Sample records for affecting species distribution

  1. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    PubMed

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  2. Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution

    PubMed Central

    Liang, Yu; He, Hong S.; Fraser, Jacob S.; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution. PMID:23861828

  3. Determining the factors affecting the distribution of Muscari latifolium, an endemic plant of Turkey, and a mapping species distribution model.

    PubMed

    Yilmaz, Hatice; Yilmaz, Osman Yalçın; Akyüz, Yaşar Feyza

    2017-02-01

    Species distribution modeling was used to determine factors among the large predictor candidate data set that affect the distribution of Muscari latifolium , an endemic bulbous plant species of Turkey, to quantify the relative importance of each factor and make a potential spatial distribution map of M. latifolium . Models were built using the Boosted Regression Trees method based on 35 presence and 70 absence records obtained through field sampling in the Gönen Dam watershed area of the Kazdağı Mountains in West Anatolia. Large candidate variables of monthly and seasonal climate, fine-scale land surface, and geologic and biotic variables were simplified using a BRT simplifying procedure. Analyses performed on these resources, direct and indirect variables showed that there were 14 main factors that influence the species' distribution. Five of the 14 most important variables influencing the distribution of the species are bedrock type, Quercus cerris density, precipitation during the wettest month, Pinus nigra density, and northness. These variables account for approximately 60% of the relative importance for determining the distribution of the species. Prediction performance was assessed by 10 random subsample data sets and gave a maximum the area under a receiver operating characteristic curve (AUC) value of 0.93 and an average AUC value of 0.8. This study provides a significant contribution to the knowledge of the habitat requirements and ecological characteristics of this species. The distribution of this species is explained by a combination of biotic and abiotic factors. Hence, using biotic interaction and fine-scale land surface variables in species distribution models improved the accuracy and precision of the model. The knowledge of the relationships between distribution patterns and environmental factors and biotic interaction of M. latifolium can help develop a management and conservation strategy for this species.

  4. Factors affecting summer distributions of Bering Sea forage fish species: Assessing competing hypotheses

    NASA Astrophysics Data System (ADS)

    Parker-Stetter, Sandra; Urmy, Samuel; Horne, John; Eisner, Lisa; Farley, Edward

    2016-12-01

    Hypotheses on the factors affecting forage fish species distributions are often proposed but rarely evaluated using a comprehensive suite of indices. Using 24 predictor indices, we compared competing hypotheses and calculated average models for the distributions of capelin, age-0 Pacific cod, and age-0 pollock in the eastern Bering Sea from 2006 to 2010. Distribution was described using a two stage modeling approach: probability of occurrence ("presence") and density when fish were present. Both local (varying by location and year) and annual (uniform in space but varying by year) indices were evaluated, the latter accounting for the possibility that distributions were random but that overall presence or densities changed with annual conditions. One regional index, distance to the location of preflexion larvae earlier in the year, was evaluated for age-0 pollock. Capelin distributions were best predicted by local indices such as bottom depth, temperature, and salinity. Annual climate (May sea surface temperature (SST), sea ice extent anomaly) and wind (June wind speed cubed) indices were often important for age-0 Pacific cod in addition to local indices (temperature and depth). Surface, midwater, and water column age-0 pollock distributions were best described by a combination of local (depth, temperature, salinity, zooplankton) and annual (May SST, sea ice anomaly, June wind speed cubed) indices. Our results corroborated some of those in previous distribution studies, but suggested that presence and density may also be influenced by other factors. Even though there were common environmental factors that influenced all species' distributions, it is not possible to generalize conditions for forage fish as a group.

  5. Factors affecting species distribution predictions: A simulation modeling experiment

    Treesearch

    Gordon C. Reese; Kenneth R. Wilson; Jennifer A. Hoeting; Curtis H. Flather

    2005-01-01

    Geospatial species sample data (e.g., records with location information from natural history museums or annual surveys) are rarely collected optimally, yet are increasingly used for decisions concerning our biological heritage. Using computer simulations, we examined factors that could affect the performance of autologistic regression (ALR) models that predict species...

  6. Incorporating Context Dependency of Species Interactions in Species Distribution Models.

    PubMed

    Lany, Nina K; Zarnetske, Phoebe L; Gouhier, Tarik C; Menge, Bruce A

    2017-07-01

    Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same

  7. What Limits the Distribution of Liriomyza huidobrensis and Its Congener Liriomyza sativae in Their Native Niche: When Temperature and Competition Affect Species' Distribution Range in Guatemala.

    PubMed

    Rodríguez-Castañeda, G; MacVean, C; Cardona, C; Hof, A R

    2017-07-01

    Factors limiting distribution range for most species are generally unknown regardless of whether they are native or invasive. We studied factors that could enable or restrict the distribution of two cosmopolitan invasive leafminer fly species, Liriomyza huidobrensis (Blanchard) and Liriomyza sativae (Blanchard) in their native niche. In order to test which ecological and environmental factors affect leafminer distribution we conducted thermal tolerance assays, sampled along elevation gradients and modeled species distribution. Findings from the field and rearing chambers showed a physiological restriction due to high temperatures for L. huidobrensis at 28-29 °C, above which adult emergence is compromised. We also found that maximum temperatures below 22 °C, typical of tropical highlands, favored L. huidobrensis. L. sativae was found across a wider temperature range (i.e., from 21 to 36 °C) in Guatemala. Our finding of a physiological threshold in temperature for L. huidobrensis may enable us to predict its invasive risk when combined with the environmental conditions at horticultural ports of entry and the global agricultural landscape. Further, it strengthens our predictions on shifts in distribution of the leafminer fly under future climate. We also found a temperature mediated competitive exclusion interaction between the two herbivore species, where L. sativae occurred at temperatures < 22 °C only in the absence of L. huidobrensis. We show that parasitoids had a negative effect on the leafminer flies, which varied with host plant. Finally, we show the importance of taking a multiaspect approach when investigating what limits distribution and invasiveness of a species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  8. Near term climate projections for invasive species distributions

    USGS Publications Warehouse

    Jarnevich, C.S.; Stohlgren, T.J.

    2009-01-01

    Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas. ?? 2008 Springer Science+Business Media B.V.

  9. Temperature affects species distribution in symbiotic populations of Vibrio spp.

    PubMed

    Nishiguchi, M K

    2000-08-01

    The genus Sepiola (Cephalopoda: Sepiolidae) contains 10 known species that occur in the Mediterranean Sea today. All Sepiola species have a light organ that contains at least one of two species of luminous bacteria, Vibrio fischeri and Vibrio logei. The two Vibrio species coexist in at least four Sepiola species (S. affinis, S. intermedia, S. ligulata, and S. robusta), and their concentrations in the light organ depend on changes in certain abiotic factors, including temperature. Strains of V. fischeri grew faster in vitro and in Sepiola juveniles when they were incubated at 26 degrees C. In contrast, strains of V. logei grew faster at 18 degrees C in culture and in Sepiola juveniles. When aposymbiotic S. affinis or S. ligulata juveniles were inoculated with one Vibrio species, all strains of V. fischeri and V. logei were capable of infecting both squid species at the optimum growth temperatures, regardless of the squid host from which the bacteria were initially isolated. However, when two different strains of V. fischeri and V. logei were placed in direct competition with each other at either 18 or 26 degrees C, strains of V. fischeri were present in sepiolid light organs in greater concentrations at 26 degrees C, whereas strains of V. logei were present in greater concentrations at 18 degrees C. In addition to the competition experiments, the ratios of the two bacterial species in adult Sepiola specimens caught throughout the season at various depths differed, and these differences were correlated with the temperature in the surrounding environment. My findings contribute additional data concerning the ecological and environmental factors that affect host-symbiont recognition and may provide insight into the evolution of animal-bacterium specificity.

  10. Temperature Affects Species Distribution in Symbiotic Populations of Vibrio spp.

    PubMed Central

    Nishiguchi, Michele K.

    2000-01-01

    The genus Sepiola (Cephalopoda: Sepiolidae) contains 10 known species that occur in the Mediterranean Sea today. All Sepiola species have a light organ that contains at least one of two species of luminous bacteria, Vibrio fischeri and Vibrio logei. The two Vibrio species coexist in at least four Sepiola species (S. affinis, S. intermedia, S. ligulata, and S. robusta), and their concentrations in the light organ depend on changes in certain abiotic factors, including temperature. Strains of V. fischeri grew faster in vitro and in Sepiola juveniles when they were incubated at 26°C. In contrast, strains of V. logei grew faster at 18°C in culture and in Sepiola juveniles. When aposymbiotic S. affinis or S. ligulata juveniles were inoculated with one Vibrio species, all strains of V. fischeri and V. logei were capable of infecting both squid species at the optimum growth temperatures, regardless of the squid host from which the bacteria were initially isolated. However, when two different strains of V. fischeri and V. logei were placed in direct competition with each other at either 18 or 26°C, strains of V. fischeri were present in sepiolid light organs in greater concentrations at 26°C, whereas strains of V. logei were present in greater concentrations at 18°C. In addition to the competition experiments, the ratios of the two bacterial species in adult Sepiola specimens caught throughout the season at various depths differed, and these differences were correlated with the temperature in the surrounding environment. My findings contribute additional data concerning the ecological and environmental factors that affect host-symbiont recognition and may provide insight into the evolution of animal-bacterium specificity. PMID:10919820

  11. Model uncertainties do not affect observed patterns of species richness in the Amazon.

    PubMed

    Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo; Loyola, Rafael

    2017-01-01

    Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale-patterns of species richness and species vulnerability to climate change-are affected by the inputs used to model and project species distribution. We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics

  12. Model uncertainties do not affect observed patterns of species richness in the Amazon

    PubMed Central

    Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo

    2017-01-01

    Background Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale—patterns of species richness and species vulnerability to climate change—are affected by the inputs used to model and project species distribution. Methods We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. Results The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. Conclusions From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of

  13. Hierarchical species distribution models

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  14. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change.

    PubMed

    Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S

    2018-09-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Regional climate model downscaling may improve the prediction of alien plant species distributions

    NASA Astrophysics Data System (ADS)

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  16. Ecological and management implications of climate-driven changes in spatial and temporal distributions of marine species

    NASA Astrophysics Data System (ADS)

    Mills, K.; Pershing, A. J.; Nye, J. A.; Henderson, M. E.; Thomas, A. C.; Hernandez, C.; Alexander, M. A.; Schuetz, J.; Allyn, A.

    2016-02-01

    Ocean temperatures in the Gulf of Maine have warmed rapidly over the past decade, and the seasonal cycle of temperatures has shifted towards earlier warming in the spring and later cooling in the fall. Warming temperatures have been associated with northward shifts in spatial distributions of many marine fish and invertebrate species in the region. In addition, changing phenology—particularly of migratory species—is also being observed. The rates at which species distributions change in space and time vary by species, and these differential rates have important implications for trophic interactions and fisheries. In this presentation, we will identify groups of species on the Northeast Shelf based on whether their distribution responses to warming temperatures lead, lag, or track temperature signals. Life history and population characteristics provide a basis for understanding how species cluster in these groups. Differential rates of changes in spatial and temporal distributions affect trophic interactions. American lobster provides one example of a prey species that may be affected by changes in the spatial distribution and migration phenology of its predators. Changes in natural mortality on important commercial species may affect fisheries by altering stock dynamics and allowable catch levels, but fisheries will also be affected by the need to change their fishing locations, times, or target species. Some of these fishery responses are already being observed in the Northeast, but many are constrained by the management system. Our presentation will conclude by identifying some ways in which fisheries management adjustments might help address issues of stock sustainability and fishery access for species that are experiencing climate-related distribution shifts.

  17. Confronting species distribution model predictions with species functional traits.

    PubMed

    Wittmann, Marion E; Barnes, Matthew A; Jerde, Christopher L; Jones, Lisa A; Lodge, David M

    2016-02-01

    Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day(-1). Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = -0.26, 95% CI (-0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.

  18. On the distribution of species occurrence

    USGS Publications Warehouse

    Buzas, Martin A.; Koch, Carl F.; Culver, Stephen J.; Sohl, Norman F.

    1982-01-01

    The distribution of species abundance (number of individuals per species) is well documented. The distribution of species occurrence (number of localities per species), however, has received little attention. This study investigates the distribution of species occurrence for five large data sets. For modern benthic foraminifera, species occurrence is examined from the Atlantic continental margin of North America, where 875 species were recorded 10,017 times at 542 localities, the Gulf of Mexico, where 848 species were recorded 18,007 times at 426 localities, and the Caribbean, where 1,149 species were recorded 6,684 times at 268 localities. For Late Cretaceous molluscs, species occurrence is examined from the Gulf Coast where 716 species were recorded 6,236 times at 166 localities and a subset of this data consisting of 643 species recorded 3,851 times at 86 localities.Logseries and lognormal distributions were fitted to these data sets. In most instances the logseries best predicts the distribution of species occurrence. The lognormal, however, also fits the data fairly well, and, in one instance, better. The use of these distributions allows the prediction of the number of species occurring once, twice, ..., n times.Species abundance data are also available for the molluscan data sets. They indicate that the most abundant species (greatest number of individuals) usually occur most frequently. In all data sets approximately half the species occur four or less times. The probability of noting the presence of rarely occurring species is small, and, consequently, such species must be used with extreme caution in studies requiring knowledge of the distribution of species in space and time.

  19. Mycorrhizal specificity does not limit the distribution of an endangered orchid species.

    PubMed

    Waud, Michael; Brys, Rein; Van Landuyt, Wouter; Lievens, Bart; Jacquemyn, Hans

    2017-03-01

    What factors determine the distribution of a species is a central question in ecology and conservation biology. In general, the distribution of plant species is assumed to be controlled by dispersal or environmentally controlled recruitment. For plant species which are critically dependent on mycorrhizal symbionts for germination and seedling establishment, specificity in mycorrhizal associations and availability of suitable mycorrhizal fungi can be expected to have a major impact on successful colonization and establishment and thus ultimately on a species distribution. We combined seed germination experiments with soil analyses and fungal assessments using 454 amplicon pyrosequencing to test the relative importance of dispersal limitation, mycorrhizal availability and local growth conditions on the distribution of the orchid species Liparis loeselii, which, despite being widely distributed, is rare and endangered in Europe. We compared local soil conditions, seed germination and mycorrhizal availability in the soil between locations in northern Belgium and France where L. loeselii occurs naturally and locations where conditions appear suitable, but where adults of the species are absent. Our results indicated that mycorrhizal communities associating with L. loeselii varied among sites and plant life cycle stages, but the observed variations did not affect seed germination, which occurred regardless of current L. loeselii presence and was significantly affected by soil moisture content. These results indicate that L. loeselii is a mycorrhizal generalist capable of opportunistically associating with a variety of fungal partners to induce seed germination. They also indicate that availability of fungal associates is not necessarily the determining factor driving the distribution of mycorrhizal plant species. © 2017 John Wiley & Sons Ltd.

  20. Delineating generalized species boundaries from species distribution data and a species distribution model

    Treesearch

    Matthew P. Peters; Stephen N. Matthews; Louis R. Iverson; Anantha M. Prasad

    2013-01-01

    Species distribution models (SDM) are commonly used to provide information about species ranges or extents, and often are intended to represent the entire area of potential occupancy or suitable habitat in which individuals occur. While SDMs can provide results over various geographic extents, they normally operate within a grid and cannot delimit distinct, smooth...

  1. [Effects of sampling plot number on tree species distribution prediction under climate change].

    PubMed

    Liang, Yu; He, Hong-Shi; Wu, Zhi-Wei; Li, Xiao-Na; Luo, Xu

    2013-05-01

    Based on the neutral landscapes under different degrees of landscape fragmentation, this paper studied the effects of sampling plot number on the prediction of tree species distribution at landscape scale under climate change. The tree species distribution was predicted by the coupled modeling approach which linked an ecosystem process model with a forest landscape model, and three contingent scenarios and one reference scenario of sampling plot numbers were assumed. The differences between the three scenarios and the reference scenario under different degrees of landscape fragmentation were tested. The results indicated that the effects of sampling plot number on the prediction of tree species distribution depended on the tree species life history attributes. For the generalist species, the prediction of their distribution at landscape scale needed more plots. Except for the extreme specialist, landscape fragmentation degree also affected the effects of sampling plot number on the prediction. With the increase of simulation period, the effects of sampling plot number on the prediction of tree species distribution at landscape scale could be changed. For generalist species, more plots are needed for the long-term simulation.

  2. Updating Known Distribution Models for Forecasting Climate Change Impact on Endangered Species

    PubMed Central

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2013-01-01

    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli's Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species' distribution, instead of building new models that are based on climate change variables only. PMID:23840330

  3. Updating known distribution models for forecasting climate change impact on endangered species.

    PubMed

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2013-01-01

    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli's Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species' distribution, instead of building new models that are based on climate change variables only.

  4. Caveats for correlative species distribution modeling

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Stohlgren, Thomas J.; Kumar, Sunil; Morisette, Jeffrey T.; Holcombe, Tracy R.

    2015-01-01

    Correlative species distribution models are becoming commonplace in the scientific literature and public outreach products, displaying locations, abundance, or suitable environmental conditions for harmful invasive species, threatened and endangered species, or species of special concern. Accurate species distribution models are useful for efficient and adaptive management and conservation, research, and ecological forecasting. Yet, these models are often presented without fully examining or explaining the caveats for their proper use and interpretation and are often implemented without understanding the limitations and assumptions of the model being used. We describe common pitfalls, assumptions, and caveats of correlative species distribution models to help novice users and end users better interpret these models. Four primary caveats corresponding to different phases of the modeling process, each with supporting documentation and examples, include: (1) all sampling data are incomplete and potentially biased; (2) predictor variables must capture distribution constraints; (3) no single model works best for all species, in all areas, at all spatial scales, and over time; and (4) the results of species distribution models should be treated like a hypothesis to be tested and validated with additional sampling and modeling in an iterative process.

  5. Comparison of a species distribution model and a process model from a hierarchical perspective to quantify effects of projected climate change on tree species

    Treesearch

    Jeffrey E. Schneiderman; Hong S. He; Frank R. Thompson; William D. Dijak; Jacob S. Fraser

    2015-01-01

    Tree species distribution and abundance are affected by forces operating across a hierarchy of ecological scales. Process and species distribution models have been developed emphasizing forces at different scales. Understanding model agreement across hierarchical scales provides perspective on prediction uncertainty and ultimately enables policy makers and managers to...

  6. The Importance of Species Traits for Species Distribution on Oceanic Islands

    PubMed Central

    Vazačová, Kristýna; Münzbergová, Zuzana

    2014-01-01

    Understanding species' ability to colonize new habitats is a key knowledge allowing us to predict species' survival in the changing landscapes. However, most studies exploring this topic observe distribution of species in landscapes which are under strong human influence being fragmented only recently and ignore the fact that the species distribution in these landscapes is far from equilibrium. Oceanic islands seem more appropriate systems for studying the relationship between species traits and its distribution as they are fragmented without human contribution and as they remained unchanged for a long evolutionary time. In our study we compared the values of dispersal as well as persistence traits among 18 species pairs from the Canary Islands differing in their distribution within the archipelago. The data were analyzed both with and without phylogenetic correction. The results demonstrate that no dispersal trait alone can explain the distribution of the species in the system. They, however, also suggest that species with better dispersal compared to their close relatives are better colonizers. Similarly, abundance of species in the archipelago seems to be an important predictor of species colonization ability only when comparing closely related species. This implies that analyses including phylogenetic correction may provide different insights than analyses without such a correction and both types of analyses should be combined to understand the importance of various plant traits for species colonization ability. PMID:25003737

  7. [Relation between species distribution of plant community and soil factors under grazing in alpine meadow].

    PubMed

    Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Du, Guo Zhen; Hua, Li Min

    2017-12-01

    The research selected the alpine meadow located in the northeastern margin of the Qinghai-Tibet Plateau to study the changes of vegetation community and soil properties under different grazing intensities, as well as the quantitative relation between the distribution patterns of plant species and the physical and chemical properties of soil. The results showed that the grazing caused the differentiation of the initial vegetation community with the dominant plants, Elymus nutans and Stipa grandis. In the plots with high and low grazing intensities, the dominant plants had changed to Kobresia humilis and Melissitus ruthenica, and E. nutans and Poa crymophila, respectively. With the increase of grazing intensity, the plant richness, importance value and biomass were significantly decreased. The sequence of plant species importance value in each plot against grazing intensity could be fitted by a logarithmic model. The number of required plant species was reduced while the importance value of the remaining plant species accounted for 50% of the importance value in the whole vegetation community. The available P, available K, soil compaction, soil water content, stable infiltration rate and large aggregate index were significantly changed with grazing intensity, however, the changes were different. The CCA ordination showed that the soil compaction was the key factor affecting the distribution pattern of the plant species under grazing. The variance decomposition indicated that the soil factors together explained 30.5% of the distribution of the plant species, in particular the soil physical properties alone explained 22.8% of the distribution of the plant species, which had the highest rate of contribution to the plant species distribution. The soil physical properties affected the distribution pattern of plant species on grazed alpine meadow.

  8. Factors affecting the occurrence of saugers in small, high-elevation rivers near the western edge of the species' natural distribution

    USGS Publications Warehouse

    Amadio, C.J.; Hubert, W.A.; Johnson, Kevin; Oberlie, D.; Dufek, D.

    2005-01-01

    Factors affecting the occurrence of saugers Sander canadensis were studied throughout the Wind River basin, a high-elevation watershed (> 1,440 m above mean sea level) on the western periphery of the species' natural distribution in central Wyoming. Adult saugers appeared to have a contiguous distribution over 170 km of streams among four rivers in the watershed. The upstream boundaries of sauger distribution were influenced by summer water temperatures and channel slopes in two rivers and by water diversion dams that created barriers to upstream movement in the other two rivers. Models that included summer water temperature, maximum water depth, habitat type (pool or run), dominant substrate, and alkalinity accounted for the variation in sauger occurrence across the watershed within the areas of sauger distribution. Water temperature was the most important basin-scale habitat feature associated with sauger occurrence, and maximum depth was the most important site-specific habitat feature. Saugers were found in a larger proportion of pools than runs in all segments of the watershed and occurred almost exclusively in pools in upstream segments of the watershed. Suitable summer water temperatures and deep, low-velocity habitat were available to support saugers over a large portion of the Wind River watershed. Future management of saugers in the Wind River watershed, as well as in other small river systems within the species' native range, should involve (1) preserving natural fluvial processes to maintain the summer water temperatures and physical habitat features needed by saugers and (2) assuring that barriers to movement do not reduce upstream boundaries of populations.

  9. Bird population trends are linearly affected by climate change along species thermal ranges.

    PubMed

    Jiguet, Frédéric; Devictor, Vincent; Ottvall, Richard; Van Turnhout, Chris; Van der Jeugd, Henk; Lindström, Ake

    2010-12-07

    Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.

  10. Deriving field-based species sensitivity distributions (f-SSDs) from stacked species distribution models (S-SDMs).

    PubMed

    Schipper, Aafke M; Posthuma, Leo; de Zwart, Dick; Huijbregts, Mark A J

    2014-12-16

    Quantitative relationships between species richness and single environmental factors, also called species sensitivity distributions (SSDs), are helpful to understand and predict biodiversity patterns, identify environmental management options and set environmental quality standards. However, species richness is typically dependent on a variety of environmental factors, implying that it is not straightforward to quantify SSDs from field monitoring data. Here, we present a novel and flexible approach to solve this, based on the method of stacked species distribution modeling. First, a species distribution model (SDM) is established for each species, describing its probability of occurrence in relation to multiple environmental factors. Next, the predictions of the SDMs are stacked along the gradient of each environmental factor with the remaining environmental factors at fixed levels. By varying those fixed levels, our approach can be used to investigate how field-based SSDs for a given environmental factor change in relation to changing confounding influences, including for example optimal, typical, or extreme environmental conditions. This provides an asset in the evaluation of potential management measures to reach good ecological status.

  11. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling.

    PubMed

    Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian

    2013-02-01

    Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally

  12. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling

    PubMed Central

    Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian

    2013-01-01

    Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally

  13. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts.

    PubMed

    Tanner, Evan P; Papeş, Monica; Elmore, R Dwayne; Fuhlendorf, Samuel D; Davis, Craig A

    2017-01-01

    Ecological niche models (ENMs) have increasingly been used to estimate the potential effects of climate change on species' distributions worldwide. Recently, predictions of species abundance have also been obtained with such models, though knowledge about the climatic variables affecting species abundance is often lacking. To address this, we used a well-studied guild (temperate North American quail) and the Maxent modeling algorithm to compare model performance of three variable selection approaches: correlation/variable contribution (CVC), biological (i.e., variables known to affect species abundance), and random. We then applied the best approach to forecast potential distributions, under future climatic conditions, and analyze future potential distributions in light of available abundance data and presence-only occurrence data. To estimate species' distributional shifts we generated ensemble forecasts using four global circulation models, four representative concentration pathways, and two time periods (2050 and 2070). Furthermore, we present distributional shifts where 75%, 90%, and 100% of our ensemble models agreed. The CVC variable selection approach outperformed our biological approach for four of the six species. Model projections indicated species-specific effects of climate change on future distributions of temperate North American quail. The Gambel's quail (Callipepla gambelii) was the only species predicted to gain area in climatic suitability across all three scenarios of ensemble model agreement. Conversely, the scaled quail (Callipepla squamata) was the only species predicted to lose area in climatic suitability across all three scenarios of ensemble model agreement. Our models projected future loss of areas for the northern bobwhite (Colinus virginianus) and scaled quail in portions of their distributions which are currently areas of high abundance. Climatic variables that influence local abundance may not always scale up to influence species

  14. ESUSA: US endangered species distribution file

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, J.; Calef, C.E.

    1979-10-01

    This report describes a file containing distribution data on endangered species of the United States of Federal concern pursuant to the Endangered Species Act of 1973. Included for each species are (a) the common name, (b) the scientific name, (c) the family, (d) the group (mammal, bird, etc.), (e) Fish and Wildlife Service (FWS) listing and recovery priorities, (f) the Federal legal status, (g) the geographic distribution by counties or islands, (h) Federal Register citations and (i) the sources of the information on distribution of the species. Status types are endangered, threatened, proposed, formally under review, candidate, deleted, and rejected.more » Distribution is by Federal Information Processing Standard (FIPS) county code and is of four types: designated critical habitat, present range, potential range, and historic range.« less

  15. Do differences in understory light contribute to species distributions along a tropical rainfall gradient?

    PubMed

    Brenes-Arguedas, T; Roddy, A B; Coley, P D; Kursar, Thomas A

    2011-06-01

    In tropical forests, regional differences in annual rainfall correlate with differences in plant species composition. Although water availability is clearly one factor determining species distribution, other environmental variables that covary with rainfall may contribute to distributions. One such variable is light availability in the understory, which decreases towards wetter forests due to differences in canopy density and phenology. We established common garden experiments in three sites along a rainfall gradient across the Isthmus of Panama in order to measure the differences in understory light availability, and to evaluate their influence on the performance of 24 shade-tolerant species with contrasting distributions. Within sites, the effect of understory light availability on species performance depended strongly on water availability. When water was not limiting, either naturally in the wetter site or through water supplementation in drier sites, seedling performance improved at higher light. In contrast, when water was limiting at the drier sites, seedling performance was reduced at higher light, presumably due to an increase in water stress that affected mostly wet-distribution species. Although wetter forest understories were on average darker, wet-distribution species were not more shade-tolerant than dry-distribution species. Instead, wet-distribution species had higher absolute growth rates and, when water was not limiting, were better able to take advantage of small increases in light than dry-distribution species. Our results suggest that in wet forests the ability to grow fast during temporary increases in light may be a key trait for successful recruitment. The slower growth rates of the dry-distribution species, possibly due to trade-offs associated with greater drought tolerance, may exclude these species from wetter forests.

  16. A Centroid Model of Species Distribution to Analyize Multi-directional Climate Change Finger Print in Avian Distribution in North America

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Sauer, J.; Dubayah, R.

    2015-12-01

    Species distribution shift (or referred to as "fingerprint of climate change") as a primary mechanism to adapt climate change has been of great interest to ecologists and conservation practitioners. Recent meta-analyses have concluded that a wide range of animal and plant species are already shifting their distribution. However majority of the literature has focused on analyzing recent poleward and elevationally upward shift of species distribution. However if measured only in poleward shifts, the fingerprint of climate change will be underestimated significantly. In this study, we demonstrate a centroid model for range-wide analysis of distribution shifts using the North American Breeding Bird Survey. The centroid model is based on a hierarchical Bayesian framework which models population change within physiographic strata while accounting for several factors affecting species detectability. We used the centroid approach to examine large number of species permanent resident species in North America and evaluated the dreiction and magnitude of their shifting distribution. To examine the inferential ability of mean temperature and precipitation, we test a hypothesis based on climate velocity theory that species would be more likely to shift their distribution or would shift with greater magnitude in in regions with high climate change velocity. For species with significant shifts of distribution, we establish a precipitation model and a temperature model to explain their change of abundance at the strata level. Two models which are composed of mean and extreme climate indices respectively are also established to test the influences of changes in gradual and extreme climate trends.

  17. Assessing the Spatial Scale Effect of Anthropogenic Factors on Species Distribution

    PubMed Central

    Mangiacotti, Marco; Scali, Stefano; Sacchi, Roberto; Bassu, Lara; Nulchis, Valeria; Corti, Claudia

    2013-01-01

    Patch context is a way to describe the effect that the surroundings exert on a landscape patch. Despite anthropogenic context alteration may affect species distributions by reducing the accessibility to suitable patches, species distribution modelling have rarely accounted for its effects explicitly. We propose a general framework to statistically detect the occurrence and the extent of such a factor, by combining presence-only data, spatial distribution models and information-theoretic model selection procedures. After having established the spatial resolution of the analysis on the basis of the species characteristics, a measure of anthropogenic alteration that can be quantified at increasing distance from each patch has to be defined. Then the distribution of the species is modelled under competing hypotheses: H0, assumes that the distribution is uninfluenced by the anthropogenic variables; H1, assumes the effect of alteration at the species scale (resolution); and H2, H3 … Hn add the effect of context alteration at increasing radii. Models are compared using the Akaike Information Criterion to establish the best hypothesis, and consequently the occurrence (if any) and the spatial scale of the anthropogenic effect. As a study case we analysed the distribution data of two insular lizards (one endemic and one naturalised) using four alternative hypotheses: no alteration (H0), alteration at the species scale (H1), alteration at two context scales (H2 and H3). H2 and H3 performed better than H0 and H1, highlighting the importance of context alteration. H2 performed better than H3, setting the spatial scale of the context at 1 km. The two species respond differently to context alteration, the introduced lizard being more tolerant than the endemic one. The proposed approach supplies reliably and interpretable results, uses easily available data on species distribution, and allows the assessing of the spatial scale at which human disturbance produces the heaviest

  18. Species distribution model transferability and model grain size - finer may not always be better.

    PubMed

    Manzoor, Syed Amir; Griffiths, Geoffrey; Lukac, Martin

    2018-05-08

    Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.

  19. Attenuation of species abundance distributions by sampling

    PubMed Central

    Shimadzu, Hideyasu; Darnell, Ross

    2015-01-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  20. Equilibrium of Global Amphibian Species Distributions with Climate

    PubMed Central

    Munguía, Mariana; Rahbek, Carsten; Rangel, Thiago F.; Diniz-Filho, Jose Alexandre F.; Araújo, Miguel B.

    2012-01-01

    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions. PMID:22511938

  1. Molluscan indicator species and their potential use in ecological status assessment using species distribution modeling.

    PubMed

    Moraitis, Manos L; Tsikopoulou, Irini; Geropoulos, Antonios; Dimitriou, Panagiotis D; Papageorgiou, Nafsika; Giannoulaki, Marianna; Valavanis, Vasilis D; Karakassis, Ioannis

    2018-05-24

    Marine habitat assessment using indicator species through Species Distribution Modeling (SDM) was investigated. The bivalves: Corbula gibba and Flexopecten hyalinus were the indicator species characterizing disturbed and undisturbed areas respectively in terms of chlorophyll a concentration in Greece. The habitat suitability maps of these species reflected the overall ecological status of the area. The C. gibba model successfully predicted the occurrence of this species in areas with increased physical disturbance driven by chlorophyll a concentration, whereas the habitat map for F. hyalinus showed an increased probability of occurrence in chlorophyll-poor areas, affected mainly by salinity. We advocate the use of C. gibba as a proxy for eutrophication and the incorporation of this species in monitoring studies through SDM methods. For the Mediterranean Sea we suggest the use of F. hyalinus in SDM as an indicator of environmental stability and a possible forecasting tool for salinity fluctuations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Factors affecting Archaeal Lipid Compositions of the Sulfolobus Species

    NASA Astrophysics Data System (ADS)

    He, L.; Han, J.; Wei, Y.; Lin, L.; Wei, Y.; Zhang, C.

    2010-12-01

    Temperature is the best known variable affecting the distribution of the archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) in marine and freshwater systems. Other variables such as pH, ionic strength, or bicarbonate concentration may also affect archaeal GDGTs in terrestrial systems. Studies of pure cultures can help us pinpoint the specific effects these variables may have on archaeal lipid distribution in natural environments. In this study, three Sulfolobus species (HG4, HB5-2, HB9-6) isolated from Tengchong hot springs (pH 2-3, temperature 73-90°C) in China were used to investigate the effects of temperature, pH, substrate, and type of strain on the composition of GDGTs. Results showed that increase in temperature had negative effects on the relative contents of GDGT-0 (no cyclopentyl rings), GDGT-1 (one cyclopentyl ring), GDGT-2 and GDGT-3 but positive effects on GDGT-4, GDGT-4', GDGT-5 and GDGT-5'. Increase in pH, on the other hand, had negative effects on GDGT-0, GDGT-1, GDGT-4', GDGT-5 and GDGT-5', and positive effects on GDGT-3 and GDGT-4. GDGT-2 remained relatively constant with changing pH. When the HG4 was grown on different substrates, GDGT-5 was five time more abundant in sucrose-grown cultures than in yeast extract- or sulfur- grown cultures, suggesting that carbohydrates may stimulate the production of GDGT-5. For all three species, the ring index (average number of rings) of GDGTs correlated positively with incubation temperature. In HG4, ring index was much lower at optimal pH (3.5) than at other pH values. Ring index of HB5-2 or HB9-6 is higher than that of HG4, suggesting that speciation may affect the degree of cyclization of GDGT of the Sulfolobus. These results indicate that individual archaeal lipids respond differently to changes in environmental variables, which may be also species specific.

  3. Predicting probability of occurrence and factors affecting distribution and abundance of three Ozark endemic crayfish species at multiple spatial scales

    USGS Publications Warehouse

    Nolen, Matthew S.; Magoulick, Daniel D.; DiStefano, Robert J.; Imhoff, Emily M.; Wagner, Brian K.

    2014-01-01

    We found that a range of environmental variables were important in predicting crayfish distribution and abundance at multiple spatial scales and their importance was species-, response variable- and scale dependent. We would encourage others to examine the influence of spatial scale on species distribution and abundance patterns.

  4. New trends in species distribution modelling

    USGS Publications Warehouse

    Zimmermann, Niklaus E.; Edwards, Thomas C.; Graham, Catherine H.; Pearman, Peter B.; Svenning, Jens-Christian

    2010-01-01

    Species distribution modelling has its origin in the late 1970s when computing capacity was limited. Early work in the field concentrated mostly on the development of methods to model effectively the shape of a species' response to environmental gradients (Austin 1987, Austin et al. 1990). The methodology and its framework were summarized in reviews 10–15 yr ago (Franklin 1995, Guisan and Zimmermann 2000), and these syntheses are still widely used as reference landmarks in the current distribution modelling literature. However, enormous advancements have occurred over the last decade, with hundreds – if not thousands – of publications on species distribution model (SDM) methodologies and their application to a broad set of conservation, ecological and evolutionary questions. With this special issue, originating from the third of a set of specialized SDM workshops (2008 Riederalp) entitled 'The Utility of Species Distribution Models as Tools for Conservation Ecology', we reflect on current trends and the progress achieved over the last decade.

  5. Implications of movement for species distribution models - Rethinking environmental data tools.

    PubMed

    Bruneel, Stijn; Gobeyn, Sacha; Verhelst, Pieterjan; Reubens, Jan; Moens, Tom; Goethals, Peter

    2018-07-01

    Movement is considered an essential process in shaping the distributions of species. Nevertheless, most species distribution models (SDMs) still focus solely on environment-species relationships to predict the occurrence of species. Furthermore, the currently used indirect estimates of movement allow to assess habitat accessibility, but do not provide an accurate description of movement. Better proxies of movement are needed to assess the dispersal potential of individual species and to gain a more practical insight in the interconnectivity of communities. Telemetry techniques are rapidly evolving and highly capable to provide explicit descriptions of movement, but their usefulness for SDMs will mainly depend on the ability of these models to deal with hitherto unconsidered ecological processes. More specifically, the integration of movement is likely to affect the environmental data requirements as the connection between environmental and biological data is crucial to provide reliable results. Mobility implies the occupancy of a continuum of space, hence an adequate representation of both geographical and environmental space is paramount to study mobile species distributions. In this context, environmental models, remote sensing techniques and animal-borne environmental sensors are discussed as potential techniques to obtain suitable environmental data. In order to provide an in-depth review of the aforementioned methods, we have chosen to use the modelling of fish distributions as a case study. The high mobility of fish and the often highly variable nature of the aquatic environment generally complicate model development, making it an adequate subject for research. Furthermore, insight into the distribution of fish is of great interest for fish stock assessments and water management worldwide, underlining its practical relevance. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Asymmetric biotic interactions and abiotic niche differences revealed by a dynamic joint species distribution model.

    PubMed

    Lany, Nina K; Zarnetske, Phoebe L; Schliep, Erin M; Schaeffer, Robert N; Orians, Colin M; Orwig, David A; Preisser, Evan L

    2018-05-01

    A species' distribution and abundance are determined by abiotic conditions and biotic interactions with other species in the community. Most species distribution models correlate the occurrence of a single species with environmental variables only, and leave out biotic interactions. To test the importance of biotic interactions on occurrence and abundance, we compared a multivariate spatiotemporal model of the joint abundance of two invasive insects that share a host plant, hemlock woolly adelgid (HWA; Adelges tsugae) and elongate hemlock scale (EHS; Fiorina externa), to independent models that do not account for dependence among co-occurring species. The joint model revealed that HWA responded more strongly to abiotic conditions than EHS. Additionally, HWA appeared to predispose stands to subsequent increase of EHS, but HWA abundance was not strongly dependent on EHS abundance. This study demonstrates how incorporating spatial and temporal dependence into a species distribution model can reveal the dependence of a species' abundance on other species in the community. Accounting for dependence among co-occurring species with a joint distribution model can also improve estimation of the abiotic niche for species affected by interspecific interactions. © 2018 by the Ecological Society of America.

  7. Bounding species distribution models

    USGS Publications Warehouse

    Stohlgren, T.J.; Jarnevich, C.S.; Esaias, W.E.; Morisette, J.T.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used. ?? 2011 Current Zoology.

  8. On the Mass Distribution of Animal Species

    NASA Astrophysics Data System (ADS)

    Redner, Sidney; Clauset, Aaron; Schwab, David

    2009-03-01

    We develop a simple diffusion-reaction model to account for the broad and asymmetric distribution of adult body masses for species within related taxonomic groups. The model assumes three basic evolutionary features that control body mass: (i) a fixed lower limit that is set by metabolic constraints, (ii) a species extinction risk that is a weakly increasing function of body mass, and (iii) cladogenetic diffusion, in which daughter species have a slight tendency toward larger mass. The steady-state solution for the distribution of species masses in this model can be expressed in terms of the Airy function. This solution gives mass distributions that are in good agreement with data on 4002 terrestrial mammal species from the late Quaternary and 8617 extant bird species.

  9. Improving the Use of Species Distribution Models in Conservation Planning and Management under Climate Change

    PubMed Central

    Porfirio, Luciana L.; Harris, Rebecca M. B.; Lefroy, Edward C.; Hugh, Sonia; Gould, Susan F.; Lee, Greg; Bindoff, Nathaniel L.; Mackey, Brendan

    2014-01-01

    Choice of variables, climate models and emissions scenarios all influence the results of species distribution models under future climatic conditions. However, an overview of applied studies suggests that the uncertainty associated with these factors is not always appropriately incorporated or even considered. We examine the effects of choice of variables, climate models and emissions scenarios can have on future species distribution models using two endangered species: one a short-lived invertebrate species (Ptunarra Brown Butterfly), and the other a long-lived paleo-endemic tree species (King Billy Pine). We show the range in projected distributions that result from different variable selection, climate models and emissions scenarios. The extent to which results are affected by these choices depends on the characteristics of the species modelled, but they all have the potential to substantially alter conclusions about the impacts of climate change. We discuss implications for conservation planning and management, and provide recommendations to conservation practitioners on variable selection and accommodating uncertainty when using future climate projections in species distribution models. PMID:25420020

  10. Protectiveness of species sensitivity distribution hazard concentrations for acute toxicity used in endangered species risk assessment.

    PubMed

    Raimondo, Sandy; Vivian, Deborah N; Delos, Charles; Barron, Mace G

    2008-12-01

    A primary objective of threatened and endangered species conservation is to ensure that chemical contaminants and other stressors do not adversely affect listed species. Assessments of the ecological risks of chemical exposures to listed species often rely on the use of surrogate species, safety factors, and species sensitivity distributions (SSDs) of chemical toxicity; however, the protectiveness of these approaches can be uncertain. We comprehensively evaluated the protectiveness of SSD first and fifth percentile hazard concentrations (HC1, HC5) relative to the application of safety factors using 68 SSDs generated from 1,482 acute (lethal concentration of 50%, or LC50) toxicity records for 291 species, including 24 endangered species (20 fish, four mussels). The SSD HC5s and HCls were lower than 97 and 99.5% of all endangered species mean acute LC50s, respectively. The HC5s were significantly less than the concentrations derived from applying safety factors of 5 and 10 to rainbow trout (Oncorhynchus mykiss) toxicity data, and the HCls were generally lower than the concentrations derived from a safety factor of 100 applied to rainbow trout toxicity values. Comparison of relative sensitivity (SSD percentiles) of broad taxonomic groups showed that crustaceans were generally the most sensitive taxa and taxa sensitivity was related to chemical mechanism of action. Comparison of relative sensitivity of narrow fish taxonomic groups showed that standard test fish species were generally less sensitive than salmonids and listed fish. We recommend the use of SSDs as a distribution-based risk assessment approach that is generally protective of listed species.

  11. Predicting the geographical distribution of two invasive termite species from occurrence data.

    PubMed

    Tonini, Francesco; Divino, Fabio; Lasinio, Giovanna Jona; Hochmair, Hartwig H; Scheffrahn, Rudolf H

    2014-10-01

    Predicting the potential habitat of species under both current and future climate change scenarios is crucial for monitoring invasive species and understanding a species' response to different environmental conditions. Frequently, the only data available on a species is the location of its occurrence (presence-only data). Using occurrence records only, two models were used to predict the geographical distribution of two destructive invasive termite species, Coptotermes gestroi (Wasmann) and Coptotermes formosanus Shiraki. The first model uses a Bayesian linear logistic regression approach adjusted for presence-only data while the second one is the widely used maximum entropy approach (Maxent). Results show that the predicted distributions of both C. gestroi and C. formosanus are strongly linked to urban development. The impact of future scenarios such as climate warming and population growth on the biotic distribution of both termite species was also assessed. Future climate warming seems to affect their projected probability of presence to a lesser extent than population growth. The Bayesian logistic approach outperformed Maxent consistently in all models according to evaluation criteria such as model sensitivity and ecological realism. The importance of further studies for an explicit treatment of residual spatial autocorrelation and a more comprehensive comparison between both statistical approaches is suggested.

  12. Heterogeneous distribution of metabolites across plant species

    NASA Astrophysics Data System (ADS)

    Takemoto, Kazuhiro; Arita, Masanori

    2009-07-01

    We investigate the distribution of flavonoids, a major category of plant secondary metabolites, across species. Flavonoids are known to show high species specificity, and were once considered as chemical markers for understanding adaptive evolution and characterization of living organisms. We investigate the distribution among species using bipartite networks, and find that two heterogeneous distributions are conserved among several families: the power-law distributions of the number of flavonoids in a species and the number of shared species of a particular flavonoid. In order to explain the possible origin of the heterogeneity, we propose a simple model with, essentially, a single parameter. As a result, we show that two respective power-law statistics emerge from simple evolutionary mechanisms based on a multiplicative process. These findings provide insights into the evolution of metabolite diversity and characterization of living organisms that defy genome sequence analysis for different reasons.

  13. Bounding Species Distribution Models

    NASA Technical Reports Server (NTRS)

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  14. Physicochemical conditions in affecting the distribution of spring phytoplankton community

    NASA Astrophysics Data System (ADS)

    Wei, Yuqiu; Liu, Haijiao; Zhang, Xiaodong; Xue, Bing; Munir, Sonia; Sun, Jun

    2017-11-01

    To better understand the physicochemical conditions in affecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3rd and 23th May, 2010. The phytoplankton community, including Bacillariophyta (105 taxa), Pyrrophyta (54 taxa), Chrysophyta (1 taxon) and Chlorophyta (2 taxa), had been identified and clearly described from six ecological provinces. And, the six ecological provinces were partitioned based on the top twenty dominant species related with notable physicochemical parameters. In general, the regional distributions of phytoplankton ecological provinces were predominantly influenced by the physicochemical properties induced by the variable water masses and circulations. The predominant diatoms in most of water samples showed well adaptability in turbulent and eutrophic conditions. However, several species of dinoflagellates e.g., Protoperidinium conicum, Protoperidinium triestinum, Protoperidinium sp. and Gymnodinium lohmanni preferred warmer, saltier and nutrient-poor environment. Moreover, the dinoflagellates with high frequency in the Yellow Sea might be transported from the Yellow Sea Warm Current. The horizontal distribution of phytoplankton was depicted by diatoms and controlled by phosphate concentration, while the vertical distribution was mainly supported by light and nutrients availability in the subsurface and bottom layers, respectively.

  15. Integrating species distribution models (SDMs) and phylogeography for two species of Alpine Primula

    PubMed Central

    Schorr, G; Holstein, N; Pearman, P B; Guisan, A; Kadereit, J W

    2012-01-01

    The major intention of the present study was to investigate whether an approach combining the use of niche-based palaeodistribution modeling and phylo-geography would support or modify hypotheses about the Quaternary distributional history derived from phylogeographic methods alone. Our study system comprised two closely related species of Alpine Primula. We used species distribution models based on the extant distribution of the species and last glacial maximum (LGM) climate models to predict the distribution of the two species during the LGM. Phylogeographic data were generated using amplified fragment length polymorphisms (AFLPs). In Primula hirsuta, models of past distribution and phylogeographic data are partly congruent and support the hypothesis of widespread nunatak survival in the Central Alps. Species distribution models (SDMs) allowed us to differentiate between alpine regions that harbor potential nunatak areas and regions that have been colonized from other areas. SDMs revealed that diversity is a good indicator for nunataks, while rarity is a good indicator for peripheral relict populations that were not source for the recolonization of the inner Alps. In P. daonensis, palaeo-distribution models and phylogeographic data are incongruent. Besides the uncertainty inherent to this type of modeling approach (e.g., relatively coarse 1-km grain size), disagreement of models and data may partly be caused by shifts of ecological niche in both species. Nevertheless, we demonstrate that the combination of palaeo-distribution modeling with phylogeographical approaches provides a more differentiated picture of the distributional history of species and partly supports (P. hirsuta) and partly modifies (P. daonensis and P. hirsuta) hypotheses of Quaternary distributional history. Some of the refugial area indicated by palaeodistribution models could not have been identified with phylogeographic data. PMID:22833799

  16. Exploring similarities among many species distributions

    USGS Publications Warehouse

    Simmerman, Scott; Wang, Jingyuan; Osborne, James; Shook, Kimberly; Huang, Jian; Godsoe, William; Simons, Theodore R.

    2012-01-01

    Collecting species presence data and then building models to predict species distribution has been long practiced in the field of ecology for the purpose of improving our understanding of species relationships with each other and with the environment. Due to limitations of computing power as well as limited means of using modeling software on HPC facilities, past species distribution studies have been unable to fully explore diverse data sets. We build a system that can, for the first time to our knowledge, leverage HPC to support effective exploration of species similarities in distribution as well as their dependencies on common environmental conditions. Our system can also compute and reveal uncertainties in the modeling results enabling domain experts to make informed judgments about the data. Our work was motivated by and centered around data collection efforts within the Great Smoky Mountains National Park that date back to the 1940s. Our findings present new research opportunities in ecology and produce actionable field-work items for biodiversity management personnel to include in their planning of daily management activities.

  17. Remote sensing of the distribution and abundance of host species for spruce budworm in Northern Minnesota and Ontario

    Treesearch

    Peter T. Wolter; Philip A. Townsend; Brian R. Sturtevant; Clayton C. Kingdon

    2008-01-01

    Insects and disease affect large areas of forest in the U.S. and Canada. Understanding ecosystem impacts of such disturbances requires knowledge of host species distribution patterns on the landscape. In this study, we mapped the distribution and abundance of host species for the spruce budworm (Choristoneura fumiferana) to facilitate landscape scale...

  18. Infusing considerations of trophic dependencies into species distribution modelling.

    PubMed

    Trainor, Anne M; Schmitz, Oswald J

    2014-12-01

    Community ecology involves studying the interdependence of species with each other and their environment to predict their geographical distribution and abundance. Modern species distribution analyses characterise species-environment dependency well, but offer only crude approximations of species interdependency. Typically, the dependency between focal species and other species is characterised using other species' point occurrences as spatial covariates to constrain the focal species' predicted range. This implicitly assumes that the strength of interdependency is homogeneous across space, which is not generally supported by analyses of species interactions. This discrepancy has an important bearing on the accuracy of inferences about habitat suitability for species. We introduce a framework that integrates principles from consumer-resource analyses, resource selection theory and species distribution modelling to enhance quantitative prediction of species geographical distributions. We show how to apply the framework using a case study of lynx and snowshoe hare interactions with each other and their environment. The analysis shows how the framework offers a spatially refined understanding of species distribution that is sensitive to nuances in biophysical attributes of the environment that determine the location and strength of species interactions. © 2014 John Wiley & Sons Ltd/CNRS.

