tightly regulated by P sorption dynamics to the surfaces of Fe(III) (hydr)oxides and root and microbial demands for P. Periods of anoxic soil conditions, which are common in humid environments, induce the reduction of Fe (III) to Fe (II) and may release sorbed P into the soil solution. The microbial demand for P is influenced by the C and nutrient composition of their available substrates. Therefore, we hypothesize that soil redox conditions and substrate quality and availability will control the partitioning of P between microbial biomass and the soil mineral phase. The aim of this study was to examine how fluctuations in soil redox conditions and changes in microbial P demand affect the fate of new P that enters the soil solution. To achieve this aim we conducted a series of soil incubation experiments using a wet tropical soil from Puerto Rico (where redox conditions and P availability naturally oscillate) with a single pulse of phosphate (PO4), altering both the microbial activity and redox conditions. To follow the fate the added P, the added phosphate was labeled with 18O. As the exchange of oxygen between phosphate and water only occurs during biological processes, P-18O labeling can be used as an indicator of microbial use. To quantify sizes of the microbial and mineral P pools we used traditional chemical extractions in the bulk scale. We used NanoSIMS isotopic imaging to map the distribution of P-16O and P-18O and co-localization with Fe minerals at the nano scale. Our results show that the amount of the added P fixed by the mineral phase was inversely correlated to the amount of P assimilated by the microbial biomass. In addition, we discovered the iron redox state did not affect the microbial or mineral P pool sizes. Overall, our results indicate the partition of the added P between the biological and mineral pools is regulated by the microbial biomass demands for P.

  14. [Relationships between soil nutrients and rhizospheric soil microbial communities and enzyme activities in a maize-capsicum intercropping system].

    PubMed

    Xu, Qiang; Cheng, Zhi-Hui; Meng, Huan-Wen; Zhang, Yu

    2007-12-01

    By using plastic sheet and nylon mesh to partition the root systems of maize and capsicum in a maize-capsicum intercropping system, this paper studied the relationships between soil biological factors and nutritive status in the intercropping system, with no partitioning and maize monoculture and capsicum monoculture as the control. The results showed that intercropping maize and capsicum had its high superiority. In the treatments of no partitioning and nylon mesh portioning in the intercropping system, soil enzyme activities, microbial individuals and nutrient contents were significantly higher, compared with those in the treatments of nylon mesh partitioning and monocultures. All kinds of soil available nutrients showed significant or very significant positive correlations with soil biological factors, except that soil available Mg was negatively correlated with soil fungi and catalase activity. Pathway analysis indicated that in the intercropping system, soil urease, catalase, protease, and bacteria were the main factors affecting the accumulation of soil organic matter, saccharase was the most important factor affecting soil alkali-hydrolyzable N, urease was the most important factor affecting soil available P, and bacteria largely determined soil available K. Soil alkaline phosphatase and fungi selectively affected the accumulation of soil organic matter and available N, P and K. There was a slight negative correlation between soil actinomycetes and soil nutrients, suggesting that actinomycetes had little effect on soil nutrient formation.

  15. Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesus, Ederson da C.; Liang, Chao; Quensen, John F.

    Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs – side-by-side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e., extensive sites). We assessed microbial community structure and composition using lipidmore » analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Here, bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.« less

  16. Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States

    DOE PAGES

    Jesus, Ederson da C.; Liang, Chao; Quensen, John F.; ...

    2015-06-28

    Because soil microbes drive many of the processes underpinning ecosystem services provided by soils, understanding how cropping systems affect soil microbial communities is important for productive and sustainable management. We characterized and compared soil microbial communities under restored prairie and three potential cellulosic biomass crops (corn, switchgrass, and mixed prairie grasses) in two spatial experimental designs – side-by-side plots where plant communities were in their second year since establishment (i.e., intensive sites) and regionally distributed fields where plant communities had been in place for at least 10 years (i.e., extensive sites). We assessed microbial community structure and composition using lipidmore » analysis, pyrosequencing of rRNA genes (targeting fungi, bacteria, archaea, and lower eukaryotes), and targeted metagenomics of nifH genes. For the more recently established intensive sites, soil type was more important than plant community in determining microbial community structure, while plant community was the more important driver of soil microbial communities for the older extensive sites where microbial communities under corn were clearly differentiated from those under switchgrass and restored prairie. Here, bacterial and fungal biomasses, especially biomass of arbuscular mycorrhizal fungi, were higher under perennial grasses and restored prairie, suggesting a more active carbon pool and greater microbial processing potential, which should be beneficial for plant acquisition and ecosystem retention of carbon, water, and nutrients.« less

  17. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover.

    PubMed

    You, Yeming; Wang, Juan; Huang, Xueman; Tang, Zuoxin; Liu, Shirong; Sun, Osbert J

    2014-03-01

    Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study soil microbial community structure and measured activities of five extracellular enzymes involved in the degradation of cellulose (i.e., β-1,4-glucosidase and cellobiohydrolase), chitin (i.e., β-1,4-N-acetylglucosaminidase), and lignin (i.e., phenol oxidase and peroxidase) as indicators of soil microbial functioning in carbon transformation or turnover across varying biotic and abiotic conditions in a typical temperate forest ecosystem in central China. Redundancy analysis (RDA) was performed to determine the interrelationship between individual PFLAs and biotic and abiotic site factors as well as the linkage between soil microbial structure and function. Path analysis was further conducted to examine the controls of site factors on soil microbial community structure and the regulatory pathway of changes in SOC relating to microbial community structure and function. We found that soil microbial community structure is strongly influenced by water, temperature, SOC, fine root mass, clay content, and C/N ratio in soils and that the relative abundance of Gram-negative bacteria, saprophytic fungi, and actinomycetes explained most of the variations in the specific activities of soil enzymes involved in SOC transformation or turnover. The abundance of soil bacterial communities is strongly linked with the extracellular enzymes involved in carbon transformation, whereas the abundance of saprophytic fungi is associated with activities of extracellular enzymes driving carbon oxidation. Findings in this study demonstrate the complex interactions and linkage among plant traits, microenvironment, and soil physiochemical properties in affecting SOC via microbial regulations.

  18. Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali N.; Or, Dani

    2014-09-01

    The dispersal rates of self-propelled microorganisms affect their spatial interactions and the ecological functioning of microbial communities. Microbial dispersal rates affect risk of contamination of water resources by soil-borne pathogens, the inoculation of plant roots, or the rates of spoilage of food products. In contrast with the wealth of information on microbial dispersal in water replete systems, very little is known about their dispersal rates in unsaturated porous media. The fragmented aqueous phase occupying complex soil pore spaces suppress motility and limits dispersal ranges in unsaturated soil. The primary objective of this study was to systematically evaluate key factors that shape microbial dispersal in model unsaturated porous media to quantify effects of saturation, pore space geometry, and chemotaxis on characteristics of principles that govern motile microbial dispersion in unsaturated soil. We constructed a novel 3-D angular pore network model (PNM) to mimic aqueous pathways in soil for different hydration conditions; within the PNM, we employed an individual-based model that considers physiological and biophysical properties of motile and chemotactic bacteria. The effects of hydration conditions on first passage times in different pore networks were studied showing that fragmentation of aquatic habitats under dry conditions sharply suppresses nutrient transport and microbial dispersal rates in good agreement with limited experimental data. Chemotactically biased mean travel speed of microbial cells across 9 mm saturated PNM was ˜3 mm/h decreasing exponentially to 0.45 mm/h for the PNM at matric potential of -15 kPa (for -35 kPa, dispersal practically ceases and the mean travel time to traverse the 9 mm PNM exceeds 1 year). Results indicate that chemotaxis enhances dispersal rates by orders of magnitude relative to random (diffusive) motions. Model predictions considering microbial cell sizes relative to available liquid pathways sizes were in good agreement with experimental results for unsaturated soils. The new modeling platform enables quantitative consideration of key biophysical factors (e.g., pore space heterogeneities and hydration conditions) governing microbial interactions in 3-D soil pore spaces.

  19. Understanding soil health by capitalizing on long-term field studies

    NASA Astrophysics Data System (ADS)

    Tavakkoli, Ehsan; Wang, Zhe; VanZweieten, Lukas; Rose, Michael

    2017-04-01

    Microbial biodiversity in Australian agricultural soils is of paramount importance as it plays a critical role in regulating soil health, plant productivity, and the cycling of carbon, nitrogen, and other nutrients. Agricultural practices strongly affect soil microbial communities by changing the physical and chemical characteristics of the soil in which microorganisms live, thereby affecting their abundance, diversity, and activity. Despite its importance, the specific responses of various microbial groups to changing environmental conditions (e.g. increased/decreased carbon in response to land management) in agricultural soils are not well understood. This knowledge gap is largely due to previous methodological limitations that, until recently, did not allow microbial diversity and functioning to be meaningfully investigated on large numbers of samples. We sampled soils from a field trial on the effect of strategic tillage in no-till systems to examine the potential impact of tillage and stubble management on soil microbial composition. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used bar-coded high-throughput sequencing. Bioinformatics of the sequencing generated data was performed using a previously scripted and tested pipeline, and involved allocation of the relevant sequences to their samples of origin according to the bar-code. In parallel, changes in soil quality and microbial functionality were determined using multi-enzyme activity assay and multiple substrate-induced respiration. The extracellular enzyme activities that were measured include: β-1,4-glucosidase, β-D-cellobiohydrolase, β-Xylosidase, and α-1,4-glucosidase which are all relevant to the C cycle; β-1,4-N-acetylglucosaminidase and L-leucine aminopeptidase which are both relevant to the N cycle associated and associated with protein catabolism. In this presentation, analyses of soil health and functionality in relation to its response to various agronomic practices and implications for C sequestration and nutrient cycling will be discussed.

  20. Impact of sources of environmental degradation on microbial community dynamics in non-polluted and metal-polluted soils.

    PubMed

    Epelde, Lur; Martín-Sánchez, Iker; González-Oreja, José A; Anza, Mikel; Gómez-Sagasti, María T; Garbisu, Carlos

    2012-09-01

    Soils are currently being degraded at an alarming rate due to increasing pressure from different sources of environmental degradation. Consequently, we carried out a 4-month microcosm experiment to measure the impact of different sources of environmental degradation (biodiversity loss, nitrogen deposition and climate change) on soil health in a non-polluted (non-degraded) and a heavily metal-polluted (degraded) soil, and to compare their responses. To this aim, we determined a variety of soil microbial properties with potential as bioindicators of soil health: basal respiration; β-glucosaminidase and protease activities; abundance (Q-PCR) of bacterial, fungal and chitinase genes; richness (PCR-DGGE) of fungal and chitinase genes. Non-polluted and metal-polluted soils showed different response microbial dynamics when subjected to sources of environmental degradation. The non-polluted soil appeared resilient to "biodiversity loss" and "climate change" treatments. The metal-polluted soil was probably already too severely affected by the presence of high levels of toxic metals to respond to other sources of stress. Our data together suggests that soil microbial activity and biomass parameters are more sensitive to the applied sources of environmental degradation, showing immediate responses of greater magnitude, while soil microbial diversity parameters do not show such variations. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Zinc oxide nanoparticles affect carbon and nitrogen mineralization of Phoenix dactylifera leaf litter in a sandy soil.

    PubMed

    Rashid, Muhammad Imtiaz; Shahzad, Tanvir; Shahid, Muhammad; Ismail, Iqbal M I; Shah, Ghulam Mustafa; Almeelbi, Talal

    2017-02-15

    We investigated the impact of zinc oxide nanoparticles (ZnO NPs; 1000mgkg -1 soil) on soil microbes and their associated soil functions such as date palm (Phoenix dactylifera) leaf litter (5gkg -1 soil) carbon and nitrogen mineralization in mesocosms containing sandy soil. Nanoparticles application in litter-amended soil significantly decreased the cultivable heterotrophic bacterial and fungal colony forming units (cfu) compared to only litter-amended soil. The decrease in cfu could be related to lower microbial biomass carbon in nanoparticles-litter amended soil. Likewise, ZnO NPs also reduced CO 2 emission by 10% in aforementioned treatment but this was higher than control (soil only). Labile Zn was only detected in the microbial biomass of nanoparticles-litter applied soil indicating that microorganisms consumed this element from freely available nutrients in the soil. In this treatment, dissolved organic carbon and mineral nitrogen were 25 and 34% lower respectively compared to litter-amended soil. Such toxic effects of nanoparticles on litter decomposition resulted in 130 and 122% lower carbon and nitrogen mineralization efficiency respectively. Hence, our results entail that ZnO NPs are toxic to soil microbes and affect their function i.e., carbon and nitrogen mineralization of applied litter thus confirming their toxicity to microbial associated soil functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Short-term precipitation exclusion alters microbial responses to soil moisture in a wet tropical forest.

    PubMed

    Waring, Bonnie G; Hawkes, Christine V

    2015-05-01

    Many wet tropical forests, which contain a quarter of global terrestrial biomass carbon stocks, will experience changes in precipitation regime over the next century. Soil microbial responses to altered rainfall are likely to be an important feedback on ecosystem carbon cycling, but the ecological mechanisms underpinning these responses are poorly understood. We examined how reduced rainfall affected soil microbial abundance, activity, and community composition using a 6-month precipitation exclusion experiment at La Selva Biological Station, Costa Rica. Thereafter, we addressed the persistent effects of field moisture treatments by exposing soils to a controlled soil moisture gradient in the lab for 4 weeks. In the field, compositional and functional responses to reduced rainfall were dependent on initial conditions, consistent with a large degree of spatial heterogeneity in tropical forests. However, the precipitation manipulation significantly altered microbial functional responses to soil moisture. Communities with prior drought exposure exhibited higher respiration rates per unit microbial biomass under all conditions and respired significantly more CO2 than control soils at low soil moisture. These functional patterns suggest that changes in microbial physiology may drive positive feedbacks to rising atmospheric CO2 concentrations if wet tropical forests experience longer or more intense dry seasons in the future.

  3. Soil contamination with olive mill wastes negatively affects microbial communities, invertebrates and plants.

    PubMed

    Hentati, Olfa; Oliveira, Vanessa; Sena, Clara; Bouji, Mohamed Seddik Mahmoud; Wali, Ahmed; Ksibi, Mohamed

    2016-10-01

    The aim of the present study was to evaluate the ecotoxicological effects of olive mill waste (OMW) on soil habitat function. To this end, soil samples from OMW evaporating ponds (S1-S5) located at Agareb (Sfax, Tunisia) and a reference soil (R) were collected. The effects of OMW on the springtails Folsomia candida (F.c.), the earthworm species Eisenia fetida (E.f.), Enchytraeus crypticus (E.c.) reproduction and on the soil living microbial communities were investigated. E.f. reproduction and tomato growth assays were performed in the reference soil amended with 0.43 to 7.60 % (w OMW /w ref-soil ) mass ratios of dried OMW. Changes in microbial function diversity were explored using sole-carbon-source utilization profiles (BiologEcoPlates ® ). E.f. absolutely avoided (100 %) the most polluted soil (S4) while the F.c. moderately avoided (37.5 ± 7.5 %) the same soil. E.c. reproduction in S4 was significantly lower than in S1, S2, S3 and S5, and was the highest in R soil. Estimated effect concentration EC 50 for juveniles' production by E.f., and for tomato fresh weight and chlorophyll content were 0.138, 0.6 and 1.13 %, respectively. Community level physiological profiles (CLPPs) were remarkably different in R and S4 and a higher similarity was observed between soils S1, S2, S3 and S5. Principal component analysis (PCA) revealed that differences between soil microbial functional diversity were mainly due to high polyphenol concentrations, while the salinity negatively affected E.c. reproduction in OMW contaminated soils. These results clearly reflect the high toxicity of dried OMW when added to agricultural soils, causing severe threats to terrestrial ecosystem functions and services provided by invertebrates and microbial communities.

  4. Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil.

    PubMed

    Lynn, Tin Mar; Liu, Qiong; Hu, Yajun; Yuan, Hongzhao; Wu, Xiaohong; Khai, Aye Aye; Wu, Jinshui; Ge, Tida

    2017-07-01

    Studying shifts in microbial communities under different land use can help in determining the impact of land use on microbial diversity. In this study, we analyzed four different land-use types to determine their bacterial and archaeal diversity and abundance. Three natural ecosystems, that is, wetland (WL), grassland (GL), and forest (FR) soils, and one agricultural soil, that is, tea plantation (TP) soil, were investigated to determine how land use shapes bacterial and archaeal diversity. For this purpose, molecular analyses, such as quantitative polymerase chain reaction (Q-PCR), 16S rRNA gene sequencing, and terminal restriction fragment length polymorphism (T-RFLP), were used. Soil physicochemical properties were determined, and statistical analyses were performed to identify the key factors affecting microbial diversity in these soils. Phylogenetic affiliations determined using the Ribosomal Database Project (RDP) database and T-RFLP revealed that the soils had differing bacterial diversity. WL soil was rich in only Proteobacteria, whereas GR soil was rich in Proteobacteria, followed by Actinobacteria. FR soil had higher abundance of Chloroflexi species than these soils. TP soil was rich in Actinobacteria, followed by Chloroflexi, Acidobacteria, Proteobacteria, and Firmicutes. The archaeal diversity of GL and FR soils was similar in that most of their sequences were closely related to Nitrososphaerales (Thaumarchaeota phylum). In contrast, WL soil, followed by TP soil, had greater archaeal diversity than other soils. Eight different archaeal classes were found in WL soil, and Pacearchaeota class was the richest one. The abundance of bacterial and archaeal 16S rRNA gene copies in WL and GL soils was significantly higher than that in FR and TP soils. Redundancy analysis showed that bacterial diversity was influenced by abiotic factors, e.g., total organic carbon and pH, whereas total nitrogen, pH, and cation exchange capacity (CEC) significantly affected archaeal community composition. Pearson correlation analysis showed that bacterial and archaeal 16S rRNA gene abundance had the highest correlation with clay content (r > 0.905, P < 0.01), followed by total-P, CEC, pH, and silt (%). These results will lead to more comprehensive understanding of how land use affects microbial distribution.

  5. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.

    PubMed

    Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel

    2013-03-01

    Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands. © 2012 Blackwell Publishing Ltd.

  6. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world.

    PubMed

    Melillo, J M; Frey, S D; DeAngelis, K M; Werner, W J; Bernard, M J; Bowles, F P; Pold, G; Knorr, M A; Grandy, A S

    2017-10-06

    In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. The resistance of the active microbiome as a fundamental compartment of soil quality in the face of climate change

    NASA Astrophysics Data System (ADS)

    Bastida, Felipe; Andrés, Manuela; Torres, Irene; García, Carlos; Ruiz Navarro, Antonio; Moreno, Francisco R.; López Serrano, Francisco R.

    2017-04-01

    Arid and semiarid ecosystems will be severely affected by drought derived from climate change. Forest management can promote the adaptations of plant and microbial communities to drought. For instance, thinning reduces competition for resources through a decrease in tree density and the promotion of plant survival. The resistance of soil microbial communities must be strongly related to the soil quality. However, in order to evaluate these properties, the active (and not only the total) microbial community should be carefully assessed. Here, we studied the functional and phylogenetic responses of the microbial community to six years of drought induced by rainfall exclusion and how thinning shapes its resistance to drought, in a semiarid ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel strategies against drought. The diversity and the composition of the total and active soil microbial communities were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially-mediated ecosystem multifunctionality was studied by the evaluation of enzyme activities related to C, N, and P dynamics. The microbial biomass and ecosystem multifunctionality decreased in plots subjected to drought, but this decrease was greater in unthinned plots. The diversity of the total bacterial and fungal communities were resistant to drought but were shaped by seasonal dynamics. However, the active community was more sensitive to drought and related to multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of multifunctionality to drought by changes in the active microbiome. Protein-based phylogeny was a better predictor of the impacts of drought and the adaptations of microbial communities. We highlight that the resistance of the microbial community and the active microbial community are ecological concepts strongly related to the concept of soil quality in the face of climate change.

  8. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    PubMed

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.

  9. [Ozone effects on soil microbial community of rice investigated by 13C isotope labeling].

    PubMed

    Chen, Zhan; Wang, Xiao-Ke; Shang, He

    2014-10-01

    This study was initiated to explore the effects of dynamic ozone (O3) exposure on soil microbial biomass and phospholipid fatty acids (PLFAs) under potted rice. A pulse-chase labeling experiment was designed to expose potted rice with 13CO2 for 6 h after one and two months, the rice were fumigated by elevated O3 concentration with an 8 h mean of 110 nL · L(-1) (O3). The allocation of the assimilated 13C to soil microorganisms was estimated by analyzing the 13C profile of microbial phospholipid fatty acids (PLFAs). After one month O3 exposure, the soil microbial biomass carbon was not affected, while the 13C-microbial biomass was significantly decreased with elevated O3. Both the total and 13C microbial biomass carbon was remarkably lower than that of control treatment after two months O3 exposure. Principal components analysis of 13C-PLFA data showed that elevated O3 significantly changed soil microbial structure after two month exposures, while there was no difference of 13C-PLFA structure between control and elevated O3 treatments after one month exposure. Δδ13C per hundred thousand of individual PLFA was significantly affected by O3 after both one and two month exposures. Only did ozone change the relative abundance of individual 13C-PLFA (13C%) of bacterial fatty acids after one month exposure, while after two month exposures, the 13C% of fungal and actinomycetic fatty acids were markedly changed by elevated O3.

  10. Short-term responses and resistance of soil microbial community structure to elevated CO2 and N addition in grassland mesocosms.

    PubMed

    Simonin, Marie; Nunan, Naoise; Bloor, Juliette M G; Pouteau, Valérie; Niboyet, Audrey

    2017-05-01

    Nitrogen (N) addition is known to affect soil microbial communities, but the interactive effects of N addition with other drivers of global change remain unclear. The impacts of multiple global changes on the structure of microbial communities may be mediated by specific microbial groups with different life-history strategies. Here, we investigated the combined effects of elevated CO2 and N addition on soil microbial communities using PLFA profiling in a short-term grassland mesocosm experiment. We also examined the linkages between the relative abundance of r- and K-strategist microorganisms and resistance of the microbial community structure to experimental treatments. N addition had a significant effect on microbial community structure, likely driven by concurrent increases in plant biomass and in soil labile C and N. In contrast, microbial community structure did not change under elevated CO2 or show significant CO2 × N interactions. Resistance of soil microbial community structure decreased with increasing fungal/bacterial ratio, but showed a positive relationship with the Gram-positive/Gram-negative bacterial ratio. Our findings suggest that the Gram-positive/Gram-negative bacteria ratio may be a useful indicator of microbial community resistance and that K-strategist abundance may play a role in the short-term stability of microbial communities under global change. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. The Exotic Legume Tree Species Acacia holosericea Alters Microbial Soil Functionalities and the Structure of the Arbuscular Mycorrhizal Community▿

    PubMed Central

    Remigi, P.; Faye, A.; Kane, A.; Deruaz, M.; Thioulouse, J.; Cissoko, M.; Prin, Y.; Galiana, A.; Dreyfus, B.; Duponnois, R.

    2008-01-01

    The response of microbial functional diversity as well as its resistance to stress or disturbances caused by the introduction of an exotic tree species, Acacia holosericea, ectomycorrhized or not with Pisolithus albus, was examined. The results show that this ectomycorrhizal fungus promotes drastically the growth of this fast-growing tree species in field conditions after 7 years of plantation. Compared to the crop soil surrounding the A. holosericea plantation, this exotic tree species, associated or not with the ectomycorrhizal symbiont, induced strong modifications in soil microbial functionalities (assessed by measuring the patterns of in situ catabolic potential of microbial communities) and reduced soil resistance in response to increasing stress or disturbance (salinity, temperature, and freeze-thaw and wet-dry cycles). In addition, A. holosericea strongly modified the structure of arbuscular mycorrhizal fungus communities. These results show clearly that exotic plants may be responsible for important changes in soil microbiota affecting the structure and functions of microbial communities. PMID:18203858

  12. Soil microbial abundance, activity and diversity response in two different altitude-adapted plant communities affected by wildfire in Sierra Nevada National Park (Granada, Spain)

    NASA Astrophysics Data System (ADS)

    Bárcenas-Moreno, Gema; Zavala, Lorena; Jordan, Antonio; Bååth, Erland; Mataix-Beneyto, Jorge

    2013-04-01

    Plant communities can play an important role in fire severity and post-fire ecosystem recovery due to their role as combustible and different plant-soil microorganisms interactions. Possible differences induced by plant and microorganisms response after fire could affect the general ecosystem short and long-term response and its sustainability. The main objective of this work was the evaluation of the effect of wildfire on soil microbial abundance, activity and diversity in two different plant communities associated to different altitudes in Sierra Nevada National Park (Granada, Spain). Samples were collected in two areas located on the Sierra Nevada Mountain between 1700 and 2000 m above sea level which were affected by a large wildfire in 2005. Two samplings were carried out 8 and 20 months after fire and samples were collected in both burned and unburned (control) zones in each plant community area. Area A is located at 1700m and it is formed by Quercus rotundifolia forest while area B is located at 2000 m altitude and is composed of alpine vegetation formed by creeping bearing shrubs. Microbial biomass measured by Fumigation-Extraction method followed the same trend in both areas showing slight and no significant differences between burned and unburned area during the study period while viable and cultivable bacteria abundance were markedly higher in fire affected samples than in the control ones in both samplings. Viable and cultivable filamentous fungi had different behavior depending of plant vegetation community studied showing no differences between burned and unburned area in area A while was significantly higher in burned samples than in the control ones in area B. Microbial activity monitoring with soil microbial respiration appears to had been affected immediately after fire since microbial respiration was lower in burned samples from area A than in unburned one only 8 months after fire and no significant differences were observed between burned and unburned samples in area B. Soil microbial community composition studied by Principal Component Analyses (PCA) of the PLFA pattern revealed both fire and seasonal effects. General overview of the results could lead to think in a slight negative or even positive effect of fire on soil microbial parameters studied, mainly in zone B. Nevertheless if we calculate the ratio between C-biomass and organic-C we find lower ratio in fire-affected samples than in the control ones in both areas, showing the most marked effect on area B which remain with this tendency 20 months after fire. Acknowledgements: This research was supported by the CICYT co-financed FEDER project CGL2006-11107-C02-01/BOS. We are grateful for the Sierra Nevada National Park support during the study.

  13. Climate change-driven treeline advances in the Urals alter soil microbial communities

    NASA Astrophysics Data System (ADS)

    Djukic, Ika; Moiseev, Pavel; Hagedorn, Frank

    2016-04-01

    Climatic warming may affect microbial communities and their functions either directly through increased temperatures or indirectly by changes in vegetation. Treelines are temperature-limited vegetation boundaries from tundra to forests. In unmanaged regions of the Ural mountains, there is evidence that the forest-tundra ecotone has shifted upward in response to climate warming during the 20th century. Little is known about the effects of the treeline advances on the microbial structure and function and hence they feedbacks on the belowground carbon and nitrogen cycling In our study, we aimed to estimate how ongoing upward shifts of the treeline ecotone might affect soil biodiversity and its function and hence soil carbon (C) and nitrogen (N) dynamics in the Southern and Polar Ural mountains. Along altitudinal gradients reaching from the tundra to forests, we determined the soil microbial community composition (using Phospholipid Fatty Acids method) and quantified the activity of several extracellular enzymes involved in the C and nutrient cycling. In addition, we measured C pools in biomass and soils and quantified C and N mineralization. The results for the top soils, both in South Urals and in the Polar Ural, indicate a close link between climate change driven vegetation changes and soil microbial communities. The observed changes in microbial structure are induced through the resulting more favorable conditions than due to a shift in litter quality. The activities of chitinase were significantly higher under trees than under herbaceous plants, while activities of cellulase and protease declined with altitude from the tundra to the closed forest. In contrast to enzymatic activities, soil carbon stocks did not change significantly with altitude very likely as a result of a balancing out of increased C inputs from vegetation by an enhanced C output through mineralization with forest expansion. The accelerated organic matter turnover in the forest than in the tundra leads to higher contents of mineral N and net nitrification rates. In turn, the increasing N availability may stimulate plant growth and hence, induce a positive feedback between treeline advances and soil nitrogen cycling through soil microbial communities.

  14. Small-scale spatial variability of soil microbial community composition and functional diversity in a mixed forest

    NASA Astrophysics Data System (ADS)

    Wang, Qiufeng; Tian, Jing; Yu, Guirui

    2014-05-01

    Patterns in the spatial distribution of organisms provide important information about mechanisms that regulate the diversity and complexity of soil ecosystems. Therefore, information on spatial distribution of microbial community composition and functional diversity is urgently necessary. The spatial variability on a 26×36 m plot and vertical distribution (0-10 cm and 10-20 cm) of soil microbial community composition and functional diversity were studied in a natural broad-leaved Korean pine (Pinus koraiensis) mixed forest soil in Changbai Mountain. The phospholipid fatty acid (PLFA) pattern was used to characterize the soil microbial community composition and was compared with the community substrate utilization pattern using Biolog. Bacterial biomass dominated and showed higher variability than fungal biomass at all scales examined. The microbial biomass decreased with soil depths increased and showed less variability in lower 10-20 cm soil layer. The Shannon-Weaver index value for microbial functional diversity showed higher variability in upper 0-10 cm than lower 10-20 cm soil layer. Carbohydrates, carboxylic acids, polymers and amino acids are the main carbon sources possessing higher utilization efficiency or utilization intensity. At the same time, the four carbon source types contributed to the differentiation of soil microbial communities. This study suggests the higher diversity and complexity for this mix forest ecosystem. To determine the driving factors that affect this spatial variability of microorganism is the next step for our study.

  15. Tropical Land Use Conversion Effects on Soil Microbial Community Structure and Function: Emerging Patterns and Knowledge Gaps

    NASA Astrophysics Data System (ADS)

    Seeley, M.; Marin-Spiotta, E.

    2016-12-01

    Modifications in vegetation due to land use conversions (LUC) between primary forests, pasture, cropping systems, tree plantations, and secondary forests drive shifts in soil microbial communities. These microbial community alterations affect carbon sequestration, nutrient cycling, aboveground biomass, and numerous other soil processes. Despite their importance, little is known about soil microbial organisms' response to LUC, especially in tropical regions where LUC rates are greatest. This project identifies current trends and uncertainties in tropical soil microbiology by comparing 56 published studies on LUC in tropical regions. This review indicates that microbial biomass and functional groups shifted in response to LUC, supporting demonstrated trends in changing soil carbon stocks due to LUC. Microbial biomass was greatest in primary forests when compared to secondary forests and in all forests when compared to both cropping systems and tree plantations. No trend existed when comparing pasture systems and forests, likely due to variations in pasture fertilizer use. Cropping system soils had greater gram positive and less gram negative bacteria than forest soils, potentially resulting in greater respiration of older carbon stocks in agricultural soils. Bacteria dominated primary forests while fungal populations were greatest in secondary forests. To characterize changes in microbial communities resulting from land use change, research must reflect the biophysical variation across the tropics. A chi-squared test revealed that the literature sites represented mean annual temperature variation across the tropics (p-value=0.66).

  16. The relationships between microbiological attributes and soil and litter quality in pure and mixed stands of native tree species in southeastern Bahia, Brazil.

    PubMed

    Gama-Rodrigues, Emanuela F; Gama-Rodrigues, Antonio Carlos; Barros, Nairam F; Moço, Maria Kellen S

    2011-11-01

    This study was conducted to link soil and litter microbial biomass and activity with soil and litter quality in the surface layer for different pure and mixed stands of native tree species in southeastern Bahia, Brazil. The purpose of the study was to see how strongly the differences among species and stands affect the microbiological attributes of the soil and to identify how microbial processes can be influenced by soil and litter quality. Soil and litter samples were collected from six pure and mixed stands of six hardwood species (Peltogyne angustifolia, Centrolobium robustum, Arapatiella psilophylla, Sclerolobium chrysophyllum, Cordia trichotoma, Macrolobium latifolium) native to the southeastern region of Bahia, Brazil. In plantations of native tree species in humid tropical regions, the immobilization efficiency of C and N by soil microbial biomass was strongly related to the chemical quality of the litter and to the organic matter quality of the soil. According to the variables analyzed, the mixed stand was similar to the natural forest and dissimilar to the pure stands. Litter microbial biomass represented a greater sink of C and N than soil microbial biomass and is an important contributor of resources to tropical soils having low C and N availability.

  17. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Schnecker, Jörg; Wild, Birgit; Čapek, Petr; Kaiser, Christina; Torsvik, Vigdis L.; Richter, Andreas; Schleper, Christa; Urich, Tim

    2014-01-01

    Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried topsoils”), resulting from a decrease in fungal abundance compared to recent (“unburied”) topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation. PMID:25360132

  18. Effect of monospecific and mixed sea-buckthorn (Hippophae rhamnoides) plantations on the structure and activity of soil microbial communities.

    PubMed

    Yu, Xuan; Liu, Xu; Zhao, Zhong; Liu, Jinliang; Zhang, Shunxiang

    2015-01-01

    This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4(+)) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4(+) content, nitrate content (NH3(-)), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations.

  19. Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities

    DOE PAGES

    Deng, Ye; He, Zhili; Xiong, Jinbo; ...

    2015-10-23

    Although elevated CO 2 (eCO 2) significantly affects the -diversity, composition, function, interaction and dynamics of soil microbial communities at the local scale, little is known about eCO 2 impacts on the geographic distribution of micro-organisms regionally or globally. Here, we examined the -diversity of 110 soil microbial communities across six free air CO 2 enrichment (FACE) experimental sites using a high-throughput functional gene array. The -diversity of soil microbial communities was significantly (P<0.05) correlated with geographic distance under both CO 2 conditions, but declined significantly (P<0.05) faster at eCO 2 with a slope of -0.0250 than at ambient COmore » 2 (aCO 2) with a slope of -0.0231 although it varied within each individual site, indicating that the spatial turnover rate of soil microbial communities was accelerated under eCO 2 at a larger geographic scale (e.g. regionally). Both distance and soil properties significantly (P<0.05) contributed to the observed microbial -diversity. Furthermore, this study provides new hypotheses for further understanding their assembly mechanisms that may be especially important as global CO 2 continues to increase.« less

  20. Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Ye; He, Zhili; Xiong, Jinbo

    Although elevated CO 2 (eCO 2) significantly affects the -diversity, composition, function, interaction and dynamics of soil microbial communities at the local scale, little is known about eCO 2 impacts on the geographic distribution of micro-organisms regionally or globally. Here, we examined the -diversity of 110 soil microbial communities across six free air CO 2 enrichment (FACE) experimental sites using a high-throughput functional gene array. The -diversity of soil microbial communities was significantly (P<0.05) correlated with geographic distance under both CO 2 conditions, but declined significantly (P<0.05) faster at eCO 2 with a slope of -0.0250 than at ambient COmore » 2 (aCO 2) with a slope of -0.0231 although it varied within each individual site, indicating that the spatial turnover rate of soil microbial communities was accelerated under eCO 2 at a larger geographic scale (e.g. regionally). Both distance and soil properties significantly (P<0.05) contributed to the observed microbial -diversity. Furthermore, this study provides new hypotheses for further understanding their assembly mechanisms that may be especially important as global CO 2 continues to increase.« less

  1. Factors affecting microbial 2,4,6-trinitrotoluene mineralization in contaminated soil

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1995-01-01

    The influence of selected environmental factors on microbial TNT mineralization in soils collected from a TNT-contaminated site at Weldon Spring, MO, was examined using uniformly ring-labeled [14C]TNT. Microbial TNT mineralization was significantly inhibited by the addition of cellobiose and syringate. This response suggests that the indigenous microorganisms are capable of metabolizing TNT but preferentially utilize less recalcitrant substrates when available. The observed inhibition of TNT mineralization by TNT concentrations higher than 100 ??mol/kg of soil and by dry soil conditions suggests that toxic inhibition of microbial activity at high TNT concentrations and the periodic drying of these soils have contributed to the long-term persistence of TNT at Weldon Spring. In comparison to aerobic microcosms, mineralization was inhibited in anaerobic microcosms and in microcosms with a headspace of air amended with oxygen, suggesting that a mosaic of aerobic and anaerobic conditions may optimize TNT degradation at this site.

  2. Preferential flow in the vadose zone and interface dynamics: Impact of microbial exudates

    NASA Astrophysics Data System (ADS)

    Li, Biting; Pales, Ashley R.; Clifford, Heather M.; Kupis, Shyla; Hennessy, Sarah; Liang, Wei-Zhen; Moysey, Stephen; Powell, Brian; Finneran, Kevin T.; Darnault, Christophe J. G.

    2018-03-01

    In the hydrological cycle, the infiltration process is a critical component in the distribution of water into the soil and in the groundwater system. The nonlinear dynamics of the soil infiltration process yield preferential flow which affects the water distribution in soil. Preferential flow is influenced by the interactions between water, soil, plants, and microorganisms. Although the relationship among the plant roots, their rhizodeposits and water transport in soil has been the subject of extensive study, the effect of microbial exudates has been studied in only a few cases. Here the authors investigated the influence of two artificial microbial exudates-catechol and riboflavin-on the infiltration process, particularly unstable fingered flow, one form of preferential flow. Flow experiments investigating the effects of types and concentrations of microbial exudates on unstable fingered flow were conducted in a two-dimensional tank that was filled with ASTM

  3. Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China

    NASA Astrophysics Data System (ADS)

    Shen, H.; Li, H.; Zhang, J.; Hu, H.; Chen, L.; Zhu, Y.; Fang, J.

    2017-12-01

    The ongoing expansion of shrub encroachment into grasslands represents a unique form of land cover change. How this process affects soil microbial communities is poorly understood. In this study, we aim to assess the effects of shrub encroachment on soil microbial biomass, abundance and composition by comparing data between shrub patches and neighboring herb patches in shrub-encroached grasslands (SEGs) in Inner Mongolia, China. Fourteen SEG sites from two ecosystem types (typical and desert grasslands) were investigated. The phospholipid fatty acid (PLFA) method was used to analyze the composition and biomass of the soil microbial community. Our results showed that the top-soil microbial biomass and abundances of gram-negative bacteria, arbuscular mycorrhizal fungi, and actinomycetes were significantly higher in shrub patches than in herb patches in both typical and desert grasslands (P < 0.05). The fungi to bacteria ratio was significantly higher in shrub patches than in herb patches in desert grassland (P < 0.05). The microbial biomass was positively associated with mean annual precipitation, total nitrogen and available phosphorus, and negatively associated with mean annual temperature. Our results also indicated that the variation in microbial composition was largely explained by edaphic factors, followed by climate factors. In conclusion, shrub encroachment in Inner Mongolia grasslands has significantly influenced the structure and abundance of soil microbial communities, which makes the microbial communities toward a fresh organic carbon-based structure. This study highlights the importance of edaphic and climate factors in microbial community shifts in SEGs.

  4. Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought.

    PubMed

    Mark Ibekwe, A; Ors, Selda; Ferreira, Jorge F S; Liu, Xuan; Suarez, Donald L

    2017-02-01

    Salinity is a common problem under irrigated agriculture, especially in low rainfall and high evaporative demand areas of southwestern United States and other semi-arid regions around the world. However, studies on salinity effects on soil microbial communities are relatively few while the effects of irrigation-induced salinity on soil chemical and physical properties and plant growth are well documented. In this study, we examined the effects of salinity, temperature, and temporal variability on soil and rhizosphere microbial communities in sand tanks irrigated with prepared solutions designed to simulate saline wastewater. Three sets of experiments with spinach (Spinacia oleracea L., cv. Racoon) were conducted under saline water during different time periods (early winter, late spring, and early summer). Bacterial 16S V4 rDNA region was amplified utilizing fusion primers designed against the surrounding conserved regions using MiSeq® Illumina sequencing platform. Across the two sample types, bacteria were relatively dominant among three phyla-the Proteobacteria, Cyanobacteria, and Bacteroidetes-accounted for 77.1% of taxa detected in the rhizosphere, while Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 55.1% of taxa detected in soil. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, community structure, and specific bacterial groups in soil and rhizosphere samples. Permutational analysis of variance (PERMANOVA) analysis showed that soil temperature (P=0.001), rhizosphere temperature (P=0.001), rhizosphere salinity (P=0.032), and evapotranspiration (P=0.002) significantly affected beta diversity of soil and rhizosphere microbial communities. Furthermore, salinity had marginal effects (P=0.078) on soil beta diversity. However, temporal variability differentially affected rhizosphere microbial communities irrigated with saline wastewater. Therefore, microbial communities in soils impacted by saline irrigation water respond differently to irrigation water quality and season of application due to temporal effects associated with temperature. Published by Elsevier B.V.

  5. [Effect of long-term fertilizing regime on soil microbial diversity and soil property].

    PubMed

    Li, Chenhua; Zhang, Caixia; Tang, Lisong; Xiong, Zhengqin; Wang, Baozhan; Jia, Zhongjun; Li, Yan

    2014-03-04

    To evaluate the effect of long-term fertilization on soil microbial community and soil chemical and physical properties. Using a high-throughput pyrosequencing technique, we studied microbial community in the 0-300 cm soil samples covering a 20-year field-experiment with different fertilization applications including inorganic fertilizer alone (N 300 kg/hm2, P2O5 150 kg/hm2 and K2O 60 kg/hm2) and inorganic fertilizer combined with straw (same application rate of N and P fertilizer combined with 5.4 t straw). Actinobacteria and alpha-proteobacteria were the predominant groups in the topsoil (0-20 cm). As the soil depth increased, the relative abundance of actinobacteria decreased whereas that of proteobacteria, especially gamma-proteobacteria and beta-proteobacteria increased and gradually became the dominant groups in the subsoil (20-300 cm). Long-term fertilizing applications significantly affected soil microbial communities throughout the soil profile, and increased the relative abundance of ammonia-oxidizing archaea at 0-40 cm depth. In addition, agriculture management, e. g. irrigation may be an important driving factor for the distribution of ammonia-oxidizing bacteria in soil profile. Total nitrogen and organic carbon contents were the most influential factors on microbial community in the topsoil and in the subsoil, respectively. Long-term fertilizer applications altered soil nutrient availability within the soil profile, which was likely to result in the different microbial community structure between the fertilizer treatments, especially for the subsoil.

  6. Resistance and resilience responses of a range of soil eukaryote and bacterial taxa to fungicide application

    PubMed Central

    Howell, Christopher C.; Hilton, Sally; Semple, Kirk T.; Bending, Gary D.

    2014-01-01

    The application of plant protection products has the potential to significantly affect soil microbial community structure and function. However, the extent to which soil microbial communities from different trophic levels exhibit resistance and resilience to such compounds remains poorly understood. The resistance and resilience responses of a range of microbial communities (bacteria, fungi, archaea, pseudomonads, and nematodes) to different concentrations of the strobilurin fungicide, azoxystrobin were studied. A significant concentration-dependent decrease, and subsequent recovery in soil dehydrogenase activity was recorded, but no significant impact on total microbial biomass was observed. Impacts on specific microbial communities were studied using small subunit (SSU) rRNA terminal restriction fragment length polymorphism (T-RFLP) profiling using soil DNA and RNA. The application of azoxystrobin significantly affected fungal and nematode community structure and diversity but had no impact on other communities. Community impacts were more pronounced in the RNA-derived T-RFLP profiles than in the DNA-derived profiles. qPCR confirmed that azoxystrobin application significantly reduced fungal, but not bacterial, SSU rRNA gene copy number. Azoxystrobin application reduced the prevalence of ascomycete fungi, but increased the relative abundance of zygomycetes. Azoxystrobin amendment also reduced the relative abundance of nematodes in the order Enoplia, but stimulated a large increase in the relative abundance of nematodes from the order Araeolaimida. PMID:25048906

  7. Resistance and resilience responses of a range of soil eukaryote and bacterial taxa to fungicide application.

    PubMed

    Howell, Christopher C; Hilton, Sally; Semple, Kirk T; Bending, Gary D

    2014-10-01

    The application of plant protection products has the potential to significantly affect soil microbial community structure and function. However, the extent to which soil microbial communities from different trophic levels exhibit resistance and resilience to such compounds remains poorly understood. The resistance and resilience responses of a range of microbial communities (bacteria, fungi, archaea, pseudomonads, and nematodes) to different concentrations of the strobilurin fungicide, azoxystrobin were studied. A significant concentration-dependent decrease, and subsequent recovery in soil dehydrogenase activity was recorded, but no significant impact on total microbial biomass was observed. Impacts on specific microbial communities were studied using small subunit (SSU) rRNA terminal restriction fragment length polymorphism (T-RFLP) profiling using soil DNA and RNA. The application of azoxystrobin significantly affected fungal and nematode community structure and diversity but had no impact on other communities. Community impacts were more pronounced in the RNA-derived T-RFLP profiles than in the DNA-derived profiles. qPCR confirmed that azoxystrobin application significantly reduced fungal, but not bacterial, SSU rRNA gene copy number. Azoxystrobin application reduced the prevalence of ascomycete fungi, but increased the relative abundance of zygomycetes. Azoxystrobin amendment also reduced the relative abundance of nematodes in the order Enoplia, but stimulated a large increase in the relative abundance of nematodes from the order Araeolaimida. Copyright © 2014. Published by Elsevier Ltd.

  8. Effect of land management on soil properties in flood irrigated citrus orchards in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, A.; García-Orenes, F.; Cerdà, A.

    2015-01-01

    Agricultural land management greatly affects soil properties. Microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. Citrus orchards frequently have degraded soils and this paper evaluates how land management in citrus orchards can improve soil quality. A field experiment was performed in an orchard of orange trees (Citrus Sinensis) in the Alcoleja Experimental Station (Eastern Spain) with clay-loam agricultural soils to assess the long-term effects of herbicides with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (P) and organic farming (O) on the soil microbial properties, and to study the relationship between them. Nine soil samples were taken from each agricultural management plot. In all the samples the basal soil respiration, soil microbial biomass carbon, water holding capacity, electrical conductivity, soil organic matter, total nitrogen, available phosphorus, available potassium, aggregate stability, cation exchange capacity, pH, texture, macronutrients (Na, Ca and Mg), micronutrients (Fe, Mn, Zn and Cu), calcium carbonate equivalent, calcium carbonate content of limestone and enzimatic activities (urease, dehydrogenase, β-glucosidase and acid phosphatase) were determined. The results showed a substantial level of differentiation in the microbial properties, which were highly associated with soil organic matter content. The management practices including herbicides and intensive ploughing had similar results on microbial soil properties. O management contributed to an increase in the soil biology quality, aggregate stability and organic matter content.

  9. Variations in bacterial and fungal communities through soil depth profiles in a Betula albosinensis forest.

    PubMed

    Du, Can; Geng, Zengchao; Wang, Qiang; Zhang, Tongtong; He, Wenxiang; Hou, Lin; Wang, Yueling

    2017-09-01

    Microbial communities in subsurface soil are specialized for their environment, which is distinct from that of the surface communities. However, little is known about the microbial communities (bacteria and fungi) that exist in the deeper soil horizons. Vertical changes in microbial alpha-diversity (Chao1 and Shannon indices) and community composition were investigated at four soil depths (0-10, 10-20, 20-40, and 40-60 cm) in a natural secondary forest of Betula albosinensis by high-throughput sequencing of the 16S and internal transcribed spacer rDNA regions. The numbers of operational taxonomic units (OTUs), and the Chao1 and Shannon indices decreased in the deeper soil layers. Each soil layer contained both mutual and specific OTUs. In the 40-60 cm soil layer, 175 and 235 specific bacterial and fungal OTUs were identified, respectively. Acidobacteria was the most dominant bacterial group in all four soil layers, but reached its maximum at 40-60 cm (62.88%). In particular, the 40-60 cm soil layer typically showed the highest abundance of the fungal genus Inocybe (47.46%). The Chao1 and Shannon indices were significantly correlated with the soil organic carbon content. Redundancy analysis indicated that the bacterial communities were closely correlated with soil organic carbon content (P = 0.001). Collectively, these results indicate that soil nutrients alter the microbial diversity and relative abundance and affect the microbial composition.

  10. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations.

    PubMed

    Schindlbacher, Andreas; Schnecker, Jörg; Takriti, Mounir; Borken, Werner; Wanek, Wolfgang

    2015-11-01

    Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2)  s(-1) , control: 2.34 ± 0.29 μmol m(-2)  s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  11. Microbial activities related to C and N cycling and microbial community structure in the rhizospheres of Pinus sylvestris, Picea abies and Betula pendula seedlings in an organic and mineral soil.

    PubMed

    Priha; Grayston; Pennanen; Smolander

    1999-10-01

    The aim of this study was to determine whether Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth) seedlings have a selective influence on the soil microbial community structure and activity and whether this varies in different soils. Seedlings of pine, spruce and birch were planted into pots of two soil types: an organic soil and a mineral soil. Pots without seedlings were also included. After one growing season, microbial biomass C (C(mic)) and N (N(mic)), C mineralization, net ammonification, net nitrification, denitrification potential, phospholipid fatty acid (PLFA) patterns and community level physiological profiles (CLPPs) were measured in the rhizosphere soil of the seedlings. In the organic soil, C(mic) and N(mic) were higher in the birch rhizosphere than in pine and spruce rhizosphere. The C mineralization rate was not affected by tree species. Unplanted soil contained the highest amount of mineral N and birch rhizosphere the lowest, but rates of net N mineralization and net nitrification did not differ between treatments. The microbial community structure, measured by PLFAs, had changed in the rhizospheres of all tree species compared to the unplanted soil. Birch rhizosphere was most clearly separated from the others. There was more of the fungal specific fatty acid 18:2omega6,9 and more branched fatty acids, common in Gram-positive bacteria, in this soil. CLPPs, done with Biolog GN plates and 30 additional substrates, separated only birch rhizosphere from the others. In the mineral soil, roots of all tree species stimulated C mineralization in soil and prevented nitrification, but did not affect C(mic) and N(mic), PLFA patterns or CLPPs. The effects of different tree species did not vary in the mineral soil. Thus, in the mineral soil, the strongest effect on soil microbes was the presence of a plant, regardless of the tree species, but in the organic soil, different tree species varied in their influence on soil microbes.

  12. The impact on the soil microbial community and enzyme activity of two earthworm species during the bioremediation of pentachlorophenol-contaminated soils.

    PubMed

    Lin, Zhong; Zhen, Zhen; Wu, Zhihao; Yang, Jiewen; Zhong, Laiyuan; Hu, Hanqiao; Luo, Chunling; Bai, Jing; Li, Yongtao; Zhang, Dayi

    2016-01-15

    The ecological effect of earthworms on the fate of soil pentachlorophenol (PCP) differs with species. This study addressed the roles and mechanisms by which two earthworm species (epigeic Eisenia fetida and endogeic Amynthas robustus E. Perrier) affect the soil microbial community and enzyme activity during the bioremediation of PCP-contaminated soils. A. robustus removed more soil PCP than did E. foetida. A. robustus improved nitrogen utilisation efficiency and soil oxidation more than did E. foetida, whereas the latter promoted the organic matter cycle in the soil. Both earthworm species significantly increased the amount of cultivable bacteria and actinomyces in soils, enhancing the utilisation rate of the carbon source (i.e. carbohydrates, carboxyl acids, and amino acids) and improving the richness and evenness of the soil microbial community. Additionally, earthworm treatment optimized the soil microbial community and increased the amount of the PCP-4-monooxygenase gene. Phylogenic classification revealed stimulation of indigenous PCP bacterial degraders, as assigned to the families Flavobacteriaceae, Pseudomonadaceae and Sphingobacteriacea, by both earthworms. A. robustus and E. foetida specifically promoted Comamonadaceae and Moraxellaceae PCP degraders, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effects of heavy metal Cd pollution on microbial activities in soil.

    PubMed

    Shi, Weilin; Ma, Xiying

    2017-12-23

    Heavy metal contamination of soil occurs when heavy metals are introduced to soil through human activities, leading to the gradual deterioration of the ecology and environment. Microorganism activity reflects the intensity of various biochemical reactions in soil, and changes in it reflect the level of heavy metal pollution affecting the soil. The effects were studied of heavy metal Cd on the microbial activity of soil at different concentrations by investigating the respiratory intensity, urease activity, and catalase activity in forest soil and garden soil. The results showed that the respiratory intensity, urease and catalase activities in the garden soil were all higher than in the forest soil. Cd has obvious inhibitory effects on microbial activities. The three parameters exhibited a downward trend with increasing concentrations of Cd. Catalase activity increased when the mass concentration of Cd reached 1.0 mg/kg, indicating that low concentrations of Cd can promote the activity of some microorganisms. Respiratory intensity and urease activity also increased when the concentration reached 10.0 mg/kg, showing that respiratory intensity and urease activity have strong response mechanisms to adverse conditions. The effective state of Cd in soil, as well as inhibition of microbial activity, decreased with incubation time.

  14. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    PubMed

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  15. Retention of potentially mobile radiocesium in forest surface soils affected by the Fukushima nuclear accident

    PubMed Central

    Koarashi, Jun; Moriya, Koichi; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Fujita, Hiroki; Nagaoka, Mika

    2012-01-01

    The fate of 137Cs derived from the Fukushima nuclear accident fallout and associated radiological hazards are largely dependent on its mobility in the surface soils of forest ecosystems. Thus, we quantified microbial and adsorptive retentions of 137Cs in forest surface (0–3 cm) soils. The K2SO4 extraction process liberated 2.1%–12.8% of the total 137Cs from the soils. Two soils with a higher content of clay- and silt-sized particles, organic carbon content, and cation exchange capacity showed higher 137Cs extractability. Microbial biomass was observed in all of the soils. However, the 137Cs extractability did not increase after destruction of the microbial biomass by chloroform fumigation, providing no evidence for microbial retention of the Fukushima-fallout 137Cs. The results indicate that uptake of 137Cs by soil microorganisms is less important for retention of potentially mobile 137Cs in the forest surface soils compared to ion-exchange adsorption on non-specific sites provided by abiotic components. PMID:23256039

  16. Do temperate tree species diversity and identity influence soil microbial community function and composition?

    PubMed

    Khlifa, Rim; Paquette, Alain; Messier, Christian; Reich, Peter B; Munson, Alison D

    2017-10-01

    Studies of biodiversity-ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR), functional diversity (FD), community-weighted mean trait value (CWM), and tree identity. The site was a 4-year-old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community-level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA) analysis and the MicroResp ™ system, respectively. The relationship between tree species richness and glucose-induced respiration (GIR), basal respiration (BR), metabolic quotient (qCO 2 ) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR]), with higher biomass (glucose-induced respiration [GIR]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR. In general, the CWM of traits had stronger effects than did FD, suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD. Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR) and identity (species and functional identity-leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life-history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR.

  17. Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland

    PubMed Central

    de Vries, Franciska T.; Bloem, Jaap; Quirk, Helen; Stevens, Carly J.; Bol, Roland; Bardgett, Richard D.

    2012-01-01

    Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed, species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they support the notion that microbial communities might be the key to improved N retention through tightening linkages between plants and microbes and reducing N availability. PMID:23227252

  18. Soil microbial communities as affected by organic fertilizer and sunn hemp as a cover crop in organic sweet pepper production in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Organic production in Puerto Rico is at an early stage and research is needed to validate the sustainability of different management practices. This research initiated evaluation of selected soil properties including the microbial communities to evaluate the effects of Tropic sunn (Crotalaria juncea...

  19. Microbial Transformation of Triadimefon to Triadimenol in Soils: Selective Production Rates of Triadimenol Stereoisomers Affect Exposure and Risk

    EPA Science Inventory

    The microbial transformation of triadimefon, an agricultural fungicide of the 1,2,4-triazole class, was followed at a nominal concentration of 50 μg/mL over 4 months under aerobic conditions in three different soil types. Rates and products of transformation were measured, as wel...