  19. Vertical water mass structure in the North Atlantic influences the bathymetric distribution of species in the deep-sea coral genus Paramuricea

    NASA Astrophysics Data System (ADS)

    Radice, Veronica Z.; Quattrini, Andrea M.; Wareham, Vonda E.; Edinger, Evan N.; Cordes, Erik E.

    2016-10-01

    Deep-sea corals are the structural foundation of their ecosystems along continental margins worldwide, yet the factors driving their broad distribution are poorly understood. Environmental factors, especially depth-related variables including water mass properties, are thought to considerably affect the realized distribution of deep-sea corals. These factors are governed by local and regional oceanographic conditions that directly influence the dispersal of larvae, and therefore affect the ultimate distribution of adult corals. We used molecular barcoding of mitochondrial and nuclear sequences to identify species of octocorals in the genus Paramuricea collected from the Labrador Sea to the Grand Banks of Newfoundland, Canada at depths of 150-1500 m. The results of this study revealed overlapping bathymetric distributions of the Paramuricea species present off the eastern Canadian coast, including the presence of a few cryptic species previously designated as Paramuricea placomus. The distribution of Paramuricea species in the western North Atlantic differs from the Gulf of Mexico, where five Paramuricea species exhibit strong segregation by depth. The different patterns of Paramuricea species in these contrasting biogeographic regions provide insight into how water mass structure may shape species distribution. Investigating Paramuricea prevalence and distribution in conjunction with oceanographic conditions can help demonstrate the factors that generate and maintain deep-sea biodiversity.

  20. Do non-native plant species affect the shape of productivity-diversity relationships?

    USGS Publications Warehouse

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  1. How selection structures species abundance distributions

    PubMed Central

    Magurran, Anne E.; Henderson, Peter A.

    2012-01-01

    How do species divide resources to produce the characteristic species abundance distributions seen in nature? One way to resolve this problem is to examine how the biomass (or capacity) of the spatial guilds that combine to produce an abundance distribution is allocated among species. Here we argue that selection on body size varies across guilds occupying spatially distinct habitats. Using an exceptionally well-characterized estuarine fish community, we show that biomass is concentrated in large bodied species in guilds where habitat structure provides protection from predators, but not in those guilds associated with open habitats and where safety in numbers is a mechanism for reducing predation risk. We further demonstrate that while there is temporal turnover in the abundances and identities of species that comprise these guilds, guild rank order is conserved across our 30-year time series. These results demonstrate that ecological communities are not randomly assembled but can be decomposed into guilds where capacity is predictably allocated among species. PMID:22787020

  2. Historical habitat connectivity affects current genetic structure in a grassland species.

    PubMed

    Münzbergová, Z; Cousins, S A O; Herben, T; Plačková, I; Mildén, M; Ehrlén, J

    2013-01-01

    Many recent studies have explored the effects of present and past landscape structure on species distribution and diversity. However, we know little about the effects of past landscape structure on distribution of genetic diversity within and between populations of a single species. Here we describe the relationship between present and past landscape structure (landscape connectivity and habitat size estimated from historical maps) and current genetic structure in a perennial herb, Succisa pratensis. We used allozymes as co-dominant markers to estimate genetic diversity and deviation from Hardy-Weinberg equilibrium in 31 populations distributed within a 5 km(2) agricultural landscape. The results showed that current genetic diversity of populations was related to habitat suitability, habitat age, habitat size and habitat connectivity in the past. The effects of habitat age and past connectivity on genetic diversity were in most cases also significant after taking the current landscape structure into account. Moreover, current genetic similarity between populations was affected by past connectivity after accounting for current landscape structure. In both cases, the oldest time layer (1850) was the most informative. Most populations showed heterozygote excess, indicating disequilibrium due to recent gene flow or selection against homozygotes. These results suggest that habitat age and past connectivity are important determinants of distribution of genetic diversity between populations at a scale of a few kilometres. Landscape history may significantly contribute to our understanding of distribution of current genetic structure within species and the genetic structure may be used to better understand landscape history, even at a small scale. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions

    USGS Publications Warehouse

    Royle, J. Andrew; Chandler, Richard B.; Yackulic, Charles; Nichols, James D.

    2012-01-01

    1. Understanding the factors affecting species occurrence is a pre-eminent focus of applied ecological research. However, direct information about species occurrence is lacking for many species. Instead, researchers sometimes have to rely on so-called presence-only data (i.e. when no direct information about absences is available), which often results from opportunistic, unstructured sampling. MAXENT is a widely used software program designed to model and map species distribution using presence-only data. 2. We provide a critical review of MAXENT as applied to species distribution modelling and discuss how it can lead to inferential errors. A chief concern is that MAXENT produces a number of poorly defined indices that are not directly related to the actual parameter of interest – the probability of occurrence (ψ). This focus on an index was motivated by the belief that it is not possible to estimate ψ from presence-only data; however, we demonstrate that ψ is identifiable using conventional likelihood methods under the assumptions of random sampling and constant probability of species detection. 3. The model is implemented in a convenient r package which we use to apply the model to simulated data and data from the North American Breeding Bird Survey. We demonstrate that MAXENT produces extreme under-predictions when compared to estimates produced by logistic regression which uses the full (presence/absence) data set. We note that MAXENT predictions are extremely sensitive to specification of the background prevalence, which is not objectively estimated using the MAXENT method. 4. As with MAXENT, formal model-based inference requires a random sample of presence locations. Many presence-only data sets, such as those based on museum records and herbarium collections, may not satisfy this assumption. However, when sampling is random, we believe that inference should be based on formal methods that facilitate inference about interpretable ecological quantities

  4. [Species composition and geographical distribution of threatened fishes in Yunnan Province of Southwest China].

    PubMed

    Zhang, Qian; Zhong, Jin-Xin

    2013-05-01

    Based on the related published papers, and by using Geographic Information System (ArcGIS 9.3), this paper analyzed the species composition and geographical distribution of threatened fishes in Yunnan Province of Southwest China. There were 83 threatened species living in the Province, belonging to 5 orders, 13 families, and 47 genera. Cypriniformes was absolutely dominant, with 64 species, followed by Siluriformes, with 16 species. Cyprinidae fishes had 51 species, accounting for 79.7% of Cypriniformes. The most species of Cyprinid fishes were of Barbinae (14 species), Cyprininae (10 species), and Cultrinae (10 species). The threatened fishes could be divided into two zoogeographical regions, i. e., Tibetan Plateau region and Oriental region, and their species composition and geographical distribution were resulted from the historical evolution adapted to the related environments. Whatever in rivers and in lakes, the Cyprinid fishes were both absolutely dominant, occupying 36.1% and 31.3% of the total, respectively. The Cyprinid fishes in rivers were mostly of endangered species, while those in lakes were mostly of vulnerable species. The factors affecting the threatened fishes in the Province were discussed from the two aspects of geodynamic evolution and present situation.

  5. Bias correction in species distribution models: pooling survey and collection data for multiple species.

    PubMed

    Fithian, William; Elith, Jane; Hastie, Trevor; Keith, David A

    2015-04-01

    Presence-only records may provide data on the distributions of rare species, but commonly suffer from large, unknown biases due to their typically haphazard collection schemes. Presence-absence or count data collected in systematic, planned surveys are more reliable but typically less abundant.We proposed a probabilistic model to allow for joint analysis of presence-only and survey data to exploit their complementary strengths. Our method pools presence-only and presence-absence data for many species and maximizes a joint likelihood, simultaneously estimating and adjusting for the sampling bias affecting the presence-only data. By assuming that the sampling bias is the same for all species, we can borrow strength across species to efficiently estimate the bias and improve our inference from presence-only data.We evaluate our model's performance on data for 36 eucalypt species in south-eastern Australia. We find that presence-only records exhibit a strong sampling bias towards the coast and towards Sydney, the largest city. Our data-pooling technique substantially improves the out-of-sample predictive performance of our model when the amount of available presence-absence data for a given species is scarceIf we have only presence-only data and no presence-absence data for a given species, but both types of data for several other species that suffer from the same spatial sampling bias, then our method can obtain an unbiased estimate of the first species' geographic range.

  6. Bias correction in species distribution models: pooling survey and collection data for multiple species

    PubMed Central

    Fithian, William; Elith, Jane; Hastie, Trevor; Keith, David A.

    2016-01-01

    Summary Presence-only records may provide data on the distributions of rare species, but commonly suffer from large, unknown biases due to their typically haphazard collection schemes. Presence–absence or count data collected in systematic, planned surveys are more reliable but typically less abundant.We proposed a probabilistic model to allow for joint analysis of presence-only and survey data to exploit their complementary strengths. Our method pools presence-only and presence–absence data for many species and maximizes a joint likelihood, simultaneously estimating and adjusting for the sampling bias affecting the presence-only data. By assuming that the sampling bias is the same for all species, we can borrow strength across species to efficiently estimate the bias and improve our inference from presence-only data.We evaluate our model’s performance on data for 36 eucalypt species in south-eastern Australia. We find that presence-only records exhibit a strong sampling bias towards the coast and towards Sydney, the largest city. Our data-pooling technique substantially improves the out-of-sample predictive performance of our model when the amount of available presence–absence data for a given species is scarceIf we have only presence-only data and no presence–absence data for a given species, but both types of data for several other species that suffer from the same spatial sampling bias, then our method can obtain an unbiased estimate of the first species’ geographic range. PMID:27840673

  7. Moving Uphill: Microbial Facilitation at the Leading Edge of Plant Species Distributional Shifts

    NASA Astrophysics Data System (ADS)

    Suding, K.; Farrer, E.; Spasojevic, M.; Porazinska, D.; Bueno de Mesquita, C.; Schmidt, S. K.

    2016-12-01

    Climate change is expected to influence species distributions and reshuffle patterns of biodiversity. A key challenge to our understanding of these effects is that biotic interactions - new species to compete with, new stressors that increase dependence on facilitation, new prey or predators - will likely affect the ability of species to track climate at the leading edges of their distributional range. While it is well established that soil biota strongly influence plant abundance and diversity, it has been difficult to quantify the key belowground dynamics. This presentation will investigate the influence of one key biotic interaction, between plants and soil microbiota, on the ability of plant species to track climate change and expand their range uphill in a high montane system in the Front Range of Colorado. High-resolution photography from 1972 and 2008 indicate colonization of tundra vegetation in formerly unvegetated areas. Observational work on the distributions patterns of both plants and soil microbiota (bacteria, fungi and nematodes) in a spatially-explicit grid at the upper edge of plant distributions indicate strong, mostly positive, associations between plant species and soil taxa. Abiotic factors, while important, consistently underpredicted the occurrence of plant species and, in nine of the 12 most common tundra plants, co-occurring microbial taxa were important predictors of plant occurrence. Comparison of plant and microbial distributional patterns in 2007 and 2015 indicate the influence of microbial community composition on assembly and beta-diversity of the plant community over time. Plant colonization patterns in this region previously devoid of vegetation will likely influence carbon, nitrogen and phosphorus dynamics, with downstream consequences on nutrient limitation and phytoplankton composition in alpine lakes.

  8. Mapping Arid Vegetation Species Distributions in the White Mountains, Eastern California, Using AVIRIS, Topography, and Geology

    NASA Technical Reports Server (NTRS)

    VandeVen, C.; Weiss, S. B.

    2001-01-01

    Our challenge is to model plant species distributions in complex montane environments using disparate sources of data, including topography, geology, and hyperspectral data. From an ecologist's point of view, species distributions are determined by local environment and disturbance history, while spectral data are 'ancillary.' However, a remote sensor's perspective says that spectral data provide picture of what vegetation is there, topographic and geologic data are ancillary. In order to bridge the gap, all available data should be used to get the best possible prediction of species distributions using complex multivariate techniques implemented on a GIS. Vegetation reflects local climatic and nutrient conditions, both of which can be modeled, allowing predictive mapping of vegetation distributions. Geologic substrate strongly affects chemical, thermal, and physical properties of soils, while climatic conditions are determined by local topography. As elevation increases, precipitation increases and temperature decreases. Aspect, slope, and surrounding topography determine potential insolation, so that south-facing slopes are warmer and north-facing slopes cooler at a given elevation. Topographic position (ridge, slope, canyon, or meadow) and slope angle affect sediment accumulation and soil depth. These factors combine as complex environmental gradients, and underlie many features of plant distributions. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data, digital elevation models, digitized geologic maps, and 378 ground control points were used to predictively map species distributions in the central and southern White Mountains, along the western boundary of the Basin and Range province. Minimum Noise Fraction (MNF) bands were calculated from the visible and near-infrared AVIRIS bands, and combined with digitized geologic maps and topographic variables using Canonical Correspondence Analysis (CCA). CCA allows for modeling species 'envelopes' in

  9. Soil nutrients influence spatial distributions of tropical tree species.

    PubMed

    John, Robert; Dalling, James W; Harms, Kyle E; Yavitt, Joseph B; Stallard, Robert F; Mirabello, Matthew; Hubbell, Stephen P; Valencia, Renato; Navarrete, Hugo; Vallejo, Martha; Foster, Robin B

    2007-01-16

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (<10(4) km(2)) and regional scales. At local scales (<1 km(2)), however, habitat factors and species distributions show comparable spatial aggregation, making it difficult to disentangle the importance of niche and dispersal processes. In this article, we test soil resource-based niche assembly at a local scale, using species and soil nutrient distributions obtained at high spatial resolution in three diverse neotropical forest plots in Colombia (La Planada), Ecuador (Yasuni), and Panama (Barro Colorado Island). Using spatial distribution maps of >0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species.

  10. Soil nutrients influence spatial distributions of tropical tree species

    PubMed Central

    John, Robert; Dalling, James W.; Harms, Kyle E.; Yavitt, Joseph B.; Stallard, Robert F.; Mirabello, Matthew; Hubbell, Stephen P.; Valencia, Renato; Navarrete, Hugo; Vallejo, Martha; Foster, Robin B.

    2007-01-01

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757–1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (<104 km2) and regional scales. At local scales (<1 km2), however, habitat factors and species distributions show comparable spatial aggregation, making it difficult to disentangle the importance of niche and dispersal processes. In this article, we test soil resource-based niche assembly at a local scale, using species and soil nutrient distributions obtained at high spatial resolution in three diverse neotropical forest plots in Colombia (La Planada), Ecuador (Yasuni), and Panama (Barro Colorado Island). Using spatial distribution maps of >0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant–soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36–51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant–soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species. PMID:17215353

  11. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees

    PubMed Central

    Condit, Richard; Engelbrecht, Bettina M. J.; Pino, Delicia; Pérez, Rolando; Turner, Benjamin L.

    2013-01-01

    Tropical forest vegetation is shaped by climate and by soil, but understanding how the distributions of individual tree species respond to specific resources has been hindered by high diversity and consequent rarity. To study species over an entire community, we surveyed trees and measured soil chemistry across climatic and geological gradients in central Panama and then used a unique hierarchical model of species occurrence as a function of rainfall and soil chemistry to circumvent analytical difficulties posed by rare species. The results are a quantitative assessment of the responses of 550 tree species to eight environmental factors, providing a measure of the importance of each factor across the entire tree community. Dry-season intensity and soil phosphorus were the strongest predictors, each affecting the distribution of more than half of the species. Although we anticipated clear-cut responses to dry-season intensity, the finding that many species have pronounced associations with either high or low phosphorus reveals a previously unquantified role for this nutrient in limiting tropical tree distributions. The results provide the data necessary for understanding distributional limits of tree species and predicting future changes in forest composition. PMID:23440213

  12. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees.

    PubMed

    Condit, Richard; Engelbrecht, Bettina M J; Pino, Delicia; Pérez, Rolando; Turner, Benjamin L

    2013-03-26

    Tropical forest vegetation is shaped by climate and by soil, but understanding how the distributions of individual tree species respond to specific resources has been hindered by high diversity and consequent rarity. To study species over an entire community, we surveyed trees and measured soil chemistry across climatic and geological gradients in central Panama and then used a unique hierarchical model of species occurrence as a function of rainfall and soil chemistry to circumvent analytical difficulties posed by rare species. The results are a quantitative assessment of the responses of 550 tree species to eight environmental factors, providing a measure of the importance of each factor across the entire tree community. Dry-season intensity and soil phosphorus were the strongest predictors, each affecting the distribution of more than half of the species. Although we anticipated clear-cut responses to dry-season intensity, the finding that many species have pronounced associations with either high or low phosphorus reveals a previously unquantified role for this nutrient in limiting tropical tree distributions. The results provide the data necessary for understanding distributional limits of tree species and predicting future changes in forest composition.

  13. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community

  14. SPECIES DISTRIBUTIONS, SURROGACY, AND IMPORTANT CONSERVATION REGIONS IN CANADA

    EPA Science Inventory

    Conservation actions could be more efficient if there is congruence among taxa in the distribution of species. Patterns in the geographic distribution of species of six taxa were used to identify nationally important sites for conservation in Canada. Species richness and a meas...

  15. Predicting species distributions from checklist data using site-occupancy models

    USGS Publications Warehouse

    Kery, M.; Gardner, B.; Monnerat, C.

    2010-01-01

    Aim: (1) To increase awareness of the challenges induced by imperfect detection, which is a fundamental issue in species distribution modelling; (2) to emphasize the value of replicate observations for species distribution modelling; and (3) to show how 'cheap' checklist data in faunal/floral databases may be used for the rigorous modelling of distributions by site-occupancy models. Location: Switzerland. Methods: We used checklist data collected by volunteers during 1999 and 2000 to analyse the distribution of the blue hawker, Aeshna cyanea (Odonata, Aeshnidae), a common dragonfly in Switzerland. We used data from repeated visits to 1-ha pixels to derive 'detection histories' and apply site-occupancy models to estimate the 'true' species distribution, i.e. corrected for imperfect detection. We modelled blue hawker distribution as a function of elevation and year and its detection probability of elevation, year and season. Results: The best model contained cubic polynomial elevation effects for distribution and quadratic effects of elevation and season for detectability. We compared the site-occupancy model with a conventional distribution model based on a generalized linear model, which assumes perfect detectability (p = 1). The conventional distribution map looked very different from the distribution map obtained using site-occupancy models that accounted for the imperfect detection. The conventional model underestimated the species distribution by 60%, and the slope parameters of the occurrence-elevation relationship were also underestimated when assuming p = 1. Elevation was not only an important predictor of blue hawker occurrence, but also of the detection probability, with a bell-shaped relationship. Furthermore, detectability increased over the season. The average detection probability was estimated at only 0.19 per survey. Main conclusions: Conventional species distribution models do not model species distributions per se but rather the apparent

  16. The Global Distribution and Drivers of Alien Bird Species Richness

    PubMed Central

    Dyer, Ellie E.; Cassey, Phillip; Redding, David W.; Collen, Ben; Franks, Victoria; Gaston, Kevin J.; Jones, Kate E.; Kark, Salit; Orme, C. David L.; Blackburn, Tim M.

    2017-01-01

    Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., “colonisation pressure”). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species. PMID:28081142

  17. Species-free species distribution models describe macroecological properties of protected area networks.

    PubMed

    Robinson, Jason L; Fordyce, James A

    2017-01-01

    Among the greatest challenges facing the conservation of plants and animal species in protected areas are threats from a rapidly changing climate. An altered climate creates both challenges and opportunities for improving the management of protected areas in networks. Increasingly, quantitative tools like species distribution modeling are used to assess the performance of protected areas and predict potential responses to changing climates for groups of species, within a predictive framework. At larger geographic domains and scales, protected area network units have spatial geoclimatic properties that can be described in the gap analysis typically used to measure or aggregate the geographic distributions of species (stacked species distribution models, or S-SDM). We extend the use of species distribution modeling techniques in order to model the climate envelope (or "footprint") of individual protected areas within a network of protected areas distributed across the 48 conterminous United States and managed by the US National Park System. In our approach we treat each protected area as the geographic range of a hypothetical endemic species, then use MaxEnt and 5 uncorrelated BioClim variables to model the geographic distribution of the climatic envelope associated with each protected area unit (modeling the geographic area of park units as the range of a species). We describe the individual and aggregated climate envelopes predicted by a large network of 163 protected areas and briefly illustrate how macroecological measures of geodiversity can be derived from our analysis of the landscape ecological context of protected areas. To estimate trajectories of change in the temporal distribution of climatic features within a protected area network, we projected the climate envelopes of protected areas in current conditions onto a dataset of predicted future climatic conditions. Our results suggest that the climate envelopes of some parks may be locally unique or have

  18. Species Distribution Modeling between Abies koreana and Abies nephrolepis According to the RCP Scenarios in South Korea

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Kim, I. S.; Lee, W. K.; Kwon, H. J.; Byeon, J. G.; Yun, J. E.

    2016-12-01

    Vulnerable plant that includes species in crisis of extinction is shown by environment, competition between various species. The climate is one of the main factor that affect to the plant distribution. The most essential particular to make species distribution model is distribution data, and secondly environmental factors. 179 taxon plant classified according to the distribution, it consist of characteristic and regional distribution criteria. In case of climate data, 1960-1990 period made by World Clim Data is applied which has 0.86㎢ spatial resolution. It separates temperature and precipitation factor. To predict potential distribution, Maxent(Maximum Entropy Model) is applied that is widely known as suitable model in case of presence distributional data only. Among the target species, Abies koreana and Abies nephrolepis have no clearly key to identify, so their differences of distribution and environmental fator information could act useful. In order to know the distinction according to the classifying species, Abies koreana and Abies nephrolepis are typically selected. Abies koreana distributes at high mountain in Southern part of Korean Peninsula, otherwise Abies nephrolepis is at high mountain in from Middle latitude(over the 37°) in South Korea. These species has been the center of controversy recently, because the classification key of these species is not scientifically clear yet. In this perspective these species predicted potential distribution depend on whether these are same species or not. In the result of considering these species are same, entire predicted distribution area is wider, especially Jiri-san mountain(latitude : 35°) which is the highest latitude of the Abies koreana distributed point. On the other side, result of considering different species is shown that Abies koreana could climatically survive near by Soerak-san mountain(latitude : 37°), but Abies nephrolepis could not live in Halla-san mountan(33°) in Jeju-island which is the

  19. Soil nutrients influence spatial distributions of tropical trees species

    USGS Publications Warehouse

    John, R.; Dalling, J.W.; Harms, K.E.; Yavitt, J.B.; Stallard, R.F.; Mirabello, M.; Hubbell, S.P.; Valencia, R.; Navarrete, H.; Vallejo, M.; Foster, R.B.

    2007-01-01

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species. ?? 2007 by The National Academy of Sciences of the USA.

  20. Species richness and distributions of boreal waterbirds in relation to nesting and brood-rearing habitats

    USGS Publications Warehouse

    Lewis, Tyler L.; Lindberg, Mark S.; Schmutz, Joel A.; Bertram, Mark R.; Dubour, Adam J.

    2015-01-01

    Identification of ecological factors that drive animal distributions allows us to understand why distributions vary temporally and spatially, and to develop models to predict future changes to populations–vital tools for effective wildlife management and conservation. For waterbird broods in the boreal forest, distributions are likely driven by factors affecting quality of nesting and brood-rearing habitats, and the influence of these factors may extend beyond singles species, affecting the entire waterbird community. We used occupancy models to assess factors influencing species richness of waterbird broods on 72 boreal lakes, along with brood distributions of 3 species of conservation concern: lesser scaup (Aythya affinis), white-winged scoters (Melanitta fusca), and horned grebe (Podiceps auritus). Factors examined included abundance of invertebrate foods (Amphipoda, Diptera, Gastropoda, Hemiptera, Odonata), physical lake attributes (lake area, emergent vegetation), water chemistry (nitrogen, phosphorus, chlorophyll a concentrations), and nesting habitats (water edge, non-forest cover). Of the 5 invertebrates, only amphipod density was related to richness and occupancy, consistently having a large and positive relationship. Despite this importance to waterbirds, amphipods were the most patchily distributed invertebrate, with 17% of the study lakes containing 70% of collected amphipods. Lake area was the only other covariate that strongly and positively influenced species richness and occupancy of scaup, scoters, and grebes. All 3 water chemistry covariates, which provided alternative measures of lake productivity, were positively related to species richness but had little effect on scaup, scoter, and grebe occupancy. Conversely, emergent vegetation was negatively related to richness, reflecting avoidance of overgrown lakes by broods. Finally, nesting habitats had no influence on richness and occupancy, indicating that, at a broad spatial scale, brood

  1. Inferential monitoring of global change impact on biodiversity through remote sensing and species distribution modeling

    NASA Astrophysics Data System (ADS)

    Sangermano, Florencia

    2009-12-01

    The world is suffering from rapid changes in both climate and land cover which are the main factors affecting global biodiversity. These changes may affect ecosystems by altering species distributions, population sizes, and community compositions, which emphasizes the need for a rapid assessment of biodiversity status for conservation and management purposes. Current approaches on monitoring biodiversity rely mainly on long term observations of predetermined sites, which require large amounts of time, money and personnel to be executed. In order to overcome problems associated with current field monitoring methods, the main objective of this dissertation is the development of framework for inferential monitoring of the impact of global change on biodiversity based on remotely sensed data coupled with species distribution modeling techniques. Several research pieces were performed independently in order to fulfill this goal. First, species distribution modeling was used to identify the ranges of 6362 birds, mammals and amphibians in South America. Chapter 1 compares the power of different presence-only species distribution methods for modeling distributions of species with different response curves to environmental gradients and sample sizes. It was found that there is large variability in the power of the methods for modeling habitat suitability and species ranges, showing the importance of performing, when possible, a preliminary gradient analysis of the species distribution before selecting the method to be used. Chapter 2 presents a new methodology for the redefinition of species range polygons. Using a method capable of establishing the uncertainty in the definition of existing range polygons, the automated procedure identifies the relative importance of bioclimatic variables for the species, predicts their ranges and generates a quality assessment report to explore prediction errors. Analysis using independent validation data shows the power of this

  2. Applications of species distribution modeling to paleobiology

    NASA Astrophysics Data System (ADS)

    Svenning, Jens-Christian; Fløjgaard, Camilla; Marske, Katharine A.; Nógues-Bravo, David; Normand, Signe

    2011-10-01

    Species distribution modeling (SDM: statistical and/or mechanistic approaches to the assessment of range determinants and prediction of species occurrence) offers new possibilities for estimating and studying past organism distributions. SDM complements fossil and genetic evidence by providing (i) quantitative and potentially high-resolution predictions of the past organism distributions, (ii) statistically formulated, testable ecological hypotheses regarding past distributions and communities, and (iii) statistical assessment of range determinants. In this article, we provide an overview of applications of SDM to paleobiology, outlining the methodology, reviewing SDM-based studies to paleobiology or at the interface of paleo- and neobiology, discussing assumptions and uncertainties as well as how to handle them, and providing a synthesis and outlook. Key methodological issues for SDM applications to paleobiology include predictor variables (types and properties; special emphasis is given to paleoclimate), model validation (particularly important given the emphasis on cross-temporal predictions in paleobiological applications), and the integration of SDM and genetics approaches. Over the last few years the number of studies using SDM to address paleobiology-related questions has increased considerably. While some of these studies only use SDM (23%), most combine them with genetically inferred patterns (49%), paleoecological records (22%), or both (6%). A large number of SDM-based studies have addressed the role of Pleistocene glacial refugia in biogeography and evolution, especially in Europe, but also in many other regions. SDM-based approaches are also beginning to contribute to a suite of other research questions, such as historical constraints on current distributions and diversity patterns, the end-Pleistocene megafaunal extinctions, past community assembly, human paleobiogeography, Holocene paleoecology, and even deep-time biogeography (notably, providing

  3. Environmental, land cover and land use constraints on the distributional patterns of anurans: Leptodacylus species (Anura, Leptodactylidae) from Dry Chaco

    PubMed Central

    Medina, Regina Gabriela; Aráoz, Ezequiel

    2016-01-01

    Subtropical dry forests are among the most vulnerable biomes to land transformation at a global scale. Among them, the Dry Chaco suffers an accelerated change due to agriculture expansion and intensification. The Dry Chaco ecoregion is characterized by high levels of endemisms and species diversity, which are the result of a variety of climates and reliefs, allowing a wide variety of environments. The amphibian group exhibits a high richness in the Dry Chaco, which has been barely studied in relation to land cover changes. We used ecological niche models (ENMs) to assess the potential geographic distribution of 10 Leptodactylus species (Anura, Leptodactylidae), which are mainly distributed within the Dry Chaco. We characterized these distributions environmentally, analyzed their overlap with land cover classes, and assessed their diversity of ecoregions. Also, we evaluated how these species potential distribution is affected by the transformation of land, and quantified the proportional area of the potential distribution in protected areas. We found that temperature seasonality is the main constraint to the occurrence of the species studied, whose main habitats are savannas, grasslands and croplands. The main threats to these species are the effects of climate change over spatial patterns of seasonality, which could affect their breeding and reproduction mode; the loss of their natural habitat; the exposure to contaminants used by intensive agriculture and their underrepresentation in protected areas. PMID:27833796

  4. Environmental, land cover and land use constraints on the distributional patterns of anurans: Leptodacylus species (Anura, Leptodactylidae) from Dry Chaco.

    PubMed

    Medina, Regina Gabriela; Ponssa, Maria Laura; Aráoz, Ezequiel

    2016-01-01

    Subtropical dry forests are among the most vulnerable biomes to land transformation at a global scale. Among them, the Dry Chaco suffers an accelerated change due to agriculture expansion and intensification. The Dry Chaco ecoregion is characterized by high levels of endemisms and species diversity, which are the result of a variety of climates and reliefs, allowing a wide variety of environments. The amphibian group exhibits a high richness in the Dry Chaco, which has been barely studied in relation to land cover changes. We used ecological niche models (ENMs) to assess the potential geographic distribution of 10 Leptodactylus species (Anura, Leptodactylidae), which are mainly distributed within the Dry Chaco. We characterized these distributions environmentally, analyzed their overlap with land cover classes, and assessed their diversity of ecoregions. Also, we evaluated how these species potential distribution is affected by the transformation of land, and quantified the proportional area of the potential distribution in protected areas. We found that temperature seasonality is the main constraint to the occurrence of the species studied, whose main habitats are savannas, grasslands and croplands. The main threats to these species are the effects of climate change over spatial patterns of seasonality, which could affect their breeding and reproduction mode; the loss of their natural habitat; the exposure to contaminants used by intensive agriculture and their underrepresentation in protected areas.

  5. Species co-occurrence affects the trophic interactions of two juvenile reef shark species in tropical lagoon nurseries in Moorea (French Polynesia).

    PubMed

    Matich, Philip; Kiszka, Jeremy J; Mourier, Johann; Planes, Serge; Heithaus, Michael R

    2017-06-01

    Food web structure is shaped by interactions within and across trophic levels. As such, understanding how the presence and absence of predators, prey, and competitors affect species foraging patterns is important for predicting the consequences of changes in species abundances, distributions, and behaviors. Here, we used plasma δ 13 C and δ 15 N values from juvenile blacktip reef sharks (Carcharhinus melanopterus) and juvenile sicklefin lemon sharks (Negaprion acutidens) to investigate how species co-occurrence affects their trophic interactions in littoral waters of Moorea, French Polynesia. Co-occurrence led to isotopic niche partitioning among sharks within nurseries, with significant increases in δ 15 N values among sicklefin lemon sharks, and significant decreases in δ 15 N among blacktip reef sharks. Niche segregation likely promotes coexistence of these two predators during early years of growth and development, but data do not suggest coexistence affects life history traits, such as body size, body condition, and ontogenetic niche shifts. Plasticity in trophic niches among juvenile blacktip reef sharks and sicklefin lemon sharks also suggests these predators are able to account for changes in community structure, resource availability, and intra-guild competition, and may fill similar functional roles in the absence of the other species, which is important as environmental change and human impacts persist in coral reef ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models

    EPA Science Inventory

    Species sensitivity distributions (SSD) are cumulative distribution functions of species toxicity values. The SSD approach is increasingly being used in ecological risk assessment, but is often limited by available toxicity data necessary for diverse species representation. In ...

  7. Distribution of Malassezia species in patients with pityriasis versicolor in Turkey.

    PubMed

    Rodoplu, G; Saracli, M A; Gümral, R; Taner Yildiran, S

    2014-06-01

    Pityriasis versicolor is a common superficial mycotic disease of the skin which is caused by different species of Malassezia genus. The aim of this study was to contribute to the knowledge of the aetiology of pityriasis versicolor (PV) with a mycological study made according to the new species and additionally, the success of the different sampling techniques, duration and recurrence history of the disease, distribution of infecting strains according to the affected body sites were also investigated. In total, 146 patients with pityriasis versicolor were included in this study. Fungal elements could only be visualized by potassium hydroxide examination in 36.4% of the samples. Specimens obtained by scraping skin surface by a sterile scalpel and/or sterile sticky plaster (OpSite) were inoculated in plates containing modified Dixon's medium. Out of 146 samples, 109 (74.7%) yielded a growth which was considered to be Malassezia spp. in culture. Species level identification of suspicious Malassezia yeasts was made according to their macroscopic and microscopic features, and their physiological characteristics. Among the identified species, Malassezia globosa (65.1%) was the most commonly isolated species, followed by Malassezia obtusa (17.4%). However, four Malassezia isolates could not be identified at species level with conventional methods. While most of the patients suffered their first episode of pityriasis versicolor (76%), back of the trunk was the mostly affected body site (39%). In conclusion, Malassezia globosa was found to be the predominant species in pityriasis versicolor patients in our region, and culture of the specimen is necessary for the epidemiologic purposes. Copyright © 2014. Published by Elsevier Masson SAS.

  8. Cumulative frequency distribution of past species extinctions

    NASA Technical Reports Server (NTRS)

    Raup, D. M.

    1991-01-01

    Analysis of Sepkoski's compendium of the time ranges of 30,000+ taxa yields a mean duration of 28.4 ma for genera of fossil invertebrates. This converts to an average extinction rate of 3.5 percent per million years or about one percent every 286,000 years. Using survivorship techniques, these estimates can be converted to the species level, yielding a Phanerozoic average of one percent species extinction every 40,000 years. Variation in extinction rates through time is far greater than the null expectation of a homogeneous birth-death model and this reflects the well-known episodicity of extinction ranging from a few large mass extinctions to so-called background extinction. The observed variation in rates can be used to construct a cumulative frequency distribution of extinction intensity, and this distribution, in the form of a kill curve for species, shows the expected waiting times between extinction events of a given intensity. The kill curve is an average description of the extinction events of a given intensity. The kill curve is an average description of the extinction record and does not imply any cause or causes of extinction. The kill curve shows, among other things, that only about five percent of total species extinctions in the Phanerozoic were involved in the five largest mass extinctions. The other 95 percent were distributed among large and small events not normally called mass extinctions. As an exploration of the possibly absurd proposition that most past extinctions were produced by the effects of large-body impact, the kill curve for species was mapped on the comparable distribution for comet and asteroid impacts. The result is a curve predicting the species kill for a given size of impacting object (expressed as crater size). The results are reasonable in that impacts producing craters less than 30 km (diameter) cause negligible extinction but those producing craters 100-150 km (diameter) cause extinction of species in the range of 45

  9. Climate suitability for European ticks: assessing species distribution models against null models and projection under AR5 climate.

    PubMed

    Williams, Hefin Wyn; Cross, Dónall Eoin; Crump, Heather Louise; Drost, Cornelis Jan; Thomas, Christopher James

    2015-08-28

    There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors. We undertook a comparative assessment of the performance of Maxent and Mahalanobis Distance SDMs based on observed data against those of null models based on null species distributions or null climate data. This enabled the identification of species whose distributions demonstrate a significant association with climate variables. Latest generation (AR5) climate projections were subsequently used to project future climate suitability under four Representative Concentration Pathways (RCPs). Seven out of eight tick species exhibited strong climatic signals within their observed distributions. Future projections intimate varying degrees of northward shift in climate suitability for these tick species, with the greatest shifts forecasted under the most extreme RCPs. Despite the high performance measure obtained for the observed model of Hyalomma lusitanicum, it did not perform significantly better than null models; this may result from the effects of non-climatic factors on its distribution. By comparing observed SDMs with null models, our results allow confidence that we have identified climate signals in tick distributions that are not simply a consequence of spatial patterns in the data. Observed climate-driven SDMs for seven out of eight species performed significantly better than null models, demonstrating the vulnerability of these tick species to the effects of

  10. Distribution maps for Midsouth tree species

    Treesearch

    Roy C. Beltz; Daniel F. Bertelson

    1990-01-01

    The Midsouth is an important timber-producing region, with a wide variety of sites and species. In addition to timber production, increasing demands for non-timber amenities are placed on the region’s forests. These maps indicate the distribution of individual species recorded in surveys of the Midsouth conducted by the U.S. Department of Agriculture, Forest Service....

  11. Nematode distributions as spatial null models for macroinvertebrate species richness across environmental gradients: A case from mountain lakes.

    PubMed

    de Mendoza, Guillermo; Traunspurger, Walter; Palomo, Alejandro; Catalan, Jordi

    2017-05-01

    Nematode species are widely tolerant of environmental conditions and disperse passively. Therefore, the species richness distribution in this group might largely depend on the topological distribution of the habitats and main aerial and aquatic dispersal pathways connecting them. If so, the nematode species richness distributions may serve as null models for evaluating that of other groups more affected by environmental gradients. We investigated this hypothesis in lakes across an altitudinal gradient in the Pyrenees. We compared the altitudinal distribution, environmental tolerance, and species richness, of nematodes with that of three other invertebrate groups collected during the same sampling: oligochaetes, chironomids, and nonchironomid insects. We tested the altitudinal bias in distributions with t -tests and the significance of narrow-ranging altitudinal distributions with randomizations. We compared results between groups with Fisher's exact tests. We then explored the influence of environmental factors on species assemblages in all groups with redundancy analysis (RDA), using 28 environmental variables. And, finally, we analyzed species richness patterns across altitude with simple linear and quadratic regressions. Nematode species were rarely biased from random distributions (5% of species) in contrast with other groups (35%, 47%, and 50%, respectively). The altitudinal bias most often shifted toward low altitudes (85% of biased species). Nematodes showed a lower portion of narrow-ranging species than any other group, and differed significantly from nonchironomid insects (10% and 43%, respectively). Environmental variables barely explained nematode assemblages (RDA adjusted R 2  = 0.02), in contrast with other groups (0.13, 0.19 and 0.24). Despite these substantial differences in the response to environmental factors, species richness across altitude was unimodal, peaking at mid elevations, in all groups. This similarity indicates that the spatial

  12. Distribution and diversity of twelve Curcuma species in China.

    PubMed

    Zhang, Lanyue; Wei, Jingwen; Yang, Zhiwen; Chen, Feng; Xian, Qiqiu; Su, Ping; Pan, Wanyi; Zhang, Kun; Zheng, Xi; Du, Zhiyun

    2018-02-01

    Genus Curcuma a wild species presents an important source of valuable characters for improving the cultivated Curcuma varieties. Based on the collected germplasms, herbariums, field surveys and other literatures, the ecogeographical diversity of Genus Curcuma and its potential distributions under the present and future climate are analysed by DIVA-GIS. The results indicate Genus Curcuma is distributed over 17 provinces in China, and particularly abundant in Guangxi and Guangdong provinces. The simulated current distributions are close to the actual distribution regions. In the future climate, the suitable areas for four Curcuma species will be extended, while for other three species the regions will be significantly decreased, and thus these valuable resources need protecting.

  13. Predicting the spatiotemporal distributions of marine fish species utilizing earth system data in a maximum entropy modeling framework

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kerr, L. A.; Bridger, E.

    2016-12-01

    Changes in species distributions have been widely associated with climate change. Understanding how ocean conditions influence marine fish distributions is critical for elucidating the role of climate in ecosystem change and forecasting how fish may be distributed in the future. Species distribution models (SDMs) can enable estimation of the likelihood of encountering species in space or time as a function of environmental conditions. Traditional SDMs are applied to scientific-survey data that include both presences and absences. Maximum entropy (MaxEnt) models are promising tools as they can be applied to presence-only data, such as those collected from fisheries or citizen science programs. We used MaxEnt to relate the occurrence records of marine fish species (e.g. Atlantic herring, Atlantic mackerel, and butterfish) from NOAA Northeast Fisheries Observer Program to environmental conditions. Environmental variables from earth system data, such as sea surface temperature (SST), sea bottom temperature (SBT), Chlorophyll-a, bathymetry, North Atlantic oscillation (NAO), and Atlantic multidecadal oscillation (AMO), were matched with species occurrence for MaxEnt modeling the fish distributions in Northeast Shelf area. We developed habitat suitability maps for these species, and assessed the relative influence of environmental factors on their distributions. Overall, SST and Chlorophyll-a had greatest influence on their monthly distributions, with bathymetry and SBT having moderate influence and climate indices (NAO and AMO) having little influence. Across months, Atlantic herring distribution was most related to SST 10th percentile, and Atlantic mackerel and butterfish distributions were most related to previous month SST. The fish distributions were most affected by previous month Chlorophyll-a in summer months, which may indirectly indicate the accumulative impact of primary productivity. Results highlighted the importance of spatial and temporal scales when using

  14. Lactational changes in concentration and distribution of ganglioside molecular species in human breast milk from Chinese mothers.

    PubMed

    Ma, Lin; Liu, Xihong; MacGibbon, Alastair K H; Rowan, Angela; McJarrow, Paul; Fong, Bertram Y

    2015-11-01

    Gangliosides play a critical role in human brain development and function. Human breast milk (HBM) is an important dietary source of gangliosides for the growing infant. In this study, ganglioside concentrations were measured in the breast milk from a cross-sectional sample of Chinese mothers over an 8-month lactation period. The average total ganglioside concentration increased from 13.1 mg/l during the first month to 20.9 mg/l by 8 months of lactation. The average concentration during the typically solely breast-feeding period of 1‒6 months was 18.9 mg/l. This is the first study to report the relative distribution of the individual ganglioside molecular species through lactation for any population group. The ganglioside molecular species are made up of different fatty acid moieties that influence the physical properties of these gangliosides, and hence affect their function. The GM(3) molecular species containing long-chain acyl fatty acids had the most prominent changes, increasing in both concentration and relative distribution. The equivalent long-chain acyl fatty acid GD(3) molecular species typically decreased in concentration and relative distribution. The lactational trends for both concentration and relative distribution for the very long-chain acyl fatty acid molecular species were more varied. The major GM(3) and GD(3) molecular species during lactation were d40:1 and d42:1, respectively. An understanding of ganglioside molecular species distribution in HBM is essential for accurate application of mass spectrometry methods for ganglioside quantification.

  15. Factors affecting the concordance between orthologous gene trees and species tree in bacteria.

    PubMed

    Castillo-Ramírez, Santiago; González, Víctor

    2008-10-30

    As originally defined, orthologous genes implied a reflection of the history of the species. In recent years, many studies have examined the concordance between orthologous gene trees and species trees in bacteria. These studies have produced contradictory results that may have been influenced by orthologous gene misidentification and artefactual phylogenetic reconstructions. Here, using a method that allows the detection and exclusion of false positives during identification of orthologous genes, we address the question of whether putative orthologous genes within bacteria really reflect the history of the species. We identified a set of 370 orthologous genes from the bacterial order Rhizobiales. Although manifesting strong vertical signal, almost every orthologous gene had a distinct phylogeny, and the most common topology among the orthologous gene trees did not correspond with the best estimate of the species tree. However, each orthologous gene tree shared an average of 70% of its bipartitions with the best estimate of the species tree. Stochastic error related to gene size affected the concordance between the best estimated of the species tree and the orthologous gene trees, although this effect was weak and distributed unevenly among the functional categories. The nodes showing the greatest discordance were those defined by the shortest internal branches in the best estimated of the species tree. Moreover, a clear bias was evident with respect to the function of the orthologous genes, and the degree of divergence among the orthologous genes appeared to be related to their functional classification. Orthologous genes do not reflect the history of the species when taken as individual markers, but they do when taken as a whole. Stochastic error affected the concordance of orthologous genes with the species tree, albeit weakly. We conclude that two important biological causes of discordance among orthologous genes are incomplete lineage sorting and functional

  16. Book review: A new view on the species abundance distribution

    USGS Publications Warehouse

    DeAngelis, Donald L.

    2018-01-01

    The sampled relative abundances of species of a taxonomic group, whether birds, trees, or moths, in a natural community at a particular place vary in a way that suggests a consistent underlying pattern, referred to as the species abundance distribution (SAD). Preston [1] conjectured that the numbers of species, plotted as a histogram of logarithmic abundance classes called octaves, seemed to fit a lognormal distribution; that is, the histograms look like normal distributions, although truncated on the left-hand, or low-species-abundance, end. Although other specific curves for the SAD have been proposed in the literature, Preston’s lognormal distribution is widely cited in textbooks and has stimulated attempts at explanation. An important aspect of Preston’s lognormal distribution is the ‘veil line’, a vertical line drawn exactly at the point of the left-hand truncation in the distribution, to the left of which would be species missing from the sample. Dewdney rejects the lognormal conjecture. Instead, starting with the long-recognized fact that the number of species sampled from a community, when plotted as histograms against population abundance, resembles an inverted J, he presents a mathematical description of an alternative that he calls the ‘J distribution’, a hyperbolic density function truncated at both ends. When multiplied by species richness, R, it becomes the SAD of the sample.

  17. Modeling Emergent Macrophyte Distributions: Including Sub-dominant Species

    EPA Science Inventory

    Mixed stands of emergent vegetation are often present following drawdowns but models of wetland plant distributions fail to include subdominant species when predicting distributions. Three variations of a spatial plant distribution cellular automaton model were developed to explo...

  18. Species distribution modelling for plant communities: Stacked single species or multivariate modelling approaches?

    Treesearch

    Emilie B. Henderson; Janet L. Ohmann; Matthew J. Gregory; Heather M. Roberts; Harold S.J. Zald

    2014-01-01

    Landscape management and conservation planning require maps of vegetation composition and structure over large regions. Species distribution models (SDMs) are often used for individual species, but projects mapping multiple species are rarer. We compare maps of plant community composition assembled by stacking results from many SDMs with multivariate maps constructed...

  19. Mistaking geography for biology: inferring processes from species distributions.

    PubMed

    Warren, Dan L; Cardillo, Marcel; Rosauer, Dan F; Bolnick, Daniel I

    2014-10-01

    Over the past few decades, there has been a rapid proliferation of statistical methods that infer evolutionary and ecological processes from data on species distributions. These methods have led to considerable new insights, but they often fail to account for the effects of historical biogeography on present-day species distributions. Because the geography of speciation can lead to patterns of spatial and temporal autocorrelation in the distributions of species within a clade, this can result in misleading inferences about the importance of deterministic processes in generating spatial patterns of biodiversity. In this opinion article, we discuss ways in which patterns of species distributions driven by historical biogeography are often interpreted as evidence of particular evolutionary or ecological processes. We focus on three areas that are especially prone to such misinterpretations: community phylogenetics, environmental niche modelling, and analyses of beta diversity (compositional turnover of biodiversity). Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  20. Zooplankton Distribution and Species Composition Along an Oxygen Gradient in Puget Sound, WA

    NASA Astrophysics Data System (ADS)

    Keister, J. E.; Essington, T.; Li, L.; Horne, J. K.; Sato, M.; Parker-Stetter, S. L.; Moriarty, P.

    2016-02-01

    Low dissolved oxygen (hypoxia) is one of the most pronounced, pervasive, and significant disturbances in marine ecosystems, yet our understanding of its effects is incomplete, particularly with respect to impacts on lower trophic levels. As part of a study of how hypoxia affects predator-prey relationships and energy flow through marine food webs, we are studying relationships between ocean chemistry and zooplankton in Puget Sound, Washington—a deep, seasonally hypoxic fjord in the Pacific Northwest that supports a productive and diverse pelagic community. From summer through fall in two years that differed in the timing and intensity of hypoxia, we conducted multi-frequency bioacoustic surveys, CTD casts, and depth-stratified zooplankton sampling to examine changes in distribution and species composition of animals in relation to oxygen concentrations. We exploited a natural gradient in oxygen along the axis of the fjord by sampling at moderately hypoxic and normoxic sites with otherwise similar hydrography and species composition to disentangle the effects of oxygen from changes in other environmental factors. Our results support the hypothesis that zooplankton species composition and vertical distributions are altered by hypoxia, but only when examined at the species and life-stage level. Relatively few taxa showed clear responses to hypoxia, and bioacoustic backscatter data (which was dominated by adult euphausiids and amphipods) indicated that those taxa were not affected by the levels of hypoxia we observed. Examination of net tow data revealed more subtle changes, including behavioral avoidance of low oxygen by some copepods and young euphausiid life stages. Overall, the high species diversity and relatively low susceptibility of many zooplankton to hypoxia in Puget Sound may confer ecosystem resilience to near-future projected changes in this region.

  1. Prey dispersal rate affects prey species composition and trait diversity in response to multiple predators in metacommunities.