  20. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations

    PubMed Central

    Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei

    2016-01-01

    Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N∙ha−1∙yr−1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations. PMID:27302857

  1. Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China

    PubMed Central

    Tian, Qin; Taniguchi, Takeshi; Shi, Wei-Yu; Li, Guoqing; Yamanaka, Norikazu; Du, Sheng

    2017-01-01

    Similar land-use types usually have similar soil properties, and, most likely, similar microbial communities. Here, we assessed whether land-use types or soil chemical properties are the primary drivers of soil microbial community composition, and how changes in one part of the ecosystem affect another. We applied Ion Torrent sequencing to the bacterial and fungal communities of five different land-use (vegetation) types in the Loess Plateau of China. We found that the overall trend of soil quality was natural forest > plantation > bare land. Dominant bacterial phyla consisted of Proteobacteria (42.35%), Actinobacteria (15.61%), Acidobacteria (13.32%), Bacteroidetes (8.43%), and Gemmatimonadetes (6.0%). The dominant fungi phyla were Ascomycota (40.39%), Basidiomycota (38.01%), and Zygomycota (16.86%). The results of Canonical Correspondence Analysis (CCA) and Redundancy Analysis (RDA) based on land-use types displayed groups according to the land-use types. Furthermore, the bacterial communities were mainly organized by soil organic carbon (SOC). The fungal communities were mainly related to available phosphorus (P). The results suggested that the changes of land use type generated changes in soil chemical properties, controlling the composition of microbial community in the semiarid Loess Plateau region. The microbial community could be an indicator for soil quality with respect to ecological restoration. PMID:28349918

  2. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations

    NASA Astrophysics Data System (ADS)

    Li, Quan; Song, Xinzhang; Gu, Honghao; Gao, Fei

    2016-06-01

    Because microbial communities play a key role in carbon (C) and nitrogen (N) cycling, changes in the soil microbial community may directly affect ecosystem functioning. However, the effects of N deposition and management practices on soil microbes are still poorly understood. We studied the effects of these two factors on soil microbial biomass carbon (MBC) and community composition in Moso bamboo plantations using high-throughput sequencing of the 16S rRNA gene. Plantations under conventional (CM) or intensive management (IM) were subjected to one of four N treatments for 30 months. IM and N addition, both separately and in combination, significantly increased soil MBC while decreasing bacterial diversity. However, increases in soil MBC were inhibited when N addition exceeded 60 kg N•ha-1•yr-1. IM increased the relative abundances of Actinobacteria and Crenarchaeota but decreased that of Acidobacteria. N addition increased the relative abundances of Acidobacteria, Crenarchaeota, and Actinobacteria but decreased that of Proteobacteria. Soil bacterial diversity was significantly related to soil pH, C/N ratio, and nitrogen and available phosphorus content. Management practices exerted a greater influence over regulation of the soil MBC and microbial diversity compared to that of N deposition in Moso bamboo plantations.

  3. Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China

    NASA Astrophysics Data System (ADS)

    Tian, Qin; Taniguchi, Takeshi; Shi, Wei-Yu; Li, Guoqing; Yamanaka, Norikazu; Du, Sheng

    2017-03-01

    Similar land-use types usually have similar soil properties, and, most likely, similar microbial communities. Here, we assessed whether land-use types or soil chemical properties are the primary drivers of soil microbial community composition, and how changes in one part of the ecosystem affect another. We applied Ion Torrent sequencing to the bacterial and fungal communities of five different land-use (vegetation) types in the Loess Plateau of China. We found that the overall trend of soil quality was natural forest > plantation > bare land. Dominant bacterial phyla consisted of Proteobacteria (42.35%), Actinobacteria (15.61%), Acidobacteria (13.32%), Bacteroidetes (8.43%), and Gemmatimonadetes (6.0%). The dominant fungi phyla were Ascomycota (40.39%), Basidiomycota (38.01%), and Zygomycota (16.86%). The results of Canonical Correspondence Analysis (CCA) and Redundancy Analysis (RDA) based on land-use types displayed groups according to the land-use types. Furthermore, the bacterial communities were mainly organized by soil organic carbon (SOC). The fungal communities were mainly related to available phosphorus (P). The results suggested that the changes of land use type generated changes in soil chemical properties, controlling the composition of microbial community in the semiarid Loess Plateau region. The microbial community could be an indicator for soil quality with respect to ecological restoration.

  4. Mechanisms of microbial destabilization of soil C shifts over decades of warming

    NASA Astrophysics Data System (ADS)

    DeAngelis, K.; Pold, G.; Chowdhury, P. R.; Schnabel, J.; Grandy, S.; Melillo, J. M.

    2017-12-01

    Microbes are major actors in regulating the earth's biogeochemical cycles, with temperature-sensitive microbial tradeoffs improving ecosystem biogeochemical models. Meanwhile, the Earth's climate is changing, with decades of warming undercutting the ability of soil to store carbon. Our work explores trends of 26 years of experimental warming in temperate deciduous forest soils, which is associated with cycles of soil carbon degradation punctuated by periods of changes in soil microbial dynamics. Using a combination of biogeochemistry and molecular analytical methods, we explore the hypotheses that substrate availability, community structure, altered temperature sensitivity of microbial turnover-growth efficiency tradeoff, and microbial evolution are responsible for observations of accelerated degradation of soil carbon over time. Amplicon sequencing of microbial communities suggests a small role of changing microbial community composition over decades of warming, but a sustained suppression of fungal biomass is accompanied by increased biomass of Actinobacteria, Actinobacteria, Alphaproteobacteria, Verrucomicrobia and Planctomycetes. Substrate availability plays an important role in microbial dynamics, with depleted labile carbon in the first decade and depleted lignin in the second decade. Increased lignin-degrading enzyme activity supports the suggestion that lignin-like organic matter is an important substrate in chronically warmed soils. Metatranscriptomics data support the suggestion that increased turnover is associated with long-term warming, with metagenomic signals of increased carbohydrate-degrading enzymes in the organic horizon but decreased in the mineral soils. Finally, traits analysis of over 200 cultivated isolates of bacterial species from heated and control soils suggests an expanded ability for degradation of cellulose and hemicellulose but not chitin, supporting the hypothesis that long-term warming is exerting evolutionary pressure on microbial species. Together, these data suggest that after decades of warming both direct kinetic effects and indirect effects of altered substrate availability are affecting microbial ecology and evolution in ways that conspire to destabilize soil organic matter.

  5. Microbial community structure and diversity in the soil spatial profile of 5-year-old Robinia pseudoacacia 'Idaho,' determined by 454 sequencing of the 16S RNA gene.

    PubMed

    Chang, Yanping; Bu, Xiangpan; Niu, Weibo; Xiu, Yu; Wang, Huafang

    2013-01-01

    Relatively little information is available regarding the variability of microbial communities inhabiting deeper soil layers. We investigated the distribution of soil microbial communities down to 1.2 m in 5-year-old Robinia pseudoacacia 'Idaho' soil by 454 sequencing of the 16S RNA gene. The average number of sequences per sample was 12,802. The Shannon and Chao 1 indices revealed various relative microbial abundances and even distribution of microbial diversity for all evaluated sample depths. The predicted diversity in the topsoil exceeded that of the corresponding subsoil. The changes in the relative abundance of the major soil bacterial phyla showed decreasing, increasing, or no consistent trends with respect to sampling depth. Despite their novelty, members of the new candidate phyla OD1 and TM7 were widespread. Environmental variables affecting the bacterial community within the environment appeared to differ from those reported previously, especially the lack of detectable effect from pH. Overall, we found that the overall relative abundance fluctuated with the physical and chemical properties of the soil, root system, and sampling depth. Such information may facilitate forest soil management.

  6. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil.

    PubMed

    Štursová, Martina; Bárta, Jiří; Šantrůčková, Hana; Baldrian, Petr

    2016-12-01

    Forests are recognised as spatially heterogeneous ecosystems. However, knowledge of the small-scale spatial variation in microbial abundance, community composition and activity is limited. Here, we aimed to describe the heterogeneity of environmental properties, namely vegetation, soil chemical composition, fungal and bacterial abundance and community composition, and enzymatic activity, in the topsoil in a small area (36 m 2 ) of a highly heterogeneous regenerating temperate natural forest, and to explore the relationships among these variables. The results demonstrated a high level of spatial heterogeneity in all properties and revealed differences between litter and soil. Fungal communities had substantially higher beta-diversity than bacterial communities, which were more uniform and less spatially autocorrelated. In litter, fungal communities were affected by vegetation and appeared to be more involved in decomposition. In the soil, chemical composition affected both microbial abundance and the rates of decomposition, whereas the effect of vegetation was small. Importantly, decomposition appeared to be concentrated in hotspots with increased activity of multiple enzymes. Overall, forest topsoil should be considered a spatially heterogeneous environment in which the mean estimates of ecosystem-level processes and microbial community composition may confound the existence of highly specific microenvironments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    PubMed

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  8. Soil Microbial Community Responses to Long-Term Global Change Factors in a California Grassland

    NASA Astrophysics Data System (ADS)

    Qin, K.; Peay, K.

    2015-12-01

    Soil fungal and bacterial communities act as mediators of terrestrial carbon and nutrient cycling, and interact with the aboveground plant community as both pathogens and mutualists. However, these soil microbial communities are sensitive to changes in their environment. A better understanding of the response of soil microbial communities to global change may help to predict future soil microbial diversity, and assist in creating more comprehensive models of terrestrial carbon and nutrient cycles. This study examines the effects of four global change factors (increased temperature, increased variability in precipitation, nitrogen deposition, and CO2 enrichment) on soil microbial communities at the Jasper Ridge Global Change Experiment (JRGCE), a full-factorial global change manipulative experiment on three hectares of California grassland. While similar studies have examined the effects of global change on soil microbial communities, few have manipulated more factors or been longer in duration than the JRGCE, which began field treatments in 1998. We find that nitrogen deposition, CO2 enrichment, and increased variability in precipitation significantly affect the structure of both fungal and bacterial communities, and explain more of the variation in the community structures than do local soil chemistry or aboveground plant community. Fungal richness is correlated positively with soil nitrogen content and negatively with soil water content. Arbuscular mycorrhizal fungi (AMF), which associate closely with herbaceous plants' roots and assist in nutrient uptake, decrease in both richness and relative abundance in elevated CO2 treatments.

  9. Influence of Precipitation Regime on Microbial Decomposition Patterns in Semi-Arid Ecosystems

    NASA Astrophysics Data System (ADS)

    Feris, K. P.; Jilek, C.; Huber, D. P.; Reinhardt, K.; deGraaff, M.; Lohse, K.; Germino, M.

    2011-12-01

    In water-limited semi-arid sagebrush steppe ecosystems predicted changes in climate may manifest as a shift from historically winter/snow-dominated precipitation regimes to one dominated by spring rains. In these ecosystems soil microorganisms play a vital role in linking the effects of water availability and plant productivity to biogeochemical cycling. Patterns of soil microbial catalyzed organic matter decomposition patters (i.e. patterns of extracellular enzyme activity (EEA)) are thought to depend upon the quantity and quality of soil organic matter (SOM), pH, and mean annual precipitation (Sinsabaugh, 2008), and less on the timing and magnitude of precipitation. However, sagebrush-steppe plant communities respond strongly to changes in the timing and magnitude of precipitation, and preliminary findings by our group suggest that corresponding changes in SOM quantity, quality, N-cycle dynamics, and soil structure are occurring. Therefore, we hypothesized: 1) Shifts in the timing and magnitude of precipitation would indirectly affect soil microbial decomposition patterns via responses in the plant community structure; and 2) Changes in precipitation patterns can directly affect soil microbial community structure and function, in effect uncoupling the interaction between plant community structure and soil community structure. We tested our hypotheses by determining the influence of experimentally manipulated timing and magnitude of precipitation on soil microbial EEA using standard flourometric assays in soils sampled under plant canopies and plant interspaces. We assessed this response in a mature (18 + years) ecohydrologic field experiment in eastern Idaho that annually imitates three possible post climatic-shift precipitation regimes (Ambient (AMB): no additional precipitation, ~200mm annually; Summer (SUMM): 200mm provisioned at 50mm bi-weekly starting in June; and Fall/Spring (F/S): 200mm provisioned over 1-2 weeks in October or April) (n=3). Within plant interspaces Beta glucosaminide activity increased by 18% in treatments receiving additional F/S precipitation, whereas alpha glucopyranoside activity was lower in the F/S and SUMM plots. Conversely, underplant canopies alpha glucopyranoside activity increased by 15% in the SUMM and F/S precipitation treatments. Across treatments and sampling types (i.e. plant canopy vs. interspace), cellobioside activity levels are consistently elevated in response to additional precipitation compared to those of the control plots. When coupled with recent preliminary findings by our group regarding changes in plant and microbial community structure and SOM, C-storage, and soil structural responses, these preliminary findings suggest that 1) microbial community structure and function respond both directly and indirectly to changes in climate, and 2) thus provide a mechanism for changes in plant community structure to feed-forward to affect soil carbon decomposition patterns and ultimately soil carbon storage potential.

  10. Impact of diverse soil microbial communities on crop residues decomposition

    NASA Astrophysics Data System (ADS)

    Mrad, Fida; Bennegadi-Laurent, Nadia; Ailhas, Jérôme; Leblanc, Nathalie; Trinsoutrot-Gattin, Isabelle; Laval, Karine; Gattin, Richard

    2017-04-01

    Soils provide many basic ecosystem services for our society and most of these services are carried out by the soil communities, thus influencing soils quality. Soil organic matter (SOM) can be considered as one of the most important soil quality indices for it plays a determinant role in many physical, chemical and biological processes, such as soil structure and erosion resistance, cation exchange capacity, nutrient cycling and biological activity (Andrews et al., 2004). Since a long time, exogenous organic inputs are largely used for improving agricultural soils, affecting highly soil fertility and productivity. The use of organic amendments such as crop residues influences the soil microbial populations' diversity and abundance. In the meantime, soil microbial communities play a major role in the organic matter degradation, and the effect of different microbial communities on the decomposition of crop residues is not well documented. In this context, studying the impact of crop residues on soil microbial ecology and the processes controlling the fate of plant residues in different management practices is essential for understanding the long-term environmental and agronomic effects on soil and organic matters. Our purpose in the present work was to investigate the decomposition by two contrasting microbial communities of three crop residues, and compare the effect of different residues amendments on the abundance and function of each soil microbial communities. Among the main crops which produce large amounts of residues, we focused on three different plants: wheat (Triticum aestivum L.), rape (Brassica napus) and sunflower (Helianthus annuus). The residues degradation in two soils of different management practices and the microbial activity were evaluated by: microbial abundance (microbial carbon, culturable bacteria, total DNA, qPCR), in combination with functional indicators (enzymatic assays and Biolog substrate utilization), kinetics of C and N mineralization, and chemical measures. Physicochemical composition of crop residues was assessed by Fourier transform infrared spectroscopy FTIR technique at 0 and 83 days. The experiment was conducted in microcosms over 83 days for the biological measurements and 175 days for the C mineralization. The first results showed variations in the C & N rates, and the microbial abundances and functions over time, with a peak at 5 days and a decrease at 83 days for most of the measurements. The soil microbial communities' composition (different management practices) highly impacted the crop residues decomposition. The biochemical composition of crop residues influenced less the microbial communities of each soil. Further studies on the valorization of these residues into agro materials will be carried out. References: Andrews SS., Karlen DL., and Cambardella CA. (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Science Society of America, 68: 1945-1962

  11. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.

    PubMed

    Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.

  12. Unveiling Microbial Carbon Cycling Processes in Key U.S. Soils using ''Omics''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myrold, David D.; Bottomely, Peter J.; Jumpponen, Ari

    2014-09-17

    Soils process and store large amounts of C; however, considerable uncertainty still exists about the details of that influence microbial partitioning of C into soil C pools, and what are the main influential forces that control the fraction of the C input that is stabilized. The soil microbial community is genotypically and phenotypically diverse. Despite our ability to predict the kinds of regional environmental changes that will accompany global climate change, it is not clear how the microbial community will respond to climate-induced modification of precipitation and inter-precipitation intervals, and if this response will affect the fate of C depositedmore » into soil by the local plant community. Part of this uncertainty lies with our ignorance of how the microbial community adapts genotypically and physiologically to changes in soil moisture brought about by shifts in precipitation. Our overarching goal is to harness the power of multiple meta-omics tools to gain greater understanding of the functioning of whole-soil microbial communities and their role in C cycling. We will do this by meeting the following three objectives: 1. Further develop and optimize a combination of meta-omics approaches to study how environmental factors affect microbially-mediated C cycling processes. 2. Determine the impacts of long-term changes in precipitation timing on microbial C cycling using an existing long-term field manipulation of a tallgrass prairie soil. 3. Conduct laboratory experiments that vary moisture and C inputs to confirm field observations of the linkages between microbial communities and C cycling processes. We took advantage of our state-of-the-art expertise in community “omics” to better understand the functioning soil C cycling within the Great Prairie ecosystem, including our ongoing Konza Prairie soil metagenome flagship project at JGI and the unique rainfall manipulation plots (RaMPs) established at this site more than a decade ago. We employed a systems biology approach, considering the complex soil microbial community as a functioning system and using state-of-the-art metatranscriptomic, metaproteomic, and metabolomic approaches. These omics tools were refined, applied to field experiments, and confirmed with controlled laboratory studies. Our experiments were designed to specifically identify microbial community members and processes that are instrumental players in processing of C in the prairie soils and how these processes are impacted by wetting and drying events. This project addresses a key ecosystem in the United States that current climate models predict will be subjected to dramatic changes in rainfall patterns as a result of global warming. Currently Mollisols, such as those of the tallgrass prairie, are thought to sequester more C than is released into the atmosphere, but it is not known what changes in rainfall patterns will have on future C fluxes. Through an analysis of the molecular response of the soil microbial community to shifts in precipitation cycles that are accompanied by phenologically driven changes in quality of plant C rhizodeposits, we gained deeper insight into how the metabolism of microbes has adapted to different precipitation regimes and the impact of this adaption on the fate of C deposited into soil. In doing so, we addressed key questions about the microbial cycling of C in soils that have been identified by the DOE.« less

  13. Effects of subsurface aeration and trinexapac-ethyl application on soil microbial communities in a creeping bentgrass putting green

    USGS Publications Warehouse

    Feng, Y.; Stoeckel, D.M.; Van Santen, E.; Walker, R.H.

    2002-01-01

    The sensitivity of creeping bentgrass (Agrostis palustris Huds.) to the extreme heat found in the southeastern United States has led to the development of new greens-management methods. The purpose of this study was to examine the effects of subsurface aeration and growth regulator applications on soil microbial communities and mycorrhizal colonization rates in a creeping bentgrass putting green. Two cultivars (Crenshaw and Penncross), a growth regulator (trinexapacethyl), and subsurface aeration were evaluated in cool and warm seasons. Total bacterial counts were higher in whole (unsieved) soils than in sieved soils, indicating a richer rhizosphere soil environment. Mycorrhizal infection rates were higher in trinexapac-ethyl (TE) treated plants. High levels of hyphal colonization and relatively low arbuscule and vesicle occurrence were observed. Principal components analysis of whole-soil fatty acid methyl ester (FAME) profiles indicated that warm-season microbial populations in whole and sieved soils had similar constituents, but the populations differed in the cool season. FAME profiles did not indicate that subsurface aeration and TE application affected soil microbial community structure. This is the first reported study investigating the influences of subsurface aeration and TE application on soil microorganisms in a turfgrass putting green soil.

  14. Influence of red mud on soil microbial communities: Application and comprehensive evaluation of the Biolog EcoPlate approach as a tool in soil microbiological studies.

    PubMed

    Feigl, Viktória; Ujaczki, Éva; Vaszita, Emese; Molnár, Mónika

    2017-10-01

    Red mud can be applied as soil ameliorant to acidic, sandy and micronutrient deficient soils. There are still knowledge gaps regarding the effects of red mud on the soil microbial community. The Biolog EcoPlate technique is a promising tool for community level physiological profiling. This study presents a detailed evaluation of Biolog EcoPlate data from two case studies. In experiment "A" red mud from Ajka (Hungary) was mixed into acidic sandy soil in soil microcosms at 5-50 w/w%. In experiement "B" red mud soil mixture was mixed into low quality subsoil in a field experiment at 5-50 w/w%. According to average well color development, substrate average well color development and substrate richness 5-20% red mud increased the microbial activity of the acidic sandy soil over the short term, but the effect did not last for 10months. Shannon diversity index showed that red mud at up to 20% did not change microbial diversity over the short term, but the diversity decreased by the 10th month. 30-50% red mud had deteriorating effect on the soil microflora. 5-20% red mud soil mixture in the low quality subsoil had a long lasting enhancing effect on the microbial community based on all Biolog EcoPlate parameters. However, 50% red mud soil mixture caused a decrease in diversity and substrate richness. With the Biolog EcoPlate we were able to monitor the changes of the microbial community in red mud affected soils and to assess the amount of red mud and red mud soil mixture applicable for soil treatment in these cases. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Functional Assays and Metagenomic Analyses Reveals Differences between the Microbial Communities Inhabiting the Soil Horizons of a Norway Spruce Plantation

    PubMed Central

    Uroz, Stéphane; Ioannidis, Panos; Lengelle, Juliette; Cébron, Aurélie; Morin, Emmanuelle; Buée, Marc; Martin, Francis

    2013-01-01

    In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation (Breuil-Chenue, France). The objectives were to assess whether the decreasing nutrient bioavailability and pH variations that naturally occurs between the organic and mineral horizons affects the soil microbial functional biodiversity. The 14 Gbp of pyrosequencing and Illumina sequences generated in this study revealed complex microbial communities dominated by bacteria. Detailed analyses showed that the organic soil horizon was significantly enriched in sequences related to Bacteria, Chordata, Arthropoda and Ascomycota. On the contrary the mineral horizon was significantly enriched in sequences related to Archaea. Our analyses also highlighted that the microbial communities inhabiting the two soil horizons differed significantly in their functional potentials according to functional assays and MG-RAST analyses, suggesting a functional specialisation of these microbial communities. Consistent with this specialisation, our shotgun metagenomic approach revealed a significant increase in the relative abundance of sequences related glycoside hydrolases in the organic horizon compared to the mineral horizon that was significantly enriched in glycoside transferases. This functional stratification according to the soil horizon was also confirmed by a significant correlation between the functional assays performed in this study and the functional metagenomic analyses. Together, our results suggest that the soil stratification and particularly the soil resource availability impact the functional diversity and to a lesser extent the taxonomic diversity of the bacterial communities. PMID:23418476

  16. Microbes Persist: Using a Systems Biology Approach to Reveal How the Soil Microbiome Shapes Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.

    2017-12-01

    Soils store more carbon than the atmosphere and terrestrial vegetation combined, yet the factors that control its persistence remain elusive. Recent insights have overturned the long-held assumption that carbon stability depends mostly on chemical `recalcitrance' of soil organic matter (SOM). Instead, an emerging paradigm emphasizes how environmental drivers like temperature and moisture, soil minerals, and microbial ecology interact to control SOM formation, stabilization, and turnover. Detailed spectroscopic and isotopic (14C) analyses of mineral-associated SOM show that the oldest carbon in soil may be easily broken down and respired in the laboratory, and that it biochemically resembles microbial cells and metabolites far more than plant material. This places microbial ecophysiology at the center of the soil carbon persistence question. Microbial cells likely interact with mineral surfaces as part of an ecological strategy to condition their environment (e.g. biofilm formation or extracellular enzyme production), and their diverse cellular components likely associate with minerals after cells die. Collectively, these microbial characteristics - metabolic activities, population growth strategies, and cellular biochemistry - can be thought of as `soil ecophysiological traits'. This presentation will explore potential traits that may be fruitful targets for studies evaluating the persistence and importance of microbial products as SOM precursors, and will highlight results showing that soil mineral type influences the microbial communities that colonize mineral surfaces, as well as the quantity and type of mineral-associated carbon that accumulates. I will propose a series of integrated approaches that used together can examine how genomic capacity and activities of soil microbiomes are shaped by edaphic conditions (moisture, temperature, redox regimes) and fundamentally affect the terrestrial soil C pool.

  17. Microbial Activity in Organic Soils as Affected by Soil Depth and Crop †

    PubMed Central

    Tate, Robert L.

    1979-01-01

    The microbial activity of Pahokee muck, a lithic medisaprist, and the effect of various environmental factors, such as position in the profile and type of plant cover, were examined. Catabolic activity for [7-14C]salicylic acid, [1,4-14C]succinate, and [1,2-14C]acetate remained reasonably constant in surface (0 to 10 cm) soil samples from a fallow (bare) field from late in the wet season (May to September) through January. Late in January, the microbial activity toward all three compounds decreased approximately 50%. The microbial activity of the soil decreased with increasing depth of soil. Salicylate catabolism was the most sensitive to increasing moisture deep in the soil profile. At the end of the wet season, a 90% decrease in activity between the surface and the 60- to 70-cm depth occurred. Catabolism of acetate and succinate decreased approximately 75% in the same samples. Little effect of crop was observed. Variation in the microbial activity, as measured by the catabolism of labeled acetate, salicylate, or succinate, was not significant between a sugarcane (Saccharum officinarum L.) field and a fallow field. The activity with acetate was insignificantly different in a St. Augustine grass [Stenotaphrum secundatum (Walt) Kuntz] field, whereas the catabolism of the remaining substrates was elevated in the grass field. These results indicate that the total carbon evolved from the different levels of the soil profile by the microbial community oxidizing the soil organic matter decreased as the depth of the soil column increased. However, correction of the amount of carbon yielded at each level for the bulk density of that level reveals that the microbial contribution to the soil subsidence is approximately equivalent throughout the soil profile above the water table. PMID:16345393

  18. Microbial activity in organic soils as affected by soil depth and crop.

    PubMed

    Tate, R L

    1979-06-01

    The microbial activity of Pahokee muck, a lithic medisaprist, and the effect of various environmental factors, such as position in the profile and type of plant cover, were examined. Catabolic activity for [7-C]salicylic acid, [1,4-C]succinate, and [1,2-C]acetate remained reasonably constant in surface (0 to 10 cm) soil samples from a fallow (bare) field from late in the wet season (May to September) through January. Late in January, the microbial activity toward all three compounds decreased approximately 50%. The microbial activity of the soil decreased with increasing depth of soil. Salicylate catabolism was the most sensitive to increasing moisture deep in the soil profile. At the end of the wet season, a 90% decrease in activity between the surface and the 60- to 70-cm depth occurred. Catabolism of acetate and succinate decreased approximately 75% in the same samples. Little effect of crop was observed. Variation in the microbial activity, as measured by the catabolism of labeled acetate, salicylate, or succinate, was not significant between a sugarcane (Saccharum officinarum L.) field and a fallow field. The activity with acetate was insignificantly different in a St. Augustine grass [Stenotaphrum secundatum (Walt) Kuntz] field, whereas the catabolism of the remaining substrates was elevated in the grass field. These results indicate that the total carbon evolved from the different levels of the soil profile by the microbial community oxidizing the soil organic matter decreased as the depth of the soil column increased. However, correction of the amount of carbon yielded at each level for the bulk density of that level reveals that the microbial contribution to the soil subsidence is approximately equivalent throughout the soil profile above the water table.

  19. Interactions between extracellular polymeric substances and clay minerals affect soil aggregation

    NASA Astrophysics Data System (ADS)

    Vogel, Cordula; Rehschuh, Stephanie; Kemi Olagoke, Folasade; Redmile Gordon, Marc; Kalbiltz, Karsten

    2017-04-01

    Soil aggregation is crucial for carbon (C) sequestration and microbial processes have been recognised as important control of aggregate turnover (formation, stability, and destruction). However, how microorganisms contribute to these processes is still a matter of debate. An enthralling mechanism determining aggregate turnover and therefore C sequestration may be the excretion of extracellular polymeric substances (EPS) as microbial glue, but effects of EPS on aggregation is largely unknown. Moreover, interdependencies between important aggregation factors like the amount of fine-sized particles (clay content), the decomposability of organic matter and the microbial community (size and composition, as well as the excretion of EPS) are still poorly understood. Therefore, we studied the complex interactions between these factors and their role in aggregate turnover. It was hypothesized that an increase in microbial activity, induced by the input of organic substrates, will stimulate EPS production and therefore the formation and stability of aggregates. To test this hypothesis, an incubation experiment has been conducted across a gradient of clay content (montmorillonite) and substrate decomposability (starch and glucose) as main drivers of the microbial activity. A combination of aggregate separation and stability tests were applied. This results will be examined with respect to the obtained microbial parameters (amount and composition of EPS, CO2 emission, microbial biomass, phospholipid fatty acid), to disentangle the mechanisms and factors controlling aggregate turnover affected by soil microorganisms. This study is expected to provide insights on the role of EPS in the stability of aggregates. Thus, the results of this study will provide an improved understanding of the underlying processes of aggregate turnover in soils, which is necessary to implement strategies for enhanced C sequestration in agricultural soils.

  20. Effects of Recurring Droughts on Extracellular Enzyme Activity in Mountain Grassland

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Bahn, M.; Kienzl, S.; Hofhansl, F.; Schnecker, J.; Richter, A.

    2015-12-01

    Water availability is a key factor for biogeochemical processes and determines microbial activity and functioning, and thereby organic matter decomposition in soils by affecting the osmotic potential, soil pore connectivity, substrate diffusion and nutrient availability. Low water availability during drought periods therefore directly affects microbial activity. Recurring drought periods likely induce shifts in microbial structure that might be reflected in altered responses of microbial turnover of organic matter by extracellular enzymes. To study this we measured a set of potential extracellular enzyme activity rates (cellobiohydrolase CBH; leucine-amino-peptidase LAP; phosphatase PHOS; phenoloxidase POX), in grassland soils that were exposed to extreme experimental droughts during the growing seasons of up to five subsequent years. During the first drought period after eight weeks of rain exclusion all measured potential enzyme activities were significantly decreased. In parallel, soil extractable organic carbon and nitrogen concentrations increased and microbial community structure, determined by phospholipid fatty acid analysis, changed. In soils that were exposed to two and three drought periods only PHOS decreased. After four years of drought again CBH, PHOS and POX decreased, while LAP was unaffected; after five years of drought PHOS and POX decreased and CBH and LAP remained stable. Thus, our results suggest that recurring extreme drought events can cause different responses of extracellular enzyme activities and that the responses change over time. We will discuss whether and to what degree these changes were related to shifts in microbial community composition. However, independent of whether a solitary or a recurrent drought was imposed, in cases when enzyme activity rates were altered during drought, they quickly recovered after rewetting. Overall, our data suggest that microbial functioning in mountain grassland is sensitive to drought, but highly resilient even after five years of drought.

  1. Soil and public health: invisible bridges

    NASA Astrophysics Data System (ADS)

    Pachepsky, Yakov

    2017-04-01

    Public health institutions, as ancient as civilizations itself, are intrinsically connected with soils. The massive body of the empirical knowledge about this connection has been accumulated. Recently unraveling the underlying mechanisms of this link has begun, and many of them appear to have the microbiological origin. The impressive progress in understanding the nexus between soil and health has been achieved by experimentation with preserved soil microbial systems functioning along with the metagenomic characterization. The objective of this work is to present an overview of some recent onsets. In the food safety arena, survival of human pathogens in soils has been related to the degree of soil eutrophication and/or related structure of soil microbial communities. Soil microbial systems affect the affinity of plants to internalizing pathogenic organisms. Pharmaceutical arsenals benefit from using field soil environment for developing antibiotics. Enzyme production by soil bacteria is used as the signal source for drug activation. Sanitary functions of sols are dependent on soil microbial system workings. The healthy living can be enhanced by the human immune system training received from direct contact with soils. The hygiene hypothesis considers the microbial input due to exposure to soil as the essential ecosystem service. The invisible links between soil and public health result in large-scale consequences. Examples of concurrent degradation of soil and public health are worth scrutinizing. Public health records can provide valuable sources of 'soil-public health' interactions. It may be worthwhile to examine current assessments of soil health from the public health standpoint. Soil management can be an efficient instrument of public health control.

  2. Effect of Monospecific and Mixed Sea-Buckthorn (Hippophae rhamnoides) Plantations on the Structure and Activity of Soil Microbial Communities

    PubMed Central

    Yu, Xuan; Liu, Xu; Zhao, Zhong; Liu, Jinliang; Zhang, Shunxiang

    2015-01-01

    This study aims to evaluate the effect of different afforestation models on soil microbial composition in the Loess Plateau in China. In particular, we determined soil physicochemical properties, enzyme activities, and microbial community structures in the top 0 cm to 10 cm soil underneath a pure Hippophae rhamnoides (SS) stand and three mixed stands, namely, H. rhamnoides and Robinia pseucdoacacia (SC), H. rhamnoides and Pinus tabulaeformis (SY), and H. rhamnoides and Platycladus orientalis (SB). Results showed that total organic carbon (TOC), total nitrogen, and ammonium (NH4 +) contents were higher in SY and SB than in SS. The total microbial biomass, bacterial biomass, and Gram+ biomass of the three mixed stands were significantly higher than those of the pure stand. However, no significant difference was found in fungal biomass. Correlation analysis suggested that soil microbial communities are significantly and positively correlated with some chemical parameters of soil, such as TOC, total phosphorus, total potassium, available phosphorus, NH4 + content, nitrate content (NH3 −), and the enzyme activities of urease, peroxidase, and phosphatase. Principal component analysis showed that the microbial community structures of SB and SS could clearly be discriminated from each other and from the others, whereas SY and SC were similar. In conclusion, tree species indirectly but significantly affect soil microbial communities and enzyme activities through soil physicochemical properties. In addition, mixing P. tabulaeformis or P. orientalis in H. rhamnoides plantations is a suitable afforestation model in the Loess Plateau, because of significant positive effects on soil nutrient conditions, microbial community, and enzyme activities over pure plantations. PMID:25658843

  3. Decreases in Soil Moisture and Organic Matter Quality Suppress Microbial Decomposition Following a Boreal Forest Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Sandra R.; Berhe, Asmeret A.; Treseder, Kathleen K.

    Climate warming is projected to increase the frequency and severity of wildfires in boreal forests, and increased wildfire activity may alter the large soil carbon (C) stocks in boreal forests. Changes in boreal soil C stocks that result from increased wildfire activity will be regulated in part by the response of microbial decomposition to fire, but post-fire changes in microbial decomposition are poorly understood. Here, we investigate the response of microbial decomposition to a boreal forest fire in interior Alaska and test the mechanisms that control post-fire changes in microbial decomposition. We used a reciprocal transplant between a recently burnedmore » boreal forest stand and a late successional boreal forest stand to test how post-fire changes in abiotic conditions, soil organic matter (SOM) composition, and soil microbial communities influence microbial decomposition. We found that SOM decomposing at the burned site lost 30.9% less mass over two years than SOM decomposing at the unburned site, indicating that post-fire changes in abiotic conditions suppress microbial decomposition. Our results suggest that moisture availability is one abiotic factor that constrains microbial decomposition in recently burned forests. In addition, we observed that burned SOM decomposed more slowly than unburned SOM, but the exact nature of SOM changes in the recently burned stand are unclear. Finally, we found no evidence that post-fire changes in soil microbial community composition significantly affect decomposition. Taken together, our study has demonstrated that boreal forest fires can suppress microbial decomposition due to post-fire changes in abiotic factors and the composition of SOM. Models that predict the consequences of increased wildfires for C storage in boreal forests may increase their predictive power by incorporating the observed negative response of microbial decomposition to boreal wildfires.« less

  4. Microbial responses to multi-factor climate change: effects on soil enzymes.

    PubMed

    Steinweg, J Megan; Dukes, Jeffrey S; Paul, Eldor A; Wallenstein, Matthew D

    2013-01-01

    The activities of extracellular enzymes, the proximate agents of decomposition in soils, are known to depend strongly on temperature, but less is known about how they respond to changes in precipitation patterns, and the interaction of these two components of climate change. Both enzyme production and turnover can be affected by changes in temperature and soil moisture, thus it is difficult to predict how enzyme pool size may respond to altered climate. Soils from the Boston-Area Climate Experiment (BACE), which is located in an old field (on abandoned farmland), were used to examine how climate variables affect enzyme activities and microbial biomass carbon (MBC) in different seasons and in soils exposed to a combination of three levels of precipitation treatments (ambient, 150% of ambient during growing season, and 50% of ambient year-round) and four levels of warming treatments (unwarmed to ~4°C above ambient) over the course of a year. Warming, precipitation and season had very little effect on potential enzyme activity. Most models assume that enzyme dynamics follow microbial biomass, because enzyme production should be directly controlled by the size and activity of microbial biomass. We observed differences among seasons and treatments in mass-specific potential enzyme activity, suggesting that this assumption is invalid. In June 2009, mass-specific potential enzyme activity, using chloroform fumigation-extraction MBC, increased with temperature, peaking under medium warming and then declining under the highest warming. This finding suggests that either enzyme production increased with temperature or turnover rates decreased. Increased maintenance costs associated with warming may have resulted in increased mass-specific enzyme activities due to increased nutrient demand. Our research suggests that allocation of resources to enzyme production could be affected by climate-induced changes in microbial efficiency and maintenance costs.

  5. A review of the impacts of degradation threats on soil properties in the UK.

    PubMed

    Gregory, A S; Ritz, K; McGrath, S P; Quinton, J N; Goulding, K W T; Jones, R J A; Harris, J A; Bol, R; Wallace, P; Pilgrim, E S; Whitmore, A P

    2015-10-01

    National governments are becoming increasingly aware of the importance of their soil resources and are shaping strategies accordingly. Implicit in any such strategy is that degradation threats and their potential effect on important soil properties and functions are defined and understood. In this paper, we aimed to review the principal degradation threats on important soil properties in the UK, seeking quantitative data where possible. Soil erosion results in the removal of important topsoil and, with it, nutrients, C and porosity. A decline in soil organic matter principally affects soil biological and microbiological properties, but also impacts on soil physical properties because of the link with soil structure. Soil contamination affects soil chemical properties, affecting nutrient availability and degrading microbial properties, whilst soil compaction degrades the soil pore network. Soil sealing removes the link between the soil and most of the 'spheres', significantly affecting hydrological and microbial functions, and soils on re-developed brownfield sites are typically degraded in most soil properties. Having synthesized the literature on the impact on soil properties, we discuss potential subsequent impacts on the important soil functions, including food and fibre production, storage of water and C, support for biodiversity, and protection of cultural and archaeological heritage. Looking forward, we suggest a twin approach of field-based monitoring supported by controlled laboratory experimentation to improve our mechanistic understanding of soils. This would enable us to better predict future impacts of degradation processes, including climate change, on soil properties and functions so that we may manage soil resources sustainably.

  6. Arbuscular mycorrhizal fungi and associated microbial communities from dry grassland do not improve plant growth on abandoned field soil.

    PubMed

    Pánková, Hana; Lepinay, Clémentine; Rydlová, Jana; Voříšková, Alena; Janoušková, Martina; Dostálek, Tomáš; Münzbergová, Zuzana

    2018-03-01

    After abandonment of agricultural fields, some grassland plant species colonize these sites with a frequency equivalent to dry grasslands (generalists) while others are missing or underrepresented in abandoned fields (specialists). We aimed to understand the inability of specialists to spread on abandoned fields by exploring whether performance of generalists and specialists depended on soil abiotic and/or biotic legacy. We performed a greenhouse experiment with 12 species, six specialists and six generalists. The plants were grown in sterile soil from dry grassland or abandoned field inoculated with microbial communities from one or the other site. Plant growth, abundance of mycorrhizal structures and plant response to inoculation were evaluated. We focused on arbuscular mycorrhizal fungi (AMF), one of the most important parts of soil communities affecting plant performance. The abandoned field soil negatively affected plant growth, but positively affected plant response to inoculation. The AMF community from both sites differed in infectivity and taxa frequencies. The lower AMF taxa frequency in the dry grassland soil suggested a lack of functional complementarity. Despite the fact that dry grassland AMF produced more arbuscules, the dry grassland inoculum did not improve phosphorus nutrition of specialists contrary to the abandoned field inoculum. Inoculum origin did not affect phosphorus nutrition of generalists. The lower effectiveness of the dry grassland microbial community toward plant performance excludes its inoculation in the abandoned field soil as a solution to allow settlement of specialists. Still, the distinct response of specialists and generalists to inoculation suggested that they differ in AMF responsiveness.

  7. Impact of fomesafen on the soil microbial communities in soybean fields in Northeastern China.

    PubMed

    Wu, Xiao-Hu; Zhang, Ying; Du, Peng-Qiang; Xu, Jun; Dong, Feng-Shou; Liu, Xin-Gang; Zheng, Yong-Quan

    2018-02-01

    Fomesafen, a widely adopted residual herbicide, is used throughout the soybean region of northern China for the spring planting. However, the ecological risks of using fomesafen in soil remain unknown. The aim of this work was to evaluate the impact of fomesafen on the microbial community structure of soil using laboratory and field experiments. Under laboratory conditions, the application of fomesafen at concentrations of 3.75 and 37.5mg/kg decreased the basal respiration (R B ) and microbial biomass carbon (MBC). In contrast, treatment with 375mg/kg of fomesafen resulted in a significant decrease in the R B , MBC, abundance of both Gram+ and Gram- bacteria, and fungal biomass. Analysis of variance showed that the treatment accounted for most of the variance (38.3%) observed in the soil microbial communities. Furthermore, the field experiment showed that long-term fomesafen application in continuously cropped soybean fields affected the soil bacterial community composition by increasing the relative average abundance of Proteobacteria and Actinobacteria species and decreasing the abundance of Verrucomicrobia species. In addition, Acidobacteria and Chloroflexi species showed a pattern of activation-inhibition. Taken together, our results suggest that the application of fomesafen can affect the community structure of soil bacteria in the spring planting soybean region of northern China. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Impact of ecosystem management on microbial community level physiological profiles of postmining forest rehabilitation.

    PubMed

    Cookson, W R; O'Donnell, A J; Grant, C D; Grierson, P F; Murphy, D V

    2008-02-01

    We investigated the impacts of forest thinning, prescribed fire, and contour ripping on community level physiological profiles (CLPP) of the soil microbial population in postmining forest rehabilitation. We hypothesized that these management practices would affect CLPP via an influence on the quality and quantity of soil organic matter. The study site was an area of Jarrah (Eucalyptus marginata Donn ex Sm.) forest rehabilitation that had been mined for bauxite 12 years previously. Three replicate plots (20 x 20 m) were established in nontreated forest and in forest thinned from 3,000-8,000 stems ha(-1) to 600-800 stems ha(-1) in April (autumn) of 2003, followed either by a prescribed fire in September (spring) of 2003 or left nonburned. Soil samples were collected in August 2004 from two soil depths (0-5 cm and 5-10 cm) and from within mounds and furrows caused by postmining contour ripping. CLPP were not affected by prescribed fire, although the soil pH and organic carbon (C), total C and total nitrogen (N) contents were greater in burned compared with nonburned plots, and the coarse and fine litter mass lower. However, CLPP were affected by forest thinning, as were fine litter mass, soil C/N ratio, and soil pH, which were all higher in thinned than nonthinned plots. Furrow soil had greater coarse and fine litter mass, and inorganic phosphorous (P), organic P, organic C, total C, total N, ammonium, microbial biomass C contents, but lower soil pH and soil C/N ratio than mound soil. Soil pH, inorganic P, organic P, organic C, total C and N, ammonium, and microbial biomass C contents also decreased with depth, whereas soil C/N ratio increased. Differences in CLPP were largely (94%) associated with the relative utilization of gluconic, malic (greater in nonthinned than thinned soil and mound than furrow soil), L-tartaric, succinic, and uric acids (greater in thinned than nonthinned, mound than furrow, and 5-10 cm than 0-5 cm soil). The relative utilization of amino acids also tended to increase with increasing soil total C and organic C contents but decreased with increasing nitrate content, whereas the opposite was true for carboxylic acids. Only 45% of the variance in CLPP was explained using a multivariate multiple regression model, but soil C and N pools and litter mass were significant predictors of CLPP. Differences in soil textural components between treatments were also correlated with CLPP; likely causes of these differences are discussed. Our results suggest that 1 year after treatment, CLPP from this mined forest ecosystem are resilient to a spring prescribed fire but not forest thinning. We conclude that differences in CLPP are likely to result from complex interactions among soil properties that mediate substrate availability, microbial nutrient demand, and microbial community composition.

  9. Microbial biomass and ATP in smelter-polluted forest humus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baath, E.; Arnebrant, K.; Nordgren, A.

    Many aspects of microbial activity in soil have been studied in connection with heavy metal pollution, but few investigations have included microbial biomass. To study how biomass-C and ATP were affected over a wide range of metal concentrations, these variables have been measured around the Gusum brass mill in south Sweden. Near the smelter more than 20,000 ppm Cu + Zn g{sup {minus}1} dry soil have been found. This area has been extensively studied form microbiological, zoological and botanical points of view.

  10. Fate and Effects of Crude Oil Spilled on Subarctic Permafrost Terrain in Interior Alaska: Fifteen Years Later

    DTIC Science & Technology

    1993-08-01

    tundra ecosystems of Alas- (75 m2) having surface oil visible. In contrast, most ka and northern Canada (Deneke et al. 1974, Atlas of the crude oil...Overall soil microbial activity was growing black spruce (Picea mariana) forest with an increased, with some components of the microbial understory of...terrestrial environments, in the heavily affected portions of the site; they 3. Determine the effect of crude oil spills on soil found that microbial

  11. Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: a multiyear study.

    PubMed

    Smith, A Peyton; Marín-Spiotta, Erika; Balser, Teri

    2015-09-01

    Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. Understanding how microbial communities respond to changes in vegetation is critical for improving predictions of how land-cover change affects belowground carbon storage and nutrient availability. We measured intra- and interannual variability in soil and forest litter microbial community composition and activity via phospholipid fatty acid analysis (PLFA) and extracellular enzyme activity across a well-replicated, long-term chronosequence of secondary forests growing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Microbial community PLFA structure differed between young secondary forests and older secondary and primary forests, following successional shifts in tree species composition. These successional patterns held across seasons, but the microbial groups driving these patterns differed over time. Microbial community composition from the forest litter differed greatly from those in the soil, but did not show the same successional trends. Extracellular enzyme activity did not differ with forest succession, but varied by season with greater rates of potential activity in the dry seasons. We found few robust significant relationships among microbial community parameters and soil pH, moisture, carbon, and nitrogen concentrations. Observed inter- and intrannual variability in microbial community structure and activity reveal the importance of a multiple, temporal sampling strategy when investigating microbial community dynamics with land-use change. Successional control over microbial composition with forest recovery suggests strong links between above and belowground communities. © 2015 John Wiley & Sons Ltd.

  12. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.

    PubMed

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A

    2016-04-05

    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.

  13. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil.

    PubMed

    Liu, Zhanjun; Rong, Qinlei; Zhou, Wei; Liang, Guoqing

    2017-01-01

    Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK), NPK plus green manure (NPKG), NPK plus pig manure (NPKM), and NPK plus straw (NPKS) on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC), activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI) and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72) was comparable to that of the NPK (0.77), NPKG (0.81) and NPKS (0.79) treatments but significantly lower compared with NPKM (0.85). The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil.

  14. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil

    PubMed Central

    Liu, Zhanjun; Rong, Qinlei; Zhou, Wei; Liang, Guoqing

    2017-01-01

    Understanding the effects of external organic and inorganic components on soil fertility and quality is essential for improving low-yielding soils. We conducted a field study over two consecutive rice growing seasons to investigate the effect of applying chemical fertilizer (NPK), NPK plus green manure (NPKG), NPK plus pig manure (NPKM), and NPK plus straw (NPKS) on the soil nutrient status, enzyme activities involved in C, N, P, and S cycling, microbial community and rice yields of yellow clayey soil. Results showed that the fertilized treatments significantly improved rice yields over the first three experimental seasons. Compared with the NPK treatment, organic amendments produced more favorable effects on soil productivity. Notably, the NPKM treatment exhibited the highest levels of nutrient availability, microbial biomass carbon (MBC), activities of most enzymes and the microbial community. This resulted in the highest soil quality index (SQI) and rice yield, indicating better soil fertility and quality. Significant differences in enzyme activities and the microbial community were observed among the treatments, and redundancy analysis showed that MBC and available N were the key determinants affecting the soil enzyme activities and microbial community. The SQI score of the non-fertilized control (0.72) was comparable to that of the NPK (0.77), NPKG (0.81) and NPKS (0.79) treatments but significantly lower compared with NPKM (0.85). The significant correlation between rice yield and SQI suggests that SQI can be a useful to quantify soil quality changes caused by different agricultural management practices. The results indicate that application of NPK plus pig manure is the preferred option to enhance SOC accumulation, improve soil fertility and quality, and increase rice yield in yellow clayey soil. PMID:28263999

  15. Microbial community composition affects soil fungistasis.

    PubMed

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J A; Kowalchuk, George A; van Veen, Johannes A

    2003-02-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis.

  16. Microbial arsenic reduction in polluted and unpolluted soils from Attica, Greece.

    PubMed

    Vaxevanidou, K; Giannikou, S; Papassiopi, N

    2012-11-30

    Indigenous soil microorganisms often affect the mobility of heavy metals and metalloids by altering their oxidation state. Under anaerobic conditions, the microbial transformation is usually reduction and may cause the mobilization of contaminants, as happens in the case of arsenic, which is much more stable in the pentavalent state compared to the reduced trivalent form. The aim of this work was to investigate the occurrence of such a microbial activity in representative Greek soils. Five soil samples, with As levels varying between 14 and 259 mg/kg, were examined. The samples were artificially contaminated, by adding 750 mg of As(V) per kg of soil. Initial sorption of As(V) ranged between 70 and 85%. Microbial reduction of arsenic was observed in three of the examined soils, without any obvious correlation with pre-existing levels of contamination. Reduction reached high percentages, i.e. up to 99%, and was accompanied by the corresponding release of reduced As in the aqueous solution. A simultaneous iron reducing activity was also observed in four of the five soil samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The effect of nutrient deposition on bacterial communities in Arctic tundra soil

    Treesearch

    Barbara J. Campbell; Shawn W. Polson; Thomas E. Hanson; Michelle C. Mack; Edward A.G. Schuur

    2010-01-01

    The microbial communities of high-latitude ecosystems are expected to experience rapid changes over the next century due to climate warming and increased deposition of reactive nitrogen, changes that will likely affect microbial community structure and function. In moist acidic tundra (MAT) soils on the North Slope of the Brooks Range, Alaska, substantial losses of C...

  18. Microbial biomass and soil carbon after 8 and 9 years of field applications of alum-treated and untreated poultry litter and inorganic nitrogen

    USDA-ARS?s Scientific Manuscript database

    Amendment with aluminum sulfate (alum) is considered a best management practice for its benefits in poultry production and increased retention of nutrients in the litter. However, little is known about how long-term applications of alum-treated litter to soil will affect the microbial community and ...

  19. Bacterial and archaeal ammonia oxidizers respond differently to long-term tillage and fertilizer management at a continuous maize site

    USDA-ARS?s Scientific Manuscript database

    Fertilizer use and tillage affect both the general soil microbial community and speci'c N-utilizing microbial groups, but likely to varying degrees. To assess these impacts, soil was collected on three key dates from a long-term (26+ years), rainfed, continuous maize site where tillage (no-till and ...

  20. Interactive Effects of Nitrogen and Phosphorus on Soil Microbial Communities in a Tropical Forest

    PubMed Central

    Liu, Lei; Zhang, Tao; Gilliam, Frank S.; Gundersen, Per; Zhang, Wei; Chen, Hao; Mo, Jiangming

    2013-01-01

    Elevated nitrogen (N) deposition in humid tropical regions may exacerbate phosphorus (P) deficiency in forests on highly weathered soils. However, it is not clear how P availability affects soil microbes and soil carbon (C), or how P processes interact with N deposition in tropical forests. We examined the effects of N and P additions on soil microbes and soil C pools in a N-saturated old-growth tropical forest in southern China to test the hypotheses that (1) N and P addition will have opposing effects on soil microbial biomass and activity, (2) N and P addition will alter the composition of the microbial community, (3) the addition of N and P will have interactive effects on soil microbes and (4) addition-mediated changes in microbial communities would feed back on soil C pools. Phospholipid fatty acid (PLFA) analysis was used to quantify the soil microbial community following four treatments: Control, N addition (15 g N m−2 yr−1), P addition (15 g P m−2 yr−1), and N&P addition (15 g N m−2 yr−1 plus 15 g P m−2 yr−1). These were applied from 2007 to 2011. Whereas additions of P increased soil microbial biomass, additions of N reduced soil microbial biomass. These effects, however, were transient, disappearing over longer periods. Moreover, N additions significantly increased relative abundance of fungal PLFAs and P additions significantly increased relative abundance of arbuscular mycorrhizal (AM) fungi PLFAs. Nitrogen addition had a negative effect on light fraction C, but no effect on heavy fraction C and total soil C. In contrast, P addition significantly decreased both light fraction C and total soil C. However, there were no interactions between N addition and P addition on soil microbes. Our results suggest that these nutrients are not co-limiting, and that P rather than N is limiting in this tropical forest. PMID:23593427

  1. Easily degradable carbon - an indicator of microbial hotspots and soil degradation

    NASA Astrophysics Data System (ADS)

    Wolińska, Agnieszka; Banach, Artur; Szafranek-Nakonieczna, Anna; Stępniewska, Zofia; Błaszczyk, Mieczysław

    2018-01-01

    The effect of arable soil was quantified against non-cultivated soil on easily degradable carbon and other selected microbiological factors, i.e. soil microbial biomass, respiration activity, and dehydrogenase activity. The intent was to ascertain whether easily degradable carbo can be useful as a sensitive indicator of both soil biological degradation and microbial hot-spots indication. As a result, it was found that soil respiration activity was significantly higher (p <0.0001) in all controls, ranging between 30-60 vs. 11.5-23.7 μmol CO2 kg d.m.-1 h-1 for the arable soils. Dehydrogenase activity was significantly lower in the arable soil (down to 35-40% of the control values, p <0.001) varying depending on the soil type. The microbial biomass was also significantly higher at the non-cultivated soil (512-2807 vs. 416-1429 µg g-1 d.m., p <0.001), while easily degradable carbon ranged between 620-1209 mg kg-1 non-cultivated soil and 497-877 mg kg-1 arable soil (p <0.0001). It was demonstrated that agricultural practices affected soil properties by significantly reducing the levels of the studied parameters in relation to the control soils. The significant correlations of easily degradable carbon-respiration activity (ρ = 0.77*), easily degradable carbon-dehydrogenase activity (ρ = 0.42*), and easily degradable carbon-microbial biomass (ρ = 0.53*) reveal that easily degradable carbon is a novel, suitable factor indicative of soil biological degradation. It, therefore, could be used for evaluating the degree of soil degradation and for choosing a proper management procedure.

  2. Soil biochar amendment shapes the composition of N2O-reducing microbial communities.

    PubMed

    Harter, Johannes; Weigold, Pascal; El-Hadidi, Mohamed; Huson, Daniel H; Kappler, Andreas; Behrens, Sebastian

    2016-08-15

    Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N2O) emissions. N2O is a potent greenhouse gas. The main sources of N2O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N2O emission mitigation and the abundance and activity of N2O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described 'atypical' nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N2O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N2O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N2O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Soil Microbial Activity Responses to Fire in a Semi-arid Savannah Ecosystem Pre- and Post-Monsoon Season

    NASA Astrophysics Data System (ADS)

    Jimenez, J. R.; Raub, H. D.; Jong, E. L.; Muscarella, C. R.; Smith, W. K.; Gallery, R. E.

    2017-12-01

    Extracellular enzyme activities (EEA) of soil microorganisms can act as important proxies for nutrient limitation and turnover in soil and provide insight into the biochemical requirements of microbes in terrestrial ecosystems. In semi-arid ecosystems, microbial activity is influenced by topography, disturbances such as fire, and seasonality from monsoon rains. Previous studies from forest ecosystems show that microbial communities shift to similar compositions after severe fires despite different initial conditions. In semi-arid ecosystems with high spatial heterogeniety, we ask does fire lead to patch intensification or patch homogenization and how do monsoon rains influence the successional trajectories of microbial responses? We analyzed microbial activity and soil biogeochemistry throughout the monsoon season in paired burned and unburned sites in the Santa Rita Experimental Range, AZ. Surface soil (5cm) from bare-ground patches, bole, canopy drip line, and nearby grass patches for 5 mesquite trees per site allowed tests of spatiotemporal responses to fire and monsoon rain. Microbial activity was low during the pre-monsoon season and did not differ between the burned and unburned sites. We found greater activity near mesquite trees that reflects soil water and nutrient availability. Fire increased soil alkalinity, though soils near mesquite trees were less affected. Soil water content was significantly higher in the burned sites post-monsoon, potentially reflecting greater hydrophobicity of burned soils. Considering the effects of fire in these semi-arid ecosystems is especially important in the context of the projected changing climate regime in this region. Assessing microbial community recovery pre-, during, and post-monsoon is important for testing predictions about whether successional pathways post-fire lead to recovery or novel trajectories of communities and ecosystem function.

  4. The impact of post-fire salvage logging on microbial nitrogen cyclers in Mediterranean forest soil.

    PubMed

    Pereg, Lily; Mataix-Solera, Jorge; McMillan, Mary; García-Orenes, Fuensanta

    2018-04-01

    Forest fires are a regular occurrence in the Mediterranean basin. High severity fires and post-fire management can affect biological, chemical and physical properties of soil, including the composition and abundance of soil microbial communities. Salvage logging is a post-fire management strategy, which involves the removal of burnt wood from land after a fire. The main objective of this work was to evaluate the impact of post-fire salvage logging and microaggregation on soil microbial communities, specifically on the abundance of nitrogen cyclers and, thus, the potential of the soil for microbial nitrogen cycling. The abundance of nitrogen cyclers was assessed by quantification of microbial nitrogen cycling genes in soil DNA, including nifH (involved in nitrogen fixation), nirS/K and nosZ (involved in denitrification), amoA-B and amoA-Arch (involved in bacterial and archaeal nitrification, respectively). It was demonstrated that salvage logging reduced bacterial load post-fire when compared to tree retention control and resulted in significant changes to the abundance of functional bacteria involved in nitrogen cycling. Microbial gene pools involved in various stages of the nitrogen cycle were larger in control soil than in soil subjected to post-fire salvage logging and were significantly correlated with organic matter, available phosphorous, nitrogen and aggregate stability. The microaggregate fraction of the soil, which has been associated with greater organic carbon, was shown to be a hotspot for nitrogen cyclers particularly under salvage logging. The impact of post-fire management strategies on soil microbial communities needs to be considered in relation to maintaining ecosystem productivity, resilience and potential impact on climate change. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Net Fluxes of CO2, but not N20 or CH4, are Affected Following Agronomic-Scale Additions of Urea to Prairie and Arable Soils

    USDA-ARS?s Scientific Manuscript database

    Microbial production of carbon dioxide (CO2) increased with nitrogen (N) application rate for both arable and prairie soils incubated at 21 °C. Rate of N applied as urea (0, 11, 56, 112 kg N ha-1) did not affect soil methane consumption and nitrous oxide production for soil collected from either ec...

  6. Nutrient addition dramatically accelerates microbial community succession.

    PubMed

    Knelman, Joseph E; Schmidt, Steven K; Lynch, Ryan C; Darcy, John L; Castle, Sarah C; Cleveland, Cory C; Nemergut, Diana R

    2014-01-01

    The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients--important drivers of plant succession--affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession.

  7. Nutrient Addition Dramatically Accelerates Microbial Community Succession

    PubMed Central

    Knelman, Joseph E.; Schmidt, Steven K.; Lynch, Ryan C.; Darcy, John L.; Castle, Sarah C.; Cleveland, Cory C.; Nemergut, Diana R.

    2014-01-01

    The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients – important drivers of plant succession – affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession. PMID:25050551

  8. Spatial pattern formation of microbes at the soil microscale affect soil C and N turnover in an individual-based microbial community model

    NASA Astrophysics Data System (ADS)

    Kaiser, Christina; Evans, Sarah; Dieckmann, Ulf; Widder, Stefanie

    2016-04-01

    At the μm-scale, soil is a highly structured and complex environment, both in physical as well as in biological terms, characterized by non-linear interactions between microbes, substrates and minerals. As known from mathematics and theoretical ecology, spatial structure significantly affects the system's behaviour by enabling synergistic dynamics, facilitating diversity, and leading to emergent phenomena such as self-organisation and self-regulation. Such phenomena, however, are rarely considered when investigating mechanisms of microbial soil organic matter turnover. Soil organic matter is the largest terrestrial reservoir for organic carbon (C) and nitrogen (N) and plays a pivotal role in global biogeochemical cycles. Still, the underlying mechanisms of microbial soil organic matter buildup and turnover remain elusive. We explored mechanisms of microbial soil organic matter turnover using an individual-based, stoichiometrically and spatially explicit computer model, which simulates the microbial de-composer system at the soil microscale (i.e. on a grid of 100 x 100 soil microsites). Soil organic matter dynamics in our model emerge as the result of interactions among individual microbes with certain functional traits (f.e. enzyme production rates, growth rates, cell stoichiometry) at the microscale. By degrading complex substrates, and releasing labile substances microbes in our model continusly shape their environment, which in turn feeds back to spatiotemporal dynamics of the microbial community. In order to test the effect of microbial functional traits and organic matter input rate on soil organic matter turnover and C and N storage, we ran the model into steady state using continuous inputs of fresh organic material. Surprisingly, certain parameter settings that induce resource limitation of microbes lead to regular spatial pattern formation (f.e. moving spiral waves) of microbes and substrate at the μm-scale at steady-state. The occurrence of these pattern can be explained by the Turing mechanism. These pattern formation had strong consequences for process rates, as well as for C and N storage in the soil at the steady state: Scenarios that exhibited pattern formation were generally associated with higher C storage at steady state compared to those without pattern formation (i.e. at non-limiting conditions for microbes). Moreover, pattern formation lead to a spatial decoupling of C and N turnover processes, and to a spatial decoupling of microbial N mineralization and N immobilization. Taken together, our theoretical analysis shows that self-organisation may be a feature of the soil decomposer system, with consequences for process rates of microbial C and N turnover. Pattern formation through spatial self-organization, which has been observed on larger spatial scales in other resource-limited communities (e.g., vegetation patterns in arid or wetland eco-systems), may also occur at the soil microscale, leaving its mark on the soil's storage capacity for C and N.

  9. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    PubMed Central

    Leite, D.C.A.; Balieiro, F.C.; Pires, C.A.; Madari, B.E.; Rosado, A.S.; Coutinho, H.L.C.; Peixoto, R.S.

    2014-01-01

    Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples. PMID:24948928

  10. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar.

    PubMed

    Leite, D C A; Balieiro, F C; Pires, C A; Madari, B E; Rosado, A S; Coutinho, H L C; Peixoto, R S

    2014-01-01

    Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples.

  11. The responses of microbial temperature relationships to seasonal change and winter warming in a temperate grassland.

    PubMed

    Birgander, Johanna; Olsson, Pål Axel; Rousk, Johannes

    2018-01-18

    Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm-tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years' winter warming. The warming treatments increased winter soil temperatures by 5-6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q 10 ) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat-spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil-atmosphere C exchange. © 2018 John Wiley & Sons Ltd.

  12. Rice rhizosphere soil and root surface bacterial community response to water management changes

    USDA-ARS?s Scientific Manuscript database

    Different water management practices could affect microbial populations in the rice rhizosphere. A field-scale study was conducted to evaluate microbial populations in the root plaque and rhizosphere of rice in response to continuous and intermittent flooding conditions. Microbial populations in rhi...

  13. Increased precipitation accelerates soil organic matter turnover associated with microbial community composition in topsoil of alpine grassland on the eastern Tibetan Plateau.

    PubMed

    Han, Conghai; Wang, Zongli; Si, Guicai; Lei, Tianzhu; Yuan, Yanli; Zhang, Gengxin

    2017-10-01

    Large quantities of carbon are stored in alpine grassland of the Tibetan Plateau, which is extremely sensitive to climate change. However, it remains unclear whether soil organic matter (SOM) in different layers responds to climate change analogously, and whether microbial communities play vital roles in SOM turnover of topsoil. In this study we measured and collected SOM turnover by the 14 C method in alpine grassland to test climatic effects on SOM turnover in soil profiles. Edaphic properties and microbial communities in the northwestern Qinghai Lake were investigated to explore microbial influence on SOM turnover. SOM turnover in surface soil (0-10 cm) was more sensitive to precipitation than that in subsurface layers (10-40 cm). Precipitation also imposed stronger effects on the composition of microbial communities in the surface layer than that in deeper soil. At the 5-10 cm depth, the SOM turnover rate was positively associated with the bacteria/fungi biomass ratio and the relative abundance of Acidobacteria, both of which are related to precipitation. Partial correlation analysis suggested that increased precipitation could accelerate the SOM turnover rate in topsoil by structuring soil microbial communities. Conversely, carbon stored in deep soil would be barely affected by climate change. Our results provide valuable insights into the dynamics and storage of SOM in alpine grasslands under future climate scenarios.

  14. Responses of Soil Microbial Communities to Experimental Warming in Alpine Grasslands on the Qinghai-Tibet Plateau

    PubMed Central

    He, Xingyuan; Liu, Wenjie; Zhao, Qian; Zhao, Lin; Tian, Chunjie

    2014-01-01

    Global surface temperature is predicted to increase by at least 1.5°C by the end of this century. However, the response of soil microbial communities to global warming is still poorly understood, especially in high-elevation grasslands. We therefore conducted an experiment on three types of alpine grasslands on the Qinghai-Tibet Plateau to study the effect of experimental warming on abundance and composition of soil microbial communities at 0–10 and 10–20 cm depths. Plots were passively warmed for 3 years using open-top chambers and compared to adjacent control plots at ambient temperature. Soil microbial communities were assessed using phospholipid fatty acid (PLFA) analysis. We found that 3 years of experimental warming consistently and significantly increased microbial biomass at the 0–10 cm soil depth of alpine swamp meadow (ASM) and alpine steppe (AS) grasslands, and at both the 0–10 and 10–20 cm soil depths of alpine meadow (AM) grasslands, due primarily to the changes in soil temperature, moisture, and plant coverage. Soil microbial community composition was also significantly affected by warming at the 0–10 cm soil depth of ASM and AM and at the 10–20 cm soil depth of AM. Warming significantly decreased the ratio of fungi to bacteria and thus induced a community shift towards bacteria at the 0–10 cm soil depth of ASM and AM. While the ratio of arbuscular mycorrhizal fungi to saprotrophic fungi (AMF/SF) was significantly decreased by warming at the 0–10 cm soil depth of ASM, it was increased at the 0–10 cm soil depth of AM. These results indicate that warming had a strong influence on soil microbial communities in the studied high-elevation grasslands and that the effect was dependent on grassland type. PMID:25083904

  15. Formation and Stability of Microbially Derived Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Schulz, M. S.

    2017-12-01

    Soil carbon is vital to soil health, food security, and climate change mitigation, but the underlying mechanisms controlling the stabilization and destabilization of soil carbon are still poorly understood. There has been a conceptual paradigm shift in how soil organic matter is formed which now emphasizes the importance of microbial activity to build stable (i.e. long-lived) and mineral-associated soil organic matter. In this conceptual model, the consumption of plant carbon by microorganisms, followed by subsequent turnover of microbial bodies closely associated with mineral particles, produces a layering of amino acid and lipid residues on the surfaces of soil minerals that remains protected from destabilization by mineral-association and aggregation processes. We tested this new model by examining how isotopically labeled plant and microbial C differ in their fundamental stabilization and destabilization processes on soil minerals through a soil profile. We used a combination of laboratory and field-based approaches to bridge multiple spatial scales, and used soil depth as well as synthetic minerals to create gradients of soil mineralogy. We used Raman microscopy as a tool to probe organic matter association with mineral surfaces, as it allows for the simultaneous quantification and identification of living microbes, carbon, minerals, and isotopes through time. As expected, we found that the type of minerals present had a strong influence on the amount of C retained, but the stabilization of new C critically depends on growth, death, and turnover of microbial cells. Additionally, the destabilization of microbial residue C on mineral surfaces was little affected by flushes of DOC relative to wet-dry cycles alone. We believe this new insight into microbial mechanisms of C stabilization in soils will eventually lead to new avenues for measuring and modeling SOM dynamics in soils, and aid in the management of soil C to mediate global challenges.

  16. Depth dependent microbial carbon use efficiency in the capillary fringe as affected by water table fluctuations in a column incubation experiment

    NASA Astrophysics Data System (ADS)

    Pronk, G. J.; Mellage, A.; Milojevic, T.; Smeaton, C. M.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Microbial growth and turnover of soil organic carbon (SOC) depend on the availability of electron donors and acceptors. The steep geochemical gradients in the capillary fringe between the saturated and unsaturated zones provide hotspots of soil microbial activity. Water table fluctuations and the associated drying and wetting cycles within these zones have been observed to lead to enhanced turnover of SOC and adaptation of the local microbial communities. To improve our understanding of SOC degradation under changing moisture conditions, we carried out an automated soil column experiment with integrated of hydro-bio-geophysical monitoring under both constant and oscillating water table conditions. An artificial soil mixture composed of quartz sand, montmorillonite, goethite and humus was used to provide a well-defined system. This material was inoculated with a microbial community extracted from a forested riparian zone. The soils were packed into 6 columns (60 cm length and 7.5 cm inner diameter) to a height of 45 cm; and three replicate columns were incubated under constant water table while another three were saturated and drained monthly. The initial soil development, carbon cycling and microbial community development were then characterized during 10 months of incubation. This system provides an ideal artificial gradient from the saturated to the unsaturated zone to study soil development from initially homogeneous materials and the same microbial community composition under controlled conditions. Depth profiles of SOC and microbial biomass after 329 days of incubation showed a depletion of carbon in the transition drying and wetting zone that was not associated with higher accumulation of microbial biomass, indicating a lower carbon use efficiency of the microbial community established within the water table fluctuation zone. This was supported by a higher ATP to microbial biomass carbon ratio within the same zone. The findings from this study highlight the importance of considering the effects of transient soil moisture and oxygen availability on microbial mediated SOC transformations. The effects of these changes in carbon use efficiency need to be included in soil models in order to accurately predict SOC turnover.

  17. Role of model structure on the response of soil biogeochemistry to hydro-climatic fluctuations

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Porporato, A.

    2005-05-01

    Soil carbon and nutrient cycles are strongly affected by hydro-climatic variability, which interacts with the internal ecosystem structure. Here we test the implications of biogeochemical model structure on such dynamics by extending an existing model by the authors and coworkers. When forced by hydro-climatic fluctuations, the different model structures induce specific preferential nutrient paths among the soil pools, which in turn affect nutrient distribution and availability to microbes and plants. In particular, if it is assumed that microbes can directly assimilate organic nitrogen, plants tend to be inferior competitors for nutrients even in well-watered conditions, while if a certain amount of organic nitrogen is assumed to be mineralized without being first incorporated into microbial cells, vegetation can be advantaged over a wide range of soil moisture values. We also investigate the intensification of competition for nutrients (e.g., nitrogen) between plant and soil microbial communities under extreme hydrologic conditions, such as droughts and intense storms. Frequent rainfall events may determine ideal soil moisture conditions for plant uptake, enhancing nitrogen leaching while lowering oxygen concentration and inhibiting microbial activity. During droughts, the soil water potential often drops to the point of hampering the plant nutrient uptake while still remaining high enough for microbial decomposition and nitrogen immobilization. The interplay of microbe and vegetation water stress is investigated in depth as it controls the ability of one community (e.g., plants or soil microbes) to establish competitive advantage on the other. The long-term effects of these dynamics of competition and nutrient allocation are explored under steady-state and stochastic soil moisture conditions to analyze the feedbacks between soil organic matter and vegetation dynamics.

  18. Biochemical and microbial soil functioning after application of the insecticide imidacloprid.

    PubMed

    Cycoń, Mariusz; Piotrowska-Seget, Zofia

    2015-01-01

    Imidacloprid is one of the most commonly used insecticides in agricultural practice, and its application poses a potential risk for soil microorganisms. The objective of this study was to assess whether changes in the structure of the soil microbial community after imidacloprid application at the field rate (FR, 1mg/kg soil) and 10 times the FR (10× FR, 10mg/kg soil) may also have an impact on biochemical and microbial soil functioning. The obtained data showed a negative effect by imidacloprid applied at the FR dosage for substrate-induced respiration (SIR), the number of total bacteria, dehydrogenase (DHA), both phosphatases (PHOS-H and PHOS-OH), and urease (URE) at the beginning of the experiment. In 10× FR treated soil, decreased activity of SIR, DHA, PHOS-OH and PHOS-H was observed over the experimental period. Nitrifying and N2-fixing bacteria were the most sensitive to imidacloprid. The concentration of NO3(-) decreased in both imidacloprid-treated soils, whereas the concentration of NH4(+) in soil with 10× FR was higher than in the control. Analysis of the bacterial growth strategy revealed that imidacloprid affected the r- or K-type bacterial classes as indicated also by the decreased eco-physiological (EP) index. Imidacloprid affected the physiological state of culturable bacteria and caused a reduction in the rate of colony formation as well as a prolonged time for growth. Principal component analysis showed that imidacloprid application significantly shifted the measured parameters, and the application of imidacloprid may pose a potential risk to the biochemical and microbial activity of soils. Copyright © 2014. Published by Elsevier B.V.

  19. Effect of Reactive Black 5 azo dye on soil processes related to C and N cycling

    PubMed Central

    Rehman, Khadeeja; Sahar, Amna; Hussain, Sabir; Mahmood, Faisal; Siddique, Muhammad H.; Siddique, Muhammad A.; Rashid, Muhammad I.

    2018-01-01

    Azo dyes are one of the largest classes of synthetic dyes being used in textile industries. It has been reported that 15–50% of these dyes find their way into wastewater that is often used for irrigation purpose in developing countries. The effect of azo dyes contamination on soil nitrogen (N) has been studied previously. However, how does the azo dye contamination affect soil carbon (C) cycling is unknown. Therefore, we assessed the effect of azo dye contamination (Reactive Black 5, 30 mg kg−1 dry soil), bacteria that decolorize this dye and dye + bacteria in the presence or absence of maize leaf litter on soil respiration, soil inorganic N and microbial biomass. We found that dye contamination did not induce any change in soil respiration, soil microbial biomass or soil inorganic N availability (P > 0.05). Litter evidently increased soil respiration. Our study concludes that the Reactive Black 5 azo dye (applied in low amount, i.e., 30 mg kg−1 dry soil) contamination did not modify organic matter decomposition, N mineralization and microbial biomass in a silty loam soil.

  20. Understanding Cultivar-Specificity and Soil Determinants of the Cannabis Microbiome

    DOE PAGES

    Winston, Max E.; Hampton-Marcell, Jarrad; Zarraonaindia, Iratxe; ...

    2014-06-16

    Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. In conclusion, the influence of soilmore » type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.« less

  1. Understanding Cultivar-Specificity and Soil Determinants of the Cannabis Microbiome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winston, Max E.; Hampton-Marcell, Jarrad; Zarraonaindia, Iratxe

    Understanding microbial partnerships with the medicinally and economically important crop Cannabis has the potential to affect agricultural practice by improving plant fitness and production yield. Furthermore, Cannabis presents an interesting model to explore plant-microbiome interactions as it produces numerous secondary metabolic compounds. Here we present the first description of the endorhiza-, rhizosphere-, and bulk soil-associated microbiome of five distinct Cannabis cultivars. Bacterial communities of the endorhiza showed significant cultivar-specificity. When controlling cultivar and soil type the microbial community structure was significantly different between plant cultivars, soil types, and between the endorhiza, rhizosphere and soil. In conclusion, the influence of soilmore » type, plant cultivar and sample type differentiation on the microbial community structure provides support for a previously published two-tier selection model, whereby community composition across sample types is determined mainly by soil type, while community structure within endorhiza samples is determined mainly by host cultivar.« less

  2. Microbial Community Structure in the Rhizosphere of Rice Plants

    PubMed Central

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G.

    2016-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  3. Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization.

    PubMed

    Unno, Yusuke; Shinano, Takuro

    2013-01-01

    While phytic acid is a major form of organic phosphate in many soils, plant utilization of phytic acid is normally limited; however, culture trials of Lotus japonicus using experimental field soil that had been managed without phosphate fertilizer for over 90 years showed significant usage of phytic acid applied to soil for growth and flowering and differences in the degree of growth, even in the same culture pot. To understand the key metabolic processes involved in soil phytic acid utilization, we analyzed rhizosphere soil microbial communities using molecular ecological approaches. Although molecular fingerprint analysis revealed changes in the rhizosphere soil microbial communities from bulk soil microbial community, no clear relationship between the microbiome composition and flowering status that might be related to phytic acid utilization of L. japonicus could be determined. However, metagenomic analysis revealed changes in the relative abundance of the classes Bacteroidetes, Betaproteobacteria, Chlorobi, Dehalococcoidetes and Methanobacteria, which include strains that potentially promote plant growth and phytic acid utilization, and some gene clusters relating to phytic acid utilization, such as alkaline phosphatase and citrate synthase, with the phytic acid utilization status of the plant. This study highlights phylogenetic and metabolic features of the microbial community of the L. japonicus rhizosphere and provides a basic understanding of how rhizosphere microbial communities affect the phytic acid status in soil.

  4. Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem

    USGS Publications Warehouse

    Boot, Claudia M.; Hall, Ed K.; Denef, Karolien; Baron, Jill S.

    2016-01-01

    Elevated nitrogen (N) deposition due to increased fossil fuel combustion and agricultural practices has altered global carbon (C) cycling. Additions of reactive N to N-limited environments are typically accompanied by increases in plant biomass. Soil C dynamics, however, have shown a range of different responses to the addition of reactive N that seem to be ecosystem dependent. We evaluated the effect of N amendments on biogeochemical characteristics and microbial responses of subalpine forest organic soils in order to develop a mechanistic understanding of how soils are affected by N amendments in subalpine ecosystems. We measured a suite of responses across three years (2011–2013) during two seasons (spring and fall). Following 17 years of N amendments, fertilized soils were more acidic (control mean 5.09, fertilized mean 4.68), and had lower %C (control mean 33.7% C, fertilized mean 29.8% C) and microbial biomass C by 22% relative to control plots. Shifts in biogeochemical properties in fertilized plots were associated with an altered microbial community driven by reduced arbuscular mycorrhizal (control mean 3.2 mol%, fertilized mean 2.5 mol%) and saprotrophic fungal groups (control mean 17.0 mol%, fertilized mean 15.2 mol%), as well as a decrease in N degrading microbial enzyme activity. Our results suggest that decreases in soil C in subalpine forests were in part driven by increased microbial degradation of soil organic matter and reduced inputs to soil organic matter in the form of microbial biomass.

  5. Microbial Community Dynamics in Soil Depth Profiles Over 120,000 Years of Ecosystem Development

    PubMed Central

    Turner, Stephanie; Mikutta, Robert; Meyer-Stüve, Sandra; Guggenberger, Georg; Schaarschmidt, Frank; Lazar, Cassandre S.; Dohrmann, Reiner; Schippers, Axel

    2017-01-01

    Along a long-term ecosystem development gradient, soil nutrient contents and mineralogical properties change, therefore probably altering soil microbial communities. However, knowledge about the dynamics of soil microbial communities during long-term ecosystem development including progressive and retrogressive stages is limited, especially in mineral soils. Therefore, microbial abundances (quantitative PCR) and community composition (pyrosequencing) as well as their controlling soil properties were investigated in soil depth profiles along the 120,000 years old Franz Josef chronosequence (New Zealand). Additionally, in a microcosm incubation experiment the effects of particular soil properties, i.e., soil age, soil organic matter fraction (mineral-associated vs. particulate), O2 status, and carbon and phosphorus additions, on microbial abundances (quantitative PCR) and community patterns (T-RFLP) were analyzed. The archaeal to bacterial abundance ratio not only increased with soil depth but also with soil age along the chronosequence, coinciding with mineralogical changes and increasing phosphorus limitation. Results of the incubation experiment indicated that archaeal abundances were less impacted by the tested soil parameters compared to Bacteria suggesting that Archaea may better cope with mineral-induced substrate restrictions in subsoils and older soils. Instead, archaeal communities showed a soil age-related compositional shift with the Bathyarchaeota, that were frequently detected in nutrient-poor, low-energy environments, being dominant at the oldest site. However, bacterial communities remained stable with ongoing soil development. In contrast to the abundances, the archaeal compositional shift was associated with the mineralogical gradient. Our study revealed, that archaeal and bacterial communities in whole soil profiles are differently affected by long-term soil development with archaeal communities probably being better adapted to subsoil conditions, especially in nutrient-depleted old soils. PMID:28579976

  6. Urbanization Effects on the Vertical Distribution of Soil Microbial Communities and Soil C Storage across Edge-to-Interior Urban Forest Gradients

    NASA Astrophysics Data System (ADS)

    Rosier, C. L.; Van Stan, J. T., II; Trammell, T. L.

    2017-12-01

    Urbanization alters environmental conditions such as temperature, moisture, carbon (C) and nitrogen (N) deposition affecting critical soil processes (e.g., C storage). Urban soils experience elevated N deposition (e.g., transportation, industry) and decreased soil moisture via urban heat island that can subsequently alter soil microbial community structure and activity. However, there is a critical gap in understanding how increased temperatures and pollutant deposition influences soil microbial community structure and soil C/N cycling in urban forests. Furthermore, canopy structural differences between individual tree species is a potentially important mechanism facilitating the deposition of pollutants to the soil. The overarching goal of this study is to investigate the influence of urbanization and tree species structural differences on the bacterial and fungal community and C and N content of soils experiencing a gradient of urbanization pressures (i.e., forest edge to interior; 150-m). Soil cores (1-m depth) were collected near the stem (< 0.5 meter) of two tree species with contrasting canopy and bark structure (Fagus grandifolia, vs. Liriodendron tulipifera), and evaluated for soil microbial structure via metagenomic analysis and soil C/N content. We hypothesize that soil moisture constraints coupled with increases in recalcitrant C will decrease gram negative bacteria (i.e., dependent on labile C) while increasing saprophytic fungal community abundance (i.e., specialist consuming recalcitrant C) within both surface and subsurface soils experiencing the greatest urban pressure (i.e., forest edge). We further expect trees located on the edge of forest fragments will maintain greater surface soil (< 20 cm) C concentrations due to decreased soil moisture constraining microbial activity (e.g., slower decay), and increased capture of recalcitrant C stocks from industrial/vehicle emission sources (e.g., black C). Our initial results support our hypotheses that urbanization alters soil microbial community composition via reduced soil moisture and carbon storage potential via deposition gradients. Further analyses will answer important questions regarding how individual tree species alters urban soil C storage, N retention, and microbial dynamics.

  7. Changes in the Size of the Active Microbial Pool Explain Short-Term Soil Respiratory Responses to Temperature and Moisture

    PubMed Central

    Salazar-Villegas, Alejandro; Blagodatskaya, Evgenia; Dukes, Jeffrey S.

    2016-01-01

    Heterotrophic respiration contributes a substantial fraction of the carbon flux from soil to atmosphere, and responds strongly to environmental conditions. However, the mechanisms through which short-term changes in environmental conditions affect microbial respiration still remain unclear. Microorganisms cope with adverse environmental conditions by transitioning into and out of dormancy, a state in which they minimize rates of metabolism and respiration. These transitions are poorly characterized in soil and are generally omitted from decomposition models. Most current approaches to model microbial control over soil CO2 production relate responses to total microbial biomass (TMB) and do not differentiate between microorganisms in active and dormant physiological states. Indeed, few data for active microbial biomass (AMB) exist with which to compare model output. Here, we tested the hypothesis that differences in soil microbial respiration rates across various environmental conditions are more closely related to differences in AMB (e.g., due to activation of dormant microorganisms) than in TMB. We measured basal respiration (SBR) of soil incubated for a week at two temperatures (24 and 33°C) and two moisture levels (10 and 20% soil dry weight [SDW]), and then determined TMB, AMB, microbial specific growth rate, and the lag time before microbial growth (tlag) using the Substrate-Induced Growth Response (SIGR) method. As expected, SBR was more strongly correlated with AMB than with TMB. This relationship indicated that each g active biomass C contributed ~0.04 g CO2-C h−1 of SBR. TMB responded very little to short-term changes in temperature and soil moisture and did not explain differences in SBR among the treatments. Maximum specific growth rate did not respond to environmental conditions, suggesting that the dominant microbial populations remained similar. However, warmer temperatures and increased soil moisture both reduced tlag, indicating that favorable abiotic conditions activated soil microorganisms. We conclude that soil respiratory responses to short-term changes in environmental conditions are better explained by changes in AMB than in TMB. These results suggest that decomposition models that explicitly represent microbial carbon pools should take into account the active microbial pool, and researchers should be cautious in comparing modeled microbial pool sizes with measurements of TMB. PMID:27148213

  8. p-Coumaric Acid Influenced Cucumber Rhizosphere Soil Microbial Communities and the Growth of Fusarium oxysporum f.sp. cucumerinum Owen

    PubMed Central

    Zhou, Xingang; Wu, Fengzhi

    2012-01-01

    Background Autotoxicity of cucumber root exudates or decaying residues may be the cause of the soil sickness of cucumber. However, how autotoxins affect soil microbial communities is not yet fully understood. Methodology/Principal Findings The aims of this study were to study the effects of an artificially applied autotoxin of cucumber, p-coumaric acid, on cucumber seedling growth, rhizosphere soil microbial communities, and Fusarium oxysporum f.sp. cucumerinum Owen (a soil-borne pathogen of cucumber) growth. Abundance, structure and composition of rhizosphere bacterial and fungal communities were analyzed with real-time PCR, PCR-denaturing gradient gel electrophoresis (DGGE) and clone library methods. Soil dehydrogenase activity and microbial biomass C (MBC) were determined to indicate the activity and size of the soil microflora. Results showed that p-coumaric acid (0.1–1.0 µmol/g soil) decreased cucumber leaf area, and increased soil dehydrogenase activity, MBC and rhizosphere bacterial and fungal community abundances. p-Coumaric acid also changed the structure and composition of rhizosphere bacterial and fungal communities, with increases in the relative abundances of bacterial taxa Firmicutes, Betaproteobacteria, Gammaproteobacteria and fungal taxa Sordariomycete, Zygomycota, and decreases in the relative abundances of bacterial taxa Bacteroidetes, Deltaproteobacteria, Planctomycetes, Verrucomicrobia and fungal taxon Pezizomycete. In addition, p-coumaric acid increased Fusarium oxysporum population densities in soil. Conclusions/Significance These results indicate that p-coumaric acid may play a role in the autotoxicity of cucumber via influencing soil microbial communities. PMID:23118972

  9. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen.

    PubMed

    Zhou, Xingang; Wu, Fengzhi

    2012-01-01

    Autotoxicity of cucumber root exudates or decaying residues may be the cause of the soil sickness of cucumber. However, how autotoxins affect soil microbial communities is not yet fully understood. The aims of this study were to study the effects of an artificially applied autotoxin of cucumber, p-coumaric acid, on cucumber seedling growth, rhizosphere soil microbial communities, and Fusarium oxysporum f.sp. cucumerinum Owen (a soil-borne pathogen of cucumber) growth. Abundance, structure and composition of rhizosphere bacterial and fungal communities were analyzed with real-time PCR, PCR-denaturing gradient gel electrophoresis (DGGE) and clone library methods. Soil dehydrogenase activity and microbial biomass C (MBC) were determined to indicate the activity and size of the soil microflora. Results showed that p-coumaric acid (0.1-1.0 µmol/g soil) decreased cucumber leaf area, and increased soil dehydrogenase activity, MBC and rhizosphere bacterial and fungal community abundances. p-Coumaric acid also changed the structure and composition of rhizosphere bacterial and fungal communities, with increases in the relative abundances of bacterial taxa Firmicutes, Betaproteobacteria, Gammaproteobacteria and fungal taxa Sordariomycete, Zygomycota, and decreases in the relative abundances of bacterial taxa Bacteroidetes, Deltaproteobacteria, Planctomycetes, Verrucomicrobia and fungal taxon Pezizomycete. In addition, p-coumaric acid increased Fusarium oxysporum population densities in soil. These results indicate that p-coumaric acid may play a role in the autotoxicity of cucumber via influencing soil microbial communities.

  10. Effects of Praxelis clematidea invasion on soil nitrogen fractions and transformation rates in a tropical savanna.

    PubMed

    Wei, Hui; Xu, Jialin; Quan, Guoming; Zhang, Jiaen; Qin, Zhong

    2017-02-01

    Plant invasion has been reported to affect a mass of soil ecological processes and functions, although invasion effects are often context-, species- and ecosystem- specific. This study was conducted to explore potential impacts of Praxelis clematidea invasion on contents of total and available soil nitrogen (N) and microbial N transformations in a tropical savanna. Soil samples were collected from the surface and sub-surface layers in plots with non-, slight, or severe P. clematidea invasion in Hainan Province of southern China, which remains less studied, and analyzed for contents of the total and available N fractions and microbial N transformations. Results showed that total N content significantly increased in the surface soil but trended to decrease in the sub-surface soil in the invaded plots relative to the non-invaded control. Slight invasion significantly increased soil alkali-hydrolysable N content in the two soil layers. Soil net N mineralization rate was not significantly changed in both the soil layers, although soil microbial biomass N was significantly higher in plots with severe invasion than the control. There was no significant difference in content of soil N fractions between plots with slight and severe invasion. Our results suggest that invasion of P. clematidea promotes soil N accumulation in the surface soil layer, which is associated with increased microbial biomass N. However, the invasion-induced ecological impacts did not increase with further invasion. Significantly higher microbial biomass N was maintained in plots with severe invasion, implying that severe P. clematidea invasion may accelerate nutrient cycling in invaded ecosystems.

  11. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression

    PubMed Central

    Symnaczik, Sarah; Mäder, Paul; De Deyn, Gerlinde; Gattinger, Andreas

    2017-01-01

    Population growth and climate change challenge our food and farming systems and provide arguments for an increased intensification of agriculture. A promising option is eco-functional intensification through organic farming, an approach based on using and enhancing internal natural resources and processes to secure and improve agricultural productivity, while minimizing negative environmental impacts. In this concept an active soil microbiota plays an important role for various soil based ecosystem services such as nutrient cycling, erosion control and pest and disease regulation. Several studies have reported a positive effect of organic farming on soil health and quality including microbial community traits. However, so far no systematic quantification of whether organic farming systems comprise larger and more active soil microbial communities compared to conventional farming systems was performed on a global scale. Therefore, we conducted a meta-analysis on current literature to quantify possible differences in key indicators for soil microbial abundance and activity in organic and conventional cropping systems. All together we integrated data from 56 mainly peer-reviewed papers into our analysis, including 149 pairwise comparisons originating from different climatic zones and experimental duration ranging from 3 to more than 100 years. Overall, we found that organic systems had 32% to 84% greater microbial biomass carbon, microbial biomass nitrogen, total phospholipid fatty-acids, and dehydrogenase, urease and protease activities than conventional systems. Exclusively the metabolic quotient as an indicator for stresses on microbial communities remained unaffected by the farming systems. Categorical subgroup analysis revealed that crop rotation, the inclusion of legumes in the crop rotation and organic inputs are important farming practices affecting soil microbial community size and activity. Furthermore, we show that differences in microbial size and activity between organic and conventional farming systems vary as a function of land use (arable, orchards, and grassland), plant life cycle (annual and perennial) and climatic zone. In summary, this study shows that overall organic farming enhances total microbial abundance and activity in agricultural soils on a global scale. PMID:28700609

  12. Effects of Manure Compost Application on Soil Microbial Community Diversity and Soil Microenvironments in a Temperate Cropland in China

    PubMed Central

    Zhen, Zhen; Liu, Haitao; Wang, Na; Guo, Liyue; Meng, Jie; Ding, Na; Wu, Guanglei; Jiang, Gaoming

    2014-01-01

    The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0–20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus bacterial fertilizers can immediately improve the microbial community structure and diversity of degraded cropland soils. PMID:25302996

  13. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community

    PubMed Central

    Harter, Johannes; Krause, Hans-Martin; Schuettler, Stefanie; Ruser, Reiner; Fromme, Markus; Scholten, Thomas; Kappler, Andreas; Behrens, Sebastian

    2014-01-01

    Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most agricultural N2O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N2O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N2O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N2O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nosZ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N2-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ-encoded bacterial N2O reductase, suggesting a mechanistic link to the observed reduction in N2O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N2O emissions from soil. PMID:24067258

  14. Sorptive fractionation of organic matter and formation of organo-hydroxy-aluminum complexes during litter biodegradation in the presence of gibbsite

    Treesearch

    K. Heckman; A.S. Grandy; X. Gao; M. Keiluweit; K. Wickings; K. Carpenter; J. Chorover; C. Rasmussen

    2013-01-01

    Solid and aqueous phase Al species are recognized to affect organic matter (OM) stabilization in forest soils. However, little is known about the dynamics of formation, composition and dissolution of organo-Al hydroxide complexes in microbially-active soil systems, where plant litter is subject to microbial decomposition in close proximity to mineral weathering...

  15. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Shengmu; Xue, Kai; He, Zhili

    2010-05-17

    Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNAmore » from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.« less

  16. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, Dani; Tecon, Robin; Ebrahimi, Ali; Kleyer, Hannah; Ilie, Olga; Wang, Gang

    2015-04-01

    Microbial life in soil occurs within fragmented aquatic habitats formed in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world

  17. Microbial Life in Soil - Linking Biophysical Models with Observations

    NASA Astrophysics Data System (ADS)

    Or, D.; Tecon, R.; Ebrahimi, A.; Kleyer, H.; Ilie, O.; Wang, G.

    2014-12-01

    Microbial life in soil occurs within fragmented aquatic habitats in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world.

  18. The Impact of Climate Change on Microbial Communities and Carbon Cycling in High Arctic Permafrost Soil from Spitsbergen, Northern Norway

    NASA Astrophysics Data System (ADS)

    de Leon, K. C.; Schwery, D.; Yoshikawa, K.; Christiansen, H. H.; Pearce, D.

    2014-12-01

    Permafrost-affected soils are among the most fragile ecosystems in which current microbial controls on organic matter decomposition are changing as a result of climate change. Warmer conditions in the high Arctic will lead to a deepening of the seasonal active layer of permafrost, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. The viable and non-viable fractions of the microbial community in a permafrost soil from Adventdalen, Spitsbergen, Norway were subjected to a comprehensive investigation using culture-dependent and culture-independent methods. Molecular analyses using FISH (with CTC-DAPI) and amplified rDNA restriction analysis (ARDRA) on a 257cm deep core, revealed the presence of all major microbial soil groups, with the active layer having more viable cells, and a higher microbial community diversity. Carbon dioxide (CO2) and methane (CH4) flux measurements were performed to show the amount of C stored in the sample. We demonstrated that the microbial community composition from the soil in the center of the core was most likely influenced by small scale variations in environmental conditions. Community structure showed distinct shift of presence of bacterial groups along the vertical temperature gradient profile and microbial counts and diversity was found to be highest in the surface layers, decreasing with depth. It was observed that soil properties driving microbial diversity and functional potential varied across the permafrost table. Data on the variability of CO2 and CH4 distribution described in peat structure heterogeneity are important for modeling emissions on a larger scale. Furthermore, linking microbial biomass to gas distribution may elucidate the cause of peak CO2 and CH4 and their changes in relation to environmental change and peat composition.

  19. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil

    PubMed Central

    Wild, Birgit; Schnecker, Jörg; Alves, Ricardo J. Eloy; Barsukov, Pavel; Bárta, Jiří; Čapek, Petr; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Mikutta, Robert; Rusalimova, Olga; Šantrůčková, Hana; Shibistova, Olga; Urich, Tim; Watzka, Margarete; Zrazhevskaya, Galina; Richter, Andreas

    2014-01-01

    Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM (“priming effect”). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze–thaw processes) to additions of 13C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant productivity, can change the decomposition of SOM stored in deeper layers of permafrost soils, with possible repercussions on the global climate. PMID:25089062

  20. Biochar and soil properties affecting microbial transport through biochar-amended soils

    USDA-ARS?s Scientific Manuscript database

    The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has also been shown to increase soil retention of nutrients, heavy metals, and pesticides. We have recently conducted a series of experiments t...

  1. Soil microbial community structure and target organisms under different fumigation treatments

    USDA-ARS?s Scientific Manuscript database

    Several high-value crop producers in California rely heavily on soil fumigants to control key diseases, nematodes, weeds and volunteer crops. Fumigants with broad biocidal activity can affect both target and non-target soil organisms. The ability of non-target soil organisms to recover after fumigat...

  2. A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    NASA Astrophysics Data System (ADS)

    Canfora, Loredana; Pinzari, Flavia; Lo Papa, Giuseppe; Vittori Antisari, Livia; Vendramin, Elisa; Salvati, Luca; Dazzi, Carmelo; Benedetti, Anna

    2017-04-01

    Soils preserve and sustain life. Their health and functioning are crucial for crop production and for the maintenance of major ecosystem services. Human induced salinity is one of the main soil threats that reduces soil fertility and affect crop yields. In recent times, great attention has been paid to the general shortage of arable land and to the increasing demand for ecological restoration of areas affected by salinization processes. Despite the diffuse interest on the effects of salinization on plants' growth, and all the derived socioeconomic issues, very few studies analyzed the ecology of the microbial species in naturally saline soils and the resilience of biological fertility in these extreme habitats. Microorganisms inhabiting such environments may share a strategy, may have developed multiple adaptations for maintaining their populations, and cope eventually to extreme conditions by altruistic or cooperative behaviors for maintaining their metabolism active. The understanding and the knowledge of the composition and distribution of microbial communities in natural hypersaline soils can be interesting for ecological reasons but also to develop new restoration strategy where soil fertility was compromised by natural accidents or human mismanagement. The aim of this research was to provide specific information on saline soils in Italy, stressing mainly their distribution, the socioeconomic issues and the understanding of the characterizing ecological processes. Moreover, natural saline soils were used as a model for understanding to what extent the concentration of salt can affect some basic microbial processes. In the present study, physical, chemical and microbiological soil properties were investigated in the shallower horizons of natural salt affected soils in Sicily (Italy), where some ecological contrasting variables acted as strong drivers in fungal and bacterial spatial distribution. Furthermore, the interface between biological and geochemical components in the surface of that peculiar habitat was investigated to evaluate the organization and diversity of the phototrophic and heterotrophic microorganisms. Sixteen soil samples from A horizons were collected according to a random sampling scheme. Bacterial and archaeal communities were characterized by their 16S rDNA genes with T-RFLP method. A total of 92 genera were identified from the 16S pyrosequencing analysis suggesting that cyanobacteria and communities of sulfur bacteria might directly or indirectly promote the formation of protective envelope. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient, while other groups showed a distribution linked to very compartmentalised soil properties, such as the presence of saline crusts in the soil surface. Results show that saline soils couldn't contain just one single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters having great importance for the maintenance of the overall homeostasis.

  3. Microbial and physical properties as indicators of sandy soil quality under cropland and grassland

    NASA Astrophysics Data System (ADS)

    Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw; Oszust, Karolina; Brzezinska, Malgorzata

    2017-04-01

    Land use is one of the key factor driving changes in soil properties influencing on soil health and quality. Microbial diversity and physical properties are sensitive indicators for assessing soil health and quality. The alterations of microbial diversity and physical properties following land use changes have not been sufficiently elucidated, especially for sandy soils. We investigated microbial diversity indicators including fungal communities composition and physical properties of sandy acid soil under cropland and more than 20-yr-old grassland (after cropland) in Trzebieszów, Podlasie Region, Poland (N 51° 59' 24", E 22° 33' 37"). The study included four depths within 0-60 cm. Microbial genetic diversity was assessed by terminal restriction fragment length polymorphism (t-RFLP) analysis, fungal community composition was evaluated by next generation sequencing (NGS) analysis and functional diversity was determined by Biolog EcoPlate method. Overall microbial activity was assessed by soil enzymes (dehydrogenases, β-glucosidase) and respiration test. At the same places soil texture, organic carbon content, pH, bulk density, water holding capacity were determined. Our results showed that grassland soil was characterized by higher activity of soil enzymes than cropland. The average well color development of soil microorganisms, the microbial functional diversity and the number of carbon source utilization were significantly affected by land use type and were differentiated among soil depths. In grassland compared to cropland soil a significant increase of carboxylic acids and decrease of amino acids utilization was observed. The quantitative and qualitative differences were found in community of ammonia oxidizing archaea in cropland and grassland soil. The results of fungal community composition help to explain the soil health of grassland and cropland based on the appearance of phytopathogenic and antagonistic fungi. In general bulk density and field water capacity were greater and saturated hydraulic conductivity was lower under grassland than cropland soil. The study was funded by HORIZON 2020, European Commission, Programme: H2020-SFS-4-2014: Soil quality and function, project No. 635750, Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience (iSQAPER, 2015-2020).

  4. Biochar alters microbial community and carbon sequestration potential across different soil pH.

    PubMed

    Sheng, Yaqi; Zhu, Lizhong

    2018-05-01

    Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO 2 emission. To investigate soil microbial response and CO 2 emission of biochar across different pH levels, comparative incubation studies on CO 2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO 2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO 2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO 2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO 2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO 2 emission. Copyright © 2017. Published by Elsevier B.V.

  5. Conversion of rainforest into agroforestry and monoculture plantation in China: Consequences for soil phosphorus forms and microbial community.

    PubMed

    Wang, Jinchuang; Ren, Changqi; Cheng, Hanting; Zou, Yukun; Bughio, Mansoor Ahmed; Li, Qinfen

    2017-10-01

    Microbial communities and their associated enzyme activities affect quantity and quality of phosphorus (P) in soils. Land use change is likely to alter microbial community structure and feedback on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to land use and shifts in the amount and quality of soil phosphorus (P). We investigated effects of the conversion of rainforests into rubber agroforests (AF), young rubber (YR), and mature rubber (MR) plantations on soil P fractions (i.e., labile P, moderately labile P, occluded P, Ca P, and residual P) in Hainan Island, Southern China. Microbial community composition and microbial enzyme were assayed to assess microbial community response to forest conversion. In addition, we also identified soil P fractions that were closely related to soil microbial and chemical properties in these forests. Conversion of forest to pure rubber plantations and agroforestry system caused a negative response in soil microorganisms and activity. The bacteria phospholipid fatty acid (PLFAs) levels in young rubber, mature rubber and rubber agroforests decreased after forest conversion, while the fungal PLFAs levels did not change. Arbuscular mycorrhizal fungi (AMF) (16:1w5c) had the highest value of 0.246μmol(gOC) -1 in natural forest, followed by rubber agroforests, mature rubber and young rubber. Level of soil acid phosphatase activity declined soon (5 years) after forest conversion compared to natural forest, but it improved in mature rubber and agroforestry system. Labile P, moderately labile P, occluded P and residual P were highest in young rubber stands, while moderately labile, occluded and residual P were lowest in rubber agroforestry system. Soil P fractions such as labile P, moderately labile P, and Ca P were the most important contributors to the variation in soil microbial community composition. We also found that soil P factions differ significantly among the four transformation systems. Soil labile P faction and its potential sources (moderately labile P, occluded P, and residual P) were positively correlated with NO 3 - , but negatively correlated with AMF, suggesting that these properties play key roles in P transformation. Our study indicated that land use had an impact on microbial community composition and functions, which consequently influenced soil phosphorus availability and cycling. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Plant rhizosphere species-specific stoichiometry and regulation of extracellular enzyme and microbial community structure

    NASA Astrophysics Data System (ADS)

    Bell, C. W.; Calderon, F.; Pendall, E.; Wallenstein, M. D.

    2012-12-01

    Plant communities affect the activity and composition of soil microbial communities through alteration of the soil environment during root growth; substrate availability through root exudation; nutrient availability through plant uptake; and moisture regimes through transpiration. As a result, positive feedbacks in soil properties can result from alterations in microbial community composition and function in the rhizosphere zone. At the ecosystem-scale, many properties of soil microbial communities can vary between forest stands dominated by different species, including community composition and stoichiometry. However, the influence of smaller individual plants on grassland soils and microbial communities is less well documented. There is evidence to suggest that some plants can modify their soil environment in a manner that favors their persistence. For example, when Bromus tectorum plants invade, soil microbial communities tend to have higher N mineralization rates (in the rhizosphere zone) relative to native plants. If tight linkages between individual plant species and microbial communities inhabiting the rhizosphere exist, we hypothesized that any differences among plant species specific rhizosphere zones could be observed by shifts in: 1) soil -rhizosphere microbial community structure, 2) enzymatic C:N:P acquisition activities, 3) alterations in the soil C chemistry composition in the rhizosphere, and 4) plant - soil - microbial C:N:P elemental stoichiometry. We selected and grew 4 different C3 grasses species including three species native to the Shortgrass Steppe region (Pascopyrum smithii, Koeleria macrantha, and Vulpia octoflora) and one exotic invasive plant species (B. tectorum) in root-boxes that are designed to allow for easy access to the rhizosphere. The field soil was homogenized using a 4mm sieve and mixed 1:1 with sterile sand and seeded as monocultures (24 replicate root - boxes for each species). Plant and soil samples (along with no - plant control soil samples) were collected on day 28, 78, and 148 (N = 4 /sample period/species). Microbial community structure was quantified using the barcoded pyrosequencing protocols. We measured the potential activity of seven hydrolytic soil enzymes to represent the degradation of C, N, and P-rich substrates. Soil microbial C:N biomass responses to specific plant rhizospheres (MBC and MBN) were measured using the chloroform fumigation extraction method followed by DOC & N analysis. Fourier Transform Infrared Spectroscopy was used to assess differences in plant and soil C chemistry. We found that species specific rhizospheres are characteristic of very different soil chemical, edaphic, and microbial properties. These plant species act as gateways that introduce variability into soil C, N, and P ecosystem functional dynamics directly facilitated by rhizosphere - microbe associations. Our results suggest that nutrient stoichiometry within plant species' rhizospheres is a useful tool for identifying intra-ecosystem functional patterns. By identifying what and how specific species rhizospheres differ among the overall plant community, we can better predict how below-ground microbial community function and subsequent ecosystem processes can be influenced by alterations in plant community shifts based on the rhizosphere effects.

  7. Application of Trichoderma harzianum SQR-T037 bio-organic fertiliser significantly controls Fusarium wilt and affects the microbial communities of continuously cropped soil of cucumber.

    PubMed

    Chen, Li-Hua; Huang, Xin-Qi; Zhang, Feng-Ge; Zhao, Di-Kun; Yang, Xing-Ming; Shen, Qi-Rong

    2012-09-01

    The reduction in diversity of the soil microbial community causes the disorder of continuous cropping. The aim of this study was to determine the effects of applying Trichoderma harzianum SQR-T037 bio-organic fertiliser (BIO) on the microbial community in continuously cropped cucumber soil. Four treatments were set: (1) control, where neither seedling nursery soil (N) nor transplanted soil (T) was amended with BIO; (2) N treatment, where nursery soil was amended with BIO (1% w/w) but transplanted soil was not; (3) N + T treatment, where BIO was added to both nursery soil (1% w/w) and transplanted soil (0.5% w/w); (4) uncropped soil, where soil was left uncropped consistently. A disease index of 72.2% was found for the control treatment, while the N and N + T treatments had disease indices of only 25 and 15% respectively. Analysis of the denaturing gradient gel electrophoresis (DGGE) profiles showed that the bacterial communities of the N and N + T treatments were similar to those of the uncropped soil but distinct from those of the control soil. The fungal communities of the N and N + T treatments differed from those of both the uncropped soil and the control. Addition of BIO to both the nursery soil and the transplanted soil can diversify the microbial community in continuously cropped cucumber soil and thus effectively control Fusarium wilt of cucumber plants. Copyright © 2012 Society of Chemical Industry.

  8. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils.

    PubMed

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of complex interactions in soils for bioremediation applications.

  9. Soil Mineral Composition Matters: Response of Microbial Communities to Phenanthrene and Plant Litter Addition in Long-Term Matured Artificial Soils

    PubMed Central

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of complex interactions in soils for bioremediation applications. PMID:25222697

  10. Does the presence of large down wood at the time of a forest fire impact soil recovery?

    DOE PAGES

    Smith, Jane E.; Kluber, Laurel A.; Jennings, Tara N.; ...

    2017-02-23

    Fire may remove or create dead wood aboveground, but it is less clear how high severity burning of soils affects belowground microbial communities and soil processes, and for how long. Here, we investigated soil fungal and bacterial communities and biogeochemical responses of severely burned red soil and less severely burned black soil from a burned forest on the eastern slope of the Cascade Range in Oregon. We examined the effects of burn severity on soil nutrients and microbial communi- ties for 14 years after wildfire. Soil nutrients were significantly reduced in red soils. Soil fungi and bac teria, assessed withmore » molecular methods, steadily colonized both burn severities and soil biodiversity increased throughout the study showing that microbial communities seem to have the capacity to quickly adjust to extreme disturbances. Although richness did not vary by soil type, the fungal and bacterial community compositions varied with burn severity. This difference was greatest in the early time points following the fire and decreased with time. But, nutrient-limited conditions of red soils were detected for four years after the wildfire and raise concern about soil productivity at these sites.« less

  11. Does the presence of large down wood at the time of a forest fire impact soil recovery?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jane E.; Kluber, Laurel A.; Jennings, Tara N.

    Fire may remove or create dead wood aboveground, but it is less clear how high severity burning of soils affects belowground microbial communities and soil processes, and for how long. Here, we investigated soil fungal and bacterial communities and biogeochemical responses of severely burned red soil and less severely burned black soil from a burned forest on the eastern slope of the Cascade Range in Oregon. We examined the effects of burn severity on soil nutrients and microbial communi- ties for 14 years after wildfire. Soil nutrients were significantly reduced in red soils. Soil fungi and bac teria, assessed withmore » molecular methods, steadily colonized both burn severities and soil biodiversity increased throughout the study showing that microbial communities seem to have the capacity to quickly adjust to extreme disturbances. Although richness did not vary by soil type, the fungal and bacterial community compositions varied with burn severity. This difference was greatest in the early time points following the fire and decreased with time. But, nutrient-limited conditions of red soils were detected for four years after the wildfire and raise concern about soil productivity at these sites.« less

  12. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations.

    PubMed

    Pan, Ping; Zhao, Fang; Ning, Jinkui; Zhang, Ling; Ouyang, Xunzhi; Zang, Hao

    2018-01-01

    Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality.

  13. Impact of understory vegetation on soil carbon and nitrogen dynamic in aerially seeded Pinus massoniana plantations

    PubMed Central

    Pan, Ping; Zhao, Fang; Ning, Jinkui; Ouyang, Xunzhi; Zang, Hao

    2018-01-01

    Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) characteristics due to differences in plant functional traits. Different understory vegetation types have been reported following aerial seeding. While aerial seeding is common in areas with serious soil erosion, few studies have been conducted to investigate changes in soil C and N cycling as affected by understory vegetation in aerially seeded plantations. Here, we studied soil C and N characteristics under two naturally formed understory vegetation types (Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations. Across the two studied understory vegetation types, soil organic C was significantly correlated with all measured soil N variables, including total N, available N, microbial biomass N and water-soluble organic N, while microbial biomass C was correlated with all measured variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil C and N process. Except water-soluble organic C, all the other C and N variables were higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C, total N, available N, microbial biomass N and water-soluble organic N were consistent with the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris. Changes in soil C and N cycles might be impacted by understory vegetation types via differences in litter or root quality. PMID:29377926

  14. Soil microbial activities beneath Stipa tenacissima L. and in surrounding bare soil

    NASA Astrophysics Data System (ADS)

    Novosadová, I.; Ruiz Sinoga, J. D.; Záhora, J.; Fišerová, H.