    PubMed

    Howeth, Jennifer G; Leibold, Mathew A

    2010-09-01

    1. Recent studies indicate that large-scale spatial processes can alter local community structuring mechanisms to determine local and regional assemblages of predators and their prey. In metacommunities, this may occur when the functional diversity represented in the regional predator species pool interacts with the rate of prey dispersal among local communities to affect prey species diversity and trait composition at multiple scales. 2. Here, we test for effects of prey dispersal rate and spatially and temporally heterogeneous predation from functionally dissimilar predators on prey structure in pond mesocosm metacommunities. An experimental metacommunity consisted of three pond mesocosm communities supporting two differentially size-selective invertebrate predators and their zooplankton prey. In each metacommunity, two communities maintained constant predation and supported either Gyrinus sp. (Coleoptera) or Notonecta ungulata (Hemiptera) predators generating a spatial prey refuge while the third community supported alternating predation from Gyrinus sp. and N. ungulata generating a temporal prey refuge. Mesocosm metacommunities were connected at either low (0.7% day(-1)) or high (10% day(-1)) planktonic prey dispersal. The diversity, composition and body size of zooplankton prey were measured at local and regional (metacommunity) scales. 3. Metacommunities experiencing the low prey dispersal rate supported the greatest regional prey species diversity (H') and evenness (J'). Neither dispersal rate nor predation regime affected local prey diversity or evenness. The spatial prey refuge at low dispersal maintained the largest difference in species composition and body size diversity between communities under Gyrinus and Notonecta predation, suggesting that species sorting was operating at the low dispersal rate. There was no effect of dispersal rate on species diversity or body size distribution in the temporal prey refuge. 4. The frequency distribution, but not

  2. Considerations for building climate-based species distribution models

    USGS Publications Warehouse

    Bucklin, David N.; Basille, Mathieu; Romañach, Stephanie; Brandt, Laura A.; Mazzotti, Frank J.; Watling, James I.

    2016-01-01

    Climate plays an important role in the distribution of species. A given species may adjust to new conditions in-place, move to new areas with suitable climates, or go extinct. Scientists and conservation practitioners use mathematical models to predict the effects of future climate change on wildlife and plan for a biodiverse future. This 8-page fact sheet written by David N. Bucklin, Mathieu Basille, Stephanie S. Romañach, Laura A. Brandt, Frank J. Mazzotti, and James I. Watling and published by the Department of Wildlife Ecology and Conservation explains how, with a better understanding of species distribution models, we can predict how species may respond to climate change. The models alone cannot tell us how a certain species will actually respond to changes in climate, but they can inform conservation planning that aims to allow species to both adapt in place and (for those that are able to) move to newly suitable areas. Such planning will likely minimize loss of biodiversity due to climate change.

  3. Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species.

    PubMed

    Kastman, Erik K; Kamelamela, Noelani; Norville, Josh W; Cosetta, Casey M; Dutton, Rachel J; Wolfe, Benjamin E

    2016-10-18

    Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. Decades of culture-based studies and more recent metagenomic studies have demonstrated that bacterial species in agriculture, medicine, industry, and nature are unevenly distributed across time and space. The ecological processes and molecular mechanisms that shape these distributions are not well understood because it is challenging to connect in situ patterns of diversity with mechanistic in vitro studies in the laboratory. Using tractable cheese rind biofilms and a focus on coagulase-negative staphylococcus (CNS

  4. Integrating DNA-based data into bioassessments improves our understanding of species distributions and species habitat relationships

    EPA Science Inventory

    The integration of DNA-based identification methods into bioassessments could result in more accurate representations of species distributions and species-habitat relationships. DNA-based approaches may be particularly informative for tracking the distributions of rare and/or inv...

  5. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks.

    PubMed

    Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute

  6. How much does climate change threaten European forest tree species distributions?

    PubMed

    Dyderski, Marcin K; Paź, Sonia; Frelich, Lee E; Jagodziński, Andrzej M

    2018-03-01

    Although numerous species distribution models have been developed, most were based on insufficient distribution data or used older climate change scenarios. We aimed to quantify changes in projected ranges and threat level by the years 2061-2080, for 12 European forest tree species under three climate change scenarios. We combined tree distribution data from the Global Biodiversity Information Facility, EUFORGEN, and forest inventories, and we developed species distribution models using MaxEnt and 19 bioclimatic variables. Models were developed for three climate change scenarios-optimistic (RCP2.6), moderate (RCP4.5), and pessimistic (RPC8.5)-using three General Circulation Models, for the period 2061-2080. Our study revealed different responses of tree species to projected climate change. The species may be divided into three groups: "winners"-mostly late-successional species: Abies alba, Fagus sylvatica, Fraxinus excelsior, Quercus robur, and Quercus petraea; "losers"-mostly pioneer species: Betula pendula, Larix decidua, Picea abies, and Pinus sylvestris; and alien species-Pseudotsuga menziesii, Quercus rubra, and Robinia pseudoacacia, which may be also considered as "winners." Assuming limited migration, most of the species studied would face a significant decrease in suitable habitat area. The threat level was highest for species that currently have the northernmost distribution centers. Ecological consequences of the projected range contractions would be serious for both forest management and nature conservation. © 2017 John Wiley & Sons Ltd.

  7. On species persistence-time distributions.

    PubMed

    Suweis, S; Bertuzzo, E; Mari, L; Rodriguez-Iturbe, I; Maritan, A; Rinaldo, A

    2012-06-21

    We present new theoretical and empirical results on the probability distributions of species persistence times in natural ecosystems. Persistence times, defined as the timespans occurring between species' colonization and local extinction in a given geographic region, are empirically estimated from local observations of species' presence/absence. A connected sampling problem is presented, generalized and solved analytically. Species persistence is shown to provide a direct connection with key spatial macroecological patterns like species-area and endemics-area relationships. Our empirical analysis pertains to two different ecosystems and taxa: a herbaceous plant community and a estuarine fish database. Despite the substantial differences in ecological interactions and spatial scales, we confirm earlier evidence on the general properties of the scaling of persistence times, including the predicted effects of the structure of the spatial interaction network. The framework tested here allows to investigate directly nature and extent of spatial effects in the context of ecosystem dynamics. The notable coherence between spatial and temporal macroecological patterns, theoretically derived and empirically verified, is suggested to underlie general features of the dynamic evolution of ecosystems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Uncertainty of future projections of species distributions in mountainous regions.

    PubMed

    Tang, Ying; Winkler, Julie A; Viña, Andrés; Liu, Jianguo; Zhang, Yuanbin; Zhang, Xiaofeng; Li, Xiaohong; Wang, Fang; Zhang, Jindong; Zhao, Zhiqiang

    2018-01-01

    Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM) simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt) modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline climate information to

  9. Uncertainty of future projections of species distributions in mountainous regions

    PubMed Central

    Tang, Ying; Viña, Andrés; Liu, Jianguo; Zhang, Yuanbin; Zhang, Xiaofeng; Li, Xiaohong; Wang, Fang; Zhang, Jindong; Zhao, Zhiqiang

    2018-01-01

    Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM) simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt) modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline climate information to

  10. Assessing the multi-scale predictive ability of ecosystem functional attributes for species distribution modelling.

    PubMed

    Arenas-Castro, Salvador; Gonçalves, João; Alves, Paulo; Alcaraz-Segura, Domingo; Honrado, João P

    2018-01-01

    Global environmental changes are rapidly affecting species' distributions and habitat suitability worldwide, requiring a continuous update of biodiversity status to support effective decisions on conservation policy and management. In this regard, satellite-derived Ecosystem Functional Attributes (EFAs) offer a more integrative and quicker evaluation of ecosystem responses to environmental drivers and changes than climate and structural or compositional landscape attributes. Thus, EFAs may hold advantages as predictors in Species Distribution Models (SDMs) and for implementing multi-scale species monitoring programs. Here we describe a modelling framework to assess the predictive ability of EFAs as Essential Biodiversity Variables (EBVs) against traditional datasets (climate, land-cover) at several scales. We test the framework with a multi-scale assessment of habitat suitability for two plant species of conservation concern, both protected under the EU Habitats Directive, differing in terms of life history, range and distribution pattern (Iris boissieri and Taxus baccata). We fitted four sets of SDMs for the two test species, calibrated with: interpolated climate variables; landscape variables; EFAs; and a combination of climate and landscape variables. EFA-based models performed very well at the several scales (AUCmedian from 0.881±0.072 to 0.983±0.125), and similarly to traditional climate-based models, individually or in combination with land-cover predictors (AUCmedian from 0.882±0.059 to 0.995±0.083). Moreover, EFA-based models identified additional suitable areas and provided valuable information on functional features of habitat suitability for both test species (narrowly vs. widely distributed), for both coarse and fine scales. Our results suggest a relatively small scale-dependence of the predictive ability of satellite-derived EFAs, supporting their use as meaningful EBVs in SDMs from regional and broader scales to more local and finer scales. Since

  11. Using Bioassays and Species Sensitivity Distributions to Assess Herbicide Toxicity towards Benthic Diatoms

    PubMed Central

    Larras, Floriane; Bouchez, Agnès; Rimet, Frédéric; Montuelle, Bernard

    2012-01-01

    Although benthic diatoms are widely used in ecological studies of aquatic systems, there is still a dearth of data concerning species sensitivities towards several contaminants. Within the same community, different species may respond differently depending on their physiological and ecological characteristics. This lack of knowledge makes specific appropriate risk assessment impossible. To find out whether species sensitivity distribution (SSD) could be used to estimate the risk of herbicide toxicity for diatoms, we need to know whether their sensitivity depends on their physiological and ecological characteristics. We carried out single-species bioassays on 11 diatom species exposed to 8 herbicides. Dose-responses relationships were used to extrapolate the Effective Concentration 5 (EC5) and the Effective Concentration 50 (EC50) for each exposure. These data were used to fit a SSD curve for each herbicide, and to determine the Hazardous concentration 5 (HC5) and 50 (HC50). Our results revealed a high level of variability of the sensitivity in the set of species tested. For photosystem-II inhibitor (PSII) herbicides, diatoms species displayed a typical grouping of sensitivity levels consistent with their trophic mode and their ecological guild. N-heterotroph and “motile” guild species were more tolerant of PSII inhibitors, while N-autotroph and “low profile” guild species were more sensitive. Comprehensive SSD curves were obtained for 5 herbicides, but not for sulfonylurea herbicides or for dimetachlor, which had toxicity levels that were below the range of concentration tested. The SSD curves provided the following ranking of toxicity: diuron> terbutryn> isoproturon> atrazine> metolachlor. The HC that affected 5% of the species revealed that, even at the usual environmental concentrations of herbicides, diatom assemblages could be affected, especially by isoproturon, terbutryn, and diuron. PMID:22952981

  12. Investigating distribution pattern of species in a warm-temperate conifer-broadleaved-mixed forest in China for sustainably utilizing forest and soils.

    PubMed

    Song, Houjuan; Xu, Yudan; Hao, Jing; Zhao, Bingqing; Guo, Donggang; Shao, Hongbo

    2017-02-01

    The maintaining mechanisms and potential ecological processes of species diversity in warm temperate- conifer-broadleaved-mixed forest are far from clear understanding. In this paper, the relative neighborhood density Ω was used to analyze the spatial distribution patterns of 34 species with ≥11 individuals in a warm- temperate-conifer-broadleaved-mixed forest, northern China. Then we used canonical correspondence analysis (CCA) and Torus-translation test (TTT) to explain the distribution of observed species. Our results show that aggregated distribution is the dominant pattern in warm-temperate natural forest and four species regular distribution at the spatial scale >30m. The aggregated percentage and intensity decline with spatial scale, abundance and size classes increasing. Rare species are aggregated more than intermediate and abundant species. These results prove sufficiently the effects existence of scale separation, self-thinning and Janzen-Connell hypothesis. In addition, functional traits (dispersal modes and shade tolerance) also have a significant influence on distribution of species. The results of CCA confirm that slope and convexity are the most important factors affecting the distribution of tree species distribution, elevation and slope of shrub species though the combination of topographic variables only explained 1% of distribution of tree species and 2% of shrub species. Most species don't have habitat preference; however 47.1% (16/34) species including absolutely dominant tree (Pinus tabulaeformis and Quercus wutaishanica) and shrub species (Rosa xanthina) and most other species with important value in the front, are strongly positively or negatively associated with at least one habitat. The valley and ridge are most distinct habitat with association of 12 species in the plot. However, high elevation slope with 257 quadrats is the most extensive habitat with only four species. Therefore, there is obvious evidence that habitat heterogeneity

  13. How can model comparison help improving species distribution models?

    PubMed

    Gritti, Emmanuel Stephan; Gaucherel, Cédric; Crespo-Perez, Maria-Veronica; Chuine, Isabelle

    2013-01-01

    Today, more than ever, robust projections of potential species range shifts are needed to anticipate and mitigate the impacts of climate change on biodiversity and ecosystem services. Such projections are so far provided almost exclusively by correlative species distribution models (correlative SDMs). However, concerns regarding the reliability of their predictive power are growing and several authors call for the development of process-based SDMs. Still, each of these methods presents strengths and weakness which have to be estimated if they are to be reliably used by decision makers. In this study we compare projections of three different SDMs (STASH, LPJ and PHENOFIT) that lie in the continuum between correlative models and process-based models for the current distribution of three major European tree species, Fagussylvatica L., Quercusrobur L. and Pinussylvestris L. We compare the consistency of the model simulations using an innovative comparison map profile method, integrating local and multi-scale comparisons. The three models simulate relatively accurately the current distribution of the three species. The process-based model performs almost as well as the correlative model, although parameters of the former are not fitted to the observed species distributions. According to our simulations, species range limits are triggered, at the European scale, by establishment and survival through processes primarily related to phenology and resistance to abiotic stress rather than to growth efficiency. The accuracy of projections of the hybrid and process-based model could however be improved by integrating a more realistic representation of the species resistance to water stress for instance, advocating for pursuing efforts to understand and formulate explicitly the impact of climatic conditions and variations on these processes.

  14. How Can Model Comparison Help Improving Species Distribution Models?

    PubMed Central

    Gritti, Emmanuel Stephan; Gaucherel, Cédric; Crespo-Perez, Maria-Veronica; Chuine, Isabelle

    2013-01-01

    Today, more than ever, robust projections of potential species range shifts are needed to anticipate and mitigate the impacts of climate change on biodiversity and ecosystem services. Such projections are so far provided almost exclusively by correlative species distribution models (correlative SDMs). However, concerns regarding the reliability of their predictive power are growing and several authors call for the development of process-based SDMs. Still, each of these methods presents strengths and weakness which have to be estimated if they are to be reliably used by decision makers. In this study we compare projections of three different SDMs (STASH, LPJ and PHENOFIT) that lie in the continuum between correlative models and process-based models for the current distribution of three major European tree species, Fagus sylvatica L., Quercus robur L. and Pinus sylvestris L. We compare the consistency of the model simulations using an innovative comparison map profile method, integrating local and multi-scale comparisons. The three models simulate relatively accurately the current distribution of the three species. The process-based model performs almost as well as the correlative model, although parameters of the former are not fitted to the observed species distributions. According to our simulations, species range limits are triggered, at the European scale, by establishment and survival through processes primarily related to phenology and resistance to abiotic stress rather than to growth efficiency. The accuracy of projections of the hybrid and process-based model could however be improved by integrating a more realistic representation of the species resistance to water stress for instance, advocating for pursuing efforts to understand and formulate explicitly the impact of climatic conditions and variations on these processes. PMID:23874779

  15. Role of climate and invasive species in structuring trout distributions in the interior Columbia River Basin, USA

    USGS Publications Warehouse

    Wenger, Seth J.; Isaak, Daniel J.; Dunham, Jason B.; Fausch, Kurt D.; Luce, Charles H.; Neville, Helen M.; Rieman, Bruce E.; Young, Michael K.; Nagel, David E.; Horan, Dona L.; Chandler, Gwynne L.

    2011-01-01

    Recent and projected climate warming trends have prompted interest in impacts on coldwater fishes. We examined the role of climate (temperature and flow regime) relative to geomorphology and land use in determining the observed distributions of three trout species in the interior Columbia River Basin, USA. We considered two native species, cutthroat trout (Oncorhynchus clarkii) and bull trout (Salvelinus confluentus), as well as nonnative brook trout (Salvelinus fontinalis). We also examined the response of the native species to the presence of brook trout. Analyses were conducted using multilevel logistic regression applied to a geographically broad database of 4165 fish surveys. The results indicated that bull trout distributions were strongly related to climatic factors, and more weakly related to the presence of brook trout and geomorphic variables. Cutthroat trout distributions were weakly related to climate but strongly related to the presence of brook trout. Brook trout distributions were related to both climate and geomorphic variables, including proximity to unconfined valley bottoms. We conclude that brook trout and bull trout are likely to be adversely affected by climate warming, whereas cutthroat trout may be less sensitive. The results illustrate the importance of considering species interactions and flow regime alongside temperature in understanding climate effects on fish.

  16. Used-habitat calibration plots: A new procedure for validating species distribution, resource selection, and step-selection models

    USGS Publications Warehouse

    Fieberg, John R.; Forester, James D.; Street, Garrett M.; Johnson, Douglas H.; ArchMiller, Althea A.; Matthiopoulos, Jason

    2018-01-01

    Species distribution modeling” was recently ranked as one of the top five “research fronts” in ecology and the environmental sciences by ISI's Essential Science Indicators (Renner and Warton 2013), reflecting the importance of predicting how species distributions will respond to anthropogenic change. Unfortunately, species distribution models (SDMs) often perform poorly when applied to novel environments. Compounding on this problem is the shortage of methods for evaluating SDMs (hence, we may be getting our predictions wrong and not even know it). Traditional methods for validating SDMs quantify a model's ability to classify locations as used or unused. Instead, we propose to focus on how well SDMs can predict the characteristics of used locations. This subtle shift in viewpoint leads to a more natural and informative evaluation and validation of models across the entire spectrum of SDMs. Through a series of examples, we show how simple graphical methods can help with three fundamental challenges of habitat modeling: identifying missing covariates, non-linearity, and multicollinearity. Identifying habitat characteristics that are not well-predicted by the model can provide insights into variables affecting the distribution of species, suggest appropriate model modifications, and ultimately improve the reliability and generality of conservation and management recommendations.

  17. High-resolution pattern of mangrove species distribution is controlled by surface elevation

    NASA Astrophysics Data System (ADS)

    Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.

    2018-03-01

    Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.

  18. Ghost of habitat past: historic habitat affects the contemporary distribution of giant garter snakes in a modified landscape.

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2014-01-01

    Historic habitat conditions can affect contemporary communities and populations, but most studies of historic habitat are based on the reduction in habitat extent or connectivity. Little is known about the effects of historic habitat on contemporary species distributions when historic habitat has been nearly completely removed, but species persist in a highly altered landscape. More than 93% of the historic wetlands in the Central Valley of California, USA, have been drained and converted to agricultural and other uses, but agricultural wetlands, such as rice and its supporting infrastructure of canals, allow some species to persist. Little is known about the distribution of giant garter snakes Thamnophis gigas, a rare aquatic snake species inhabiting this predominantly agricultural landscape, or the variables that affect where this species occurs. We used occupancy modeling to examine the distribution of giant garter snakes at the landscape scale in the Sacramento Valley (northern portion of the Central Valley) of California, with an emphasis on the relative strength of historic and contemporary variables (landscape-scale habitat, local microhabitat, vegetation composition and relative prey counts) for predicting giant garter snake occurrence. Proximity to historic marsh best explained variation in the probability of occurrence of giant garter snakes at the landscape scale, with greater probability of occurrence near historic marsh. We suspect that the importance of distance to historic marsh represents dispersal limitations of giant garter snakes. These results suggest that preserving and restoring areas near historic marsh, and minimizing activities that reduce the extent of marsh or marsh-like (e.g. rice agriculture, canal) habitats near historic marsh may be advantageous to giant garter snakes.

  19. Transferability of species distribution models: a functional habitat approach for two regionally threatened butterflies.

    PubMed

    Vanreusel, Wouter; Maes, Dirk; Van Dyck, Hans

    2007-02-01

    Numerous models for predicting species distribution have been developed for conservation purposes. Most of them make use of environmental data (e.g., climate, topography, land use) at a coarse grid resolution (often kilometres). Such approaches are useful for conservation policy issues including reserve-network selection. The efficiency of predictive models for species distribution is usually tested on the area for which they were developed. Although highly interesting from the point of view of conservation efficiency, transferability of such models to independent areas is still under debate. We tested the transferability of habitat-based predictive distribution models for two regionally threatened butterflies, the green hairstreak (Callophrys rubi) and the grayling (Hipparchia semele), within and among three nature reserves in northeastern Belgium. We built predictive models based on spatially detailed maps of area-wide distribution and density of ecological resources. We used resources directly related to ecological functions (host plants, nectar sources, shelter, microclimate) rather than environmental surrogate variables. We obtained models that performed well with few resource variables. All models were transferable--although to different degrees--among the independent areas within the same broad geographical region. We argue that habitat models based on essential functional resources could transfer better in space than models that use indirect environmental variables. Because functional variables can easily be interpreted and even be directly affected by terrain managers, these models can be useful tools to guide species-adapted reserve management.

  20. [Distribution of Leishmania infantum vector species in Colombia].

    PubMed

    González, Camila; Cabrera, Olga L; Munstermann, Leonard E; Ferro, Cristina

    2006-10-01

    Since entomological surveillance is the main control strategy for visceral leishmaniasis, updated information on the distribution and ecology of involved vector species is necessary for planning preventive measures. To present the updated and geo-referenced distribution of L. longipalpis and L. evansi, vectors of visceral leishmaniasis in Colombia, considering their relationship with their habitat. Distribution was estimated from records of the sand fly specimens collected since 1967. The information was organized in a database from which the localities were selected and geographically analyzed with Arc view in order to develop the distribution maps. 40 localities were established for L. longipalpis along the upper (24), middle (11) and lower (5) Magdalena river valley. L. evansi was recorded in 19 localities of the middle (5) and lower (14) Magdalena valley. Both species showed consistent association with dry tropical forest (sensu Holdridge 1967), confirming the epidemiological risk for visceral leishmaniasis in these areas.

  1. Hierarchical analysis of species distributions and abundance across environmental gradients

    Treesearch

    Jeffery Diez; Ronald H. Pulliam

    2007-01-01

    Abiotic and biotic processes operate at multiple spatial and temporal scales to shape many ecological processes, including species distributions and demography. Current debate about the relative roles of niche-based and stochastic processes in shaping species distributions and community composition reflects, in part, the challenge of understanding how these processes...

  2. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks

    PubMed Central

    Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute

  3. Distribution Patterns of Ohio Stoneflies, with an Emphasis on Rare and Uncommon Species

    PubMed Central

    Grubbs, Scott A.; Pessimo, Massimo; DeWalt, R. Edward

    2013-01-01

    Presently, 102 stonefly species (Plecoptera) have been reported from Ohio. All 9 Nearctic families are represented. Over 90% of the fauna exhibit a combination of broad Nearctic-widespread, eastern Nearctic-widespread, Appalachian, and eastern Nearctic-unglaciated distributions. In contrast, only 2 species display a central Nearctic-Prairie distribution. Seven species of Perlidae are likely no longer present (Acroneuria evoluta Klapálek, A. perplexa Frison, Attaneuria ruralis (Hagen), and Neoperla mainensis Banks) or have experienced marked range reductions (Acroneuria abnormis (Newman), A. frisoni Stark and Brown, and A. filicis Frison). Another nearly 31% of the fauna (32 species) are rare, uncommon, or have highly-limited distributions within the state. Twelve of these species have Appalachian distributions, and an additional 8 have eastern Nearctic-unglaciated distributions. The distributional status for each of the 32 rare/uncommon species is discussed. PMID:24219390

  4. Predicting species distributions for conservation decisions

    PubMed Central

    Guisan, Antoine; Tingley, Reid; Baumgartner, John B; Naujokaitis-Lewis, Ilona; Sutcliffe, Patricia R; Tulloch, Ayesha I T; Regan, Tracey J; Brotons, Lluis; McDonald-Madden, Eve; Mantyka-Pringle, Chrystal; Martin, Tara G; Rhodes, Jonathan R; Maggini, Ramona; Setterfield, Samantha A; Elith, Jane; Schwartz, Mark W; Wintle, Brendan A; Broennimann, Olivier; Austin, Mike; Ferrier, Simon; Kearney, Michael R; Possingham, Hugh P; Buckley, Yvonne M

    2013-01-01

    Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats, reserve selection and translocation of endangered species, we propose that SDMs may be tailored to suit a range of decision-making contexts when used within a structured and transparent decision-making process. To construct appropriate SDMs to more effectively guide conservation actions, modellers need to better understand the decision process, and decision makers need to provide feedback to modellers regarding the actual use of SDMs to support conservation decisions. This could be facilitated by individuals or institutions playing the role of ‘translators’ between modellers and decision makers. We encourage species distribution modellers to get involved in real decision-making processes that will benefit from their technical input; this strategy has the potential to better bridge theory and practice, and contribute to improve both scientific knowledge and conservation outcomes. PMID:24134332

  5. Incorporating uncertainty in predictive species distribution modelling.

    PubMed

    Beale, Colin M; Lennon, Jack J

    2012-01-19

    Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.

  6. Spatially-explicit estimation of geographical representation in large-scale species distribution datasets.

    PubMed

    Kalwij, Jesse M; Robertson, Mark P; Ronk, Argo; Zobel, Martin; Pärtel, Meelis

    2014-01-01

    Much ecological research relies on existing multispecies distribution datasets. Such datasets, however, can vary considerably in quality, extent, resolution or taxonomic coverage. We provide a framework for a spatially-explicit evaluation of geographical representation within large-scale species distribution datasets, using the comparison of an occurrence atlas with a range atlas dataset as a working example. Specifically, we compared occurrence maps for 3773 taxa from the widely-used Atlas Florae Europaeae (AFE) with digitised range maps for 2049 taxa of the lesser-known Atlas of North European Vascular Plants. We calculated the level of agreement at a 50-km spatial resolution using average latitudinal and longitudinal species range, and area of occupancy. Agreement in species distribution was calculated and mapped using Jaccard similarity index and a reduced major axis (RMA) regression analysis of species richness between the entire atlases (5221 taxa in total) and between co-occurring species (601 taxa). We found no difference in distribution ranges or in the area of occupancy frequency distribution, indicating that atlases were sufficiently overlapping for a valid comparison. The similarity index map showed high levels of agreement for central, western, and northern Europe. The RMA regression confirmed that geographical representation of AFE was low in areas with a sparse data recording history (e.g., Russia, Belarus and the Ukraine). For co-occurring species in south-eastern Europe, however, the Atlas of North European Vascular Plants showed remarkably higher richness estimations. Geographical representation of atlas data can be much more heterogeneous than often assumed. Level of agreement between datasets can be used to evaluate geographical representation within datasets. Merging atlases into a single dataset is worthwhile in spite of methodological differences, and helps to fill gaps in our knowledge of species distribution ranges. Species distribution

  7. What do we gain from simplicity versus complexity in species distribution models?

    USGS Publications Warehouse

    Merow, Cory; Smith, Matthew J.; Edwards, Thomas C.; Guisan, Antoine; McMahon, Sean M.; Normand, Signe; Thuiller, Wilfried; Wuest, Rafael O.; Zimmermann, Niklaus E.; Elith, Jane

    2014-01-01

    Species distribution models (SDMs) are widely used to explain and predict species ranges and environmental niches. They are most commonly constructed by inferring species' occurrence–environment relationships using statistical and machine-learning methods. The variety of methods that can be used to construct SDMs (e.g. generalized linear/additive models, tree-based models, maximum entropy, etc.), and the variety of ways that such models can be implemented, permits substantial flexibility in SDM complexity. Building models with an appropriate amount of complexity for the study objectives is critical for robust inference. We characterize complexity as the shape of the inferred occurrence–environment relationships and the number of parameters used to describe them, and search for insights into whether additional complexity is informative or superfluous. By building ‘under fit’ models, having insufficient flexibility to describe observed occurrence–environment relationships, we risk misunderstanding the factors shaping species distributions. By building ‘over fit’ models, with excessive flexibility, we risk inadvertently ascribing pattern to noise or building opaque models. However, model selection can be challenging, especially when comparing models constructed under different modeling approaches. Here we argue for a more pragmatic approach: researchers should constrain the complexity of their models based on study objective, attributes of the data, and an understanding of how these interact with the underlying biological processes. We discuss guidelines for balancing under fitting with over fitting and consequently how complexity affects decisions made during model building. Although some generalities are possible, our discussion reflects differences in opinions that favor simpler versus more complex models. We conclude that combining insights from both simple and complex SDM building approaches best advances our knowledge of current and future species

  8. How many sightings to model rare marine species distributions

    PubMed Central

    Authier, Matthieu; Monestiez, Pascal; Ridoux, Vincent

    2018-01-01

    Despite large efforts, datasets with few sightings are often available for rare species of marine megafauna that typically live at low densities. This paucity of data makes modelling the habitat of these taxa particularly challenging. We tested the predictive performance of different types of species distribution models fitted to decreasing numbers of sightings. Generalised additive models (GAMs) with three different residual distributions and the presence only model MaxEnt were tested on two megafauna case studies differing in both the number of sightings and ecological niches. From a dolphin (277 sightings) and an auk (1,455 sightings) datasets, we simulated rarity with a sighting thinning protocol by random sampling (without replacement) of a decreasing fraction of sightings. Better prediction of the distribution of a rarely sighted species occupying a narrow habitat (auk dataset) was expected compared to the distribution of a rarely sighted species occupying a broad habitat (dolphin dataset). We used the original datasets to set up a baseline model and fitted additional models on fewer sightings but keeping effort constant. Model predictive performance was assessed with mean squared error and area under the curve. Predictions provided by the models fitted to the thinned-out datasets were better than a homogeneous spatial distribution down to a threshold of approximately 30 sightings for a GAM with a Tweedie distribution and approximately 130 sightings for the other models. Thinning the sighting data for the taxon with narrower habitats seemed to be less detrimental to model predictive performance than for the broader habitat taxon. To generate reliable habitat modelling predictions for rarely sighted marine predators, our results suggest (1) using GAMs with a Tweedie distribution with presence-absence data and (2) implementing, as a conservative empirical measure, at least 50 sightings in the models. PMID:29529097

  9. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change

    Treesearch

    Wen J. Wang; Hong S. He; Frank R. Thompson; Martin A. Spetich; Jacob S. Fraser

    2018-01-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are notwell represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts.We investigate how species biological...

  10. Fine-scale distribution of zooplankton is linked to phytoplankton species composition and abundance in a North Norwegian fjord system

    NASA Astrophysics Data System (ADS)

    Norrbin, F.; Priou, P. D.; Varela, A. P.

    2016-02-01

    We studied the influence of dense layers of phytoplankton and aggregates on shaping the vertical distribution of zooplankton in a North Norwegian fjord using a Video Plankton Recorder (VPR). This instrument provided fine-scale vertical distribution (cm-m scale) of planktonic organisms as well as aggregates of marine snow in relation to environmental conditions. At the height - later stage of the spring phytoplankton bloom in May, the outer part of the fjord was dominated by Phaeocystis pouchetii, while diatoms (Chaetoceros spp.) were dominating in the innermost basin. Small copepods species like Pseudocalanus spp., Microsetella norvegica, and Oithona spp. prevailed over larger copepod species in the inner part of the fjord whereas the outer part was dominated by large copepods like Calanus finmarchicus. While the zooplankton where spread out over the water column during the early stage of the bloom, in May they were linked to the phytoplankton vertical distribution and in the winter situation they were found in deeper waters. Herbivorous zooplankton species were affected by phytoplankton species composition; C. finmarchicus and Pseudocalanus spp. avoided the dense layer of P. pouchetii while herbivorous zooplankton matched the distribution of the diatom-dominated bloom. Small, omnivorous copepod species like Microsetella sp., Oithona sp. and Pseudocalanus sp. were often associated with dense layers of snow aggregates. This distribution may provide a shelter from predators as well as a food source. Natural or anthropogenic-induced changes in phytoplankton composition and aggregate distribution may thus influence food-web interactions.

  11. Does scale matter? A systematic review of incorporating biological realism when predicting changes in species distributions.

    PubMed

    Record, Sydne; Strecker, Angela; Tuanmu, Mao-Ning; Beaudrot, Lydia; Zarnetske, Phoebe; Belmaker, Jonathan; Gerstner, Beth

    2018-01-01

    There is ample evidence that biotic factors, such as biotic interactions and dispersal capacity, can affect species distributions and influence species' responses to climate change. However, little is known about how these factors affect predictions from species distribution models (SDMs) with respect to spatial grain and extent of the models. Understanding how spatial scale influences the effects of biological processes in SDMs is important because SDMs are one of the primary tools used by conservation biologists to assess biodiversity impacts of climate change. We systematically reviewed SDM studies published from 2003-2015 using ISI Web of Science searches to: (1) determine the current state and key knowledge gaps of SDMs that incorporate biotic interactions and dispersal; and (2) understand how choice of spatial scale may alter the influence of biological processes on SDM predictions. We used linear mixed effects models to examine how predictions from SDMs changed in response to the effects of spatial scale, dispersal, and biotic interactions. There were important biases in studies including an emphasis on terrestrial ecosystems in northern latitudes and little representation of aquatic ecosystems. Our results suggest that neither spatial extent nor grain influence projected climate-induced changes in species ranges when SDMs include dispersal or biotic interactions. We identified several knowledge gaps and suggest that SDM studies forecasting the effects of climate change should: 1) address broader ranges of taxa and locations; and 1) report the grain size, extent, and results with and without biological complexity. The spatial scale of analysis in SDMs did not affect estimates of projected range shifts with dispersal and biotic interactions. However, the lack of reporting on results with and without biological complexity precluded many studies from our analysis.

  12. Factors influencing non-native tree species distribution in urban landscapes

    Treesearch

    Wayne C. Zipperer

    2010-01-01

    Non-native species are presumed to be pervasive across the urban landscape. Yet, we actually know very little about their actual distribution. For this study, vegetation plot data from Syracuse, NY and Baltimore, MD were used to examine non-native tree species distribution in urban landscapes. Data were collected from remnant and emergent forest patches on upland sites...

  13. A globally-distributed alien invasive species poses risks to United States imperiled species.

    PubMed

    McClure, Meredith L; Burdett, Christopher L; Farnsworth, Matthew L; Sweeney, Steven J; Miller, Ryan S

    2018-03-28

    In the midst of Earth's sixth mass extinction event, non-native species are a driving factor in many imperiled species' declines. One of the most widespread and destructive alien invasive species in the world, wild pigs (Sus scrofa) threaten native species through predation, habitat destruction, competition, and disease transmission. We show that wild pigs co-occur with up to 87.2% of imperiled species in the contiguous U.S. identified as susceptible to their direct impacts, and we project increases in both the number of species at risk and the geographic extent of risks by 2025. Wild pigs may therefore present a severe threat to U.S. imperiled species, with serious implications for management of at-risk species throughout wild pigs' global distribution. We offer guidance for efficient allocation of research effort and conservation resources across species and regions using a simple approach that can be applied to wild pigs and other alien invasive species globally.

  14. Can species distribution models really predict the expansion of invasive species?

    PubMed

    Barbet-Massin, Morgane; Rome, Quentin; Villemant, Claire; Courchamp, Franck

    2018-01-01

    Predictive studies are of paramount importance for biological invasions, one of the biggest threats for biodiversity. To help and better prioritize management strategies, species distribution models (SDMs) are often used to predict the potential invasive range of introduced species. Yet, SDMs have been regularly criticized, due to several strong limitations, such as violating the equilibrium assumption during the invasion process. Unfortunately, validation studies-with independent data-are too scarce to assess the predictive accuracy of SDMs in invasion biology. Yet, biological invasions allow to test SDMs usefulness, by retrospectively assessing whether they would have accurately predicted the latest ranges of invasion. Here, we assess the predictive accuracy of SDMs in predicting the expansion of invasive species. We used temporal occurrence data for the Asian hornet Vespa velutina nigrithorax, a species native to China that is invading Europe with a very fast rate. Specifically, we compared occurrence data from the last stage of invasion (independent validation points) to the climate suitability distribution predicted from models calibrated with data from the early stage of invasion. Despite the invasive species not being at equilibrium yet, the predicted climate suitability of validation points was high. SDMs can thus adequately predict the spread of V. v. nigrithorax, which appears to be-at least partially-climatically driven. In the case of V. v. nigrithorax, SDMs predictive accuracy was slightly but significantly better when models were calibrated with invasive data only, excluding native data. Although more validation studies for other invasion cases are needed to generalize our results, our findings are an important step towards validating the use of SDMs in invasion biology.

  15. Can species distribution models really predict the expansion of invasive species?

    PubMed Central

    Rome, Quentin; Villemant, Claire; Courchamp, Franck

    2018-01-01

    Predictive studies are of paramount importance for biological invasions, one of the biggest threats for biodiversity. To help and better prioritize management strategies, species distribution models (SDMs) are often used to predict the potential invasive range of introduced species. Yet, SDMs have been regularly criticized, due to several strong limitations, such as violating the equilibrium assumption during the invasion process. Unfortunately, validation studies–with independent data–are too scarce to assess the predictive accuracy of SDMs in invasion biology. Yet, biological invasions allow to test SDMs usefulness, by retrospectively assessing whether they would have accurately predicted the latest ranges of invasion. Here, we assess the predictive accuracy of SDMs in predicting the expansion of invasive species. We used temporal occurrence data for the Asian hornet Vespa velutina nigrithorax, a species native to China that is invading Europe with a very fast rate. Specifically, we compared occurrence data from the last stage of invasion (independent validation points) to the climate suitability distribution predicted from models calibrated with data from the early stage of invasion. Despite the invasive species not being at equilibrium yet, the predicted climate suitability of validation points was high. SDMs can thus adequately predict the spread of V. v. nigrithorax, which appears to be—at least partially–climatically driven. In the case of V. v. nigrithorax, SDMs predictive accuracy was slightly but significantly better when models were calibrated with invasive data only, excluding native data. Although more validation studies for other invasion cases are needed to generalize our results, our findings are an important step towards validating the use of SDMs in invasion biology. PMID:29509789

  16. Extending Marine Species Distribution Maps Using Non-Traditional Sources

    PubMed Central

    Moretzsohn, Fabio; Gibeaut, James

    2015-01-01

    Abstract Background Traditional sources of species occurrence data such as peer-reviewed journal articles and museum-curated collections are included in species databases after rigorous review by species experts and evaluators. The distribution maps created in this process are an important component of species survival evaluations, and are used to adapt, extend and sometimes contract polygons used in the distribution mapping process. New information During an IUCN Red List Gulf of Mexico Fishes Assessment Workshop held at The Harte Research Institute for Gulf of Mexico Studies, a session included an open discussion on the topic of including other sources of species occurrence data. During the last decade, advances in portable electronic devices and applications enable 'citizen scientists' to record images, location and data about species sightings, and submit that data to larger species databases. These applications typically generate point data. Attendees of the workshop expressed an interest in how that data could be incorporated into existing datasets, how best to ascertain the quality and value of that data, and what other alternate data sources are available. This paper addresses those issues, and provides recommendations to ensure quality data use. PMID:25941453

  17. Modelling plant species distribution in alpine grasslands using airborne imaging spectroscopy

    PubMed Central

    Pottier, Julien; Malenovský, Zbyněk; Psomas, Achilleas; Homolová, Lucie; Schaepman, Michael E.; Choler, Philippe; Thuiller, Wilfried; Guisan, Antoine; Zimmermann, Niklaus E.

    2014-01-01

    Remote sensing using airborne imaging spectroscopy (AIS) is known to retrieve fundamental optical properties of ecosystems. However, the value of these properties for predicting plant species distribution remains unclear. Here, we assess whether such data can add value to topographic variables for predicting plant distributions in French and Swiss alpine grasslands. We fitted statistical models with high spectral and spatial resolution reflectance data and tested four optical indices sensitive to leaf chlorophyll content, leaf water content and leaf area index. We found moderate added-value of AIS data for predicting alpine plant species distribution. Contrary to expectations, differences between species distribution models (SDMs) were not linked to their local abundance or phylogenetic/functional similarity. Moreover, spectral signatures of species were found to be partly site-specific. We discuss current limits of AIS-based SDMs, highlighting issues of scale and informational content of AIS data. PMID:25079495

  18. Invasive Species Distribution Modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?

    Treesearch

    Tomáš Václavík; Ross K. Meentemeyer

    2009-01-01

    Species distribution models (SDMs) based on statistical relationships between occurrence data and underlying environmental conditions are increasingly used to predict spatial patterns of biological invasions and prioritize locations for early detection and control of invasion outbreaks. However, invasive species distribution models (iSDMs) face special challenges...

  19. The Combined Use of Correlative and Mechanistic Species Distribution Models Benefits Low Conservation Status Species.

    PubMed

    Rougier, Thibaud; Lassalle, Géraldine; Drouineau, Hilaire; Dumoulin, Nicolas; Faure, Thierry; Deffuant, Guillaume; Rochard, Eric; Lambert, Patrick

    2015-01-01

    Species can respond to climate change by tracking appropriate environmental conditions in space, resulting in a range shift. Species Distribution Models (SDMs) can help forecast such range shift responses. For few species, both correlative and mechanistic SDMs were built, but allis shad (Alosa alosa), an endangered anadromous fish species, is one of them. The main purpose of this study was to provide a framework for joint analyses of correlative and mechanistic SDMs projections in order to strengthen conservation measures for species of conservation concern. Guidelines for joint representation and subsequent interpretation of models outputs were defined and applied. The present joint analysis was based on the novel mechanistic model GR3D (Global Repositioning Dynamics of Diadromous fish Distribution) which was parameterized on allis shad and then used to predict its future distribution along the European Atlantic coast under different climate change scenarios (RCP 4.5 and RCP 8.5). We then used a correlative SDM for this species to forecast its distribution across the same geographic area and under the same climate change scenarios. First, projections from correlative and mechanistic models provided congruent trends in probability of habitat suitability and population dynamics. This agreement was preferentially interpreted as referring to the species vulnerability to climate change. Climate change could not be accordingly listed as a major threat for allis shad. The congruence in predicted range limits between SDMs projections was the next point of interest. The difference, when noticed, required to deepen our understanding of the niche modelled by each approach. In this respect, the relative position of the northern range limit between the two methods strongly suggested here that a key biological process related to intraspecific variability was potentially lacking in the mechanistic SDM. Based on our knowledge, we hypothesized that local adaptations to cold

  20. The Combined Use of Correlative and Mechanistic Species Distribution Models Benefits Low Conservation Status Species

    PubMed Central

    Rougier, Thibaud; Lassalle, Géraldine; Drouineau, Hilaire; Dumoulin, Nicolas; Faure, Thierry; Deffuant, Guillaume; Rochard, Eric; Lambert, Patrick

    2015-01-01

    Species can respond to climate change by tracking appropriate environmental conditions in space, resulting in a range shift. Species Distribution Models (SDMs) can help forecast such range shift responses. For few species, both correlative and mechanistic SDMs were built, but allis shad (Alosa alosa), an endangered anadromous fish species, is one of them. The main purpose of this study was to provide a framework for joint analyses of correlative and mechanistic SDMs projections in order to strengthen conservation measures for species of conservation concern. Guidelines for joint representation and subsequent interpretation of models outputs were defined and applied. The present joint analysis was based on the novel mechanistic model GR3D (Global Repositioning Dynamics of Diadromous fish Distribution) which was parameterized on allis shad and then used to predict its future distribution along the European Atlantic coast under different climate change scenarios (RCP 4.5 and RCP 8.5). We then used a correlative SDM for this species to forecast its distribution across the same geographic area and under the same climate change scenarios. First, projections from correlative and mechanistic models provided congruent trends in probability of habitat suitability and population dynamics. This agreement was preferentially interpreted as referring to the species vulnerability to climate change. Climate change could not be accordingly listed as a major threat for allis shad. The congruence in predicted range limits between SDMs projections was the next point of interest. The difference, when noticed, required to deepen our understanding of the niche modelled by each approach. In this respect, the relative position of the northern range limit between the two methods strongly suggested here that a key biological process related to intraspecific variability was potentially lacking in the mechanistic SDM. Based on our knowledge, we hypothesized that local adaptations to cold

  1. Modeled distributions of 12 tree species in New York

    Treesearch

    Rachel I. Riemann; Barry T. Wilson; Andrew J. Lister; Oren Cook; Sierra Crane-Murdoch

    2014-01-01

    These maps depict the distribution of 12 tree species across the state of New York. The maps show where these trees do not occur (gray), occasionally occur (pale green), are a minor component (medium green), are a major component (dark green), or are the dominant species (black) in the forest, as determined by that species' total basal area. Basal area is the area...

  2. The influence of electrohydrodynamic flow on the distribution of chemical species in positive corona

    NASA Astrophysics Data System (ADS)

    Pontiga, Francisco; Yanallah, Khelifa; Bouazza, R.; Chen, Junhong

    2015-09-01

    A numerical simulation of positive corona discharge in air, including the effect of electrohydrodynamic (EHD) motion of the gas, has been carried out. Air flow is assumed to be confined between two parallel plates, and corona discharge is produced around a thin wire, midway between the plates. Therefore, fluid dynamics equations, including electrical forces, have been solved together with the continuity equation of each neutral species. The plasma chemical model included 24 chemical reactions and ten neutral species, in addition to electrons and positive ions. The results of the simulation have shown that the influence of EHD flow on the spatial distributions of the species is quite different depending on the species. Hence, reactive species like atomic oxygen and atomic nitrogen are confined to the vicinity of the wire, and they are weakly affected by the EHD gas motion. In contrast, nitrogen oxides and ozone are efficiently dragged outside the active region of the corona discharge by the EHD flow. This work was supported by the Spanish Government Agency ``Ministerio de Ciencia e Innovación'' under Contract No. FIS2011-25161.

  3. The scaling of geographic ranges: implications for species distribution models

    USGS Publications Warehouse

    Yackulic, Charles B.; Ginsberg, Joshua R.

    2016-01-01

    There is a need for timely science to inform policy and management decisions; however, we must also strive to provide predictions that best reflect our understanding of ecological systems. Species distributions evolve through time and reflect responses to environmental conditions that are mediated through individual and population processes. Species distribution models that reflect this understanding, and explicitly model dynamics, are likely to give more accurate predictions.

  4. Further advances in predicting species distributions

    Treesearch

    Gretchen G. Moisen; Thomas C. Edwards; Patrick E. Osborne

    2006-01-01

    In 2001, a workshop focused on the use of generalized linear models (GLM: McCullagh and Nelder, 1989) and generalized additive models (GAM: Hastie and Tibshirani, 1986, 1990) for predicting species distributions was held in Riederalp, Switzerland. This topic led to the publication of special issues in Ecological Modelling (Guisan et al., 2002) and Biodiversity and...

  5. Geological Substrates Shape Tree Species and Trait Distributions in African Moist Forests

    PubMed Central

    Fayolle, Adeline; Engelbrecht, Bettina; Freycon, Vincent; Mortier, Frédéric; Swaine, Michael; Réjou-Méchain, Maxime; Doucet, Jean-Louis; Fauvet, Nicolas; Cornu, Guillaume; Gourlet-Fleury, Sylvie

    2012-01-01

    Background Understanding the factors that shape the distribution of tropical tree species at large scales is a central issue in ecology, conservation and forest management. The aims of this study were to (i) assess the importance of environmental factors relative to historical factors for tree species distributions in the semi-evergreen forests of the northern Congo basin; and to (ii) identify potential mechanisms explaining distribution patterns through a trait-based approach. Methodology/Principal Findings We analyzed the distribution patterns of 31 common tree species in an area of more than 700,000 km2 spanning the borders of Cameroon, the Central African Republic, and the Republic of Congo using forest inventory data from 56,445 0.5-ha plots. Spatial variation of environmental (climate, topography and geology) and historical factors (human disturbance) were quantified from maps and satellite records. Four key functional traits (leaf phenology, shade tolerance, wood density, and maximum growth rate) were extracted from the literature. The geological substrate was of major importance for the distribution of the focal species, while climate and past human disturbances had a significant but lesser impact. Species distribution patterns were significantly related to functional traits. Species associated with sandy soils typical of sandstone and alluvium were characterized by slow growth rates, shade tolerance, evergreen leaves, and high wood density, traits allowing persistence on resource-poor soils. In contrast, fast-growing pioneer species rarely occurred on sandy soils, except for Lophira alata. Conclusions/Significance The results indicate strong environmental filtering due to differential soil resource availability across geological substrates. Additionally, long-term human disturbances in resource-rich areas may have accentuated the observed patterns of species and trait distributions. Trait differences across geological substrates imply pronounced

  6. Protectiveness of Species Sensitivity Distribution Hazard Concentrations for Acute Toxicity Used in Endangered Species Risk Assessment

    EPA Science Inventory

    A primary objective of threatened and endangered species conservation is to ensure that chemical contaminants and other stressors do not adversely affect listed species. Assessments of the ecological risks of chemical exposures to listed species often rely on the use of surrogate...

  7. Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island.

    PubMed

    Trueba, Santiago; Pouteau, Robin; Lens, Frederic; Feild, Taylor S; Isnard, Sandrine; Olson, Mark E; Delzon, Sylvain

    2017-02-01

    Increases in drought-induced tree mortality are being observed in tropical rain forests worldwide and are also likely to affect the geographical distribution of tropical vegetation. However, the mechanisms underlying the drought vulnerability and environmental distribution of tropical species have been little studied. We measured vulnerability to xylem embolism (P 50 ) of 13 woody species endemic to New Caledonia and with different xylem conduit morphologies. We examined the relation between P 50 , along with other leaf and xylem functional traits, and a range of habitat variables. Selected species had P 50 values ranging between -4.03 and -2.00 MPa with most species falling in a narrow range of resistance to embolism above -2.7 MPa. Embolism vulnerability was significantly correlated with elevation, mean annual temperature and percentage of species occurrences located in rain forest habitats. Xylem conduit type did not explain variation in P 50 . Commonly used functional traits such as wood density and leaf traits were not related to embolism vulnerability. Xylem embolism vulnerability stands out among other commonly used functional traits as a major driver of species environmental distribution. Drought-induced xylem embolism vulnerability behaves as a physiological trait closely associated with the habitat occupation of rain forest woody species. © 2016 John Wiley & Sons Ltd.