    2010-05-01

    Open steppes dominated by Stipa tenacissima L. constitute one of the most representative ecosystems of the semi-arid zones of Eastern Mediterranean Basin (Iberian Peninsula, North of Africa). These steppes show a higher degree of variability in composition and structure. Ecosystem functioning is strongly related to the spatial pattern of grass tussocks. Soils beneath S. tenacissima grass show higher fertility and improved microclimatic conditions, favouring the formation of "resource islands" (Maestre et al., 2007). On the other hand in "resource islands" and in surrounding bare soil exists the belowground zone of influence. The competition for water and resources between plants and microorganisms is strong and mediated trough an enormous variety of exudates and resource depletion intended to regulate soil microbial communities in the rhizosphere, control herbivory, encourage beneficial symbioses, and change chemical and physical properties in soil (Pugnaire et Armas, 2008). Secondary compounds and allelopathy restrict other species growth and contribute to patchy plant distribution. Active root segregation affects not only neighbourś growth but also soil microbial activities. The objective of this study was to assess the effect of Stipa tenacissima on the key soil microbial activities under controlled incubation conditions (basal and potential respiration; net nitrogen mineralization). The experimental plots were located in the province Almería in Sierra de los Filabres Mountains near the village Gérgal (southeast Spain) in the small catchment which is situated between 1090 - 1165 m a.s.l. The area with extent of 82 000 m2 is affected by soil degradation. The climate is semiarid Mediterranean. The mean annual rainfall is of about 240 mm mostly concentrated in autumn and spring. The mean annual temperature is 13.9° C. The studied soil has a loam to sandy clay texture and is classified as Lithosol (FAO-ISRIC and ISSS, 1998). The vegetation of these areas is an open steppe dominated by Stipa tenacissima. In February 2009 representative soil samples from the top 10 cm were taken beneath grass tussock and from bare soil. Soil samples in three replicates were incubated after rewetting with distilled water (basal microbial activities) and after rewetting with the glucose solution and with the mixture of glucose and peptone solution (potential microbial activities). The CO2, C2H4 evolved under controlled conditions (60% WHC, 24°C) during a 37-day aerobic incubation were determined. Ammonia and nitrate nitrogen were estimated in percolates after simulated rainfall (on the 16th day of incubation) and in the incubated soil samples at the end of incubation. Net ammonification and net nitrification rates were determined by subtracting initial soil mineral N from both mineral N in percolates plus final mineral N contents at 37th day. Basal, potential microbial respiration and net nitrification in the soils beneath S. tenacissima were, in general, not significantly different from the bare soils. The differences between plant-covered soil and bare soil in cumulative values of CO2 production and in amounts of accumulated NO3--N (net nitrification) were less than ± 10%. Greater differences were found in the net ammonification, which were higher beneath S. tenacissima, mainly in the control (basal activities) variant (about 38 %). Significantly less ethylene produced by microbial activity in soils beneath S. tenacissima after the addition of glucose indicates the dependence of rhizospheric microbial communities on available carbon compounds mainly from root exudates. It can be concluded, similarly as published Goberna et al., (2007), that the distribution of soil microbial properties in semi-arid Mediterranean ecosystems is not necessarily associated with the patchy plant distribution and that some microbial activities characteristics can be unexpectedly homogenous.

  15. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    DOE PAGES

    Penton, Christopher R.; St. Louis, Derek; Pham, Amanda; ...

    2015-07-21

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming ismore » under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.« less

  16. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penton, Christopher R.; St. Louis, Derek; Pham, Amanda

    Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming ismore » under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Lastly, prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.« less

  17. A Lipid Extraction and Analysis Method for Characterizing Soil Microbes in Experiments with Many Samples

    PubMed Central

    Oates, Lawrence G.; Read, Harry W.; Gutknecht, Jessica L. M.; Duncan, David S.; Balser, Teri B.; Jackson, Randall D.

    2017-01-01

    Microbial communities are important drivers and regulators of ecosystem processes. To understand how management of ecosystems may affect microbial communities, a relatively precise but effort-intensive technique to assay microbial community composition is phospholipid fatty acid (PLFA) analysis. PLFA was developed to analyze phospholipid biomarkers, which can be used as indicators of microbial biomass and the composition of broad functional groups of fungi and bacteria. It has commonly been used to compare soils under alternative plant communities, ecology, and management regimes. The PLFA method has been shown to be sensitive to detecting shifts in microbial community composition. An alternative method, fatty acid methyl ester extraction and analysis (MIDI-FA) was developed for rapid extraction of total lipids, without separation of the phospholipid fraction, from pure cultures as a microbial identification technique. This method is rapid but is less suited for soil samples because it lacks an initial step separating soil particles and begins instead with a saponification reaction that likely produces artifacts from the background organic matter in the soil. This article describes a method that increases throughput while balancing effort and accuracy for extraction of lipids from the cell membranes of microorganisms for use in characterizing both total lipids and the relative abundance of indicator lipids to determine soil microbial community structure in studies with many samples. The method combines the accuracy achieved through PLFA profiling by extracting and concentrating soil lipids as a first step, and a reduction in effort by saponifying the organic material extracted and processing with the MIDI-FA method as a second step. PMID:28745639

  18. Hardwood biochar and manure co-application to a calcareous soil.

    PubMed

    Ippolito, J A; Stromberger, M E; Lentz, R D; Dungan, R S

    2016-01-01

    Biochar may affect the mineralization rate of labile organic C sources such as manures via microbial community shifts, and subsequently affect nutrient release. In order to ascertain the positive or negative priming effect of biochar on manure, dairy manure (2% by wt.) and a hardwood-based, fast pyrolysis biochar were applied (0%, 1%, 2%, and 10% by wt.) to a calcareous soil. Destructive sampling occurred at 1, 2, 3, 4, 6 and 12 months to monitor for changes in soil chemistry, water content, microbial respiration, bacterial populations, and microbial community structure. Overall results showed that increasing biochar application rate improved the soil water content, which may be beneficial in limited irrigation or rainfall areas. Biochar application increased soil organic C content and plant-available Fe and Mn, while a synergistic biochar-manure effect increased plant-available Zn. Compared to the other rates, the 10% biochar application lowered concentrations of NO3-N; effects appeared masked at lower biochar rates due to manure application. Over time, soil NO3-N increased likely due to manure N mineralization, yet soil NO3-N in the 10% biochar rate remained lower as compared to other treatments. In the presence of manure, only the 10% biochar application caused subtle microbial community structure shifts by increasing the relative amounts of two fatty acids associated with Gram-negative bacteria and decreasing Gram-positive bacterial fatty acids, each by ∼1%. Our previous findings with biochar alone suggested an overall negative priming effect with increasing biochar application rates, yet when co-applied with manure the negative priming effect was eliminated. Published by Elsevier Ltd.

  19. Soil-borne bacterial structure and diversity does not reflect community activity in Pampa biome.

    PubMed

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world's biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated.

  20. Microbial Community Composition Affects Soil Fungistasis†

    PubMed Central

    de Boer, Wietse; Verheggen, Patrick; Klein Gunnewiek, Paulien J. A.; Kowalchuk, George A.; van Veen, Johannes A.

    2003-01-01

    Most soils inhibit fungal germination and growth to a certain extent, a phenomenon known as soil fungistasis. Previous observations have implicated microorganisms as the causal agents of fungistasis, with their action mediated either by available carbon limitation (nutrient deprivation hypothesis) or production of antifungal compounds (antibiosis hypothesis). To obtain evidence for either of these hypotheses, we measured soil respiration and microbial numbers (as indicators of nutrient stress) and bacterial community composition (as an indicator of potential differences in the composition of antifungal components) during the development of fungistasis. This was done for two fungistatic dune soils in which fungistasis was initially fully or partly relieved by partial sterilization treatment or nutrient addition. Fungistasis development was measured as restriction of the ability of the fungi Chaetomium globosum, Fusarium culmorum, Fusarium oxysporum, and Trichoderma harzianum to colonize soils. Fungistasis did not always reappear after soil treatments despite intense competition for carbon, suggesting that microbial community composition is important in the development of fungistasis. Both microbial community analysis and in vitro antagonism tests indicated that the presence of pseudomonads might be essential for the development of fungistasis. Overall, the results lend support to the antibiosis hypothesis. PMID:12571002

  1. Impact of land-use and long-term (>150 years) charcoal accumulation on microbial activity, biomass and community structure in temperate soils (Belgium).

    NASA Astrophysics Data System (ADS)

    Hardy, Brieuc; Cornelis, Jean-Thomas; Dufey, Joseph E.

    2015-04-01

    In the last decade, biochar has been increasingly investigated as a soil amendment for long-term soil carbon sequestration while improving soil fertility. On the short term, biochar application to soil generally increases soil respiration as well as microbial biomass and activity and affects significantly the microbial community structure. However, such effects are relatively short-term and tend to vanish over time. In our study, we investigated the long-term impact of charcoal accumulation and land-use on soil biota in temperate haplic Luvisols developed in the loess belt of Wallonia (Belgium). Charcoal-enriched soils were collected in the topsoil of pre-industrial (>150 years old) charcoal kilns in forest (4 sites) and cropland (5 sites). The topsoil of the adjacent charcoal-unaffected soils was sampled in a comparable way. Soils were characterized (pH, total, organic and inorganic C, total N, exchangeable Ca, Mg, K, Na, cation exchange capacity and available P) and natural soil organic matter (SOM) and black carbon (BC) contents were determined by differential scanning calorimetry. After rewetting at pF 2.5, soils were incubated during 140 days at 20 °C. At 70 days of incubation, 10 g of each soil were freeze dried in order to measure total microbial biomass and community structure by PLFA analysis. The PLFA dataset was analyzed by principal component analysis (PCA) while soil parameters were used as supplementary variables. For both agricultural and forest soils, the respiration rate is highly related to the total microbial biomass (R²=0.90). Both soil respiration and microbial biomass greatly depend on the SOM content, which indicates that the BC pool is relatively inert microbiologically. Land-use explains most of the variance in the PLFA dataset, largely governing the first principal component of the ACP. In forest soils, we observe a larger proportion of gram + bacteria, actinomycetes and an increased bacteria:fungi ratio compared to cropland, where gram - bacteria, arbuscular mycorrhizal fungi and 18:2 and 18:3 fungi are more present. BC is quite well represented (R=-0.765) by the third principal component of the PCA, representing 12.2 % of the total variance. It has limited impact on the community structure, particularly in cropland. However, in forest BC is negatively correlated (R=-0.785) with 18:1 fungi. The more pronounced effect of BC on community structure under forest could result from modified trophic conditions at kiln site (e.g. higher pH, lower available P content, …) while cultivation practices attenuated such differences over time in cropland. In conclusion, our survey tends to confirm that the influence of BC on the soil microbiological parameters is governed by indirect effects on trophic conditions. On the other hand, land-use affects dramatically soil microbial community structure.

  2. Microbial communities may modify how litter quality affects potential decomposition rates as tree species migrate

    Treesearch

    Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford

    2013-01-01

    Background and aims Climate change alters regional plant species distributions, creating new combinations of litter species and soil communities. Biogeographic patterns in microbial communities relate to dissimilarity in microbial community function, meaning novel litters to communities may decompose differently than predicted from their chemical composition. Therefore...

  3. Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Zachary B.; Upchurch, Rima A.; Zak, Donald R.

    Fossil fuel combustion and fertilizer use has increased the amount of biologically available N entering terrestrial ecosystems. Nonetheless, our understanding of how anthropogenic N may alter the physiological mechanisms by which soil microorganisms cycle N in soil is still developing. Here, we applied shotgun metagenomics to a replicated long-term field experiment to determine how two decades of experimental N deposition, at a rate expected by mid-century, has affected the genetic potential of the soil microbial community to cycle N in soils. Experimental N deposition lead to a significant and persistent increase in functional assemblages mediating N cycle transformations associated withmore » ecosystem N loss (i.e., denitrification and nitrification), whereas functional assemblages associated with N input and retention (i.e., N fixation and microbial N assimilation) were less positively affected. Furthermore, the abundance and composition of microbial taxa, as well as functional assemblages involved in housekeeping functions (i.e., DNA replication) were unaffected by experimental N deposition. Here taken together, our results suggest that functional genes and gene pathways associated with ecosystem N loss have been favored by experimental N deposition, which may represent a genetic mechanism fostering increased N loss as anthropogenic N deposition increases in the future.« less

  4. Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition

    DOE PAGES

    Freedman, Zachary B.; Upchurch, Rima A.; Zak, Donald R.; ...

    2016-10-13

    Fossil fuel combustion and fertilizer use has increased the amount of biologically available N entering terrestrial ecosystems. Nonetheless, our understanding of how anthropogenic N may alter the physiological mechanisms by which soil microorganisms cycle N in soil is still developing. Here, we applied shotgun metagenomics to a replicated long-term field experiment to determine how two decades of experimental N deposition, at a rate expected by mid-century, has affected the genetic potential of the soil microbial community to cycle N in soils. Experimental N deposition lead to a significant and persistent increase in functional assemblages mediating N cycle transformations associated withmore » ecosystem N loss (i.e., denitrification and nitrification), whereas functional assemblages associated with N input and retention (i.e., N fixation and microbial N assimilation) were less positively affected. Furthermore, the abundance and composition of microbial taxa, as well as functional assemblages involved in housekeeping functions (i.e., DNA replication) were unaffected by experimental N deposition. Here taken together, our results suggest that functional genes and gene pathways associated with ecosystem N loss have been favored by experimental N deposition, which may represent a genetic mechanism fostering increased N loss as anthropogenic N deposition increases in the future.« less

  5. Plant community influence on soil microbial response after a wildfire in Sierra Nevada National Park (Spain).

    PubMed

    Bárcenas-Moreno, Gema; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Mataix-Beneyto, Jorge

    2016-12-15

    Plant community influence on microbial response after fire has been studied in a Sierra Nevada National Park area affected by a wildfire in 2005. Two different plant communities adapted to different altitudes were selected to analyse possible differences on soil microbial recolonisation process after fire, in oak forest and high mountain shrub communities. Microbial abundance, activity and community composition were monitored to evaluate medium-term changes. Microbial abundance was studied by mean of microbial biomass carbon and plate count methods; microbial activity was analysed by microbial respiration and bacterial growth while microbial community composition was determined by analysing phospholipid fatty acid pattern. Under unburnt conditions oak forest showed higher nutrient content, pH and microbial abundance and activity values than the high mountain shrubs community. Different parameters studied showed different trends with time, highlighting important changes in microbial community composition in high mountain shrubs from first sampling to the second one. Post-fire recolonisation process was different depending on plant community studied. Highlighting fungal response and microbial activity were stimulated in burnt high mountain shrubs community whilst it was negatively affected in oak forest. Fire induced changes in oak forest were almost neutralized 20months after the fire, while high mountain shrubs community still showed fire-induced changes at the end of the study. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effects of microcystins contamination on soil enzyme activities and microbial community in two typical lakeside soils.

    PubMed

    Cao, Qing; Steinman, Alan D; Su, Xiaomei; Xie, Liqiang

    2017-12-01

    A 30-day indoor incubation experiment was conducted to investigate the effects of different concentrations of microcystin (1, 10, 100 and 1000 μg eq. MC-LR L -1 ) on soil enzyme activity, soil respiration, physiological profiles, potential nitrification, and microbial abundance (total bacteria, total fungi, ammonia-oxidizing bacteria and archaea) in two lakeside soils in China (Soil A from the lakeside of Lake Poyanghu at Jiujiang; Soil B from the lakeside of Lake Taihu at Suzhou). Of the enzymes tested, only phenol oxidase activity was negatively affected by microcystin application. In contrast, dehydrogenase activity was stimulated in the 1000 μg treatment, and a stimulatory effect also occurred with soil respiration in contaminated soil. The metabolic profiles of the microbial communities indicated that overall carbon metabolic activity in the soils treated with high microcystin concentrations was inhibited, and high concentrations of microcystin also led to different patterns of potential carbon utilization. High microcystin concentrations (100, 1000 μg eq. MC-LR L -1 in Soil A; 10, 100 1000 μg eq. MC-LR L -1 in Soil B) significantly decreased soil potential nitrification rate. Furthermore, the decrease in soil potential nitrification rate was positively correlated with the decrease of the amoA gene abundance, which corresponds to the ammonia-oxidizing bacterial community. We conclude that application of microcystin-enriched irrigation water can significantly impact soil microbial community structure and function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Vertical and horizontal distributions of microbial abundances and enzymatic activities in propylene-glycol-affected soils.

    PubMed

    Biró, Borbála; Toscano, Giuseppe; Horváth, Nikoletta; Matics, Heléna; Domonkos, Mónika; Scotti, Riccardo; Rao, Maria A; Wejden, Bente; French, Helen K

    2014-01-01

    The natural microbial activity in the unsaturated soil is vital for protecting groundwater in areas where high loads of biodegradable contaminants are supplied to the surface, which usually is the case for airports using aircraft de-icing fluids (ADF) in the cold season. Horizontal and vertical distributions of microbial abundance were assessed along the western runway of Oslo Airport (Gardermoen, Norway) to monitor the effect of ADF dispersion with special reference to the component with the highest chemical oxygen demand (COD), propylene glycol (PG). Microbial abundance was evaluated by several biondicators: colony-forming units (CFU) of some physiological groups (aerobic and anaerobic heterotrophs and microscopic fungi), most probable numbers (MPN) of PG degraders, selected catabolic enzymatic activities (fluorescein diacetate (FDA) hydrolase, dehydrogenase, and β-glucosidase). High correlations were found between the enzymatic activities and microbial counts in vertical soil profiles. All microbial abundance indicators showed a steep drop in the first meter of soil depth. The vertical distribution of microbial abundance can be correlated by a decreasing exponential function of depth. The horizontal trend of microbial abundance (evaluated as total aerobic CFU, MPN of PG-degraders, and FDA hydrolase activity) assessed in the surface soil at an increasing distance from the runway is correlated negatively with the PG and COD loads, suggesting the relevance of other chemicals in the modulation of microbial growth. The possible role of potassium formate, component of runway de-icers, has been tested in the laboratory by using mixed cultures of Pseudomonas spp., obtained by enrichment with a selective PG medium from soil samples taken at the most contaminated area near the runway. The inhibitory effect of formate on the growth of PG degraders is proven by the reduction of biomass yield on PG in the presence of formate.

  8. Soil microbiome characteristics and soilborne disease development associated with long-term potato cropping system practices

    USDA-ARS?s Scientific Manuscript database

    Potato cropping system practices substantially affect soil microbial communities and the development of soilborne diseases. Cropping systems incorporating soil health management practices, such as longer rotations, disease-suppressive crops, reduced tillage, and/or organic amendments can potentially...

  9. Carcass mass has little influence on the structure of gravesoil microbial communities.

    PubMed

    Weiss, Sophie; Carter, David O; Metcalf, Jessica L; Knight, Rob

    2016-01-01

    Little is known about how variables, such as carcass mass, affect the succession pattern of microbes in soils during decomposition. To investigate the effects of carcass mass on the soil microbial community, soils associated with swine (Sus scrofa domesticus) carcasses of four different masses were sampled until the 15th day of decomposition during the month of June in a pasture near Lincoln, Nebraska. Soils underneath swine of 1, 20, 40, and 50 kg masses were investigated in triplicate, as well as control sites not associated with a carcass. Soil microbial communities were characterized by sequencing the archaeal, bacterial (16S), and eukaryotic (18S) rRNA genes in soil samples. We conclude that time of decomposition was a significant influence on the microbial community, but carcass mass was not. The gravesoil associated with 1 kg mass carcasses differs most compared to the gravesoil associated with other carcass masses. We also identify the 15 most abundant bacterial and eukaryotic taxa, and discuss changes in their abundance as carcass decomposition progressed. Finally, we show significant decreases in alpha diversity for carcasses of differing mass in pre-carcass rupture (days 0, 1, 2, 4, 5, and 6 postmortem) versus post-carcass rupture (days 9 and 15 postmortem) microbial communities.

  10. Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling.

    PubMed

    Zhang, Naili; Liu, Weixing; Yang, Haijun; Yu, Xingjun; Gutknecht, Jessica L M; Zhang, Zhe; Wan, Shiqiang; Ma, Keping

    2013-11-01

    A better understanding of soil microbial ecology is critical to gaining an understanding of terrestrial carbon (C) cycle-climate change feedbacks. However, current knowledge limits our ability to predict microbial community dynamics in the face of multiple global change drivers and their implications for respiratory loss of soil carbon. Whether microorganisms will acclimate to climate warming and ameliorate predicted respiratory C losses is still debated. It also remains unclear how precipitation, another important climate change driver, will interact with warming to affect microorganisms and their regulation of respiratory C loss. We explore the dynamics of microorganisms and their contributions to respiratory C loss using a 4-year (2006-2009) field experiment in a semi-arid grassland with increased temperature and precipitation in a full factorial design. We found no response of mass-specific (per unit microbial biomass C) heterotrophic respiration to warming, suggesting that respiratory C loss is directly from microbial growth rather than total physiological respiratory responses to warming. Increased precipitation did stimulate both microbial biomass and mass-specific respiration, both of which make large contributions to respiratory loss of soil carbon. Taken together, these results suggest that, in semi-arid grasslands, soil moisture and related substrate availability may inhibit physiological respiratory responses to warming (where soil moisture was significantly lower), while they are not inhibited under elevated precipitation. Although we found no total physiological response to warming, warming increased bacterial C utilization (measured by BIOLOG EcoPlates) and increased bacterial oxidation of carbohydrates and phenols. Non-metric multidimensional scaling analysis as well as ANOVA testing showed that warming or increased precipitation did not change microbial community structure, which could suggest that microbial communities in semi-arid grasslands are already adapted to fluctuating climatic conditions. In summary, our results support the idea that microbial responses to climate change are multifaceted and, even with no large shifts in community structure, microbial mediation of soil carbon loss could still occur under future climate scenarios.

  11. Temperature Effects on Microbial CH4 and CO2 Production in Permafrost-Affected Soils From the Barrow Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Roy Chowdhury, T.; Zheng, J.; Moon, J. W.; Yang, Z.; Gu, B.; Wullschleger, S. D.

    2015-12-01

    Warmer Arctic temperatures are increasing the annual soil thaw depth and prolonging the thaw season in Alaskan permafrost zones. This change exposes organic matter buried in the soils and permafrost to microbial degradation and mineralization to form CO2 and CH4. The proportion and fluxes of these greenhouse gases released into the atmosphere control the global feedback on warming. To improve representations of these biogeochemical processes in terrestrial ecosystem models we compared soil properties and microbial activities in core samples of polygonal tundra from the Barrow Environmental Observatory. Measurements of soil water potential through the soil column characterized water binding to the organic and mineral components. This suction combines with temperature to control freezing, gas diffusion and microbial activity. The temperature-dependence of CO2 and CH4 production from anoxic soil incubations at -2, +4 or +8 °C identified a significant lag in methanogenesis relative to CO2 production by anaerobic respiration and fermentation. Changes in the abundance of methanogen signature genes during incubations indicate that microbial population shifts caused by thawing and warmer temperatures drive changes in the mixtures of soil carbon degradation products. Comparisons of samples collected across the microtopographic features of ice-wedge polygons address the impacts of water saturation, iron reduction and organic matter content on CH4 production and oxidation. These combined measurements build process understanding that can be applied across scales to constrain key response factors in models that address Arctic soil warming.

  12. Root phenotypic differences across a historical gradient of wheat genotypes alter soil rhizosphere communities and their impact on nitrogen cycling

    NASA Astrophysics Data System (ADS)

    Kallenbach, C.; Junaidi, D.; Fonte, S.; Byrne, P. F.; Wallenstein, M. D.

    2017-12-01

    Plants and soil microorganisms can exhibit coevolutionary relationships where, for example, in exchange for root carbon, rhizosphere microbes enhance plant fitness through improved plant nutrient availability. Organic agriculture relies heavily on these interactions to enhance crop nitrogen (N) availability. However, modern agriculture and breeding under high mineral N fertilization may have disrupted these interactions through alterations to belowground carbon inputs and associated impacts on the soil microbiome. As sustainability initiatives lead to a restoration of agricultural soil organic matter, modern crop cultivars may still be constrained by crop roots' ability to effectively support microbial-mediated N mineralization. We investigated how differences in root traits across a historical gradient of spring wheat genotypes influence the rhizosphere microbial community and effects on soil N and wheat yield. Five genotypes, representing wild (Wild), pre-Green Revolution (Old), and modern (Modern) wheat, were grown under greenhouse conditions in soils with and without compost to also compare genotype response to difference in native soil microbiomes and organic resource availability. We analyzed rhizosphere soils for microbial community composition, enzyme activities, inorganic N, and microbial biomass. Root length density, surface area, fine root volume and root:shoot ratio were higher in the Wild and Old genotype (Gypsum) compared to the two Modern genotypes (P<0.01). The Wild and Old genotype had a more positive response to compost for root length and diameter, N-cycling enzyme activities, microbial biomass, and soil inorganic N, compared to Modern genotypes. However, under unamended soils, the microbial community and soil N were not affected by genotypes. We also relate how root traits and N cycling across genotypes correspond to microbial community composition. Our preliminary data suggest that the older wheat genotypes and their root traits are more effective at enhancing microbial N mineralization under organically managed soils. Thus, to optimize crop N availability from organic sources, breeding efforts should consider incorporating root traits of older genotypes to better support the beneficial interactions between crop roots and their rhizosphere microbiome.

  13. Contributions of understory and/or overstory vegetations to soil microbial PLFA and nematode diversities in Eucalyptus monocultures.

    PubMed

    Zhao, Jie; Wan, Songze; Zhang, Chenlu; Liu, Zhanfeng; Zhou, Lixia; Fu, Shenglei

    2014-01-01

    Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA) and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon-Wiener diversity index (H') and Pielou evenness index (J) and the increase in Simpson dominance index (λ) after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service.

  14. The Tale of a Neglected Energy Source: Elevated Hydrogen Exposure Affects both Microbial Diversity and Function in Soil

    DOE PAGES

    Khdhiri, Mondher; Piché-Choquette, Sarah; Tremblay, Julien; ...

    2017-03-31

    The enrichment of H 2-oxidizing bacteria (HOB) by H 2 generated by nitrogen-fixing nodules has been shown to have a fertilization effect on several different crops. The benefit of HOB is attributed to their production of plant growth-promoting factors, yet their interactions with other members of soil microbial communities have received little attention. In this paper, we report that the energy potential of H 2, when supplied to soil, alters ecological niche partitioning of bacteria and fungi, with multifaceted consequences for both generalist and specialist microbial functions. We used dynamic microcosms to expose soil to the typical atmospheric H 2more » mixing ratio (0.5 ppmv) permeating soils, as well as mixing ratios comparable to those found at the soil-nodule interface (10,000 ppmv). Elevated H 2 exposure exerted direct effects on two HOB subpopulations distinguished by their affinity for H 2 while enhancing community level carbon substrate utilization potential and lowering CH 4 uptake activity in soil. We found that H 2 triggered changes in the abundance of microorganisms that were reproducible yet inconsistent across soils at the taxonomic level and even among HOB. Overall, H 2 exposure altered microbial process rates at an intensity that depends upon soil abiotic and biotic features. Finally, we argue that further examination of direct and indirect effects of H 2 on soil microbial communities will lead to a better understanding of the H 2 fertilization effect and soil biogeochemical processes.« less

  15. The Tale of a Neglected Energy Source: Elevated Hydrogen Exposure Affects both Microbial Diversity and Function in Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khdhiri, Mondher; Piché-Choquette, Sarah; Tremblay, Julien

    The enrichment of H 2-oxidizing bacteria (HOB) by H 2 generated by nitrogen-fixing nodules has been shown to have a fertilization effect on several different crops. The benefit of HOB is attributed to their production of plant growth-promoting factors, yet their interactions with other members of soil microbial communities have received little attention. In this paper, we report that the energy potential of H 2, when supplied to soil, alters ecological niche partitioning of bacteria and fungi, with multifaceted consequences for both generalist and specialist microbial functions. We used dynamic microcosms to expose soil to the typical atmospheric H 2more » mixing ratio (0.5 ppmv) permeating soils, as well as mixing ratios comparable to those found at the soil-nodule interface (10,000 ppmv). Elevated H 2 exposure exerted direct effects on two HOB subpopulations distinguished by their affinity for H 2 while enhancing community level carbon substrate utilization potential and lowering CH 4 uptake activity in soil. We found that H 2 triggered changes in the abundance of microorganisms that were reproducible yet inconsistent across soils at the taxonomic level and even among HOB. Overall, H 2 exposure altered microbial process rates at an intensity that depends upon soil abiotic and biotic features. Finally, we argue that further examination of direct and indirect effects of H 2 on soil microbial communities will lead to a better understanding of the H 2 fertilization effect and soil biogeochemical processes.« less

  16. Anoxic conditions drive phosphorus limitation in humid tropical forest soil microorganisms

    NASA Astrophysics Data System (ADS)

    Gross, A.; Pett-Ridge, J.; Weber, P. K.; Blazewicz, S.; Silver, W. L.

    2017-12-01

    The elemental stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) of soil microorganisms (C:N:P ratios) regulates transfers of energy and nutrients to higher trophic levels. In humid tropical forests that grow on P-depleted soils, the ability of microbes to concentrate P from their surroundings likely plays a critical role in P-retention and ultimately in forest productivity. Models predict that climate change will cause dramatic changes in rainfall patterns in the humid tropics and field studies have shown these changes can affect the redox state of tropical forest soils, influencing soil respiration and biogeochemical cycling. However, the responses of soil microorganisms to changing environmental conditions are not well known. Here, we incubated humid tropical soils under oxic or anoxic conditions with substrates differing in both C:P stoichiometry and lability, to assess how soil microorganisms respond to different redox regimes. We found that under oxic conditions, microbial C:P ratios were similar to the global optimal ratio (55:1), indicating most microbial cells can adapt to persistent aerated conditions in these soils. However, under anoxic conditions, the ability of soil microbes to acquire soil P declined and their C:P ratios shifted away from the optimal ratio. NanoSIMS elemental imaging of single cells extracted from soil revealed that under anoxic conditions, C:P ratios were above the microbial optimal value in 83% of the cells, in comparison to 41% under oxic conditions. These data suggest microbial growth efficiency switched from being energy limited under oxic conditions to P-limited under anoxic conditions, indicating that, microbial growth in low P humid tropical forests soils may be most constrained by P-limitation when conditions are oxygen-limited. We suggest that differential microbial responses to soil redox states could have important implications for productivity of humid tropical forests under future climate scenarios.

  17. Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    PubMed

    Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei

    2017-02-01

    Soil contamination by heavy metals in combination with elevated atmospheric CO 2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO 2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p < 0.05) under elevated CO 2 relative to ambient CO 2 ; however, l-asparaginase activity decreased. Addionally, elevated CO 2 alone affected soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO 2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO 2 . In addition, elevated CO 2 significantly (p < 0.05) enhanced the removal ratio of Cd and Pb in rhizosphere soils. Overall, elevated CO 2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO 2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    NASA Astrophysics Data System (ADS)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same soil sample and quantified spectrophotometrically using a Nanodrop ND-1000. Analysis of variance (ANOVA) was carried out in order to evaluate the significant differences in SMCs activity between all soil matrices. To associate the SMCs responses to the tracers of distinct agricultural farming systems, data were further explored under Principal Component Analysis (PCA). Biomarkers responses were combined into a stress index (IBR), described by Beliaeff & Burgeot (2002). Results/Discussion: All SMCs parameters displayed significant differences between agricultural soils and reference soils, except for metabolic quotient and RNA to DNA ratio (p<0.05), revealing that SMCs are suitable bioindicators of agricultural soil quality in volcanic soils. No significant differences were found for the soil basal respiration and acid phosphatase among the farming systems, suggesting that soils amendments (a cross farming practice) are a stressing factor disrupting local SMCs activities. The PCA analysis revealed that lithium is the priority metal affecting the SMCs responses in conventional farming systems. The IBR values indicated that soils ecosystem health between farming systems are ranked as: organic (4.96) > traditional (12.94) > conventional (17.28) (the higher the value, the worse the soil health status). Conclusion: Results support the soil microbial toolbox as suitable bioindicators of metal pollution in agricultural volcanic soils, highlighting the importance of integrated biomarker-based strategies for the development of the "Trace Metal Footprint" in Andosols.

  19. The influence of long-term copper contaminated agricultural soil at different pH levels on microbial communities and springtail transcriptional regulation.

    PubMed

    de Boer, Tjalf E; Taş, Neslihan; Braster, Martin; Temminghoff, Erwin J M; Röling, Wilfred F M; Roelofs, Dick

    2012-01-03

    Copper has long been applied for agricultural practises. Like other metals, copper is highly persistent in the environment and biologically active long after its use has ceased. Here we present a unique study on the long-term effects (27 years) of copper and pH on soil microbial communities and on the springtail Folsomia candida an important representative of the soil macrofauna, in an experiment with a full factorial, random block design. Bacterial communities were mostly affected by pH. These effects were prominent in Acidobacteria, while Actinobacteria and Gammaroteobacteria communities were affected by original and bioavailable copper. Reproduction and survival of the collembolan F. candida was not affected by the studied copper concentrations. However, the transcriptomic responses to copper reflected a mechanism of copper transport and detoxification, while pH exerted effects on nucleotide and protein metabolism and (acute) inflammatory response. We conclude that microbial community structure reflected the history of copper contamination, while gene expression analysis of F. candida is associated with the current level of bioavailable copper. The study is a first step in the development of a molecular strategy aiming at a more comprehensive assessment of various aspects of soil quality and ecotoxicology.

  20. [Effects of warming and precipitation exclusion on soil N2O fluxes in subtropical forests.

    PubMed

    Tang, Cai di; Zhang, Zheng; Cai, Xiao Zhen; Guo, Jian Fen; Yang, Yu Sheng

    2017-10-01

    In order to explore how soil warming and precipitation exclusion influence soil N2O fluxes, we used related functional genes as markers, and four treatments were set up, i.e. , control (CT), soil warming (W, 5 ℃ above the ambient temperature of the control), 50% precipitation reduction (P), soil warming plus 50% precipitation reduction (WP). The results showed that precipitation exclusion reduced soil ammonium nitrogen concentration significantly. Soil warming decreased soil N2O flux and soil denitrification potential significantly. Soil microbial biomass nitrogen (MBN) in warming treatment (W) and precipitation exclusion treatment (P) was significantly lower than that in the control. The amoA gene abundance of AOA was negatively correlated with MBN and ammonium nitrogen contents, but neither soil nitrification potential nor soil N2O flux was correlated with the amoA gene abundance of AOA. Path analysis showed that the denitrification potential affected soil N2O flux directly, while microbial biomass phosphorus (MBP) and warming affected soil N2O flux indirectly through their direct effects on denitrification potential. Temperature might be the main driver of N2O flux in subtropical forest soils. Global warming would reduce N2O emissions from subtropical forest soils.

  1. Effects of land-use management on soil microbes to degrade organic matter through captured metagenomics and metatranscriptomics

    NASA Astrophysics Data System (ADS)

    Manoharan, Lokeshwaran; Ahren, Dag; Urich, Tim; Hedlund, Katarina

    2017-04-01

    The role of microbial communities in different soil ecosystem processes has been hard to determine in the past due to their vast diversity both in terms of taxonomy and functions. Molecular methods such as high-throughput sequencing of environmental communities have made it easier to delve into these diverse ecosystems and understand their functions. Trait-based approaches through quantification of functional genes and their expression have shown to be much more meaningful in explaining ecosystem functioning than the taxonomy based approaches. One such approach is the "captured metagenomics" technique where only the genetic regions of functional enzymes involved in a particular ecosystem process such as carbon metabolism is targeted from the genetic pool and sequenced. This allows focused investigations of ecosystem processes through functional genes in complex environments such as soils. In our study, we have implemented this method to look into the effects of land-use management on the functional genetic diversity of microbial communities to degrade soil organic matter (SOM). Soils from different agricultural and grassland fields in southern Sweden were chosen in this study. Oligonucleotide probes were generated based on the genetic sequences of enzymes involved in organic matter degradation from public databases. On the DNA level, there was a significant shift in the functional genetic diversity of microbes to degrade SOM due to land-use management. Grasslands had a higher abundance and diversity of genes coding for enzymes involved in SOM degradation than agricultural soils. The amount of nitrogen was the main factor that affected the functional diversity of the microbes that degrade SOM in these soils. Interestingly, there was no correlation between the functional diversity of microbes to their taxonomic diversity measured through traditional ribosomal sequencing. In addition, for the first time the capture method was used in large scale, targeting many genes coding for SOM degrading enzymes coupled with RNA/cDNA from the soils to quantify their expressions. For this, the soils from different land-use managements were treated with straw, while the microbial growth rates in these soils were also monitored for a month. RNA was extracted from at three different time points from both treated and untreated soils from different land-use managements. Agricultural soils with straw addition had higher relative microbial growth rates and higher abundance of gene sequences captured compared to the control and grassland soils. Land-use management seems to be the most significant factor in affecting the expression of SOM degrading genes in these soils. Additional analyses of the generated data are expected to provide valuable insights on how land-use management affects the microbial responses during addition of organic matter in soils.

  2. [Effect of X-ray micro-computed tomography on the metabolic activity and diversity of soil microbial communities in two Chinese soils].

    PubMed

    Zu, Qianhui; Fang, Huan; Zhou, Hu; Zhang, Jianwei; Peng, Xinhua; Lin, Xiangui; Feng, Youzhi

    2016-01-04

    X-ray micro-computed tomography (micro-CT) technology, as used in the in situ and nondestructive analysis of soil physical structure, provides the opportunity of associating soil physical and biological assays. Due to the high heterogeneity of the soil matrix, X-ray micro-CT scanning and soil microbial assays should be conducted on the same soil sample. This raises the question whether X-ray micro-CT influences microbial function and diversity of the sample soil to be analyzed. To address this question, we used plate counting, microcalorimetry and pyrosequencing approaches to evaluate the effect of X-ray--at doses typically used in micro-CT--on soil microorganisms in a typical soil of North China Plain, Fluvo-aquic soil and in a typical soil of subtropical China, Ultisol soil, respectively. In both soils radiation decreased the number of viable soil bacteria and disturbed their thermogenic profiles. At DNA level, pyrosequencing revealed that alpha diversities of two soils biota were influenced in opposite ways, while beta diversity was not affected although the relative abundances of some guilds were changed. These findings indicate that the metabolically active aspects of soil biota are not compatible with X-ray micro-CT; while the beta molecular diversity based on pyrosequencing could be compatible.

  3. Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie

    NASA Astrophysics Data System (ADS)

    Shaw, E. Ashley; Denef, Karolien; Milano de Tomasel, Cecilia; Cotrufo, M. Francesca; Wall, Diana H.

    2016-05-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root-litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root-litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable but also significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition, which, in turn, is significantly affected by fire. Not only does fire affect the soil community and root decomposition, but the lower microbial abundance, greater root turnover, and the increased incorporation of root litter C by microbes and nematodes for AB suggests that annual burning increases root-litter-derived C flow through the soil food web of the tallgrass prairie.

  4. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil.

    PubMed

    Wu, Manli; Ye, Xiqiong; Chen, Kaili; Li, Wei; Yuan, Jing; Jiang, Xin

    2017-04-01

    A laboratory study was conducted to evaluate the impact of bioaugmentation plus biostimulation (BR, added both nutrients and bacterial consortia), and natural attenuation (NA) on hydrocarbon degradation efficiency and microflora characterization during remediation of a freshly contaminated soil. After 112 days of remediation, the initial level of total petroleum hydrocarbon (TPH) (61,000 mg/kg soil) was reduced by 4.5% and 5.0% in the NA and BR treatments, respectively. Bioremediation did not significantly enhance TPH biodegradation compared to natural attenuation. The degradation of the aliphatic fraction was the most active with the degradation rate of 30.3 and 28.7 mg/kg/day by the NA and BR treatments, respectively. Soil microbial activities and counts in soil were generally greater for bioremediation than for natural attenuation. MiSeq sequencing indicated that the diversity and structure of microbial communities were affected greatly by bioremediation. In response to bioremediation treatment, Promicromonospora, Pseudomonas, Microcella, Mycobacterium, Alkanibacter, and Altererythrobacter became dominant genera in the soil. The result indicated that combining bioaugmentation with biostimulation did not improve TPH degradation, but soil microbial activities and structure of microbial communities are sensitive to bioremediation in short-term and heavily oil-contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Bacterial and fungal growth for monitoring the impact of wildfire combined or not with different soil stabilization treatments

    NASA Astrophysics Data System (ADS)

    Barreiro, Ana; Baath, Erland; Díaz-Raviña, Montserrat

    2015-04-01

    Soil stabilization techniques are rapidly gaining acceptance as efficient tool for reducing post-fire erosion. However, despite its interest, information concerning their impact on soil biota is scarce. We examined, under field conditions, the bacterial and fungal medium-term responses in a hillslope area located in Laza (NW Spain) affected by a high severity wildfire with the following treatments established by triplicate (4 x 20 m plots): unburnt control soil, burnt control soil, burnt soil with rye seeding and burnt soil with straw mulch. The bacterial and fungal growth, as well as respiration, were measured 4 years after fire and application of treatments using leucine incorporation for bacterial growth and acetate-in-ergosterol incorporation for fungal growth. The results showed that soil respiration and fungal biomass were negatively affected by fire, in the top layer (0-5 cm), while bacterial and fungal growth was stimulated. These microbial changes induced by fire were associated with modifications in organic matter (50% reduction in C content) and soil pH (increase of 0.5-0.9 units). Thus, the results suggested that under acid environment (pH in water 3.5) post-fire conditions might have favoured both microbial groups, which is supported by the fact that estimated bacterial and fungal growth were positive and significant correlated with soil pH (range of 3.5-4.5). This contrast with the well-known reported investigations showing that bacteria rather than fungi proliferation occurred after prescribed fire or wildfire; it should be noticed, however, that soils with a higher pH than that in the present study were used. Our data also indicated that bacterial and fungal communities were not significantly affected by seeding and mulching treatments. The results highlighted the importance of pre-fire soil pH as key factor in determining the microbial response after fire. Acknowledgements. A. Barreiro is recipient of FPU grant from Spanish Ministry of Education. Keywords: wildfire, seeding, mulching, bacterial growth, fungal growth

  6. Increasing microbial diversity and nitrogen cycling potential of burnt forest soil in Spain through post-fire management

    NASA Astrophysics Data System (ADS)

    Pereg, Lily; Mataix-Solera, Jorge; McMillan, Mary; García-Orenes, Fuensanta

    2016-04-01

    Microbial diversity and function in soils are increasingly assessed by the application of molecular methods such as sequencing and PCR technology. We applied these techniques to study microbial recovery in post-fire forest soils. The recovery of forest ecosystems following severe fire is influenced by post-fire management. The removal of burnt tree stumps (salvage logging) is a common practice in Spain following fire. In some cases, the use of heavy machinery in addition to the vulnerability of soils to erosion and degradation make this management potentially damaging to soil, and therefore to the ecosystem. We hypothesized that tree removal slows down the recovery of soil biological communities including microbial and plant communities and contributes to soil degradation in the burnt affected area. The study area is located in "Sierra de Mariola Natural Park" in Alcoi, Alicante (E Spain). A big forest fire (>500 has) occurred in July 2012. The forest is composed mainly of Pinus halepensis trees with an understory of typical Mediterranean shrubs species such as Quercus coccifera, Rosmarinus officinalis, Thymus vulgaris, Brachypodium retusum, etc. Soil is classified as a Typic Xerorthent (Soil Survey Staff, 2014) developed over marls. In February 2013, salvage logging (SL) treatment, with a complete extraction of the burned wood using heavy machinery, was applied to a part of the affected forest. Plots for monitoring the effects of SL were installed in this area and in a similar nearby control (C) area, where no SL treatment was done. The recovery of soil bacterial and fungal communities post-fire with and without tree removal was analysed by using Next-Generation sequencing and the abundance of functional genes, related to nitrogen cycling, in the soil was estimated using quantitative PCR (qPCR). We will present the methods used and the results of our study in this PICO presentation.

  7. Modelling fungal growth in heterogeneous soil: analyses of the effect of soil physical structure on fungal community dynamics

    NASA Astrophysics Data System (ADS)

    Falconer, R.; Radoslow, P.; Grinev, D.; Otten, W.

    2009-04-01

    Fungi play a pivital role in soil ecosystems contributing to plant productivity. The underlying soil physical and biological processes responsible for community dynamics are interrelated and, at present, poorly understood. If these complex processes can be understood then this knowledge can be managed with an aim to providing more sustainable agriculture. Our understanding of microbial dynamics in soil has long been hampered by a lack of a theoretical framework and difficulties in observation and quantification. We will demonstrate how the spatial and temporal dynamics of fungi in soil can be understood by linking mathematical modelling with novel techniques that visualise the complex structure of the soil. The combination of these techniques and mathematical models opens up new possibilities to understand how the physical structure of soil affects fungal colony dynamics and also how fungal dynamics affect soil structure. We will quantify, using X ray tomography, soil structure for a range of artificially prepared microcosms. We characterise the soil structures using soil metrics such as porosity, fractal dimension, and the connectivity of the pore volume. Furthermore we will use the individual based fungal colony growth model of Falconer et al. 2005, which is based on the physiological processes of fungi, to assess the effect of soil structure on microbial dynamics by qualifying biomass abundances and distributions. We demonstrate how soil structure can critically affect fungal species interactions with consequences for biological control and fungal biodiversity.

  8. Viewpoints on impacts of climate change on soil quality

    NASA Astrophysics Data System (ADS)

    Dilly, Oliver; Pfeiffer, Eva-Maria; Trasar-Cepeda, Carmen; Nannipieri, Paolo

    2010-05-01

    Climate projections indicate a critical increase in temperature and modification of the precipitation pattern for the next century worldwide (IPCC 2007). Higher temperature increase are expected in polar than in temperate and tropical regions. In addition, studies on the response of microbial metabolism to temperature changes showed lower sensitivity at higher temperature level as analyzed by Q10 values (Kirschbaum 1995). The temperature response as indicated by the Q10 value refers to physiological response including enzyme configuration and substrate availability. For soils from an undisturbed forest site in eastern Amazonia, Knorr et al. (2005) observed even that the apparent pool turnover times are insensitive to temperature and received evidence that non-labile soil organic carbon was more sensitive to temperature than labile soil organic carbon. Linking the climate projections and the findings related to Q10 values suggests that the microbial activity may be stimulated to a higher degree at northern latitudes than at lower latitudes. But few studies address the role of temperature changes on soil organic matter pool and microbial biomass and activities although temperature changes may be important (Dilly et al. 2003). On top, the thawing of permafrost soil (24 % of exposed land in the Northern Hemisphere) represents a further threat since erosion processes will occur and captured gases may evolve to the atmosphere. Finally, dryness and drying-rewetting cycling that are affected by climate change are regulating soil organic carbon turnover (Mamilov and Dilly 2001). The lecture will summarize basic findings and positive feedback on our climate system and also address the concept of ‘soil energ-omics' including the interaction between respiration and microbial colonization and the respective metabolic quotient (Dilly 2006). Key words: Q10, Nitrogen deposition, Permafrost, Carbon turnover, Microbial biomass, adjustment References Dilly, O., 2006. Evaluating soil quality in ecosystems based on modern respiratory approaches. In: Cenci R., Sena F. (eds.) Biodiversity-bioindication to evaluate soil health. European Commission EUR 22245EN, p. 59-64 Dilly O., Blume H.-P., Munch J.C., 2003. Soil microbial activities in Luvisols and Anthrosols during 9 years of region-typical tillage and fertilisation practices in northern Germany. Biogeochemistry 65, 319-339 IPPC 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) (Cambridge University Press, 2007). Kirschbaum, M.U.F., 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27, 753-760 Knorr W., Prentice I.C., House J.I., Holland E.A. 2005. Long-term sensitivity of soil carbon to warming. Nature 433, 298-301 Mamilov, A. Sh., Dilly, O., 2002. Soil microbial eco-physiology as affected by short-term variations in environmental conditions. Soil Biology and Biochemistry 34, 1283-1290

  9. Technical Report Department of Energy Grant #SC0004335 “Tracking Down Cheaters. Molecular Analysis of Carbon Consumption by Organisms That Do Not Contribute to Extracellular Enzyme Pools”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackwood, Christopher

    2015-05-31

    The overriding objective of our work is to integrate physiological and community ecology of belowground organisms into understanding of soil carbon dynamics to improve predictions of terrestrial ecosystem models. This includes using metagenomics and metatranscriptomics-based methods to understand microbial interactions affecting decomposition and soil carbon dynamics. The focus of the majority of the work directly related to this project was on “cheating”, a poorly understood microbial interaction with a potentially large effect on decomposition. Model organisms were used to determine the types of organisms that cheat based on their known niche and genomic characteristics. In addition, we study plant andmore » microbial traits and plant-microbe interactions that affect species distributions and soil carbon, and also develop bioinformatics tools to increase the power of ecological inferences that can be obtained from omics-based sequence data.« less

  10. The impact of biofumigation and chemical fumigation methods on the structure and function of the soil microbial community.

    PubMed

    Omirou, Michalis; Rousidou, Constantina; Bekris, Fotios; Papadopoulou, Kalliope K; Menkissoglou-Spiroudi, Urania; Ehaliotis, Constantinos; Karpouzas, Dimitrios G

    2011-01-01

    Biofumigation (BIOF) is carried out mainly by the incorporation of brassica plant parts into the soil, and this fumigation activity has been linked to their high glucosinolate (GSL) content. GSLs are hydrolyzed by the endogenous enzyme myrosinase to release isothiocyanates (ITCs). A microcosm study was conducted to investigate the effects induced on the soil microbial community by the incorporation of broccoli residues into soil either with (BM) or without (B) added myrosinase and of chemical fumigation, either as soil application of 2-phenylethyl ITC (PITC) or metham sodium (MS). Soil microbial activity was evaluated by measuring fluorescein diacetate hydrolysis and soil respiration. Effects on the structure of the total microbial community were assessed by phospholipid fatty acid analysis, while the impact on important fungal (ascomycetes (ASC)) and bacterial (ammonia-oxidizing bacteria (AOB)) guilds was evaluated by denaturating gradient gel electrophoresis (DGGE). Overall, B, and to a lesser extent BM, stimulated microbial activity and biomass. The diminished effect of BM compared to B was particularly evident in fungi and Gram-negative bacteria and was attributed to rapid ITC release following the myrosinase treatment. PITC did not have a significant effect, whereas an inhibitory effect was observed in the MS-treated soil. DGGE analysis showed that the ASC community was temporarily altered by BIOF treatments and more persistently by the MS treatment, while the structure of the AOB community was not affected by the treatments. Cloning of the ASC community showed that MS application had a deleterious effect on potential plant pathogens like Fusarium, Nectria, and Cladosporium compared to BIOF treatments which did not appear to inhibit them. Our findings indicate that BIOF induces changes on the structure and function of the soil microbial community that are mostly related to microbial substrate availability changes derived from the soil amendment with fresh organic materials.

  11. Biological activity of soddy-calcareous soils and cultural layers in Alanian settlements of the Kislovodsk basin

    NASA Astrophysics Data System (ADS)

    Chernysheva, E. V.; Kashirskaya, N. N.; Korobov, D. S.; Borisov, A. V.

    2014-09-01

    Microbiological investigations of cultural layers were performed in a settlement of the Alanian culture—Podkumskoe-2 (the 2nd-4th centuries AD). The present-day soddy-calcareous soils (rendzinas) used for different purposes were also studied near this settlement. The most significant changes in the initial characteristics of the soil microbial communities occurred under the residential influence more than 1500 years ago; these changes have been preserved until the present time. In the areas subjected to the anthropogenic impact, the total microbial biomass (the weighted average of 3720 μg C/g soil) was lower than that in the background soil. The minimal values of the microbial biomass were found in the soil of the pasture—2.5 times less than in the background soil. The urease activity of the cultural layer was higher than that of the soils nearby the settlement. Elevated values of the cellulose activity were also recorded only in the cultural layers. The current plowing has led to a significant decrease in the mycelium biomass of the microscopic fungi. In the soil of the fallow, the weighted average value of the fungal hyphae biomass along the profile was twice lower than that in the background soil and cultural layers of the settlement. The pasture first affected the active microbial biomass and, to a lesser extent, the amount of microscopic fungi.

  12. Ecotoxicological assessment of pesticides and their combination on rhizospheric microbial community structure and function of Vigna radiata.

    PubMed

    Walvekar, Varsha Ashok; Bajaj, Swati; Singh, Dileep K; Sharma, Shilpi

    2017-07-01

    India is one of the leading countries in production and indiscriminate consumption of pesticides. Owing to their xenobiotic nature, pesticides affect soil microorganisms that serve as mediators in plant growth promotion. Our study aimed to deliver a comprehensive picture, by comparing the effects of synthetic pesticides (chlorpyriphos, cypermethrin, and a combination of both) with a biopesticide (azadirachtin) at their recommended field application level (L), and three times the recommended dosage (H) on structure and function of microbial community in rhizosphere of Vigna radiata. Effect on culturable fraction was assessed by enumeration on selective media, while PCR-denaturing gradient gel electrophoresis (DGGE) was employed to capture total bacterial community diversity. This was followed by a metabolic sketch using community-level physiological profiling (CLPP), to obtain a broader picture of the non-target effects on rhizospheric microbial community. Although plant parameters were not significantly affected by pesticide application, the microbial community structure experienced an undesirable impact as compared to control devoid of pesticide treatment. Examination of DGGE banding patterns through cluster analysis revealed that microbial community structure of pesticide-treated soils had only 70% resemblance to control rhizospheric soil even at 45 days post application. Drastic changes in the metabolic profiles of pesticide-treated soils were also detected in terms of substrate utilization, rhizospheric diversity, and evenness. It is noteworthy that the effects exacerbated by biopesticide were comparable to that of synthetic pesticides, thus emphasizing the significance of ecotoxicological assessments before tagging biopesticides as "safe alternatives."

  13. Soil bacterial diversity in degraded and restored lands of Northeast Brazil.

    PubMed

    Araújo, Ademir Sérgio Ferreira; Borges, Clovis Daniel; Tsai, Siu Mui; Cesarz, Simone; Eisenhauer, Nico

    2014-11-01

    Land degradation deteriorates biological productivity and affects environmental, social, and economic sustainability, particularly so in the semi-arid region of Northeast Brazil. Although some studies exist reporting gross measures of soil microbial parameters and processes, limited information is available on how land degradation and restoration strategies influence the diversity and composition of soil microbial communities. In this study we compare the structure and diversity of bacterial communities in degraded and restored lands in Northeast Brazil and determine the soil biological and chemical properties influencing bacterial communities. We found that land degradation decreased the diversity of soil bacteria as indicated by both reduced operational taxonomic unit (OTU) richness and Shannon index. Soils under native vegetation and restoration had significantly higher bacterial richness and diversity than degraded soils. Redundancy analysis revealed that low soil bacterial diversity correlated with a high respiratory quotient, indicating stressed microbial communities. By contrast, soil bacterial communities in restored land positively correlated with high soil P levels. Importantly, however, we found significant differences in the soil bacterial community composition under native vegetation and in restored land, which may indicate differences in their functioning despite equal levels of bacterial diversity.

  14. Long-term effect of irrigation with water from sewage treatment plant on AMF biodiversity and microbial activities.

    NASA Astrophysics Data System (ADS)

    Alguacil, M. M.; Torrecillas, E.; Lozano, Z.; Torres, M. P.; Garcia-Orenes, F.; Roldan, A.

    2012-04-01

    Shortage of water is one of the most important environmental problem in the Mediterranean areas that implicates the search for strategies for saving good quality water. The use of treated waste water for the irrigation of agricultural land can be a good solution for this problem because it reduces the utilization of fresh water and potentially could improve soil key parameters, but can modify physical-chemical and biological properties of the same. The aim of this work was to study the effect of long-term irrigation with treated waste water on microbial diversity, mainly arbuscular mycorrhizal fungi (AMF) of the soil and other properties related with the microbial community. The experiment was developed in an agricultural area with Citrus orchard, located in Alicante in the southeast Spain. Here, we tested whether the communities of AMF as well as soil microbial properties were affected by irrigation with water coming from sewage treatment plant during 40 years in a soil. To carry out this study the soil properties (dehydrogenase, urease, protease-BAA, acid phosphatase, β-glucosidase, glomalin related soil protein, microbial biomass C and aggregate stability) and AMF diversity (the AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses) were analysed in the soil from two different plots with the same soil but with different type of irrigation (irrigated with fresh water and irrigated with treated water). The first results did not show significant differences in some soil properties between soil irrigated with water treated or not.