  8. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling.

    PubMed

    Mainali, Kumar P; Warren, Dan L; Dhileepan, Kunjithapatham; McConnachie, Andrew; Strathie, Lorraine; Hassan, Gul; Karki, Debendra; Shrestha, Bharat B; Parmesan, Camille

    2015-12-01

    Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships for Parthenium hysterophorus L. (Asteraceae) with four modeling methods run with multiple scenarios of (i) sources of occurrences and geographically isolated background ranges for absences, (ii) approaches to drawing background (absence) points, and (iii) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved using a global dataset for model training, rather than restricting data input to the species' native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e., into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g., boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post hoc test conducted on a new Parthenium dataset from Nepal validated excellent predictive performance of our 'best' model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for parthenium

  9. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico).

    PubMed

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P

  10. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico)

    PubMed Central

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P

  11. Comparing species distribution models constructed with different subsets of environmental predictors

    USGS Publications Warehouse

    Bucklin, David N.; Basille, Mathieu; Benscoter, Allison M.; Brandt, Laura A.; Mazzotti, Frank J.; Romañach, Stephanie S.; Speroterra, Carolina; Watling, James I.

    2014-01-01

    Our results indicate that additional predictors have relatively minor effects on the accuracy of climate-based species distribution models and minor to moderate effects on spatial predictions. We suggest that implementing species distribution models with only climate predictors may provide an effective and efficient approach for initial assessments of environmental suitability.

  12. Development of Species Sensitivity Distributions for Wildlife Using Interspecies Toxicity Correlation Models

    EPA Science Inventory

    Species sensitivity distributions (SSD) are cumulative distributions of chemical toxicity of multiple species and have had limited application in wildlife risk assessment because of relatively small datasets of wildlife toxicity values. Interspecies correlation estimation (ICE) m...

  13. Long-term changes of tree species composition and distribution in Korean mountain forests

    NASA Astrophysics Data System (ADS)

    Lee, Boknam; Lee, Hoontaek; Cho, Sunhee; Yoon, Jongguk; Park, Jongyoung; Kim, Hyun Seok

    2017-04-01

    Long-term changes in the abundance and distribution of tree species in the temperate forests of South Korea remain poorly understood. We investigated how tree species composition and stand distribution change across temperate mountainous forests using the species composition and DBH size collected over the past 15 years (1998-2012) across 130 permanent forest plots of 0.1 ha in Jiri and Baegun mountains in South Korea. The overall net change of tree communities over the years showed positive in terms of stand density, richness, diversity, and evenness. At the species level, the change of relative species composition has been led by intermediate and shade-tolerant species, such as Quercus mongolica, Carpinus laxiflora, Quercus serrate, Quercus variabilis, Styrax japonicus, Lindera erythrocarpa, and Pinus densiflora and was categorized into five species communities, representing gradual increase or decrease, establishment, extinction, fluctuation of species population. At the community level, the change in species composition appeared to have consistent and directional patterns of increase in the annual rate of change in the mean species traits including species density, pole growth rate, adult growth rate, and adult stature. Based on the additive models, the distribution of species diversity was significantly related to topographical variables including elevation, latitude, longitude, slope, topographic wetness index, and curvature where elevation was the most significant driver, followed by latitude and longitude. However, the change in distribution of species diversity was only significantly influenced by latitude and longitude. This is the first study to reveal the long-term dynamics of change in tree species composition and distribution, which are important to broaden our understanding of temperate mountainous forest ecosystem in South Korea.

  14. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment.

    PubMed

    Lovelock, Catherine E; Andersen, Kelly; Morton, Joseph B

    2003-04-01

    Arbuscular mycorrhizal (AM) fungi are mutualists with plant roots that are proposed to enhance plant community diversity. Models indicate that AM fungal communities could maintain plant diversity in forests if functionally different communities are spatially separated. In this study we assess the spatial and temporal distribution of the AM fungal community in a wet tropical rainforest in Costa Rica. We test whether distinct fungal communities correlate with variation in tree life history characteristics, with host tree species, and the relative importance of soil type, seasonality and rainfall. Host tree species differ in their associated AM fungal communities, but differences in the AM community between hosts could not be generalized over life history groupings of hosts. Changes in the relative abundance of a few common AM fungal species were the cause of differences in AM fungal communities for different host tree species instead of differences in the presence and absence of AM fungal species. Thus, AM fungal communities are spatially distinguishable in the forest, even though all species are widespread. Soil fertility ranging between 5 and 9 Mg/ha phosphorus did not affect composition of AM fungal communities, although sporulation was more abundant in lower fertility soils. Sampling soils over seasons revealed that some AM fungal species sporulate profusely in the dry season compared to the rainy season. On one host tree species sampled at two sites with vastly different rainfall, relative abundance of spores from Acaulospora was lower and that of Glomus was relatively higher at the site with lower and more seasonal rainfall.

  15. Past, present and future distributions of an Iberian Endemic, Lepus granatensis: ecological and evolutionary clues from species distribution models.

    PubMed

    Acevedo, Pelayo; Melo-Ferreira, José; Real, Raimundo; Alves, Paulo Célio

    2012-01-01

    The application of species distribution models (SDMs) in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis) were used to i) determine the species' ecogeographical constraints, ii) hindcast a climatic model for the last glacial maximum (LGM), relating it to inferences derived from molecular studies, and iii) calibrate a model to assess the species future distribution trends (up to 2080). Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor) is the most important descriptor of the current distribution of the Iberian hare. In addition, the model's output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change.

  16. Factors affecting plant species composition of hedgerows: relative importance and hierarchy

    NASA Astrophysics Data System (ADS)

    Deckers, Bart; Hermy, Martin; Muys, Bart

    2004-07-01

    Although there has been a clear quantitative and qualitative decline in traditional hedgerow network landscapes during last century, hedgerows are crucial for the conservation of rural biodiversity, functioning as an important habitat, refuge and corridor for numerous species. To safeguard this conservation function, insight in the basic organizing principles of hedgerow plant communities is needed. The vegetation composition of 511 individual hedgerows situated within an ancient hedgerow network landscape in Flanders, Belgium was recorded, in combination with a wide range of explanatory variables, including a selection of spatial variables. Non-parametric statistics in combination with multivariate data analysis techniques were used to study the effect of individual explanatory variables. Next, variables were grouped in five distinct subsets and the relative importance of these variable groups was assessed by two related variation partitioning techniques, partial regression and partial canonical correspondence analysis, taking into account explicitly the existence of intercorrelations between variables of different factor groups. Most explanatory variables affected significantly hedgerow species richness and composition. Multivariate analysis showed that, besides adjacent land use, hedgerow management, soil conditions, hedgerow type and origin, the role of other factors such as hedge dimensions, intactness, etc., could certainly not be neglected. Furthermore, both methods revealed the same overall ranking of the five distinct factor groups. Besides a predominant impact of abiotic environmental conditions, it was found that management variables and structural aspects have a relatively larger influence on the distribution of plant species in hedgerows than their historical background or spatial configuration.

  17. Using the Maxent program for species distribution modelling to assess invasion risk

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Young, Nicholas E.; Venette, R.C

    2015-01-01

    MAXENT is a software package used to relate known species occurrences to information describing the environment, such as climate, topography, anthropogenic features or soil data, and forecast the presence or absence of a species at unsampled locations. This particular method is one of the most popular species distribution modelling techniques because of its consistent strong predictive performance and its ease to implement. This chapter discusses the decisions and techniques needed to prepare a correlative climate matching model for the native range of an invasive alien species and use this model to predict the potential distribution of this species in a potentially invaded range (i.e. a novel environment) by using MAXENT for the Burmese python (Python molurus bivittatus) as a case study. The chapter discusses and demonstrates the challenges that are associated with this approach and examines the inherent limitations that come with using MAXENT to forecast distributions of invasive alien species.

  18. The interplay of climate and land use change affects the distribution of EU bumblebees.

    PubMed

    Marshall, Leon; Biesmeijer, Jacobus C; Rasmont, Pierre; Vereecken, Nicolas J; Dvorak, Libor; Fitzpatrick, Una; Francis, Frédéric; Neumayer, Johann; Ødegaard, Frode; Paukkunen, Juho P T; Pawlikowski, Tadeusz; Reemer, Menno; Roberts, Stuart P M; Straka, Jakub; Vray, Sarah; Dendoncker, Nicolas

    2018-01-01

    Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate-only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species-specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns.

  19. Map of Life - A Dashboard for Monitoring Planetary Species Distributions

    NASA Astrophysics Data System (ADS)

    Jetz, W.

    2016-12-01

    Geographic information about biodiversity is vital for understanding the many services nature provides and their potential changes, yet remains unreliable and often insufficient. By integrating a wide range of knowledge about species distributions and their dynamics over time, Map of Life supports global biodiversity education, monitoring, research and decision-making. Built on a scalable web platform geared for large biodiversity and environmental data, Map of Life endeavors provides species range information globally and species lists for any area. With data and technology provided by NASA and Google Earth Engine, tools under development use remote sensing-based environmental layers to enable on-the-fly predictions of species distributions, range changes, and early warning signals for threatened species. The ultimate vision is a globally connected, collaborative knowledge- and tool-base for regional and local biodiversity decision-making, education, monitoring, and projection. For currently available tools, more information and to follow progress, go to MOL.org.

  20. Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review

    PubMed Central

    González-Domínguez, Elisa; Armengol, Josep; Rossi, Vittorio

    2017-01-01

    The fungal genus Venturia Sacc. (anamorph Fusicladium Bonord.) includes plant pathogens that cause substantial economic damage to fruit crops worldwide. Although Venturia inaequalis is considered a model species in plant pathology, other Venturia spp. also cause scab on other fruit trees. Relative to the substantial research that has been conducted on V. inaequalis and apple scab, little research has been conducted on Venturia spp. affecting other fruit trees. In this review, the main characteristics of plant-pathogenic species of Venturia are discussed with special attention to V. inaequalis affecting apple, V. pyrina affecting European pear, V. nashicola affecting Asian pear, V. carpophila affecting peach and almond, Fusicladium oleagineum affecting olive, F. effusum affecting pecan, and F. eriobotryae affecting loquat. This review has two main objectives: (i) to identify the main gaps in our knowledge regarding the biology and epidemiology of Venturia spp. affecting fruit trees; and (ii) to identify similarities and differences among these Venturia spp. in order to improve disease management. A thorough review has been conducted of studies regarding the phylogenetic relationships, host ranges, biologies, and epidemiologies of Venturia spp. A multiple correspondence analysis (CA) has also been performed on the main epidemiological components of these Venturia spp. CA separated the Venturia spp. into two main groups, according to their epidemiological behavior: the first group included V. inaequalis, V. pyrina, V. nashicola, and V. carpophila, the second F. oleagineum and F. eriobotryae, with F. effusum having an intermediate position. This review shows that Venturia spp. affecting fruit trees are highly host-specific, and that important gaps in understanding the life cycle exist for some species, including V. pyrina; gaps include pseudothecia formation, ascospore and conidia germination, and mycelial growth. Considering the epidemiological information reviewed

  1. Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review.

    PubMed

    González-Domínguez, Elisa; Armengol, Josep; Rossi, Vittorio

    2017-01-01

    The fungal genus Venturia Sacc. (anamorph Fusicladium Bonord.) includes plant pathogens that cause substantial economic damage to fruit crops worldwide. Although Venturia inaequalis is considered a model species in plant pathology, other Venturia spp. also cause scab on other fruit trees. Relative to the substantial research that has been conducted on V. inaequalis and apple scab, little research has been conducted on Venturia spp. affecting other fruit trees. In this review, the main characteristics of plant-pathogenic species of Venturia are discussed with special attention to V. inaequalis affecting apple, V. pyrina affecting European pear, V. nashicola affecting Asian pear, V. carpophila affecting peach and almond, Fusicladium oleagineum affecting olive, F. effusum affecting pecan, and F. eriobotryae affecting loquat. This review has two main objectives: (i) to identify the main gaps in our knowledge regarding the biology and epidemiology of Venturia spp. affecting fruit trees; and (ii) to identify similarities and differences among these Venturia spp. in order to improve disease management. A thorough review has been conducted of studies regarding the phylogenetic relationships, host ranges, biologies, and epidemiologies of Venturia spp. A multiple correspondence analysis (CA) has also been performed on the main epidemiological components of these Venturia spp. CA separated the Venturia spp. into two main groups, according to their epidemiological behavior: the first group included V. inaequalis, V. pyrina, V. nashicola , and V. carpophila , the second F. oleagineum and F. eriobotryae , with F. effusum having an intermediate position. This review shows that Venturia spp. affecting fruit trees are highly host-specific, and that important gaps in understanding the life cycle exist for some species, including V. pyrina ; gaps include pseudothecia formation, ascospore and conidia germination, and mycelial growth. Considering the epidemiological information

  2. II. Species sensitivity distributions based on biomarkers and whole organism responses for integrated impact and risk assessment criteria.

    PubMed

    Sanni, Steinar; Lyng, Emily; Pampanin, Daniela M; Smit, Mathijs G D

    2017-06-01

    The aim of this paper is to bridge gaps between biomarker and whole organism responses related to oil based offshore discharges. These biomarker bridges will facilitate acceptance criteria for biomarker data linked to environmental risk assessment and translate biomarker results to higher order effects. Biomarker based species sensitivity distributions (SSD biomarkers ) have been constructed for relevant groups of biomarkers based on laboratory data from oil exposures. SSD curves express the fraction of species responding to different types of biomarkers. They have been connected to SSDs for whole organism responses (WORs) constructed in order to relate the SSD biomarkers to animal fitness parameters that are commonly used in environmental risk assessment. The resulting SSD curves show that biomarkers and WORs can be linked through their potentially affected fraction of species (PAF) distributions, enhancing the capability to monitor field parameters with better correlation to impact and risk assessment criteria and providing improved chemical/biological integration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A Five-Species Jungle Game.

    PubMed

    Kang, Yibin; Pan, Qiuhui; Wang, Xueting; He, Mingfeng

    2016-01-01

    In this paper, we investigate the five-species Jungle game in the framework of evolutionary game theory. We address the coexistence and biodiversity of the system using mean-field theory and Monte Carlo simulations. Then, we find that the inhibition from the bottom-level species to the top-level species can be critical factors that affect biodiversity, no matter how it is distributed, whether homogeneously well mixed or structured. We also find that predators' different preferences for food affect species' coexistence.

  4. Species Distribution Modelling of Aedes aegypti in two dengue-endemic regions of Pakistan.

    PubMed

    Fatima, Syeda Hira; Atif, Salman; Rasheed, Syed Basit; Zaidi, Farrah; Hussain, Ejaz

    2016-03-01

    Statistical tools are effectively used to determine the distribution of mosquitoes and to make ecological inferences about the vector-borne disease dynamics. In this study, we utilised species distribution models to understand spatial patterns of Aedes aegypti in two dengue-prevalent regions of Pakistan, Lahore and Swat. Species distribution models can potentially indicate the probability of suitability of Ae. aegypti once introduced to new regions like Swat, where invasion of this species is a recent phenomenon. The distribution of Ae. aegypti was determined by applying the MaxEnt algorithm on a set of potential environmental factors and species sample records. The ecological dependency of species on each environmental variable was analysed using response curves. We quantified the statistical performance of the models based on accuracy assessment and spatial predictions. Our results suggest that Ae. aegypti is widely distributed in Lahore. Human population density and urban infrastructure are primarily responsible for greater probability of mosquito occurrence in this region. In Swat, Ae. aegypti has clumped distribution, where urban patches provide refuge to the species in an otherwise hostile heterogeneous environment and road networks are assumed to have facilitated in passive-mediated dispersal of species. In Pakistan, Ae. aegypti is expanding its range northwards; this could be associated with rapid urbanisation, trade and travel. The main implication of this expansion is that more people are at risk of dengue fever in the northern highlands of Pakistan. © 2016 John Wiley & Sons Ltd.

  5. Estimates of Octanol-Water Partitioning for Thousands of Dissolved Organic Species in Oil Sands Process-Affected Water.

    PubMed

    Zhang, Kun; Pereira, Alberto S; Martin, Jonathan W

    2015-07-21

    In this study, the octanol-water distribution ratios (DOW, that is, apparent KOW at pH 8.4) of 2114 organic species in oil sands process-affected water were estimated by partitioning to polydimethylsiloxane (PDMS) coated stir bars and analysis by ultrahigh resolution orbitrap mass spectrometry in electrospray positive ((+)) and negative ((-)) ionization modes. At equilibrium, the majority of species in OSPW showed negligible partitioning to PDMS (i.e., DOW <1), however estimated DOW's for some species ranged up to 100,000. Most organic acids detected in ESI- had negligible partitioning, although some naphthenic acids (O2(-) species) had estimated DOW ranging up to 100. Polar neutral and basic compounds detected in ESI+ generally partitioned to PDMS to a greater extent than organic acids. Among these species, DOW was greatest among 3 groups: up to 1000 for mono-oxygenated species (O(+) species), up to 127,000 for NO(+) species, and up to 203,000 for SO(+) species. A positive relationship was observed between DOW and carbon number, and a negative relationship was observed with the number of double bonds (or rings). The results highlight that nonacidic compounds in OSPW are generally more hydrophobic than naphthenic acids and that some may be highly bioaccumulative and contribute to toxicity.

  6. Markov Chain Monte Carlo estimation of species distributions: a case study of the swift fox in western Kansas

    USGS Publications Warehouse

    Sargeant, Glen A.; Sovada, Marsha A.; Slivinski, Christiane C.; Johnson, Douglas H.

    2005-01-01

    Accurate maps of species distributions are essential tools for wildlife research and conservation. Unfortunately, biologists often are forced to rely on maps derived from observed occurrences recorded opportunistically during observation periods of variable length. Spurious inferences are likely to result because such maps are profoundly affected by the duration and intensity of observation and by methods used to delineate distributions, especially when detection is uncertain. We conducted a systematic survey of swift fox (Vulpes velox) distribution in western Kansas, USA, and used Markov chain Monte Carlo (MCMC) image restoration to rectify these problems. During 1997–1999, we searched 355 townships (ca. 93 km) 1–3 times each for an average cost of $7,315 per year and achieved a detection rate (probability of detecting swift foxes, if present, during a single search) of = 0.69 (95% Bayesian confidence interval [BCI] = [0.60, 0.77]). Our analysis produced an estimate of the underlying distribution, rather than a map of observed occurrences, that reflected the uncertainty associated with estimates of model parameters. To evaluate our results, we analyzed simulated data with similar properties. Results of our simulations suggest negligible bias and good precision when probabilities of detection on ≥1 survey occasions (cumulative probabilities of detection) exceed 0.65. Although the use of MCMC image restoration has been limited by theoretical and computational complexities, alternatives do not possess the same advantages. Image models accommodate uncertain detection, do not require spatially independent data or a census of map units, and can be used to estimate species distributions directly from observations without relying on habitat covariates or parameters that must be estimated subjectively. These features facilitate economical surveys of large regions, the detection of temporal trends in distribution, and assessments of landscape-level relations between

  7. Markov chain Monte Carlo estimation of species distributions: A case study of the swift fox in western Kansas

    USGS Publications Warehouse

    Sargeant, G.A.; Sovada, M.A.; Slivinski, C.C.; Johnson, D.H.

    2005-01-01

    Accurate maps of species distributions are essential tools for wildlife research and conservation. Unfortunately, biologists often are forced to rely on maps derived from observed occurrences recorded opportunistically during observation periods of variable length. Spurious inferences are likely to result because such maps are profoundly affected by the duration and intensity of observation and by methods used to delineate distributions, especially when detection is uncertain. We conducted a systematic survey of swift fox (Vulpes velox) distribution in western Kansas, USA, and used Markov chain Monte Carlo (MCMC) image restoration to rectify these problems. During 1997-1999, we searched 355 townships (ca. 93 km2) 1-3 times each for an average cost of $7,315 per year and achieved a detection rate (probability of detecting swift foxes, if present, during a single search) of ?? = 0.69 (95% Bayesian confidence interval [BCI] = [0.60, 0.77]). Our analysis produced an estimate of the underlying distribution, rather than a map of observed occurrences, that reflected the uncertainty associated with estimates of model parameters. To evaluate our results, we analyzed simulated data with similar properties. Results of our simulations suggest negligible bias and good precision when probabilities of detection on ???1 survey occasions (cumulative probabilities of detection) exceed 0.65. Although the use of MCMC image restoration has been limited by theoretical and computational complexities, alternatives do not possess the same advantages. Image models accommodate uncertain detection, do not require spatially independent data or a census of map units, and can be used to estimate species distributions directly from observations without relying on habitat covariates or parameters that must be estimated subjectively. These features facilitate economical surveys of large regions, the detection of temporal trends in distribution, and assessments of landscape-level relations between

  8. Adaptive invasive species distribution models: A framework for modeling incipient invasions

    USGS Publications Warehouse

    Uden, Daniel R.; Allen, Craig R.; Angeler, David G.; Corral, Lucia; Fricke, Kent A.

    2015-01-01

    The utilization of species distribution model(s) (SDM) for approximating, explaining, and predicting changes in species’ geographic locations is increasingly promoted for proactive ecological management. Although frameworks for modeling non-invasive species distributions are relatively well developed, their counterparts for invasive species—which may not be at equilibrium within recipient environments and often exhibit rapid transformations—are lacking. Additionally, adaptive ecological management strategies address the causes and effects of biological invasions and other complex issues in social-ecological systems. We conducted a review of biological invasions, species distribution models, and adaptive practices in ecological management, and developed a framework for adaptive, niche-based, invasive species distribution model (iSDM) development and utilization. This iterative, 10-step framework promotes consistency and transparency in iSDM development, allows for changes in invasive drivers and filters, integrates mechanistic and correlative modeling techniques, balances the avoidance of type 1 and type 2 errors in predictions, encourages the linking of monitoring and management actions, and facilitates incremental improvements in models and management across space, time, and institutional boundaries. These improvements are useful for advancing coordinated invasive species modeling, management and monitoring from local scales to the regional, continental and global scales at which biological invasions occur and harm native ecosystems and economies, as well as for anticipating and responding to biological invasions under continuing global change.

  9. Species Distribution Modelling: Contrasting presence-only models with plot abundance data.

    PubMed

    Gomes, Vitor H F; IJff, Stéphanie D; Raes, Niels; Amaral, Iêda Leão; Salomão, Rafael P; de Souza Coelho, Luiz; de Almeida Matos, Francisca Dionízia; Castilho, Carolina V; de Andrade Lima Filho, Diogenes; López, Dairon Cárdenas; Guevara, Juan Ernesto; Magnusson, William E; Phillips, Oliver L; Wittmann, Florian; de Jesus Veiga Carim, Marcelo; Martins, Maria Pires; Irume, Mariana Victória; Sabatier, Daniel; Molino, Jean-François; Bánki, Olaf S; da Silva Guimarães, José Renan; Pitman, Nigel C A; Piedade, Maria Teresa Fernandez; Mendoza, Abel Monteagudo; Luize, Bruno Garcia; Venticinque, Eduardo Martins; de Leão Novo, Evlyn Márcia Moraes; Vargas, Percy Núñez; Silva, Thiago Sanna Freire; Manzatto, Angelo Gilberto; Terborgh, John; Reis, Neidiane Farias Costa; Montero, Juan Carlos; Casula, Katia Regina; Marimon, Beatriz S; Marimon, Ben-Hur; Coronado, Euridice N Honorio; Feldpausch, Ted R; Duque, Alvaro; Zartman, Charles Eugene; Arboleda, Nicolás Castaño; Killeen, Timothy J; Mostacedo, Bonifacio; Vasquez, Rodolfo; Schöngart, Jochen; Assis, Rafael L; Medeiros, Marcelo Brilhante; Simon, Marcelo Fragomeni; Andrade, Ana; Laurance, William F; Camargo, José Luís; Demarchi, Layon O; Laurance, Susan G W; de Sousa Farias, Emanuelle; Nascimento, Henrique Eduardo Mendonça; Revilla, Juan David Cardenas; Quaresma, Adriano; Costa, Flavia R C; Vieira, Ima Célia Guimarães; Cintra, Bruno Barçante Ladvocat; Castellanos, Hernán; Brienen, Roel; Stevenson, Pablo R; Feitosa, Yuri; Duivenvoorden, Joost F; Aymard C, Gerardo A; Mogollón, Hugo F; Targhetta, Natalia; Comiskey, James A; Vicentini, Alberto; Lopes, Aline; Damasco, Gabriel; Dávila, Nállarett; García-Villacorta, Roosevelt; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Emilio, Thaise; Alonso, Alfonso; Neill, David; Dallmeier, Francisco; Ferreira, Leandro Valle; Araujo-Murakami, Alejandro; Praia, Daniel; do Amaral, Dário Dantas; Carvalho, Fernanda Antunes; de Souza, Fernanda Coelho; Feeley, Kenneth; Arroyo, Luzmila; Pansonato, Marcelo Petratti; Gribel, Rogerio; Villa, Boris; Licona, Juan Carlos; Fine, Paul V A; Cerón, Carlos; Baraloto, Chris; Jimenez, Eliana M; Stropp, Juliana; Engel, Julien; Silveira, Marcos; Mora, Maria Cristina Peñuela; Petronelli, Pascal; Maas, Paul; Thomas-Caesar, Raquel; Henkel, Terry W; Daly, Doug; Paredes, Marcos Ríos; Baker, Tim R; Fuentes, Alfredo; Peres, Carlos A; Chave, Jerome; Pena, Jose Luis Marcelo; Dexter, Kyle G; Silman, Miles R; Jørgensen, Peter Møller; Pennington, Toby; Di Fiore, Anthony; Valverde, Fernando Cornejo; Phillips, Juan Fernando; Rivas-Torres, Gonzalo; von Hildebrand, Patricio; van Andel, Tinde R; Ruschel, Ademir R; Prieto, Adriana; Rudas, Agustín; Hoffman, Bruce; Vela, César I A; Barbosa, Edelcilio Marques; Zent, Egleé L; Gonzales, George Pepe Gallardo; Doza, Hilda Paulette Dávila; de Andrade Miranda, Ires Paula; Guillaumet, Jean-Louis; Pinto, Linder Felipe Mozombite; de Matos Bonates, Luiz Carlos; Silva, Natalino; Gómez, Ricardo Zárate; Zent, Stanford; Gonzales, Therany; Vos, Vincent A; Malhi, Yadvinder; Oliveira, Alexandre A; Cano, Angela; Albuquerque, Bianca Weiss; Vriesendorp, Corine; Correa, Diego Felipe; Torre, Emilio Vilanova; van der Heijden, Geertje; Ramirez-Angulo, Hirma; Ramos, José Ferreira; Young, Kenneth R; Rocha, Maira; Nascimento, Marcelo Trindade; Medina, Maria Natalia Umaña; Tirado, Milton; Wang, Ophelia; Sierra, Rodrigo; Torres-Lezama, Armando; Mendoza, Casimiro; Ferreira, Cid; Baider, Cláudia; Villarroel, Daniel; Balslev, Henrik; Mesones, Italo; Giraldo, Ligia Estela Urrego; Casas, Luisa Fernanda; Reategui, Manuel Augusto Ahuite; Linares-Palomino, Reynaldo; Zagt, Roderick; Cárdenas, Sasha; Farfan-Rios, William; Sampaio, Adeilza Felipe; Pauletto, Daniela; Sandoval, Elvis H Valderrama; Arevalo, Freddy Ramirez; Huamantupa-Chuquimaco, Isau; Garcia-Cabrera, Karina; Hernandez, Lionel; Gamarra, Luis Valenzuela; Alexiades, Miguel N; Pansini, Susamar; Cuenca, Walter Palacios; Milliken, William; Ricardo, Joana; Lopez-Gonzalez, Gabriela; Pos, Edwin; Ter Steege, Hans

    2018-01-17

    Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species' area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.

  10. Species data: National inventory of range maps and distribution models

    USGS Publications Warehouse

    Gergely, Kevin J.; McKerrow, Alexa

    2013-01-01

    The Gap Analysis Program (GAP) produces data and tools that help meet critical national challenges such as biodiversity conservation, renewable energy development, climate change adaptation, and infrastructure investment. The GAP species data includes vertebrate range maps and distribution models for the continental United States, as well as Alaska, Hawaii, Puerto Rico, and U.S. Virgin Islands. The vertebrate species include amphibians, birds, mammals, and reptiles. Furthermore, data used to create the distribution models (for example, percent canopy cover, elevation, and so forth) also are available.

  11. Foliar Nutrient Distribution Patterns in Sympatric Maple Species Reflect Contrasting Sensitivity to Excess Manganese.

    PubMed

    Fernando, Denise R; Marshall, Alan T; Lynch, Jonathan P

    2016-01-01

    Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress.

  12. Foliar Nutrient Distribution Patterns in Sympatric Maple Species Reflect Contrasting Sensitivity to Excess Manganese

    PubMed Central

    Fernando, Denise R.; Marshall, Alan T.; Lynch, Jonathan P.

    2016-01-01

    Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress. PMID:27391424

  13. Past, Present and Future Distributions of an Iberian Endemic, Lepus granatensis: Ecological and Evolutionary Clues from Species Distribution Models

    PubMed Central

    Acevedo, Pelayo; Melo-Ferreira, José; Real, Raimundo; Alves, Paulo Célio

    2012-01-01

    The application of species distribution models (SDMs) in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis) were used to i) determine the species’ ecogeographical constraints, ii) hindcast a climatic model for the last glacial maximum (LGM), relating it to inferences derived from molecular studies, and iii) calibrate a model to assess the species future distribution trends (up to 2080). Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor) is the most important descriptor of the current distribution of the Iberian hare. In addition, the model’s output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change. PMID:23272115

  14. Dispersal leads to spatial autocorrelation in species distributions: A simulation model

    USGS Publications Warehouse

    Bahn, V.; Krohn, W.B.; O'Connor, R.J.

    2008-01-01

    Compared to population growth regulated by local conditions, dispersal has been underappreciated as a central process shaping the spatial distribution of populations. This paper asks: (a) which conditions increase the importance of dispersers relative to local recruits in determining population sizes? and (b) how does dispersal influence the spatial distribution patterns of abundances among connected populations? We approached these questions with a simulation model of populations on a coupled lattice with cells of continuously varying habitat quality expressed as carrying capacities. Each cell contained a population with the basic dynamics of density-regulated growth, and was connected to other populations by immigration and emigration. The degree to which dispersal influenced the distribution of population sizes depended most strongly on the absolute amount of dispersal, and then on the potential population growth rate. Dispersal decaying in intensity with distance left close neighbours more alike in population size than distant populations, leading to an increase in spatial autocorrelation. The spatial distribution of species with low potential growth rates is more dependent on dispersal than that of species with high growth rates; therefore, distribution modelling for species with low growth rates requires particular attention to autocorrelation, and conservation management of these species requires attention to factors curtailing dispersal, such as fragmentation and dispersal barriers. ?? 2007 Elsevier B.V. All rights reserved.

  15. Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes

    PubMed Central

    Pittman, Simon J.; Brown, Kerry A.

    2011-01-01

    Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5–300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided ‘outstanding’ model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided ‘outstanding’ model predictions for two of five species, with the remaining three models considered ‘excellent’ (AUC = 0.8–0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support

  16. Multi-scale approach for predicting fish species distributions across coral reef seascapes.

    PubMed

    Pittman, Simon J; Brown, Kerry A

    2011-01-01

    Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5-300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided 'outstanding' model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided 'outstanding' model predictions for two of five species, with the remaining three models considered 'excellent' (AUC = 0.8-0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support conservation

  17. Species selection under long-term experimental warming and drought explained by climatic distributions.

    PubMed

    Liu, Daijun; Peñuelas, Josep; Ogaya, Romà; Estiarte, Marc; Tielbörger, Katja; Slowik, Fabian; Yang, Xiaohong; Bilton, Mark C

    2018-03-01

    Global warming and reduced precipitation may trigger large-scale species losses and vegetation shifts in ecosystems around the world. However, currently lacking are practical ways to quantify the sensitivity of species and community composition to these often-confounded climatic forces. Here we conducted long-term (16 yr) nocturnal-warming (+0.6°C) and reduced precipitation (-20% soil moisture) experiments in a Mediterranean shrubland. Climatic niche groups (CNGs) - species ranked or classified by similar temperature or precipitation distributions - informatively described community responses under experimental manipulations. Under warming, CNGs revealed that only those species distributed in cooler regions decreased. Correspondingly, under reduced precipitation, a U-shaped treatment effect observed in the total community was the result of an abrupt decrease in wet-distributed species, followed by a delayed increase in dry-distributed species. Notably, while partially correlated, CNG explanations of community response were stronger for their respective climate parameter, suggesting some species possess specific adaptations to either warming or drought that may lead to independent selection to the two climatic variables. Our findings indicate that when climatic distributions are combined with experiments, the resulting incorporation of local plant evolutionary strategies and their changing dynamics over time leads to predictable and informative shifts in community structure under independent climate change scenarios. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Predicting species richness and distribution ranges of centipedes at the northern edge of Europe

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Elisavet; Djursvoll, Per; Simaiakis, Stylianos M.

    2016-07-01

    In recent decades, interest in understanding species distributions and exploring processes that shape species diversity has increased, leading to the development of advanced methods for the exploitation of occurrence data for analytical and ecological purposes. Here, with the use of georeferenced centipede data, we explore the importance and contribution of bioclimatic variables and land cover, and predict distribution ranges and potential hotspots in Norway. We used a maximum entropy analysis (Maxent) to model species' distributions, aiming at exploring centres of distribution, latitudinal spans and northern range boundaries of centipedes in Norway. The performance of all Maxent models was better than random with average test area under the curve (AUC) values above 0.893 and True Skill Statistic (TSS) values above 0.593. Our results showed a highly significant latitudinal gradient of increased species richness in southern grid-cells. Mean temperatures of warmest and coldest quarters explained much of the potential distribution of species. Predictive modelling analyses revealed that south-eastern Norway and the Atlantic coast in the west (inclusive of the major fjord system of Sognefjord), are local biodiversity hotspots with regard to high predictive species co-occurrence. We conclude that our predicted northward shifts of centipedes' distributions in Norway are likely a result of post-glacial recolonization patterns, species' ecological requirements and dispersal abilities.

  19. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia.

    PubMed

    González, Camila; Paz, Andrea; Ferro, Cristina

    2014-01-01

    Visceral leishmaniasis (VL) is caused by the trypanosomatid parasite Leishmania infantum (=Leishmania chagasi), and is epidemiologically relevant due to its wide geographic distribution, the number of annual cases reported and the increase in its co-infection with HIV. Two vector species have been incriminated in the Americas: Lutzomyia longipalpis and Lutzomyia evansi. In Colombia, L. longipalpis is distributed along the Magdalena River Valley while L. evansi is only found in the northern part of the Country. Regarding the epidemiology of the disease, in Colombia the incidence of VL has decreased over the last few years without any intervention being implemented. Additionally, changes in transmission cycles have been reported with urban transmission occurring in the Caribbean Coast. In Europe and North America climate change seems to be driving a latitudinal shift of leishmaniasis transmission. Here, we explored the spatial distribution of the two known vector species of L. infantum in Colombia and projected its future distribution into climate change scenarios to establish the expansion potential of the disease. An updated database including L. longipalpis and L. evansi collection records from Colombia was compiled. Ecological niche models were performed for each species using the Maxent software and 13 Worldclim bioclimatic coverages. Projections were made for the pessimistic CSIRO A2 scenario, which predicts the higher increase in temperature due to non-emission reduction, and the optimistic Hadley B2 Scenario predicting the minimum increase in temperature. The database contained 23 records for L. evansi and 39 records for L. longipalpis, distributed along the Magdalena River Valley and the Caribbean Coast, where the potential distribution areas of both species were also predicted by Maxent. Climate change projections showed a general overall reduction in the spatial distribution of the two vector species, promoting a shift in altitudinal distribution for L

  20. Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species

    PubMed Central

    Kastman, Erik K.; Kamelamela, Noelani; Norville, Josh W.; Cosetta, Casey M.; Dutton, Rachel J.

    2016-01-01

    ABSTRACT Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ. Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. PMID:27795388

  1. Uncertainties in the projection of species distributions related to general circulation models

    PubMed Central

    Goberville, Eric; Beaugrand, Grégory; Hautekèete, Nina-Coralie; Piquot, Yves; Luczak, Christophe

    2015-01-01

    Ecological Niche Models (ENMs) are increasingly used by ecologists to project species potential future distribution. However, the application of such models may be challenging, and some caveats have already been identified. While studies have generally shown that projections may be sensitive to the ENM applied or the emission scenario, to name just a few, the sensitivity of ENM-based scenarios to General Circulation Models (GCMs) has been often underappreciated. Here, using a multi-GCM and multi-emission scenario approach, we evaluated the variability in projected distributions under future climate conditions. We modeled the ecological realized niche (sensu Hutchinson) and predicted the baseline distribution of species with contrasting spatial patterns and representative of two major functional groups of European trees: the dwarf birch and the sweet chestnut. Their future distributions were then projected onto future climatic conditions derived from seven GCMs and four emissions scenarios using the new Representative Concentration Pathways (RCPs) developed for the Intergovernmental Panel on Climate Change (IPCC) AR5 report. Uncertainties arising from GCMs and those resulting from emissions scenarios were quantified and compared. Our study reveals that scenarios of future species distribution exhibit broad differences, depending not only on emissions scenarios but also on GCMs. We found that the between-GCM variability was greater than the between-RCP variability for the next decades and both types of variability reached a similar level at the end of this century. Our result highlights that a combined multi-GCM and multi-RCP approach is needed to better consider potential trajectories and uncertainties in future species distributions. In all cases, between-GCM variability increases with the level of warming, and if nothing is done to alleviate global warming, future species spatial distribution may become more and more difficult to anticipate. When future species

  2. A collection of Australian Drosophila datasets on climate adaptation and species distributions.

    PubMed

    Hangartner, Sandra B; Hoffmann, Ary A; Smith, Ailie; Griffin, Philippa C

    2015-11-24

    The Australian Drosophila Ecology and Evolution Resource (ADEER) collates Australian datasets on drosophilid flies, which are aimed at investigating questions around climate adaptation, species distribution limits and population genetics. Australian drosophilid species are diverse in climatic tolerance, geographic distribution and behaviour. Many species are restricted to the tropics, a few are temperate specialists, and some have broad distributions across climatic regions. Whereas some species show adaptability to climate changes through genetic and plastic changes, other species have limited adaptive capacity. This knowledge has been used to identify traits and genetic polymorphisms involved in climate change adaptation and build predictive models of responses to climate change. ADEER brings together 103 datasets from 39 studies published between 1982-2013 in a single online resource. All datasets can be downloaded freely in full, along with maps and other visualisations. These historical datasets are preserved for future studies, which will be especially useful for assessing climate-related changes over time.

  3. Latitudinal variation in the shape of the species body size distribution: an analysis using freshwater fishes.

    PubMed

    Knouft, Jason H

    2004-05-01

    Many taxonomic and ecological assemblages of species exhibit a right-skewed body size-frequency distribution when characterized at a regional scale. Although this distribution has been frequently described, factors influencing geographic variation in the distribution are not well understood, nor are mechanisms responsible for distribution shape. In this study, variation in the species body size-frequency distributions of 344 regional communities of North American freshwater fishes is examined in relation to latitude, species richness, and taxonomic composition. Although the distribution of all species of North American fishes is right-skewed, a negative correlation exists between latitude and regional community size distribution skewness, with size distributions becoming left-skewed at high latitudes. This relationship is not an artifact of the confounding relationship between latitude and species richness in North American fishes. The negative correlation between latitude and regional community size distribution skewness is partially due to the geographic distribution of families of fishes and apparently enhanced by a nonrandom geographic distribution of species within families. These results are discussed in the context of previous explanations of factors responsible for the generation of species size-frequency distributions related to the fractal nature of the environment, energetics, and evolutionary patterns of body size in North American fishes.

  4. Environmental niche divergence among three dune shrub sister species with parapatric distributions

    PubMed Central

    Chefaoui, Rosa M.; Correia, Otília; Bonal, Raúl; Hortal, Joaquín

    2017-01-01

    Abstract Background and Aims The geographical distributions of species are constrained by their ecological requirements. The aim of this work was to analyse the effects of environmental conditions, historical events and biogeographical constraints on the diversification of the three species of the western Mediterranean shrub genus Stauracanthus, which have a parapatric distribution in the Iberian Peninsula. Methods Ecological niche factor analysis and generalized linear models were used to measure the response of all Stauracanthus species to the environmental gradients and map their potential distributions in the Iberian Peninsula. The bioclimatic niche overlap between the three species was determined by using Schoener's index. The genetic differentiation of the Iberian and northern African populations of Stauracanthus species was characterized with GenalEx. The effects on genetic distances of the most important environmental drivers were assessed through Mantel tests and non-metric multidimensional scaling. Key Results The three Stauracanthus species show remarkably similar responses to climatic conditions. This supports the idea that all members of this recently diversified clade retain common adaptations to climate and consequently high levels of climatic niche overlap. This contrasts with the diverse edaphic requirements of Stauracanthus species. The populations of the S. genistoides–spectabilis clade grow on Miocene and Pliocene fine-textured sedimentary soils, whereas S. boivinii, the more genetically distant species, occurs on older and more coarse-textured sedimentary substrates. These patterns of diversification are largely consistent with a stochastic process of geographical range expansion and fragmentation coupled with niche evolution in the context of spatially complex environmental fluctuations. Conclusions: The combined analysis of the distribution, realized environmental niche and phylogeographical relationships of parapatric species proposed in

  5. Species distribution modeling based on the automated identification of citizen observations.

    PubMed

    Botella, Christophe; Joly, Alexis; Bonnet, Pierre; Monestiez, Pascal; Munoz, François

    2018-02-01

    A species distribution model computed with automatically identified plant observations was developed and evaluated to contribute to future ecological studies. We used deep learning techniques to automatically identify opportunistic plant observations made by citizens through a popular mobile application. We compared species distribution modeling of invasive alien plants based on these data to inventories made by experts. The trained models have a reasonable predictive effectiveness for some species, but they are biased by the massive presence of cultivated specimens. The method proposed here allows for fine-grained and regular monitoring of some species of interest based on opportunistic observations. More in-depth investigation of the typology of the observations and the sampling bias should help improve the approach in the future.

  6. Separating the effects of environment and space on tree species distribution: from population to community.

    PubMed

    Lin, Guojun; Stralberg, Diana; Gong, Guiquan; Huang, Zhongliang; Ye, Wanhui; Wu, Linfang

    2013-01-01

    Quantifying the relative contributions of environmental conditions and spatial factors to species distribution can help improve our understanding of the processes that drive diversity patterns. In this study, based on tree inventory, topography and soil data from a 20-ha stem-mapped permanent forest plot in Guangdong Province, China, we evaluated the influence of different ecological processes at different spatial scales using canonical redundancy analysis (RDA) at the community level and multiple linear regression at the species level. At the community level, the proportion of explained variation in species distribution increased with grid-cell sizes, primarily due to a monotonic increase in the explanatory power of environmental variables. At the species level, neither environmental nor spatial factors were important determinants of overstory species' distributions at small cell sizes. However, purely spatial variables explained most of the variation in the distributions of understory species at fine and intermediate cell sizes. Midstory species showed patterns that were intermediate between those of overstory and understory species. At the 20-m cell size, the influence of spatial factors was stronger for more dispersal-limited species, suggesting that much of the spatial structuring in this community can be explained by dispersal limitation. Comparing environmental factors, soil variables had higher explanatory power than did topography for species distribution. However, both topographic and edaphic variables were highly spatial structured. Our results suggested that dispersal limitation has an important influence on fine-intermediate scale (from several to tens of meters) species distribution, while environmental variability facilitates species distribution at intermediate (from ten to tens of meters) and broad (from tens to hundreds of meters) scales.

  7. Variation in the distribution of four cacti species due to climate change in Chihuahua, Mexico.

    PubMed

    Cortes, Leonor; Domínguez, Irma; Lebgue, Toutcha; Viramontes, Oscar; Melgoza, Alicia; Pinedo, Carmelo; Camarillo, Javier

    2013-12-24

    This study is about four cacti species in the state of Chihuahua, (Coryphantha macromeris, Mammillaria lasiacantha, Echinocereus dasyacanthus and Ferocactus wislizenii). Geographic distribution was inferred with MaxEnt. Projection was estimated under three scenarios simulated from IPCC (A2, B1 and A1B) and four periods (2000, 2020, 2050 and 2080) with 19 climatic variables. MaxEnt projects a species decrease in 2020 under scenario A2, increasing in the following years. In 2080 all species, except E. dasyacanthus, will occupy a larger area than their current one. Scenario B1 projected for 2050 a decrease for all species, and in 2080 all species except E. dasyacanthus will increase their area. With A1B, C. macromeris decreases 27% from 2020 to 2050. E. dasyacanthus increases from 2020 to 2050 and decreases 73% from 2020 to 2080. M. lasiacantha decreases 13% from 2020 to 2080 and F. wislizenii will increase 13% from 2020 to 2080. Some species will remain stable on their areas despite climate changes, and other species may be affected under the conditions of the A1B scenario. It is important to continue with studies which give a broader perspective about the consequences of climate change, thus enabling decision-making about resource management.

  8. Review of factors affecting the distribution and abundance of waterfowl in shallow-water habitats of Chesapeake Bay

    USGS Publications Warehouse

    Perry, M.C.; Deller, A.S.

    1996-01-01

    Long-term trends of waterfowl populations in Chesapeake Bay demonstrate the importance of shallow-water habitats for waterfowl species. Although recent increases in field feeding by geese and swans lessened the importance of shallow-water areas for these species, most duck species depend almost exclusively on shallow-water habitats. Many factors influenced the distribution and abundance of waterfowl in shallow-water habitats. Habitat degradation resulted in the decline in numbers of most duck species and a change in distribution of some species. Increased numbers of mallards (Anas platyrhynchos) in recent decades probably resulted from release programs conducted by the Maryland Department of Natural Resources and private individuals. Studies of food habits since 1885 showed a decline in submerged-aquatic vegetation in the diet of some species, such as the canvasback (Aythya valisineria ), and an increase in the proportions of invertebrates in the diet. Diversity of food organisms for many waterfowl species has declined. Surveys of vegetation and invertebrates in the Chesapeake Bay generally reflect a degradation of shallow-water habitat. Human population increases in the Chesapeake Bay watershed directly and indirectly affected waterfowl distribution and abundance. The increase of exotic plant and invertebrate species in the bay, in most cases, benefited waterfowl populations. Increased contaminants have reduced the quality and quantity of habitat, although serious attempts to reverse this trend are underway. The use of shallow-water habitats by humans for fishing, hunting, boating, and other recreational and commercial uses reduced the use of shallow-water habitats by waterfowl. Humans can lessen the adverse influences on the valuable shallow-water habitats by restricting human population growth near these habitats and improving the water quality of the bay tributaries. Other affirmative actions that will improve these areas for waterfowl include greater

  9. Three new species and distributional records for Paramaronius Wittmer (Coleoptera, Cantharidae, Chauliognathinae)

    PubMed Central

    Biffi, Gabriel

    2015-01-01

    Abstract Three new species of Paramaronius Wittmer from southeastern Brazil are described and illustrated: Paramaronius serranus sp. n., Paramaronius brancuccii sp. n. and Paramaronius cavipennis sp. n. Paramaronius impressipennis (Pic) is redescribed, with supplementary description of the female. This species is recorded from Northeastern Brazil for the first time and its distribution pattern is discussed. A distribution map of Paramaronius in South America is provided. An identification key to all known species of the genus as well as photographs are given. PMID:26312019

  10. Using species abundance distribution models and diversity indices for biogeographical analyses

    NASA Astrophysics Data System (ADS)

    Fattorini, Simone; Rigal, François; Cardoso, Pedro; Borges, Paulo A. V.

    2016-01-01

    We examine whether Species Abundance Distribution models (SADs) and diversity indices can describe how species colonization status influences species community assembly on oceanic islands. Our hypothesis is that, because of the lack of source-sink dynamics at the archipelago scale, Single Island Endemics (SIEs), i.e. endemic species restricted to only one island, should be represented by few rare species and consequently have abundance patterns that differ from those of more widespread species. To test our hypothesis, we used arthropod data from the Azorean archipelago (North Atlantic). We divided the species into three colonization categories: SIEs, archipelagic endemics (AZEs, present in at least two islands) and native non-endemics (NATs). For each category, we modelled rank-abundance plots using both the geometric series and the Gambin model, a measure of distributional amplitude. We also calculated Shannon entropy and Buzas and Gibson's evenness. We show that the slopes of the regression lines modelling SADs were significantly higher for SIEs, which indicates a relative predominance of a few highly abundant species and a lack of rare species, which also depresses diversity indices. This may be a consequence of two factors: (i) some forest specialist SIEs may be at advantage over other, less adapted species; (ii) the entire populations of SIEs are by definition concentrated on a single island, without possibility for inter-island source-sink dynamics; hence all populations must have a minimum number of individuals to survive natural, often unpredictable, fluctuations. These findings are supported by higher values of the α parameter of the Gambin mode for SIEs. In contrast, AZEs and NATs had lower regression slopes, lower α but higher diversity indices, resulting from their widespread distribution over several islands. We conclude that these differences in the SAD models and diversity indices demonstrate that the study of these metrics is useful for

  11. Testing hypotheses on distribution shifts and changes in phenology of imperfectly detectable species

    USGS Publications Warehouse

    Chambert, Thierry A.; Kendall, William L.; Hines, James E.; Nichols, James D.; Pedrini, Paolo; Waddle, J. Hardin; Tavecchia, Giacomo; Walls, Susan C.; Tenan, Simone

    2015-01-01

    With ongoing climate change, many species are expected to shift their spatial and temporal distributions. To document changes in species distribution and phenology, detection/non-detection data have proven very useful. Occupancy models provide a robust way to analyse such data, but inference is usually focused on species spatial distribution, not phenology.We present a multi-season extension of the staggered-entry occupancy model of Kendall et al. (2013, Ecology, 94, 610), which permits inference about the within-season patterns of species arrival and departure at sampling sites. The new model presented here allows investigation of species phenology and spatial distribution across years, as well as site extinction/colonization dynamics.We illustrate the model with two data sets on European migratory passerines and one data set on North American treefrogs. We show how to derive several additional phenological parameters, such as annual mean arrival and departure dates, from estimated arrival and departure probabilities.Given the extent of detection/non-detection data that are available, we believe that this modelling approach will prove very useful to further understand and predict species responses to climate change.