  15. PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees.

    PubMed

    Mueller, Kevin E; Shann, Jodi R

    2006-08-01

    While trees have demonstrated potential in phytoremediation of several organic contaminants, little is known regarding their ability to impact the common soil contaminant PAHs. Several species of native North American trees were planted in soil artificially contaminated with three PAHs. Plant biomass, PAH dissipation, and microbial mineralization were monitored over the course of one year and environmental conditions were allowed to follow typical seasonal patterns. PAH dissipation and mineralization were not affected by planting. Extensive and rapid loss of PAHs was observed and attributed to high bioavailability and microbial activity in all treatments. The rate of this loss may have masked any significant planting effects. Anthracene was found to be more recalcitrant than pyrene or phenanthrene. Parallel soil aging studies indicated that sequestration to soil components was minimal. Contrary to common inferences in literature, amendment with decaying fine roots inhibited PAH degradation by the soil microbial community. Seasonal variation in environmental factors and rhizosphere dynamics may have also reduced or negated the effect of planting and should be taken into account in future phytoremediation trials. The unique root traits of trees may pose a challenge to traditional thought regarding PAH dissipation in the rhizosphere of plants.

  16. The Tale of a Neglected Energy Source: Elevated Hydrogen Exposure Affects both Microbial Diversity and Function in Soil.

    PubMed

    Khdhiri, Mondher; Piché-Choquette, Sarah; Tremblay, Julien; Tringe, Susannah G; Constant, Philippe

    2017-06-01

    The enrichment of H 2 -oxidizing bacteria (HOB) by H 2 generated by nitrogen-fixing nodules has been shown to have a fertilization effect on several different crops. The benefit of HOB is attributed to their production of plant growth-promoting factors, yet their interactions with other members of soil microbial communities have received little attention. Here we report that the energy potential of H 2 , when supplied to soil, alters ecological niche partitioning of bacteria and fungi, with multifaceted consequences for both generalist and specialist microbial functions. We used dynamic microcosms to expose soil to the typical atmospheric H 2 mixing ratio (0.5 ppmv) permeating soils, as well as mixing ratios comparable to those found at the soil-nodule interface (10,000 ppmv). Elevated H 2 exposure exerted direct effects on two HOB subpopulations distinguished by their affinity for H 2 while enhancing community level carbon substrate utilization potential and lowering CH 4 uptake activity in soil. We found that H 2 triggered changes in the abundance of microorganisms that were reproducible yet inconsistent across soils at the taxonomic level and even among HOB. Overall, H 2 exposure altered microbial process rates at an intensity that depends upon soil abiotic and biotic features. We argue that further examination of direct and indirect effects of H 2 on soil microbial communities will lead to a better understanding of the H 2 fertilization effect and soil biogeochemical processes. IMPORTANCE An innovative dynamic microcosm chamber system was used to demonstrate that H 2 diffusing in soil triggers changes in the distribution of HOB and non-HOB. Although the response was uneven at the taxonomic level, an unexpected coordinated response of microbial functions was observed, including abatement of CH 4 oxidation activity and stimulation of carbon turnover. Our work suggests that elevated H 2 rewires soil biogeochemical structure through a combination of direct effects on the growth and persistence of HOB and indirect effects on a variety of microbial processes involving HOB and non-HOB. Copyright © 2017 American Society for Microbiology.

  17. How agricultural management shapes soil microbial communities: patterns emerging from genetic and genomic studies

    NASA Astrophysics Data System (ADS)

    Daly, Amanda; Grandy, A. Stuart

    2016-04-01

    Agriculture is a predominant land use and thus a large influence on global carbon (C) and nitrogen (N) balances, climate, and human health. If we are to produce food, fiber, and fuel sustainably we must maximize agricultural yield while minimizing negative environmental consequences, goals towards which we have made great strides through agronomic advances. However, most agronomic strategies have been designed with a view of soil as a black box, largely ignoring the way management is mediated by soil biota. Because soil microbes play a central role in many of the processes that deliver nutrients to crops and support their health and productivity, agricultural management strategies targeted to exploit or support microbial activity should deliver additional benefits. To do this we must determine how microbial community structure and function are shaped by agricultural practices, but until recently our characterizations of soil microbial communities in agricultural soils have been largely limited to broad taxonomic classes due to methodological constraints. With advances in high-throughput genetic and genomic sequencing techniques, better taxonomic resolution now enables us to determine how agricultural management affects specific microbes and, in turn, nutrient cycling outcomes. Here we unite findings from published research that includes genetic or genomic data about microbial community structure (e.g. 454, Illumina, clone libraries, qPCR) in soils under agricultural management regimes that differ in type and extent of tillage, cropping selections and rotations, inclusion of cover crops, organic amendments, and/or synthetic fertilizer application. We delineate patterns linking agricultural management to microbial diversity, biomass, C- and N-content, and abundance of microbial taxa; furthermore, where available, we compare patterns in microbial communities to patterns in soil extracellular enzyme activities, catabolic profiles, inorganic nitrogen pools, and nitrogen transforming processes. Where genetic data are scarce, we further inform our observations with data from phosopholipid fatty acid, ribosomal intergenic spacer, (terminal) restriction fragment length polymorphism, and denaturing gradient gel electrophoresis analyses. By summarizing the most current information about microbial community structure under different agricultural management strategies, we hope to jumpstart a dialogue that could ultimately inspire novel - and sustainable - agronomic approaches that work with and through soil microbes.

  18. Main factors controlling microbial community structure, growth and activity after reclamation of a tailing pond with aided phytostabilization

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, José A.; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2015-04-01

    Reclamation on bare tailing ponds has the potential to represent soil genesis in Technosols favoring the understanding of the changes of microbial communities and function. In this study we used phytostabilization aided with calcium carbonate and pig slurry/manure to reclaim an acidic bare tailing pond with the aim of investigating the effect of amending and different species on microbial community structure and function. We sampled after two years of amending and planting: unamended tailing soil (UTS), non-rhizospheric amended tailing soil (ATS), rhizospheric soil from four species, and non-rhizospheric native forest soil (NS), which acted as reference. The application of amendments increased pH up to neutrality, organic carbon (Corg), C/N and aggregate stability, while decreased salinity and heavy metals availability. No effect of rhizosphere was observed on physicochemical properties, metals immobilization and microbial community structure and function. To account for confounding effects due to soil organic matter, microbial properties were expressed per Corg. The high increments in pH and Corg have been the main factors driving changes in microbial community structure and function. Bacterial biomass was higher in UTS, without significant differences among the rest of soils. Fungal biomass followed the trend UTS < ATS = rhizospheric soils < NS. Bacterial growth increased and fungal growth decreased with increasing pH, despite the high availability of metals at low pH. Enzyme activities were lower in UTS, being β-glucosidase and β-glucosaminidase activities highly correlated with bacterial growth. Microbial activities were not correlated with the exchangeable fraction of heavy metals, indicating that microbial function is not strongly affected by these metals, likely due to the efficiency of the reclamation procedure to reduce metals toxicity. Changes in microbial community composition were largely explained by changes in pH, heavy metals availability and Corg, with increments in fungal and actinobacterial proportions with soil amending. Acknowledgements R. Zornoza acknowledges the financial support to Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia (Spain).

  19. Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests

    DOE PAGES

    Waring, Bonnie G.; Powers, Jennifer S.

    2016-10-14

    Tropical dry forests are already undergoing changes in the quantity and timing of rainfall, but there is great uncertainty over how these shifts will affect belowground carbon (C) cycling. While it has long been known that dry soils quickly release carbon dioxide (CO 2) upon rewetting, the mechanisms underlying the so-called 'Birch effect' are still debated. Here, we quantified soil respiration pulses and their biotic predictors in response to simulated precipitation events in a regenerating tropical dry forest in Costa Rica. We also simulated the observed rewetting CO 2 pulses with two soil carbon models: a conventional model assuming first-ordermore » decay rates of soil organic matter, and an enzyme-catalyzed model with Michaelis–Menten kinetics. We found that rewetting of dry soils produced an immediate and dramatic pulse of CO 2, accompanied by rapid immobilization of nitrogen into the microbial biomass. However, the magnitude of the rewetting CO 2 pulse was highly variable at fine spatial scales, and was well correlated with the size of the dissolved organic C pool prior to rewetting. Both the enzyme-catalyzed and conventional models were able to reproduce the Birch effect when respiration was coupled directly to microbial C uptake, although models differed in their ability to yield realistic estimates of SOC and microbial biomass pool sizes and dynamics. Lastly, our results suggest that changes in the timing and intensity of rainfall events in tropical dry forests will exert strong influence on ecosystem C balance by affecting the dynamics of microbial biomass growth.« less

  20. Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waring, Bonnie G.; Powers, Jennifer S.

    Tropical dry forests are already undergoing changes in the quantity and timing of rainfall, but there is great uncertainty over how these shifts will affect belowground carbon (C) cycling. While it has long been known that dry soils quickly release carbon dioxide (CO 2) upon rewetting, the mechanisms underlying the so-called 'Birch effect' are still debated. Here, we quantified soil respiration pulses and their biotic predictors in response to simulated precipitation events in a regenerating tropical dry forest in Costa Rica. We also simulated the observed rewetting CO 2 pulses with two soil carbon models: a conventional model assuming first-ordermore » decay rates of soil organic matter, and an enzyme-catalyzed model with Michaelis–Menten kinetics. We found that rewetting of dry soils produced an immediate and dramatic pulse of CO 2, accompanied by rapid immobilization of nitrogen into the microbial biomass. However, the magnitude of the rewetting CO 2 pulse was highly variable at fine spatial scales, and was well correlated with the size of the dissolved organic C pool prior to rewetting. Both the enzyme-catalyzed and conventional models were able to reproduce the Birch effect when respiration was coupled directly to microbial C uptake, although models differed in their ability to yield realistic estimates of SOC and microbial biomass pool sizes and dynamics. Lastly, our results suggest that changes in the timing and intensity of rainfall events in tropical dry forests will exert strong influence on ecosystem C balance by affecting the dynamics of microbial biomass growth.« less

  1. Distinct Microbial Limitations in Litter and Underlying Soil Revealed by Carbon and Nutrient Fertilization in a Tropical Rainforest

    PubMed Central

    Fanin, Nicolas; Barantal, Sandra; Fromin, Nathalie; Schimann, Heidy; Schevin, Patrick; Hättenschwiler, Stephan

    2012-01-01

    Human-caused alterations of the carbon and nutrient cycles are expected to impact tropical ecosystems in the near future. Here we evaluated how a combined change in carbon (C), nitrogen (N) and phosphorus (P) availability affects soil and litter microbial respiration and litter decomposition in an undisturbed Amazonian rainforest in French Guiana. In a fully factorial C (as cellulose), N (as urea), and P (as phosphate) fertilization experiment we analyzed a total of 540 litterbag-soil pairs after a 158-day exposure in the field. Rates of substrate-induced respiration (SIR) measured in litter and litter mass loss were similarly affected by fertilization showing the strongest stimulation when N and P were added simultaneously. The stimulating NP effect on litter SIR increased considerably with increasing initial dissolved organic carbon (DOC) concentrations in litter, suggesting that the combined availability of N, P, and a labile C source has a particularly strong effect on microbial activity. Cellulose fertilization, however, did not further stimulate the NP effect. In contrast to litter SIR and litter mass loss, soil SIR was reduced with N fertilization and showed only a positive effect in response to P fertilization that was further enhanced with additional C fertilization. Our data suggest that increased nutrient enrichment in the studied Amazonian rainforest can considerably change microbial activity and litter decomposition, and that these effects differ between the litter layer and the underlying soil. Any resulting change in relative C and nutrient fluxes between the litter layer and the soil can have important consequences for biogeochemical cycles in tropical forest ecosystems. PMID:23272052

  2. Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests

    NASA Astrophysics Data System (ADS)

    Waring, Bonnie G.; Powers, Jennifer S.

    2016-10-01

    Tropical dry forests are already undergoing changes in the quantity and timing of rainfall, but there is great uncertainty over how these shifts will affect belowground carbon (C) cycling. While it has long been known that dry soils quickly release carbon dioxide (CO2) upon rewetting, the mechanisms underlying the so-called ‘Birch effect’ are still debated. Here, we quantified soil respiration pulses and their biotic predictors in response to simulated precipitation events in a regenerating tropical dry forest in Costa Rica. We also simulated the observed rewetting CO2 pulses with two soil carbon models: a conventional model assuming first-order decay rates of soil organic matter, and an enzyme-catalyzed model with Michaelis-Menten kinetics. We found that rewetting of dry soils produced an immediate and dramatic pulse of CO2, accompanied by rapid immobilization of nitrogen into the microbial biomass. However, the magnitude of the rewetting CO2 pulse was highly variable at fine spatial scales, and was well correlated with the size of the dissolved organic C pool prior to rewetting. Both the enzyme-catalyzed and conventional models were able to reproduce the Birch effect when respiration was coupled directly to microbial C uptake, although models differed in their ability to yield realistic estimates of SOC and microbial biomass pool sizes and dynamics. Our results suggest that changes in the timing and intensity of rainfall events in tropical dry forests will exert strong influence on ecosystem C balance by affecting the dynamics of microbial biomass growth.

  3. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    NASA Astrophysics Data System (ADS)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  4. Impact of selection on maize root traits and rhizosphere interactions

    NASA Astrophysics Data System (ADS)

    Schmidt, J. E.; Gaudin, A. C. M.

    2017-12-01

    Effects of domestication and breeding on maize have been well-characterized aboveground, but impacts on root traits and rhizosphere processes remain unclear. Breeding in high-inorganic-input environments may have negatively affected the ability of modern maize to acquire nutrients through foraging and microbial interactions in marginal and/or organically managed soils. Twelve maize genotypes representing a selection gradient (teosintes, landraces, open-pollinated parents of modern elite germplasm, and modern hybrids released 1934-2015) were grown in three soils varying in intensity of long-term management (unfertilized, organic, conventional) in the greenhouse. Recruitment of rhizosphere microbial communities, nutrient acquisition, and plant productivity were affected by genotype-by-soil interactions. Maize genotypes exhibit significant variation in their ability to obtain nutrients from soils of different management history, indicating the potential for re-integration of beneficial root and rhizosphere traits to increase adaptation to low-input agroecosystems.

  5. Lasting effect of soil warming on organic matter decomposition depends on tillage practices

    USDA-ARS?s Scientific Manuscript database

    Global warming affects various parts of carbon (C) cycle including acceleration of soil organic matter (SOM) decomposition with strong feedback to atmospheric CO2 concentration. Despite many soil warming studies showed changes of microbial community structure, very few were focused on the effect of ...

  6. Nitrous oxide fluxes and soil oxygen dynamics of soil treated with cow urine

    USDA-ARS?s Scientific Manuscript database

    Ruminant urine deposition onto pastures creates hot-spots where emissions of nitrous oxide (N2O) are produced by aerobic and anaerobic microbial pathways. However, limited measurements of in situ soil oxygen (O2)-N2O relationships hinder the prediction of N2O emissions from urine-affected soil. This...

  7. Plant effects on soil denitrification - a review of potential mechanisms

    NASA Astrophysics Data System (ADS)

    Malique, Francois; Butterbach-Bahl, Klaus; Dannenmann, Michael

    2017-04-01

    Denitrification is a microbial process occurring in soils, both producing and consuming the potent greenhouse gas nitrous oxide (NO), competing for nitrate with plants and hydrological leaching pathways, removing nutrients and reactive nitrogen from the biosphere, and closing the global nitrogen cycle. Despite its obvious importance, denitrification remained among the least well quantified biogeochemical processes in soils. This is due to enormous methodological difficulties involved in the direct quantification of soil microbial denitrification rates (mainly with regard to the terminal product N2) and the denitrification nitrogen gas product ratios (NO:N2O:N2), Plants may affect denitrification through a myriad of mechanisms such as e.g., competition for nitrate and water, through oxygen consumption, by regulating litter quality and changing soil pH, and via the exudation of labile carbon or secondary plant compounds involved in shaping the rhizospheric microbial community. However, plant effects on denitrification so far hardly were quantified so that the actual extent of plant control on denitrification is largely unknown. Here, we summarize the current knowledge on mechanisms how plants can affect denitrification rates and N gas product ratios in soils at temporal scales from hours to days and years. We review earlier research to quantify plant effects on denitrification as well as critically discuss the limited methods currently available to quantify plant-soil-denitrifier interactions. Finally, we provide pointers to use plants as tools to manage denitrification, e.g. to improve N use efficiency in agricultural ecosystems and to minimize soil nitrous oxide emissions.

  8. Tree specie effects on soil microbial community composition and greenhouse gases emissions in a Mediterranean ecotone forest

    NASA Astrophysics Data System (ADS)

    Fernandez, Maria Jose; Ortiz, Carlos; Kitzler, Barbara; Curiel, Jorge; Rubio, Agustin

    2016-04-01

    Over recent decades in the Iberian Peninsula, altitudinal shifts from Pinus sylvestris L. to Quercus pyrenaica Willd species has been observed as a consequence of Global Change, meaning changes in temperature, precipitation, land use and forestry. The forest conversion from pine to oak can alter the litter quality and quantity provided to the soil and thereby the soil microbial community composition and functioning. Since soil microbiota plays an important role in organic matter decomposition, and this in turn is key in biogeochemical cycles and forest ecosystems productivity, the rate in which forests produce and consume greenhouse gases can be also affected by changes in forest composition. In other words, changes in litter decomposition will ultimately affect downstream carbon and nitrogen dynamics although this impact is uncertain. In order to predict changes in carbon and nitrogen stocks in Global Change scenarios, it is necessary to deepen the impact of vegetation changes on soil microbial communities, litter decomposition dynamics (priming effect) and the underlying interactions between these factors. To test this, we conducted a full-factorial transplant microcosms experiment mixing both fresh soils and litter from Pyrenean oak, Scots pine and mixed stands collected inside their transitional area in Central Spain. The microcosms consisted in soil cylinders inside Kilner jars used as chambers inside an incubator. In this experiment, we investigated how and to what extent the addition of litter with different quality (needles, oak leaves and mixed needles-leaves) to soil inoculums with contrasting soil microbiota impact on (i) soil CO2, NO, N2O and CH4 efflux rates, (ii) total organic carbon and nitrogen and (iii) dissolved organic carbon and nitrogen. Furthermore, we assessed if these responses were controlled by changes in the microbial community structure using the PLFA analyses prior and after the incubation period of 54 days.

  9. Effects of Added Organic Matter and Water on Soil Carbon Sequestration in an Arid Region

    PubMed Central

    Tian, Yuan; Jiang, Lianhe; Zhao, Xuechun; Zhu, Linhai; Chen, Xi; Gao, Yong; Wang, Shaoming; Zheng, Yuanrun; Rimmington, Glyn M.

    2013-01-01

    It is generally predicted that global warming will stimulate primary production and lead to more carbon (C) inputs to soil. However, many studies have found that soil C does not necessarily increase with increased plant litter input. Precipitation has increased in arid central Asia, and is predicted to increase more, so we tested the effects of adding fresh organic matter (FOM) and water on soil C sequestration in an arid region in northwest China. The results suggested that added FOM quickly decomposed and had minor effects on the soil organic carbon (SOC) pool to a depth of 30 cm. Both FOM and water addition had significant effects on the soil microbial biomass. The soil microbial biomass increased with added FOM, reached a maximum, and then declined as the FOM decomposed. The FOM had a more significant stimulating effect on microbial biomass with water addition. Under the soil moisture ranges used in this experiment (21.0%–29.7%), FOM input was more important than water addition in the soil C mineralization process. We concluded that short-term FOM input into the belowground soil and water addition do not affect the SOC pool in shrubland in an arid region. PMID:23875022

  10. Legacy effects overwhelm the short-term effects of exotic plant invasion and restoration on soil microbial community structure, enzyme activities, and nitrogen cycling.

    PubMed

    Elgersma, Kenneth J; Ehrenfeld, Joan G; Yu, Shen; Vor, Torsten

    2011-11-01

    Plant invasions can have substantial consequences for the soil ecosystem, altering microbial community structure and nutrient cycling. However, relatively little is known about what drives these changes, making it difficult to predict the effects of future invasions. In addition, because most studies compare soils from uninvaded areas to long-established dense invasions, little is known about the temporal dependence of invasion impacts. We experimentally manipulated forest understory vegetation in replicated sites dominated either by exotic Japanese barberry (Berberis thunbergii), native Viburnums, or native Vacciniums, so that each vegetation type was present in each site-type. We compared the short-term effect of vegetation changes to the lingering legacy effects of the previous vegetation type by measuring soil microbial community structure (phospholipid fatty acids) and function (extracellular enzymes and nitrogen mineralization). We also replaced the aboveground litter in half of each plot with an inert substitute to determine if changes in the soil microbial community were driven by aboveground or belowground plant inputs. We found that after 2 years, the microbial community structure and function was largely determined by the legacy effect of the previous vegetation type, and was not affected by the current vegetation. Aboveground litter removal had only weak effects, suggesting that changes in the soil microbial community and nutrient cycling were driven largely by belowground processes. These results suggest that changes in the soil following either invasion or restoration do not occur quickly, but rather exhibit long-lasting legacy effects from previous belowground plant inputs.

  11. Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil.

    PubMed

    Ding, Long-Jun; Su, Jian-Qiang; Sun, Guo-Xin; Wu, Jin-Shui; Wei, Wen-Xue

    2018-02-01

    Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community and functional genes to long-term integrated fertilization (chemical combined with organic fertilization) remain unclear. Here, we used pyrosequencing and a microarray-based GeoChip to explore the shifts of microbial community and functional genes in a paddy soil which received over 21-year fertilization with various regimes, including control (no fertilizer), rice straw (R), rice straw plus chemical fertilizer nitrogen (NR), N and phosphorus (NPR), NP and potassium (NPKR), and reduced rice straw plus reduced NPK (L-NPKR). Significant shifts of the overall soil bacterial composition only occurred in the NPKR and L-NPKR treatments, with enrichment of certain groups including Bradyrhizobiaceae and Rhodospirillaceae families that benefit higher productivity. All fertilization treatments significantly altered the soil microbial functional structure with increased diversity and abundances of genes for carbon and nitrogen cycling, in which NPKR and L-NPKR exhibited the strongest effect, while R exhibited the least. Functional gene structure and abundance were significantly correlated with corresponding soil enzymatic activities and rice yield, respectively, suggesting that the structural shift of the microbial functional community under fertilization might promote soil nutrient turnover and thereby affect yield. Overall, this study indicates that the combined application of rice straw and balanced chemical fertilizers was more pronounced in shifting the bacterial composition and improving the functional diversity toward higher productivity, providing a microbial point of view on applying a cost-effective integrated fertilization regime with rice straw plus reduced chemical fertilizers for sustainable nutrient management.

  12. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils.

    PubMed

    Barrutia, O; Garbisu, C; Epelde, L; Sampedro, M C; Goicolea, M A; Becerril, J M

    2011-09-01

    Soil contamination due to petroleum-derived products is an important environmental problem. We assessed the impacts of diesel oil on plants (Trifolium repens and Lolium perenne) and soil microbial community characteristics within the context of the rhizoremediation of contaminated soils. For this purpose, a diesel fuel spill on a grassland soil was simulated under pot conditions at a dose of 12,000 mg diesel kg(-1) DW soil. Thirty days after diesel addition, T. repens (white clover) and L. perenne (perennial ryegrass) were sown in the pots and grown under greenhouse conditions (temperature 25/18 °C day/night, relative humidity 60/80% day/night and a photosynthetic photon flux density of 400 μmol photon m(-2) s(-1)) for 5 months. A parallel set of unplanted pots was also included. Concentrations of n-alkanes in soil were determined as an indicator of diesel degradation. Seedling germination, plant growth, maximal photochemical efficiency of photosystem II (F(v)/F(m)), pigment composition and lipophylic antioxidant content were determined to assess the impacts of diesel on the studied plants. Soil microbial community characteristics, such as enzyme and community-level physiological profiles, were also determined and used to calculate the soil quality index (SQI). The presence of plants had a stimulatory effect on soil microbial activity. L. perenne was far more tolerant to diesel contamination than T. repens. Diesel contamination affected soil microbial characteristics, although its impact was less pronounced in the rhizosphere of L. perenne. Rhizoremediation with T. repens and L. perenne resulted in a similar reduction of total n-alkanes concentration. However, values of the soil microbial parameters and the SQI showed that the more tolerant species (L. perenne) was able to better maintain its rhizosphere characteristics when growing in diesel-contaminated soil, suggesting a better soil health. We concluded that plant tolerance is of crucial importance for the recovery of soil health during rhizoremediation of contaminated soils. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Soil-Borne Bacterial Structure and Diversity Does Not Reflect Community Activity in Pampa Biome

    PubMed Central

    Lupatini, Manoeli; Suleiman, Afnan Khalil Ahmad; Jacques, Rodrigo Josemar Seminoti; Antoniolli, Zaida Inês; Kuramae, Eiko Eurya; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Würdig

    2013-01-01

    The Pampa biome is considered one of the main hotspots of the world’s biodiversity and it is estimated that half of its original vegetation was removed and converted to agricultural land and tree plantations. Although an increasing amount of knowledge is being assembled regarding the response of soil bacterial communities to land use change, to the associated plant community and to soil properties, our understanding about how these interactions affect the microbial community from the Brazilian Pampa is still poor and incomplete. In this study, we hypothesized that the same soil type from the same geographic region but under distinct land use present dissimilar soil bacterial communities. To test this hypothesis, we assessed the soil bacterial communities from four land-uses within the same soil type by 454-pyrosequencing of 16S rRNA gene and by soil microbial activity analyzes. We found that the same soil type under different land uses harbor similar (but not equal) bacterial communities and the differences were controlled by many microbial taxa. No differences regarding diversity and richness between natural areas and areas under anthropogenic disturbance were detected. However, the measures of microbial activity did not converge with the 16S rRNA data supporting the idea that the coupling between functioning and composition of bacterial communities is not necessarily correlated. PMID:24146873

  14. The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands

    DOE PAGES

    Yue, Haowei; Wang, Mengmeng; Wang, Shiping; ...

    2015-02-17

    Warming has been shown to cause soil carbon (C) loss in northern grasslands owing to accelerated microbial decomposition that offsets increased grass productivity. Yet, a multi-decadal survey indicated that the surface soil C stock in Tibetan alpine grasslands remained relatively stable. To investigate this inconsistency, we analyzed the feedback responses of soil microbial communities to simulated warming by soil transplant in Tibetan grasslands. Microbial functional diversity decreased in response to warming, whereas microbial community structure did not correlate with changes in temperature. The relative abundance of catabolic genes associated with nitrogen (N) and C cycling decreased with warming, most notablymore » in genes encoding enzymes associated with more recalcitrant C substrates. By contrast, genes associated with C fixation increased in relative abundance. The relative abundance of genes associated with urease, glutamate dehydrogenase and ammonia monoxygenase ( ureC, gdh and amoA) were significantly correlated with N 2O efflux. These results suggest that unlike arid/semiarid grasslands, Tibetan grasslands maintain negative feedback mechanisms that preserve terrestrial C and N pools. To examine whether these trends were applicable to the whole plateau, we included these measurements in a model and verified that topsoil C stocks remained relatively stable. Thus, by establishing linkages between microbial metabolic potential and soil biogeochemical processes, we conclude that long-term C loss in Tibetan grasslands is ameliorated by a reduction in microbial decomposition of recalcitrant C substrates.« less

  15. Impacts of Projected Climate Warming and Wetting on Soil Microbial Communities in Alpine Grassland Ecosystems of the Tibetan Plateau.

    PubMed

    Zeng, Jun; Shen, Ju-Pei; Wang, Jun-Tao; Hu, Hang-Wei; Zhang, Cui-Jing; Bai, Ren; Zhang, Li-Mei; He, Ji-Zheng

    2018-05-01

    Climate change is projected to have impacts on precipitation and temperature regimes in drylands of high elevation regions, with especially large effects in the Qinghai-Tibetan Plateau. However, there was limited information about how the projected climate change will impact on the soil microbial community and their activity in the region. Here, we present results from a study conducted across 72 soil samples from 24 different sites along a temperature and precipitation gradient (substituted by aridity index ranging from 0.079 to 0.89) of the Plateau, to assess how changes in aridity affect the abundance, community composition, and diversity of bacteria, ammonia-oxidizers, and denitrifers (nirK/S and nosZ genes-containing communities) as well as nitrogen (N) turnover enzyme activities. We found V-shaped or inverted V-shaped relationships between the aridity index (AI) and soil microbial parameters (gene abundance, community structures, microbial diversity, and N turnover enzyme activities) with a threshold at AI = 0.27. The increasing or decreasing rates of the microbial parameters were higher in areas with AI < 0.27 (alpine steppes) than in mesic areas with 0.27 < AI < 0.89 (alpine meadow and swamp meadow). The results indicated that the projected warming and wetting have a strong impact on soil microbial communities in the alpine steppes.

  16. [Effects of exogenous glucose and starch on soil carbon metabolism of root zone and root function in potted sweet cherry].

    PubMed

    Zhou, Wen-jie; Zhang, Peng; Qin, Si-jun; Lyu, De-guo

    2015-11-01

    One-year-old potted sweet cheery trees were treated with 4 g · kg(-1) exogenous glucose or starch and with non-addition of exogenous carbon as the control for up to 60 days. Soil of root zone was sampled to analyze soil microbial biomass carbon, activities of invertase and amylase and microbial community functional diversity during the 60-day treatment, and roots were sampled for analysis of root respiratory rate, respiratory pathways and root viability after treatment for 30 days. Results showed that the invertase activity and the microbial biomass carbon initially increased and decreased subsequently, with the maxima which were 14.0% and 13.1% higher in the glucose treatment than in the control treatment appeared after 15 and 7 days of treatments, respectively. Soil organic matter content increased first then decreased and finally moderately increased again. Amylase activity was 7.5-fold higher in the starch treatment than in the control treatment after 15-day treatment. Soil microbial biomass carbon was higher in the starch treatment than in the control treatment except after 7-day treatment. Soil organic matter content initially increased and then decreased, but it was still 19.8% higher than in the control after 60-day treatment. BIOLOG results showed that the maximum average well color development (AWCD) value and microbial activity appeared after 15-day treatment in the following order: starch>glucose>control. After 30-day treatment, glucose treatment resulted in a significant increase in the soil microbial utilization of carbohydrates, carboxylic acid, amino acids, phenolic acids and amines, and starch treatment significantly increased the soil microbial utilization of carbohydrates, carboxylic acid, polymers and phenolic acids. After 30-day treatment, the total root respiratory rate and root viability were 21.4%, 19.4% and 65.5%, 37.0% higher in glucose treatment than in the control and starch treatments, respectively. These results indicated exogenous glucose and starch affected soil carbon metabolism and enhanced soil microbial activity, the root respiratory rate and root viability.

  17. Microbial biodiversity in arable soils is affected by agricultural practices

    NASA Astrophysics Data System (ADS)

    Wolińska, Agnieszka; Górniak, Dorota; Zielenkiewicz, Urszula; Goryluk-Salmonowicz, Agata; Kuźniar, Agnieszka; Stępniewska, Zofia; Błaszczyk, Mieczysław

    2017-04-01

    The aim of the study was to examine the differences in microbial community structure as a result of agricultural practices. Sixteen samples of cultivated and the same number of non-cultivated soils were selected. Gel bands were identified using the GelCompar software to create the presence-absence matrix, where each band represented a bacterial operational taxonomic unit. The data were used for principal-component analysis and additionally, the Shannon- Weaver index of general diversity, Simpson index of dominance and Simpson index of diversity were calculated. Denaturing gradient gel electrophoresis profiles clearly indicated differentiation of tested samples into two clusters: cultivated and non-cultivated soils. Greater numbers of dominant operational taxonomic units (65) in non-cultivated soils were noted compared to cultivated soils (47 operational taxonomic units). This implies that there was a reduction of dominant bacterial operational taxonomic units by nearly 30% in cultivated soils. Simpson dominance index expressing the number of species weighted by their abundance amounted to 1.22 in cultivated soils, whereas a 3-fold higher value (3.38) was observed in non-cultivated soils. Land-use practices seemed to be a important factors affected on biodiversity, because more than soil type determined the clustering into groups.

  18. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities.

    PubMed

    Muhammad, Akmal; Xu, Jianming; Li, Zhaojun; Wang, Haizhen; Yao, Huaiying

    2005-07-01

    A study was conducted to evaluate the effects of different concentrations of lead (Pb) and cadmium (Cd) applied as their nitrates on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), and substrate utilization pattern of soil microbial communities. The C(mic) and N(mic) contents were determined at 0, 14, 28, 42 and 56 days after heavy metal application (DAA). The results showed a significant decline in the C(mic) for all Pb and Cd amended soils from the start to 28 DAA. From 28 to 56 DAA, C(mic) contents changed non-significantly for all other treatments except for 600 mgkg(-1) Pb and 100 mgkg(-1) Cd in which it declined significantly from 42 to 56 DAA. The N(mic) contents also decreased significantly from start to 28 DAA for all other Pb and Cd treatments except for 200 mgkg(-1) Pb which did not show significant difference from the control. Control and 200 mgkg(-1) Pb had significantly lower soil microbial biomass C:N ratio as compared with other Pb treatments from 14 to 42 DAA, however at 56 DAA, only 1000 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. No significant difference in C:N ratio for all Cd treated soils was seen from start to 28 DAA, however from 42 to 56 DAA, 100 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. On 56 DAA, substrate utilization pattern of soil microbial communities was determined by inoculating Biolog ECO plates. The results indicated that Pb and Cd addition inhibited the functional activity of soil microbial communities as indicated by the intensity of average well color development (AWCD) during 168 h of incubation. Multivariate analysis of sole carbon source utilization pattern demonstrated that higher levels of heavy metal application had significantly affected soil microbial community structure.

  19. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland

    PubMed Central

    Shen, Yufang; Chen, Yingying; Li, Shiqing

    2016-01-01

    Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L.) field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer), GMC (gravel mulching with inorganic N fertilizer), FMC (plastic-film mulching with inorganic N fertilizer) and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition). The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological quality of the soil and its sustainability in the rainfall-limited semiarid region. PMID:27414400

  20. Soybean supplementation increases the resilience of microbial and nematode communities in soil to extreme rainfall in an agroforestry system.

    PubMed

    Sun, Feng; Pan, Kaiwen; Li, Zilong; Wang, Sizhong; Tariq, Akash; Olatunji, Olusanya Abiodun; Sun, Xiaoming; Zhang, Lin; Shi, Weiyu; Wu, Xiaogang

    2018-06-01

    A current challenge for ecological research in agriculture is to identify ways in which to improve the resilience of the soil food web to extreme climate events, such as severe rainfall. Plant species composition influence soil biota communities differently, which might affect the recovery of soil food web after extreme rainfall. We compared the effects of rainfall stress up on the soil microbial food web in three planting systems: a monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Medicago sativa or Z. bungeanum and Glycine max. We tested the effect of the presence of a legume on the recovery of trophic interactions between microorganisms and nematodes after extreme rainfall. Our results indicated that all chemical properties of the soil recovered to control levels (normal rainfall) in the three planting systems 45 days after exposure to extreme rain. However, on day 45, the bulk microbial community differed from controls in the monoculture treatment, but not in the two mixed planting treatments. The nematode community did not fully recover in the monoculture or Z. bungeanum and M. sativa treatments, while nematode populations in the combined Z. bungeanum and G. max treatment were indistinguishable from controls. G. max performed better than M. sativa in terms of increasing the resilience of microbial and nematode communities to extreme rainfall. Soil microbial biomass and nematode density were positively correlated with the available carbon and nitrogen content in soil, demonstrating a link between soil health and biological properties. This study demonstrated that certain leguminous plants can stabilize the soil food web via interactions with soil biota communities after extreme rainfall. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Distinct microbial communities associated with buried soils in the Siberian tundra

    PubMed Central

    Gittel, Antje; Bárta, Jiří; Kohoutová, Iva; Mikutta, Robert; Owens, Sarah; Gilbert, Jack; Schnecker, Jörg; Wild, Birgit; Hannisdal, Bjarte; Maerz, Joeran; Lashchinskiy, Nikolay; Čapek, Petr; Šantrůčková, Hana; Gentsch, Norman; Shibistova, Olga; Guggenberger, Georg; Richter, Andreas; Torsvik, Vigdis L; Schleper, Christa; Urich, Tim

    2014-01-01

    Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze–thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes. PMID:24335828

  2. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  3. Effect of dry mycelium of Penicillium chrysogenum fertilizer on soil microbial community composition, enzyme activities and snap bean growth.

    PubMed

    Wang, Bing; Liu, Huiling; Cai, Chen; Thabit, Mohamed; Wang, Pu; Li, Guomin; Duan, Ziheng

    2016-10-01

    The dry mycelium fertilizer (DMF) was produced from penicillin fermentation fungi mycelium (PFFM) following an acid-heating pretreatment to degrade the residual penicillin. In this study, it was applied into soil as fertilizer to investigate its effects on soil properties, phytotoxicity, microbial community composition, enzyme activities, and growth of snap bean in greenhouse. As the results show, pH, total nitrogen, total phosphorus, total potassium, and organic matter of soil with DMF treatments were generally higher than CON treatment. In addition, the applied DMF did not cause heavy metal and residual drug pollution of the modified soil. The lowest GI values (<0.3) were recorded at DMF8 (36 kg DMF/plat) on the first days after applying the fertilizer, indicating that severe phytotoxicity appeared in the DMF8-modified soil. Results of microbial population and enzyme activities illustrated that DMF was rapidly decomposed and the decomposition process significantly affected microbial growth and enzyme activities. The DMF-modified soil phytotoxicity decreased at the late fertilization time. DMF1 was considered as the optimum amount of DMF dose based on principal component analysis scores. Plant height and plant yield of snap bean were remarkably enhanced with the optimum DMF dose.

  4. Tillage system affects microbiological properties of soil

    NASA Astrophysics Data System (ADS)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the Shannon (H') and Gini (1-G) diversity index of microbial communities were determined in soil samples (0-10 cm depth) taken in autumn 2009. All the enzymatic activities and the biomass estimated by viable cell counting were significantly higher under no-till than under conventional tillage. However, only fluorescents pseudomonas population was increased under no-till, meanwhile oligotrophic bacteria and actinomycetes populations were higher with conventional tillage than with no-till. Overall, there was a higher use all the group of carbon sources used in the BiologR test with conventional tillage than with no-till, by except amines and phenols which showed non-significant differences. This reveals different physiological profiles in the microbial communities under both tillage systems. The Gini diversity was significantly lower with no-till than with conventional tillage. It can be concluded that no-till increases microbial biomass in soil and subsequently enzymatic activities likely ascribed to an increased organic matter content. Under low availability of hydrocarbon sources in soil due to conventional tillage, which promotes a decrease in the organic matter content of the soil, populations of oligotrophods and the diversity of microbial communities are increased. Under these conditions, there must not be dominant carbon sources promoting the selection of microorganisms with a given physiological profile. The reduced hydrocarbon availability and the higher diversity contribute to explain the increased use of carbon sources used in Biolog with conventional tillage than with no-till.

  5. Plant inputs, microbial carbon use in soil and decomposition under warming: effects of warming are depth dependent

    NASA Astrophysics Data System (ADS)

    Pendall, E.; Carrillo, Y.; Dijkstra, F. A.

    2017-12-01

    Future climate will include warmer conditions but impacts on soil C cycling remain uncertain and so are the potential warming-driven feedbacks. Net impacts will depend on the balance of effects on microbial activity and plant inputs. Soil depth is likely to be a critical factor driving this balance as it integrates gradients in belowground biomass, microbial activity and environmental variables. Most empirical studies focus on one soil layer and soil C forecasting relies on broad assumptions about effects of depth. Our limited understanding of the use of available C by soil microbes under climate change across depths is a critical source of uncertainty. Long-term labelling of plant biomass with C isotopic tracers in intact systems allows us to follow the dynamics of different soil C pools including the net accumulation of newly fixed C and the net loss of native C. These can be combined with concurrent observations of microbial use of C pools to explore the impacts of depth on the relationships between plant inputs and microbial C use. We evaluated belowground biomass, in-situ root decomposition and incorporation of plant-derived C into soil C and microbial C at 0-5 cm and 5-15 cmover 7 years at the Prairie Heating And CO2 Enrichment experiment. PHACE was a factorial manipulation of CO2 and warming in a native mixed grass prairie in Wyoming, USA. We used the continuous fumigation with labelled CO2 in the elevated CO2 treatments to study the C dynamics under unwarmed and warmed conditions. Shallower soils had three times the density of biomass as deeper soils. Warming increased biomass in both depths but this effect was weaker in deeper soils. Root litter mass loss in deeper soil was one third that of the shallow and was not affected by warming. Consistent with biomass distribution, incorporation of plant-derived C into soil and microbial C was lower in deeper soils and higher with warming. However, in contrast to the effect of warming on biomass, the effect of warming on incorporation of plant derived C into microbes was stronger in deeper soils. Thus, warming made microbes incorporate relatively more plant inputs in deeper soils, where biomass was less stimulated. This dependency on depth of impacts of warming on microbial C cycling should have important implications for forecasting potential feedbacks of soil C to climate change.

  6. Long-term nitrogen addition affects the phylogenetic turnover of soil microbial community responding to moisture pulse

    DOE PAGES

    Liu, Chi; Yao, Minjie; Stegen, James C.; ...

    2017-12-13

    How press disturbance (long-term) influences the phylogenetic turnover of soil microbial communities responding to pulse disturbances (short-term) is not fully known. Understanding the complex connections between the history of environmental conditions, assembly processes and microbial community dynamics is necessary to predict microbial response to perturbation. Here, we started by investigating phylogenetic spatial turnover (based on DNA) of soil prokaryotic communities after long-term nitrogen (N) deposition and temporal turnover (based on RNA) of communities responding to pulse by conducting short-term rewetting experiments. The results showed that moderate N addition increased ecological stochasticity and phylogenetic diversity. In contrast, high N addition slightlymore » increased homogeneous selection and decreased phylogenetic diversity. Examining the system with higher phylogenetic resolution revealed a moderate contribution of variable selection across the whole N gradient. The moisture pulse experiment showed that high N soils had higher rates of phylogenetic turnover across short phylogenetic distances and significant changes in community compositions through time. Long-term N input history influenced spatial turnover of microbial communities, but the dominant community assembly mechanisms differed across different N deposition gradients. We further revealed an interaction between press and pulse disturbances whereby deterministic processes were particularly important following pulse disturbances in high N soils.« less

  7. Long-term nitrogen addition affects the phylogenetic turnover of soil microbial community responding to moisture pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chi; Yao, Minjie; Stegen, James C.

    How press disturbance (long-term) influences the phylogenetic turnover of soil microbial communities responding to pulse disturbances (short-term) is not fully known. Understanding the complex connections between the history of environmental conditions, assembly processes and microbial community dynamics is necessary to predict microbial response to perturbation. Here, we started by investigating phylogenetic spatial turnover (based on DNA) of soil prokaryotic communities after long-term nitrogen (N) deposition and temporal turnover (based on RNA) of communities responding to pulse by conducting short-term rewetting experiments. The results showed that moderate N addition increased ecological stochasticity and phylogenetic diversity. In contrast, high N addition slightlymore » increased homogeneous selection and decreased phylogenetic diversity. Examining the system with higher phylogenetic resolution revealed a moderate contribution of variable selection across the whole N gradient. The moisture pulse experiment showed that high N soils had higher rates of phylogenetic turnover across short phylogenetic distances and significant changes in community compositions through time. Long-term N input history influenced spatial turnover of microbial communities, but the dominant community assembly mechanisms differed across different N deposition gradients. We further revealed an interaction between press and pulse disturbances whereby deterministic processes were particularly important following pulse disturbances in high N soils.« less

  8. Long-term nitrogen addition affects the phylogenetic turnover of soil microbial community responding to moisture pulse.

    PubMed

    Liu, Chi; Yao, Minjie; Stegen, James C; Rui, Junpeng; Li, Jiabao; Li, Xiangzhen

    2017-12-13

    How press disturbance (long-term) influences the phylogenetic turnover of soil microbial communities responding to pulse disturbances (short-term) is not fully known. Understanding the complex connections between the history of environmental conditions, assembly processes and microbial community dynamics is necessary to predict microbial response to perturbation. We started by investigating phylogenetic spatial turnover (based on DNA) of soil prokaryotic communities after long-term nitrogen (N) deposition and temporal turnover (based on RNA) of communities responding to pulse by conducting short-term rewetting experiments. The results showed that moderate N addition increased ecological stochasticity and phylogenetic diversity. In contrast, high N addition slightly increased homogeneous selection and decreased phylogenetic diversity. Examining the system with higher phylogenetic resolution revealed a moderate contribution of variable selection across the whole N gradient. The moisture pulse experiment showed that high N soils had higher rates of phylogenetic turnover across short phylogenetic distances and significant changes in community compositions through time. Long-term N input history influenced spatial turnover of microbial communities, but the dominant community assembly mechanisms differed across different N deposition gradients. We further revealed an interaction between press and pulse disturbances whereby deterministic processes were particularly important following pulse disturbances in high N soils.

  9. Burning management in the tallgrass prairie affects root decomposition, soil food web structure and carbon flow

    NASA Astrophysics Data System (ADS)

    Shaw, E. A.; Denef, K.; Milano de Tomasel, C.; Cotrufo, M. F.; Wall, D. H.

    2015-09-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is a common management practice and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable, but significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition which, in turn, is significantly affected by fire management practices. Not only does fire affect the soil community and root decomposition for Konza Prairie LTER soils, but the lower microbial abundance, greater root turnover, and the increased incorporation of root litter C by microbes and nematodes for AB suggests that tallgrass prairie management through annual burning increases root litter-derived C flow through the soil food web.

  10. The activity and community structure of total bacteria and denitrifying bacteria across soil depths and biological gradients in estuary ecosystem.

    PubMed

    Lee, Seung-Hoon; Kang, Hojeong

    2016-02-01

    The distribution of soil microorganisms often shows variations along soil depth, and even in the same soil layer, each microbial group has a specific niche. In particular, the estuary soil is intermittently flooded, and the characteristics of the surface soil layer are different from those of other terrestrial soils. We investigated the microbial community structure and activity across soil depths and biological gradients composed of invasive and native plants in the shallow surface layer of an estuary ecosystem by using molecular approaches. Our results showed that the total and denitrifying bacterial community structures of the estuarine wetland soil differed according to the short depth gradient. In growing season, gene copy number of 16S rRNA were 1.52(±0.23) × 10(11), 1.10(±0.06) × 10(11), and 4.33(±0.16) × 10(10) g(-1) soil; nirS were 5.41(±1.25) × 10(8), 4.93(±0.94) × 10(8), and 2.61(±0.28) × 10(8) g(-1) soil; and nirK were 9.67(±2.37) × 10(6), 3.42(±0.55) × 10(6), and 2.12(±0.19) × 10(6) g(-1) soil in 0 cm, 5 cm, and 10 cm depth layer, respectively. The depth-based difference was distinct in the vegetated sample and in the growing season, evidencing the important role of plants in structuring the microbial community. In comparison with other studies, we observed differences in the microbial community and functions even across very short depth gradients. In conclusion, our results suggested that (i) in the estuary ecosystem, the denitrifying bacterial community could maintain its abundance and function within shallow surface soil layers through facultative anaerobiosis, while the total bacterial community would be both quantitatively and qualitatively affected by the soil depth, (ii) the nirS gene community, rather than the nirK one, should be the first candidate used as an indicator of the microbial denitrification process in the estuary system, and (iii) as the microbial community is distributed and plays a certain niche role according to biogeochemical factors, the study of the microbial community even in surface soil should be performed in detail by considering the soil depth.

  11. Toxic effect of two kinds of mineral collectors on soil microbial richness and activity: analysis by microcalorimetry, microbial count, and enzyme activity assay.

    PubMed

    Bararunyeretse, Prudence; Yao, Jun; Dai, Yunrong; Bigawa, Samuel; Guo, Zunwei; Zhu, Mijia

    2017-01-01

    Flotation reagents are hugely and increasingly used in mining and other industrial and economic activities from which an important part is discharged into the environment. China could be the most affected country by the resulting pollution. However, their ecotoxicological dimension is still less addressed and understood. This study aimed to analyze the toxic effect of sodium isobutyl xanthate (SIBX) and sodium isopropyl xanthate (SIPX) to soil microbial richness and activity and to make a comparison between the two compounds in regard to their effects on soil microbial and enzymes activities. Different methods, including microcalorimetry, viable cell counts, cell density, and catalase and fluorescein diacetate (FDA) hydrololase activities measurement, were applied. The two chemicals exhibited a significant inhibitory effect (P < 0.05 or P < 0.01) to all parameters, SIPX being more adverse than SIBX. As the doses of SIBX and SIPX increased from 5 to 300 μg g -1 soil, their inhibitory ratio ranged from 4.84 to 45.16 % and from 16.13 to 69.68 %, respectively. All parameters fluctuated with the incubation time (10-day period). FDA hydrolysis was more directly affected but was relatively more resilient than catalase activity. Potential changes of those chemicals in the experimental media and complementarity between experimental techniques were justified.

  12. Temperature mediates continental-scale diversity of microbes in forest soils

    PubMed Central

    Zhou, Jizhong; Deng, Ye; Shen, Lina; Wen, Chongqing; Yan, Qingyun; Ning, Daliang; Qin, Yujia; Xue, Kai; Wu, Liyou; He, Zhili; Voordeckers, James W.; Nostrand, Joy D. Van; Buzzard, Vanessa; Michaletz, Sean T.; Enquist, Brian J.; Weiser, Michael D.; Kaspari, Michael; Waide, Robert; Yang, Yunfeng; Brown, James H.

    2016-01-01

    Climate warming is increasingly leading to marked changes in plant and animal biodiversity, but it remains unclear how temperatures affect microbial biodiversity, particularly in terrestrial soils. Here we show that, in accordance with metabolic theory of ecology, taxonomic and phylogenetic diversity of soil bacteria, fungi and nitrogen fixers are all better predicted by variation in environmental temperature than pH. However, the rates of diversity turnover across the global temperature gradients are substantially lower than those recorded for trees and animals, suggesting that the diversity of plant, animal and soil microbial communities show differential responses to climate change. To the best of our knowledge, this is the first study demonstrating that the diversity of different microbial groups has significantly lower rates of turnover across temperature gradients than other major taxa, which has important implications for assessing the effects of human-caused changes in climate, land use and other factors. PMID:27377774

  13. Increasing aridity reduces soil microbial diversity and abundance in global drylands.

    PubMed

    Maestre, Fernando T; Delgado-Baquerizo, Manuel; Jeffries, Thomas C; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Quero, José Luis; García-Gómez, Miguel; Gallardo, Antonio; Ulrich, Werner; Bowker, Matthew A; Arredondo, Tulio; Barraza-Zepeda, Claudia; Bran, Donaldo; Florentino, Adriana; Gaitán, Juan; Gutiérrez, Julio R; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L; Miriti, Maria; Naseri, Kamal; Ospina, Abelardo; Stavi, Ilan; Wang, Deli; Woods, Natasha N; Yuan, Xia; Zaady, Eli; Singh, Brajesh K

    2015-12-22

    Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands.

  14. Increasing aridity reduces soil microbial diversity and abundance in global drylands

    PubMed Central

    Delgado-Baquerizo, Manuel; Jeffries, Thomas C.; Eldridge, David J.; Ochoa, Victoria; Gozalo, Beatriz; Quero, José Luis; García-Gómez, Miguel; Gallardo, Antonio; Ulrich, Werner; Bowker, Matthew A.; Arredondo, Tulio; Barraza-Zepeda, Claudia; Bran, Donaldo; Florentino, Adriana; Gaitán, Juan; Gutiérrez, Julio R.; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L.; Miriti, Maria; Naseri, Kamal; Ospina, Abelardo; Stavi, Ilan; Wang, Deli; Woods, Natasha N.; Yuan, Xia; Zaady, Eli; Singh, Brajesh K.

    2015-01-01

    Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands. PMID:26647180

  15. Effects of Plutonium on Soil Microorganisms

    PubMed Central

    Wildung, Raymond E.; Garland, Thomas R.

    1982-01-01

    As a first phase in an investigation of the role of the soil microflora in Pu complex formation and solubilization in soil, the effects of Pu concentration, form, and specific activity on microbial types, colony-forming units, and CO2 evolution rate were determined in soils amended with C and N sources to optimize microbial activity. The effects of Pu differed with organism type and incubation time. After 30 days of incubation, aerobic sporeforming and anaerobic bacteria were significantly affected by soil Pu levels as low as 1 μg/g when Pu was added as the hydrolyzable 239Pu(NO3)4 (solubility, <0.1% in soil). Other classes of organisms, except the fungi, were significantly affected at soil Pu levels of 10 μg/g. Fungi were affected only at soil Pu levels of 180 μg/g. Soil CO2 evolution rate and total accumulated CO2 were affected by Pu only at the 180 μg/g level. Because of the possible role of resistant organisms in complex formation, the mechanisms of effects of Pu on the soil fungi were further evaluated. The effect of Pu on soil fungal colony-forming units was a function of Pu solubility in soil and Pu specific activity. When Pu was added in a soluble, complexed form [238Pu2(diethylenetriaminepentaacetate)3], effects occurred at Pu levels of 1 μg/g and persisted for at least 95 days. Toxicity was due primarily to radiation effects rather than to chemical effects, suggesting that, at least in the case of the fungi, formation of Pu complexes would result primarily from ligands associated with normal (in contrast to chemically-induced) biochemical pathways. PMID:16345947

  16. Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm

    NASA Astrophysics Data System (ADS)

    Volk, Elazar; Iden, Sascha C.; Furman, Alex; Durner, Wolfgang; Rosenzweig, Ravid

    2016-08-01

    Understanding the influence of attached microbial biomass on water flow in variably saturated soils is crucial for many engineered flow systems. So far, the investigation of the effects of microbial biomass has been mainly limited to water-saturated systems. We have assessed the influence of biofilms on the soil hydraulic properties under variably saturated conditions. A sandy soil was incubated with Pseudomonas Putida and the hydraulic properties of the incubated soil were determined by a combination of methods. Our results show a stronger soil water retention in the inoculated soil as compared to the control. The increase in volumetric water content reaches approximately 0.015 cm3 cm-3 but is only moderately correlated with the carbon deficit, a proxy for biofilm quantity, and less with the cell viable counts. The presence of biofilm reduced the saturated hydraulic conductivity of the soil by up to one order of magnitude. Under unsaturated conditions, the hydraulic conductivity was only reduced by a factor of four. This means that relative water conductance in biofilm-affected soils is higher compared to the clean soil at low water contents, and that the unsaturated hydraulic conductivity curve of biofilm-affected soil cannot be predicted by simply scaling the saturated hydraulic conductivity. A flexible parameterization of the soil hydraulic functions accounting for capillary and noncapillary flow was needed to adequately describe the observed properties over the entire wetness range. More research is needed to address the exact flow mechanisms in biofilm-affected, unsaturated soil and how they are related to effective system properties.

  17. [Effects of litter and root exclusion on soil microbial community composition and function of four plantations in subtropical sandy coastal plain area, China].

    PubMed

    Sang, Chang Peng; Wan, Xiao Hua; Yu, Zai Peng; Wang, Min Huang; Lin, Yu; Huang, Zhi Qun

    2017-04-18

    We conducted detritus input and removal treatment (DIRT) to examine the effects of shifting above- and belowground carbon (C) inputs on soil microbial biomass, community composition and function in subtropical Pinus elliottii, Eucalyptus urophylla × Eucalyptus grandis, Acacia aulacocarpa and Casuarina equisetifolia coastal sandy plain forests, and the treatments included: root trenching, litter removal and control. Up to September 2015, one year after the experiment began, we collected the 0-10 cm soil samples from each plot. Phospholipid fatty acid (PLFA) analysis was used to characterize the microbial community composition, and micro-hole enzymatic detection technology was utilized to determine the activity of six kinds of soil enzymes. Results showed that changes in microbial biomass induced by the C input manipulations differed among tree species, and mainly affected by litter and root qualily. In E. urophylla × E. grandis stands, root trenching significantly decreased the contents of total PLFAs, Gram-positive bacteria, Gram-negative bacteria, fungi and actinomycetes by 31%, 30%, 32%, 36% and 26%, respectively. Litter removal reduced the contents of Gram-positive bacteria, fungi and actinomycetes by 24%, 27% and 24%, respectively. However, C input manipulations had no significant effect on soil microbial biomassunder other three plantations. According to the effect of C input manipulations on soil microbial community structure, litter and root exclusion decreased fungi abundance and increased actinomycetes abundance. Different treatments under different plantations resulted in various soil enzyme activities. Litter removal significantly decreased the activities of cellobiohydrolase, β-glucosidase, acid phosphatase and N-acetyl-β-d-glucosaminidase of P. elliottii, A. aulacocarpa and C. equisetifolia, root exclusion only decreased and increased the activities of β-glucosidase in P. elliottii and A. aulacocarpa forest soils, respectively. Litter removal also decreased the activities of polyphenol oxidase (PPO) and peroxidase (PER) in P. elliottii and C. equisetifolia forest soils, while root trenching had no significant effect on the activities of PPO and PER under all plantations. The properties of litter and root were the important factors in determining the soil microbial community and enzyme activity, and the change of soil microenvironment, such as temperature and moisture, caused by C input manipulations was also the important driver for the change of soil microbial property.