  12. Soil moisture and biogeochemical factors influence the distribution of annual Bromus species

    USGS Publications Warehouse

    Belnap, Jayne; Stark, John Thomas; Rau, Benjamin; Allen, Edith B.; Phillips, Sue

    2016-01-01

    Abiotic factors have a strong influence on where annual Bromus species are found. At the large regional scale, temperature and precipitation extremes determine the boundaries of Bromusoccurrence. At the more local scale, soil characteristics and climate influence distribution, cover, and performance. In hot, dry, summer-rainfall-dominated deserts (Sonoran, Chihuahuan), little or noBromus is found, likely due to timing or amount of soil moisture relative to Bromus phenology. In hot, winter-rainfall-dominated deserts (parts of the Mojave Desert), Bromus rubens is widespread and correlated with high phosphorus availability. It also responds positively to additions of nitrogen alone or with phosphorus. On the Colorado Plateau, with higher soil moisture availability, factors limiting Bromus tectorum populations vary with life stage: phosphorus and water limit germination, potassium and the potassium/magnesium ratio affect winter performance, and water and potassium/magnesium affect spring performance. Controlling nutrients also change with elevation. In cooler deserts with winter precipitation (Great Basin, Columbia Plateau) and thus even greater soil moisture availability, B. tectorum populations are controlled by nitrogen, phosphorus, or potassium. Experimental nitrogen additions stimulate Bromus performance. The reason for different nutrients limiting in dissimilar climatic regions is not known, but it is likely that site conditions such as soil texture (as it affects water and nutrient availability), organic matter, and/or chemistry interact in a manner that regulates nutrient availability and limitations. Under future drier, hotter conditions,Bromus distribution is likely to change due to changes in the interaction between moisture and nutrient availability.

  13. Impact assessment of a high-speed railway line on species distribution: application to the European tree frog (Hyla arborea) in Franche-Comté.

    PubMed

    Clauzel, Céline; Girardet, Xavier; Foltête, Jean-Christophe

    2013-09-30

    The aim of the present work is to assess the potential long-distance effect of a high-speed railway line on the distribution of the European tree frog (Hyla arborea) in eastern France by combining graph-based analysis and species distribution models. This combination is a way to integrate patch-level connectivity metrics on different scales into a predictive model. The approach used is put in place before the construction of the infrastructure and allows areas potentially affected by isolation to be mapped. Through a diachronic analysis, comparing species distribution before and after the construction of the infrastructure, we identify changes in the probability of species presence and we determine the maximum distance of impact. The results show that the potential impact decreases with distance from the high-speed railway line and the largest disturbances occur within the first 500 m. Between 500 m and 3500 m, the infrastructure generates a moderate decrease in the probability of presence with maximum values close to -40%. Beyond 3500 m the average disturbance is less than -10%. The spatial extent of the impact is greater than the dispersal distance of the tree frog, confirming the assumption of the long-distance effect of the infrastructure. This predictive modelling approach appears to be a useful tool for environmental impact assessment and strategic environmental assessment. The results of the species distribution assessment may provide guidance for field surveys and support for conservation decisions by identifying the areas most affected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Geographical distribution of Culicoides (DIPTERA: CERATOPOGONIDAE) in mainland Portugal: Presence/absence modelling of vector and potential vector species.

    PubMed

    Ramilo, David W; Nunes, Telmo; Madeira, Sara; Boinas, Fernando; da Fonseca, Isabel Pereira

    2017-01-01

    Vector-borne diseases are not only accounted responsible for their burden on human health-care systems, but also known to cause economic constraints to livestock and animal production. Animals are affected directly by the transmitted pathogens and indirectly when animal movement is restricted. Distribution of such diseases depends on climatic and social factors, namely, environmental changes, globalization, trade and unplanned urbanization. Culicoides biting midges are responsible for the transmission of several pathogenic agents with relevant economic impact. Due to a fragmentary knowledge of their ecology, occurrence is difficult to predict consequently, limiting the control of these arthropod vectors. In order to understand the distribution of Culicoides species, in mainland Portugal, data collected during the National Entomologic Surveillance Program for Bluetongue disease (2005-2013), were used for statistical evaluation. Logistic regression analysis was preformed and prediction maps (per season) were obtained for vector and potentially vector species. The variables used at the present study were selected from WorldClim (two climatic variables) and CORINE databases (twenty-two land cover variables). This work points to an opposite distribution of C. imicola and species from the Obsoletus group within mainland Portugal. Such findings are evidenced in autumn, with the former appearing in Central and Southern regions. Although appearing northwards, on summer and autumn, C. newsteadi reveals a similar distribution to C. imicola. The species C. punctatus appears in all Portuguese territory throughout the year. Contrary, C. pulicaris is poorly caught in all areas of mainland Portugal, being paradoxical present near coastal areas and higher altitude regions.

  15. Geographical distribution of Culicoides (DIPTERA: CERATOPOGONIDAE) in mainland Portugal: Presence/absence modelling of vector and potential vector species

    PubMed Central

    Madeira, Sara; Boinas, Fernando; da Fonseca, Isabel Pereira

    2017-01-01

    Vector-borne diseases are not only accounted responsible for their burden on human health-care systems, but also known to cause economic constraints to livestock and animal production. Animals are affected directly by the transmitted pathogens and indirectly when animal movement is restricted. Distribution of such diseases depends on climatic and social factors, namely, environmental changes, globalization, trade and unplanned urbanization. Culicoides biting midges are responsible for the transmission of several pathogenic agents with relevant economic impact. Due to a fragmentary knowledge of their ecology, occurrence is difficult to predict consequently, limiting the control of these arthropod vectors. In order to understand the distribution of Culicoides species, in mainland Portugal, data collected during the National Entomologic Surveillance Program for Bluetongue disease (2005–2013), were used for statistical evaluation. Logistic regression analysis was preformed and prediction maps (per season) were obtained for vector and potentially vector species. The variables used at the present study were selected from WorldClim (two climatic variables) and CORINE databases (twenty-two land cover variables). This work points to an opposite distribution of C. imicola and species from the Obsoletus group within mainland Portugal. Such findings are evidenced in autumn, with the former appearing in Central and Southern regions. Although appearing northwards, on summer and autumn, C. newsteadi reveals a similar distribution to C. imicola. The species C. punctatus appears in all Portuguese territory throughout the year. Contrary, C. pulicaris is poorly caught in all areas of mainland Portugal, being paradoxical present near coastal areas and higher altitude regions. PMID:28683145

  16. Spatial structures of the environment and of dispersal impact species distribution in competitive metacommunities.

    PubMed

    Ai, Dexiecuo; Gravel, Dominique; Chu, Chengjin; Wang, Gang

    2013-01-01

    The correspondence between species distribution and the environment depends on species' ability to track favorable environmental conditions (via dispersal) and to maintain competitive hierarchy against the constant influx of migrants (mass effect) and demographic stochasticity (ecological drift). Here we report a simulation study of the influence of landscape structure on species distribution. We consider lottery competition for space in a spatially heterogeneous environment, where the landscape is represented as a network of localities connected by dispersal. We quantified the contribution of neutrality and species sorting to their spatial distribution. We found that neutrality increases and the strength of species-sorting decreases with the centrality of a community in the landscape when the average dispersal among communities is low, whereas the opposite was found at elevated dispersal. We also found that the strength of species-sorting increases with environmental heterogeneity. Our results illustrate that spatial structure of the environment and of dispersal must be taken into account for understanding species distribution. We stress the importance of spatial geographic structure on the relative importance of niche vs. neutral processes in controlling community dynamics.

  17. Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks.

    PubMed

    Staniczenko, Phillip P A; Sivasubramaniam, Prabu; Suttle, K Blake; Pearson, Richard G

    2017-06-01

    Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub-disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species' presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  18. Distribution and abundance of predators that affect duck production--prairie pothole region

    USGS Publications Warehouse

    Sargeant, A.B.; Greenwood, R.J.; Sovada, M.A.; Shaffer, T.L.

    1993-01-01

    During 1983-88, the relative abundance of 18 species and species-groups of mammalian and avian predators affecting duck production in the prairie pothole region was determined in 33 widely scattered study areas ranging in size from 23-26 km2. Accounts of each studied species and species-group include habitat and history, population structure and reported densities, and information on distribution and abundance from the present study. Index values of undetected, scarce, uncommon, common, or numerous were used to rate abundance of nearly all species in each study area. Principal survey methods were livetrapping of striped skunks (Mephitis mephitis) and Franklin's ground squirrels (Spermophilus franklinii), systematic searches for carnivore tracks in quarter sections (0.65 km2), daily records of sightings of individual predator species, and systematic searches for occupied nests of tree-nesting avian predators. Abundances of predators in individual areas were studied 1-3 years.The distribution and abundance of predator species throughout the prairie pothole region have undergone continual change since settlement of the region by Europeans in the late 1800's. Predator populations in areas we studied differed markedly from those of pristine times. The changes occurred from habitat alterations, human-inflicted mortality of predators, and interspecific relations among predator species. Indices from surveys of tracks revealed a decline in the abundance of red foxes (Vulpes vulpes) and an albeit less consistent decline in the abundance of raccoons (Procyon lotor) with an increase in the abundance of coyotes (Canis latrans). Records of locations of occupied nests revealed great horned owls (Bubo virginianus) and red-tailed hawks (Buteo jamaicensis) tended to nest 0.5 km apart, and American crows (Corvus brachyrhynchos) tended to avoid nesting 0.5 km of nests of red-tailed hawks. Excluding large gulls, for which no measurements of abundance were obtained, the number of

  19. [Species composition and distribution of medical mollusca in Shanghai City].

    PubMed

    Guo, Yun-hai; Lv, Shan; Gu, Wen-biao; Liu, He-xiang; Wu, Ying; Zhang, Yi

    2015-02-01

    To investigate the species diversity and distribution of medical mollusca in Shanghai City. From August 2012 to October 2013, all kinds of habitats in 8 districts and counties in Shanghai City, namely Jiading, Qingpu, Baoshan, Minhang, Songjiang, Jinshan, Chongming, Pudong, were selected for the field survey according to the distribution characteristics of the river system, and all the specimens of medical mollusca in the investigation sites were collected and classified by morphological identification. Meanwhile, the species composition, habitats as well as the fauna of the medical mollusca collected were analyzed. A total of 5,211 specimens were collected, which belonged to 2 classes, 14 families, 18 genera and 25 species, including Oncomelania hupensis hupensis, Pomacea canaliculata, Parafossarulus striatulus, Alocinma longicornis, Physa acuta, Galba pervia, Hippeutis cantori, etc. The species numbers of medical mollusca in Chongming, Jinshan, Pudong new area and Qingpu districts (counties) were 22, 22, 21 and 20, respectively, which were more than those of other areas. The habitat analysis suggested that the species numbers in the river and wetland were the most, both of which were 14 species. The main faunas of the medical mollusca in Shanghai were the cosmopolitan and oriental species. The freshwater gastropod species are paucity in Shanghai City, but almost of them can be served as the intermediate hosts of certain parasites to transmit snail-related parasitic diseases, so the surveillance of medical mollusca should be strengthened.

  20. More than the sum of the parts: forest climate response from joint species distribution models

    Treesearch

    James S. Clark; Alan E. Gelfand; Christopher W. Woodall; Kai Zhu

    2014-01-01

    The perceived threat of climate change is often evaluated from species distribution models that are fitted to many species independently and then added together. This approach ignores the fact that species are jointly distributed and limit one another. Species respond to the same underlying climatic variables, and the abundance of any one species can be constrained by...

  1. A Five-Species Jungle Game

    PubMed Central

    Kang, Yibin; Pan, Qiuhui; Wang, Xueting; He, Mingfeng

    2016-01-01

    In this paper, we investigate the five-species Jungle game in the framework of evolutionary game theory. We address the coexistence and biodiversity of the system using mean-field theory and Monte Carlo simulations. Then, we find that the inhibition from the bottom-level species to the top-level species can be critical factors that affect biodiversity, no matter how it is distributed, whether homogeneously well mixed or structured. We also find that predators’ different preferences for food affect species’ coexistence. PMID:27332995

  2. Species composition and distribution of the Antarctic plunderfishes (Pisces, Artedidraconidae) from the Ross Sea off Victoria Land

    NASA Astrophysics Data System (ADS)

    La Mesa, Mario; Cattaneo-Vietti, Riccardo; Vacchi, Marino

    2006-04-01

    Among the notothenioid fish, the Antarctic plunderfishes (family Artedidraconidae) are a poorly known component of the bottom fauna of the continental shelf despite their relative importance. The family is composed of 25 small- to medium-sized endemic species and four genera, Artedidraco, Dolloidraco, Histiodraco and Pogonophryne, which are the most benthic and sedentary of the notothenioid fish. In the framework of "Victoria Land Transect Project", several samples of plunderfishes were collected by means of an Agassiz trawl. Sampling activities were carried out between 100 and 500 m depth in five sites over nearly 4° latitude off Victoria Land. Overall, trawling yielded 80 specimens of plunderfish, including all species of Artedidraco reported from the Ross Sea, i.e. Artedidraco glareobarbatus, A. loennbergi, A. orianae, A. shackletoni and A. skottsbergi, and the monotypic genus Histiodraco. The use of multivariate statistical analyses on catch data indicated sampling site as the main factor affecting species composition. Histiodraco velifer and A. skottsbergi were caught almost exclusively in the southernmost sites, characterizing the artedidraconid fauna of Cape Russell. A. orianae was sampled only in the northernmost sites, such as Cape Adare and Hallett Peninsula. A. loennbergi appeared to be a ubiquitous species, whereas A. glareobarbatus was caught only at the Hallett Peninsula. Plunderfishes showed a particular distribution pattern in relation to depth as well. A. glareobarbatus was the shallowest species, being sampled within 100 m. A. orianae and A. shackletoni showed a similar distribution, being caught mostly at 100-200 m, whereas A. skottsbergi was mainly sampled at 200-300 m. H. velifer was caught in a wide depth range, but mostly in deeper waters (400 m). A. loennbergi was eurybathic, showing a wider depth distribution than other species. Univariate measures of diversity indicated Cape Adare as the poorer site in terms of species richness and

  3. Fish species and community distributions as proxies for seafloor habitat distributions: The Stellwagen Bank National Marine Sanctuary example (Northwest Atlantic, Gulf of Maine)

    USGS Publications Warehouse

    Auster, P.J.; Joy, K.; Valentine, P.C.

    2001-01-01

    Defining the habitats of fishes and associated fauna on outer continental shelves is problematic given the paucity of data on the actual types and distributions of seafloor habitats. However many regions have good data on the distributions of fishes from resource surveys or catch statistics because of the economic importance of the fisheries. Fish distribution data (species or communities) have been used as a proxy for the distribution of habitats to develop precautionary conservation strategies for habitat protection (e.g., marine protected areas, fishing gear restrictions). In this study we assessed the relationships between the distributions of fish communities and species derived from trawl survey data with the spatial distribution of sediment types determined by sampling and acoustic reflectance derived from multibeam sonar surveys in Stellwagen Bank National Marine Sanctuary. Fish communities were correlated with reflectance values but all communities did not occur in unique sediment types. This suggests that use of community distributions as proxies for habitats should include the caveat that a greater number of communities within an area could indicate a greater range of habitat types. Single species distributions showed relationships between abundance and reflectance values. Trawl catches with low abundances had wide variations in reflectance values while those with high abundances had narrower ranges indicating habitat affinities. Significant non-random frequency-dependent relationships were observed for 17 of 20 species although only 12 of 20 species had significant relationships based on rank correlation. These results suggest that species distributions based on trawl survey data can be used as proxies for the distribution of seafloor habitats. Species with known habitat associations can be used to infer habitat requirements of co-occurring species and can be used to identify a range of habitat types.

  4. Blending ecology and evolution using emerging technologies to determine species distributions with a non-native pathogen in a changing climate

    Treesearch

    K. Waring; S. Cushman; A. Eckert; L. Flores-Renteria; H. Lintz; R. Sniezko; C. Still; C. Wehenkel; A. Whipple; M. Wing

    2017-01-01

    A collaborative team of researchers from the United States and Mexico has begun an exciting new research project funded by The National Science Foundation’s Macrosystems Biology program. The project will study ecological and evolutionary processes affecting the distribution of southwestern white pine (Pinus strobiformis), an important tree species of mixed conifer...

  5. Species distribution and introgressive hybridization of two Avicennia species from the Western Hemisphere unveiled by phylogeographic patterns.

    PubMed

    Mori, Gustavo M; Zucchi, Maria I; Sampaio, Iracilda; Souza, Anete P

    2015-04-10

    Mangrove plants grow in the intertidal zone in tropical and subtropical regions worldwide. The global latitudinal distribution of the mangrove is mainly influenced by climatic and oceanographic features. Because of current climate changes, poleward range expansions have been reported for the major biogeographic regions of mangrove forests in the Western and Eastern Hemispheres. There is evidence that mangrove forests also responded similarly after the last glaciation by expanding their ranges. In this context, the use of genetic tools is an informative approach for understanding how historical processes and factors impact the distribution of mangrove species. We investigated the phylogeographic patterns of two Avicennia species, A. germinans and A. schaueriana, from the Western Hemisphere using nuclear and chloroplast DNA markers. Our results indicate that, although Avicennia bicolor, A. germinans and A. schaueriana are independent lineages, hybridization between A. schaueriana and A. germinans is a relevant evolutionary process. Our findings also reinforce the role of long-distance dispersal in widespread mangrove species such as A. germinans, for which we observed signs of transatlantic dispersal, a process that has, most likely, contributed to the breadth of the distribution of A. germinans. However, along the southern coast of South America, A. schaueriana is the only representative of the genus. The distribution patterns of A. germinans and A. schaueriana are explained by their different responses to past climate changes and by the unequal historical effectiveness of relative gene flow by propagules and pollen. We observed that A. bicolor, A. germinans and A. schaueriana are three evolutionary lineages that present historical and ongoing hybridization on the American continent. We also inferred a new evidence of transatlantic dispersal for A. germinans, which may have contributed to its widespread distribution. Despite the generally wider distribution of A

  6. Vegetation in Bangalore's Slums: Composition, Species Distribution, Density, Diversity, and History

    NASA Astrophysics Data System (ADS)

    Gopal, Divya; Nagendra, Harini; Manthey, Michael

    2015-06-01

    There is widespread acknowledgement of the need for biodiversity and greening to be part of urban sustainability efforts. Yet we know little about greenery in the context of urban poverty, particularly in slums, which constitute a significant challenge for inclusive development in many rapidly growing cities. We assessed the composition, density, diversity, and species distribution of vegetation in 44 slums of Bangalore, India, comparing these to published studies on vegetation diversity in other land-use categories. Most trees were native to the region, as compared to other land-use categories such as parks and streets which are dominated by introduced species. Of the most frequently encountered tree species, Moringa oleifera and Cocos nucifera are important for food, while Ficus religiosa plays a critical cultural and religious role. Tree density and diversity were much lower in slums compared to richer residential neighborhoods. There are also differences in species preferences, with most plant (herb, shrub and vines) species in slums having economic, food, medicinal, or cultural use, while the species planted in richer residential areas are largely ornamental. Historic development has had an impact on species distribution, with older slums having larger sized tree species, while recent slums were dominated by smaller sized tree species with greater economic and food use. Extensive focus on planting trees and plant species with utility value is required in these congested neighborhoods, to provide livelihood support.

  7. Environmental niche divergence among three dune shrub sister species with parapatric distributions.

    PubMed

    Chozas, Sergio; Chefaoui, Rosa M; Correia, Otília; Bonal, Raúl; Hortal, Joaquín

    2017-05-01

    The geographical distributions of species are constrained by their ecological requirements. The aim of this work was to analyse the effects of environmental conditions, historical events and biogeographical constraints on the diversification of the three species of the western Mediterranean shrub genus Stauracanthus , which have a parapatric distribution in the Iberian Peninsula. Ecological niche factor analysis and generalized linear models were used to measure the response of all Stauracanthus species to the environmental gradients and map their potential distributions in the Iberian Peninsula. The bioclimatic niche overlap between the three species was determined by using Schoener's index. The genetic differentiation of the Iberian and northern African populations of Stauracanthus species was characterized with GenalEx. The effects on genetic distances of the most important environmental drivers were assessed through Mantel tests and non-metric multidimensional scaling. The three Stauracanthus species show remarkably similar responses to climatic conditions. This supports the idea that all members of this recently diversified clade retain common adaptations to climate and consequently high levels of climatic niche overlap. This contrasts with the diverse edaphic requirements of Stauracanthus species. The populations of the S. genistoides-spectabilis clade grow on Miocene and Pliocene fine-textured sedimentary soils, whereas S. boivinii , the more genetically distant species, occurs on older and more coarse-textured sedimentary substrates. These patterns of diversification are largely consistent with a stochastic process of geographical range expansion and fragmentation coupled with niche evolution in the context of spatially complex environmental fluctuations. : The combined analysis of the distribution, realized environmental niche and phylogeographical relationships of parapatric species proposed in this work allows integration of the biogeographical

  8. Early Mode of Life and Hatchling Size in Cephalopod Molluscs: Influence on the Species Distributional Ranges

    PubMed Central

    Vidal, Erica A. G.; Fernández-Álvarez, Fernando Á.; Nabhitabhata, Jaruwat

    2016-01-01

    Cephalopods (nautiluses, cuttlefishes, squids and octopuses) exhibit direct development and display two major developmental modes: planktonic and benthic. Planktonic hatchlings are small and go through some degree of morphological changes during the planktonic phase, which can last from days to months, with ocean currents enhancing their dispersal capacity. Benthic hatchlings are usually large, miniature-like adults and have comparatively reduced dispersal potential. We examined the relationship between early developmental mode, hatchling size and species latitudinal distribution range of 110 species hatched in the laboratory, which represent 13% of the total number of live cephalopod species described to date. Results showed that species with planktonic hatchlings reach broader distributional ranges in comparison with species with benthic hatchlings. In addition, squids and octopods follow an inverse relationship between hatchling size and species latitudinal distribution. In both groups, species with smaller hatchlings have broader latitudinal distribution ranges. Thus, squid and octopod species with larger hatchlings have latitudinal distributions of comparatively minor extension. This pattern also emerges when all species are grouped by genus (n = 41), but was not detected for cuttlefishes, a group composed mainly of species with large and benthic hatchlings. However, when hatchling size was compared to adult size, it was observed that the smaller the hatchlings, the broader the latitudinal distributional range of the species for cuttlefishes, squids and octopuses. This was also valid for all cephalopod species with benthic hatchlings pooled together. Hatchling size and associated developmental mode and dispersal potential seem to be main influential factors in determining the distributional range of cephalopods. PMID:27829039

  9. Multi-species analysis of ion distributions at Mars

    NASA Astrophysics Data System (ADS)

    Curry, S.; Liemohn, M. W.; Fang, X.; Ma, Y.; Johnson, B.; Bougher, S. W.; Dong, C.

    2012-12-01

    This study focuses on using the Mars Test Particle simulation to compare observations with virtual detections of O+, O2+, CO2+, and H+ in an orbital configuration in the Mars space environment. These planetary pick-up ions are formed when the solar wind directly interacts with the neutral atmosphere, causing the ions to be accelerated by the background convective electric field. The subsequent mass loading and ion escape are still the subject of great interest, specifically with respect to which species dominates ion loss from Mars. Modeling efforts and observations have found different results; some conclude that O+ is the most dominant escaping ion while others conclude that O2+ has the larger total loss rate. Furthermore, mass loss might actually favor CO2+ because of its tri-atomic structure. To address this unresolved issue, this study will present velocity space distributions for different species and discuss fluxes and escape rates using different modeling parameters. The simulation will also illustrate individual particle traces, which reveal the origin and trajectories of the different ion species. Finally, results from different solar conditions will be presented with respect to ion fluxes and energies as well as overall escape in order to robustly describe the physical processes controlling planetary ion distributions and atmospheric escape.

  10. Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder

    USGS Publications Warehouse

    Menke, S.B.; Holway, D.A.; Fisher, R.N.; Jetz, W.

    2009-01-01

    Aim: Species distribution models (SDMs) or, more specifically, ecological niche models (ENMs) are a useful and rapidly proliferating tool in ecology and global change biology. ENMs attempt to capture associations between a species and its environment and are often used to draw biological inferences, to predict potential occurrences in unoccupied regions and to forecast future distributions under environmental change. The accuracy of ENMs, however, hinges critically on the quality of occurrence data. ENMs often use haphazardly collected data rather than data collected across the full spectrum of existing environmental conditions. Moreover, it remains unclear how processes affecting ENM predictions operate at different spatial scales. The scale (i.e. grain size) of analysis may be dictated more by the sampling regime than by biologically meaningful processes. The aim of our study is to jointly quantify how issues relating to region and scale affect ENM predictions using an economically important and ecologically damaging invasive species, the Argentine ant (Linepithema humile). Location: California, USA. Methods: We analysed the relationship between sampling sufficiency, regional differences in environmental parameter space and cell size of analysis and resampling environmental layers using two independently collected sets of presence/absence data. Differences in variable importance were determined using model averaging and logistic regression. Model accuracy was measured with area under the curve (AUC) and Cohen's kappa. Results: We first demonstrate that insufficient sampling of environmental parameter space can cause large errors in predicted distributions and biological interpretation. Models performed best when they were parametrized with data that sufficiently sampled environmental parameter space. Second, we show that altering the spatial grain of analysis changes the relative importance of different environmental variables. These changes apparently result

  11. Spatial Structures of the Environment and of Dispersal Impact Species Distribution in Competitive Metacommunities

    PubMed Central

    Ai, Dexiecuo; Gravel, Dominique; Chu, Chengjin; Wang, Gang

    2013-01-01

    The correspondence between species distribution and the environment depends on species’ ability to track favorable environmental conditions (via dispersal) and to maintain competitive hierarchy against the constant influx of migrants (mass effect) and demographic stochasticity (ecological drift). Here we report a simulation study of the influence of landscape structure on species distribution. We consider lottery competition for space in a spatially heterogeneous environment, where the landscape is represented as a network of localities connected by dispersal. We quantified the contribution of neutrality and species sorting to their spatial distribution. We found that neutrality increases and the strength of species-sorting decreases with the centrality of a community in the landscape when the average dispersal among communities is low, whereas the opposite was found at elevated dispersal. We also found that the strength of species-sorting increases with environmental heterogeneity. Our results illustrate that spatial structure of the environment and of dispersal must be taken into account for understanding species distribution. We stress the importance of spatial geographic structure on the relative importance of niche vs. neutral processes in controlling community dynamics. PMID:23874815

  12. Patterns of Distribution and Spatial Indicators of Ecosystem Change Based on Key Species in the Southern Benguela.

    PubMed

    Watermeyer, Katherine E; Hutchings, Laurence; Jarre, Astrid; Shannon, Lynne J

    2016-01-01

    Several commercially and ecologically important species in the southern Benguela have undergone southward and eastward shifts in their distributions over previous decades, most notably the small pelagic fish sardine Sardinops sagax and anchovy Engraulis encrasicolus. Understanding these changes and their implications is essential in implementing an ecosystem approach to fisheries in the southern Benguela and attempting to appreciate the potential impacts of future environmental change. To investigate possible impacts of these shifts at an ecosystem level, distribution maps for before (1985-1991), during (1997-2000) and after (2003-2008) the shift in small pelagic fish were constructed for 14 key species from catch and survey data, and used to calculate spatial indicators including proportion east and west of Cape Agulhas, relative overlap in biomass and area, index of diversity, connectivity. Potential interactions on the south and west coasts were also compared. For several species (redeye; chub mackerel; kingklip; chokka squid; yellowtail), previously unidentified increases in the proportion of biomass east of Cape Agulhas were shown to have occurred over the same period as that of small pelagic fish, although none to the same degree. On average, overlap with small pelagic fish increased over time and overall system connectivity was lowest in the intermediate period, possibly indicating a system under transition. Connectivity declined over time on the west coast while increasing on the east coast. Distributions of other species have changed over time, with the region east of Cape Agulhas becoming increasingly important in terms of potential trophic interaction. Variations in distribution of biomass and structural complexity affect the trophic structure and hence functioning of the system, and implications should be considered when attempting to identify the possible ecosystem impacts of current and future system-level change.

  13. Diversity and Distribution of Freshwater Amphipod Species in Switzerland (Crustacea: Amphipoda)

    PubMed Central

    Altermatt, Florian; Alther, Roman; Fišer, Cene; Jokela, Jukka; Konec, Marjeta; Küry, Daniel; Mächler, Elvira; Stucki, Pascal; Westram, Anja Marie

    2014-01-01

    Amphipods are key organisms in many freshwater systems and contribute substantially to the diversity and functioning of macroinvertebrate communities. Furthermore, they are commonly used as bioindicators and for ecotoxicological tests. For many areas, however, diversity and distribution of amphipods is inadequately known, which limits their use in ecological and ecotoxicological studies and handicaps conservation initiatives. We studied the diversity and distribution of amphipods in Switzerland (Central Europe), covering four major drainage basins, an altitudinal gradient of>2,500 m, and various habitats (rivers, streams, lakes and groundwater). We provide the first provisional checklist and detailed information on the distribution and diversity of all amphipod species from Switzerland. In total, we found 29 amphipod species. This includes 16 native and 13 non-native species, one of the latter (Orchestia cavimana) reported here for the first time for Switzerland. The diversity is compared to neighboring countries. We specifically discuss species of the genus Niphargus, which are often receiving less attention. We also found evidence of an even higher level of hidden diversity, and the potential occurrence of further cryptic species. This diversity reflects the biogeographic past of Switzerland, and suggests that amphipods are ideally suited to address questions on endemism and adaptive radiations, post-glaciation re-colonization and invasion dynamics as well as biodiversity-ecosystem functioning relationships in aquatic systems. PMID:25354099

  14. Tree species distribution in temperate forests is more influenced by soil than by climate.

    PubMed

    Walthert, Lorenz; Meier, Eliane Seraina

    2017-11-01

    Knowledge of the ecological requirements determining tree species distributions is a precondition for sustainable forest management. At present, the abiotic requirements and the relative importance of the different abiotic factors are still unclear for many temperate tree species. We therefore investigated the relative importance of climatic and edaphic factors for the abundance of 12 temperate tree species along environmental gradients. Our investigations are based on data from 1,075 forest stands across Switzerland including the cold-induced tree line of all studied species and the drought-induced range boundaries of several species. Four climatic and four edaphic predictors represented the important growth factors temperature, water supply, nutrient availability, and soil aeration. The climatic predictors were derived from the meteorological network of MeteoSwiss, and the edaphic predictors were available from soil profiles. Species cover abundances were recorded in field surveys. The explanatory power of the predictors was assessed by variation partitioning analyses with generalized linear models. For six of the 12 species, edaphic predictors were more important than climatic predictors in shaping species distribution. Over all species, abundances depended mainly on nutrient availability, followed by temperature, water supply, and soil aeration. The often co-occurring species responded similar to these growth factors. Drought turned out to be a determinant of the lower range boundary for some species. We conclude that over all 12 studied tree species, soil properties were more important than climate variables in shaping tree species distribution. The inclusion of appropriate soil variables in species distribution models allowed to better explain species' ecological niches. Moreover, our study revealed that the ecological requirements of tree species assessed in local field studies and in experiments are valid at larger scales across Switzerland.

  15. Modeling the effect of climate change on the distribution of oak and pine species of Mexico.

    PubMed

    Gómez-Mendoza, Leticia; Arriaga, Laura

    2007-12-01

    We examined the vulnerability of 34 species of oaks (Quercus) and pines (Pinus) to the effects of global climate change in Mexico. We regionalized the HadCM2 model of climate change with local climatic data (mean annual temperature and rainfall) and downscaled the model with the inverse distance-weighted method. Databases of herbaria specimens, genetic algorithms (GARP), and digital covers of biophysical variables that affect oaks and pines were used to project geographic distributions of the species under a severe and conservative scenario of climate change for the year 2050. Starting with the current average temperature of 20.2 degrees C and average precipitation of 793 mm, under the severe warming scenario mean temperature and precipitation changed to 22.7 degrees C and 660 mm, respectively, in 2050. For the conservative warming scenario, these variables shifted to 21.8 degrees C and 721 mm. Responses to the different scenarios of climate change were predicted to be species-specific and related to each species climate affinity. The current geographic distribution of oaks and pines decreased 7-48% and 0.2-64%, respectively. The more vulnerable pines were Pinus rudis, P. chihuahuana, P. oocarpa, and P. culminicola, and the most vulnerable oaks were Quercus crispipilis, Q. peduncularis, Q. acutifolia, and Q. sideroxyla. In addition to habitat conservation, we think sensitive pine and oak species should be looked at more closely to define ex situ strategies (i.e., seed preservation in germplasm banks) for their long-term conservation. Modeling climatic-change scenarios is important to the development of conservation strategies.

  16. Affective responses in tamarins elicited by species-specific music

    PubMed Central

    Snowdon, Charles T.; Teie, David

    2010-01-01

    Theories of music evolution agree that human music has an affective influence on listeners. Tests of non-humans provided little evidence of preferences for human music. However, prosodic features of speech (‘motherese’) influence affective behaviour of non-verbal infants as well as domestic animals, suggesting that features of music can influence the behaviour of non-human species. We incorporated acoustical characteristics of tamarin affiliation vocalizations and tamarin threat vocalizations into corresponding pieces of music. We compared music composed for tamarins with that composed for humans. Tamarins were generally indifferent to playbacks of human music, but responded with increased arousal to tamarin threat vocalization based music, and with decreased activity and increased calm behaviour to tamarin affective vocalization based music. Affective components in human music may have evolutionary origins in the structure of calls of non-human animals. In addition, animal signals may have evolved to manage the behaviour of listeners by influencing their affective state. PMID:19726444

  17. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range.

    PubMed

    Zheng, Yulong; Liao, Zhiyong

    2017-11-22

    Invasive plant species often form dense mono-dominant stands in areas they have invaded, while having only sparse distribution in their native ranges, and the reasons behind this phenomenon are a key point of research in invasive species biology. Differences in species composition between native and invasive ranges may contribute to the difference in distribution status. In this study, we found that the high-density condition had a more negative effect on C. odorata than the low-density condition when co-grown with neighbor plants from its native range in Mexico, while this pattern was not in evidence when it was grown with neighbors from its invasive range in China. Different competitive ability and coevolutionary history with C. odorata between native-range neighbors and invasive-range neighbors may lead to the inconsistent patterns.

  18. Flood regime as a driver of the distribution of mangrove and salt marsh species in a subtropical estuary

    NASA Astrophysics Data System (ADS)

    Spier, Daphne; Gerum, Humberto L. N.; Noernberg, Maurício A.; Lana, Paulo C.

    2016-09-01

    Tidal patterns of the subtropical Paranaguá Estuarine Complex, in southern Brazil, are strongly affected by episodic cold fronts and by the coastal geometry and bottom topography, resulting in high temporal variability and marked gradients in flood regime. We delimit tolerance ranges of submersion and exposure for representative plant and animal species from local mangroves and salt marshes, through a quantitative analysis of flooding patterns in three estuarine sectors. Our results are consistent with flood regime being the leading factor on how species are distributed over the intertidal flats of the PEC. Subleading factors might be related to salinity, sediment composition and nutrient flow.

  19. Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest.

    PubMed

    Pollastrini, Martina; Nogales, Ana Garcia; Benavides, Raquel; Bonal, Damien; Finer, Leena; Fotelli, Mariangela; Gessler, Arthur; Grossiord, Charlotte; Radoglou, Kalliopi; Strasser, Reto J; Bussotti, Filippo

    2017-02-01

    An assemblage of tree species with different crown properties creates heterogeneous environments at the canopy level. Changes of functional leaf traits are expected, especially those related to light interception and photosynthesis. Chlorophyll a fluorescence (ChlF) properties in dark-adapted leaves, specific leaf area, leaf nitrogen content (N) and carbon isotope composition (δ13C) were measured on Picea abies (L.) H.Karst., Pinus sylvestris L. and Betula pendula Roth. in monospecific and mixed boreal forests in Europe, in order to test whether they were affected by stand species richness and composition. Photosynthetic efficiency, assessed by induced emission of leaf ChlF, was positively influenced in B. pendula by species richness, whereas P. abies showed higher photosynthetic efficiency in monospecific stands. Pinus sylvestris had different responses when it coexisted with P. abies or B. pendula. The presence of B. pendula, but not of P. abies, in the forest had a positive effect on the efficiency of photosynthetic electron transport and N in P. sylvestris needles, and the photosynthetic responses were positively correlated with an increase of leaf δ13C. These effects on P. sylvestris may be related to high light availability at the canopy level due to the less dense canopy of B. pendula. The different light requirements of coexisting species was the most important factor affecting the distribution of foliage in the canopy, driving the physiological responses of the mixed species. Future research directions claim to enhance the informative potential of the methods to analyse the responses of pure and mixed forests to environmental factors, including a broader set of plant species' functional traits and physiological responses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2016-01-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.

  1. Are species photosynthetic characteristics good predictors of seedling post-hurricane demographic patterns and species spatiotemporal distribution in a hurricane impacted wet montane forest?

    NASA Astrophysics Data System (ADS)

    Luke, Denneko; McLaren, Kurt

    2018-05-01

    In situ measurements of leaf level photosynthetic response to light were collected from seedlings of ten tree species from a tropical montane wet forest, the John Crow Mountains, Jamaica. A model-based recursive partitioning ('mob') algorithm was then used to identify species associations based on their fitted photosynthetic response curves. Leaf area dark respiration (RD) and light saturated maximum photosynthetic (Amax) rates were also used as 'mob' partitioning variables, to identify species associations based on seedling demographic patterns (from June 2007 to May 2010) following a hurricane (Aug. 2007) and the spatiotemporal distribution patterns of stems in 2006 and 2012. RD and Amax rates ranged from 1.14 to 2.02 μmol (CO2) m-2s-1 and 2.97-5.87 μmol (CO2) m-2s-1, respectively, placing the ten species in the range of intermediate shade tolerance. Several parsimonious species 'mob' groups were formed based on 1) interspecific differences among species response curves, 2) variations in post-hurricane seedling demographic trends and 3) RD rates and species spatiotemporal distribution patterns at aspects that are more or less exposed to hurricanes. The composition of parsimonious groupings based on photosynthetic curves was not concordant with the groups based on demographic trends but was partially concordant with the RD - species spatiotemporal distribution groups. Our results indicated that the influence of photosynthetic characteristics on demographic traits and species distributions was not straightforward. Rather, there was a complex pattern of interaction between ecophysiological and demographic traits, which determined species successional status, post-hurricane response and ultimately, species distribution at our study site.

  2. LogCauchy, log-sech and lognormal distributions of species abundances in forest communities

    USGS Publications Warehouse

    Yin, Z.-Y.; Peng, S.-L.; Ren, H.; Guo, Q.; Chen, Z.-H.

    2005-01-01

    Species-abundance (SA) pattern is one of the most fundamental aspects of biological community structure, providing important information regarding species richness, species-area relation and succession. To better describe the SA distribution (SAD) in a community, based on the widely used lognormal (LN) distribution model with exp(-x2) roll-off on Preston's octave scale, this study proposed two additional models, logCauchy (LC) and log-sech (LS), respectively with roll-offs of simple x-2 and e-x. The estimation of the theoretical total number of species in the whole community, S*, including very rare species not yet collected in sample, was derived from the left-truncation of each distribution. We fitted these three models by Levenberg-Marquardt nonlinear regression and measured the model fit to the data using coefficient of determination of regression, parameters' t-test and distribution's Kolmogorov-Smirnov (KS) test. Examining the SA data from six forest communities (five in lower subtropics and one in tropics), we found that: (1) on a log scale, all three models that are bell-shaped and left-truncated statistically adequately fitted the observed SADs, and the LC and LS did better than the LN; (2) from each model and for each community the S* values estimated by the integral and summation methods were almost equal, allowing us to estimate S* using a simple integral formula and to estimate its asymptotic confidence internals by regression of a transformed model containing it; (3) following the order of LC, LS, and LN, the fitted distributions became lower in the peak, less concave in the side, and shorter in the tail, and overall the LC tended to overestimate, the LN tended to underestimate, while the LS was intermediate but slightly tended to underestimate, the observed SADs (particularly the number of common species in the right tail); (4) the six communities had some similar structural properties such as following similar distribution models, having a common

  3. Fish species and community distributions as proxies for sea-floor habitat distributions: the Stellwagen Bank National Marine Sanctuary example (northwest Atlantic, Gulf Of Maine)

    USGS Publications Warehouse

    Auster, Peter J.; Joy, Kevin; Valentine, Page C.

    2001-01-01

    Defining the habitats of fishes and associated fauna on outer continental shelves is problematic given the paucity of data on the actual types and distributions of seafloor habitats. However many regions have good data on the distributions of fishes from resource surveys or catch statistics because of the economic importance of the fisheries. Fish distribution data (species or communities) have been used as a proxy for the distribution of habitats to develop precautionary conservation strategies for habitat protection (e.g., marine protected areas, fishing gear restrictions). In this study we assessed the relationships between the distributions of fish communities and species derived from trawl survey data with the spatial distribution of sediment types determined by sampling and acoustic reflectance derived from multibeam sonar surveys in Stellwagen Bank National Marine Sanctuary. Fish communities were correlated with reflectance values but all communities did not occur in unique sediment types. This suggests that use of community distributions as proxies for habitats should include the caveat that a greater number of communities within an area could indicate a greater range of habitat types. Single species distributions showed relationships between abundance and reflectance values. Trawl catches with low abundances had wide variations in reflectance values while those with high abundances had narrower ranges indicating habitat affinities. Significant non-random frequency-dependent relationships were observed for 17 of 20 species although only 12 of 20 species had significant relationships based on rank correlation. These results suggest that species distributions based on trawl survey data can be used as proxies for the distribution of seafloor habitats. Species with known habitat associations can be used to infer habitat requirements of co-occurring species and can be used to identify a range of habitat types.

  4. Bringing modeling to the masses: A web based system to predict potential species distributions

    USGS Publications Warehouse

    Graham, Jim; Newman, Greg; Kumar, Sunil; Jarnevich, Catherine S.; Young, Nick; Crall, Alycia W.; Stohlgren, Thomas J.; Evangelista, Paul

    2010-01-01

    Predicting current and potential species distributions and abundance is critical for managing invasive species, preserving threatened and endangered species, and conserving native species and habitats. Accurate predictive models are needed at local, regional, and national scales to guide field surveys, improve monitoring, and set priorities for conservation and restoration. Modeling capabilities, however, are often limited by access to software and environmental data required for predictions. To address these needs, we built a comprehensive web-based system that: (1) maintains a large database of field data; (2) provides access to field data and a wealth of environmental data; (3) accesses values in rasters representing environmental characteristics; (4) runs statistical spatial models; and (5) creates maps that predict the potential species distribution. The system is available online at www.niiss.org, and provides web-based tools for stakeholders to create potential species distribution models and maps under current and future climate scenarios.

  5. Comparison of Species Sensitivity Distributions Derived from Interspecies Correlation Models to Distributions used to Derive Water Quality Criteria

    EPA Science Inventory

    Species sensitivity distributions (SSD) require a large number of measured toxicity values to define a chemical’s toxicity to multiple species. This investigation comprehensively evaluated the accuracy of SSDs generated from toxicity values predicted from interspecies correlation...

  6. From projected species distribution to food-web structure under climate change.

    PubMed

    Albouy, Camille; Velez, Laure; Coll, Marta; Colloca, Francesco; Le Loc'h, François; Mouillot, David; Gravel, Dominique

    2014-03-01

    Climate change is inducing deep modifications in species geographic ranges worldwide. However, the consequences of such changes on community structure are still poorly understood, particularly the impacts on food-web properties. Here, we propose a new framework, coupling species distribution and trophic models, to predict climate change impacts on food-web structure across the Mediterranean Sea. Sea surface temperature was used to determine the fish climate niches and their future distributions. Body size was used to infer trophic interactions between fish species. Our projections reveal that 54 fish species of 256 endemic and native species included in our analysis would disappear by 2080-2099 from the Mediterranean continental shelf. The number of feeding links between fish species would decrease on 73.4% of the continental shelf. However, the connectance of the overall fish web would increase on average, from 0.26 to 0.29, mainly due to a differential loss rate of feeding links and species richness. This result masks a systematic decrease in predator generality, estimated here as the number of prey species, from 30.0 to 25.4. Therefore, our study highlights large-scale impacts of climate change on marine food-web structure with potential deep consequences on ecosystem functioning. However, these impacts will likely be highly heterogeneous in space, challenging our current understanding of climate change impact on local marine ecosystems. © 2013 John Wiley & Sons Ltd.

  7. Predators modify biogeographic constraints on species distributions in an insect metacommunity.

    PubMed

    Grainger, Tess Nahanni; Germain, Rachel M; Jones, Natalie T; Gilbert, Benjamin

    2017-03-01

    Theory describing the positive effects of patch size and connectivity on diversity in fragmented systems has stimulated a large body of empirical work, yet predicting when and how local species interactions mediate these responses remains challenging. We used insects that specialize on milkweed plants as a model metacommunity to investigate how local predation alters the effects of biogeographic constraints on species distributions. Species-specific dispersal ability and susceptibility to predation were used to predict when patch size and connectivity should shape species distributions, and when these should be modified by local predator densities. We surveyed specialist herbivores and their predators in milkweed patches in two matrix types, a forest and an old field. Predator-resistant species showed the predicted direct positive effects of patch size and connectivity on occupancy rates. For predator-susceptible species, predators consistently altered the impact of biogeographic constraints, rather than acting independently. Finally, differences between matrix types in species' responses and overall occupancy rates indicate a potential role of the inter-patch environment in mediating the joint effects of predators and spatial drivers. Together, these results highlight the importance of local top-down pressure in mediating classic biogeographic relationships, and demonstrate how species-specific responses to local and regional constraints can be used to predict these effects. © 2017 by the Ecological Society of America.

  8. Sample sizes and model comparison metrics for species distribution models

    Treesearch

    B.B. Hanberry; H.S. He; D.C. Dey

    2012-01-01

    Species distribution models use small samples to produce continuous distribution maps. The question of how small a sample can be to produce an accurate model generally has been answered based on comparisons to maximum sample sizes of 200 observations or fewer. In addition, model comparisons often are made with the kappa statistic, which has become controversial....

  9. Spatial Distribution of Dorylaimid and Mononchid Nematodes from Southeast Iberian Peninsula: Chorological Relationships among Species

    PubMed Central

    Liébanas, G.; Peña-Santiago, R.; Real, R.; Márquez, A. L.

    2002-01-01

    The spatial distribution of 138 Dorylaimid and Mononchid species collected in a natural area from the Southeast Iberian Peninsula was studied. A chorological classification was used to examine distribution patterns shared by groups of species. Eighty species were classified into 14 collective and 16 individual chorotypes. The geographical projections of several collective chorotypes are illustrated along with their corresponding distribution maps. The importance of this analysis to nematological study is briefly discussed. PMID:19265962

  10. Quantifying shark distribution patterns and species-habitat associations: implications of marine park zoning.

    PubMed

    Espinoza, Mario; Cappo, Mike; Heupel, Michelle R; Tobin, Andrew J; Simpfendorfer, Colin A

    2014-01-01

    Quantifying shark distribution patterns and species-specific habitat associations in response to geographic and environmental drivers is critical to assessing risk of exposure to fishing, habitat degradation, and the effects of climate change. The present study examined shark distribution patterns, species-habitat associations, and marine reserve use with baited remote underwater video stations (BRUVS) along the entire Great Barrier Reef Marine Park (GBRMP) over a ten year period. Overall, 21 species of sharks from five families and two orders were recorded. Grey reef Carcharhinus amblyrhynchos, silvertip C. albimarginatus, tiger Galeocerdo cuvier, and sliteye Loxodon macrorhinus sharks were the most abundant species (>64% of shark abundances). Multivariate regression trees showed that hard coral cover produced the primary split separating shark assemblages. Four indicator species had consistently higher abundances and contributed to explaining most of the differences in shark assemblages: C. amblyrhynchos, C. albimarginatus, G. cuvier, and whitetip reef Triaenodon obesus sharks. Relative distance along the GBRMP had the greatest influence on shark occurrence and species richness, which increased at both ends of the sampling range (southern and northern sites) relative to intermediate latitudes. Hard coral cover and distance across the shelf were also important predictors of shark distribution. The relative abundance of sharks was significantly higher in non-fished sites, highlighting the conservation value and benefits of the GBRMP zoning. However, our results also showed that hard coral cover had a large effect on the abundance of reef-associated shark species, indicating that coral reef health may be important for the success of marine protected areas. Therefore, understanding shark distribution patterns, species-habitat associations, and the drivers responsible for those patterns is essential for developing sound management and conservation approaches.

  11. Mechanistic species distribution modelling as a link between physiology and conservation.

    PubMed

    Evans, Tyler G; Diamond, Sarah E; Kelly, Morgan W

    2015-01-01

    Climate change conservation planning relies heavily on correlative species distribution models that estimate future areas of occupancy based on environmental conditions encountered in present-day ranges. The approach benefits from rapid assessment of vulnerability over a large number of organisms, but can have poor predictive power when transposed to novel environments and reveals little in the way of causal mechanisms that define changes in species distribution or abundance. Having conservation planning rely largely on this single approach also increases the risk of policy failure. Mechanistic models that are parameterized with physiological information are expected to be more robust when extrapolating distributions to future environmental conditions and can identify physiological processes that set range boundaries. Implementation of mechanistic species distribution models requires knowledge of how environmental change influences physiological performance, and because this information is currently restricted to a comparatively small number of well-studied organisms, use of mechanistic modelling in the context of climate change conservation is limited. In this review, we propose that the need to develop mechanistic models that incorporate physiological data presents an opportunity for physiologists to contribute more directly to climate change conservation and advance the field of conservation physiology. We begin by describing the prevalence of species distribution modelling in climate change conservation, highlighting the benefits and drawbacks of both mechanistic and correlative approaches. Next, we emphasize the need to expand mechanistic models and discuss potential metrics of physiological performance suitable for integration into mechanistic models. We conclude by summarizing other factors, such as the need to consider demography, limiting broader application of mechanistic models in climate change conservation. Ideally, modellers, physiologists and

  12. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    DOE PAGES

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; ...

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size.more » From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.« less

  13. Mechanistic species distribution modeling reveals a niche shift during invasion.

    PubMed

    Chapman, Daniel S; Scalone, Romain; Štefanić, Edita; Bullock, James M

    2017-06-01

    Niche shifts of nonnative plants can occur when they colonize novel climatic conditions. However, the mechanistic basis for niche shifts during invasion is poorly understood and has rarely been captured within species distribution models. We quantified the consequence of between-population variation in phenology for invasion of common ragweed (Ambrosia artemisiifolia L.) across Europe. Ragweed is of serious concern because of its harmful effects as a crop weed and because of its impact on public health as a major aeroallergen. We developed a forward mechanistic species distribution model based on responses of ragweed development rates to temperature and photoperiod. The model was parameterized and validated from the literature and by reanalyzing data from a reciprocal common garden experiment in which native and invasive populations were grown within and beyond the current invaded range. It could therefore accommodate between-population variation in the physiological requirements for flowering, and predict the potentially invaded ranges of individual populations. Northern-origin populations that were established outside the generally accepted climate envelope of the species had lower thermal requirements for bud development, suggesting local adaptation of phenology had occurred during the invasion. The model predicts that this will extend the potentially invaded range northward and increase the average suitability across Europe by 90% in the current climate and 20% in the future climate. Therefore, trait variation observed at the population scale can trigger a climatic niche shift at the biogeographic scale. For ragweed, earlier flowering phenology in established northern populations could allow the species to spread beyond its current invasive range, substantially increasing its risk to agriculture and public health. Mechanistic species distribution models offer the possibility to represent niche shifts by varying the traits and niche responses of individual

  14. Citizen science contributes to our knowledge of invasive plant species distributions

    USGS Publications Warehouse

    Crall, Alycia W.; Jarnevich, Catherine S.; Young, Nicholas E.; Panke, Brendon; Renz, Mark; Stohlgren, Thomas

    2015-01-01

    Citizen science is commonly cited as an effective approach to expand the scale of invasive species data collection and monitoring. However, researchers often hesitate to use these data due to concerns over data quality. In light of recent research on the quality of data collected by volunteers, we aimed to demonstrate the extent to which citizen science data can increase sampling coverage, fill gaps in species distributions, and improve habitat suitability models compared to professionally generated data sets used in isolation. We combined data sets from professionals and volunteers for five invasive plant species (Alliaria petiolata, Berberis thunbergii, Cirsium palustre, Pastinaca sativa, Polygonum cuspidatum) in portions of Wisconsin. Volunteers sampled counties not sampled by professionals for three of the five species. Volunteers also added presence locations within counties not included in professional data sets, especially in southern portions of the state where professional monitoring activities had been minimal. Volunteers made a significant contribution to the known distribution, environmental gradients sampled, and the habitat suitability of P. cuspidatum. Models generated with professional data sets for the other four species performed reasonably well according to AUC values (>0.76). The addition of volunteer data did not greatly change model performance (AUC > 0.79) but did change the suitability surface generated by the models, making them more realistic. Our findings underscore the need to merge data from multiple sources to improve knowledge of current species distributions, and to predict their movement under present and future environmental conditions. The efficiency and success of these approaches require that monitoring efforts involve multiple stakeholders in continuous collaboration via established monitoring networks.

  15. Fit-for-purpose: species distribution model performance depends on evaluation criteria - Dutch Hoverflies as a case study.

    PubMed

    Aguirre-Gutiérrez, Jesús; Carvalheiro, Luísa G; Polce, Chiara; van Loon, E Emiel; Raes, Niels; Reemer, Menno; Biesmeijer, Jacobus C

    2013-01-01

    Understanding species distributions and the factors limiting them is an important topic in ecology and conservation, including in nature reserve selection and predicting climate change impacts. While Species Distribution Models (SDM) are the main tool used for these purposes, choosing the best SDM algorithm is not straightforward as these are plentiful and can be applied in many different ways. SDM are used mainly to gain insight in 1) overall species distributions, 2) their past-present-future probability of occurrence and/or 3) to understand their ecological niche limits (also referred to as ecological niche modelling). The fact that these three aims may require different models and outputs is, however, rarely considered and has not been evaluated consistently. Here we use data from a systematically sampled set of species occurrences to specifically test the performance of Species Distribution Models across several commonly used algorithms. Species range in distribution patterns from rare to common and from local to widespread. We compare overall model fit (representing species distribution), the accuracy of the predictions at multiple spatial scales, and the consistency in selection of environmental correlations all across multiple modelling runs. As expected, the choice of modelling algorithm determines model outcome. However, model quality depends not only on the algorithm, but also on the measure of model fit used and the scale at which it is used. Although model fit was higher for the consensus approach and Maxent, Maxent and GAM models were more consistent in estimating local occurrence, while RF and GBM showed higher consistency in environmental variables selection. Model outcomes diverged more for narrowly distributed species than for widespread species. We suggest that matching study aims with modelling approach is essential in Species Distribution Models, and provide suggestions how to do this for different modelling aims and species' data

  16. Reproductive biology and species geographical distribution in the Melastomataceae: a survey based on New World taxa

    PubMed Central

    dos Santos, Ana Paula Milla; Fracasso, Carla Magioni; Luciene dos Santos, Mirley; Romero, Rosana; Sazima, Marlies; Oliveira, Paulo Eugênio

    2012-01-01

    Background and Aims Apomictic plants are less dependent on pollinator services and able to occupy more diverse habitats than sexual species. However, such assumptions are based on temperate species, and comparable evaluation for species-rich Neotropical taxa is lacking. In this context, the Melastomataceae is a predominantly Neotropical angiosperm family with many apomictic species, which is common in the Campos Rupestres, endemism-rich vegetation on rocky outcrops in central Brazil. In this study, the breeding system of some Campo Rupestre Melastomataceae was evaluated, and breeding system studies for New World species were surveyed to test the hypothesis that apomixis is associated with wide distributions, whilst sexual species have more restricted areas. Methods The breeding systems of 20 Campo Rupestre Melastomataceae were studied using hand pollinations and pollen-tube growth analysis. In addition, breeding system information was compiled for 124 New World species of Melastomataceae with either wide (>1000 km) or restricted distributions. Key Results Most (80 %) of the Campo Rupestre species studied were self-compatible. Self-incompatibility in Microlicia viminalis was associated with pollen-tube arrest in the style, as described for other Melastomataceae, but most self-incompatible species analysed showed pollen-tube growth to the ovary irrespective of pollination treatment. Apomictic species showed lower pollen viability and were less frequent among the Campo Rupestre plants. Among the New World species compiled, 43 were apomictic and 77 sexual (24 self-incompatible and 53 self-compatible). Most apomictic (86 %) and self-incompatible species (71 %) presented wide distributions, whilst restricted distributions predominate only among the self-compatible ones (53 %). Conclusions Self-compatibility and dependence on biotic pollination were characteristic of Campo Rupestre and narrowly distributed New World Melastomataceae species, whilst apomictics are widely

  17. Current state of the art for statistical modeling of species distributions [Chapter 16

    Treesearch

    Troy M. Hegel; Samuel A. Cushman; Jeffrey Evans; Falk Huettmann

    2010-01-01

    Over the past decade the number of statistical modelling tools available to ecologists to model species' distributions has increased at a rapid pace (e.g. Elith et al. 2006; Austin 2007), as have the number of species distribution models (SDM) published in the literature (e.g. Scott et al. 2002). Ten years ago, basic logistic regression (Hosmer and Lemeshow 2000)...

  18. Species Diversity and Distributional Pattern of Cockroaches in Lahore, Pakistan

    PubMed Central

    Memona, Hafsa; Manzoor, Farkhanda; Riaz, Saffora

    2017-01-01

    Background: Cockroaches are found as the most common urban pests of tropical countries, prompting economic and serious health risk problem for humans by carrying microbes and allergens, acting as vector for various pathogens of diseases. The present study was conducted from April 2013 to March 2014 in various human dwelling localities of urban area of district Lahore, Pakistan. Methods: Cockroaches were collected randomly by hand, food baited and sticky traps throughout the year. Four species of cockroaches (Periplaneta Americana (P. amercana), Blattella germanica (B. germanica), Blatta orientalis (B. orientalis), and Blatta lateralis (B. lateralis) were collected and identified from the study site. Results: B. germanica was the most dominant indoor species with highest diversity indices in study areas. Overall cockroach species diversity was highest in July–September, 2013 with highest Simpson index of diversity and Shannon index as well. P. americana was found second broadly distributed in the study area followed by B. orientalis and B. lateralis were intermediately distributed in residential areas and narrowly distributed in hospitals. Residential areas and hospitals were highly infested with B. germanica followed by P. americana. Population index of B. germanica for hospitals was double than residential areas. B. lateralis was observed as displacing B. orientalis in outdoor habitat through competing with its habitat and food sources. Conclusion: The infestation rate of different species depends on availability of food sources, sanitary conditions and climatic conditions. Cockroach infestation can be controlled with knowledge about their biology and behavior, attention to sanitation and effective use of commercial insecticides. PMID:29062850

  19. High genetic diversity in the endangered and narrowly distributed amphibian species Leptobrachium leishanense.

    PubMed

    Zhang, Wei; Luo, Zhenhua; Zhao, Mian; Wu, Hua

    2015-09-01

    Threatened species typically have a small or declining population size, which make them highly susceptible to loss of genetic diversity through genetic drift and inbreeding. Genetic diversity determines the evolutionary potential of a species; therefore, maintaining the genetic diversity of threatened species is essential for their conservation. In this study, we assessed the genetic diversity of the adaptive major histocompatibility complex (MHC) genes in an endangered and narrowly distributed amphibian species, Leptobrachium leishanense in Southwest China. We compared the genetic variation of MHC class I genes with that observed in neutral markers (5 microsatellite loci and cytochrome b gene) to elucidate the relative roles of genetic drift and natural selection in shaping the current MHC polymorphism in this species. We found a high level of genetic diversity in this population at both MHC and neutral markers compared with other threatened amphibian species. Historical positive selection was evident in the MHC class I genes. The higher allelic richness in MHC markers compared with that of microsatellite loci suggests that selection rather than genetic drift plays a prominent role in shaping the MHC variation pattern, as drift can affect all the genome in a similar way but selection directly targets MHC genes. Although demographic analysis revealed no recent bottleneck events in L. leishanense, additional population decline will accelerate the dangerous status for this species. We suggest that the conservation management of L. leishanense should concentrate on maximizing the retention of genetic diversity through preventing their continuous population decline. Protecting their living habitats and forbidding illegal hunting are the most important measures for conservation of L. leishanense. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  20. Distribution models and species discovery: the story of a new Solanum species from the Peruvian Andes

    PubMed Central

    Särkinen, Tiina; Gonzáles, Paúl; Knapp, Sandra

    2013-01-01

    Abstract A new species of Solanum sect. Solanum from Peru is described here. Solanum pseudoamericanum Särkinen, Gonzáles & S.Knapp sp. nov. is a member of the Morelloid clade of Solanum, and is characterized by the combination of mostly forked inflorescences, flowers with small stamens 2.5 mm long including the filament, and strongly exerted styles with capitate stigmas. The species was first thought to be restricted to the seasonally dry tropical forests of southern Peru along the dry valleys of Río Pampas and Río Apurímac. Results from species distribution modelling (SDM) analysis with climatic predictors identified further potential suitable habitat areas in northern and central Peru. These areas were visited during field work in 2013. A total of 17 new populations across the predicted distribution were discovered using the model-based sampling method, and five further collections were identified amongst herbarium loans. Although still endemic to Peru, Solanum pseudoamericanum is now known from across northern, central and southern Peru. Our study demonstrates the usefulness of SDM for predicting new occurrences of rare plants, especially in the Andes where collection densities are still low in many areas and where many new species remain to be discovered. PMID:24399901

  1. Distribution models and species discovery: the story of a new Solanum species from the Peruvian Andes.

    PubMed

    Särkinen, Tiina; Gonzáles, Paúl; Knapp, Sandra

    2013-01-01

    A new species of Solanum sect. Solanum from Peru is described here. Solanum pseudoamericanum Särkinen, Gonzáles & S.Knapp sp. nov. is a member of the Morelloid clade of Solanum, and is characterized by the combination of mostly forked inflorescences, flowers with small stamens 2.5 mm long including the filament, and strongly exerted styles with capitate stigmas. The species was first thought to be restricted to the seasonally dry tropical forests of southern Peru along the dry valleys of Río Pampas and Río Apurímac. Results from species distribution modelling (SDM) analysis with climatic predictors identified further potential suitable habitat areas in northern and central Peru. These areas were visited during field work in 2013. A total of 17 new populations across the predicted distribution were discovered using the model-based sampling method, and five further collections were identified amongst herbarium loans. Although still endemic to Peru, Solanum pseudoamericanum is now known from across northern, central and southern Peru. Our study demonstrates the usefulness of SDM for predicting new occurrences of rare plants, especially in the Andes where collection densities are still low in many areas and where many new species remain to be discovered.

  2. Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps

    PubMed Central

    Nieto-Lugilde, Diego; Lenoir, Jonathan; Abdulhak, Sylvain; Aeschimann, David; Dullinger, Stefan; Gégout, Jean-Claude; Guisan, Antoine; Pauli, Harald; Renaud, Julien; Theurillat, Jean-Paul; Thuiller, Wilfried; Van Es, Jérémie; Vittoz, Pascal; Willner, Wolfgang; Wohlgemuth, Thomas; Zimmermann, Niklaus E.; Svenning, Jens-Christian

    2015-01-01

    The role of competition for light among plants has long been recognised at local scales, but its importance for plant species distributions at larger spatial scales has generally been ignored. Tree cover modifies the local abiotic conditions below the canopy, notably by reducing light availability, and thus, also the performance of species that are not adapted to low-light conditions. However, this local effect may propagate to coarser spatial grains, by affecting colonisation probabilities and local extinction risks of herbs and shrubs. To assess the effect of tree cover at both the plot- and landscape-grain sizes (approximately 10-m and 1-km), we fit Generalised Linear Models (GLMs) for the plot-level distributions of 960 species of herbs and shrubs using 6,935 vegetation plots across the European Alps. We ran four models with different combinations of variables (climate, soil and tree cover) at both spatial grains for each species. We used partial regressions to evaluate the independent effects of plot- and landscape-grain tree cover on plot-level plant communities. Finally, the effects on species-specific elevational range limits were assessed by simulating a removal experiment comparing the species distributions under high and low tree cover. Accounting for tree cover improved the model performance, with the probability of the presence of shade-tolerant species increasing with increasing tree cover, whereas shade-intolerant species showed the opposite pattern. The tree cover effect occurred consistently at both the plot and landscape spatial grains, albeit most strongly at the former. Importantly, tree cover at the two grain sizes had partially independent effects on plot-level plant communities. With high tree cover, shade-intolerant species exhibited narrower elevational ranges than with low tree cover whereas shade-tolerant species showed wider elevational ranges at both limits. These findings suggest that forecasts of climate-related range shifts for herb

  3. Quantifying Shark Distribution Patterns and Species-Habitat Associations: Implications of Marine Park Zoning

    PubMed Central

    Espinoza, Mario; Cappo, Mike; Heupel, Michelle R.; Tobin, Andrew J.; Simpfendorfer, Colin A.

    2014-01-01

    Quantifying shark distribution patterns and species-specific habitat associations in response to geographic and environmental drivers is critical to assessing risk of exposure to fishing, habitat degradation, and the effects of climate change. The present study examined shark distribution patterns, species-habitat associations, and marine reserve use with baited remote underwater video stations (BRUVS) along the entire Great Barrier Reef Marine Park (GBRMP) over a ten year period. Overall, 21 species of sharks from five families and two orders were recorded. Grey reef Carcharhinus amblyrhynchos, silvertip C. albimarginatus, tiger Galeocerdo cuvier, and sliteye Loxodon macrorhinus sharks were the most abundant species (>64% of shark abundances). Multivariate regression trees showed that hard coral cover produced the primary split separating shark assemblages. Four indicator species had consistently higher abundances and contributed to explaining most of the differences in shark assemblages: C. amblyrhynchos, C. albimarginatus, G. cuvier, and whitetip reef Triaenodon obesus sharks. Relative distance along the GBRMP had the greatest influence on shark occurrence and species richness, which increased at both ends of the sampling range (southern and northern sites) relative to intermediate latitudes. Hard coral cover and distance across the shelf were also important predictors of shark distribution. The relative abundance of sharks was significantly higher in non-fished sites, highlighting the conservation value and benefits of the GBRMP zoning. However, our results also showed that hard coral cover had a large effect on the abundance of reef-associated shark species, indicating that coral reef health may be important for the success of marine protected areas. Therefore, understanding shark distribution patterns, species-habitat associations, and the drivers responsible for those patterns is essential for developing sound management and conservation approaches. PMID

  4. Potential distribution of mosquito vector species in a primary malaria endemic region of Colombia

    PubMed Central

    Altamiranda-Saavedra, Mariano; Arboleda, Sair; Parra, Juan L.; Peterson, A. Townsend

    2017-01-01

    Rapid transformation of natural ecosystems changes ecological conditions for important human disease vector species; therefore, an essential task is to identify and understand the variables that shape distributions of these species to optimize efforts toward control and mitigation. Ecological niche modeling was used to estimate the potential distribution and to assess hypotheses of niche similarity among the three main malaria vector species in northern Colombia: Anopheles nuneztovari, An. albimanus, and An. darlingi. Georeferenced point collection data and remotely sensed, fine-resolution satellite imagery were integrated across the Urabá –Bajo Cauca–Alto Sinú malaria endemic area using a maximum entropy algorithm. Results showed that An. nuneztovari has the widest geographic distribution, occupying almost the entire study region; this niche breadth is probably related to the ability of this species to colonize both, natural and disturbed environments. The model for An. darlingi showed that most suitable localities for this species in Bajo Cauca were along the Cauca and Nechí river. The riparian ecosystems in this region and the potential for rapid adaptation by this species to novel environments, may favor the establishment of populations of this species. Apparently, the three main Colombian Anopheles vector species in this endemic area do not occupy environments either with high seasonality, or with low seasonality and high NDVI values. Estimated overlap in geographic space between An. nuneztovari and An. albimanus indicated broad spatial and environmental similarity between these species. An. nuneztovari has a broader niche and potential distribution. Dispersal ability of these species and their ability to occupy diverse environmental situations may facilitate sympatry across many environmental and geographic contexts. These model results may be useful for the design and implementation of malaria species-specific vector control interventions optimized

  5. Foliar damage beyond species distributions is partly explained by distance dependent interactions with natural enemies.

    PubMed

    Katz, Daniel S W; Ibáñez, Inés

    2016-09-01

    Plant distributions are expected to shift in response to climate change, and range expansion dynamics will be shaped by the performance of individuals at the colonizing front. These plants will encounter new biotic communities beyond their range edges, and the net outcome of these encounters could profoundly affect colonization success. However, little is known about how biotic interactions vary across range edges and this has hindered efforts to predict changes in species distributions in response to climate change. In contrast, a rich literature documents how biotic interactions within species ranges vary according to distance to and density of conspecific individuals. Here, we test whether this framework can be extended to explain how biotic interactions differ beyond range edges, where conspecific adults are basically absent. To do so, we planted seven species of trees along a 450-km latitudinal gradient that crossed the current distributional range of five of these species and monitored foliar disease and invertebrate herbivory over 5 yr. Foliar disease and herbivory were analyzed as a function of distance to and density of conspecific and congeneric trees at several spatial scales. We found that within species ranges foliar disease was lower for seedlings that were farther from conspecific adults for Acer rubrum, Carya glabra, Quercus alba, and Robinia pseudoacacia. Beyond range edges, there was even less foliar disease for C. glabra, Q. alba, and R. pseudoacacia (A. rubrum was not planted outside its range). Liriodendron tulipifera did not experience reduced disease within or beyond its range. In contrast, Quercus velutina displayed significant but idiosyncratic patterns in disease at varying distances from conspecifics. Patterns of distance dependent herbivory across spatial scales was generally weak and in some cases negative (i.e., seedlings farther from conspecific adults had more herbivory). Overall, we conclude that differences in biotic

  6. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California

    USGS Publications Warehouse

    Franklin, J.; Wejnert, K.E.; Hathaway, S.A.; Rochester, C.J.; Fisher, R.N.

    2009-01-01

    Aim: Several studies have found that more accurate predictive models of species' occurrences can be developed for rarer species; however, one recent study found the relationship between range size and model performance to be an artefact of sample prevalence, that is, the proportion of presence versus absence observations in the data used to train the model. We examined the effect of model type, species rarity class, species' survey frequency, detectability and manipulated sample prevalence on the accuracy of distribution models developed for 30 reptile and amphibian species. Location: Coastal southern California, USA. Methods: Classification trees, generalized additive models and generalized linear models were developed using species presence and absence data from 420 locations. Model performance was measured using sensitivity, specificity and the area under the curve (AUC) of the receiver-operating characteristic (ROC) plot based on twofold cross-validation, or on bootstrapping. Predictors included climate, terrain, soil and vegetation variables. Species were assigned to rarity classes by experts. The data were sampled to generate subsets with varying ratios of presences and absences to test for the effect of sample prevalence. Join count statistics were used to characterize spatial dependence in the prediction errors. Results: Species in classes with higher rarity were more accurately predicted than common species, and this effect was independent of sample prevalence. Although positive spatial autocorrelation remained in the prediction errors, it was weaker than was observed in the species occurrence data. The differences in accuracy among model types were slight. Main conclusions: Using a variety of modelling methods, more accurate species distribution models were developed for rarer than for more common species. This was presumably because it is difficult to discriminate suitable from unsuitable habitat for habitat generalists, and not as an artefact of the

  7. Mapping species distributions: a comparison of skilled naturalist and lay citizen science recording.

    PubMed

    van der Wal, René; Anderson, Helen; Robinson, Annie; Sharma, Nirwan; Mellish, Chris; Roberts, Stuart; Darvill, Ben; Siddharthan, Advaith

    2015-11-01

    To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK's national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository.

  8. Development of aquatic toxicity benchmarks for oil products using species sensitivity distributions

    EPA Science Inventory

    Determining the sensitivity of a diversity of species to spilled oil and chemically dispersed oil continues to be a significant challenge in spill response and impact assessment. We used standardized tests from the literature to develop species sensitivity distributions (SSDs) of...

  9. Larval development sites of the main Culicoides species (Diptera: Ceratopogonidae) in northern Europe and distribution of coprophilic species larvae in Belgian pastures.

    PubMed

    Zimmer, Jean-Yves; Brostaux, Yves; Haubruge, Eric; Francis, Frédéric

    2014-10-15

    Some Culicoides species of biting midges (Diptera: Ceratopogonidae) are biological virus vectors worldwide and have indeed been associated with outbreaks of important epizoonoses in recent years, such as bluetongue and Schmallenberg disease in northern Europe. These diseases, which affect domestic and wild ruminants, have caused considerable economic losses. Knowledge of substrates suitable for Culicoides larval development is important, particularly for the main vector temperate species. This study, realized during two years, aimed to highlight the larval development sites of these biting midge species in the immediate surroundings of ten Belgian cattle farms. Moreover, spatial distribution of the coprophilic Culicoides larvae (C. chiopterus and C. dewulfi) within pastures was studied with increasing distance from farms along linear transects (farm-pasture-woodland). A total of 4347 adult specimens belonging to 13 Culicoides species were obtained by incubation of 2131 soil samples belonging to 102 different substrates; 18 of these substrates were suitable for larval development. The Obsoletus complex (formed by two species) was observed in a wide range of substrates, including silage residues, components of a chicken coop, dung adhering to walls inside stables, leftover feed along the feed bunk, a compost pile of sugar beet residues, soil of a livestock trampling area, and decaying wood, while the following served as substrates for the other specimens: C. chiopterus, mainly cow dung; C. dewulfi, cow dung and molehill soil; C. circumscriptus, algae; C. festivipennis, algae and soil in stagnant water; C. nubeculosus, algae and silt specifically from the edge of a pond; C. punctatus, mainly wet soil between silage reserves; C. salinarius, algae; and C. stigma, algae and wet soil between silage reserves. We also recorded significantly higher densities of coprophilic larvae within pastures in cow dung located near forests, which is likely due to the localization of

  10. Distributed Neural Processing Predictors of Multi-dimensional Properties of Affect

    PubMed Central

    Bush, Keith A.; Inman, Cory S.; Hamann, Stephan; Kilts, Clinton D.; James, G. Andrew

    2017-01-01

    Recent evidence suggests that emotions have a distributed neural representation, which has significant implications for our understanding of the mechanisms underlying emotion regulation and dysregulation as well as the potential targets available for neuromodulation-based emotion therapeutics. This work adds to this evidence by testing the distribution of neural representations underlying the affective dimensions of valence and arousal using representational models that vary in both the degree and the nature of their distribution. We used multi-voxel pattern classification (MVPC) to identify whole-brain patterns of functional magnetic resonance imaging (fMRI)-derived neural activations that reliably predicted dimensional properties of affect (valence and arousal) for visual stimuli viewed by a normative sample (n = 32) of demographically diverse, healthy adults. Inter-subject leave-one-out cross-validation showed whole-brain MVPC significantly predicted (p < 0.001) binarized normative ratings of valence (positive vs. negative, 59% accuracy) and arousal (high vs. low, 56% accuracy). We also conducted group-level univariate general linear modeling (GLM) analyses to identify brain regions whose response significantly differed for the contrasts of positive versus negative valence or high versus low arousal. Multivoxel pattern classifiers using voxels drawn from all identified regions of interest (all-ROIs) exhibited mixed performance; arousal was predicted significantly better than chance but worse than the whole-brain classifier, whereas valence was not predicted significantly better than chance. Multivoxel classifiers derived using individual ROIs generally performed no better than chance. Although performance of the all-ROI classifier improved with larger ROIs (generated by relaxing the clustering threshold), performance was still poorer than the whole-brain classifier. These findings support a highly distributed model of neural processing for the affective

  11. Molecular identification of Malassezia species isolated from dermatitis affections.

    PubMed

    Affes, M; Ben Salah, S; Makni, F; Sellami, H; Ayadi, A

    2009-05-01

    The lipophilic yeast of the genus Malassezia are opportunistic microorganisms of the skin microflora but they can be agents of various dermatomycoses. The aim of this study was to perform molecular identification of the commonly isolated Malassezia species from various dermatomycoses in our region. Thirty strains of Malassezia were isolated from different dermatologic affections: pityriasis versicolor (17), dandruff (5), seborrheic dermatitis (4), onyxis (2), folliculitis (1) and blepharitis (1). These species were identified by their morphological features and biochemical characterisation. The molecular identification was achieved by amplification of the internal transcribed spacer region by simple PCR. PCR technique was used for molecular characterisation of four Malassezia species: Malassezia globosa (270 bp), Malassezia furfur (230 bp), Malassezia sympodialis (190 bp) and Malassezia restricta (320 bp). We have detected the association between M. furfur and M. sympodialis in 16% and confirmed presumptive identification in 70% of the cases. The phenotypic identification based on microscopic and physiological method is difficult and time consuming. The application of a simple PCR method provides a sensitive and rapid identification system for Malassezia species, which may be applied in epidemiological surveys and routine practice.

  12. Predicting above-ground density and distribution of small mammal prey species at large spatial scales

    PubMed Central

    2017-01-01

    Grassland and shrub-steppe ecosystems are increasingly threatened by anthropogenic activities. Loss of native habitats may negatively impact important small mammal prey species. Little information, however, is available on the impact of habitat variability on density of small mammal prey species at broad spatial scales. We examined the relationship between small mammal density and remotely-sensed environmental covariates in shrub-steppe and grassland ecosystems in Wyoming, USA. We sampled four sciurid and leporid species groups using line transect methods, and used hierarchical distance-sampling to model density in response to variation in vegetation, climate, topographic, and anthropogenic variables, while accounting for variation in detection probability. We created spatial predictions of each species’ density and distribution. Sciurid and leporid species exhibited mixed responses to vegetation, such that changes to native habitat will likely affect prey species differently. Density of white-tailed prairie dogs (Cynomys leucurus), Wyoming ground squirrels (Urocitellus elegans), and leporids correlated negatively with proportion of shrub or sagebrush cover and positively with herbaceous cover or bare ground, whereas least chipmunks showed a positive correlation with shrub cover and a negative correlation with herbaceous cover. Spatial predictions from our models provide a landscape-scale metric of above-ground prey density, which will facilitate the development of conservation plans for these taxa and their predators at spatial scales relevant to management. PMID:28520757

  13. The Oriental genus Nasimyia (Diptera: Stratiomyidae): Geographical distribution, key to species and descriptions of three new species.

    PubMed

    Yang, Zai-hua; Hauser, Martin; Yang, Mao-fa; Zhang, Ting-ting

    2013-01-01

    In this paper, three new species of Nasimyia Yang & Yang, 2010, N. eurytarsa sp. nov., N. rozkosnyi sp. nov. and N. elongoverpa sp. nov. from the Oriental region are described and illustrated; N. nigripennis Yang & Yang, 2010 is found to be a junior synonym of N. megacephala Yang & Yang, 2010 (syn. nov.). Chelonomima signata de Meijere 1924 is combined as Pseudomeristomerinx signata (de Meijere, 1924) comb. nov.. Keys to the Oriental genera of Pachygasterinae with elongate abdomens and the species of Nasimyia are provided, as well as distribution maps of the four species of Nasimyia.

  14. What are the most crucial soil factors for predicting the distribution of alpine plant species?

    NASA Astrophysics Data System (ADS)

    Buri, A.; Pinto-Figueroa, E.; Yashiro, E.; Guisan, A.

    2017-12-01

    Nowadays the use of species distribution models (SDM) is common to predict in space and time the distribution of organisms living in the critical zone. The realized environmental niche concept behind the development of SDM imply that many environmental factors must be accounted for simultaneously to predict species distributions. Climatic and topographic factors are often primary included, whereas soil factors are frequently neglected, mainly due to the paucity of soil information available spatially and temporally. Furthermore, among existing studies, most included soil pH only, or few other soil parameters. In this study we aimed at identifying what are the most crucial soil factors for explaining alpine plant distributions and, among those identified, which ones further improve the predictive power of plant SDMs. To test the relative importance of the soil factors, we performed plant SDMs using as predictors 52 measured soil properties of various types such as organic/inorganic compounds, chemical/physical properties, water related variables, mineral composition or grain size distribution. We added them separately to a standard set of topo-climatic predictors (temperature, slope, solar radiation and topographic position). We used ensemble forecasting techniques combining together several predictive algorithms to model the distribution of 116 plant species over 250 sites in the Swiss Alps. We recorded the variable importance for each model and compared the quality of the models including different soil proprieties (one at a time) as predictors to models having only topo-climatic variables as predictors. Results show that 46% of the soil proprieties tested become the second most important variable, after air temperature, to explain spatial distribution of alpine plants species. Moreover, we also assessed that addition of certain soil factors, such as bulk soil water density, could improve over 80% the quality of some plant species models. We confirm that soil p

  15. How does species name affect consumer choice? An analysis and implications for cabinet door marketers.

    Treesearch

    Joseph A. Roos; Geof Donovan; David. Nicholls

    2005-01-01

    Consumers choose products based on various tangible and intangible attributes. Previous research has shown that there is a difference between appearance-based and word-based evaluations of wood species. However, little research has been done on how this difference affects consumer choice. This study examined how the presence or absence of a species name affects a...

  16. The Hydrological Regimes Brought by the Three Gorges Project Affected Riparian Vegetation Distribution and Diversity in 2009 and 2010

    NASA Astrophysics Data System (ADS)

    Miao, Ling-Feng; Liu, Wei-Wei; Yang, Fan

    2017-01-01

    Post-dam riparian vegetations affected by the new hydrological regimes in the Three Gorges Reservoir (TGR) were investigated in 2009 and 2010, respectively. The investigation in 2009 showed that about 231 vascular plant species belonging to 169 genera of 61 families were distributed in the water-level-fluctuation zone (WLFZ) of the (TGR). Three vegetation types, including Chuanjiang, Gorge, and other vegetation types, were classified efficiently via cluster analysis. Alpha diversity analysis indicated that species richness gradually decreased with decreasing elevation. Beta diversity analysis indicated that high environment heterogeneity was existed between the lower section and the other two sections, and environment homogeneity was also existed between middle section and upper section. Using the analysis of the field growth in the 2009 and 2010 field surveys as bases, we proposed a list of perennial herb species and woody species that may potentially occurred in the WLFZ of the TGR. In addition, we predicted plant community structural changes in the different altitude sections of WLFZ in the future.

  17. Predicting the geographic distribution of a species from presence-only data subject to detection errors

    USGS Publications Warehouse

    Dorazio, Robert M.

    2012-01-01

    Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species’ geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species.

  18. Gryporhynchidae (Cestoda: Cyclophyllidea) in Mexico: species list, hosts, distribution and new records.

    PubMed

    Ortega-Olivares, Mirza P; García-Prieto, Luis; García-Varela, Martín

    2014-05-12

    As a result of this study, 8 new host (Botaurus lentiginosus for Glossocercus caribaensis and Valipora mutabilis; Egretta caerulea for Valipora minuta; Egretta thula for Glossocercus cyprinodontis; Egretta tricolor and Nycticorax nycticorax for Glossocercus caribaensis; Pelecanus occidentalis and Platalea ajaja for Paradilepis caballeroi) and 31 new locality records for gryporhynchid cestode species in Mexico are presented. With these data, the total number of species of this group of helminths in Mexico becomes 25 (19 named species and 6 unidentified taxa), which have been registered as parasites of fishes (47 host species) and (or) birds (20 host species). This information comes from 102 localities, pertaining to 20 of 32 Mexican states. Five of the 25 taxa have been exclusivelly collected in fishes, 7 in fish-eating birds, and 13 in both groups of hosts. The most frequent metacestodes found in Mexican fishes are the merocercoids of Cyclustera ralli, Valipora mutabilis, Parvitaenia cochlearii and Valipora campylancristrota; in adult stage, Glossocercus caribaensis was the species with the largest host spectrum, while Paradilepis caballeroi has the widest distribution range. The work includes parasite/host lists, as well as habitat, distribution, references and information on specimens' deposition.

  19. Species distribution models predict temporal but not spatial variation in forest growth.

    PubMed

    van der Maaten, Ernst; Hamann, Andreas; van der Maaten-Theunissen, Marieke; Bergsma, Aldo; Hengeveld, Geerten; van Lammeren, Ron; Mohren, Frits; Nabuurs, Gert-Jan; Terhürne, Renske; Sterck, Frank

    2017-04-01

    Bioclimate envelope models have been widely used to illustrate the discrepancy between current species distributions and their potential habitat under climate change. However, the realism and correct interpretation of such projections has been the subject of considerable discussion. Here, we investigate whether climate suitability predictions correlate to tree growth, measured in permanent inventory plots and inferred from tree-ring records. We use the ensemble classifier RandomForest and species occurrence data from ~200,000 inventory plots to build species distribution models for four important European forestry species: Norway spruce, Scots pine, European beech, and pedunculate oak. We then correlate climate-based habitat suitability with volume measurements from ~50-year-old stands, available from ~11,000 inventory plots. Secondly, habitat projections based on annual historical climate are compared with ring width from ~300 tree-ring chronologies. Our working hypothesis is that habitat suitability projections from species distribution models should to some degree be associated with temporal or spatial variation in these growth records. We find that the habitat projections are uncorrelated with spatial growth records (inventory plot data), but they do predict interannual variation in tree-ring width, with an average correlation of .22. Correlation coefficients for individual chronologies range from values as high as .82 or as low as -.31. We conclude that tree responses to projected climate change are highly site-specific and that local suitability of a species for reforestation is difficult to predict. That said, projected increase or decrease in climatic suitability may be interpreted as an average expectation of increased or reduced growth over larger geographic scales.

  20. Geographic distribution of phlebotomine sandfly species (Diptera: Psychodidae) in Central-West Brazil.

    PubMed

    Almeida, Paulo Silva de; Andrade, Andrey José de; Sciamarelli, Alan; Raizer, Josué; Menegatti, Jaqueline Aparecida; Hermes, Sandra Cristina Negreli Moreira; Carvalho, Maria do Socorro Laurentino de; Gurgel-Gonçalves, Rodrigo

    2015-06-01

    This study updates the geographic distributions of phlebotomine species in Central-West Brazil and analyses the climatic factors associated with their occurrence. The data were obtained from the entomology services of the state departments of health in Central-West Brazil, scientific collections and a literature review of articles from 1962-2014. Ecological niche models were produced for sandfly species with more than 20 occurrences using the Maxent algorithm and eight climate variables. In all, 2,803 phlebotomine records for 127 species were analysed. Nyssomyia whitmani, Evandromyia lenti and Lutzomyia longipalpis were the species with the greatest number of records and were present in all the biomes in Central-West Brazil. The models, which were produced for 34 species, indicated that the Cerrado areas in the central and western regions of Central-West Brazil were climatically more suitable to sandflies. The variables with the greatest influence on the models were the temperature in the coldest months and the temperature seasonality. The results show that phlebotomine species in Central-West Brazil have different geographical distribution patterns and that climate conditions in essentially the entire region favour the occurrence of at least one Leishmania vector species, highlighting the need to maintain or intensify vector control and surveillance strategies.

  1. Geographic distribution of phlebotomine sandfly species (Diptera: Psychodidae) in Central-West Brazil

    PubMed Central

    de Almeida, Paulo Silva; de Andrade, Andrey José; Sciamarelli, Alan; Raizer, Josué; Menegatti, Jaqueline Aparecida; Hermes, Sandra Cristina Negreli Moreira; de Carvalho, Maria do Socorro Laurentino; Gurgel-Gonçalves, Rodrigo

    2015-01-01

    This study updates the geographic distributions of phlebotomine species in Central-West Brazil and analyses the climatic factors associated with their occurrence. The data were obtained from the entomology services of the state departments of health in Central-West Brazil, scientific collections and a literature review of articles from 1962-2014. Ecological niche models were produced for sandfly species with more than 20 occurrences using the Maxent algorithm and eight climate variables. In all, 2,803 phlebotomine records for 127 species were analysed. Nyssomyia whitmani, Evandromyia lenti and Lutzomyia longipalpis were the species with the greatest number of records and were present in all the biomes in Central-West Brazil. The models, which were produced for 34 species, indicated that the Cerrado areas in the central and western regions of Central-West Brazil were climatically more suitable to sandflies. The variables with the greatest influence on the models were the temperature in the coldest months and the temperature seasonality. The results show that phlebotomine species in Central-West Brazil have different geographical distribution patterns and that climate conditions in essentially the entire region favour the occurrence of at least one Leishmania vector species, highlighting the need to maintain or intensify vector control and surveillance strategies. PMID:26018450

  2. Species distribution of kobs (Kobus kob) in the Shai Hills Resource Reserve: an exploratory analysis.

    PubMed

    Antwi, Raymond Agyepong; Owusu, Erasmus Henaku; Attuquayefio, Daniel Korley

    2018-02-01

    The well-being of a species fundamentally rests on understanding its biology, home range, and distribution. The highly seasonal distribution of kobs poses conservation and management difficulties, particularly because of the capricious nature of the ever-changing ecological and vegetation dynamics of the ecosystem. Assessing the distribution of kobs and their associated vegetation provides insight into the vulnerability and conservation status of the species. Species distribution and habitat suitability maps were developed and created respectively for the management of kobs in the Shai Hills Resource Reserve. Kob presence data collected was analyzed using the spatial analyst and Hawth's tool in the ArcGIS software where the gradients of kob distribution within the protected area landscape were plotted and mapped. Seven environmental variables including location, land cover/use, slope/elevation, nearness to dams and rivers, temperature, and rainfall were considered to have effect on kob distribution pattern and as such used in the development of species distribution and habitat suitability maps. The results indicated that kobs in the Shai Hills Resource Reserve (SHRR) assume a clumped or contagious distribution pattern where individual kobs are aggregated in patches. Rainfall, temperature, nearness to dams and rivers, slope/elevation, and land cover/use had influence in kob distribution. Of all the cataloged habitats, 86, 13, and 1% were moderately suitable, suitable, and unsuitable, respectively. Long-term survival of species depends on adequately large areas of suitable habitats and opportunities for home range activities between such areas. As such, it is recommended that suitable habitats for kobs be dedicated and designated as conservation areas, especially areas along the western boundary.

  3. Predicting fine-scale distributions of peripheral aquatic species in headwater streams.

    PubMed

    DeRolph, Christopher R; Nelson, Stacy A C; Kwak, Thomas J; Hain, Ernie F

    2015-01-01

    Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. We predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistance and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients.

  4. Predicting fine-scale distributions of peripheral aquatic species in headwater streams

    USGS Publications Warehouse

    DeRolph, Christopher R.; Nelson, S.; Kwak, Thomas J.; Hain, Ernie F.

    2015-01-01

    Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. We predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistance and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients.

  5. Predicting fine-scale distributions of peripheral aquatic species in headwater streams

    PubMed Central

    DeRolph, Christopher R; Nelson, Stacy A C; Kwak, Thomas J; Hain, Ernie F

    2015-01-01

    Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. We predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistance and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients. PMID:25628872

  6. Use DNA to learn from the past: how modern and ancient DNA studies may help reveal the past and predict the future distribution of species

    NASA Astrophysics Data System (ADS)

    Edwards, M. E.; Alsos, I. G.; Sjögren, P.; Coissac, E.; Gielly, L.; Yoccoz, N.; Føreid, M. K.; Taberlet, P.

    2015-12-01

    Knowledge of how climate change affected species distribution in the past may help us predict the effect of ongoing environmental changes. We explore how the use of modern (AFLP fingerprinting techniques) and ancient DNA (metabarcoding P6 loop of chloroplast DNA) help to reveal past distribution of vascular plant species, dispersal processes, and effect of species traits. Based on studies of modern DNA combined with species distribution models, we show the dispersal routes and barriers to dispersal throughout the circumarctic/circumboreal region, likely dispersal vectors, the cost of dispersal in term of loss of genetic diversity, and how these relates to species traits, dispersal distance, and size of colonized region. We also estimate the expected future distribution and loss of genetic diversity and show how this relates to life form and adaptations to dispersal. To gain more knowledge on time lags in past range change events, we rely on palaeorecords. Current data on past distribution are limited by the taxonomic and time resolution of macrofossil and pollen records. We show how this may be improved by studying ancient DNA of lake sediments. DNA of lake sediments recorded about half of the flora surrounding the lake. Compared to macrofossil, the taxonomic resolution is similar but the detection rate is considerable improved. By taking into account main determinants of founder effect, dispersal vectors, and dispersal lags, we may improve our ability to forecast effects of climate change, whereas more studies on ancient DNA may provide us with knowledge on distribution time lags.

  7. Integrating phylogeography and species distribution models: cryptic distributional responses to past climate change in an endemic rodent from the central Chile hotspot

    PubMed Central

    GUTIÉRREZ-TAPIA, PABLO; PALMA, R. EDUARDO

    2016-01-01

    Aim Biodiversity losses under the species level may have been severely underestimated in future global climate change scenarios. Therefore, it is important to characterize the diversity units at this level, as well as to understand their ecological responses to climatic forcings. We have chosen an endemic rodent from a highly endangered ecogeographic area as a model to look for distributional responses below the species level: Phyllotis darwini. Location The central Chile biodiversity hotspot: This area harbours a high number of endemic species, and it is known to have experienced vegetational displacements between two mountain systems during and after the Last Glacial Maximum. Methods We have characterized cryptic lineages inside P. darwini in a classic phylogeographic approach; those intraspecific lineages were considered as relevant units to construct distribution models at Last Glacial Maximum and at present, as border climatic conditions. Differences in distribution between border conditions for each lineage were interpreted as distributional responses to post-glacial climate change. Results The species is composed of two major phylogroups: one of them has a broad distribution mainly across the valley but also in mountain ranges, whereas the other displays a disjunct distribution across both mountain ranges and always above 1500 m. The lineage distribution model under LGM climatic conditions suggests that both lineages were co-distributed in the southern portion of P. darwini’s current geographic range, mainly at the valley and at the coast. Main conclusions Present distribution of lineages in P. darwini is the consequence of a cryptic distributional response to climate change after LGM: postglacial northward colonization, with strict altitudinal segregation of both phylogroups. PMID:27453686

  8. Species delimitation of the Hyphydrus ovatus complex in western Palaearctic with an update of species distributions (Coleoptera, Dytiscidae)

    PubMed Central

    Bergsten, Johannes; Weingartner, Elisabeth; Hájek, Jiří

    2017-01-01

    Abstract The species status of Hyphydrus anatolicus Guignot, 1957 and H. sanctus Sharp, 1882, previously often confused with the widespread H. ovatus (Linnaeus, 1760), are tested with molecular and morphological characters. Cytochrome c oxidase subunit 1 (CO1) was sequenced for 32 specimens of all three species. Gene-trees were inferred with parsimony, time-free bayesian and strict clock bayesian analyses. The GMYC model was used to estimate species limits. All three species were reciprocally monophyletic with CO1 and highly supported. The GMYC species delimitation analysis unequivocally delimited the three species with no other than the three species solution included in the confidence interval. A likelihood ratio test rejected the one-species null model. Important morphological characters distinguishing the species are provided and illustrated. New distributional data are given for the following species: Hyphydrus anatolicus from Slovakia and Ukraine, and H. aubei Ganglbauer, 1891, and H. sanctus from Turkey. PMID:28769697

  9. Observations of the distributions of five fish species in a small Appalachian stream

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.; Moore, S.E.

    2002-01-01

    The notion has been growing that resident stream fishes exhibit a greater capacity for movement than was previously thought. In this study, we recorded the distributions of four resident fish species (longnose dace Rhinichthys cataractae, blacknose dace R. atratulus, mottled sculpin Cottus bairdi, and rainbow trout Oncorhynchus mykiss) and one nonresident species (central stoneroller Campostoma anomalum) in Rock Creek, a small tributary of Cosby Creek in Great Smoky Mountains National Park, over the period 1979a??1995. During this study, 1,998 individuals of resident species were collected from stream sections considered to be within a common area of distribution for each species. Forty-five individuals of resident and nonresident species were captured upstream of these areas, and eight of these fish were considered to be larger than individuals considered typical for each species. Small mammal dispersal theory concepts were used to classify and describe fish movements outside of common areas of distribution. These movements were identified as important in maintaining population connectivity within stream drainages, contributing to reducing the potential for local extinctions of populations and to the recolonization of unoccupied habitats. This study highlights the need for continued study of fish movements in stream drainages and for development of appropriate resource management strategies based partly on the spatial dynamics of fish populations and communities.

  10. A centroid model of species distribution with applications to the Carolina wren Thryothorus ludovicianus and house finch Haemorhous mexicanus in the United States

    USGS Publications Warehouse

    Huang, Qiongyu; Sauer, John R.; Swatantran, Anu; Dubayah, Ralph

    2016-01-01

    Drastic shifts in species distributions are a cause of concern for ecologists. Such shifts pose great threat to biodiversity especially under unprecedented anthropogenic and natural disturbances. Many studies have documented recent shifts in species distributions. However, most of these studies are limited to regional scales, and do not consider the abundance structure within species ranges. Developing methods to detect systematic changes in species distributions over their full ranges is critical for understanding the impact of changing environments and for successful conservation planning. Here, we demonstrate a centroid model for range-wide analysis of distribution shifts using the North American Breeding Bird Survey. The centroid model is based on a hierarchical Bayesian framework which models population change within physiographic strata while accounting for several factors affecting species detectability. Yearly abundance-weighted range centroids are estimated. As case studies, we derive annual centroids for the Carolina wren and house finch in their ranges in the U.S. We further evaluate the first-difference correlation between species’ centroid movement and changes in winter severity, total population abundance. We also examined associations of change in centroids from sub-ranges. Change in full-range centroid movements of Carolina wren significantly correlate with snow cover days (r = −0.58). For both species, the full-range centroid shifts also have strong correlation with total abundance (r = 0.65, and 0.51 respectively). The movements of the full-range centroids of the two species are correlated strongly (up to r = 0.76) with that of the sub-ranges with more drastic population changes. Our study demonstrates the usefulness of centroids for analyzing distribution changes in a two-dimensional spatial context. Particularly it highlights applications that associate the centroid with factors such as environmental stressors, population characteristics

  11. The role of environmental variables in structuring landscape-scale species distributions in seafloor habitats.

    PubMed

    Kraan, Casper; Aarts, Geert; Van der Meer, Jaap; Piersma, Theunis

    2010-06-01

    Ongoing statistical sophistication allows a shift from describing species' spatial distributions toward statistically disentangling the possible roles of environmental variables in shaping species distributions. Based on a landscape-scale benthic survey in the Dutch Wadden Sea, we show the merits of spatially explicit generalized estimating equations (GEE). The intertidal macrozoobenthic species, Macoma balthica, Cerastoderma edule, Marenzelleria viridis, Scoloplos armiger, Corophium volutator, and Urothoe poseidonis served as test cases, with median grain-size and inundation time as typical environmental explanatory variables. GEEs outperformed spatially naive generalized linear models (GLMs), and removed much residual spatial structure, indicating the importance of median grain-size and inundation time in shaping landscape-scale species distributions in the intertidal. GEE regression coefficients were smaller than those attained with GLM, and GEE standard errors were larger. The best fitting GEE for each species was used to predict species' density in relation to median grain-size and inundation time. Although no drastic changes were noted compared to previous work that described habitat suitability for benthic fauna in the Wadden Sea, our predictions provided more detailed and unbiased estimates of the determinants of species-environment relationships. We conclude that spatial GEEs offer the necessary methodological advances to further steps toward linking pattern to process.