  18. Microbial Community and Greenhouse Gas Fluxes from Abandoned Rice Paddies with Different Vegetation.

    PubMed

    Kim, Sunghyun; Lee, Seunghoon; McCormick, Melissa; Kim, Jae Geun; Kang, Hojeong

    2016-10-01

    The area of rice paddy fields has declined continuously in East Asian countries due to abandonment of agriculture and concurrent socioeconomic changes. When they are abandoned, rice paddy fields generally transform into wetlands by natural succession. While previous studies have mainly focused on vegetation shifts in abandoned rice paddies, little information is available about how these changes may affect their contribution to wetland functions. As newly abandoned fields proceed through succession, their hydrology and plant communities often change. Moreover, the relationships between these changes, soil microbial characteristics, and emissions of greenhouse gasses are poorly understood. In this study, we examined changes over the course of secondary succession of abandoned rice paddies to wetlands and investigated their ecological functions through changes in greenhouse gas fluxes and microbial characteristics. We collected gas and soil samples in summer and winter from areas dominated by Cyperaceae, Phragmites, and Sphagnum in each site. We found that CO2 emissions in summer were significantly higher than those in winter, but CH4 and N2O emission fluxes were consistently at very low levels and were similar among seasons and locations, due to their low nutrient conditions. These results suggest that microbial activity and abundance increased in summer. Greenhouse gas flux, soil properties, and microbial abundance were not affected by plant species, although the microbial community composition was changed by plant species. This information adds to our basic understanding of the contribution of wetlands that are transformed from abandoned rice paddy systems.

  19. Effect of addition of organic materials and irrigation conditions on soil quality in olive groves in the region of Messinia, Greece.

    NASA Astrophysics Data System (ADS)

    Kavvadias, Victor; Papadopoulou, Maria; Vavoulidou, Evangelia; Theocharopoulos, Sideris; Repas, Spiros; Koubouris, Georgos; Psaras, Georgios

    2017-04-01

    Intensive cultivation practices are associated to soil degradation mainly due to low soil organic matter content. The application of organic materials to land is a common practice in sustainable agriculture in the last years. However, its implementation in olive groves under different irrigation regimes has not been systematically tested under the prevailing Mediterranean conditions. The aim of this work was to study the effect of alternative carbon input techniques (i.e. wood shredded, pruning residues, returning of olive mill wastes the field with compost) and irrigation conditions (irrigated and rainfed olive orchards) on spatial distribution of soil chemical (pH, EC, total organic carbon, total nitrogen, inorganic nitrogen, humic and fulvic acids, available P, and exchangeable K) and microbial properties (soil basal microbial respiration and microbial biomass carbon) in two soil depths (0-10 cm and 10-40 cm). The study took place in the region of Messinia, South western Peloponnese, Greece during three year soil campaigns. Forty soil plots of olive groves were selected (20 rainfed and 20 irrigated) and carbon input practices were applied on the half of the irrigated and rainfed soil parcels (10 rainfed and 10 irrigated), while the remaining ones were used as controls. The results showed significant changes of chemical and biological properties of soil in olive orchards due to carbon treatments. However, these changes were depended on irrigation conditions. Microbial parameters appeared to be reliable indicators of changes in soil management. Proper management of alternative soil carbon inputs in olive orchards can positively affect soil fertility.

  20. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    PubMed

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  1. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils

    Treesearch

    M.P. Waldrop; K.P. Wickland; R. White; A.A. Berhe; J.W. Harden; V.E. Romanovsky

    2010-01-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial...

  2. Response of the microbial community to seasonal groundwater level fluctuations in petroleum hydrocarbon-contaminated groundwater.

    PubMed

    Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si

    2015-07-01

    The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site and in other petrochemical-contaminated areas. Furthermore, they are probably helpful for reducing health risks to the general public from contaminated groundwater.

  3. Survival of Manure-borne Escherichia coli and Fecal Coliforms in Soil: Temperature Dependence as Affected by Site-Specific Factors

    EPA Science Inventory

    Understanding pathogenic and indicator bacteria survival in soils is essential for assessing the potential of microbial contamination of water and produce. The objective of this work was to evaluate the effects of soil properties, animal source, experimental conditions, and the a...

  4. Survival of manure-borne and fecal coliforms in soil: temperature dependence as affected by site-specific factors

    USDA-ARS?s Scientific Manuscript database

    Understanding pathogenic and indicator bacteria survival in soils is essential for assessing the potential of microbial contamination of water and produce, and making appropriate management decisions. The objective of this work was to evaluate effects of soil and management factors on temperature de...

  5. Interactions between allelochemicals and the microbial community affect weed suppression following cover crop residue incorporation into soil

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to understand how soil microorganisms interact with cover crop-derived allelochemicals to suppress weed germination and growth following cover crop residue incorporation. We conducted a time series experiment by crossing sterilized and non-sterilized soil with four dif...

  6. Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species.

    PubMed

    Muehe, E Marie; Obst, Martin; Hitchcock, Adam; Tyliszczak, Tolek; Behrens, Sebastian; Schröder, Christian; Byrne, James M; Michel, F Marc; Krämer, Ute; Kappler, Andreas

    2013-12-17

    Fe(III) (oxyhydr)oxides affect the mobility of contaminants in the environment by providing reactive surfaces for sorption. This includes the toxic metal cadmium (Cd), which prevails in agricultural soils and is taken up by crops. Fe(III)-reducing bacteria can mobilize such contaminants by Fe(III) mineral dissolution or immobilize them by sorption to or coprecipitation with secondary Fe minerals. To date, not much is known about the fate of Fe(III) mineral-associated Cd during microbial Fe(III) reduction. Here, we describe the isolation of a new Geobacter sp. strain Cd1 from a Cd-contaminated field site, where the strain accounts for 10(4) cells g(-1) dry soil. Strain Cd1 reduces the poorly crystalline Fe(III) oxyhydroxide ferrihydrite in the presence of at least up to 112 mg Cd L(-1). During initial microbial reduction of Cd-loaded ferrihydrite, sorbed Cd was mobilized. However, during continuous microbial Fe(III) reduction, Cd was immobilized by sorption to and/or coprecipitation within newly formed secondary minerals that contained Ca, Fe, and carbonate, implying the formation of an otavite-siderite-calcite (CdCO3-FeCO3-CaCO3) mixed mineral phase. Our data shows that microbially mediated turnover of Fe minerals affects the mobility of Cd in soils, potentially altering the dynamics of Cd uptake into food or phyto-remediating plants.

  7. Why does carbon increase in highly weathered soil under no-till upon lime and gypsum use?

    PubMed

    Inagaki, Thiago Massao; de Moraes Sá, João Carlos; Caires, Eduardo Fávero; Gonçalves, Daniel Ruiz Potma

    2017-12-01

    Field experiments have been used to explain how soil organic carbon (SOC) dynamics is affected by lime and gypsum applications, however, how SOC storage occurs is still debatable. We hypothesized that although many studies conclude that Ca-based soil amendments such as lime and gypsum may lead to SOC depletion due to the enhancement of microbial activity, the same does not occur under conservation agriculture conditions. Thus, the objective of this study was to elucidate the effects of lime and gypsum applications on soil microbial activity and SOC stocks in a no-till field and in a laboratory incubation study simulating no-till conditions. The field experiment was established in 1998 in a clayey Oxisol in southern Brazil following a completely randomized blocks design with a split-plot arrangement and three replications. Lime and gypsum were surface applied in 1998 and reapplied in 2013. Undisturbed soil samples were collected before the treatments reapplications, and one year after. The incubation experiment was carried out during 16months using these samples adding crop residues on the soil surface to simulate no-till field conditions. Lime and gypsum applications significantly increased the labile SOC stocks, microbial activity and soil fertility attributes in both field and laboratory experiments. Although the microbial activity was increased, no depletion of SOC stocks was observed in both experiments. Positive correlations were observed between microbial activity increase and SOC gains. Labile SOC and Ca 2+ content increase leads to forming complex with mineral soil fractions. Gypsum applications performed a higher influence on labile SOC pools in the field than in the laboratory experiment, which may be related to the presence of active root system in the soil profile. We conclude that incubation experiments using lime and gypsum in undisturbed samples confirm that soil microbial activity increase does not deplete SOC stocks under conservation agriculture. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory

    PubMed Central

    Alster, Charlotte J.; Baas, Peter; Wallenstein, Matthew D.; Johnson, Nels G.; von Fischer, Joseph C.

    2016-01-01

    The activity of soil microbial extracellular enzymes is strongly controlled by temperature, yet the degree to which temperature sensitivity varies by microbe and enzyme type is unclear. Such information would allow soil microbial enzymes to be incorporated in a traits-based framework to improve prediction of ecosystem response to global change. If temperature sensitivity varies for specific soil enzymes, then determining the underlying causes of variation in temperature sensitivity of these enzymes will provide fundamental insights for predicting nutrient dynamics belowground. In this study, we characterized how both microbial taxonomic variation as well as substrate type affects temperature sensitivity. We measured β-glucosidase, leucine aminopeptidase, and phosphatase activities at six temperatures: 4, 11, 25, 35, 45, and 60°C, for seven different soil microbial isolates. To calculate temperature sensitivity, we employed two models, Arrhenius, which predicts an exponential increase in reaction rate with temperature, and Macromolecular Rate Theory (MMRT), which predicts rate to peak and then decline as temperature increases. We found MMRT provided a more accurate fit and allowed for more nuanced interpretation of temperature sensitivity in all of the enzyme × isolate combinations tested. Our results revealed that both the enzyme type and soil isolate type explain variation in parameters associated with temperature sensitivity. Because we found temperature sensitivity to be an inherent and variable property of an enzyme, we argue that it can be incorporated as a microbial functional trait, but only when using the MMRT definition of temperature sensitivity. We show that the Arrhenius metrics of temperature sensitivity are overly sensitive to test conditions, with activation energy changing depending on the temperature range it was calculated within. Thus, we propose the use of the MMRT definition of temperature sensitivity for accurate interpretation of temperature sensitivity of soil microbial enzymes. PMID:27909429

  9. Plant diversity does not buffer drought effects on early-stage litter mass loss rates and microbial properties.

    PubMed

    Vogel, Anja; Eisenhauer, Nico; Weigelt, Alexandra; Scherer-Lorenzen, Michael

    2013-09-01

    Human activities are decreasing biodiversity and changing the climate worldwide. Both global change drivers have been shown to affect ecosystem functioning, but they may also act in concert in a non-additive way. We studied early-stage litter mass loss rates and soil microbial properties (basal respiration and microbial biomass) during the summer season in response to plant species richness and summer drought in a large grassland biodiversity experiment, the Jena Experiment, Germany. In line with our expectations, decreasing plant diversity and summer drought decreased litter mass loss rates and soil microbial properties. In contrast to our hypotheses, however, this was only true for mass loss of standard litter (wheat straw) used in all plots, and not for plant community-specific litter mass loss. We found no interactive effects between global change drivers, that is, drought reduced litter mass loss rates and soil microbial properties irrespective of plant diversity. High mass loss rates of plant community-specific litter and low responsiveness to drought relative to the standard litter indicate that soil microbial communities were adapted to decomposing community-specific plant litter material including lower susceptibility to dry conditions during summer months. Moreover, higher microbial enzymatic diversity at high plant diversity may have caused elevated mass loss of standard litter. Our results indicate that plant diversity loss and summer drought independently impede soil processes. However, soil decomposer communities may be highly adapted to decomposing plant community-specific litter material, even in situations of environmental stress. Results of standard litter mass loss moreover suggest that decomposer communities under diverse plant communities are able to cope with a greater variety of plant inputs possibly making them less responsive to biotic changes. © 2013 John Wiley & Sons Ltd.

  10. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge.

    PubMed

    Luo, Kai; Ma, Tingting; Liu, Hongyan; Wu, Longhua; Ren, Jing; Nai, Fengjiao; Li, Rui; Chen, Like; Luo, Yongming; Christie, Peter

    2015-01-01

    Long-term application of sewage sludge resulted in soil cadmium (Cd) and zinc (Zn) contamination in a pot experiment conducted to phytoextract Cd/Zn repeatedly using Sedum plumbizincicola and Apium graceolens in monoculture or intercropping mode eight times. Shoot yields and soil physicochemical properties changed markedly with increasing number of remediation crops when the two plant species were intercropped compared with the unplanted control soil and the two monoculture treatments. Changes in soil microbial indices such as average well colour development, soil enzyme activity and soil microbial counts were also significantly affected by the growth of the remediation plants, especially intercropping with S. plumbizincicola and A. graveolens. The higher yields and amounts of Cd taken up indicated that intercropping of the hyperaccumulator and the vegetable species may be suitable for simultaneous agricultural production and soil remediation, with larger crop yields and higher phytoremediation efficiencies than under monoculture conditions.

  11. Soil microbial response to waste potassium silicate drilling fluid.

    PubMed

    Yao, Linjun; Naeth, M Anne; Jobson, Allen

    2015-03-01

    Potassium silicate drilling fluids (PSDF) are a waste product of the oil and gas industry with potential for use in land reclamation. Few studies have examined the influence of PSDF on abundance and composition of soil bacteria and fungi. Soils from three representative locations for PSDF application in Alberta, Canada, with clay loam, loam and sand textures were studied with applications of unused, used once and used twice PSDF. For all three soils, applying ≥40 m3/ha of used PSDF significantly affected the existing soil microbial flora. No microbiota was detected in unused PSDF without soil. Adding used PSDF to soil significantly increased total fungal and aerobic bacterial colony forming units in dilution plate counts, and anaerobic denitrifying bacteria numbers in serial growth experiments. Used PSDF altered bacterial and fungal colony forming unit ratios of all three soils. Copyright © 2015. Published by Elsevier B.V.

  12. Microbial characteristics of purple paddy soil in response to Pb pollution.

    PubMed

    Jiang, Qiu-Ju; Zhang, Yue-Qiang; Zhang, La-Mei; Zhou, Xin-Bin; Shi, Xiao-Jun

    2014-05-01

    The study focused on the change of microbial characteristics affected by Plumbum pollution with purple paddy soil in an incubation experiment. The results showed that low concentration of Plumbum had little effect on most of microbial amounts, biological activity and enzymatic activity. However, denitrifying activity was inhibited severely, and inhibition rate was up to 98%. Medium and high concentration of Plumbum significantly reduced the amounts and activity of all microorganisms and enzymatic activity, which increased with incubation time. Negative correlations were found between Plumbum concentrations and microbial amounts, biological activity and enzymatic activities except fungi and actinomyces. Thus they can be used to indicate the Plumbum pollution levels to some extent. LD(50) of denitrifying bacteria (DB) and ED50 of denitrifying activity were 852mg/kg and 33.5mg/kg. Across all test soil microbes, denitrifying bacteria was most sensitive to Plumbum pollution in purple paddy soil. Value of early warning showed that anaerobic cellulose-decomposing bacteria (ACDB) and actinomyces were also sensitive to Plumbum pollution. We concluded that denitrifying activity, actinomyces, ACDB or DB can be chosen as predictor of Plumbum contamination in purple paddy soil.

  13. N fertilization reduces the losses of old soil organic carbon

    NASA Astrophysics Data System (ADS)

    Zang, H.; Blagodatskaya, E.; Wang, J.; Kuzyakov, Y.; Xu, X.

    2016-12-01

    Agricultural soils have experiencing large anthropogenic nitrogen (N) inputs, which directly and indirectly affect soil organic matter (SOM) stocks and CO2 emissions. However, current understanding of how these additional N inputs affect SOM pools of various ages and turnover remains incomplete. The δ13C values of SOM after wheat (C3) - maize (C4) vegetation change enable to calculate the contribution of C4-derived rhizodeposited C (rhizo-C) and C3-derived old SOM pools. Soil (Ap from Haplic Luvisol) sampled from maize rhizosphere was incubated over 56 days after increasing N fertilization (4 levels up to 300 kg N ha-1). N fertilization decreased soil CO2 emissions by 27-42% as compared to unfertilized control. This decrease was mainly caused by the retardation of old C mineralization. The relative availability of rhizo-C (released by maize roots within 4 weeks) for microorganisms was about 10 times higher than of old C (older than 4 weeks). Microbial biomass and dissolved organic C were unaffected by increasing N. N fertilization, however, increased relative contribution of rhizo-C to microbial biomass for 2 - 5 times and to CO2 for about 2 times. This clearly reflects acceleration of microbial biomass turnover by N addition. The decomposition rate of rhizo-C was 3.7 times higher than of old C, and it increased additionally by the factor of 6.5 under high N fertilization. Our study is the first estimated the turnover and incorporation of very recent rhizo-C (within 4 weeks). Compared with several-years old C4, the turnover of rhizo-C was about 2 times faster. Concluding, the contribution of rhizo-C to CO2 and microbial biomass was highly responsive to N fertilization. N fertilization facilitates C sequestration in agricultural soils by decreasing old SOM decomposition mainly through increase the turnover and C use efficiency of rhizo-C. Keywords: CO2 partitioning; C3-C4 vegetation; microbial biomass; SOM decomposition; Nutrient availability

  14. Temporal changes in soil water repellency linked to the soil respiration and CH4 and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Qassem, Khalid; Urbanek, Emilia; van Keulen, Geertje

    2014-05-01

    Soil water repellency (SWR) is known to be a spatially and temporally variable phenomenon. The seasonal changes in soil moisture lead to development of soil water repellency, which in consequence may affect the microbial activity and in consequence alter the CO2 and CH4 fluxes from soils. Soil microbial activity is strongly linked to the temperature and moisture status of the soil. In terms of CO2 flux intermediate moisture contents are most favourable for the optimal microbial activity and highest CO2 fluxes. Methanogenesis occurs primarily in anaerobic water-logged habitats while methanotrophy is a strictly aerobic process. In the study we hypothesise that the changes in CO2 and CH4 fluxes are closely linked to critical moisture thresholds for soil water repellency. This research project aims to adopt a multi-disciplinary approach to comprehensively determine the effect of SWR on CO2 and CH4 fluxes. Research is conducted in situ at four sites exhibiting SWR in the southern UK. Flux measurements are carried out concomitant with meteorological and SWR observations Field observations are supported by laboratory measurements carried out on intact soil samples collected at the above identified field sites. The laboratory analyses are conducted under constant temperatures with controlled changes of soil moisture content. Methanogenic and Methanotrophic microbial populations are being analysed at different SWR and moisture contents using the latest metagenomic and metatranscriptomic approaches. Currently available data show that greenhouse gas flux are closely linked with soil moisture thresholds for SWR development.

  15. Soil microbial communities influence seedling growth of a rare conifer independent of plant-soil feedback.

    PubMed

    Rigg, Jessica L; Offord, Cathy A; Singh, Brajesh K; Anderson, Ian; Clarke, Steve; Powell, Jeff R

    2016-12-01

    Plant-soil feedback, the reciprocal relationship between a plant and its associated microbial communities, has been proposed to be an important driver of plant populations and community dynamics. While rarely considered, understanding how plant-soil feedback contributes to plant rarity may have implications for conservation and management of rare species. Wollemi pine (Wollemia nobilis) is a critically endangered species, of which fewer than 100 trees are known to exist in the wild. Seedling survival within the first year after germination and subsequent recruitment of Wollemi pine is limited in the wild. We used a plant-soil feedback approach to investigate the functional effect of species-specific differences previously observed in the microbial communities underneath adult Wollemi pine and a neighboring species, coachwood (Ceratopetalum apetalum), and also whether additional variation in microbial communities in the wild could impact seedling growth. There was no evidence for seedling growth being affected by tree species associated with soil inocula, suggesting that plant-soil feedbacks are not limiting recruitment in the natural population. However, there was evidence of fungal, but not bacterial, community variation impacting seedling growth independently of plant-soil feedbacks. Chemical (pH) and physical (porosity) soil characteristics were identified as potential drivers of the functional outcomes of these fungal communities. The empirical approach described here may provide opportunities to identify the importance of soil microbes to conservation efforts targeting other rare plant species and is also relevant to understanding the importance of soil microbes and plant-soil feedbacks for plant community dynamics more broadly. © 2016 by the Ecological Society of America.

  16. Does Short-term Litter Input Manipulation Affect Soil Respiration and the Carbon-isotopic Signature of Soil Respired CO2

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Wu, J.

    2016-12-01

    Global change greatly alters the quality and quantity of plant litter inputs to soils, and further impacts soil organic matter (SOM) dynamics and soil respiration. However, the process-based understanding of how soil respiration may change with future shift in litter input is not fully understood. The Detritus Input and Removal Treatment (DIRT) experiment was conducted in coniferous forest (Platycladus orientalis (Linn.) Franco) ecosystem of central China to investigate the impact of above- and belowground litter input on soil respiration and the carbon-isotopic signature of soil respired CO2. Short-term (1-2 years) litter input manipulation significantly affected soil respiration, based on annual flux values, soil respiration was 31.9%, 20.5% and 37.2% lower in no litter (NL), no root (NR) and no input (NRNL), respectively, compared to control (CK). Whereas double litter (DL) treatment increased soil respiration by 9.1% compared to CK. The recalcitrance index of carbon (RIC) and the relative abundance of fungi increased under litter removal or root exclusion treatment (NL, NR and NRNL) compared to CK. Basal soil respiration was positively related to liable C and microbial biomass and negatively related to RIC and fungi to bacteria (F: B) ratio. The carbon-isotopic signature of soil respired CO2 enriched under litter removal and no input treatment, and slightly depleted under litter addition treatment compared to CK. Our results suggest that short-term litter input manipulation can affect the soil respiration by altering substrate availability and microbial community structure, and also impact the carbon-isotopic signature of soil respired CO2 possibly duo to change in the component of soil respiration and soil microclimate.

  17. Microbial community composition but not diversity changes along succession in arctic sand dunes.

    PubMed

    Poosakkannu, Anbu; Nissinen, Riitta; Männistö, Minna; Kytöviita, Minna-Maarit

    2017-02-01

    The generality of increasing diversity of fungi and bacteria across arctic sand dune succession was tested. Microbial communities were examined by high-throughput sequencing of 16S rRNA genes (bacteria) and internal transcribed spacer (ITS) regions (fungi). We studied four microbial compartments (inside leaf, inside root, rhizosphere and bulk soil) and characterized microbes associated with a single plant species (Deschampsia flexuosa) across two sand dune successional stages (early and late). Bacterial richness increased across succession in bulk soil and leaf endosphere. In contrast, soil fungal richness remained constant while root endosphere fungal richness increased across succession. There was, however, no significant difference in Shannon diversity indices between early and late successional stage in any compartment. There was a significant difference in the composition of microbial communities between early and late successional stage in all compartments, although the major microbial OTUs were shared between early and late successional stage. Co-occurrence network analysis revealed successional stage-specific microbial groups. There were more co-occurring modules in early successional stage than in late stage. Altogether, these results emphasize that succession strongly affects distribution of microbial species, but not microbial diversity in arctic sand dune ecosystem and that fungi and bacteria may not follow the same successional trajectories. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. [Effect of afforestation modes on soil microbial community and nitrogen functional genes in Hippophae rhamnoides plantation].

    PubMed

    Yang, Dan; Yu, Xuan; Liu, Xu; Liu, Jin-liana; Zhang, Shun-xiang; Yu, Ze-qun

    2015-12-01

    The study aimed to assess the effect of different afforestation modes on microbial composition and nitrogen functional genes in soil. Soil samples from a pure Hippophae rhamnoides stand (SS) and three mixed stands, namely, H. rhamnoides and Pinus tabuliformis (SY), H. rhamnoides and Platycladus orientalis (SB), H. rhamnoides and Robinia pseucdoacacia (SC) were selected. The results showed that the total PLFA (TPLFA), bacterial PLFA, gram positive bacterial PLFA (G⁺PLFA) were significantly higher in soil samples from other three stands than those of the pure one. However, no significant difference was found for fungal PLFA among them. The abundance of nifH, amoA, nirK and narG genes were higher in SY and SC than in SS. The TPLFA, G⁺PLFA, gram negative bacterial PLFA (G⁻PLFA), and all of the detected gene abundance were significantly and positively correlated with soil pH, total organic carbon, total nitrogen, ammonium nitrogen and available potassium. Afforestation modes affected indirectly soil microbial composition and functional genes through soil properties. Mixing P. tabuliformis or P. orientalis with H. rhamnoides might be suitable afforestation modes, which might improve soil quality.

  19. Microbial composition and diversity are associated with plant performance: a case study on long-term fertilization effect on wheat growth in an Ultisol.

    PubMed

    Li, Lihua; Fan, Fenliang; Song, Alin; Yin, Chang; Cui, Peiyuan; Li, Zhaojun; Liang, Yongchao

    2017-06-01

    The association between microbial communities and plant growth in long-term fertilization system has not been fully studied. In the present study, impacts of long-term fertilization have been determined on the size and activity of soil microbial communities and wheat performance in a red soil (Ultisol) collected from Qiyang Experimental Station, China. For this, different microbial communities originating from long-term fertilized pig manure (M), mineral fertilizer (NPK), pig manure plus mineral fertilizer (MNPK), and no fertilizer (CK) were used as inocula for the Ultisol tested. Changes in total bacterial and fungal community composition and structures using Ion Torrent sequencing were determined. The results show that the biomass of wheat was significantly higher in both sterilized soil inoculated with NPK (SNPK) and sterilized soil inoculated with MNPK (SMNPK) treatments than in other treatments (P < 0.05). The activities of β-1,4-N-acetylglucosaminidase (NAG) and cellobiohydrolase (CBH) were significantly correlated with wheat biomass. Among the microbial communities, the largest Ascomycota phylum in soils was negatively correlated with β-1,4-glucosidase (βG) (P < 0.05). The phylum Basidiomycota was negatively correlated with plant biomass (PB) and tillers per plant (TI) (P < 0.05). Nonmetric multidimensional scaling analysis shows that fungal community was strongly correlated with long-term fertilization strategy, while the bacterial community was strongly correlated with β-1,4-N-acetylglucosaminidase activity. According to the Mantel test, the growth of wheat was affected by fungal community. Taken together, microbial composition and diversity in soils could be a good player in predicting soil fertility and consequently plant growth.

  20. Experimental Evidence that Fungi are Dominant Microbes in Carbon Content and Growth Response to Added Soluble Organic Carbon in Moss-rich Tundra Soil.

    PubMed

    Anderson, O Roger; Lee, Jee Min; McGuire, Krista

    2016-05-01

    Global warming significantly affects Arctic tundra, including permafrost thaw and soluble C release that may differentially affect tundra microbial growth. Using laboratory experiments, we report some of the first evidence for the effects of soluble glucose-C enrichment on tundra soil prokaryotes (bacteria and archaea) and fungi, with comparisons to microbial eukaryotes. Fungal increase in C-biomass was equivalent to 10% (w/w) of the added glucose-C, and for prokaryote biomass 2% (w/w), the latter comparable to prior published results. The C-gain after 14 d was 1.3 mg/g soil for fungi, and ~200 μg/g for prokaryotes. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  1. Soil C dynamics under intensive oil palm plantations in poor tropical soils

    NASA Astrophysics Data System (ADS)

    Guillaume, Thomas; Ruegg, Johanna; Quezada, Juan Carlos; Buttler, Alexandre

    2017-04-01

    Oil palm cultivation mainly takes place on heavily-weathered tropical soils where nutrients are limiting factors for plant growth and microbial activity. Intensive fertilization and changes of C input by oil palms strongly affects soil C and nutrient dynamics, challenging long-term soil fertility. Oil palm plantations management offers unique opportunities to study soil C and nutrients interactions in field conditions because 1) they can be considered as long-term litter manipulation experiments since all aboveground C inputs are concentrated in frond pile areas and 2) mineral fertilizers are only applied in specific areas, i.e. weeded circle around the tree and interrows, but not in harvest paths. Here, we determined impacts of mineral fertilizer and organic matter input on soil organic carbon dynamics and microbial activity in mature oil palm plantation established on savanna grasslands. Rates of savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC net stabilization were determined using changes in isotopic signature of in C input following a shift from C4 (savanna) to C3 (oil palm) vegetation. Application of mineral fertilizer alone did not affect savanna-derived SOC decomposition or oil palm-derived SOC stabilization rates, but fertilization associated with higher C input lead to an increase of oil palm-derived SOC stabilization rates, with about 50% of topsoil SOC derived from oil palm after 9 years. High carbon and nutrients inputs did not increase microbial biomass but microorganisms were more active per unit of biomass and SOC. In conclusion, soil organic matter decomposition was limited by C rather than nutrients in the studied heavily-weathered soils. Fresh C and nutrient inputs did not lead to priming of old savanna-derived SOC but increased turnover and stabilization of new oil palm-derived SOC.

  2. Dynamics of soil biogeochemical gas emissions shaped by remolded aggregate sizes and carbon configurations under hydration cycles.

    PubMed

    Ebrahimi, Ali; Or, Dani

    2018-01-01

    Changes in soil hydration status affect microbial community dynamics and shape key biogeochemical processes. Evidence suggests that local anoxic conditions may persist and support anaerobic microbial activity in soil aggregates (or in similar hot spots) long after the bulk soil becomes aerated. To facilitate systematic studies of interactions among environmental factors with biogeochemical emissions of CO 2 , N 2 O and CH 4 from soil aggregates, we remolded silt soil aggregates to different sizes and incorporated carbon at different configurations (core, mixed, no addition). Assemblies of remolded soil aggregates of three sizes (18, 12, and 6 mm) and equal volumetric proportions were embedded in sand columns at four distinct layers. The water table level in each column varied periodically while obtaining measurements of soil GHG emissions for the different aggregate carbon configurations. Experimental results illustrate that methane production required prolonged inundation and highly anoxic conditions for inducing measurable fluxes. The onset of unsaturated conditions (lowering water table) resulted in a decrease in CH 4 emissions while temporarily increasing N 2 O fluxes. Interestingly, N 2 O fluxes were about 80% higher form aggregates with carbon placement in center (anoxic) core compared to mixed carbon within aggregates. The fluxes of CO 2 were comparable for both scenarios of carbon sources. These experimental results highlight the importance of hydration dynamics in activating different GHG production and affecting various transport mechanisms about 80% of total methane emissions during lowering water table level are attributed to physical storage (rather than production), whereas CO 2 emissions (~80%) are attributed to biological activity. A biophysical model for microbial activity within soil aggregates and profiles provides a means for results interpretation and prediction of trends within natural soils under a wide range of conditions. © 2017 John Wiley & Sons Ltd.

  3. [Effects of tree species fine root decomposition on soil active organic carbon].

    PubMed

    Liu, Yan; Wang, Si-Long; Wang, Xiao-Wei; Yu, Xiao-Jun; Yang, Yue-Jun

    2007-03-01

    With incubation test, this paper studied the effects of fine root decomposition of Alnus cremastogyne, Cunninghamia lanceolata and Michelia macclurei on the content of soil active organic carbon at 9 degrees C , 14 degrees C , 24 degrees C and 28 degrees C. The results showed that the decomposition rate of fine root differed significantly with test tree species, which was decreased in the order of M. macclurei > A. cremastogyne > C. lanceolata. The decomposition rate was increased with increasing temperature, but declined with prolonged incubation time. Fine root source, incubation temperature, and incubation time all affected the contents of soil microbial biomass carbon and water-soluble organic carbon. The decomposition of fine root increased soil microbial biomass carbon and water-soluble organic carbon significantly, and the effect decreased in the order of M. macclurei > A. cremastogyne > C. lanceolata. Higher contents of soil microbial biomass carbon and water-soluble organic carbon were observed at medium temperature and middle incubation stage. Fine root decomposition had less effect on the content of soil readily oxidized organic carbon.

  4. Long-term forest soil warming alters microbial communities in temperate forest soils

    PubMed Central

    DeAngelis, Kristen M.; Pold, Grace; Topçuoğlu, Begüm D.; van Diepen, Linda T. A.; Varney, Rebecca M.; Blanchard, Jeffrey L.; Melillo, Jerry; Frey, Serita D.

    2015-01-01

    Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming. PMID:25762989

  5. Impact of glyphosate-resistant corn, glyphosate applications and tillage on soil nutrient ratios, exoenzyme activities and nutrient acquisition ratios.

    PubMed

    Jenkins, Michael B; Locke, Martin A; Reddy, Krishna N; McChesney, Daniel S; Steinriede, R Wade

    2017-01-01

    We report results of the last two years of a 7 year field experiment designed to test the null hypothesis: applications of glyphosate on glyphosate-resistant (GR) and non-resistant (non-GR) corn (Zea mays L.) under conventional tillage and no-till would have no effect on soil exoenzymes and microbial activity. Bulk soil (BS) and rhizosphere soil (RS) macronutrient ratios were not affected by either GR or non-GR corn, or glyphosate applications. Differences observed between exoenzyme activities were associated with tillage rather than glyphosate applications. In 2013, nutrient acquisition ratios for bulk and rhizosphere soils indicated P limitations, but sufficient assimilable N. In 2014, P limitations were observed for bulk and rhizosphere soils, in contrast to balanced C and N acquisition ratios in rhizosphere soils. Stoichiometric relationships indicated few differences between glyphosate and non-glyphosate treatments. Negative correlations between C:P and N:P nutrient ratios and nutrient acquisition ratios underscored the inverse relation between soil nutrient status and microbial community exoenzyme activities. Inconsistent relationships between microbial community metabolic activity and exoenzyme activity indicated an ephemeral effect of glyphosate on BS exoenzyme activity. Except for ephemeral effects, glyphosate applications appeared not to affect the function of the BS and RS exoenzymes under conventional tillage or no-till. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  6. Passive warming effect on soil microbial community and humic substance degradation in maritime Antarctic region.

    PubMed

    Kim, Dockyu; Park, Ha Ju; Kim, Jung Ho; Youn, Ui Joung; Yang, Yung Hun; Casanova-Katny, Angélica; Vargas, Cristina Muñoz; Venegas, Erick Zagal; Park, Hyun; Hong, Soon Gyu

    2018-06-01

    Although the maritime Antarctic has undergone rapid warming, the effects on indigenous soil-inhabiting microorganisms are not well known. Passive warming experiments using open-top chamber (OTC) have been performed on the Fildes Peninsula in the maritime Antarctic since 2008. When the soil temperature was measured at a depth of 2-5 cm during the 2013-2015 summer seasons, the mean temperature inside OTC (OTC-In) increased by approximately 0.8 °C compared with outside OTC (OTC-Out), while soil chemical and physical characteristics did not change. Soils (2015 summer) from OTC-In and OTC-Out were subjected to analysis for change in microbial community and degradation rate of humic substances (HS, the largest pool of recalcitrant organic carbon in soil). Archaeal and bacterial communities in OTC-In were minimally affected by warming compared with those in OTC-Out, with archaeal methanogenic Thermoplasmata slightly increased in abundance. The abundance of heterotrophic fungi Ascomycota was significantly altered in OTC-In. Total bacterial and fungal biomass in OTC-In increased by 20% compared to OTC-Out, indicating that this may be due to increased microbial degradation activity for soil organic matter (SOM) including HS, which would result in the release of more low-molecular-weight growth substrates from SOM. Despite the effects of warming on the microbial community over the 8-years-experiments warming did not induce any detectable change in content or structure of polymeric HS. These results suggest that increased temperature may have significant and direct effects on soil microbial communities inhabiting maritime Antarctic and that soil microbes would subsequently provide more available carbon sources for other indigenous microbes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Using Plant Phylogenetic Relatedness as a Predictor for Plants' Control on Soil Microbial Communities and Nitrogen Cycling

    NASA Astrophysics Data System (ADS)

    Potter, T.; Bowman, W. D.

    2016-12-01

    Despite the known importance of soil microbes and their influence on soil processes, a mechanistic understanding is still needed to predict how plants and soil microbes interact at scales that are relevant to community and ecosystem-scale processes. Closely related plant species have similar traits aboveground, but we don't know whether this is also true for belowground traits that affect soil microbial community structure and function. Determining how tightly plant phylogeny and plant functional traits are linked to soil microbial communities is a useful approach for discovering plant-microbe associations that are generalizable across plant species (a limitation of studies that employ a single or few plant species). Using this approach, we conducted a greenhouse study with seven congeneric grasses (genus Poa) and their native soils to examine whether plants' influences on microbial community structure were consistent with plant phylogenetic relatedness and/or plant functional traits. Seeds of each Poa species were planted in native soil (from the seed source population) as well as a homogenized soil from all seven populations. Additionally, a nitrogen treatment was added to address how an environmental change (such as nitrogen deposition) alters plant-microbe associations. Rhizosphere community composition of bacteria and fungi was obtained via marker gene sequencing to compare community composition across plant species. Patterns in plant-microbe associations across plant species reveal plant control on nutrient cycling via plant species' influence on microbial community structure. These results determine if we are ready to generalize about plant-microbe interactions at the genus level, an important stepping-stone to applying knowledge of plant-microbe interactions to larger ecological scales.

  8. Microbial Mechanisms Underlying Acidity-induced Reduction in Soil Respiration Under Nitrogen Fertilization

    NASA Astrophysics Data System (ADS)

    Niu, S.; Li, Y.

    2016-12-01

    Terrestrial ecosystems are receiving increasing amounts of reactive nitrogen (N) due to anthropogenic activities, which largely changes soil respiration and its feedback to climate change. N enrichment can not only increase N availability but also induce soil acidification, both may affect soil microbial activity and root growth with a consequent impact on soil respiration. However, it remains unclear whether elevated N availability or soil acidity has greater impact on soil respiration (Rs). We conducted a manipulative experiment to simulate N enrichment (10 g m-2 yr-1 NH4NO3) and soil acidity (0.552 mol H+ m-2 yr-1 sulfuric acid) and studied their effects on Rs and its components in a temperate forest. Our results showed that soil pH was reduced by 0.2 under N addition or acid addition treatment. Acid addition significantly decreased autotrophic respiration (Ra) and heterotrophic respiration (Rh) by 21.5% and 22.7% in 2014, 34.8% and 21.9% in 2015, respectively, resulting in a reduction of Rs by 22.2% in 2014 and 26.1% in 2015. Nitrogen enrichment reduced Ra, Rh, Rs by 21.9%, 16.2%, 18.6% in 2014 and 22.1%, 5.9%, 11.7% in 2015, respectively. The reductions of Rs and its components were attributable to decrease of fine root biomass, microbial biomass, and cellulose degrading enzymes. N addition did not change microbial community but acid addition increased both fungal and arbuscular mycorrhiza fungi PLFAs, and N plus acid addition significantly enhanced fungal to bacterial ratio. All the hydrolase enzymes were reduced more by soil acidity (43-50%) than nitrogen addition (30-39%). Structural equation model showed that soil acidity played more important role than N availability in reducing soil respiration mainly by changing microbial extracellular enzymes. We therefore suggest that N deposition induced indirect effect of soil acidification on microbial properties is critical and should be taken into account to better understand and predict ecosystem C cycling in the future scenarios of anthropogenic N deposition and acid enrichment.

  9. Effect of exogenous carbon addition and the freeze-thaw cycle on soil microbes and mineral nitrogen pools1

    NASA Astrophysics Data System (ADS)

    Hu, Xia; Yin, Peng; Nong, Xiang; Liao, Jinhua

    2018-01-01

    To elucidate the alpine soil process in winter, the response mechanism of soil mineral nitrogen and soil microbes to exogenous carbon (0 mg C, 1 mg C, 2 mg C, 4 mg C and 8 mg C·g-1 dry soil) and the freeze-thaw cycle (-2 °C, -2 ∼ 2 °C, -20 ∼2°C) were studied by laboratory simulation. The freeze-thaw treatment had no significant effect on microbial biomass nitrogen and the number of bacteria. The soil mineral N pool, the number of fungi, and enzyme activities were obviously affected by the freeze-thaw cycle. A mild freeze-thaw cycle (-2∼2°C) significantly increased the number of fungi and catalase activity, while severe freeze-thaw cycle (-20∼2°C) obviously decreased invertase activity. The results suggested that both the freeze-thaw rate and freeze-thaw temperature amplitudes have a strong effect on soil microbial dynamics in the alpine zone in winter. The results showed that exogenous carbon addition significantly decreased soil NO3-N and NH4 +-N contents, increased soil microbial biomass, the number of microbes, and soil enzyme activities. The results showed that microbial growth in the eastern Tibetan Plateau was somewhat limited by available C. It may represent a larger potential pulse of soil nutrient for alpine plants in the next spring, and may be instrumental for plant community shifts under future climate change predictions due to the possible increased litter addition.

  10. Microbial hotspots and hot moments in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Blagodatskaya, Evgenia

    2015-04-01

    Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong increases in C stocks. Consequently, the intensification of fluxes is much stronger than the increase of pools. Maintenance of stoichiometric ratios by accelerated microbial growth in hotspots requires additional nutrients (e.g. N and P), causing their microbial mining from soil organic matter, i.e. priming effects. Consequently, priming effects are localized in microbial hotspots and are consequences of hot moments. Finally, we estimated the contribution of the hotspots to the whole soil profile and suggested that, irrespective of their volume, the hotspots are mainly responsible for the ecologically relevant processes in soil.

  11. Predicting the response of soil organic matter microbial decomposition to moisture

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Garnier, Patricia; Monga, Olivier; Moyano, Fernando; Pot, Valérie; Nunan, Naoise; Coucheney, Elsa; Otten, Wilfred

    2014-05-01

    Next to temperature, soil moisture is a main driver of soil C and N transformations in soils, because it affects microbial activity and survival. The moisture sensitivity of soil organic matter decay may be a source of uncertainty of similar magnitude to that of the temperature sensitivity and receives much less attention. The basic concepts and mechanisms relating soil water to microorganisms were identified early (i.e. in steady state conditions : direct effects on microbial physiology, diffusion substrates, nutrients, extracellular enzymes, diffusion of oxygen, movement of microorganisms). However, accounting for how moisture controls soil microbial activity remains essentially empirical and poorly accounts for soil characteristics. Soil microorganisms live in a complex 3-D framework of mineral and organic particles defining pores of various sizes, connections with adjacent pores, and with pore walls of contrasted nature, which result in a variety of microhabitats. The water regime to which microorganisms are exposed can be predicted to depend the size and connectivity of pores in which they are located. Furthermore, the spatial distribution of microorganisms as well as that of organic matter is very heterogeneous, determining the diffusion distances between substrates and decomposers. A new generation of pore scale models of C dynamics in soil may challenge the difficulty of modelling such a complex system. These models are based on an explicit representation of soil structure (i.e. soil particles and voids), microorganisms and organic matter localisation. We tested here the ability of such a model to account for changes in microbial respiration with soil moisture. In the model MOSAIC II, soil pore space is described using a sphere network coming from a geometrical modelling algorithm. MicroCT tomography images were used to implement this representation of soil structure. A biological sub-model describes the hydrolysis of insoluble SOM into dissolved organic matter, its assimilation, respiration and microbial mortality. A recent improvement of the model was the description of the diffusion of soluble organic matter. We tested the model using the results from an experiment where a simple substrate (fructose) was decomposed by bacteria within a simple media (sand). Separate incubations in microcosms were carried out using five different bacterial communities at two different moisture conditions corresponding to water potentials of -0.01 and -0.1 bars. We calibrated the biological parameters using the experimental data obtained at high water content and we tested the model without any parameters change at low water content. Both the experiments and simulations showed a decrease in mineralisation with a decrease of water content, of which pattern depended on the bacterial species and its physiological characteristics. The model was able to correctly simulate the decrease of connectivity between substrate and microorganism due the decrease of water content. The potential and required developments of such models in describing how heterotrophic respiration is affected by micro-scale distribution and processes in soils and in testing scenarios regarding water regimes in a changing climate is discussed.

  12. Changes in substrate availability drive carbon cycle response to chronic warming

    DOE PAGES

    Pold, Grace; Grandy, A. Stuart; Melillo, Jerry M.; ...

    2017-03-22

    As earth's climate continues to warm, it is important to understand how the capacity of terrestrial ecosystems to retain carbon (C) will be affected. We combined measurements of microbial activity with the concentration, quality, and physical accessibility of soil carbon to microorganisms to evaluate the mechanisms by which more than two decades of experimental warming has altered the carbon cycle in a Northeast US temperate deciduous forest. We have found that concentrations of soil organic matter were reduced in both the organic and mineral soil horizons. The molecular composition of the carbon was altered in the mineral soil with significantmore » reductions in the relative abundance of polysaccharides and lignin, and an increase in lipids. Mineral-associated organic matter was preferentially depleted by warming in the top 3 cm of mineral soil. We found that potential extracellular enzyme activity per gram of soil at a common temperature was generally unaffected by warming treatment. However, by measuring potential extracellular enzyme activities between 4 and 30 °C, we found that activity per unit microbial biomass at in-situ temperatures was increased by warming. This was associated with a tendency for microbial biomass to decrease with warming. These results indicate that chronic warming has reduced soil organic matter concentrations, selecting for a smaller but more active microbial community increasingly dependent on mineral-associated organic matter.« less

  13. The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites.

    PubMed

    Guyonnet, Julien P; Vautrin, Florian; Meiffren, Guillaume; Labois, Clément; Cantarel, Amélie A M; Michalet, Serge; Comte, Gilles; Haichar, Feth El Zahar

    2017-04-01

    The aim of this study was to determine (i) whether plant nutritional strategy affects the composition of primary metabolites exuded into the rhizosphere and (ii) the impact of exuded metabolites on denitrification activity in soil. We answered this question by analysing primary metabolite content extracted from the root-adhering soil (RAS) and the roots of three grasses representing different nutrient management strategies: conservative (Festuca paniculata), intermediate (Bromus erectus) and exploitative (Dactylis glomerata). We also investigated the impact of primary metabolites on soil microbial denitrification enzyme activity without carbon addition, comparing for each plant RAS and bulk soils. Our data show that plant nutritional strategy impacts on primary metabolite composition of root extracts or RAS. Further we show, for the first time, that RAS-extracted primary metabolites are probably better indicators to explain plant nutrient strategy than root-extracted ones. In addition, our results show that some primary metabolites present in the RAS were well correlated with soil microbial denitrification activity with positive relationships found between denitrification and the presence of some organic acids and negative ones with the presence of xylose. We demonstrated that the analysis of primary metabolites extracted from the RAS is probably more pertinent to evaluate the impact of plant on soil microbial community functioning. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Changes in substrate availability drive carbon cycle response to chronic warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pold, Grace; Grandy, A. Stuart; Melillo, Jerry M.

    As earth's climate continues to warm, it is important to understand how the capacity of terrestrial ecosystems to retain carbon (C) will be affected. We combined measurements of microbial activity with the concentration, quality, and physical accessibility of soil carbon to microorganisms to evaluate the mechanisms by which more than two decades of experimental warming has altered the carbon cycle in a Northeast US temperate deciduous forest. We have found that concentrations of soil organic matter were reduced in both the organic and mineral soil horizons. The molecular composition of the carbon was altered in the mineral soil with significantmore » reductions in the relative abundance of polysaccharides and lignin, and an increase in lipids. Mineral-associated organic matter was preferentially depleted by warming in the top 3 cm of mineral soil. We found that potential extracellular enzyme activity per gram of soil at a common temperature was generally unaffected by warming treatment. However, by measuring potential extracellular enzyme activities between 4 and 30 °C, we found that activity per unit microbial biomass at in-situ temperatures was increased by warming. This was associated with a tendency for microbial biomass to decrease with warming. These results indicate that chronic warming has reduced soil organic matter concentrations, selecting for a smaller but more active microbial community increasingly dependent on mineral-associated organic matter.« less

  15. Expanding Upon the MEMS Framework: How Temperature Impacts Organo-Mineral Interactions

    NASA Astrophysics Data System (ADS)

    Smith, K.; Waring, B. G.

    2017-12-01

    Microbial substrate use efficiency (SUE; the fraction of substrate carbon (C) incorporated into biomass vs. respired) affects the development of soil organic matter (SOM). An emerging theoretical model (the Microbial Efficiency-Matrix Stabilization (MEMS) framework) posits that microbial SUE acts as a filter for plant litter inputs, whereby a larger proportion of microbial products are synthesized from labile (and not recalcitrant) plant substrates. Thus, SOM stability depends on both the efficiency of microbial anabolism as well as the degree to which microbial products stabilize within the mineral soil matrix. In this study, we performed a laboratory microcosm experiment using diverse soils collected in Utah to test how substrate complexity, soil mineralogy, and temperature interact to control SOM formation. Prior to microcosm setup, we first removed organic C from our field soils by washing with concentrated hypochlorite solution. Microcosms were then assembled by mixing C-free soil with one of three substrates (glucose, cellulose, and lignin), and placed in incubators set to different temperatures (18°, 28°, and 38°C). Respiration rates were then estimated by periodically sampling headspace CO2 concentrations in each microcosm. Prior to C removal, we found that field soils exhibited distinct properties ranging from clay-rich vertisols (55:27:18, sand:silt:clay; 1.1% C), to loamy-sand entisols (85:11:4; 0.3% C), and organic-rich mollisols (79:17:4; 1.7% C). In the incubation experiment, consistent with enzyme kinetics theory, respiration rates increased as a function of incubation temperature (p < 0.0001), and that the temperature response of respiration was dependent on substrate (p < 0.0001), with the lignin treatment exhibiting the greatest temperature sensitivity. While respiration was significantly lower in the mollisol treatment (p < 0.0001), other soil effects (including interactions with temperature and substrate) were less clear. Together these results build upon the MEMS framework by highlighting the importance of organo-mineral interactions and temperature as controls on soil C cycling.

  16. Changes in Root Decomposition Rates Across Soil Depths

    NASA Astrophysics Data System (ADS)

    Hicks Pries, C.; Porras, R. C.; Castanha, C.; Torn, M. S.

    2016-12-01

    Over half of global soil organic carbon (SOC) is stored in subsurface soils (>30 cm). Turnover times of soil organic carbon (SOC) increases with depth as evidenced by radiocarbon ages of 1,000 to more than 10,000 years in many deep soil horizons but the reasons for this increase are unclear. Many factors that potentially control SOC decomposition change with depth such as increased protection of SOC in aggregates or organo-mineral complexes and increased spatial heterogeneity of SOC "hotspots" like roots, which limit the accessibility of SOC to microbes. Lower concentrations of organic matter at depth may inhibit microbial activity due to energy limitation, and the microbial community itself changes with depth. To investigate how SOC decomposition differs with depth, we inserted a 13C-labeled fine root substrate into three depths (15, 50, and 90 cm) in a coniferous forest Alfisol and measured the root carbon remaining in particulate (>2 mm), bulk (< 2mm), free light, and mineral soil fractions over 2.5 years. We also characterized how the microbial community and SOC changed with depth. Initial rates of decomposition were unaffected by soil depth—50% of root carbon was lost from all depths within the first year. However, after 2.5 years, decomposition rates were affected by soil depth with only 15% of the root carbon remaining at 15 cm while 35% remained at 90 cm. Microbial communities, based on phospholipid fatty acid analysis, changed with depth—fungal biomarkers decreased whereas actinomycetes biomarkers increased. However, the preferences of different microbial groups for the 13C-labeled root carbon were consistent with depth. In contrast, the amount of mineral-associated SOC did not change with depth. Thus, decreased decomposition rates in this deep soil are not due to mineral associations limiting SOC availability, but may instead be due to changes in microbial communities, particularly in the microbes needed to carry out the later stages of root decomposition.

  17. Effects of diurnal temperature variation on microbial community and petroleum hydrocarbon biodegradation in contaminated soils from a sub-Arctic site.

    PubMed

    Akbari, Ali; Ghoshal, Subhasis

    2015-12-01

    Contaminated soils are subject to diurnal and seasonal temperature variations during on-site ex-situ bioremediation processes. We assessed how diurnal temperature variations similar to that in summer at the site from which petroleum hydrocarbon-contaminated soil was collected affect the soil microbial community and the extent of biodegradation of petroleum hydrocarbons compared with constant temperature regimes. Microbial community analyses for 16S rRNA and alkB genes by pyrosequencing indicated that the microbial community for soils incubated under diurnal temperature variation from 5°C to 15°C (VART5-15) evolved similarly to that for soils incubated at constant temperature of 15°C (CST15). In contrast, under a constant temperature of 5°C (CST5), the community evolved significantly different. The extent of biodegradation of C10-C16 hydrocarbons in the VART5-15 systems was 48%, comparable with the 41% biodegradation in CST15 systems, but significantly higher than CST5 systems at 11%. The enrichment of Gammaproteobacteria was observed in the alkB gene-harbouring communities in VART5-15 and CST15 but not in CST5 systems. However, the Actinobacteria was abundant at all temperature regimes. The results suggest that changes in microbial community composition as a result of diurnal temperature variations can significantly influence petroleum hydrocarbon bioremediation performance in cold regions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming.

    PubMed

    Schnecker, Jörg; Borken, Werner; Schindlbacher, Andreas; Wanek, Wolfgang

    2016-12-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO 2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO 2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ 13 C, Δ 14 C, δ 15 N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ 13 C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small modifications in SOM chemistry result from an interplay of enhanced microbial decomposition of SOM and increased root litter input in the warmed plots. Overall, stable functional SOM pool sizes indicate that soil warming had similarly affected easily decomposable and stabilized SOM of this C-rich forest soil.

  19. Effects of conventional and no-tillage soil management and compost and sludge amendment on soil CO2 fluxes and microbial activities

    NASA Astrophysics Data System (ADS)

    Garcia-Gil, Juan Carlos; Haller, Isabel; Soler-Rovira, Pedro; Polo, Alfredo

    2010-05-01

    Soil management exerts a significant influence on the dynamic of soil organic matter, which is a key issue to enhance soil quality and its ecological functions, but also affects to greenhouse gas emissions and C sequestration processes. The objective of the present research was to determine the influence of soil management (conventional deep-tillage and no-tillage) and the application of two different organic amendment -thermally-dry sewage sludge (TSL) and municipal waste compost (MWC)- on soil CO2 fluxes and microbial activities in a long-term field experiment under semi-arid conditions. Both organic amendments were applied at a rate of 30 t ha-1 prior to sowing a barley crop. The experiment was conducted on an agricultural soil (Calcic Luvisol) from the experimental farm "La Higueruela" (Santa Olalla, Toledo). Unamended soils were used as control in both conventional and no-tillage management. During the course of the experiment, soil CO2 fluxes, microbial biomass C (MBC) and enzyme activities involved in the biogeochemical cycles of C, N and P were monitored during 12 months. The results obtained during the experiment for soil CO2 fluxes showed a great seasonal fluctuation due to semi-arid climate conditions. Overall, conventional deep-tillage soils exhibited higher CO2 fluxes, which was particularly larger during the first hours after deep-tillage was performed, and smaller MBC content and significantly lower dehydrogenase, beta-glucosidase, phosphatase, urease and BAA protease activities than no-tillage soils. Both MWC and TSL amendments provoked a significant increase of CO2 fluxes in both conventional and no-tillage soils, which was larger in TSL amended soils and particularly in no-tillage soils. The application of these organic amendments also enhanced MBC content and the overall enzyme activities in amended soils, which indicate a global revitalization of soil microbial metabolism in response to the fresh input of organic compounds that are energy sources for microbial growing, especially with TSL that is a raw organic material with no stabilization treatment.

  20. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain.

    PubMed

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi; Dai, Jun

    2017-10-01

    A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Soil microbial communities and enzyme activities under various poultry litter application rates.

    PubMed

    Acosta-Martínez, V; Harmel, R Daren

    2006-01-01

    The potential excessive nutrient and/or microbial loading from mismanaged land application of organic fertilizers is forcing changes in animal waste management. Currently, it is not clear to what extent different rates of poultry litter impact soil microbial communities, which control nutrient availability, organic matter quality and quantity, and soil degradation potential. From 2002 to 2004, we investigated the microbial community and several enzyme activities in a Vertisol soil (fine, smectitic, thermic, Udic Haplustert) at 0 to 15 cm as affected by different rates of poultry litter application to pasture (0, 6.7, and 13.4 Mg ha(-1)) and cultivated sites (0, 4.5, 6.7, 9.0, 11.2, and 13.4 Mg ha(-1)) in Texas, USA. No differences in soil pH (average: 7.9), total N (pasture: 2.01-3.53, cultivated: 1.09-1.98 g kg(-1) soil) or organic C (pasture average: 25-26.7, cultivated average: 13.9-16.1 g kg(-1) soil) were observed following the first four years of litter application. Microbial biomass carbon (MBC) and nitrogen (MBN) increased at litter rates greater than 6.7 Mg ha(-1) (pasture: MBC = >863, MBN = >88 mg kg(-1) soil) compared to sites with no applied litter (MBC = 722, MBN = 69 mg kg(-1) soil). Enzyme activities of C (beta-glucosidase, alpha-galactosidase, beta-glucosaminidase) or N cycling (beta-glucosaminidase) were increased at litter rates greater than 6.7 Mg ha(-1). Enzyme activities of P (alkaline phosphatase) and S (arylsulfatase) mineralization showed the same response in pasture, but they were only increased at the highest (9.0, 11.2, and 13.4 Mg ha(-1)) litter application rates in cultivated sites. According to fatty acid methyl ester (FAME) analysis, the pasture soils experienced shifts to higher bacterial populations at litter rates of 6.7 Mg ha(-1), and shifts to higher fungal populations at the highest litter application rates in cultivated sites. While rates greater than 6.7 Mg ha(-1) provided rapid enhancement of the soil microbial populations and enzymatic activities, they result in P application in excess of crop needs. Thus, studies will continue to investigate whether litter application at rates below 6.7 Mg ha(-1), previously recommended to maintain water quality, will result in similar improved soil microbial and biochemical functioning with continued annual litter application.

  2. Effects of Warming on the Fate of Carbon Across a Hawaiian Soil Mineralogical Gradient

    NASA Astrophysics Data System (ADS)

    Neupane, A.

    2016-12-01

    Earth's surface temperature in tropical region have increased over the last century. However, relatively few studies have focused on the interacting effects of warming and soil mineralogy on the fate of carbon (C) in tropical soils. This research uses soils from three montane forest sites and two grasslands along soil age gradients on basaltic lava flows in Hawaii. The age gradient provides a range in soil mineralogies and binding site densities. We hypothesized that warming would promote microbial respiration and losses of added C more in younger soils with lower binding site density, whereas warming would have less of an impact on C losses in older soils with more reactive minerals. Soils were collected from 0-25 cm depths and incubated in the lab at 16 °C (ambient temperature), 21°C, and 26 °C. New C in the form of 13C-labeled glucose and glycine were added to replicate soils to track the fate of C with warming across sites (n = 3). Carbon dioxide (CO2) fluxes was measured every 15 to 30 days for 8 months to assess changes in heterotrophic respiration, and 13C uptake in microbial biomass was measured after 4 days and 8 months. Among the forest sites, the youngest soils (Thurston, 300 years old), had the overall lowest respiration, an intermediate aged soil (Laupahoehoe, 20,000 years old) had the highest respiration, and there was intermediate respiration from the oldest soil (Kohala, 150,000 yrs). Both the grassland sites had lower respiration compared to the forest. Soils from all sites showed increase in respiration rate at warmer temperature. Contrary to expectations, Kohala soil showed largest increase in respiration upon warming while Thurston showed the smallest increase for the forest sites. The C substrates altered respiration differently over time. Preliminary microbial 13C data show significant uptake and retention of added substrates in microbial biomass during the first 4 days of the incubation, with significantly greater retention of added substrate in microbial biomass at 16 °C versus 21 oC. These results show that warming not only increases heterotrophic respiration of C, but also decreases microbial retention of simple C substrates. These results, together with analyses across the soil mineralogical gradient, will improve our understanding of how warming may affect C storage across tropical sites.

  3. Warm-adapted microbial communities enhance their carbon-use efficiency in warmed soils

    NASA Astrophysics Data System (ADS)

    Rousk, Johannes; Frey, Serita

    2017-04-01

    Ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon (C), resulting in a positive feedback to increasing temperatures. The current generation of models assume that the temperature sensitivities of microbial processes do not respond to warming. However, recent studies have suggested that the ability of microbial communities to adapt to warming can lead both strengthened and weakened feedbacks. A further complication is that the balance between microbial C used for growth to that used for respiration - the microbial carbon-use efficiency (CUE) - also has been shown through both modelling and empirical study to respond to warming. In our study, we set out to assess how chronic warming (+5°C over ambient during 9 years) of a temperate hardwood forest floor (Harvard Forest LTER, USA) affected temperature sensitivities of microbial processes in soil. To do this, we first determined the temperature relationships for bacterial growth, fungal growth, and respiration in plots exposed to warmed or ambient conditions. Secondly, we parametrised the established temperature functions microbial growth and respiration with plot-specific measured soil temperature data at a hourly time-resolution over the course of 3 years to estimate the real-time variation of in situ microbial C production and respiration. To estimate the microbial CUE, we also divided the microbial C production with the sum of microbial C production and respiration as a proxy for substrate use. We found that warm-adapted bacterial and fungal communities both shifted their temperature relationships to grow at higher rates in warm conditions which coincided with reduced rates at cool conditions. As such, their optimal temperature (Topt), minimum temperature (Tmin) and temperature sensitivity (Q10) were all increased. The temperature relationship for temperature, in contrast, was only marginally shifted in the same direction, but at a much smaller effect size, with negligible changes in Topt, Tmin and Q10 for respiration. When these physiological changes were scaled with soil temperature data to estimate real-time variation in situ during three years, the warm-adaptation resulted in elevated microbial CUEs during summer temperatures in warm-adapted communities and reduced microbial CUEs during winter temperatures. By comparing simulated microbial CUEs in cold-adapted communities exposed to warmed conditions to microbial CUEs in the warm-adapted communities exposed to those temperatures, we could demonstrate that the shifts towards warm-adapted microbial communities had selected for elevated microbial CUEs for the full range of in situ soil temperatures during three years. Our results suggest that microbial adaptation to warming will enhance microbial CUEs, shifting their balance of C use from respiration to biomass production. If our estimates scale to ecosystem level, this would imply that warm-adapted microbial communities will ultimately have the potential to store more C in soil than their cold-adapted counter parts could when exposed to warmer temperatures.

  4. Microbial functional diversity responses to 2 years since biochar application in silt-loam soils on the Loess Plateau.

    PubMed

    Zhu, Li-Xia; Xiao, Qian; Shen, Yu-Fang; Li, Shi-Qing

    2017-10-01

    The structure and function of soil microbial communities have been widely used as indicators of soil quality and fertility. The effect of biochar application on carbon sequestration has been studied, but the effect on soil microbial functional diversity has received little attention. We evaluated effects of biochar application on the functional diversities of microbes in a loam soil. The effects of biochar on microbial activities and related processes in the 0-10 and 10-20cm soil layers were determined in a two-year experiment in maize field on the Loess Plateau in China. Low-pyrolysis biochar produced from maize straw was applied into soils at rates of 0 (BC0), 10 (BC10) and 30 (BC30)tha -1 . Chemical analysis indicated that the biochar did not change the pH, significantly increased the amounts of organic carbon and nitrogen, and decreased the amount of mineral nitrogen and the microbial quotient. The biochar significantly decreased average well colour development (AWCD) values in Biolog EcoPlates™ for both layers, particularly for the rate of 10tha -1 . Biochar addition significantly decreased substrate richness (S) except for BC30 in the 0-10cm layer. Effects of biochar on the Shannon-Wiener index (H) and Simpson's dominance (D) were not significant, except for a significant increase in evenness index (E) in BC10 in the 10-20cm layer. A principal component analysis clearly differentiated the treatments, and microbial use of six categories of substrates significantly decreased in both layers after biochar addition, although the use of amines and amides did not differ amongst the three treatments in the deeper layer. Maize above ground dry biomass and height did not differ significantly amongst the treatments, and biochar had no significant effect on nitrogen uptake by maize seedlings. H was positively correlated with AWCD, and negatively with pH. AWCD was positively correlated with mineral N and negatively with pH. Our results indicated that shifts in soil microbial functional diversity affected by biochar were not effective indicators of soil quality in earlier maize growth periods in this region. Copyright © 2017. Published by Elsevier Inc.

  5. Soil Redox Conditions Are a Strong Determinant of Microbial Community Composition and the Fate of Carbon Following Permafrost Thaw.

    NASA Astrophysics Data System (ADS)

    Bottos, E. M.; Bramer, L.; Kim, Y. M.; Fansler, S.; Nicora, C.; Zink, E.; Chu, R. K.; Tfaily, M. M.; Metz, T. O.; Jansson, J.; Stegen, J.

    2016-12-01

    Permafrost-affected soils contain enormous stocks of carbon, which are becoming increasingly available to microbial transformation as permafrost regions warm; however, how this warming will influence the permafrost microbiome and the transformation of soil carbon remains unclear. We hypothesize that the redox conditions that arise following permafrost thaw will dictate the structure and function of the microbial community, and strongly influence the nature of carbon transformations. To examine this, permafrost-affected soils from Caribou Poker Creek Research Watershed, Alaska were incubated at 4 °C under aerobic and anaerobic conditions for periods of 9 and 94 days. Over the incubation period, rates of CO2 and CH4 production were measured by gas chromatography, shifts in microbial community structure were characterized by 16S rRNA gene sequencing, and changes in metabolite and organic matter composition were analyzed by GC-MS and ESI-FTICR MS, respectively. CO2 production rates were significantly higher in aerobic treatments in 9-day and 94-day incubations, by 3-times and 12-times, respectively. Rates of CH4 production were not significantly different between treatments in 9-day incubations, but were 1.6-times higher in anaerobic treatments in 94-day incubations. The community composition remained largely unchanged in the incubated samples, with the exception of the 94-day aerobic incubations, which shifted strongly to become dominated by a single OTU, Rhodoferax ferrireducens. Metabolite profiles also shifted most strongly in the 94-day aerobic incubations, with the abundance of phosphorylated carbon compounds overrepresented in these samples. This work suggests that the redox conditions that arise following permafrost thaw will be a strong determinant of community composition and will govern the ultimate fate of carbon stocks in permafrost-affected soils. Our results are currently being integrated with numerical models aimed at predicting the coupled microbiome-ecosystem response to thaw.

  6. Recycling vs. stabilisation of soil sugars - a long-term laboratory incubation experiment

    NASA Astrophysics Data System (ADS)

    Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.

    2015-06-01

    Independent of its chemical structure carbon (C) persists in soil for several decades, controlled by stabilisation and recycling. To disentangle the importance of the two factors on the turnover dynamics of soil sugars, an important compound of soil organic matter (SOM), a three year incubation experiment was conducted on a silty loam soil under different types of land use (arable land, grassland and forest) by adding 13C-labeled glucose. The compound specific isotope analysis of soil sugars was used to examine the dynamics of different sugars during incubation. Sugar dynamics were dominated by a pool of high mean residence times (MRT) indicating that recycling plays an important role for sugars. However, this was not substantially affected by soil C content. Six months after label addition the contribution of the label was much higher for microbial biomass than for CO2 production for all examined soils, corroborating that substrate recycling was very effective within the microbial biomass. Two different patterns of tracer dynamics could be identified for different sugars: while fucose (fuc) and mannose (man) showed highest label contribution at the beginning of the incubation with a subsequent slow decline, galactose (gal) and rhamnose (rha) were characterised by slow label incorporation with subsequently constant levels, which indicates that recycling is dominating the dynamics of these sugars. This may correspond to (a) different microbial growing strategies (r and K-strategist) or (b) location within or outside the cell membrane (lipopolysaccharides vs. exopolysaccharides) and thus be subject of different re-use within the microbial food web. Our results show how the microbial community recycles substrate very effectively and that high losses of substrate only occur during initial stages after substrate addition.

  7. Metagenomic analysis of soil and freshwater from zoo agricultural area with organic fertilization

    PubMed Central

    Meneghine, Aylan K.; Nielsen, Shaun; Thomas, Torsten; Carareto Alves, Lucia Maria

    2017-01-01

    Microbial communities drive biogeochemical cycles in agricultural areas by decomposing organic materials and converting essential nutrients. Organic amendments improve soil quality by increasing the load of essential nutrients and enhancing the productivity. Additionally, fresh water used for irrigation can affect soil quality of agricultural soils, mainly due to the presence of microbial contaminants and pathogens. In this study, we investigated how microbial communities in irrigation water might contribute to the microbial diversity and function of soil. Whole-metagenomic sequencing approaches were used to investigate the taxonomic and the functional profiles of microbial communities present in fresh water used for irrigation, and in soil from a vegetable crop, which received fertilization with organic compost made from animal carcasses. The taxonomic analysis revealed that the most abundant genera were Polynucleobacter (~8% relative abundance) and Bacillus (~10%) in fresh water and soil from the vegetable crop, respectively. Low abundance (0.38%) of cyanobacterial groups were identified. Based on functional gene prediction, denitrification appears to be an important process in the soil community analysed here. Conversely, genes for nitrogen fixation were abundant in freshwater, indicating that the N-fixation plays a crucial role in this particular ecosystem. Moreover, pathogenicity islands, antibiotic resistance and potential virulence related genes were identified in both samples, but no toxigenic genes were detected. This study provides a better understanding of the community structure of an area under strong agricultural activity with regular irrigation and fertilization with an organic compost made from animal carcasses. Additionally, the use of a metagenomic approach to investigate fresh water quality proved to be a relevant method to evaluate its use in an agricultural ecosystem. PMID:29267397

  8. Bioavailability and microbial adaptation to elevated levels of uranium in an acid, organic topsoil forming on an old mine spoil.

    PubMed

    Joner, Erik Jautris; Munier-Lamy, Colette; Gouget, Barbara

    2007-08-01

    An old mine spoil at a 19th-century mining site with considerable residues of uranium (400-800 mg U/kg) was investigated with respect to U concentrations in soil and plants and tolerance to U in the soil microbial community in order to describe the bioavailability of U. Measurements of soil fractions representing water-soluble U, easily exchangeable U, and U bound to humified organic matter showed that all fractions contained elevated concentrations of U. Plant U concentrations were only 10 times higher at the mine spoil site compared to the reference site (3 mg U/kg vs 0.3 mg U/kg), while the most easily available soil fractions contained 0.18 to 0.86 mg U/kg soil at the mine spoil. An ecotoxicity bioassay using incorporation of [3H]thymidine into the indigenous microbial communities of the two soils in the presence of increasing U concentrations showed that microorganisms at the mining site were sensitive to U but also that they had acquired a substantial tolerance toward U (EC50, the effective concentration reducing activity by 50% of UO2-citrate was approximately 120 microM as compared to 30 microM in the reference soil). In the assay, more than 40% of the microbial activity was maintained in the presence of 1 mM UO2-citrate versus 3% in the reference soil. We conclude that U-enriched mining waste can contain sufficiently elevated concentrations of bioavailable U to affect indigenous microorganisms and that bioavailable U imposes a selection pressure that favors the development of a highly uranium-tolerant microbial community, while plant uptake of U remains low.

  9. Where Is Needle- and Root-Derived Soil Organic Matter After 10 Years of Decomposition in a Temperate Forest?

    NASA Astrophysics Data System (ADS)

    Hicks Pries, C.; Hatton, P.; Castanha, C.; Bird, J. A.; Torn, M. S.

    2013-12-01

    All soil organic matter (SOM) is ultimately derived from plant litter. The fate of plant litter in ecosystems determines soil carbon (C) storage and nutrient availability with far-reaching implications for ecosystems and global change. However, little is known about the process by which litter becomes SOM (as opposed to the well-studied controls on rates of C and nitrogen (N) loss from litter). We are investigating whether litter type affects where in soils litter-derived C and N eventually reside. Specifically, we are investigating whether litter type affects which minerals the C and N are associated with and how much C is in the microbial pool after a decade. We incubated 15N and 13C-labeled Pinus ponderosa needle and fine root litter in the Blodgett Experimental Forest in the Sierra Nevada foothills for 10 years. A two-way factorial design was used with needle and root litter placed into O and A soil horizons. In 2001, litter was inserted into the given horizon within soil mesocosms (10.2 cm diameter x 24 cm long PVC) that had two 5 x 5 cm mesh windows to allow contact with the surrounding soil. After 0.5, 1, 1.5, 4.5, and 10 years, the soil mesocosms were collected from the field. Isotopes were used to measure the percent recovery of the litter C and N in the bulk soil of the O and A horizons. To investigate mineral associations of the added litter C and N after 10 years, we sequentially fractionated the soils by density. The fractions were a free light fraction (<1.75 g cm-3), a fraction dominated by phyllosilicate secondary minerals (1.75-2.5 g cm-3), a quartz and feldspar-dominated fraction (2.5-2.78 g cm-3), and a fraction dominated by biotite with kaolinite and iron oxide coatings (>2.78 g cm-3). To quantify the amount of litter-derived C actively cycling in the microbial pool after 10 years and use of the C by different microbial groups, we measured the 13C in phospholipid fatty acids (PLFAs). After 10 years, more root litter C (about 40%) was retained in the soil than needle litter C (about 25%). Less than 0.15% of the remaining litter C (0.06% of originally applied) was found actively cycling in microbial PLFA's. Needle and root C did not differ in the amount remaining still in the active microbial pool. Preliminary data indicate that unlike after one year, there were no microbial groups with strong preferences for the added root or needle C relative to other microbial groups. The amount of root and needle C and N associated with the different mineral groups will also be presented.

  10. Combined effects of antimony and sodium diethyldithiocarbamate on soil microbial activity and speciation change of heavy metals. Implications for contaminated lands hazardous material pollution in nonferrous metal mining areas.

    PubMed

    Zhu, Xiaozhe; Yao, Jun; Wang, Fei; Yuan, Zhimin; Liu, Jianli; Jordan, Gyozo; Knudsen, Tatjana Šolević; Avdalović, Jelena

    2018-05-05

    The combined effects of antimony (Sb) and sodium diethyldithiocarbamate (DDTC), a common organic flotation reagent, on soil microbial activity and speciation changes of heavy metals were investigated for the first time. The results showed that the exchangeable fraction of Sb was transformed to a stable residual fraction during the incubation period, and the addition of DDTC promoted the transformation compared with single Sb pollution, probably because DDTC can react with heavy metals to form a complex. In addition, the presence of DDTC and Sb inhibited the soil microbial activity to varying degrees. The growth rate constant k of different interaction systems was in the following order on the 28th day: control group ≥ single DDTC pollution > combined pollution > single Sb pollution. A correlation analysis showed that the concentration of exchangeable Sb was the primary factor that affected the toxic reaction under combined pollution conditions, and it significantly affected the characteristics of the soil microorganisms. All the observations provide useful information for a better understanding of the toxic effects and potential risks of combined Sb and DDTC pollution in antimony mining areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Soil moisture variations affect short-term plant-microbial competition for ammonium, glycine, and glutamate

    PubMed Central

    Månsson, Katarina F; Olsson, Magnus O; Falkengren-Grerup, Ursula; Bengtsson, Göran

    2014-01-01

    We tested whether the presence of plant roots would impair the uptake of ammonium (), glycine, and glutamate by microorganisms in a deciduous forest soil exposed to constant or variable moisture in a short-term (24-h) experiment. The uptake of 15NH4 and dual labeled amino acids by the grass Festuca gigantea L. and soil microorganisms was determined in planted and unplanted soils maintained at 60% WHC (water holding capacity) or subject to drying and rewetting. The experiment used a design by which competition was tested in soils that were primed by plant roots to the same extent in the planted and unplanted treatments. Festuca gigantea had no effect on microbial N uptake in the constant moist soil, but its presence doubled the microbial uptake in the dried and rewetted soil compared with the constant moist. The drying and rewetting reduced by half or more the uptake by F. gigantea, despite more than 60% increase in the soil concentration of . At the same time, the amino acid and -N became equally valued in the plant uptake, suggesting that plants used amino acids to compensate for the lower acquisition. Our results demonstrate the flexibility in plant-microbial use of different N sources in response to soil moisture fluctuations and emphasize the importance of including transient soil conditions in experiments on resource competition between plants and soil microorganisms. Competition between plants and microorganisms for N is demonstrated by a combination of removal of one of the potential competitors, the plant, and subsequent observations of the uptake of N in the organisms in soils that differ only in the physical presence and absence of the plant during a short assay. Those conditions are necessary to unequivocally test for competition. PMID:24772283

  12. Effects of remediation amendments on vadose zone microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Hannah M.; Tilton, Fred A.

    2012-08-10

    Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had nomore » affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.« less

  13. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska

    USGS Publications Warehouse

    Zeglin, Lydia H.; Wang, Bronwen; Waythomas, Christopher F.; Rainey, Frederick; Talbot, Sandra L.

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance.

  14. Effects of Cd and Pb on soil microbial community structure and activities.

    PubMed

    Khan, Sardar; Hesham, Abd El-Latif; Qiao, Min; Rehman, Shafiqur; He, Ji-Zheng

    2010-02-01

    Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied. A soil sample (0-20 cm) with an unknown history of heavy metal contamination was collected and amended with Cd, Pb, and Cd/Pb mix using the CdSO(4) and Pb(NO(3))(2) solutions at different application rates. The amended soils were incubated in the greenhouse at 25 +/- 4 degrees C and 60% water-holding capacity for 12 weeks. During the incubation period, samples were collected from each pot at 0, 2, 9, and 12 weeks for enzyme assays, MBC, numeration of microbes, and DNA extraction. Fumigation-extraction method was used to measure the MBC, while plate counting techniques were used to numerate viable heterotrophic bacteria, fungi, and actinomycetes. Soil DNAs were extracted from the samples and used for DGGE analysis. ACP, URE, and MBC activities of microbial community were significantly lower (p < 0.05) in the metal-amended samples than those in the control. The enzyme inhibition extent was obvious between different incubation periods and varied as the incubation proceeded, and the highest rate was detected in the samples after 2 weeks. However, the lowest values of ACP and URE activities (35.6% and 36.6% of the control, respectively) were found in the Cd(3)/Pb(3)-treated sample after 2 weeks. Similarly, MBC was strongly decreased in both Cd/Pb-amended samples and highest reduction (52.4%) was detected for Cd(3)/Pb(3) treatment. The number of bacteria and actinomycetes were significantly decreased in the heavy metal-amended samples compared to the control, while fungal cells were not significantly different (from 2.3% to 23.87%). In this study, the DGGE profile indicated that the high dose of metal amendment caused a greater change in the number of bands. DGGE banding patterns confirmed that the addition of metals had a significant impact on microbial community structure. In soil ecosystem, heavy metals exhibit toxicological effects on soil microbes which may lead to the decrease of their numbers and activities. This study demonstrated that toxicological effects of heavy metals on soil microbial community structure and activities depend largely on the type and concentration of metal and incubation time. The inhibition extent varied widely among different incubation periods for these enzymes. Furthermore, the rapid inhibition in microbial activities such as ACP, URE, and MBC were observed in the 2 weeks, which should be related to the fact that the microbes were suddenly exposed to heavy metals. The increased inhibition of soil microbial activities is likely to be related to tolerance and adaptation of the microbial community, concentration of pollutants, and mechanisms of heavy metals. The DGGE profile has shown that the structure of the bacterial community changed in amended heavy metal samples. In this research, the microbial community structure was highly affected, consistent with the lower microbial activities in different levels of heavy metals. Furthermore, a great community change in this study, particularly at a high level of contamination, was probably a result of metal toxicity and also unavailability of nutrients because no nutrients were supplied during the whole incubation period. The added concentrations of heavy metals have changed the soil microbial community structure and activities. The highest inhibitory effects on soil microbial activities were observed at 2 weeks of incubation. The bacteria were more sensitive than actinomycetes and fungi. The DGGE profile indicated that bacterial community structure was changed in the Cd/Pb-amended samples, particularly at high concentrations. The investigation of soil microbial community structure and activities together could give more reliable and accurate information about the toxic effects of heavy metals on soil health.

  15. Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    PubMed Central

    Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin

    2011-01-01

    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722

  16. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions.

    PubMed

    Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian

    2013-10-01

    Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree-based intercropping site, higher wheat biomass, grain yield and number of grains per spike were observed in agroforestry than in conventional agricultural system soils, but in the drought treatment only. Drought (windbreak site) and flooding (both sites) treatments significantly reduced wheat yield and 1000-grain weight in both types of system. Relationships between soil biochemical properties and soil microbial resilience or wheat productivity were strongly dependent on site. This study suggests that agroforestry systems may have a positive effect on soil biochemical properties and microbial resilience, which could operate positively on crop productivity and tolerance to severe water stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Woody vegetation and soil characteristics of residential forest patches and open spaces along an urban-to-rural gradient

    Treesearch

    Benjamin L. Reichert; Sharon R. Jean-Philippe; Christopher Oswalt; Jennifer Franklin; Mark Radosevich

    2015-01-01

    As the process of urbanization advances across the country, so does the importance of urban forests, which include both trees and the soils in which they grow. Soil microbial biomass, which plays a critical role in nutrient transformation in urban ecosystems, is affected by factors such as soil type and the availability of water, carbon, and nitrogen. The aim of this...

  18. Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem

    PubMed Central

    He, Zhili; Xiong, Jinbo; Kent, Angela D; Deng, Ye; Xue, Kai; Wang, Gejiao; Wu, Liyou; Van Nostrand, Joy D; Zhou, Jizhong

    2014-01-01

    The concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have been rising due to human activities. However, little is known about how such increases influence soil microbial communities. We hypothesized that elevated CO2 (eCO2) and elevated O3 (eO3) would significantly affect the functional composition, structure and metabolic potential of soil microbial communities, and that various functional groups would respond to such atmospheric changes differentially. To test these hypotheses, we analyzed 96 soil samples from a soybean free-air CO2 enrichment (SoyFACE) experimental site using a comprehensive functional gene microarray (GeoChip 3.0). The results showed the overall functional composition and structure of soil microbial communities shifted under eCO2, eO3 or eCO2+eO3. Key functional genes involved in carbon fixation and degradation, nitrogen fixation, denitrification and methane metabolism were stimulated under eCO2, whereas those involved in N fixation, denitrification and N mineralization were suppressed under eO3, resulting in the fact that the abundance of some eO3-supressed genes was promoted to ambient, or eCO2-induced levels by the interaction of eCO2+eO3. Such effects appeared distinct for each treatment and significantly correlated with soil properties and soybean yield. Overall, our analysis suggests possible mechanisms of microbial responses to global atmospheric change factors through the stimulation of C and N cycling by eCO2, the inhibition of N functional processes by eO3 and the interaction by eCO2 and eO3. This study provides new insights into our understanding of microbial functional processes in response to global atmospheric change in soybean agro-ecosystems. PMID:24108327

  19. Interactive effects of multiple climate change factors on ammonia oxidizers and denitrifiers in a temperate steppe.

    PubMed

    Zhang, Cui-Jing; Shen, Ju-Pei; Sun, Yi-Fei; Wang, Jun-Tao; Zhang, Li-Mei; Yang, Zhong-Ling; Han, Hong-Yan; Wan, Shi-Qiang; He, Ji-Zheng

    2017-04-01

    Global climate change could have profound effects on belowground microbial communities and subsequently affect soil biogeochemical processes. The interactive effects of multiple co-occurring climate change factors on microbially mediated processes are not well understood. A four-factorial field experiment with elevated CO2, watering, nitrogen (N) addition and night warming was conducted in a temperate steppe of northern China. Real-time polymerase chain reaction and terminal-restriction fragment length polymorphism, combined with clone library techniques, were applied to examine the effects of those climate change factors on N-related microbial abundance and community composition. Only the abundance of ammonia-oxidizing bacteria significantly increased by nitrogen addition and decreased by watering. The interactions of watering × warming on the bacterial amoA community and warming × nitrogen addition on the nosZ community were found. Redundancy analysis indicated that the ammonia-oxidizing archaeal community was affected by total N and total carbon, while the community of bacterial amoA and nosZ were significantly affected by soil pH. According to a structural equation modeling analysis, climate change influenced net primary production indirectly by altering microbial abundance and activities. These results indicated that microbial responses to the combination of chronic global change tend to be smaller than expected from single-factor global change manipulations. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Microbial carbon recycling - an underestimated process controlling soil carbon dynamics - Part 1: A long-term laboratory incubation experiment

    NASA Astrophysics Data System (ADS)

    Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.

    2015-10-01

    Independent of its chemical structure carbon (C) persists in soil for several decades, controlled by stabilization and recycling. To disentangle the importance of the two factors on the turnover dynamics of soil sugars, an important compound of soil organic matter (SOM), a 3-year incubation experiment was conducted on a silty loam soil under different types of land use (arable land, grassland and forest) by adding 13C-labelled glucose. The compound-specific isotope analysis of soil sugars was used to examine the dynamics of different sugars during incubation. Sugar dynamics were dominated by a pool of high mean residence times (MRT) indicating that recycling plays an important role for sugars. However, this was not substantially affected by soil C content. Six months after label addition the contribution of the label was much higher for microbial biomass than for CO2 production for all examined land use types, corroborating that substrate recycling was very effective within the microbial biomass. Two different patterns of tracer dynamics could be identified for different sugars: while fucose and mannose showed highest label contribution at the beginning of the incubation with a subsequent slow decline, galactose and rhamnose were characterized by slow label incorporation with subsequently constant levels, which indicates that recycling is dominating the dynamics of these sugars. This may correspond to (a) different microbial growing strategies (r and K-strategist) or (b) location within or outside the cell membrane (lipopolysaccharides vs. exopolysaccharides) and thus be subject of different re-use within the microbial food web. Our results show how the microbial community recycles substrate very effectively and that high losses of substrate only occur during initial stages after substrate addition. This study indicates that recycling is one of the major processes explaining the high MRT observed for many SOM fractions and thus is crucial for understanding the global soil C cycle.

  1. Addition of Rubber to soil damages the functional diversity of soil.

    PubMed

    Goswami, Madhurankhi; Bhattacharyya, Purnita; Tribedi, Prosun

    2017-07-01

    Rubber is a polymer of isoprene, consisting mainly of cis-1,4-polyisoprene units. The unmanageable production and its irresponsible disposal pose severe threats to environmental ecology. Therefore, the current study focuses extensively on the ill-effects of Rubber disposal on soil microbial functional diversity as it reflects the health of ecosystem by acting as a key component in ecosystem productivity. To investigate the effect of Rubber on soil microbial functional diversity, soil samples were collected from landfill sites and three different soil microcosms (Rubber treated, untreated, and sterile soil) were prepared. The soil enzymatic activity was determined by fluorescein diacetate hydrolysis followed by the determination of the microbial metabolic potential and functional diversity by average well color development and Shannon-Weaver index (H), respectively. BiOLOG ECO plates were used for determining the microbial functional diversity of the soil microcosms. Higher heterotrophic microbial count as well as higher soil microbial activity was observed in Rubber untreated soil than Rubber treated soil microcosm. The result indicated that the addition of Rubber to soil reduced soil heterotrophic microbial count and soil microbial activity considerably. Similarly, soil microbial metabolic potential as well as microbial functional diversity of soil had been decreased by the addition of Rubber gloves in it. Variation in soil microbial metabolic spectrum between Rubber treated and untreated microcosm was confirmed by multivariate analysis. Collectively, all the results demonstrated that the addition of Rubber to soil reduced the soil microbial functional diversity considerably. Therefore, it is necessary for the commission of serious steps regarding Rubber disposal and protection of the environment from serious environmental issues.

  2. Investigating the initial stages of soil formation in glacier forefields using the new biogeochemical model: SHIMMER

    NASA Astrophysics Data System (ADS)

    Bradley, James; Anesio, Alexandre; Arndt, Sandra; Sabacka, Marie; Barker, Gary; Benning, Liane; Blacker, Joshua; Singarayer, Joy; Tranter, Martyn; Yallop, Marian

    2016-04-01

    Glaciers and ice sheets in Polar and alpine regions are retreating in response to recent climate warming, exposing terrestrial ecosystems that have been locked under the ice for thousands of years. Exposed soils exhibit successional characteristics that can be characterised using a chronosequence approach. Decades of empirical research in glacier forefields has shown that soils are quickly colonised by microbes which drive biogeochemical cycling of elements and affect soil properties including nutrient concentrations, carbon fluxes and soil stability (Bradley et al, 2014). The characterisation of these soils is important for our understanding of the cycling of organic matter under extreme environmental and nutrient limiting conditions, and their potential contribution to global biogeochemical cycles. This is particularly important as these new areas will become more geographically expansive with continued ice retreat. SHIMMER (Soil biogeocHemIcal Model of Microbial Ecosystem Response) (Bradley et al, 2015) is a new mathematical model that simulates biogeochemical and microbial dynamics in glacier forefields. The model captures, explores and predicts the growth of different microbial groups (classified by function), and the associated cycling of carbon, nitrogen and phosphorus along a chronosequence. SHIMMER improves typical soil model formulations by including explicit representation of microbial dynamics, and those processes which are shown to be important for glacier forefields. For example, we categorise microbial groups by function to represent the diversity of soil microbial communities, and include the different metabolic needs and physiological pathways of microbial organisms commonly found in glacier forefields (e.g. microbes derived from underneath the glacier, typical soil bacteria, and microbes that can fix atmospheric nitrogen and assimilate soil nitrogen). Here, we present data from a study where we integrated modelling using SHIMMER with empirical observations from chronosequences from the forefield of Midtre Lovénbreen, Svalbard (78°N), to investigate the first 120 years of soil development. We carried out an in depth analysis of the model dynamics and determined the most sensitive parameters. We then used laboratory measurements to derive values for those parameters: bacterial growth rate, growth efficiency and temperature dependency. By applying the model to the High-Arctic forefield and integrating the measured parameter values, we could refine the model and easily predict the rapid accumulation of microbial biomass that was observed in our field data. Furthermore, we show that the bacterial production is dominated by autotrophy (rather than heterotrophy). Heterotrophic production in young soils (0-20 years) is supported by labile substrate, whereas carbon stocks in older soils (60-120 years) are more refractory. Nitrogen fixing organisms are responsible for the initial accumulation of available nitrates in the soil. However, microbial processes alone do not explain the build-up of organic matter observed in the field data record. Consequently, the model infers that allochthonous deposition of organic material may play a significant contributory role that could accelerate or facilitate further microbial growth. SHIMMER provides a quantitative evaluation on the dynamics of glacier forefield systems that have previously largely been explored through qualitative interpretation of datasets. References Bradley J.A., Singarayer J.S., Anesio A.M. (2014) Microbial community dynamics in the forefield of glaciers. Proceedings Biological sciences / The Royal Society 281(1795), 2793-2802. (doi:10.1098/rspb.2014.0882). Bradley J.A., Anesio A.M., Singarayer J.S., Heath M.R., Arndt S. (2015) SHIMMER (1.0): a novel mathematical model for microbial and biogeochemical dynamics in glacier forefield ecosystems. Geosci Model Dev 8(10), 3441-3470. (doi:10.5194/gmd-8-3441-2015).

  3. Does the presence of large down wood at the time of a forest fire impact soil recovery?

    Treesearch

    Jane E. Smith; Laurel A. Kluber; Tara N. Jennings; Donaraye McKay; Greg Brenner; Elizabeth W. Sulzman

    2017-01-01

    Fire may remove or create dead wood aboveground, but it is less clear how high severity burning of soils affects belowground microbial communities and soil processes, and for how long. In this study, we investigated soil fungal and bacterial communities and biogeochemical responses of severely burned ‘‘red” soil and less severely burned ‘‘black” soil from a burned...

  4. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.

    PubMed

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M

    2015-10-01

    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment. © 2015 John Wiley & Sons Ltd.

  5. Sugarcane straw harvest effects on soil quality and plant growth: preliminary data synthesis of a multi-local project running in Brazil

    NASA Astrophysics Data System (ADS)

    Cherubin, Maurício; Cerri, Carlos E. P.; Feigl, Brigitte J.; Cerri, Carlos C.

    2017-04-01

    Brazil is the largest sugarcane producer in the world, and consequently, it is one of major players in the bioenergy production sector. Despite that, growing demands for bioenergies have raised the interest of Brazilian sugarcane industry to harvest the sugarcane straw left on the field for cellulosic ethanol production and/or bioelectricity cogeneration. However, crop residues have a key role in the soil, affecting directly or indirectly multiple soil functions and related ecosystem services. Therefore, indiscriminate straw harvest could jeopardize soil quality, decreasing its capacity to sustain plant productivity over time. In order to evaluate the potential impacts of sugarcane straw harvest on soil quality and plant growth, we are conducting since 2014 a multi-local project across central-southern Brazil, the main core of sugarcane production in the world. A wide range of soil chemical, physical and biological parameters, as well as, plant biomass production has been quantified under increasing straw harvest intensities. Our preliminary findings have showed that short-term straw harvest management did not affect total organic C stocks; however, high straw harvest led to significant reduction in labile C forms (e.g., microbial biomass C and N), and abundance of microbial communities as well. Sugarcane straw harvest affects soil nutrient cycling, since significant amount of nutrients are removed annually by straw, especially in top (green) leaves. In addition, our data show that straw acts as a thermal insulator, decreasing soil temperature amplitude and keeping soil moisture for a longer time. Straw harvest management did not affect sugarcane yields in the first two crop seasons. Based on this first synthesis of the project, we conclude that short-term sugarcane straw harvest led to soil changes, especially in more sensitive and dynamic properties, which did not affect the plant yield. However, long-term impacts should be monitored towards a better understanding about potential trade-offs and synergies associated with sugarcane straw harvest for bioenergy production in Brazil.

  6. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaofeng; Schimel, Joshua; Thornton, Peter E

    2014-01-01

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, amore » simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.« less

  7. Evaluation of the Influence That Was Produced by Phytoremediation of Soil Microorganisms at Oil Showings

    NASA Astrophysics Data System (ADS)

    Kaimi, Etsuko; Kawakita, Morikazu; Mukaidani, Tsukasa; Fujiwara, Kazuhiro; Okada, Shin-Ichi; Yasuda, Yoshio

    Phytoremediation has been identified as a potentially environmentally friendly and cost effective technique for the treatment of contaminated soil. However, phytoremediation has an unknown mechanism. In this study, we focus on the effects of the cultivation of Italian ryegrass on the soil microbes collected at oil showings, which were expected to have a variety of crude oil degradable microorganisms. We evaluated the number of crude oil degradable microorganism, microbial activity, microflora using the PCR-DGGE method and the change in the concentration of crude oil in the soil. The results indicated that the microflora was affected by the cultivation of Itarian ryegrass, and that the microbial activity and the number of crude oil degradable microorganisms were also improved by the cultivation. Moreover, the concentration of crude oil in the rhizosphere soil decreased significantly when compared to the uncultivated soil. These results suggested that cultivation could regulate microflora selectively, which degraded crude oil.

  8. An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest.

    PubMed

    Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Mao, Peng; Zhang, Weixin; Shao, Yuanhu; Fu, Shenglei

    2018-04-01

    World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change microbial biomass and community structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fungi benefit from two decades of increased nutrient availability in tundra heath soil.

    PubMed

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) profiles. The function of the microbial community was also differently affected, as indicated by stable isotope probing of PLFA and NLFA. We demonstrate that two decades of fertilization have favored fungi relative to bacteria, and increased the turnover of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils. Furthermore, the different functional responses suggest that the biomass increase found in both fertilized and warmed plots was mediated via different mechanisms.

  10. Rapid Shifts in Soil and Forest Floor Microbial Communities with Changes in Vegetation during Secondary Tropical Forest Succession

    NASA Astrophysics Data System (ADS)

    Smith, A.; Marin-Spiotta, E.; Balser, T. C.

    2012-12-01

    Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. In order to predict how disturbance affects belowground carbon storage, it is important to understand how the forest floor and soil microbial community respond to changes in land cover, and the consequences on SOM formation and stabilization. We are measuring microbial functional diversity and activity across a long-term successional chronosequence of secondary forests regrowing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Here we report intra- and interannual data on soil and litter microbial community composition (via phospholipid fatty acid analysis, PLFA) and microbial activity (via extracellular enzyme activity) from active pastures, secondary forests aged 20, 30, 40, 70, and 90-years, and primary forests. Microbial community composition and extracellular enzyme activity differed significantly by season in these wet subtropical ecosystems, even though differences in mean monthly precipitation between the middle of the dry season (January) and the wet season (July) is only 30mm. Despite seasonal differences, there was a persistent strong effect of land cover type and forest successional stage, or age, on overall microbial community PLFA structure. Using principal component analysis, we found differences in microbial community structure among active pastures, early, and late successional forests. The separation of soil microbes into early and late successional communities parallels the clustering of tree composition data. While the successional patterns held across seasons, the importance of different microbial groups driving these patterns differed seasonally. Biomarkers for gram-positive and actinobacteria (i15:0 and 16:0 10Me) were associated with early (20, 30 & 40 year old) secondary forests in the dry season. These younger forest communities were identified by the biomarker for anaerobic gram-negative bacteria (c19:0) in the wet season, which suggests the presence of anaerobic microsites in these very clayey Oxisols. Enzymatic activity did not differ with succession but was highest in the dry season. We expect this may be due to decreased turnover of enzymes with low soil moisture. Interannual sampling has revealed a very rapid microbial response to changes in aboveground cover. Within a year following woody biomass encroachment, we detected a shift in the soil microbial community from a pasture-associated community to an early secondary forest community in one of our replicate pasture sites. This very rapid response in the belowground microbial community structure to changes in vegetation has not been strongly documented in the literature. This data supports a direct link between aboveground and belowground biotic community structures and highlights the importance of long-term repeated sampling of microbial communities in dynamic ecosystems. Our findings have implications for predicting rapid ecological responses to land-cover change.

  11. Fungal role in post-fire ecosystem recovery in Sierra Nevada National Park (Spain)

    NASA Astrophysics Data System (ADS)

    Bárcenas-Moreno, Gema; Jiménez-Morillo, Nicasio T.; Mataix-Beneyto, Jorge; Martín Sánchez, Ines

    2016-04-01

    Fire effect on soil microorganisms has been studies for decades in several ecosystems and different microbial response can be found in the bibliography depending on numerous intrinsic and extrinsic soil factors. These factors will determine preliminary soil microbial community composition, subsequent pos-fire initial colonizers and even post-fire growth media characteristics that microbial community will find to start recolonisation. Fire-induced soil bacterial proliferation is a common pattern found after fire, usually related to pH and C availability increased. But when original soil pH is not altered by fire in acid soils, microbial response can be different and fungal response can be crucial to ecosystem recovery. In this study we have compile data related to high mountain soil from Sierra Nevada National park which was affected by a wildfire in 2006 and data obtained by laboratory heating experiment, trying to elucidate the ecological role of fungi in this fragile ecosystem. On the one hand we can observe fire-induced fungal abundance proliferation estimated by plate count method 8 and 32 months after wildfire and even in a short-term (21 d) after laboratory heating at 300 °C. Six years after fire, fungal abundance was similar between samples collected in burnt and unburnt-control area but we found higher proportion of species capable to degrade PAHs (lacase activity) in burnt soil than I the unburnt one. This finding evidences the crucial role of fungal enzymatic capacities to detoxify burnt soils when fire-induced recalcitrant and even toxic carbon compounds could be partially limiting total ecosystem recovery.

  12. The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters.

    PubMed

    Bourceret, Amélia; Cébron, Aurélie; Tisserant, Emilie; Poupin, Pascal; Bauda, Pascale; Beguiristain, Thierry; Leyval, Corinne

    2016-04-01

    Industrial wasteland soils with aged PAH and heavy metal contaminations are environments where pollutant toxicity has been maintained for decades. Although the communities may be well adapted to the presence of stressors, knowledge about microbial diversity in such soils is scarce. Soil microbial community dynamics can be driven by the presence of plants, but the impact of plant development on selection or diversification of microorganisms in these soils has not been established yet. To test these hypotheses, aged-contaminated soil samples from a field trial were collected. Plots planted with alfalfa were compared to bare soil plots, and bacterial and fungal diversity and abundance were assessed after 2 and 6 years. Using pyrosequencing of 16S rRNA gene and ITS amplicons, we showed that the bacterial community was dominated by Proteobacteria, Actinobacteria, and Bacteroidetes and was characterized by low Acidobacteria abundance, while the fungal community was mainly represented by members of the Ascomycota. The short-term toxic impact of pollutants usually reduces the microbial diversity, yet in our samples bacterial and fungal species richness and diversity was high suggesting that the community structure and diversity adapted to the contaminated soil over decades. The presence of plants induced higher bacterial and fungal diversity than in bare soil. It also increased the relative abundance of bacterial members of the Actinomycetales, Rhizobiales, and Xanthomonadales orders and of most fungal orders. Multivariate analysis showed correlations between microbial community structure and heavy metal and PAH concentrations over time, but also with edaphic parameters (C/N, pH, phosphorus, and nitrogen concentrations).

  13. Plant-facilitated effects of exotic earthworm Pontoscolex corethrurus on the soil carbon and nitrogen dynamics and soil microbial community in a subtropical field ecosystem.

    PubMed

    Wu, Jianping; Zhang, Weixin; Shao, Yuanhu; Fu, Shenglei

    2017-11-01

    Earthworms and plants greatly affect belowground properties; however, their combined effects are more attractive based on the ecosystem scale in the field condition. To address this point, we manipulated earthworms (exotic endogeic species Pontoscolex corethrurus ) and plants (living plants [native tree species Evodia lepta ] and artificial plants) to investigate their combined effects on soil microorganisms, soil nutrients, and soil respiration in a subtropical forest. The manipulation of artificial plants aimed to simulate the physical effects of plants (e.g., shading and interception of water) such that the biological effects of plants could be evaluated separately. We found that relative to the controls, living plants but not artificial plants significantly increased the ratio of fungal to bacterial phospholipid fatty acids (PLFAs) and fungal PLFAs. Furthermore, earthworms plus living plants significantly increased the soil respiration and decreased the soil NH 4 + -N, which indicates that the earthworm effects on the associated carbon, and nitrogen processes were greatly affected by living plants. The permutational multivariate analysis of variance results also indicated that living plants but not earthworms or artificial plants significantly changed the soil microbial community. Our results suggest that the effects of plants on soil microbes and associated soil properties in this study were largely explained by their biological rather than their physical effects.

  14. Status and effect of pesticide residues in soils under different land uses of Andaman Islands, India.

    PubMed

    Murugan, A V; Swarnam, T P; Gnanasambandan, S

    2013-10-01

    Pesticides are shown to have a great effect on soil organisms, but the effect varies with pesticide group and concentration, and is modified by soil organic carbon content and soil texture. In the humid tropical islands of Andaman, India, no systematic study was carried out on pesticide residues in soils of different land uses. The present study used the modified QuEChERS method for multiresidue extraction from soils and detection with a gas chromatograph. DDT and its various metabolites, α-endosulfan, β-endosulfan, endosulfan sulfate, aldrin, and fenvalerate, were detected from the study area. Among the different pesticide groups detected, endosulfan and DDT accounted for 41.7 % each followed by aldrin (16.7 %) and synthetic pyrethroid (8.3 %). A significantly higher concentration of pesticide residues was detected in rice-vegetable grown in the valley followed by rice-fallow and vegetable-fallow in the coastal plains. Soil microbial biomass carbon is negatively correlated with the total pesticide residues in soils, and it varied from 181.2 to 350.6 mg kg(-1). Pesticide residues have adversely affected the soil microbial populations, more significantly the bacterial population. The Azotobacter population has decreased to the extent of 51.8 % while actinomycetes were the least affected though accounted for 32 % when compared to the soils with no residue.

  15. Reproduction allocation and potential mechanism of individual allelopathic rice plants in the presence of competing barnyardgrass.

    PubMed

    Kong, Chui-Hua; Wang, Ming-Li; Wang, Peng; Ni, Han-Wen; Meng, Xiang-Rui

    2013-01-01

    In spite of increasing knowledge of allelopathic rice as an efficient component involved in paddy weed management, relatively little is known about its reproduction in response to competing weeds. Reproduction allocation of individual allelopathic rice plants in relation to monoculture and mixed culture with competing barnyardgrass in a paddy field was studied, along with analyses of soil nutrients and microbial communities to understand the potential mechanism. At a 1:1 barnyardgrass and rice mixture proportion identified from a replacement series study, biomass, grain yield and major parameters of individual allelopathic rice plants at the mature stage were increased by competing barnyardgrass. There was no difference in allelopathic rice root-zone soil ammonium N and Olsen P between monoculture and mixed culture. However, mixed culture altered soil microbial biomass C and communities. When mixed with barnyardgrass, allelopathic rice root zone had an 87% increase in soil microbial biomass C. Phospholipid fatty acid (PLFA) profiling indicated that the signature lipid biomarkers of bacteria, actinobacteria and fungi were affected by mixed culture. Principal component analysis clearly identified differences in the composition of PLFA in different soil samples. Allelopathic rice specific changes in soil microbial communities may generate a positive feedback on its own growth and reproduction in the presence of competing barnyardgrass in a given paddy system. Copyright © 2012 Society of Chemical Industry.

  16. Microbial contributions to climate change through carbon cycle feedbacks.

    PubMed

    Bardgett, Richard D; Freeman, Chris; Ostle, Nicholas J

    2008-08-01

    There is considerable interest in understanding the biological mechanisms that regulate carbon exchanges between the land and atmosphere, and how these exchanges respond to climate change. An understanding of soil microbial ecology is central to our ability to assess terrestrial carbon cycle-climate feedbacks, but the complexity of the soil microbial community and the many ways that it can be affected by climate and other global changes hampers our ability to draw firm conclusions on this topic. In this paper, we argue that to understand the potential negative and positive contributions of soil microbes to land-atmosphere carbon exchange and global warming requires explicit consideration of both direct and indirect impacts of climate change on microorganisms. Moreover, we argue that this requires consideration of complex interactions and feedbacks that occur between microbes, plants and their physical environment in the context of climate change, and the influence of other global changes which have the capacity to amplify climate-driven effects on soil microbes. Overall, we emphasize the urgent need for greater understanding of how soil microbial ecology contributes to land-atmosphere carbon exchange in the context of climate change, and identify some challenges for the future. In particular, we highlight the need for a multifactor experimental approach to understand how soil microbes and their activities respond to climate change and consequences for carbon cycle feedbacks.

  17. Flexible C, N and P allocation in maize plants and soil microbial biomass under recurrent and long-term drought

    NASA Astrophysics Data System (ADS)

    Larionova, Alla; Semenov, Vyacheslav; Yevdokimov, Ilya; Blagodatskaya, Evgenia

    2016-04-01

    One of the negative effects of the global warming is increasing aridity worldwide. Alterations in plant and microbial C, N and P in response to drought events can differ considerably in magnitude and direction. Therefore, synchronization between C, N and P in plants, dissolved forms and microbial biomass in soil is of great interest. Our objective was to evaluate C:N:P stoichiometry relations in plants and soil as affected by moderate water shortage and severe drought with subsequent rewetting. We tested the sensitivity of stoichiometry ratios in plants, dissolved compounds and soil microbial biomass in greenhouse experiment with maize. Three treatments were used: i) control with constant soil moisture (CTL); ii) soil with constantly low wetness of 25% WHC (DRY) and iii) soil exposed to drying-rewetting events (DRW). N dynamics was the most sensitive to water stress in maize plants and soil, while P dynamics was almost unaffected by drought and rewetting. As a result, C:N and N:P ratios were also sensitive to water treatment indicating that C, N and P cycles were decoupled by the water stresses. High C:N ratios in CTL and low C:N ratios in DRY and DRW treatments indicate stoichiometric flexibility in plants and soil microbes. N allocation was found to respond to N shortage in CTL and increased salt concentrations in soil solution in DRY and DRW treatments. C:N:P stoichiometry in soil microbes was found flexible during active plant growth, while that at the end of growth season turned to almost homeostatic ratio. The research was supported by Russian Science Foundation (project 14-14-00625)

  18. Arctic Tundra Soils: A Microbial Feast That Shrubs Will Cease

    NASA Astrophysics Data System (ADS)

    Machmuller, M.; Calderon, F.; Cotrufo, M. F.; Lynch, L.; Paul, E. A.; Wallenstein, M. D.

    2016-12-01

    Rapid climate warming may already be driving rapid decomposition of the vast stocks of carbon in Arctic tundra soils. However, stimulated decomposition may also release nitrogen and support increased plant productivity, potentially counteracting soil carbon losses. At the same time, these two processes interact, with plant derived carbon potentially fueling soil microbes to attack soil organic matter (SOM) to acquire nitrogen- a process known as priming. Thus, differences in the physiology, stoichiometry and microbial interactions among plant species could affect climate-carbon feedbacks. To reconcile these interactive mechanisms, we examined how vegetation type (Betula nana and Eriophorum vaginatum) and fertilization (short-term and long-term) influenced the decomposition of native SOM after labile carbon and nutrient addition. We hypothesized that labile carbon inputs would stimulate the loss of native SOM, but the magnitude of this effect would be indirectly related to soil nitrogen concentrations (e.g. SOM priming would be highest in N-limited soils). We added isotopically enriched (13C) glucose and ammonium nitrate to soils under shrub (B. nana) and tussock (E. vaginatum) vegetation. We found that nitrogen additions stimulated priming only in tussock soils, characterized by lower nutrient concentrations and microbial biomass (p<0.05). There was no evidence of priming in soils that had been fertilized for >20yrs. Rather, we found that long-term fertilization shifted SOM chemistry towards a greater abundance of recalcitrant SOM, lower microbial biomass, and decreased SOM respiration (p<0.05). Our results suggest that, in the short-term, the magnitude of SOM priming is dependent on vegetation and soil nitrogen concentrations, but this effect may not persist if shrubs increase in abundance under climate warming. Therefore, including nitrogen as a control on SOM decomposition and priming is critical to accurately model the effects of climate change on arctic carbon storage.

  19. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems.

    PubMed

    Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke

    2014-11-01

    The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 μm; CF2, 1-2 μm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of OC, not only in the active and intermediate SOM pools, but also in the passive pool. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Bioremediation of diesel contamination at an underground storage tank site: a spatial analysis of the microbial community.

    PubMed

    Andreolli, Marco; Albertarelli, Nicola; Lampis, Silvia; Brignoli, Pierlorenzo; Khoei, Nazaninalsadat Seyed; Vallini, Giovanni

    2016-01-01

    The present study reports on a real case of contamination due to the chronic leakage of diesel fuel from an underground tank at a dismissed service station. Speciation of the microbial community according to both lateral and vertical gradients from the origin of the contaminant release was analyzed by means of the PCR-DGGE technique. Moreover, the effects of a landfarming treatment on both the microbial community structure and the abatement of contamination were analyzed. The concentration of total petrol hydrocarbons (TPHs) decreased along the horizontal gradient (from 7042.2 ± 521.9 to 112.2 ± 24.3 mg kg(-1)), while increased downwards from the position of the tank (from 502.6 ± 43.7 to 4972.5 ± 275.3 mg kg(-1)). PCR-DGGE analyses and further statistical treatment of the data indicated a correlation between structure of the bacterial communities and amount of diesel fuel contamination. On the other hand, level of contamination, soil texture and depth were shown to affect the fungal community. Chloroflexi and Ascomycota were the most abundant microbes ascertained through culture-independent procedures. Landfarming promoted 91.6 % reduction of TPHs in 75 days. Furthermore, PCR-DGGE analyses evidenced that both bacterial and fungal communities of the treated soil were restored to the pristine conditions of uncontaminated topsoil. The present study demonstrated that bacterial and fungal communities were affected differently by soil factors such as level of hydrocarbon contamination as well as soil depth and texture. This report shows that a well-planned landfarming treatment can drive the restoration of the soil in terms of both abatement of the contaminants and resilience of the microbial community structure.