  12. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent.

    PubMed

    Allman, Elizabeth S; Degnan, James H; Rhodes, John A

    2011-06-01

    Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals-each with many genes-splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.

  13. A Robust Approach to Risk Assessment Based on Species Sensitivity Distributions.

    PubMed

    Monti, Gianna S; Filzmoser, Peter; Deutsch, Roland C

    2018-05-03

    The guidelines for setting environmental quality standards are increasingly based on probabilistic risk assessment due to a growing general awareness of the need for probabilistic procedures. One of the commonly used tools in probabilistic risk assessment is the species sensitivity distribution (SSD), which represents the proportion of species affected belonging to a biological assemblage as a function of exposure to a specific toxicant. Our focus is on the inverse use of the SSD curve with the aim of estimating the concentration, HCp, of a toxic compound that is hazardous to p% of the biological community under study. Toward this end, we propose the use of robust statistical methods in order to take into account the presence of outliers or apparent skew in the data, which may occur without any ecological basis. A robust approach exploits the full neighborhood of a parametric model, enabling the analyst to account for the typical real-world deviations from ideal models. We examine two classic HCp estimation approaches and consider robust versions of these estimators. In addition, we also use data transformations in conjunction with robust estimation methods in case of heteroscedasticity. Different scenarios using real data sets as well as simulated data are presented in order to illustrate and compare the proposed approaches. These scenarios illustrate that the use of robust estimation methods enhances HCp estimation. © 2018 Society for Risk Analysis.

  14. Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: An example with background selection

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Talbert, Marian; Morisette, Jeffrey T.; Aldridge, Cameron L.; Brown, Cynthia; Kumar, Sunil; Manier, Daniel; Talbert, Colin; Holcombe, Tracy R.

    2017-01-01

    Evaluating the conditions where a species can persist is an important question in ecology both to understand tolerances of organisms and to predict distributions across landscapes. Presence data combined with background or pseudo-absence locations are commonly used with species distribution modeling to develop these relationships. However, there is not a standard method to generate background or pseudo-absence locations, and method choice affects model outcomes. We evaluated combinations of both model algorithms (simple and complex generalized linear models, multivariate adaptive regression splines, Maxent, boosted regression trees, and random forest) and background methods (random, minimum convex polygon, and continuous and binary kernel density estimator (KDE)) to assess the sensitivity of model outcomes to choices made. We evaluated six questions related to model results, including five beyond the common comparison of model accuracy assessment metrics (biological interpretability of response curves, cross-validation robustness, independent data accuracy and robustness, and prediction consistency). For our case study with cheatgrass in the western US, random forest was least sensitive to background choice and the binary KDE method was least sensitive to model algorithm choice. While this outcome may not hold for other locations or species, the methods we used can be implemented to help determine appropriate methodologies for particular research questions.

  15. Species abundance distribution and population dynamics in a two-community model of neutral ecology

    NASA Astrophysics Data System (ADS)

    Vallade, M.; Houchmandzadeh, B.

    2006-11-01

    Explicit formulas for the steady-state distribution of species in two interconnected communities of arbitrary sizes are derived in the framework of Hubbell’s neutral model of biodiversity. Migrations of seeds from both communities as well as mutations in both of them are taken into account. These results generalize those previously obtained for the “island-continent” model and they allow an analysis of the influence of the ratio of the sizes of the two communities on the dominance/diversity equilibrium. Exact expressions for species abundance distributions are deduced from a master equation for the joint probability distribution of species in the two communities. Moreover, an approximate self-consistent solution is derived. It corresponds to a generalization of previous results and it proves to be accurate over a broad range of parameters. The dynamical correlations between the abundances of a species in both communities are also discussed.

  16. Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae).

    PubMed

    Zittra, Carina; Vitecek, Simon; Obwaller, Adelheid G; Rossiter, Heidemarie; Eigner, Barbara; Zechmeister, Thomas; Waringer, Johann; Fuehrer, Hans-Peter

    2017-04-26

    Vector-pathogen dynamics are controlled by fluctuations of potential vector communities, such as the Culicidae. Assessment of mosquito community diversity and, in particular, identification of environmental parameters shaping these communities is therefore of key importance for the design of adequate surveillance approaches. In this study, we assess effects of climatic parameters and habitat structure on mosquito communities in eastern Austria to deliver these highly relevant baseline data. Female mosquitoes were sampled twice a month from April to October 2014 and 2015 at 35 permanent and 23 non-permanent trapping sites using carbon dioxide-baited traps. Differences in spatial and seasonal abundance patterns of Culicidae taxa were identified using likelihood ratio tests; possible effects of environmental parameters on seasonal and spatial mosquito distribution were analysed using multivariate statistical methods. We assessed community responses to environmental parameters based on 14-day-average values that affect ontogenesis. Altogether 29,734 female mosquitoes were collected, and 21 of 42 native as well as two of four non-native mosquito species were reconfirmed in eastern Austria. Statistical analyses revealed significant differences in mosquito abundance between sampling years and provinces. Incidence and abundance patterns were found to be linked to 14-day mean sunshine duration, humidity, water-level maxima and the amount of precipitation. However, land cover classes were found to be the most important factor, effectively assigning both indigenous and non-native mosquito species to various communities, which responded differentially to environmental variables. These findings thus underline the significance of non-climatic variables for future mosquito prediction models and the necessity to consider these in mosquito surveillance programmes.

  17. The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation.

    PubMed

    Soultan, Alaaeldin; Safi, Kamran

    2017-01-01

    Digitized species occurrence data provide an unprecedented source of information for ecologists and conservationists. Species distribution model (SDM) has become a popular method to utilise these data for understanding the spatial and temporal distribution of species, and for modelling biodiversity patterns. Our objective is to study the impact of noise in species occurrence data (namely sample size and positional accuracy) on the performance and reliability of SDM, considering the multiplicative impact of SDM algorithms, species specialisation, and grid resolution. We created a set of four 'virtual' species characterized by different specialisation levels. For each of these species, we built the suitable habitat models using five algorithms at two grid resolutions, with varying sample sizes and different levels of positional accuracy. We assessed the performance and reliability of the SDM according to classic model evaluation metrics (Area Under the Curve and True Skill Statistic) and model agreement metrics (Overall Concordance Correlation Coefficient and geographic niche overlap) respectively. Our study revealed that species specialisation had by far the most dominant impact on the SDM. In contrast to previous studies, we found that for widespread species, low sample size and low positional accuracy were acceptable, and useful distribution ranges could be predicted with as few as 10 species occurrences. Range predictions for narrow-ranged species, however, were sensitive to sample size and positional accuracy, such that useful distribution ranges required at least 20 species occurrences. Against expectations, the MAXENT algorithm poorly predicted the distribution of specialist species at low sample size.

  18. Factors affecting the efficient transformation of Colletotrichum species

    USGS Publications Warehouse

    Redman, Regina S.; Rodriguez, Rusty J.

    1994-01-01

    Factors affecting the efficient transformation of Colletotrichum species. Experimental Mycology, 18, 230-246. Twelve isolates representing four species of Colletotrichum were transformed either by enhanced protoplast, restriction enzyme-mediated integration (REMI), or electroporation-mediated protocols. The enhanced protoplast transformation protocol resulted in 100- and 50-fold increases in the transformation efficiencies of Colletotrichum lindemuthianum and C. magna , respectively. REMI transformation involved the use of Hin dIII and vector DNA linearized with HindIII to increase the number of integration events and potential gene disruptions in the fungal genome. Combining the enhanced protoplast and the REMI protocols resulted in a 22-fold increase in the number of hygromycin/nystatin-resistant mutants in C. lindemuthianum . Electroporation-mediated transformation was performed on mycelial fragments and spores of four Colletotrichum species, resulting in efficiencies of up to 1000 transformants/μg DNA. The pHA1.3 vector which confers hygromycin resistance contains telomeric sequences from Fusarium oxysporum , transforms by autonomous replication and genomic integration, and was essential for elevated transformation efficiencies of 100 to 10,000 transformants/μg DNA. Modifications of pHA1.3 occurred during bacterial amplification and post fungal transformation resulting in plasmids capable of significantly elevated transformation efficiencies in C. lindemuthianum.

  19. Decline of flounder (Platichthys flesus (L.)) at the margin of the species' distribution range

    NASA Astrophysics Data System (ADS)

    Jokinen, Henri; Wennhage, Håkan; Lappalainen, Antti; Ådjers, Kaj; Rask, Martti; Norkko, Alf

    2015-11-01

    The Baltic Sea is undergoing large-scale environmental change due to eutrophication, climate change, over-exploitation and habitat destruction, with subsequent degradation of living conditions for many fish species. Signs of this unfavorable development are seen as population declines in species affected. We provide the first synthesis and characterization of the recent population decline in European flounder (Platichthys flesus (L.)) in the northern Baltic Sea, using available fishery-independent data from the Finnish coast, which is at the margin of the distribution range of this species. The objective was to document recent changes in the flounder population, identify the onset and quantify the magnitude of the change. The results showed substantial decreases in flounder numbers and biomass across the whole study area during recent decades. Based on the time series data available, flounder abundances declined by 46-97% from the 1990s to the 2000s, with top values in the mid-1990s and current low levels reached in the early 2000s. Additionally, signs of decreasing flounder size and condition were also observed. We discuss potential reasons for the development in terms of environmental change and fishing, and identify potential bottlenecks for population maintenance and mechanisms behind population change, thereby contributing to our general understanding of marginal flounder populations.

  20. Assessing distributions of two invasive species of contrasting habits in future climate.

    PubMed

    Panda, Rajendra Mohan; Behera, Mukunda Dev; Roy, Partha Sarathi

    2018-05-01

    Understanding the impact of climate change on species invasion is crucial for sustainable biodiversity conservation. Through this study, we try to answer how species differing in phenological cycles, specifically Cassia tora and Lantana camara, differ in the manner in which they invade new regions in India in the future climate. Since both species occupy identical niches, exploring their invasive potential in different climate change scenarios will offer critical insights into invasion and inform ecosystem management. We use three modelling protocols (i.e., maximum entropy, generalised linear model and generalised additive model) to predict the current distribution. Projections are made for both moderate (A1B) and extreme (A2) IPCC (Intergovernmental Panel on Climate Change) scenarios for the year 2050 and 2100. The study reveals that the distributions of C. tora (annual) and L. camara (perennial) would depend on the precipitation of the warmest quarter and moisture availability. C. tora may demonstrate physiological tolerance to the mean diurnal temperature range and L. camara to the solar radiation. C. tora may invade central India, while L. camara may invade the Western Himalaya, parts of the Eastern Himalaya and the Western Ghats. The distribution ranges of both species could shift in the northern and north-eastern directions in India, owing to changes in moisture availability. The possible alterations in precipitation regimes could lead to water stress, which might have cascading effects on species invasion. L. camara might adapt to climate change better compared with C. tora. This comparative analysis of the future distributions of two invasive plants with contrasting habits demonstrates that temporal complementarity would prevail over the competition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions.

    PubMed

    Garnica, Sigisfredo; Spahn, Philipp; Oertel, Bernhard; Ammirati, Joseph; Oberwinkler, Franz

    2011-07-19

    Cortinarius species in section Calochroi display local, clinal and circumboreal patterns of distribution across the Northern Hemisphere where these ectomycorrhizal fungi occur with host trees throughout their geographical range within a continent, or have disjunct intercontinental distributions, the origins of which are not understood. We inferred evolutionary histories of four species, 1) C. arcuatorum, 2) C. aureofulvus, 3) C. elegantior and 4) C. napus, from populations distributed throughout the Old World, and portions of the New World (Central- and North America) based on genetic variation of 154 haplotype internal transcribed spacer (ITS) sequences from 83 population samples. By describing the population structure of these species across their geographical distribution, we attempt to identify their historical migration and patterns of diversification. Models of population structure from nested clade, demographic and coalescent-based analyses revealed genetically differentiated and geographically structured haplotypes in C. arcuatorum and C. elegantior, while C. aureofulvus showed considerably less population structure and C. napus lacked sufficient genetic differentiation to resolve any population structure. Disjunct populations within C. arcuatorum, C. aureofulvus and C. elegantior show little or no morphological differentiation, whereas in C. napus there is a high level of homoplasy and phenotypic plasticity for veil and lamellae colour. The ITS sequences of the type specimens of C. albobrunnoides and C. albobrunnoides var. violaceovelatus were identical to one another and are treated as one species with a wider range of geographic distribution under C. napus. Our results indicate that each of the Calochroi species has undergone a relatively independent evolutionary history, hypothesised as follows: 1) a widely distributed ancestral population of C. arcuatorum diverged into distinctive sympatric populations in the New World; 2) two divergent lineages in C

  2. Spatial distribution of centromeres and telomeres at interphase varies among Brachypodium species

    PubMed Central

    Idziak, Dominika; Robaszkiewicz, Ewa; Hasterok, Robert

    2015-01-01

    In this study the 3-D distribution of centromeres and telomeres was analysed in the interphase nuclei of three Brachypodium species, i.e. B. distachyon (2n=10), B. stacei (2n=20) and B. hybridum (2n=30), which is presumably a hybrid between the first two species. Using fluorescence in situ hybridization (FISH) with centromeric and telomeric DNA probes, it was observed that the majority of B. distachyon nuclei in the root tip cells displayed the Rabl configuration while both B. stacei and B. hybridum mostly lacked the centromere–telomere polarization. In addition, differentiated leaf cells of B. distachyon did not display the Rabl pattern. In order to analyse the possible connection between the occurrence of the Rabl pattern and the phase of cell cycle or DNA content, FISH was combined with digital image cytometry. The results revealed that the frequency of nuclei with the Rabl configuration in the root tip nuclei was positively correlated with an increase in DNA content, which resulted from DNA replication. Also, the analysis of the influence of the nuclear shape on the nuclear architecture indicated that an increasing elongation of the nuclei negatively affected the occurrence of the Rabl pattern. Some possible explanations of these phenomena are discussed. PMID:26208647

  3. Predicting plant invasions under climate change: are species distribution models validated by field trials?

    PubMed

    Sheppard, Christine S; Burns, Bruce R; Stanley, Margaret C

    2014-09-01

    Climate change may facilitate alien species invasion into new areas, particularly for species from warm native ranges introduced into areas currently marginal for temperature. Although conclusions from modelling approaches and experimental studies are generally similar, combining the two approaches has rarely occurred. The aim of this study was to validate species distribution models by conducting field trials in sites of differing suitability as predicted by the models, thus increasing confidence in their ability to assess invasion risk. Three recently naturalized alien plants in New Zealand were used as study species (Archontophoenix cunninghamiana, Psidium guajava and Schefflera actinophylla): they originate from warm native ranges, are woody bird-dispersed species and of concern as potential weeds. Seedlings were grown in six sites across the country, differing both in climate and suitability (as predicted by the species distribution models). Seedling growth and survival were recorded over two summers and one or two winter seasons, and temperature and precipitation were monitored hourly at each site. Additionally, alien seedling performances were compared to those of closely related native species (Rhopalostylis sapida, Lophomyrtus bullata and Schefflera digitata). Furthermore, half of the seedlings were sprayed with pesticide, to investigate whether enemy release may influence performance. The results showed large differences in growth and survival of the alien species among the six sites. In the more suitable sites, performance was frequently higher compared to the native species. Leaf damage from invertebrate herbivory was low for both alien and native seedlings, with little evidence that the alien species should have an advantage over the native species because of enemy release. Correlations between performance in the field and predicted suitability of species distribution models were generally high. The projected increase in minimum temperature and reduced

  4. HABITAT DISTRIBUTION MODELS FOR 37 VERTEBRATE SPECIES IN THE MOJAVE DESERT ECOREGION OF NEVADA, ARIZONA, AND UTAH

    EPA Science Inventory

    Conservation planning for a species requires knowledge of the species’ population status and distribution. An important step in obtaining this information for many species is the development of models that predict the habitat distribution for the species. Such models can be usef...

  5. Detecting and Attributing the Effects of Climate Change on the Distributions of Snake Species Over the Past 50 Years.

    PubMed

    Wu, Jianguo

    2016-01-01

    It is unclear whether the distributions of snakes have changed in association with climate change over the past years. We detected the distribution changes of snakes over the past 50 years and determined whether the changes could be attributed to recent climate change in China. Long-term records of the distribution of nine snake species in China, grey relationship analysis, fuzzy sets classification techniques, the consistency index, and attributed methods were used. Over the past 50 years, the distributions of snake species have changed in multiple directions, primarily shifting northwards, and most of the changes were related to the thermal index. Driven by climatic factors over the past 50 years, the distribution boundary and distribution centers of some species changed with the fluctuations. The observed and predicted changes in distribution were highly consistent for some snake species. The changes in the northern limits of distributions of nearly half of the species, as well as the southern and eastern limits, and the distribution centers of some snake species can be attributed to climate change.

  6. Predicting fine-scale distributions of peripheral aquatic species in headwater streams

    DOE PAGES

    DeRolph, Christopher R.; Nelson, Stacy A. C.; Kwak, Thomas J.; ...

    2014-12-09

    Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. In this paper, we predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistancemore » and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Finally and additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients.« less

  7. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya

    PubMed Central

    Chitale, Vishwas; Rijal, Srijana Joshi; Bisht, Neha; Shrestha, Bharat Babu

    2018-01-01

    Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively. PMID:29664961

  8. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya.

    PubMed

    Thapa, Sunil; Chitale, Vishwas; Rijal, Srijana Joshi; Bisht, Neha; Shrestha, Bharat Babu

    2018-01-01

    Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively.

  9. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador

    PubMed Central

    Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven

    2017-01-01

    Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium. PMID:29267357

  10. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador.

    PubMed

    Manchego, Carlos E; Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven

    2017-01-01

    Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium.

  11. Ocean warming, a rapid distributional shift, and the hybridization of a coastal fish species.

    PubMed

    Potts, Warren M; Henriques, Romina; Santos, Carmen V; Munnik, Kate; Ansorge, Isabelle; Dufois, Francois; Booth, Anthony J; Kirchner, Carola; Sauer, Warwick H H; Shaw, Paul W

    2014-09-01

    Despite increasing awareness of large-scale climate-driven distribution shifts in the marine environment, no study has linked rapid ocean warming to a shift in distribution and consequent hybridization of a marine fish species. This study describes rapid warming (0.8 °C per decade) in the coastal waters of the Angola-Benguela Frontal Zone over the last three decades and a concomitant shift by a temperature sensitive coastal fish species (Argyrosomus coronus) southward from Angola into Namibia. In this context, rapid shifts in distribution across Economic Exclusive Zones will complicate the management of fishes, particularly when there is a lack of congruence in the fisheries policy between nations. Evidence for recent hybridization between A. coronus and a congener, A. inodorus, indicate that the rapid shift in distribution of A. coronus has placed adults of the two species in contact during their spawning events. Ocean warming may therefore revert established species isolation mechanisms and alter the evolutionary history of fishes. While the consequences of the hybridization on the production of the resource remain unclear, this will most likely introduce additional layers of complexity to their management. © 2014 John Wiley & Sons Ltd.

  12. Biodiversity, distributions and adaptations of Arctic species in the context of environmental change.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus; Elster, Josef; Henttonen, Heikki; Laine, Kari; Taulavuori, Kari; Taulavuori, Erja; Zöckler, Christoph

    2004-11-01

    The individual of a species is the basic unit which responds to climate and UV-B changes, and it responds over a wide range of time scales. The diversity of animal, plant and microbial species appears to be low in the Arctic, and decreases from the boreal forests to the polar deserts of the extreme North but primitive species are particularly abundant. This latitudinal decline is associated with an increase in super-dominant species that occupy a wide range of habitats. Climate warming is expected to reduce the abundance and restrict the ranges of such species and to affect species at their northern range boundaries more than in the South: some Arctic animal and plant specialists could face extinction. Species most likely to expand into tundra are boreal species that currently exist as outlier populations in the Arctic. Many plant species have characteristics that allow them to survive short snow-free growing seasons, low solar angles, permafrost and low soil temperatures, low nutrient availability and physical disturbance. Many of these characteristics are likely to limit species' responses to climate warming, but mainly because of poor competitive ability compared with potential immigrant species. Terrestrial Arctic animals possess many adaptations that enable them to persist under a wide range of temperatures in the Arctic. Many escape unfavorable weather and resource shortage by winter dormancy or by migration. The biotic environment of Arctic animal species is relatively simple with few enemies, competitors, diseases, parasites and available food resources. Terrestrial Arctic animals are likely to be most vulnerable to warmer and drier summers, climatic changes that interfere with migration routes and staging areas, altered snow conditions and freeze-thaw cycles in winter, climate-induced disruption of the seasonal timing of reproduction and development, and influx of new competitors, predators, parasites and diseases. Arctic microorganisms are also well

  13. Presence-only Species Distribution Modeling for King Mackerel (Scomberomorus cavalla) and its 31 Prey Species in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Cai, X.; Simons, J.; Carollo, C.; Sterba-Boatwright, B.; Sadovski, A.

    2016-02-01

    Ecosystem based fisheries management has been broadly recognized throughout the world as a way to achieve better conservation. Therefore, there is a strong need for mapping of multi-species interactions or spatial distributions. Species distribution models are widely applied since information regarding the presence of species is usually only available for limited locations due to the high cost of fisheries surveys. Instead of regular presence and absence records, a large proportion of the fisheries survey data have only presence records. This makes the modeling problem one of one-class classification (presence only), which is much more complex than the regular two-class classification (presence/absence). In this study, four different presence-only species distribution algorithms (Bioclim, Domain, Mahal and Maxent) were applied using 13 environmental parameters (e.g., depth, DO, bottom types) as predictors to model the distribution of king mackerel (Scomberomorus cavalla) and its 31 prey species in the Gulf of Mexico (a total of 13625 georeferenced presence records from OBIS and GBIF were used). Five-fold cross validations were applied for each of the 128 (4 algorithms × 32 species) models. Area under curve (AUC) and correlation coefficient (R) were used to evaluate the model performances. The AUC of the models based on these four algorithms were 0.83±0.14, 0.77±0.16, 0.94±0.06 and 0.94±0.06, respectively; while R for the models were 0.47±0.27, 0.43±0.24, 0.27±0.16 and 0.76±0.16, respectively. Post hoc with Tukey's test showed that AUC for the Maxent-based models were significantly (p<0.05) higher than those for Bioclim and Domain based models, but insignificantly different from those for Mahal-based models (p=0.955); while R for the Maxent-based models were significantly higher than those for all the other three types of models (p<0.05). Thus, we concluded that the Maxent-based models had the best performance. High AUC and R also indicated that Maxent

  14. Host tolerance, not symbiont tolerance, determines the distribution of coral species in relation to their environment at a Central Pacific atoll

    NASA Astrophysics Data System (ADS)

    Wicks, L. C.; Gardner, J. P. A.; Davy, S. K.

    2012-06-01

    Tolerance of environmental variables differs between corals and their dinoflagellate symbionts ( Symbiodinium spp.), controlling the holobiont's (host and symbiont combined) resilience to environmental stress. However, the ecological role that environmental variables play in holobiont distribution remains poorly understood. We compared the drivers of symbiont and coral species distributions at Palmyra Atoll, a location with a range of reef environments from low to high sediment concentrations (1-52 g dry weight m-2 day-1). We observed uniform holobiont partnerships across the atoll (e.g. Montipora spp. with Symbiodinium type C15 at all sites). Multivariate analysis revealed that field-based estimates of settling sediment predominantly explained the spatial variation of coral species among sites ( P < 0.01). However, none of the environmental variables measured (sedimentation, temperature, chlorophyll concentration, salinity) affected symbiont distribution. The discord between environmental variables and symbiont distributions suggests that the symbionts are physiologically tolerant of the variable environmental regime across this location and that the distribution of different host-symbiont combinations present is largely dependent on coral rather than Symbiodinium physiology. The data highlight the importance of host tolerance to environmental stressors, which should be considered simultaneously with symbiont sensitivity when considering the impact of variations in environmental conditions on coral communities.

  15. A climate change context for the decline of a foundation tree species in south-western Australia: insights from phylogeography and species distribution modelling.

    PubMed

    Dalmaris, Eleftheria; Ramalho, Cristina E; Poot, Pieter; Veneklaas, Erik J; Byrne, Margaret

    2015-11-01

    A worldwide increase in tree decline and mortality has been linked to climate change and, where these represent foundation species, this can have important implications for ecosystem functions. This study tests a combined approach of phylogeographic analysis and species distribution modelling to provide a climate change context for an observed decline in crown health and an increase in mortality in Eucalyptus wandoo, an endemic tree of south-western Australia. Phylogeographic analyses were undertaken using restriction fragment length polymorphism analysis of chloroplast DNA in 26 populations across the species distribution. Parsimony analysis of haplotype relationships was conducted, a haplotype network was prepared, and haplotype and nucleotide diversity were calculated. Species distribution modelling was undertaken using Maxent models based on extant species occurrences and projected to climate models of the last glacial maximum (LGM). A structured pattern of diversity was identified, with the presence of two groups that followed a climatic gradient from mesic to semi-arid regions. Most populations were represented by a single haplotype, but many haplotypes were shared among populations, with some having widespread distributions. A putative refugial area with high haplotype diversity was identified at the centre of the species distribution. Species distribution modelling showed high climatic suitability at the LGM and high climatic stability in the central region where higher genetic diversity was found, and low suitability elsewhere, consistent with a pattern of range contraction. Combination of phylogeography and paleo-distribution modelling can provide an evolutionary context for climate-driven tree decline, as both can be used to cross-validate evidence for refugia and contraction under harsh climatic conditions. This approach identified a central refugial area in the test species E. wandoo, with more recent expansion into peripheral areas from where it had

  16. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge.

    PubMed

    Huang, Wenli; Huang, Weiwei; Li, Huifang; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-10-01

    The species and distribution of phosphorus (P) in an enhanced biological phosphorus removal (EBPR)-aerobic granular sludge (AGS) were fractionated and further analyzed. Results showed that microbial cells, extracellular polymeric substances (EPS) and mineral precipitates contributed about 73.7%, 17.6% and 5.3-6.4% to the total P (TP) of EBPR-AGS, respectively. Inorganic P (IP) species were orthophosphate, pyrophosphate and polyphosphate among which polyphosphate was the major P species in the AGS, cells and EPS. Monoester and diester phosphates were identified as the organic P (OP) species in the AGS and cells. Hydroxyapatite (Ca5(PO4)3OH) and calcium phosphate (Ca2(PO4)3) were the dominant P minerals accumulated in the core of the granules. Cells along with polyphosphate were mainly in the outer layer of AGS while EPS were distributed in the whole granules. Based on the above results, the distribution of IP and OP species in AGS has been conceived. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    PubMed

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Spatial distribution, Leishmania species and clinical traits of Cutaneous Leishmaniasis cases in the Colombian army.

    PubMed

    Patino, Luz H; Mendez, Claudia; Rodriguez, Omaira; Romero, Yanira; Velandia, Daniel; Alvarado, Maria; Pérez, Julie; Duque, Maria Clara; Ramírez, Juan David

    2017-08-01

    In Colombia, the cutaneous leishmaniasis (CL) is the most common manifestation across the army personnel. Hence, it is mandatory to determine the species associated with the disease as well as the association with the clinical traits. A total of 273 samples of male patients with CL were included in the study and clinical data of the patients was studied. PCR and sequencing analyses (Cytb and HSP70 genes) were performed to identify the species and the intra-specific genetic variability. A georeferenced database was constructed to identify the spatial distribution of Leishmania species isolated. The identification of five species of Leishmania that circulate in the areas where army personnel are deployed is described. Predominant infecting Leishmania species corresponds to L. braziliensis (61.1%), followed by Leishmania panamensis (33.5%), with a high distribution of both species at geographical and municipal level. The species L. guyanensis, L. mexicana and L. lainsoni were also detected at lower frequency. We also showed the identification of different genotypes within L. braziliensis and L. panamensis. In conclusion, we identified the Leishmania species circulating in the areas where Colombian army personnel are deployed, as well as the high intra-specific genetic variability of L. braziliensis and L. panamensis and how these genotypes are distributed at the geographic level.

  19. Species-environment relationships and potential for distribution modelling in coastal waters

    NASA Astrophysics Data System (ADS)

    Snickars, M.; Gullström, M.; Sundblad, G.; Bergström, U.; Downie, A.-L.; Lindegarth, M.; Mattila, J.

    2014-01-01

    Due to increasing pressure on the marine environment there is a growing need to understand species-environment relationships. To provide background for prioritising among variables (predictors) for use in distribution models, the relevance of predictors for benthic species was reviewed using the coastal Baltic Sea as a case-study area. Significant relationships for three response groups (fish, macroinvertebrates, macrovegetation) and six predictor categories (bottom topography, biotic features, hydrography, wave exposure, substrate and spatiotemporal variability) were extracted from 145 queried peer-reviewed field-studies covering three decades and six subregions. In addition, the occurrence of interaction among predictors was analysed. Hydrography was most often found in significant relationships, had low level of interaction with other predictors, but also had the most non-significant relationships. Depth and wave exposure were important in all subregions and are readily available, increasing their applicability for cross-regional modelling efforts. Otherwise, effort to model species distributions may prove challenging at larger scale as the relevance of predictors differed among both response groups and regions. Fish and hard bottom macrovegetation have the largest modelling potential, as they are structured by a set of predictors that at the same time are accurately mapped. A general importance of biotic features implies that these need to be accounted for in distribution modelling, but the mapping of most biotic features is challenging, which currently lowers the applicability. The presence of interactions suggests that predictive methods allowing for interactive effects are preferable. Detailing these complexities is important for future distribution modelling.

  20. Predicting the impacts of climate change on animal distributions: the importance of local adaptation and species' traits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HELLMANN, J. J.; LOBO, N. F.

    2011-12-20

    The geographic range limits of many species are strongly affected by climate and are expected to change under global warming. For species that are able to track changing climate over broad geographic areas, we expect to see shifts in species distributions toward the poles and away from the equator. A number of ecological and evolutionary factors, however, could restrict this shifting or redistribution under climate change. These factors include restricted habitat availability, restricted capacity for or barriers to movement, or reduced abundance of colonists due the perturbation effect of climate change. This research project examined the last of these constraintsmore » - that climate change could perturb local conditions to which populations are adapted, reducing the likelihood that a species will shift its distribution by diminishing the number of potential colonists. In the most extreme cases, species ranges could collapse over a broad geographic area with no poleward migration and an increased risk of species extinction. Changes in individual species ranges are the processes that drive larger phenomena such as changes in land cover, ecosystem type, and even changes in carbon cycling. For example, consider the poleward range shift and population outbreaks of the mountain pine beetle that has decimated millions of acres of Douglas fir trees in the western US and Canada. Standing dead trees cause forest fires and release vast quantities of carbon to the atmosphere. The beetle likely shifted its range because it is not locally adapted across its range, and it appears to be limited by winter low temperatures that have steadily increased in the last decades. To understand range and abundance changes like the pine beetle, we must reveal the extent of adaptive variation across species ranges - and the physiological basis of that adaptation - to know if other species will change as readily as the pine beetle. Ecologists tend to assume that range shifts are the

  1. Do abundance distributions and species aggregation correctly predict macroecological biodiversity patterns in tropical forests?

    PubMed Central

    Wiegand, Thorsten; Lehmann, Sebastian; Huth, Andreas; Fortin, Marie‐Josée

    2016-01-01

    Abstract Aim It has been recently suggested that different ‘unified theories of biodiversity and biogeography’ can be characterized by three common ‘minimal sufficient rules’: (1) species abundance distributions follow a hollow curve, (2) species show intraspecific aggregation, and (3) species are independently placed with respect to other species. Here, we translate these qualitative rules into a quantitative framework and assess if these minimal rules are indeed sufficient to predict multiple macroecological biodiversity patterns simultaneously. Location Tropical forest plots in Barro Colorado Island (BCI), Panama, and in Sinharaja, Sri Lanka. Methods We assess the predictive power of the three rules using dynamic and spatial simulation models in combination with census data from the two forest plots. We use two different versions of the model: (1) a neutral model and (2) an extended model that allowed for species differences in dispersal distances. In a first step we derive model parameterizations that correctly represent the three minimal rules (i.e. the model quantitatively matches the observed species abundance distribution and the distribution of intraspecific aggregation). In a second step we applied the parameterized models to predict four additional spatial biodiversity patterns. Results Species‐specific dispersal was needed to quantitatively fulfil the three minimal rules. The model with species‐specific dispersal correctly predicted the species–area relationship, but failed to predict the distance decay, the relationship between species abundances and aggregations, and the distribution of a spatial co‐occurrence index of all abundant species pairs. These results were consistent over the two forest plots. Main conclusions The three ‘minimal sufficient’ rules only provide an incomplete approximation of the stochastic spatial geometry of biodiversity in tropical forests. The assumption of independent interspecific placements is most

  2. Two new species of Ateuchus with remarks on ecology, distributions, and evolutionary relationships (Coleoptera, Scarabaeidae, Scarabaeinae)

    PubMed Central

    Moctezuma, Victor; Sánchez-Huerta, José Luis; Halffter, Gonzalo

    2018-01-01

    Abstract Two new species of the genus Ateuchus Weber are described from the region of Los Chimalapas, Oaxaca, Mexico: A. benitojuarezi sp. n. and A. colossus sp. n. A diagnosis for distinguishing these new species from the other species of this genus in North America is included. This paper is illustrated with pictures of the dorsal habitus and the male genitalia of the new species. The evolutionary relationships of the species are discussed, as well as their distribution and ecology. It is considered that the species of the genus Ateuchus present in North and Central America correspond to the Typical Neotropical and Mountain Mesoamerican distribution patterns. PMID:29674904

  3. Two new species of Ateuchus with remarks on ecology, distributions, and evolutionary relationships (Coleoptera, Scarabaeidae, Scarabaeinae).

    PubMed

    Moctezuma, Victor; Sánchez-Huerta, José Luis; Halffter, Gonzalo

    2018-01-01

    Two new species of the genus Ateuchus Weber are described from the region of Los Chimalapas, Oaxaca, Mexico: A. benitojuarezi sp. n. and A. colossus sp. n. A diagnosis for distinguishing these new species from the other species of this genus in North America is included. This paper is illustrated with pictures of the dorsal habitus and the male genitalia of the new species. The evolutionary relationships of the species are discussed, as well as their distribution and ecology. It is considered that the species of the genus Ateuchus present in North and Central America correspond to the Typical Neotropical and Mountain Mesoamerican distribution patterns.

  4. Environmental control on eastern broadleaf forest species' leaf wax distributions and D/H ratios

    NASA Astrophysics Data System (ADS)

    Tipple, Brett J.; Pagani, Mark

    2013-06-01

    Local climate and environment broadly affect the deuterium/hydrogen (D/H) ratios of plant materials, however the degree to which an individual plant's leaf waxes D/H ratios are affected by these parameters remains in question. Understanding these issues is particularly important in order to reconstruct past floral transitions and changes in the paleohydrologic cycle. For this study, we sampled five co-occurring tree species, Acer rubrum, Platanus occidentalis, Juniperus virginiana, Pinus taeda, and Pinus strobus and soils at forty sites along the East Coast of the US, from Florida to Maine. Hydrogen isotopic compositions of leaf wax n-alkanes, stem and surface waters were analyzed and compared against high-resolution temperature, precipitation, relative humidity, and vapor pressure deficit data to determine environmental controls on isotopic composition. Our results demonstrate that each tree species produce a unique distribution of n-alkanes with distinct chain length pattern. Average n-alkane chain lengths recovered from soils, A. rubrum, and J. virginiana leaves show significant correlations with mean annual temperature. δD values of A. rubrum leaf n-alkanes were strongly correlated to modeled mean annual precipitation δD values and other climate parameters related to latitude (i.e. temperature, relative humidity, vapor pressure deficit), while the δD values of J. virginiana n-alkanes were not. Differences in correspondence may reflect the timing of leaf wax synthesis between the two species. Further, soil n-alkane D/H compositions were strongly correlated to modeled mean annual precipitation δD values, while the apparent hydrogen isotopic fractionation was not. These findings indicate that the isotope ratio of n-alkanes from soils in Eastern North American forests and similar ecosystems likely represents a time-averaged value that smooth out the environmental influence any one plant experiences.

  5. Distribution and status of five non-native fish species in the Tampa Bay drainage (USA), a hot spot for fish introductions

    USGS Publications Warehouse

    Lawson, Katelyn M.; Tuckett, Quenton M.; Ritch, Jared L.; Nico, Leo; Fuller, Pam; Matheson, Richard E.; Hill, Jeffrey E.

    2017-01-01

    The Tampa Bay region of Florida (USA) is a hot spot for non-native freshwater fishes. However, published information on most non-native fishes in the basin is not current. Systematic sampling efforts targeting non-native fishes in the region were conducted from 2013–2015 by the University of Florida Tropical Aquaculture Laboratory. Data from these recent surveys were analyzed, along with historic and new data from published and unpublished sources, to assess current fish distributions and determine status. We focus on five of the non-native species sampled: pike killifish Belonesox belizanus Kner, 1860, green swordtail Xiphophorus hellerii Heckel, 1848, southern platyfish Xiphophorus maculatus (Günther, 1866), Mayan cichlid Mayaheros urophthalmus (Günther, 1862), and Jack Dempsey Rocio octofasciata (Regan, 1903). All five were found to have reproducing populations in the basin, each showing broader distributions than previously indicated. Non-native populations of four of the species have persisted in the Tampa Bay region since at least the 1990s. In contrast, the presence of Mayan cichlid in the basin was not confirmed until 2004. Based on numbers, distributions, and years of persistence, these five species all maintain established populations. Pike killifish and Mayan cichlid are established and spreading throughout multiple habitat types, while green swordtail, southern platyfish, and Jack Dempsey are localized and found primarily in more marginal habitats (e.g., small ditches and first order tributary streams). Factors affecting continued existence and distributions likely include aquaculture, biotic resistance, and thermal and salinity tolerances. We also clarify non-native species status determination using a multi-agency collaborative approach, and reconcile differences in terminology usage and interpretation.

  6. Solar system formation and the distribution of volatile species

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1994-01-01

    To understand how the solar system formed we must understand the compositional distribution of the current system. Volatile species are particularly important in that their stability as condensed phases is limited in temperature-pressure space, and hence variations in their distribution at present potentially contain an imprint of processes by which temperature and pressure varied in the solar nebula. In this talk we restrict ourselves to species more volatile than water ice, and address issues related to processes in the outer solar system and the formation of bodies there; others in this conference will cover volatile species relevant to inner solar system processes. Study of the outer solar system is relevant both to understanding the interface between the solar nebula and the progenitor giant molecular cloud (since the chemical links to present-day observables in molecular clouds are species like methane, carbon monoxide, etc.), as well as the origin of terrestrial planet atmospheres and oceans (the latter to be covered by Owen). The wealth of compositional information on outer solar system bodies which has become available from spacecraft and ground-based observations challenges traditional simplistic views of the composition and hence dynamics of the solar nebula. The basic assumption of thermochemical equilibrium, promulgated in the 1950's, in which methane and ammonia dominate nitrogen- and carbon-bearing species, is demonstrably incorrect on both observational and theoretical grounds. However, the kinetic inhibition model which replaced it, in which carbon monoxide and molecular nitrogen dominate a nebula which is fully mixed and hence cycles outer solar system gases through a hot, chemically active zone near the disk center, is not supported either by observations. Instead, a picture of the outer solar system emerges in which the gas and grains are a mixture of relatively unaltered, or modestly altered, molecular cloud material, along with a fraction

  7. From endogenous to exogenous pattern formation: Invasive plant species changes the spatial distribution of a native ant.

    PubMed

    Li, Kevin; He, Yifan; Campbell, Susanna K; Colborn, A Shawn; Jackson, Eliot L; Martin, Austin; Monagan, Ivan V; Ong, Theresa Wei Ying; Perfecto, Ivette

    2017-06-01

    Invasive species are a significant threat to global biodiversity, but our understanding of how invasive species impact native communities across space and time remains limited. Based on observations in an old field in Southeast Michigan spanning 35 years, our study documents significant impacts of habitat change, likely driven by the invasion of the shrub, Elaeagnus umbellata, on the nest distribution patterns and population demographics of a native ant species, Formica obscuripes. Landcover change in aerial photographs indicates that E. umbellata expanded aggressively, transforming a large proportion of the original open field into dense shrubland. By comparing the ant's landcover preferences before and after the invasion, we demonstrate that this species experienced a significant unfavorable change in its foraging areas. We also find that shrub landcover significantly moderates aggression between nests, suggesting nests are more related where there is more E. umbellata. This may represent a shift in reproductive strategy from queen flights, reported in the past, to asexual nest budding. Our results suggest that E. umbellata may affect the spatial distribution of F. obscuripes by shifting the drivers of nest pattern formation from an endogenous process (queen flights), which led to a uniform pattern, to a process that is both endogenous (nest budding) and exogenous (loss of preferred habitat), resulting in a significantly different clustered pattern. The number and sizes of F. obscuripes nests in our study site are projected to decrease in the next 40 years, although further study of this population's colony structures is needed to understand the extent of this decrease. Elaeagnus umbellata is a common invasive shrub, and similar impacts on native species might occur in its invasive range, or in areas with similar shrub invasions. © 2017 John Wiley & Sons Ltd.

  8. The influences of canopy species and topographic variables on understory species diversity and composition in coniferous forests.

    PubMed

    Huo, Hong; Feng, Qi; Su, Yong-hong

    2014-01-01

    Understanding the factors that influence the distribution of understory vegetation is important for biological conservation and forest management. We compared understory species composition by multi-response permutation procedure and indicator species analysis between plots dominated by Qinghai spruce (Picea crassifolia Kom.) and Qilian juniper (Sabina przewalskii Kom.) in coniferous forests of the Qilian Mountains, northwestern China. Understory species composition differed markedly between the forest types. Many heliophilous species were significantly associated with juniper forest, while only one species was indicative of spruce forest. Using constrained ordination and the variation partitioning model, we quantitatively assessed the relative effects of two sets of explanatory variables on understory species composition. The results showed that topographic variables had higher explanatory power than did site conditions for understory plant distributions. However, a large amount of the variation in understory species composition remained unexplained. Forward selection revealed that understory species distributions were primarily affected by elevation and aspect. Juniper forest had higher species richness and α-diversity and lower β-diversity in the herb layer of the understory plant community than spruce forest, suggesting that the former may be more important in maintaining understory biodiversity and community stability in alpine coniferous forest ecosystems.

  9. Distribution of Vibrio alginolyticus-like species in Shenzhen coastal waters, China

    PubMed Central

    Chen, Ming-Xia; Li, He-Yang; Li, Gang; Zheng, Tian-Ling

    2011-01-01

    We investigated the distribution of vibrios in Shenzhen coastal waters in order to obtain valuable information for the aquaculture industry and a health warning system. Quantities of vibrios from surface waters ranged from 0 to 4.40×104 CFUs mL-1 in April (spring), while from 0 to 2.57×103 CFUs mL-1 in September (autumn); the abundance of V. alginolyticus-like species from surface water ranged from 0 to 6.72×103 CFUs mL-1 in April (spring) and from 0 to 1.28×103 CFUs mL-1 in September (autumn); higher counts were observed in spring. The V. alginolyticus-like species was dominant in Shenzhen coastal waters, with the highest abundance in the clean region (stations YMK001 and GDN064) in April, suggesting that Vibrio spp. were naturally occurring bacteria in marine environments. The correlation between the abundance of vibrios (including V. alginolyticus-like species) and environmental factors varied in different regions and different seasons. There were no vibrios detected when the salinity was less than 11.15‰ in the Zhujiang River estuary, which indicated that salinity played a key role in the distribution of vibrios and V. alginolyticus-like species. PMID:24031704

  10. [Distribution and species composition of hyporheic macroinvertebrates in a mountain stream].

    PubMed

    Zhang, Yue-wei; Yuan, Xing-zhong; Liu, Hong; Ren, Hai-qing; Deng, Wei; Wang, Xiao-feng

    2015-09-01

    Hyporheic macroinvertebrates are an important component of stream ecosystem. The composition and distribution of the hyporheic macroinvertebrates were investigated using artificial substrates in the upper reaches of Heishuitan River in August, December 2013 and April 2014. The results indicated that a total of 27 microinvertbrate species were identified in all three seasons. In summer, 22 species were identified, accounting for 81.8% of aquatic insects. 16 species were identified both in winter and spring, accounting for 75.0% and 62.5% of aquatic insects, respectively. The density of macroinvertebrate assemblage was significantly lower in summer than in winter and spring, and was the highest in spring. The biomass of macroinvertebrate assemblage was significantly higher in winter than in summer and spring, and was the lowest in summer. Species richness, Shannon index and Pielou index all had no significant difference among the three seasons. The density and richness of macroinvertebrates decreased with bed depth, and the maximum invertebrate density was found within the top 20 cm of the stream bed. Collector-filterer and collector-gatherer were the dominant functional feeding group in all three seasons. The community structure and temporal-spatial distribution of macroinvertebrates were determined by interactions and life history strategy of macroinvertebrates, and physical-chemical factors of hyporheic zone.

  11. Species distributions models in wildlife planning: agricultural policy and wildlife management in the great plains

    USGS Publications Warehouse

    Fontaine, Joseph J.; Jorgensen, Christopher; Stuber, Erica F.; Gruber, Lutz F.; Bishop, Andrew A.; Lusk, Jeffrey J.; Zach, Eric S.; Decker, Karie L.

    2017-01-01

    We know economic and social policy has implications for ecosystems at large, but the consequences for a given geographic area or specific wildlife population are more difficult to conceptualize and communicate. Species distribution models, which extrapolate species-habitat relationships across ecological scales, are capable of predicting population changes in distribution and abundance in response to management and policy, and thus, are an ideal means for facilitating proactive management within a larger policy framework. To illustrate the capabilities of species distribution modeling in scenario planning for wildlife populations, we projected an existing distribution model for ring-necked pheasants (Phasianus colchicus) onto a series of alternative future landscape scenarios for Nebraska, USA. Based on our scenarios, we qualitatively and quantitatively estimated the effects of agricultural policy decisions on pheasant populations across Nebraska, in specific management regions, and at wildlife management areas. 

  12. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change

    PubMed Central

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274

  13. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    PubMed

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  14. The Effects of Tree Species on Soil Organic Carbon Content and Distribution in South Korea.

    NASA Astrophysics Data System (ADS)

    Oh, N. H.; Cha, J. Y.; Cha, Y. K.

    2016-12-01

    Soil organic carbon (SOC) content of forests is controlled by the dynamic balance between photosynthesis and respiration. Changes of tree species can affect the SOC content both directly by alteration in quantity and quality of newly photosynthesized inputs, and indirectly by changes in soil conditions such as root distribution and soil microbial communities. Although many studies have been conducted on the effects of tree species on SOC, the results are mixed possibly due to the locality and the scales of the studies. This can be overcome by systematic analysis on extensively collected samples of forest floors and soils. We investigated the impacts of tree species, dominantly pines (Pinus) and oaks (Quercus), on SOC stock and distribution in South Korea by conducting ANOVA and GLM analyses using the Korean National Forest Inventory data collected from 640 plots during 2007-2010. The trees used in the data were relatively young with 67% of them being less than 40 years old because of a nation-wide reforestation program started in the 1970s. The results demonstrated a clear contrast between Pinus and Quercus, depending on soil horizons. Forest floor SOC under Pinus was 6.98 ton C/ha, significantly higher than 5.30 ton C/ha under Quercus. In contrast, SOC in mineral soils was 51.31 ton C/ha under Pinus, significantly lower than 64.76 ton C/ha under Quercus. The total SOC content including both forest floor and mineral soils was significantly higher under Quercus than Pinus, suggesting that Quercus has a potential to sequester more atmospheric CO2 in the forests in Korea.

  15. Distribution of malassezia species on the scalp in korean seborrheic dermatitis patients.

    PubMed

    Lee, Yang Won; Byun, Hee Jin; Kim, Beom Joon; Kim, Dong Ha; Lim, Yun Young; Lee, Jin Woong; Kim, Myeung Nam; Kim, Donghak; Chun, Young-Jin; Mun, Seog Kyun; Kim, Chan Woong; Kim, Sung Eun; Hwang, Jae Sung

    2011-05-01

    Malassezia species play an important role in the pathogenesis of seborrheic dermatitis. In particular, M. restricta and M. globosa are considered to be the predominant organisms in seborrheic dermatitis of Western countries. However, species distribution of Malassezia in seborrheic dermatitis has not been clearly determined yet in Asia. To identify the distribution of Malassezia species on the scalp of seborrheic dermatitis patients in Korea using 26S rDNA PCR-RFLP analysis. A total of 40 seborrheic dermatitis patients and 100 normal healthy volunteers were included in this study. For the identification of Malassezia species, the scalp scales of the subjects were analyzed by 26S rDNA PCR-RFLP analysis. The most commonly identified Malassezia species were M. restricta in the seborrheic dermatitis patients, and M. globosa in the normal controls. In the seborrheic dermatitis group, M. restricta was identified in 47.5%, M. globosa in 27.5%, M. furfur in 7.5%, and M. sympodialis in 2.5% of patients. In the healthy control group, M. globosa was identified in 32.0%, M. restricta in 25.0%, M. furfur in 8.0%, M. obtusa in 6.0%, M. slooffiae in 6.0%, and M. sympodialis in 4.0% of subjects. M. restricta is considered to be the most important Malassezia species in Korean seborrheic dermatitis patients.