  1. Litter quality versus soil microbial community controls over decomposition: a quantitative analysis

    USGS Publications Warehouse

    Cleveland, Cory C.; Reed, Sasha C.; Keller, Adrienne B.; Nemergut, Diana R.; O'Neill, Sean P.; Ostertag, Rebecca; Vitousek, Peter M.

    2014-01-01

    The possible effects of soil microbial community structure on organic matter decomposition rates have been widely acknowledged, but are poorly understood. Understanding these relationships is complicated by the fact that microbial community structure and function are likely to both affect and be affected by organic matter quality and chemistry, thus it is difficult to draw mechanistic conclusions from field studies. We conducted a reciprocal soil inoculum × litter transplant laboratory incubation experiment using samples collected from a set of sites that have similar climate and plant species composition but vary significantly in bacterial community structure and litter quality. The results showed that litter quality explained the majority of variation in decomposition rates under controlled laboratory conditions: over the course of the 162-day incubation, litter quality explained nearly two-thirds (64 %) of variation in decomposition rates, and a smaller proportion (25 %) was explained by variation in the inoculum type. In addition, the relative importance of inoculum type on soil respiration increased over the course of the experiment, and was significantly higher in microcosms with lower litter quality relative to those with higher quality litter. We also used molecular phylogenetics to examine the relationships between bacterial community composition and soil respiration in samples through time. Pyrosequencing revealed that bacterial community composition explained 32 % of the variation in respiration rates. However, equal portions (i.e., 16 %) of the variation in bacterial community composition were explained by inoculum type and litter quality, reflecting the importance of both the meta-community and the environment in bacterial assembly. Taken together, these results indicate that the effects of changing microbial community composition on decomposition are likely to be smaller than the potential effects of climate change and/or litter quality changes in response to increasing atmospheric CO2 concentrations or atmospheric nutrient deposition.

  2. Effects of biochar and elevated soil temperature on soil microbial activity and abundance in an agricultural system

    NASA Astrophysics Data System (ADS)

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2014-05-01

    As a consequence of Global Warming, rising surface temperatures will likely cause increased soil temperatures. Soil warming has already been shown to, at least temporarily, increase microbial activity and, therefore, the emissions of greenhouse gases like CO2 and N2O. This underlines the need for methods to stabilize soil organic matter and to prevent further boost of the greenhouse gas effect. Plant-derived biochar as a soil amendment could be a valuable tool to capture CO2 from the atmosphere and sequestrate it in soil on the long-term. During the process of pyrolysis, plant biomass is heated in an oxygen-low atmosphere producing the highly stable solid matter biochar. Biochar is generally stable against microbial degradation due to its chemical structure and it, therefore, persists in soil for long periods. Previous experiments indicated that biochar improves or changes several physical or chemical soil traits such as water holding capacity, cation exchange capacity or soil structure, but also biotic properties like microbial activity/abundance, greenhouse gas emissions and plant growth. Changes in the soil microbial abundance and community composition alter their metabolism, but likely also affect plant productivity. The interaction of biochar addition and soil temperature increase on soil microbial properties and plant growth was yet not investigated on the field scale. To investigate whether warming could change biochar effects in soil, we conducted a field experiment attached to a soil warming experiment on an agricultural experimental site near the University of Hohenheim, already running since July 2008. The biochar field experiment was set up as two-factorial randomized block design (n=4) with the factors biochar amendment (0, 30 t ha-1) and soil temperature (ambient, elevated=ambient +2.5° C) starting from August 2013. Each plot has a dimension of 1x1m and is equipped with combined soil temperature and moisture sensors. Slow pyrolysis biochar from the C4 plant Miscanthus was first put on top and then manually incorporated into 20-30 cm soil depth. Differences in the isotopic signature of the biochar and the soil organic matter make it possible to trace the flow of biochar-derived carbon into different labile C pools such as CO2 or microbial biomass. Spring barley litter of the previous growing season was mixed into soil together with the biochar. Rapeseed oil plants were sown one week after biochar application. Weekly gas sampling between the crop rows allows the determination of CO2, N2O and CH4 fluxes. In addition, 13CO2 will be measured at specific dates in order to calculate the proportion of biochar-C in emitted CO2. First soil sampling after biochar application was in November 2013 and soil was taken in three depths (0-5, 5-15 and 15-30 cm). After the first three months we could not observe any effect of biochar on CO2 and N2O emissions, but elevated soil temperature increased emissions of both gases. Data on soil microbial abundance and community composition will be available soon.

  3. Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana

    Treesearch

    Steven D. Allison; Caroline Nielsen; R. Flint Hughes

    2006-01-01

    Like other N-fixing invasive species in Hawaii, Falcataria moluccana dramatically alters forest structure, litterfall quality and quantity, and nutrient dynamics. We hypothesized that these biogeochemical changes would also affect the soil microbial community and the extracellular enzymes responsible for carbon and nutrient mineralization. Across...

  4. MODELING MICROBIAL TRANSPORT IN SOIL AND GROUNDWATER: MICROBIOLOGISTS CAN ASSIST IN THE DEVELOPMENT OF MODELS OF CONTAMINANT TRANSPORT

    EPA Science Inventory

    A large body of literature describes the processes affecting the fate of microorganisms in the subsurface environment (i.e., soil and groundwater). The fate of microorganisms depends on two main components: survival and transport. other components must be considered when determin...

  5. Controls on Soil Organic Matter in Blue Carbon Ecosystems along the South Florida Coast

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Rosenheim, B. E.; Moyer, R. P.; Radabaugh, K.; Chambers, L. G.; Lagomasino, D.; Lynch, J.; Cahoon, D. R.

    2017-12-01

    Coastal wetlands store disproportionately large amounts of carbon due to high rates of net primary productivity and slow microbial degradation of organic matter in water-saturated soils. Wide spatial and temporal variability in plant communities and soil biogeochemistry necessitate location-specific quantification of carbon stocks to improve current wetland carbon inventories and future projections. We apply field measurements, remote sensing technology, and spatiotemporal models to quantify regional carbon storage and to model future spatial variability of carbon stocks in mangroves and coastal marshes in Southwest Florida. We examine soil carbon accumulation and accretion rates on time scales ranging from decadal to millennial to project responses to climate change, including variations in inundation and salinity. Once freshwater and oligohaline wetlands are exposed to increased duration and spatial extent of inundation and salinity from seawater, soil redox potential, soil respiration, and the intensification of osmotic stress to vegetation and the soil microbial community can affect the soil C balance potentially increasing rates of mineralization.

  6. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation.

    PubMed

    Bento, Fatima M; Camargo, Flávio A O; Okeke, Benedict C; Frankenberger, William T

    2005-06-01

    Bioremediation of diesel oil in soil can occur by natural attenuation, or treated by biostimulation or bioaugmentation. In this study we evaluated all three technologies on the degradation of total petroleum hydrocarbons (TPH) in soil. In addition, the number of diesel-degrading microorganisms present and microbial activity as indexed by the dehydrogenase assay were monitored. Soils contaminated with diesel oil in the field were collected from Long Beach, California, USA and Hong Kong, China. After 12 weeks of incubation, all three treatments showed differing effects on the degradation of light (C12-C23) and heavy (C23-C40) fractions of TPH in the soil samples. Bioaugmentation of the Long Beach soil showed the greatest degradation in the light (72.7%) and heavy (75.2%) fractions of TPH. Natural attenuation was more effective than biostimulation (addition of nutrients), most notably in the Hong Kong soil. The greatest microbial activity (dehydrogenase activity) was observed with bioaugmentation of the Long Beach soil (3.3-fold) and upon natural attenuation of the Hong Kong sample (4.0-fold). The number of diesel-degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. Soil properties and the indigenous soil microbial population affect the degree of biodegradation; hence detailed site specific characterization studies are needed prior to deciding on the proper bioremediation method.

  7. The Resilience of Microbial Community under Drying and Rewetting Cycles of Three Forest Soils.

    PubMed

    Zhou, Xue; Fornara, Dario; Ikenaga, Makoto; Akagi, Isao; Zhang, Ruifu; Jia, Zhongjun

    2016-01-01

    Forest soil ecosystems are associated with large pools and fluxes of carbon (C) and nitrogen (N), which could be strongly affected by variation in rainfall events under current climate change. Understanding how dry and wet cycle events might influence the metabolic state of indigenous soil microbes is crucial for predicting forest soil responses to environmental change. We used 454 pyrosequencing and quantitative PCR to address how present (DNA-based) and potentially active (RNA-based) soil bacterial communities might response to the changes in water availability across three different forest types located in two continents (Africa and Asia) under controlled drying and rewetting cycles. Sequencing of rRNA gene and transcript indicated that Proteobacteria, Actinobacteria, and Acidobacteria were the most responsive phyla to changes in water availability. We defined the ratio of rRNA transcript to rRNA gene abundance as a key indicator of potential microbial activity and we found that this ratio was increased following soil dry-down process whereas it decreased after soil rewetting. Following rewetting Crenarchaeota-like 16S rRNA gene transcript increased in some forest soils and this was linked to increases in soil nitrate levels suggesting greater nitrification rates under higher soil water availability. Changes in the relative abundance of (1) different microbial phyla and classes, and (2) 16S and amoA genes were found to be site- and taxa-specific and might have been driven by different life-strategies. Overall, we found that, after rewetting, the structure of the present and potentially active bacterial community structure as well as the abundance of bacterial (16S), archaeal (16S) and ammonia oxidizers (amoA), all returned to pre-dry-down levels. This suggests that microbial taxa have the ability to recover from desiccation, a critical response, which will contribute to maintaining microbial biodiversity in harsh ecosystems under environmental perturbations, such as significant changes in water availability.

  8. The Resilience of Microbial Community under Drying and Rewetting Cycles of Three Forest Soils

    PubMed Central

    Zhou, Xue; Fornara, Dario; Ikenaga, Makoto; Akagi, Isao; Zhang, Ruifu; Jia, Zhongjun

    2016-01-01

    Forest soil ecosystems are associated with large pools and fluxes of carbon (C) and nitrogen (N), which could be strongly affected by variation in rainfall events under current climate change. Understanding how dry and wet cycle events might influence the metabolic state of indigenous soil microbes is crucial for predicting forest soil responses to environmental change. We used 454 pyrosequencing and quantitative PCR to address how present (DNA-based) and potentially active (RNA-based) soil bacterial communities might response to the changes in water availability across three different forest types located in two continents (Africa and Asia) under controlled drying and rewetting cycles. Sequencing of rRNA gene and transcript indicated that Proteobacteria, Actinobacteria, and Acidobacteria were the most responsive phyla to changes in water availability. We defined the ratio of rRNA transcript to rRNA gene abundance as a key indicator of potential microbial activity and we found that this ratio was increased following soil dry-down process whereas it decreased after soil rewetting. Following rewetting Crenarchaeota-like 16S rRNA gene transcript increased in some forest soils and this was linked to increases in soil nitrate levels suggesting greater nitrification rates under higher soil water availability. Changes in the relative abundance of (1) different microbial phyla and classes, and (2) 16S and amoA genes were found to be site- and taxa-specific and might have been driven by different life-strategies. Overall, we found that, after rewetting, the structure of the present and potentially active bacterial community structure as well as the abundance of bacterial (16S), archaeal (16S) and ammonia oxidizers (amoA), all returned to pre-dry-down levels. This suggests that microbial taxa have the ability to recover from desiccation, a critical response, which will contribute to maintaining microbial biodiversity in harsh ecosystems under environmental perturbations, such as significant changes in water availability. PMID:27486444

  9. Microbial diversity affects self-organization of the soil–microbe system with consequences for function

    PubMed Central

    Crawford, John W.; Deacon, Lewis; Grinev, Dmitri; Harris, James A.; Ritz, Karl; Singh, Brajesh K.; Young, Iain

    2012-01-01

    Soils are complex ecosystems and the pore-scale physical structure regulates key processes that support terrestrial life. These include maintaining an appropriate mixture of air and water in soil, nutrient cycling and carbon sequestration. There is evidence that this structure is not random, although the organizing mechanism is not known. Using X-ray microtomography and controlled microcosms, we provide evidence that organization of pore-scale structure arises spontaneously out of the interaction between microbial activity, particle aggregation and resource flows in soil. A simple computational model shows that these interactions give rise to self-organization involving both physical particles and microbes that gives soil unique material properties. The consequence of self-organization for the functioning of soil is determined using lattice Boltzmann simulation of fluid flow through the observed structures, and predicts that the resultant micro-structural changes can significantly increase hydraulic conductivity. Manipulation of the diversity of the microbial community reveals a link between the measured change in micro-porosity and the ratio of fungal to bacterial biomass. We suggest that this behaviour may play an important role in the way that soil responds to management and climatic change, but that this capacity for self-organization has limits. PMID:22158839

  10. Specific features of the structure of microbial biomass in soils of annular mesodepressions in Lipetsk and Volgograd oblasts

    NASA Astrophysics Data System (ADS)

    Polyanskaya, L. V.; Sukhanova, N. I.; Chakmazyan, K. V.; Zvyagintsev, D. G.

    2014-09-01

    In the studied mesodepressions, the total microbial biomass in the gray forest and chernozemic soils decreases by two-three times under the impact of hydrogen flux from the subsoil horizons and soil waterlogging. The biomass decrease is especially pronounced in the lower soil horizons. The population density of bacteria in the soil samples subjected to the impact of hydrogen fluxes and temporary waterlogging decreases by two-three times in the upper horizons and by ten times in the lower horizons in comparison with that in the control samples. These factors also affect the length of fungal mycelium: it decreases by three-four times in the upper horizons and may completely disappear in the lower horizons. The reduction of the microbial biomass can be explained by the fact that hydrogen and waterlogging sharply decrease the soil redox potential, which retards the development of most microbes, except for methanogens and some other specialized groups of microorganisms. The domination of bacteria with diameter ≥0.23 and ≥0.38 μm and the decrease in the total number of bacteria have been found with the use of the cascade filtration method.

  11. Accelerated decay rates drive soil organic matter persistence and storage in temperate forests via greater mineral stabilization of microbial residues.

    NASA Astrophysics Data System (ADS)

    Phillips, R.; Craig, M.; Turner, B. L.; Liang, C.

    2017-12-01

    Climate predicts soil organic matter (SOM) stocks at the global scale, yet controls on SOM stocks at finer spatial scales are still debated. A current hypothesis predicts that carbon (C) and nitrogen (N) storage in soils should be greater when decomposition is slow owing to microbial competition for nutrients or the recalcitrance of organic substrates (hereafter the `slow decay' hypothesis). An alternative hypothesis predicts that soil C and N storage should be greater in soils with rapid decomposition, owing to the accelerated production of microbial residues and their stabilization on soil minerals (hereafter the `stabilization hypothesis'). To test these alternative hypotheses, we quantified soil C and N to 1-m depth in temperate forests across the Eastern and Midwestern US that varied in their biotic, climatic, and edaphic properties. At each site, we sampled (1) soils dominated by arbuscular mycorrhizal (AM) tree species, which typically have fast decay rates and accelerated N cycling, (2) soils dominated by ectomycorrhizal (ECM) tree species, which generally have slow decay rates and slow N cycling, and (3) soils supporting both AM and ECM trees. To the extent that trees and theor associated microbes reflect and reinforce soil conditions, support for the slow decay hypothesis would be greater SOM storage in ECM soils, whereas support for the stabilization hypothesis would be greater SOM storage in AM soils. We found support for both hypotheses, as slow decomposition in ECM soils increased C and N storage in topsoil, whereas fast decomposition in AM soils increased C and N storage in subsoil. However, at all sites we found 57% greater total C and N storage in the entire profile in AM- soils (P < 0.0001), supporting the stabilization hypothesis. Amino sugar biomarkers (an indicator of microbial necromass) and particle size fractionation revealed that the greater SOM storage in AM soils was driven by an accumulation of microbial residues on clay minerals and metal oxides. Taken together, our results indicate that tree species influence soil C and N storage owing to how differences in decay rates affect mineral stabilization of organic matter. Further, our findings indicate that slow decay promotes soil C and N stocks at the soil surface, whereas fast decay promotes greater soil C and N stocks at depth.

  12. Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov

    2010-05-01

    Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivum

  13. Dynamic Succession of Soil Bacterial Community during Continuous Cropping of Peanut (Arachis hypogaea L.)

    PubMed Central

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2014-01-01

    Plant health and soil fertility are affected by plant–microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including Acidobacteriales, Burkholderiales, Bdellovibrionales, and so on, also were affected by plant age. PMID:25010658

  14. Long-term efficiency of soil stabilization with apatite and Slovakite: the impact of two earthworm species (Lumbricus terrestris and Dendrobaena veneta) on lead bioaccessibility and soil functioning.

    PubMed

    Tica, D; Udovic, M; Lestan, D

    2013-03-01

    Remediation soil is exposed to various environmental factors over time that can affect the final success of the operation. In the present study, we assessed Pb bioaccessibility and microbial activity in industrially polluted soil (Arnoldstein, Austria) stabilized with 5% (w/w) of Slovakite and 5% (w/w) of apatite soil after exposure to two earthworm species, Lumbricus terrestris and Dendrobaena veneta, used as model environmental biotic soil factors. Stabilization resulted in reduced Pb bioaccessibility, as assessed with one-step extraction tests and six-step sequential extraction, and improved soil functioning, mirrored in reduced β-glucosidase activity in soil. Both earthworm species increased Pb bioaccessibility, thus decreasing the initial stabilization efficacy and indicating the importance of considering the long-term fate of remediated soil. The earthworm species had different effects on soil enzyme activity, which can be attributed to species-specific microbial populations in earthworm gut acting on the ingested soil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Effects of salvage logging on soil properties and vegetation recovery in a fire-affected Mediterranean forest: A two year monitoring research.

    PubMed

    García-Orenes, F; Arcenegui, V; Chrenková, K; Mataix-Solera, J; Moltó, J; Jara-Navarro, A B; Torres, M P

    2017-05-15

    Post-fire management can have an additional impact on the ecosystem; in some cases, even more severe than the fire. Salvage logging (SL) is a common practice in most fire-affected areas. The management of burnt wood can determine microclimatic conditions and seriously affect soil properties. In some cases, the way of doing it, using heavy machinery, and the vulnerability of soils to erosion and degradation can make this management potentially aggressive to soil. Research was done in "Sierra de Mariola Natural Park" (E Spain). A forest fire (>500ha) occurred in July 2012. In February 2013, SL treatment was applied in a part of the affected forest. Plots for monitoring this effect were installed in this area and in a similar nearby area where no treatment was done, used as control (C). Soil samplings were done immediately after treatment and every 6months during two years. Some soil properties were analysed, including organic matter (OM) content, nitrogen (N) available phosphorous (P) basal soil respiration (BSR), microbial biomass carbon (C mic ), bulk density (BD), water repellency (WR), aggregate stability (AS) and field capacity (FC). SL treatment caused an increase in BD, a decrease of AS, FC, OM and N. In the control area, in general the soil properties remained constant across the 2years of monitoring, and the microbial parameters (BSR and C mic ), initially affected by the fire, recovered faster in C than in the SL area. Plant recovery also showed some differences between treatments. No significant differences were observed in the number of plant species recorded (richness) comparing C versus SL plots, but the number of individuals of each species (evenness) was significantly higher in C plots. In conclusion, we can affirm that for the conditions of this study case, SL had a negative effect on the soil-plant system. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Effects of plateau zokor disturbance and restoration years on soil nutrients and microbial functional diversity in alpine meadow].

    PubMed

    Hu, Lei; Ade, Lu-ji; Zi, Hong-biao; Wang, Chang-ting

    2015-09-01

    To explore the dynamic process of restoration succession in degraded alpine meadow that had been disturbed by plateau zokors in the eastern Tibetan Plateau, we examined soil nutrients and microbial functional diversity using conventional laboratory analysis and the Biolog-ECO microplate method. Our study showed that: 1) The zokors disturbance significantly reduced soil organic matter, total nitrogen, available nitrogen and phosphorus contents, but had no significant effects on soil total phosphorus and potassium contents; 2) Soil microbial carbon utilization efficiency, values of Shannon, Pielou and McIntosh indexes increased with alpine meadow restoration years; 3) Principal component analysis (PCA) showed that carbohydrates and amino acids were the main carbon sources for maintaining soil microbial community; 4) Redundancy analysis ( RDA) indicated that soil pH, soil organic matter, total nitrogen, available nitrogen, and total potassium were the main factors influencing the metabolic rate of soil microbial community and microbial functional diversity. In summary, variations in soil microbial functional diversity at different recovery stages reflected the microbial response to aboveground vegetation, soil microbial composition and soil nutrients.

  17. Response of microbial community composition and function to soil climate change

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities mediate critical ecosystem carbon and nutrient cycles. How microbial communities will respond to changes in vegetation and climate, however, are not well understood. We reciprocally transplanted soil cores from under oak canopies and adjacent open grasslands in a California oak-grassland ecosystem to determine how microbial communities respond to changes in the soil environment and the potential consequences for the cycling of carbon. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid analysis (PLFA), microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups by quantifying 13C uptake from a universal substrate (pyruvate) into PLFA biomarkers. Soil in the open grassland experienced higher maximum temperatures and lower soil water content than soil under the oak canopies. Soil microbial communities in soil under oak canopies were more sensitive to environmental change than those in adjacent soil from the open grassland. Oak canopy soil communities changed rapidly when cores were transplanted into the open grassland soil environment, but grassland soil communities did not change when transplanted into the oak canopy environment. Similarly, microbial biomass, enzyme activities, and microbial respiration decreased when microbial communities were transplanted from the oak canopy soils to the grassland environment, but not when the grassland communities were transplanted to the oak canopy environment. These data support the hypothesis that microbial community composition and function is altered when microbes are exposed to new extremes in environmental conditions; that is, environmental conditions outside of their "life history" envelopes. ?? 2006 Springer Science+Business Media, Inc.

  18. Relationships between soil microbial communities and soil carbon turnover along a vegetation and moisture gradient in interior Alaska

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Harden, J. W.; Turetsky, M. R.; Petersen, D. G.; McGuire, A. D.; Briones, M. J.; Churchill, A. C.; Doctor, D. H.; Pruett, L. E.

    2010-12-01

    Boreal landscapes are characterized by a mosaic of uplands and lowlands, which differ in plant species composition, litter biochemistry, and biogeochemical cycling rates. Boreal ecosystems, from upland black spruce stands to lowland fens, are structured largely by water table position and contain quantitatively and qualitatively different forms of soil organic matter. Differences in carbon (C) availability among ecosystems likely translate to differences in the structure of soil microbial communities, which in turn could affect rates of organic matter decomposition and turnover. We examined relationships between microbial communities and soil C turnover in near-surface soils along a topographic soil moisture and vegetation gradient in interior Alaska. We tested the hypothesis that upland black spruce sites would be dominated by soil fungi and have slow rates of C turnover, whereas lowland ecosystems would be dominated by bacteria and mesofauna (enchytraeids) and have more rapid rates of C turnover. We utilized several isotopic measures of soil C turnover including bomb radiocarbon techniques, the δ15N of SOM, and the difference between δ13C of SOM, DOC, and respired CO2. All three measures indicated greater C turnover rates in the surface soils of the lowland fen sites compared to the more upland locations. Quantitative PCR analyses of soil bacteria and archaea, combined with enchytraed counts, confirmed that surface soils from the lowland fen ecosystems had the highest abundances of these functional groups. Fungal biomass was highly variable and tended to be more abundant in the upland forest sites. Soil enzymatic results were mixed: potential cellulase activities were higher in the more upland soils even though rates of microbial activity were generally lower. Oxidative enzyme activities were higher in fens, even though these ecosystems are saturated and partly anaerobic. Overall our data support soil food web theory which argues that rapidly cycling systems are bacterial dominated with mesofaunal grazing, whereas slowly cycling systems have characteristic higher fungal:bacterial ratios.

  19. Shallow snowpack inhibits soil respiration in sagebrush steppe through multiple biotic and abiotic mechanisms

    DOE PAGES

    Tucker, Colin L.; Tamang, Shanker; Pendall, Elise; ...

    2016-05-01

    In sagebrush steppe, snowpack may govern soil respiration through its effect on multiple abiotic and biotic factors. Across the Intermountain West of the United States, snowpack has been declining for decades and is projected to decline further over the next century, making the response of soil respiration to snowpack a potentially important factor in the ecosystem carbon cycle. In this study, we evaluated the direct and indirect roles of the snowpack in driving soil respiration in sagebrush steppe ecosystems by taking advantage of highway snowfences in Wyoming to manipulate snowpack. An important contribution of this study is the use ofmore » Bayesian modeling to quantify the effects of soil moisture and temperature on soil respiration across a wide range of conditions from frozen to hot and dry, while simultaneously accounting for biotic factors (e.g., vegetation cover, root density, and microbial biomass and substrate-use diversity) affected by snowpack. Elevated snow depth increased soil temperature (in the winter) and moisture (winter and spring), and was associated with reduced vegetation cover and microbial biomass carbon. Soil respiration showed an exponential increase with temperature, with a temperature sensitivity that decreased with increasing seasonal temperature (Q 10 = 4.3 [winter], 2.3 [spring], and 1.7 [summer]); frozen soils were associated with unrealistic Q 10 approximate to 7989 due to the liquid-to-ice transition of soil water. Soil respiration was sensitive to soil water content; predicted respiration under very dry conditions was less than 10% of respiration under moist conditions. While higher vegetation cover increased soil respiration, this was not due to increased root density, and may reflect differences in litter inputs. Microbial substrate-use diversity was negatively related to reference respiration (i.e., respiration rate at a reference temperature and optimal soil moisture), although the mechanism remains unclear. Lastly, this study indicates that soil respiration is inhibited by shallow snowpack through multiple mechanisms; thus, future decreases in snowpack across the sagebrush steppe have the potential to reduce losses of soil C, potentially affecting regional carbon balance.« less

  20. Shallow snowpack inhibits soil respiration in sagebrush steppe through multiple biotic and abiotic mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, Colin L.; Tamang, Shanker; Pendall, Elise

    In sagebrush steppe, snowpack may govern soil respiration through its effect on multiple abiotic and biotic factors. Across the Intermountain West of the United States, snowpack has been declining for decades and is projected to decline further over the next century, making the response of soil respiration to snowpack a potentially important factor in the ecosystem carbon cycle. In this study, we evaluated the direct and indirect roles of the snowpack in driving soil respiration in sagebrush steppe ecosystems by taking advantage of highway snowfences in Wyoming to manipulate snowpack. An important contribution of this study is the use ofmore » Bayesian modeling to quantify the effects of soil moisture and temperature on soil respiration across a wide range of conditions from frozen to hot and dry, while simultaneously accounting for biotic factors (e.g., vegetation cover, root density, and microbial biomass and substrate-use diversity) affected by snowpack. Elevated snow depth increased soil temperature (in the winter) and moisture (winter and spring), and was associated with reduced vegetation cover and microbial biomass carbon. Soil respiration showed an exponential increase with temperature, with a temperature sensitivity that decreased with increasing seasonal temperature (Q 10 = 4.3 [winter], 2.3 [spring], and 1.7 [summer]); frozen soils were associated with unrealistic Q 10 approximate to 7989 due to the liquid-to-ice transition of soil water. Soil respiration was sensitive to soil water content; predicted respiration under very dry conditions was less than 10% of respiration under moist conditions. While higher vegetation cover increased soil respiration, this was not due to increased root density, and may reflect differences in litter inputs. Microbial substrate-use diversity was negatively related to reference respiration (i.e., respiration rate at a reference temperature and optimal soil moisture), although the mechanism remains unclear. Lastly, this study indicates that soil respiration is inhibited by shallow snowpack through multiple mechanisms; thus, future decreases in snowpack across the sagebrush steppe have the potential to reduce losses of soil C, potentially affecting regional carbon balance.« less

  1. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations (+57% upper limit) in response to increasing NO 3- in soil solution, but there was no significant change in DOC concentration. In contrast to these patterns, increasing soil solution NO3- in the SMBW soil resulted in significantly greater phenol oxidase activity (+700% upper limit) and a trend toward lower DOC production (-52% lower limit). Nitrate concentration had no effect on microbial respiration or ??-glucosidase or N-acetyl-glucosaminidase activities. Fungal abundance and basidiomycete diversity tended to be highest in the BOWO soil and lowest in the SMBW, but neither displayed a consistent response to NO 3- additions. Taken together, our results demonstrate that oxidative enzyme production by microbial communities responds directly to NO3- deposition, controlling extracellular enzyme activity and DOC flux. The regulation of oxidative enzymes by different microbial communities in response to NO3- deposition highlights the fact that the composition and function of soil microbial communities directly control ecosystem-level responses to environmental change. ?? 2006 Springer Science+Business Media, Inc.

  2. Does mercury presence in soils promote their microbial activity? The Almadenejos case (Almadén mercury mining district, Spain).

    PubMed

    Campos, J A; Esbrí, J M; Madrid, M M; Naharro, R; Peco, J; García-Noguero, E M; Amorós, J A; Moreno, M M; Higueras, P

    2018-06-01

    Mercury is considered a very toxic element and important efforts are currently being made aimed at reduce or even eliminating its usage. Despite this trend, there are still sites where contamination by this metal is very marked, especially in the mining environment of Almadén where it has been exploited for thousands of years. The several forms in which Hg occurs in the soil interact differently with the organisms that live in/on it. The soil is a place where many biotic and abiotic variables act together. Through a detailed study of the edaphic characteristics of a decommissioned metallurgical enclosure, the presence of different chemical forms of Hg, the study of microbial activity (DHA) and, finally, parameters of the vegetation cover, such as specific distribution and biomass, we have tried to elucidate the effect of the presence of Hg in this precinct with a very high Hg pollution. The obtained results showed the affection patterns by which the different measured parameters vary, with special incidence to the microbial activity of the topsoil and to the specific distribution of the plants found in the studied area. The statistical multivariate analysis showed that significant correlations have been found between soil Hg fractions and between Hg fractions in plants; furthermore, soil conditions seem to be not related with Hg transfer from soils to plants. Biomass and DHA data indicate that the studied area is not affected by the presence of Hg species and lacks the expected toxic effects on the living organisms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Carbon sequestration in response to grassland–shrubland–turfgrass conversions and a test for carbonate biomineralization in desert soils, New Mexico, USA

    USDA-ARS?s Scientific Manuscript database

    This study uses an experimental pedology approach to examine (i) how the conversion of native C4 grassland to C3 woody shrubs then to irrigated C4 turfgrass affects both soil organic C (SOC) and soil inorganic C (SIC) and (ii) whether SIC can be enhanced by microbial biomineralization. Three sites w...

  4. The effects of the mineral phase on C stabilization mechanisms and the microbial community along an eroding slope transect

    NASA Astrophysics Data System (ADS)

    Doetterl, S.; Opfergelt, S.; Cornelis, J.; Boeckx, P. F.; van oost, K.; Six, J.

    2013-12-01

    An increasing number of studies show the importance of including soil redistribution processes in understanding carbon (C) dynamics in eroding landscapes. The quality and quantity of soil organic carbon in sloping cropland differs with topographic position. These differences are commonly more visible in the subsoil, while the size and composition of topsoil C pools are similar along the hillslope. The type (plant- or microbial-derived) and quality (level of degradation) of C found in a specific soil fraction depends on the interplay between the temporal dynamic of the specific mechanism and it's strength to protect C from decomposition. Here, we present an analysis that aims to clarify the bio/geo-chemical and mineralogical components involved in stabilizing C at various depths and slope positions and how they affect the microbial community and the degradation of C. For this we analyzed soil samples from different soil depths along a slope transect applying (i) a sequential extraction of the reactive soil phase using pyrophosphate, oxalate and dithionite-citrate-bicarbonate, (ii) a semi-quantitative and qualitative analysis of the clay mineralogy, (iii) an analysis of the microbial community using amino sugars and (iv) an analysis of the level of degradation of C in different soil fractions focusing on the soil Lignin signature. The results show that the pattern of minerals and their relative importance in stabilizing C varies greatly along the transect. In the investigated soils, pyrophosphate extractable Manganese, and not Iron or Aluminum as often observed, is strongly correlated to C in the bulk soil and in the non-aggregated silt and clay fractions. This suggests a certain role of Manganese for C stabilization where physical protection is absent. In contrast, pyrophosphate extractable Iron and Aluminum components are largely abundant in water-stable soil aggregates but not correlated to C, suggesting importance of these extracts to stabilize aggregates and, hence, providing physical protection of C. Oxalate extractable amorphous and poorly crystalline minerals are correlated to C, especially for the more recalcitrant C fractions, but only at the depositional site. However, decreasing contents of oxalate extractable elements with depth indicate a temporal limitation of this stabilization mechanism and this is also supported by the results of our lignin extraction. Non-expandable clay minerals experience a relative enrichment at the depositional site while expandable clay minerals experience the same at the eroding site. These changes in clay mineralogy along the slope are partly responsible for the abundance of silt and clay associated C. The changes in soil mineralogy and micro-scale environmental conditions led to an adaptation of the microbial community in comparison to sites not affected by soil redistribution.

  5. Modification of soil microbial activity and several hydrolases in a forest soil artificially contaminated with copper

    NASA Astrophysics Data System (ADS)

    Bellas, Rosa; Leirós, Mā Carmen; Gil-Sotres, Fernando; Trasar-Cepeda, Carmen

    2010-05-01

    Soils have long been exposed to the adverse effects of human activities, which negatively affect soil biological activity. As a result of their functions and ubiquitous presence microorganisms can serve as environmental indicators of soil pollution. Some features of soil microorganisms, such as the microbial biomass size, respiration rate, and enzyme activity are often used as bioindicators of the ecotoxicity of heavy metals. Although copper is essential for microorganisms, excessive concentrations have a negative influence on processes mediated by microorganisms. In this study we measured the response of some microbial indicators to Cu pollution in a forest soil, with the aim of evaluating their potential for predicting Cu contamination. Samples of an Ah horizon from a forest soil under oakwood vegetation (Quercus robur L.) were contaminated in the laboratory with copper added at different doses (0, 120, 360, 1080 and 3240 mg kg-1) as CuCl2×2H2O. The soil samples were kept for 7 days at 25 °C and at a moisture content corresponding to the water holding capacity, and thereafter were analysed for carbon and nitrogen mineralization capacity, microbial biomass C, seed germination and root elongation tests, and for urease, phosphomonoesterase, catalase and ß-glucosidase activities. In addition, carbon mineralization kinetics were studied, by plotting the log of residual C against incubation time, and the metabolic coefficient, qCO2, was estimated. Both organic carbon and nitrogen mineralization were lower in polluted samples, with the greatest decrease observed in the sample contaminated with 1080 mg kg-1. In all samples carbon mineralization followed first order kinetics; the C mineralization constant was lower in contaminated than in uncontaminated samples and, in general, decreased with increasing doses of copper. Moreover, it appears that copper contamination not only reduced the N mineralization capacity, but also modified the N mineralization process, since in the contaminated samples all of the inorganic nitrogen was present as ammonium, probably because of inhibition of nitrification. There was a marked decrease in biomass-C with addition of copper, and the decrease was more acute at intermediate doses (average decrease, 73%). Despite the decreases in microbial biomass and mineralized C, the value of qCO2 increased after the addition of copper. Urease activity was strongly affected by the presence of copper and the decrease was proportional to the dose; the activity at the highest dose was only 96% of that in the uncontaminated sample. Phosphomonoesterase activity was also affected by addition of copper; the reduction in activity was less than for urease and the greatest reduction was observed for the dose of 1080 mg kg-1 of copper. Catalase activity was affected by the contamination, but no clear trend was observed in relation to the dose of copper. ß-glucosidase was scarcely modified by the contamination but an increase in activity was observed at the highest dose of copper. Seed germination was not affected by copper contamination, since it only showed a clear decrease for the sample contaminated with the highest dose of copper, while root elongation decreased sharply with doses higher than 120 mg kg-1 of copper. The combined germination-elongation index followed a similar pattern to that of root elongation. For all investigated properties showing a reduction of more than 50%, the response to copper contamination was fitted to a sigmoidal dose-response model, in order to estimate the ED50 values. The ED50 values were calculated for microbial biomass, urease, root elongation and germination-elongation index, and similar values were obtained, ranging from 340 to 405 mg kg-1 Cu. The ED50 values may therefore provide a good estimation of soil deterioration.

  6. Effect of soil structure on the growth of bacteria in soil quantified using CARD-FISH

    NASA Astrophysics Data System (ADS)

    Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Otten, Wilfred

    2014-05-01

    It has been reported that compaction of soil due to use of heavy machinery has resulted in the reduction of crop yield. Compaction affects the physical properties of soil such as bulk density, soil strength and porosity. This causes an alteration in the soil structure which limits the mobility of nutrients, water and air infiltration and root penetration in soil. Several studies have been conducted to explore the effect of soil compaction on plant growth and development. However, there is scant information on the effect of soil compaction on the microbial community and its activities in soil. Understanding the effect of soil compaction on microbial community is essential as microbial activities are very sensitive to abrupt environmental changes in soil. Therefore, the aim of this work was to investigate the effect of soil structure on growth of bacteria in soil. The bulk density of soil was used as a soil physical parameter to quantify the effect of soil compaction. To detect and quantify bacteria in soil the method of catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) was used. This technique results in high intensity fluorescent signals which make it easy to quantify bacteria against high levels of autofluorescence emitted by soil particles and organic matter. In this study, bacterial strains Pseudomonas fluorescens SBW25 and Bacillus subtilis DSM10 were used. Soils of aggregate size 2-1mm were packed at five different bulk densities in polyethylene rings (4.25 cm3).The soil rings were sampled at four different days. Results showed that the total number of bacteria counts was reduced significantly (P

  7. Managing soil microbial communities in grain production systems through cropping practices

    NASA Astrophysics Data System (ADS)

    Gupta, Vadakattu

    2013-04-01

    Cropping practices can significantly influence the composition and activity of soil microbial communities with consequences to plant growth and production. Plant type can affect functional capacity of different groups of biota in the soil surrounding their roots, rhizosphere, influencing plant nutrition, beneficial symbioses, pests and diseases and overall plant health and crop production. The interaction between different players in the rhizosphere is due to the plethora of carbon and nutritional compounds, root-specific chemical signals and growth regulators that originate from the plant and are modulated by the physico-chemical properties of soils. A number of plant and environmental factors and management practices can influence the quantity and quality of rhizodeposition and in turn affect the composition of rhizosphere biota communities, microbe-fauna interactions and biological processes. Some of the examples of rhizosphere interactions that are currently considered important are: proliferation of plant and variety specific genera or groups of microbiota, induction of genes involved in symbiosis and virulence, promoter activity in biocontrol agents and genes correlated with root adhesion and border cell quality and quantity. The observation of variety-based differences in rhizodeposition and associated changes in rhizosphere microbial diversity and function suggests the possibility for the development of varieties with specific root-microbe interactions targeted for soil type and environment i.e. designer rhizospheres. Spatial location of microorganisms in the heterogeneous field soil matrix can have significant impacts on biological processes. Therefore, for rhizosphere research to be effective in variable seasonal climate and soil conditions, it must be evaluated in the field and within a farming systems context. With the current focus on security of food to feed the growing global populations through sustainable agricultural production systems there is a need to develop innovative cropping systems that are both economically and environmentally sustainable.

  8. Shrubs stimulate heterotrophic respiration in arctic soils

    NASA Astrophysics Data System (ADS)

    Phillips, C. A.; Wurzburger, N.

    2016-12-01

    The response of arctic ecosystems to global change will have critical effects on future climate. Climate warming has already triggered the expansion of shrubs across tundra, raising questions about how shrubs will affect ecosystem carbon balance. Shrub litter quality and mycorrhizal symbionts may accelerate the activity of soil microorganisms that facilitate the release of large stores of soil carbon. We investigated how shrubs affect the activity of soil microorganisms by creating soil mesocosms from areas with and without shrub species as dominants of the plant community in arctic Alaska. We hypothesized that relative to their non-shrub counterparts, heterotrophic respiration of shrub soils would: (1) be greater, (2) demonstrate greater response to additions of shrub litter, and (3) be less nutrient limited. We created mesocosms with root-free soils at constant moisture and temperature, and quantified basal heterotrophic soil respiration rates, and the response of respiration to litter and nutrient inputs in a series of laboratory experiments inputs. (1) We found that the presence of shrubs generally produced higher rates of basal soil respiration in both horizons, suggesting that shrubs stimulate microbial activity. (2) Litter addition increased respiration across both horizons with no differences in response between shrub and non-shrub soils. (3) N additions did not increase heterotrophic respiration, but P and N+P additions induced a short respiratory pulse in all soils, suggesting mild P limitation. Collectively, these findings provide evidence that shrubs stimulate heterotrophic microbial activity to enhance carbon loss, but generate new questions about the mechanisms driving these patterns.

  9. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils*

    PubMed Central

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-01-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. PMID:17323432

  10. Microbial functional diversity plays an important role in the degradation of polyhydroxybutyrate (PHB) in soil.

    PubMed

    Dey, Samrat; Tribedi, Prosun

    2018-03-01

    Towards bioremediation of recalcitrant materials like synthetic polymer, soil has been recognized as a traditional site for disposal and subsequent degradation as some microorganisms in soil can degrade the polymer in a non-toxic, cost-effective, and environment friendly way. Microbial functional diversity is a constituent of biodiversity that includes wide range of metabolic activities that can influence numerous aspects of ecosystem functioning like ecosystem stability, nutrient availability, ecosystem dynamics, etc. Thus, in the current study, we assumed that microbial functional diversity could play an important role in polymer degradation in soil. To verify this hypothesis, we isolated soil from five different sites of landfill and examined several microbiological parameters wherein we observed a significant variation in heterotrophic microbial count as well as microbial activities among the soil microcosms tested. Multivariate analysis (principle component analysis) based on the carbon sources utilization pattern revealed that soil microcosms showed different metabolic patterns suggesting the variable distribution of microorganisms among the soil microcosms tested. Since microbial functional diversity depends on both microbial richness and evenness, Shannon diversity index was determined to measure microbial richness and Gini coefficient was determined to measure microbial evenness. The tested soil microcosms exhibited variation in both microbial richness and evenness suggesting the considerable difference in microbial functional diversity among the tested microcosms. We then measured polyhydroxybutyrate (PHB) degradation in soil microcosms after desired period of incubation of PHB in soil wherein we found that soil microcosms having higher functional diversity showed enhanced PHB degradation and soil microcosms having lower functional diversity showed reduced PHB degradation. We also noticed that all the tested soil microcosms showed similar pattern in both microbial functional diversity and PHB degradation suggesting a strong positive correlation ( r  = 0.95) between microbial functional diversity and PHB degradation. Thus, the results demonstrate that microbial functional diversity plays an important role in PHB degradation in soil by exhibiting versatile microbial metabolic potentials that lead to the enhanced degradation of PHB.

  11. Physico-chemical and microbial perturbations of Andalusian pine forest soils following a wildfire.

    PubMed

    Rodríguez, Juana; González-Pérez, José A; Turmero, Adriana; Hernández, Manuel; Ball, Andrew S; González-Vila, Francisco J; Arias, M Enriqueta

    2018-09-01

    Wildfires are a recurrent disturbance in Mediterranean forests, triggered by high fuel load, high environmental temperature and low humidity. Although, human intervention is behind the initiation of most fire episodes, the situation is likely to worsen in the future due to the effects of climate change in the Mediterranean "hot-spot". Here we study chemical, physical and microbial characteristics of burnt soils from two well differentiated sites at Sierra de Cazorla, Segura and Las Villas Natural Park, Andalusia, (Spain) affected and unaffected by a wildfire, and followed their evolution for three years. The soils affected by a severe surface burn showed a significant increase in organic matter after 3years from the fire. Viable bacteria and fungi also increased, especially 2-3years post-burning. Substrate induced respiration (SIR) also increased significantly in burnt soil from site 1 (rendzina on carbonate) while a significant decrease was observed in the burnt soils sampled from site 2 (calcic luvisols) in samples taken one month after the wildfire. A recovery in both SIR and organic matter was observed after 2 and 3years. Of seven soil enzymes studied, only phosphatase activity was significantly higher in most burnt soils over the three years. Analysis of bacterial community diversity using clone libraries showed a recovery in the number of phyla in burnt soils after 2 and 3years in both sites, with an increase in Proteobacteria and Firmicutes and a decrease in Acidobacteria phyla. For Bacteroidetes, the percentages were lower in most burnt samples. This study reveals that if wildfire increases the organic matter availability, then the microbial community responds with increased activity and biomass production. Although fire exerts an initial impact on the soil bacterial community, its structure and functional profile soon recovers (after 2-3years) contributing to soil recovery. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Succession of Bacterial Community Structure and Diversity in Soil along a Chronosequence of Reclamation and Re-Vegetation on Coal Mine Spoils in China

    PubMed Central

    Li, Yuanyuan; Wen, Hongyu; Chen, Longqian; Yin, Tingting

    2014-01-01

    The growing concern about the effectiveness of reclamation strategies has motivated the evaluation of soil properties following reclamation. Recovery of belowground microbial community is important for reclamation success, however, the response of soil bacterial communities to reclamation has not been well understood. In this study, PCR-based 454 pyrosequencing was applied to compare bacterial communities in undisturbed soils with those in reclaimed soils using chronosequences ranging in time following reclamation from 1 to 20 year. Bacteria from the Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Planctomycetes and Bacteroidetes were abundant in all soils, while the composition of predominant phyla differed greatly across all sites. Long-term reclamation strongly affected microbial community structure and diversity. Initial effects of reclamation resulted in significant declines in bacterial diversity indices in younger reclaimed sites (1, 8-year-old) compared to the undisturbed site. However, bacterial diversity indices tended to be higher in older reclaimed sites (15, 20-year-old) as recovery time increased, and were more similar to predisturbance levels nearly 20 years after reclamation. Bacterial communities are highly responsive to soil physicochemical properties (pH, soil organic matter, Total N and P), in terms of both their diversity and community composition. Our results suggest that the response of soil microorganisms to reclamation is likely governed by soil characteristics and, indirectly, by the effects of vegetation restoration. Mixture sowing of gramineae and leguminosae herbage largely promoted soil geochemical conditions and bacterial diversity that recovered to those of undisturbed soil, representing an adequate solution for soil remediation and sustainable utilization for agriculture. These results confirm the positive impacts of reclamation and vegetation restoration on soil microbial diversity and suggest that the most important phase of microbial community recovery occurs between 15 and 20 years after reclamation. PMID:25502754

  13. A meta-analysis of soil microbial biomass responses to forest disturbances

    PubMed Central

    Holden, Sandra R.; Treseder, Kathleen K.

    2013-01-01

    Climate warming is likely to increase the frequency and severity of forest disturbances, with uncertain consequences for soil microbial communities and their contribution to ecosystem C dynamics. To address this uncertainty, we conducted a meta-analysis of 139 published soil microbial responses to forest disturbances. These disturbances included abiotic (fire, harvesting, storm) and biotic (insect, pathogen) disturbances. We hypothesized that soil microbial biomass would decline following forest disturbances, but that abiotic disturbances would elicit greater reductions in microbial biomass than biotic disturbances. In support of this hypothesis, across all published studies, disturbances reduced soil microbial biomass by an average of 29.4%. However, microbial responses differed between abiotic and biotic disturbances. Microbial responses were significantly negative following fires, harvest, and storms (48.7, 19.1, and 41.7% reductions in microbial biomass, respectively). In contrast, changes in soil microbial biomass following insect infestation and pathogen-induced tree mortality were non-significant, although biotic disturbances were poorly represented in the literature. When measured separately, fungal and bacterial responses to disturbances mirrored the response of the microbial community as a whole. Changes in microbial abundance following disturbance were significantly positively correlated with changes in microbial respiration. We propose that the differential effect of abiotic and biotic disturbances on microbial biomass may be attributable to differences in soil disruption and organic C removal from forests among disturbance types. Altogether, these results suggest that abiotic forest disturbances may significantly decrease soil microbial abundance, with corresponding consequences for microbial respiration. Further studies are needed on the effect of biotic disturbances on forest soil microbial communities and soil C dynamics. PMID:23801985

  14. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    PubMed Central

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-01-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha. PMID:25367357

  15. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    NASA Astrophysics Data System (ADS)

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-11-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha.

  16. Priming effect in topsoil and subsoil induced by earthworm burrows

    NASA Astrophysics Data System (ADS)

    Thu, Duyen Hoang Thi

    2017-04-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently important hotspots of microbial mediated carbon and C turnover through their burrowing activity. However, it is still unknown to which extend earthworms affect priming effect in top- and subsoil horizons. More labile C inputs in earthworm burrows were hypothesized to trigger higher priming of soil organic matter (SOM) decomposition compared to rhizosphere and bulk soil. Moreover, this effect was expected to be more pronounced in subsoil due to its greater C and nutrient limitation. To test these hypotheses, biopores and bulk soil were sampled from topsoil (0-30 cm) and two subsoil depths (45-75 and 75-105 cm). Additionally, rhizosphere samples were taken from the topsoil. Total organic C (Corg), total N (TN), total P (TP) and enzyme activities involved in C-, N-, and P-cycling (cellobiohydrolase, β-glucosidase, xylanase, chitinase, leucine aminopeptidase and phosphatase) were measured. Priming effects were calculated as the difference in SOM-derived CO2 from soil with or without 14C-labelled glucose addition. Enzyme activities in biopores were positively correlated with Corg, TN and TP, but in bulk soil this correlation was negative. The more frequent fresh and labile C inputs to biopores caused 4 to 20 time higher absolute priming of SOM turnover due to enzyme activities that were one order of magnitude higher than in bulk soil. In subsoil biopores, reduced labile C inputs and lower N availability stimulated priming twofold greater than in topsoil. In contrast, a positive priming effect in bulk soil was only detected at 75-105 cm depth. We conclude that earthworm burrows provide not only the linkage between top- and subsoil for C and nutrients, but strongly increase microbial activities and accelerate SOM turnover in subsoil, contributing to nutrient mobilization for roots and CO2 emission increase as a greenhouse gas. Additionally, the mechanisms of native SOM decomposition are distinct between topsoil and subsoil, which relies on the fresh C input and nutrient availability. Keywords: Priming effect; Earthworms; Organic matter decomposition; Biopores; Subsoil; Microbial hotspots.

  17. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska.

    PubMed

    Zeglin, Lydia H; Wang, Bronwen; Waythomas, Christopher; Rainey, Frederick; Talbot, Sandra L

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Bacterial Community Composition Associated with Pyrogenic Organic Matter (Biochar) Varies with Pyrolysis Temperature and Colonization Environment

    PubMed Central

    Dai, Zhongmin; Barberán, Albert; Li, Yong; Brookes, Philip C.

    2017-01-01

    ABSTRACT Microbes that colonize pyrogenic organic matter (PyOM) (also called biochar) play an important role in PyOM mineralization and crucially affect soil biogeochemical cycling, while the microbial community composition associated with PyOM particles is poorly understood. We generated two manure-based PyOMs with different characteristics (PyOM pyrolyzed at the low temperature of 300°C [i.e., PyOM300] and at the high temperature of 700°C [i.e., PyOM700]) and added them to high-carbon (4.15%) and low-C (0.37%) soil for microbial colonization. 16S rRNA gene sequencing showed that Actinobacteria, particularly Actinomycetales, was the dominant taxon in PyOM, regardless of the PyOM pyrolysis temperature and soil type. Bacterial communities associated with PyOM particles from high-C soils were similar to those in non-PyOM-amended soils. PyOM300 had higher total microbial activity and more differential bacterial communities than PyOM700. More bacterial operational taxonomic units (OTUs) preferentially thrived on the low-pyrolysis-temperature PyOM, while some specific OTUs thrived on high-pyrolysis-temperature PyOM. In particular, Chloroflexi species tended to be more prevalent in high-pyrolysis-temperature PyOM in low-C soils. In conclusion, the differences in colonized bacterial community composition between the different PyOMs were strongly influenced by the pyrolysis temperatures of PyOM, i.e., under conditions of easily mineralizable C or fused aromatic C, and by other properties, e.g., pH, surface area, and nutrient content. IMPORTANCE Pyrogenic organic matter (PyOM) is widely distributed in soil and fluvial ecosystems and plays an important role in biogeochemical cycling. Many studies have reported changes in soil microbial communities stimulated by PyOM, but very little is known about the microbial communities associated with PyOM. The microbes that colonize PyOMs can participate in the mineralization of PyOM, so changing its structure affects the fate of PyOMs and contributes to soil biogeochemical cycling. This study identified the bacterial community composition associated with PyOMs on the basis of high-throughput sequencing and demonstrated that both PyOM pyrolysis temperature and the colonization environment determined the bacterial community composition. Our work increases our understanding of the dominant phylogenetic taxa associated with PyOMs, demonstrates mechanisms mediating microbial metabolism and growth in PyOMs, and expands a new research area for pyrogenic organic matter. This study identified the bacterial community composition associated with PyOM, which is widely distributed in the environment. Most bacterial OTUs preferentially thrived on PyOM pyrolyzed at low temperature, while some specific OTUs thrived on PyOM pyrolyzed at high temperature. PMID:28405627

  19. Bacterial Community Composition Associated with Pyrogenic Organic Matter (Biochar) Varies with Pyrolysis Temperature and Colonization Environment.

    PubMed

    Dai, Zhongmin; Barberán, Albert; Li, Yong; Brookes, Philip C; Xu, Jianming

    2017-01-01

    Microbes that colonize pyrogenic organic matter (PyOM) (also called biochar) play an important role in PyOM mineralization and crucially affect soil biogeochemical cycling, while the microbial community composition associated with PyOM particles is poorly understood. We generated two manure-based PyOMs with different characteristics (PyOM pyrolyzed at the low temperature of 300°C [i.e., PyOM300] and at the high temperature of 700°C [i.e., PyOM700]) and added them to high-carbon (4.15%) and low-C (0.37%) soil for microbial colonization. 16S rRNA gene sequencing showed that Actinobacteria , particularly Actinomycetales , was the dominant taxon in PyOM, regardless of the PyOM pyrolysis temperature and soil type. Bacterial communities associated with PyOM particles from high-C soils were similar to those in non-PyOM-amended soils. PyOM300 had higher total microbial activity and more differential bacterial communities than PyOM700. More bacterial operational taxonomic units (OTUs) preferentially thrived on the low-pyrolysis-temperature PyOM, while some specific OTUs thrived on high-pyrolysis-temperature PyOM. In particular, Chloroflexi species tended to be more prevalent in high-pyrolysis-temperature PyOM in low-C soils. In conclusion, the differences in colonized bacterial community composition between the different PyOMs were strongly influenced by the pyrolysis temperatures of PyOM, i.e., under conditions of easily mineralizable C or fused aromatic C, and by other properties, e.g., pH, surface area, and nutrient content. IMPORTANCE Pyrogenic organic matter (PyOM) is widely distributed in soil and fluvial ecosystems and plays an important role in biogeochemical cycling. Many studies have reported changes in soil microbial communities stimulated by PyOM, but very little is known about the microbial communities associated with PyOM. The microbes that colonize PyOMs can participate in the mineralization of PyOM, so changing its structure affects the fate of PyOMs and contributes to soil biogeochemical cycling. This study identified the bacterial community composition associated with PyOMs on the basis of high-throughput sequencing and demonstrated that both PyOM pyrolysis temperature and the colonization environment determined the bacterial community composition. Our work increases our understanding of the dominant phylogenetic taxa associated with PyOMs, demonstrates mechanisms mediating microbial metabolism and growth in PyOMs, and expands a new research area for pyrogenic organic matter. This study identified the bacterial community composition associated with PyOM, which is widely distributed in the environment. Most bacterial OTUs preferentially thrived on PyOM pyrolyzed at low temperature, while some specific OTUs thrived on PyOM pyrolyzed at high temperature.

  20. Bacterial, fungal, and plant communities exhibit no biomass or compositional response to two years of simulated nitrogen deposition in a semiarid grassland: Bacterial, fungal, and plant communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.

    Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biologicalmore » soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.« less

Top