  16. Distribution of Malassezia Species on the Scalp in Korean Seborrheic Dermatitis Patients

    PubMed Central

    Lee, Yang Won; Byun, Hee Jin; Kim, Dong Ha; Lim, Yun Young; Lee, Jin Woong; Kim, Myeung Nam; Kim, Donghak; Chun, Young-Jin; Mun, Seog Kyun; Kim, Chan Woong; Kim, Sung Eun; Hwang, Jae Sung

    2011-01-01

    Background Malassezia species play an important role in the pathogenesis of seborrheic dermatitis. In particular, M. restricta and M. globosa are considered to be the predominant organisms in seborrheic dermatitis of Western countries. However, species distribution of Malassezia in seborrheic dermatitis has not been clearly determined yet in Asia. Objective To identify the distribution of Malassezia species on the scalp of seborrheic dermatitis patients in Korea using 26S rDNA PCR-RFLP analysis. Methods A total of 40 seborrheic dermatitis patients and 100 normal healthy volunteers were included in this study. For the identification of Malassezia species, the scalp scales of the subjects were analyzed by 26S rDNA PCR-RFLP analysis. Results The most commonly identified Malassezia species were M. restricta in the seborrheic dermatitis patients, and M. globosa in the normal controls. In the seborrheic dermatitis group, M. restricta was identified in 47.5%, M. globosa in 27.5%, M. furfur in 7.5%, and M. sympodialis in 2.5% of patients. In the healthy control group, M. globosa was identified in 32.0%, M. restricta in 25.0%, M. furfur in 8.0%, M. obtusa in 6.0%, M. slooffiae in 6.0%, and M. sympodialis in 4.0% of subjects. Conclusion M. restricta is considered to be the most important Malassezia species in Korean seborrheic dermatitis patients. PMID:21747613

  17. Silica distribution in various bamboos species and its effects on plant growth

    NASA Astrophysics Data System (ADS)

    Collin, B.; Meunier, J.; Keller, C.; Doelsch, E.; Panfili, F.

    2010-12-01

    Bamboos are distributed throughout the world’s temperate, tropical and subtropical regions. They are widely used in industry, as fresh edible shoots, paper maker, building and even in medicine. Bamboos also play multiple ecologic functions such as soil and water conservation and erosion control. Bamboos have generally high silicon (Si) content. Silicon is known to have beneficial effects on plants and alleviate various stresses. The aim of this study is to quantify the Si uptake and distribution in various bamboos species and to investigate the effects of Si on the plant growth. Two complementary studies were carried out, one under natural conditions and one under controlled conditions. First of all, we performed an inventory of Si tissue content in 16 bamboos species growing in a non-polluted tropical soil at the Reunion Island (France, Indian ocean). We determined Si content in leaf and in stem tissues sampled at several heights for each plant. One of these species Gigantocloa sp « Malay Dwarf » was grown for 3 months in nutrient solution at five Si concentrations (0, 0.25, 0.75, 1.15, 1.5 mM Si). Silica deposition was examined in leaves using a cryo-SEM equipped with EDS. The Si concentration varies significantly between species, depending on rhizome morphology. Bamboos having leptomorph rhizomes show significantly higher leaf and stem Si content than that of species having pachymorph rhizomes. The distribution of Si in the plant has the same trends for all species. Leaves are the most concentrated organs (10.9 %), and within the stem Si concentration significantly increases from the bottom (0.32%) to the top of the plant (2.1%). Plant Si content increases with the Si supply. Leaves of Gigantocloa sp « Malay Dwarf » accumulate 15.2 % of Si under natural conditions and up to 24 % when exposed to the highest Si treatment. Unlike previous studies, our experiment shows that the concentration of Si had no significant effect on nutrient uptake and biomass

  18. Contrasting nurse plants and nurse rocks: The spatial distribution of seedlings of two sub-Antarctic species

    NASA Astrophysics Data System (ADS)

    Haussmann, N. S.; McGeoch, M. A.; Boelhouwers, J. C.

    2010-05-01

    Positive plant interactions, such as those associated with nurse plants, have been suggested to dominate over negative interactions in environments with high abiotic stress. Here we demonstrate that the sub-Antarctic cushion plant species, Azorella selago (Apiaceae), positively affects the distribution of both its own seedlings and those of the perennial grass, Agrostis magellanica (Poaceae). As a result of the light weight and small size of seeds of both species, coupled with strong winds experienced in the study area, we consider it unlikely that these patterns are the result of very localized seed dispersal from the study cushions themselves. Instead, we suggest that both cushions and rocks act as seed traps, trapping seeds dispersed by wind, runoff and/or downslope sediment transport through frost creep. In addition, increased A. selago seedling numbers around cushions, but not around rocks, suggest that cushions provide a biological nurse effect, such as improving soil nutrient status or providing mychorrizae, to seedlings of their own kind.

  19. Leaf gas films, underwater photosynthesis and plant species distributions in a flood gradient.

    PubMed

    Winkel, Anders; Visser, Eric J W; Colmer, Timothy D; Brodersen, Klaus P; Voesenek, Laurentius A C J; Sand-Jensen, Kaj; Pedersen, Ole

    2016-07-01

    Traits for survival during flooding of terrestrial plants include stimulation or inhibition of shoot elongation, aerenchyma formation and efficient gas exchange. Leaf gas films form on superhydrophobic cuticles during submergence and enhance underwater gas exchange. The main hypothesis tested was that the presence of leaf gas films influences the distribution of plant species along a natural flood gradient. We conducted laboratory experiments and field observations on species distributed along a natural flood gradient. We measured presence or absence of leaf gas films and specific leaf area of 95 species. We also measured, gas film retention time during submergence and underwater net photosynthesis and dark respiration of 25 target species. The presence of a leaf gas film was inversely correlated to flood frequency and duration and reached a maximum value of 80% of the species in the rarely flooded locations. This relationship was primarily driven by grasses that all, independently of their field location along the flood gradient, possess gas films when submerged. Although the present study and earlier experiments have shown that leaf gas films enhance gas exchange of submerged plants, the ability of species to form leaf gas films did not show the hypothesized relationship with species composition along the flood gradient. © 2016 John Wiley & Sons Ltd.

  20. Distribution drivers and physiological responses in geothermal bryophyte communities.

    PubMed

    García, Estefanía Llaneza; Rosenstiel, Todd N; Graves, Camille; Shortlidge, Erin E; Eppley, Sarah M

    2016-04-01

    Our ability to explain community structure rests on our ability to define the importance of ecological niches, including realized ecological niches, in shaping communities, but few studies of plant distributions have combined predictive models with physiological measures. Using field surveys and statistical modeling, we predicted distribution drivers in geothermal bryophyte (moss) communities of Lassen Volcanic National Park (California, USA). In the laboratory, we used drying and rewetting experiments to test whether the strong species-specific effects of relative humidity on distributions predicted by the models were correlated with physiological characters. We found that the three most common bryophytes in geothermal communities were significantly affected by three distinct distribution drivers: temperature, light, and relative humidity. Aulacomnium palustre, whose distribution is significantly affected by relative humidity according to our model, and which occurs in high-humidity sites, showed extreme signs of stress after drying and never recovered optimal values of PSII efficiency after rewetting. Campylopus introflexus, whose distribution is not affected by humidity according to our model, was able to maintain optimal values of PSII efficiency for 48 hr at 50% water loss and recovered optimal values of PSII efficiency after rewetting. Our results suggest that species-specific environmental stressors tightly constrain the ecological niches of geothermal bryophytes. Tests of tolerance to drying in two bryophyte species corresponded with model predictions of the comparative importance of relative humidity as distribution drivers for these species. © 2016 Botanical Society of America.

  1. The influence of climatic changes on distribution pattern of six typical Kobresia species in Tibetan Plateau based on MaxEnt model and geographic information system

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Guo, Ke; Jin, Shulan; Pan, Huahua

    2018-01-01

    The issue that climatic change has great influence on species distribution is currently of great interest in field of biogeography. Six typical Kobresia species are selected from alpine grassland of Tibetan Plateau (TP) as research objects which are the high-quality forage for local husbandry, and their distribution changes are modeled in four periods by using MaxEnt model and GIS technology. The modeling results have shown that the distribution of these six typical Kobresia species in TP was strongly affected by two factors of "the annual precipitation" and "the precipitation in the wettest and driest quarters of the year". The modeling results have also shown that the most suitable habitats of K. pygmeae were located in the area around Qinghai Lake, the Hengduan-Himalayan mountain area, and the hinterland of TP. The most suitable habitats of K. humilis were mainly located in the area around Qinghai Lake and the hinterland of TP during the Last Interglacial period, and gradually merged into a bigger area; K. robusta and K. tibetica were located in the area around Qinghai Lake and the hinterland of TP, but they did not integrate into one area all the time, and K. capillifolia were located in the area around Qinghai Lake and extended to the southwest of the original distributing area, whereas K. macrantha were mainly distributed along the area of the Himalayan mountain chain, which had the smallest distribution area among them, and all these six Kobresia species can be divided into four types of "retreat/expansion" styles according to the changes of suitable habitat areas during the four periods; all these change styles are the result of long-term adaptations of the different species to the local climate changes in regions of TP and show the complexity of relationships between different species and climate. The research results have positive reference value to the protection of species diversity and sustainable development of the local husbandry in TP.

  2. Species abundance in a forest community in South China: A case of poisson lognormal distribution

    USGS Publications Warehouse

    Yin, Z.-Y.; Ren, H.; Zhang, Q.-M.; Peng, S.-L.; Guo, Q.-F.; Zhou, G.-Y.

    2005-01-01

    Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m??20 m, 5 m??5 m, and 1 m??1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal; (ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (?? and ??) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the ?? and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/?? should be an alternative measure of diversity.

  3. Numerical investigation of the spatiotemporal distribution of chemical species in an atmospheric surface barrier-discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, M. I.; Walsh, J. L., E-mail: jlwalsh@liverpool.ac.uk

    Using a one dimensional time dependent convection-reaction-diffusion model, the temporal and spatial distributions of species propagating downstream of an atmospheric pressure air surface barrier discharge was studied. It was found that the distribution of negatively charged species is more spatially spread compared to positive ions species, which is attributed to the diffusion of electrons that cool down and attach to background gas molecules, creating different negative ions downstream of the discharge region. Given the widespread use of such discharges in applications involving the remote microbial decontamination of surfaces and liquids, the transport of plasma generated reactive species away from themore » discharge region was studied by implementing mechanical convection through the discharge region. It was shown that increased convection causes the spatial distribution of species density to become uniform. It was also found that many species have a lower density close to the surface of the discharge as convection prevents their accumulation. While for some species, such as NO{sub 2}, convection causes a general increase in the density due to a reduced residence time close to the discharge region, where it is rapidly lost through reactions with OH. The impact of the applied power was also investigated, and it was found that the densities of most species, whether charged or neutral, are directly proportional to the applied power.« less

  4. Tracing glacial refugia of Triturus newts based on mitochondrial DNA phylogeography and species distribution modeling

    PubMed Central

    2013-01-01

    Introduction The major climatic oscillations during the Quaternary Ice Age heavily influenced the distribution of species and left their mark on intraspecific genetic diversity. Past range shifts can be reconstructed with the aid of species distribution modeling and phylogeographical analyses. We test the responses of the different members of the genus Triturus (i.e. the marbled and crested newts) as the climate shifted from the previous glacial period (the Last Glacial Maximum, ~21 Ka) to the current interglacial. Results We present the results of a dense mitochondrial DNA phylogeography (visualizing genetic diversity within and divergence among populations) and species distribution modeling (using two different climate simulations) for the nine Triturus species on composite maps. Conclusions The combined use of species distribution modeling and mitochondrial phylogeography provides insight in the glacial contraction and postglacial expansion of Triturus. The combined use of the two independent techniques yields a more complete understanding of the historical biogeography of Triturus than both approaches would on their own. Triturus newts generally conform to the ‘southern richness and northern purity’ paradigm, but we also find more intricate patterns, such as the absence of genetic variation and suitable area at the Last Glacial Maximum (T. dobrogicus), an ‘extra-Mediterranean’ refugium in the Carpathian Basin (T. cristatus), and areas where species displaced one another postglacially (e.g. T. macedonicus and western T. karelinii). We provide a biogeographical scenario for Triturus, showing the positions of glacial refugia, the regions that were postglacially colonized and the areas where species displaced one another as they shifted their ranges. PMID:23514662

  5. Tracing glacial refugia of Triturus newts based on mitochondrial DNA phylogeography and species distribution modeling.

    PubMed

    Wielstra, Ben; Crnobrnja-Isailović, Jelka; Litvinchuk, Spartak N; Reijnen, Bastian T; Skidmore, Andrew K; Sotiropoulos, Konstantinos; Toxopeus, Albertus G; Tzankov, Nikolay; Vukov, Tanja; Arntzen, Jan W

    2013-03-20

    The major climatic oscillations during the Quaternary Ice Age heavily influenced the distribution of species and left their mark on intraspecific genetic diversity. Past range shifts can be reconstructed with the aid of species distribution modeling and phylogeographical analyses. We test the responses of the different members of the genus Triturus (i.e. the marbled and crested newts) as the climate shifted from the previous glacial period (the Last Glacial Maximum, ~21 Ka) to the current interglacial. We present the results of a dense mitochondrial DNA phylogeography (visualizing genetic diversity within and divergence among populations) and species distribution modeling (using two different climate simulations) for the nine Triturus species on composite maps. The combined use of species distribution modeling and mitochondrial phylogeography provides insight in the glacial contraction and postglacial expansion of Triturus. The combined use of the two independent techniques yields a more complete understanding of the historical biogeography of Triturus than both approaches would on their own. Triturus newts generally conform to the 'southern richness and northern purity' paradigm, but we also find more intricate patterns, such as the absence of genetic variation and suitable area at the Last Glacial Maximum (T. dobrogicus), an 'extra-Mediterranean' refugium in the Carpathian Basin (T. cristatus), and areas where species displaced one another postglacially (e.g. T. macedonicus and western T. karelinii). We provide a biogeographical scenario for Triturus, showing the positions of glacial refugia, the regions that were postglacially colonized and the areas where species displaced one another as they shifted their ranges.

  6. Species, functional groups, and thresholds in ecological resilience

    USGS Publications Warehouse

    Sundstrom, Shana M.; Allen, Craig R.; Barichievy, Chris

    2012-01-01

    The cross-scale resilience model states that ecological resilience is generated in part from the distribution of functions within and across scales in a system. Resilience is a measure of a system's ability to remain organized around a particular set of mutually reinforcing processes and structures, known as a regime. We define scale as the geographic extent over which a process operates and the frequency with which a process occurs. Species can be categorized into functional groups that are a link between ecosystem processes and structures and ecological resilience. We applied the cross-scale resilience model to avian species in a grassland ecosystem. A species’ morphology is shaped in part by its interaction with ecological structure and pattern, so animal body mass reflects the spatial and temporal distribution of resources. We used the log-transformed rank-ordered body masses of breeding birds associated with grasslands to identify aggregations and discontinuities in the distribution of those body masses. We assessed cross-scale resilience on the basis of 3 metrics: overall number of functional groups, number of functional groups within an aggregation, and the redundancy of functional groups across aggregations. We assessed how the loss of threatened species would affect cross-scale resilience by removing threatened species from the data set and recalculating values of the 3 metrics. We also determined whether more function was retained than expected after the loss of threatened species by comparing observed loss with simulated random loss in a Monte Carlo process. The observed distribution of function compared with the random simulated loss of function indicated that more functionality in the observed data set was retained than expected. On the basis of our results, we believe an ecosystem with a full complement of species can sustain considerable species losses without affecting the distribution of functions within and across aggregations, although

  7. Distribution of Cytokinin-active Ribonucleosides in Wheat Germ tRNA Species 1

    PubMed Central

    Struxness, Leslie A.; Armstrong, Donald J.; Gillam, Ian; Tener, Gordon M.; Burrows, William J.; Skoog, Folke

    1979-01-01

    The distribution of cytokinin activity in wheat (Triticum aestivum) germ tRNA fractionated by BD-cellulose and RPC-5 chromatography has been examined. As in other organisms, the cytokinin moieties in wheat germ tRNA appear to be restricted to tRNA species that would be expected to respond to codons beginning with U. Only a few of the wheat germ tRNA species in this coding group actually contain cytokinin modifications. Cytokinin activity was associated with isoaccepting tRNASer species and with a minor tRNALeu species from wheat germ. All other wheat germ tRNA species corresponding to codons beginning with U were devoid of cytokinin activity in the tobacco callus bioassay. PMID:16660688

  8. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    PubMed

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Tree Species Composition and Harvest Intensity Affect Herbivore Density and Leaf Damage on Beech, Fagus sylvatica, in Different Landscape Contexts

    PubMed Central

    Mangels, Jule; Blüthgen, Nico; Frank, Kevin; Grassein, Fabrice; Hilpert, Andrea; Mody, Karsten

    2015-01-01

    Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores. PMID:25938417

  10. Some considerations on the use of ecological models to predict species' geographic distributions

    USGS Publications Warehouse

    Peterjohn, B.G.

    2001-01-01

    Peterson (2001) used Genetic Algorithm for Rule-set Prediction (GARP) models to predict distribution patterns from Breeding Bird Survey (BBS) data. Evaluations of these models should consider inherent limitations of BBS data: (1) BBS methods may not sample species and habitats equally; (2) using BBS data for both model development and testing may overlook poor fit of some models; and (3) BBS data may not provide the desired spatial resolution or capture temporal changes in species distributions. The predictive value of GARP models requires additional study, especially comparisons with distribution patterns from independent data sets. When employed at appropriate temporal and geographic scales, GARP models show considerable promise for conservation biology applications but provide limited inferences concerning processes responsible for the observed patterns.

  11. Modeling impacts of human footprint and soil variability on the potential distribution of invasive plant species in different biomes

    NASA Astrophysics Data System (ADS)

    Wan, Ji-Zhong; Wang, Chun-Jing; Yu, Fei-Hai

    2017-11-01

    Human footprint and soil variability may be important in shaping the spread of invasive plant species (IPS). However, until now, there is little knowledge on how human footprint and soil variability affect the potential distribution of IPS in different biomes. We used Maxent modeling to project the potential distribution of 29 IPS with wide distributions and long introduction histories in China based on various combinations of climatic correlates, soil characteristics and human footprint. Then, we evaluated the relative importance of each type of environmental variables (climate, soil and human footprint) as well as the difference in range and similarity of the potential distribution of IPS between different biomes. Human footprint and soil variables contributed to the prediction of the potential distribution of IPS, and different types of biomes had varying responses and degrees of impacts from the tested variables. Human footprint and soil variability had the highest tendency to increase the potential distribution of IPS in Montane Grasslands and Shrublands. We propose to integrate the assessment in impacts of human footprint and soil variability on the potential distribution of IPS in different biomes into the prevention and control of plant invasion.

  12. The relative influence of climate, environmental heterogeneity, and human population on the distribution of vertebrate species richness in south-eastern Spain

    NASA Astrophysics Data System (ADS)

    Moreno-Rueda, Gregorio; Pizarro, Manuel

    2007-07-01

    In view of the many factors affect species richness, this study examines the relative influence of environmental heterogeneity, climate, human disturbance and spatial structure with respect to the species-richness distribution of terrestrial vertebrates in an area of south-eastern Spain with a Mediterranean climate. We show that environmental heterogeneity was the primary factor determining species richness (20.3% of variance), with the effect of temperature and precipitation being lower (11.6%). Climate had greater importance in determining the species richness of ectotherms (amphibians and reptiles) than of endotherms (mammals and birds). Species richness had less spatial autocorrelation in mammals and birds than in ectotherms. Also, a positive correlation was found between species richness and human population density, especially in reptiles and mammals. Orders and families more sensitive to human presence, such as snakes, raptors, ungulates, and carnivores, showed no relationship (or a negative one) with the human population. This study highlights the importance of environmental heterogeneity (topographic heterogeneity and habitat diversity) for vertebrate conservation in zones with a Mediterranean climate.

  13. Climatic controls on the global distribution, abundance, and species richness of mangrove forests

    USGS Publications Warehouse

    Osland, Michael J.; Feher, Laura C.; Griffith, Kereen; Cavanaugh, Kyle C.; Enwright, Nicholas M.; Day, Richard H.; Stagg, Camille L.; Krauss, Ken W.; Howard, Rebecca J.; Grace, James B.; Rogers, Kerrylee

    2017-01-01

    Mangrove forests are highly productive tidal saline wetland ecosystems found along sheltered tropical and subtropical coasts. Ecologists have long assumed that climatic drivers (i.e., temperature and rainfall regimes) govern the global distribution, structure, and function of mangrove forests. However, data constraints have hindered the quantification of direct climate-mangrove linkages in many parts of the world. Recently, the quality and availability of global-scale climate and mangrove data have been improving. Here, we used these data to better understand the influence of air temperature and rainfall regimes upon the distribution, abundance, and species richness of mangrove forests. Although our analyses identify global-scale relationships and thresholds, we show that the influence of climatic drivers is best characterized via regional range limit-specific analyses. We quantified climatic controls across targeted gradients in temperature and/or rainfall within 14 mangrove distributional range limits. Climatic thresholds for mangrove presence, abundance, and species richness differed among the 14 studied range limits. We identified minimum temperature-based thresholds for range limits in eastern North America, eastern Australia, New Zealand, eastern Asia, eastern South America, and southeast Africa. We identified rainfall-based thresholds for range limits in western North America, western Gulf of Mexico, western South America, western Australia, Middle East, northwest Africa, east central Africa, and west central Africa. Our results show that in certain range limits (e.g., eastern North America, western Gulf of Mexico, eastern Asia), winter air temperature extremes play an especially important role. We conclude that rainfall and temperature regimes are both important in western North America, western Gulf of Mexico, and western Australia. With climate change, alterations in temperature and rainfall regimes will affect the global distribution, abundance, and

  14. Spatial distribution, temporal variation and specificity of microhabitat of Tropisternus species (Coleoptera: Hydrophilidae) in permanent ponds.

    PubMed

    Gómez Lutz, M C; Kehr, A I; Fernández, L A

    2015-06-01

    The spatial distribution and temporal variation of 11 species of Tropisternus were analyzed in two permanent ponds located in the province of Corrientes, Argentina. Samples were collected every 15 days, between October 2010 and March 2011. The species recorded were Tropisternus collaris (Fabricius), Tropisternus ovalis Castelnau, Tropisternus laevis (Sturm), Tropisternus lateralis limbatus (Brullé), Tropisternus longispina Fernández & Bachmann, Tropisternus carinispina Orchymont, Tropisternus bourmeisteri Fernández & Bachmann, Tropisternus apicipalpis (Chevrolat), Tropisternus dilatatus Bruch, Tropisternus obesus Bruch, and Tropisternus ignoratus Knisch. The first four were present in higher proportions than the remaining during most of the study period. The spatial distribution of individuals was mostly related to the homogeneity or heterogeneity of the ecosystem in relation to microhabitats with aquatic vegetation: In ponds with different microhabitats, individuals were mainly aggregated, whereas in ponds with homogenous features, individuals were randomly distributed. However, when species were analyzed individually, the spatial distribution and the use of microhabitat by each species were different with respect to preference and behavior.

  15. Plants are less negatively affected by flooding when growing in species-rich plant communities.

    PubMed

    Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje

    2017-01-01

    Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. Limitations to the Use of Species-Distribution Models for Environmental-Impact Assessments in the Amazon.

    PubMed

    Carneiro, Lorena Ribeiro de A; Lima, Albertina P; Machado, Ricardo B; Magnusson, William E

    2016-01-01

    Species-distribution models (SDM) are tools with potential to inform environmental-impact studies (EIA). However, they are not always appropriate and may result in improper and expensive mitigation and compensation if their limitations are not understood by decision makers. Here, we examine the use of SDM for frogs that were used in impact assessment using data obtained from the EIA of a hydroelectric project located in the Amazon Basin in Brazil. The results show that lack of knowledge of species distributions limits the appropriate use of SDM in the Amazon region for most target species. Because most of these targets are newly described and their distributions poorly known, data about their distributions are insufficient to be effectively used in SDM. Surveys that are mandatory for the EIA are often conducted only near the area under assessment, and so models must extrapolate well beyond the sampled area to inform decisions made at much larger spatial scales, such as defining areas to be used to offset the negative effects of the projects. Using distributions of better-known species in simulations, we show that geographical-extrapolations based on limited information of species ranges often lead to spurious results. We conclude that the use of SDM as evidence to support project-licensing decisions in the Amazon requires much greater area sampling for impact studies, or, alternatively, integrated and comparative survey strategies, to improve biodiversity sampling. When more detailed distribution information is unavailable, SDM will produce results that generate uncertain and untestable decisions regarding impact assessment. In many cases, SDM is unlikely to be better than the use of expert opinion.

  17. Limitations to the Use of Species-Distribution Models for Environmental-Impact Assessments in the Amazon

    PubMed Central

    Carneiro, Lorena Ribeiro de A.; Lima, Albertina P.; Machado, Ricardo B.; Magnusson, William E.

    2016-01-01

    Species-distribution models (SDM) are tools with potential to inform environmental-impact studies (EIA). However, they are not always appropriate and may result in improper and expensive mitigation and compensation if their limitations are not understood by decision makers. Here, we examine the use of SDM for frogs that were used in impact assessment using data obtained from the EIA of a hydroelectric project located in the Amazon Basin in Brazil. The results show that lack of knowledge of species distributions limits the appropriate use of SDM in the Amazon region for most target species. Because most of these targets are newly described and their distributions poorly known, data about their distributions are insufficient to be effectively used in SDM. Surveys that are mandatory for the EIA are often conducted only near the area under assessment, and so models must extrapolate well beyond the sampled area to inform decisions made at much larger spatial scales, such as defining areas to be used to offset the negative effects of the projects. Using distributions of better-known species in simulations, we show that geographical-extrapolations based on limited information of species ranges often lead to spurious results. We conclude that the use of SDM as evidence to support project-licensing decisions in the Amazon requires much greater area sampling for impact studies, or, alternatively, integrated and comparative survey strategies, to improve biodiversity sampling. When more detailed distribution information is unavailable, SDM will produce results that generate uncertain and untestable decisions regarding impact assessment. In many cases, SDM is unlikely to be better than the use of expert opinion. PMID:26784891

  18. Spatial distribution of centromeres and telomeres at interphase varies among Brachypodium species.

    PubMed

    Idziak, Dominika; Robaszkiewicz, Ewa; Hasterok, Robert

    2015-11-01

    In this study the 3-D distribution of centromeres and telomeres was analysed in the interphase nuclei of three Brachypodium species, i.e. B. distachyon (2n=10), B. stacei (2n=20) and B. hybridum (2n=30), which is presumably a hybrid between the first two species. Using fluorescence in situ hybridization (FISH) with centromeric and telomeric DNA probes, it was observed that the majority of B. distachyon nuclei in the root tip cells displayed the Rabl configuration while both B. stacei and B. hybridum mostly lacked the centromere-telomere polarization. In addition, differentiated leaf cells of B. distachyon did not display the Rabl pattern. In order to analyse the possible connection between the occurrence of the Rabl pattern and the phase of cell cycle or DNA content, FISH was combined with digital image cytometry. The results revealed that the frequency of nuclei with the Rabl configuration in the root tip nuclei was positively correlated with an increase in DNA content, which resulted from DNA replication. Also, the analysis of the influence of the nuclear shape on the nuclear architecture indicated that an increasing elongation of the nuclei negatively affected the occurrence of the Rabl pattern. Some possible explanations of these phenomena are discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Differences in time until dispersal between cryptic species of a marine nematode species complex.

    PubMed

    De Meester, Nele; Derycke, Sofie; Moens, Tom

    2012-01-01

    Co-occurrence of closely related species may be achieved in environments with fluctuating dynamics, where competitively inferior species can avoid competition through dispersal. Here we present an experiment in which we compared active dispersal abilities (time until first dispersal, number and gender of dispersive adults, and nematode densities at time of dispersal) in Litoditis marina, a common bacterivorous nematode species complex comprising four often co-occurring cryptic species, Pm I, II, III, and IV, as a function of salinity and food distribution. The experiment was conducted in microcosms consisting of an inoculation plate, connection tube, and dispersal plate. Results show species-specific dispersal abilities with Pm I dispersing almost one week later than Pm III. The number of dispersive adults at time of first dispersal was species-specific, with one dispersive female in Pm I and Pm III and a higher, gender-balanced, number in Pm II and Pm IV. Food distribution affected dispersal: in absence of food in the inoculation plate, all species dispersed after ca four days. When food was available Pm I dispersed later, and at the same time and densities irrespective of food conditions in the dispersal plate (food vs no food), suggesting density-dependent dispersal. Pm III dispersed faster and at a lower population density. Salinity affected dispersal, with slower dispersal at higher salinity. These results suggest that active dispersal in Litoditis marina is common, density-dependent, and with species, gender- and environment-specific dispersal abilities. These differences can lead to differential responses under suboptimal conditions and may help to explain temporary coexistence at local scales.

  20. Ecological and methodological drivers of species' distribution and phenology responses to climate change.

    PubMed

    Brown, Christopher J; O'Connor, Mary I; Poloczanska, Elvira S; Schoeman, David S; Buckley, Lauren B; Burrows, Michael T; Duarte, Carlos M; Halpern, Benjamin S; Pandolfi, John M; Parmesan, Camille; Richardson, Anthony J

    2016-04-01

    Climate change is shifting species' distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species' responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species' responses across different studies be limited to studies with similar methodological approaches; (3) meta-analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy

  1. Atlas of Relations Between Climatic Parameters and Distributions of Important Trees and Shrubs in North America - Alaska Species and Ecoregions

    USGS Publications Warehouse

    Thompson, Robert S.; Anderson, Katherine H.; Strickland, Laura E.; Shafer, Sarah L.; Pelltier, Richard T.; Bartlein, Patrick J.

    2006-01-01

    Climate is the primary factor in controlling the continental-scale distribution of plant species, although the relations between climatic parameters and species' ranges is only now beginning to be quantified. Preceding volumes of this atlas explored the continental-scale relations between climatic parameters and the distributions of woody plant species across all of the continent of North America. This volume presents similar information for important woody species, groups of species, and ecoregions in more detail for the State of Alaska. For these analyses, we constructed a 25-kilometer equal-area grid of modern climatic and bioclimatic parameters for North America from instrumental weather records. We obtained a digital representation of the geographic distribution of each species or ecoregion, either from a published source or by digitizing the published distributions ourselves. The presence or absence of each species or ecoregion was then determined for each point on the 25-kilometer grid, thus providing a basis for comparison of the climatic data with the geographic distribution of each species or ecoregion. The relations between climate and these distributions are presented in graphical and tabular form.

  2. The roles of competition and habitat in the dynamics of populations and species distributions

    USGS Publications Warehouse

    Yackulic, Charles Brandon; Reid, Janice; Nichols, James D.; Hines, James E.; Davis, Raymond; Forsman, Eric

    2014-01-01

    The role of competition in structuring biotic communities at fine spatial scales is well known from detailed process-based studies. Our understanding of competition's importance at broader scales is less resolved and mainly based on static species distribution maps. Here, we bridge this gap by examining the joint occupancy dynamics of an invading (barred owl: Strix varia) and a resident species (Northern spotted owl: Strix occidentalis caurina) in a 1000 km2 study area over a 22 - year period. Past studies of these competitors have focused on the dynamics of one species at a time, hindering efforts to parse out the roles of habitat and competition and to forecast the future of the resident species. In addition, while these studies accounted for the imperfect detection of the focal species, no multiseason analysis of these species has accounted for the imperfect detection of the secondary species, potentially biasing inference. We analyze survey data using models that combine the general multistate-multiseason occupancy modeling framework with autologistic modeling - allowing us to account for important aspects of our study system. We find that local extinction probability increases for each species when the other is present; however, the effect of the invader on the resident is greater. Although the species prefer different habitats, these habitats are highly correlated at the patch scale and the impacts of invader on the resident are greatest in patches that would otherwise be optimal. As a consequence, competition leads to a weaker relationship between habitat and Northern spotted owl occupancy. Colonization and extinction rates of the invader are closely related to neighborhood occupancy, and over the first half of the study the availability of colonists limited the rate of population growth. Competition is likely to exclude the resident species both through its immediate effects on local extinction, and by indirectly lowering colonization rates as Northern

  3. Explaining local-scale species distributions: relative contributions of spatial autocorrelation and landscape heterogeneity for an avian assemblage.

    PubMed

    Mattsson, Brady J; Zipkin, Elise F; Gardner, Beth; Blank, Peter J; Sauer, John R; Royle, J Andrew

    2013-01-01

    Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition.

  4. Explaining local-scale species distributions: relative contributions of spatial autocorrelation and landscape heterogeneity for an avian assemblage

    USGS Publications Warehouse

    Mattsson, Brady J.; Zipkin, Elise F.; Gardner, Beth; Blank, Peter J.; Sauer, John R.; Royle, J. Andrew

    2013-01-01

    Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition.

  5. Explaining Local-Scale Species Distributions: Relative Contributions of Spatial Autocorrelation and Landscape Heterogeneity for an Avian Assemblage

    PubMed Central

    Mattsson, Brady J.; Zipkin, Elise F.; Gardner, Beth; Blank, Peter J.; Sauer, John R.; Royle, J. Andrew

    2013-01-01

    Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for examining hypotheses about the relative importance of these factors among species in a community. We developed a hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining such hypotheses across species assemblages contributes to our understanding of community-level associations with conspecifics and landscape composition. PMID:23393564

  6. Diameter distribution in a Brazilian tropical dry forest domain: predictions for the stand and species.

    PubMed

    Lima, Robson B DE; Bufalino, Lina; Alves, Francisco T; Silva, José A A DA; Ferreira, Rinaldo L C

    2017-01-01

    Currently, there is a lack of studies on the correct utilization of continuous distributions for dry tropical forests. Therefore, this work aims to investigate the diameter structure of a brazilian tropical dry forest and to select suitable continuous distributions by means of statistic tools for the stand and the main species. Two subsets were randomly selected from 40 plots. Diameter at base height was obtained. The following functions were tested: log-normal; gamma; Weibull 2P and Burr. The best fits were selected by Akaike's information validation criterion. Overall, the diameter distribution of the dry tropical forest was better described by negative exponential curves and positive skewness. The forest studied showed diameter distributions with decreasing probability for larger trees. This behavior was observed for both the main species and the stand. The generalization of the function fitted for the main species show that the development of individual models is needed. The Burr function showed good flexibility to describe the diameter structure of the stand and the behavior of Mimosa ophthalmocentra and Bauhinia cheilantha species. For Poincianella bracteosa, Aspidosperma pyrifolium and Myracrodum urundeuva better fitting was obtained with the log-normal function.

  7. Effects of Hypoxia on the Phylogenetic Composition and Species Distribution of Protists in a Subtropical Harbor.

    PubMed

    Rocke, Emma; Jing, Hongmei; Xia, Xiaomin; Liu, Hongbin

    2016-07-01

    Tolo Harbor, a subtropical semi-enclosed coastal water body, is surrounded by an expanding urban community, which contributes to large concentrations of nutrient runoff, leading to algal blooms and localized hypoxic episodes. Present knowledge of protist distributions in subtropical waters during hypoxic conditions is very limited. In this study, therefore, we combined parallel 454 pyrosequencing technology and denaturing gradient gel electrophoresis (DGGE) fingerprint analyses to reveal the protist community shifts before, during, and after a 2-week hypoxic episode during the summer of 2011. Hierarchical clustering for DGGE demonstrated similar grouping of hypoxic samples separately from oxic samples. Dissolved oxygen (DO) concentration and dissolved inorganic nitrogen:phosphate (DIN:PO4) concentrations significantly affected OTU distribution in 454 sequenced samples, and a shift toward a ciliate and marine alveolate clade II (MALV II) species composition occurred as waters shifted from oxic to hypoxic. These results suggest that protist community shifts toward heterotrophic and parasitic tendencies as well as decreased diversity and richness in response to hypoxic outbreaks.

  8. Parasite and viral species richness of Southeast Asian bats: Fragmentation of area distribution matters

    PubMed Central

    Gay, Noellie; Olival, Kevin J.; Bumrungsri, Sara; Siriaroonrat, Boripat; Bourgarel, Mathieu; Morand, Serge

    2014-01-01

    Interest in bat-borne diseases and parasites has grown in the past decade over concerns for human health. However, the drivers of parasite diversity among bat host species are understudied as are the links between parasite richness and emerging risks. Thus, we aimed at exploring factors that explain macro and microparasite species richness in bats from Southeast Asia, a hotspot of emerging infectious diseases. First, we identified bat species that need increased sampling effort for pathogen discovery. Our approach highlights pathogen investigation disparities among species within the same genus, such as Rhinolophus and Pteropus. Secondly, comparative analysis using independent contrasts method allowed the identification of likely factors explaining parasite and viral diversity of bats. Our results showed a key role of bat distribution shape, an index of the fragmentation of bat distribution, on parasite diversity, linked to a decrease for both viral and endoparasite species richness. We discuss how our study may contribute to a better understanding of the link between parasite species richness and emergence. PMID:25161915

  9. Predicting the spatial and temporal distributions of marine fish species utilizing earth system data in a MaxEnt model framework

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kerr, L. A.; Bridger, E.

    2016-02-01

    Changes in species distributions have been widely associated with climate change. Understanding how ocean temperatures influence species distributions is critical for elucidating the role of climate in ecosystem change as well as for forecasting how species may be distributed in the future. As such, species distribution modeling (SDM) is increasingly useful in marine ecosystems research, as it can enable estimation of the likelihood of encountering marine fish in space or time as a function of a set of environmental and ecosystem conditions. Many traditional SDM approaches are applied to species data collected through standardized methods that include both presence and absence records, but are incapable of using presence-only data, such as those collected from fisheries or through citizen science programs. Maximum entropy (MaxEnt) models provide promising tools as they can predict species distributions from incomplete information (presence-only data). We developed a MaxEnt framework to relate the occurrence records of several marine fish species (e.g. Atlantic herring, Atlantic mackerel, and butterfish) to environmental conditions. Environmental variables derived from remote sensing, such as monthly average sea surface temperature (SST), are matched with fish species data, and model results indicate the relative occurrence rate of the species as a function of the environmental variables. The results can be used to provide hindcasts of where species might have been in the past in relation to historical environmental conditions, nowcasts in relation to current conditions, and forecasts of future species distributions. In this presentation, we will assess the relative influence of several environmental factors on marine fish species distributions, and evaluate the effects of data coverage on these presence-only models. We will also discuss how the information from species distribution forecasts can support climate adaptation planning in marine fisheries.

  10. Species distribution models for a migratory bird based on citizen science and satellite tracking data

    USGS Publications Warehouse

    Coxen, Christopher L.; Frey, Jennifer K.; Carleton, Scott A.; Collins, Daniel P.

    2017-01-01

    Species distribution models can provide critical baseline distribution information for the conservation of poorly understood species. Here, we compared the performance of band-tailed pigeon (Patagioenas fasciata) species distribution models created using Maxent and derived from two separate presence-only occurrence data sources in New Mexico: 1) satellite tracked birds and 2) observations reported in eBird basic data set. Both models had good accuracy (test AUC > 0.8 and True Skill Statistic > 0.4), and high overlap between suitability scores (I statistic 0.786) and suitable habitat patches (relative rank 0.639). Our results suggest that, at the state-wide level, eBird occurrence data can effectively model similar species distributions as satellite tracking data. Climate change models for the band-tailed pigeon predict a 35% loss in area of suitable climate by 2070 if CO2 emissions drop to 1990 levels by 2100, and a 45% loss by 2070 if we continue current CO2 emission levels through the end of the century. These numbers may be conservative given the predicted increase in drought, wildfire, and forest pest impacts to the coniferous forests the species inhabits in New Mexico. The northern portion of the species’ range in New Mexico is predicted to be the most viable through time.

  11. The Distribution and Abundance of Bird Species: Towards a Satellite, Data Driven Avian Energetics and Species Richness Model

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2003-01-01

    This paper addresses the fundamental question of why birds occur where and when they do, i.e., what are the causative factors that determine the spatio-temporal distributions, abundance, or richness of bird species? In this paper we outline the first steps toward building a satellite, data-driven model of avian energetics and species richness based on individual bird physiology, morphology, and interaction with the spatio-temporal habitat. To evaluate our model, we will use the North American Breeding Bird Survey and Christmas Bird Count data for species richness, wintering and breeding range. Long term and current satellite data series include AVHRR, Landsat, and MODIS.

  12. Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models

    USGS Publications Warehouse

    Watling, James I.; Brandt, Laura A.; Bucklin, David N.; Fujisaki, Ikuko; Mazzotti, Frank J.; Romañach, Stephanie; Speroterra, Carolina

    2015-01-01

    Species distribution models (SDMs) are widely used in basic and applied ecology, making it important to understand sources and magnitudes of uncertainty in SDM performance and predictions. We analyzed SDM performance and partitioned variance among prediction maps for 15 rare vertebrate species in the southeastern USA using all possible combinations of seven potential sources of uncertainty in SDMs: algorithms, climate datasets, model domain, species presences, variable collinearity, CO2 emissions scenarios, and general circulation models. The choice of modeling algorithm was the greatest source of uncertainty in SDM performance and prediction maps, with some additional variation in performance associated with the comprehensiveness of the species presences used for modeling. Other sources of uncertainty that have received attention in the SDM literature such as variable collinearity and model domain contributed little to differences in SDM performance or predictions in this study. Predictions from different algorithms tended to be more variable at northern range margins for species with more northern distributions, which may complicate conservation planning at the leading edge of species' geographic ranges. The clear message emerging from this work is that researchers should use multiple algorithms for modeling rather than relying on predictions from a single algorithm, invest resources in compiling a comprehensive set of species presences, and explicitly evaluate uncertainty in SDM predictions at leading range margins.

  13. Historical and ecological drivers of the spatial pattern of Chondrichthyes species richness in the Mediterranean Sea.

    PubMed

    Meléndez, María José; Báez, José Carlos; Serna-Quintero, José Miguel; Camiñas, Juan Antonio; Fernández, Ignacio de Loyola; Real, Raimundo; Macías, David

    2017-01-01

    Chondrichthyes, which include Elasmobranchii (sharks and batoids) and Holocephali (chimaeras), are a relatively small group in the Mediterranean Sea (89 species) playing a key role in the ecosystems where they are found. At present, many species of this group are threatened as a result of anthropogenic effects, including fishing activity. Knowledge of the spatial distribution of these species is of great importance to understand their ecological role and for the efficient management of their populations, particularly if affected by fisheries. This study aims to analyze the spatial patterns of the distribution of Chondrichthyes species richness in the Mediterranean Sea. Information provided by the studied countries was used to model geographical and ecological variables affecting the Chondrichthyes species richness. The species were distributed in 16 Operational Geographical Units (OGUs), derived from the Geographical Sub-Areas (GSA) adopted by the General Fisheries Commission of the Mediterranean Sea (GFCM). Regression analyses with the species richness as a target variable were adjusted with a set of environmental and geographical variables, being the model that links richness of Chondrichthyes species with distance to the Strait of Gibraltar and number of taxonomic families of bony fishes the one that best explains it. This suggests that both historical and ecological factors affect the current distribution of Chondrichthyes within the Mediterranean Sea.

  14. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.

    PubMed

    Crase, Beth; Liedloff, Adam; Vesk, Peter A; Fukuda, Yusuke; Wintle, Brendan A

    2014-08-01

    Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation in model residuals is known to result in biased parameter estimates and the inflation of type I errors, the influence of unmodeled SA on species' range forecasts is poorly understood. Here we quantify how accounting for SA in SDMs influences the magnitude of range shift forecasts produced by SDMs for multiple climate change scenarios. SDMs were fitted to simulated data with a known autocorrelation structure, and to field observations of three mangrove communities from northern Australia displaying strong spatial autocorrelation. Three modeling approaches were implemented: environment-only models (most frequently applied in species' range forecasts), and two approaches that incorporate SA; autologistic models and residuals autocovariate (RAC) models. Differences in forecasts among modeling approaches and climate scenarios were quantified. While all model predictions at the current time closely matched that of the actual current distribution of the mangrove communities, under the climate change scenarios environment-only models forecast substantially greater range shifts than models incorporating SA. Furthermore, the magnitude of these differences intensified with increasing increments of climate change across the scenarios. When models do not account for SA, forecasts of species' range shifts indicate more extreme impacts of climate change, compared to models that explicitly account for SA. Therefore, where biological or population processes induce substantial autocorrelation in the distribution of organisms, and this is not modeled, model predictions will be inaccurate. These results have global importance for conservation efforts as inaccurate

  15. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research.

    PubMed

    Soroye, Peter; Ahmed, Najeeba; Kerr, Jeremy T

    2018-06-19

    Opportunistic citizen science (CS) programs allow volunteers to report species observations from anywhere, at any time, and can assemble large volumes of historic and current data at faster rates than more coordinated programs with standardized data collection. This can quickly provide large amounts of species distributional data, but whether this focus on participation comes at a cost in data quality is not clear. While automated and expert vetting can increase data reliability, there is no guarantee that opportunistic data will do anything more than confirm information from professional surveys. Here, we use eButterfly, an opportunistic CS program, and a comparable dataset of professionally collected observations, to measure the amount of new distributional species information that opportunistic CS generates. We also test how well opportunistic CS can estimate regional species richness for a large group of taxa (>300 butterfly species) across a broad area. We find that eButterfly contributes new distributional information for >80% of species, and that opportunistically submitting observations allowed volunteers to spot species ~35 days earlier than professionals. While eButterfly did a relatively poor job at predicting regional species richness by itself (detecting only about 35-57% of species per region), it significantly contributed to regional species richness when used with the professional dataset (adding ~3 species that had gone undetected in professional surveys per region). Overall, we find that the opportunistic CS model can provide substantial complementary species information when used alongside professional survey data. Our results suggest that data from opportunistic CS programs in conjunction with professional datasets can strongly increase the capacity of researchers to estimate species richness, and provide unique information on species distributions and phenologies that are relevant to the detection of the biological consequences of global change

  16. Microbial communities may modify how litter quality affects potential decomposition rates as tree species migrate

    Treesearch

    Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford

    2013-01-01

    Background and aims Climate change alters regional plant species distributions, creating new combinations of litter species and soil communities. Biogeographic patterns in microbial communities relate to dissimilarity in microbial community function, meaning novel litters to communities may decompose differently than predicted from their chemical composition. Therefore...

  17. Do species distribution models predict species richness in urban and natural green spaces? A case study using amphibians

    EPA Science Inventory

    Urban green spaces are potentially important to biodiversity conservation because they represent habitat islands in a mosaic of development, and could harbor high biodiversity or provide connectivity to nearby habitat. Presence only species distribution models (SDMs) represent a ...

  18. Why inputs matter: Selection of climatic variables for species distribution modelling in the Himalayan region

    NASA Astrophysics Data System (ADS)

    Bobrowski, Maria; Schickhoff, Udo

    2017-04-01

    Betula utilis is a major constituent of alpine treeline ecotones in the western and central Himalayan region. The objective of this study is to provide first time analysis of the potential distribution of Betula utilis in the subalpine and alpine belts of the Himalayan region using species distribution modelling. Using Generalized Linear Models (GLM) we aim at examining climatic factors controlling the species distribution under current climate conditions. Furthermore we evaluate the prediction ability of climate data derived from different statistical methods. GLMs were created using least correlated bioclimatic variables derived from two different climate models: 1) interpolated climate data (i.e. Worldclim, Hijmans et al., 2005) and 2) quasi-mechanistical statistical downscaling (i.e. Chelsa; Karger et al., 2016). Model accuracy was evaluated by the ability to predict the potential species distribution range. We found that models based on variables of Chelsa climate data had higher predictive power, whereas models using Worldclim climate data consistently overpredicted the potential suitable habitat for Betula utilis. Although climatic variables of Worldclim are widely used in modelling species distribution, our results suggest to treat them with caution when remote regions like the Himalayan mountains are in focus. Unmindful usage of climatic variables for species distribution models potentially cause misleading projections and may lead to wrong implications and recommendations for nature conservation. References: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N., Linder, H.P. & Kessler, M. (2016) Climatologies at high resolution for the earth land surface areas. arXiv:1607.00217 [physics].

  19. Invasive Species Science Branch: research and management tools for controlling invasive species

    USGS Publications Warehouse

    Reed, Robert N.; Walters, Katie D.

    2015-01-01

    Invasive, nonnative species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like “biological wildfires,” they can quickly spread and affect nearly all terrestrial and aquatic ecosystems. Invasive species have become one of the greatest environmental challenges of the 21st century in economic, environmental, and human health costs, with an estimated effect in the United States of more than $120 billion per year. Managers of the Department of the Interior and other public and private lands often rank invasive species as their top resource management problem. The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. To disseminate this information, branch scientists are developing platforms to share invasive species information with DOI cooperators, other agency partners, and the public. From these and other data, branch scientists are constructing models to understand and predict invasive species distributions for more effective management. The branch also has extensive herpetological and population biology expertise that is applied to harmful reptile invaders such as the Brown Treesnake on Guam and Burmese Python in Florida.

  20. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming

    PubMed Central

    Freeman, Benjamin G.; Class Freeman, Alexandra M.

    2014-01-01

    Temperate-zone species have responded to warming temperatures by shifting their distributions poleward and upslope. Thermal tolerance data suggests that tropical species may respond to warming temperatures even more strongly than temperate-zone species, but this prediction has yet to be tested. We addressed this data gap by conducting resurveys to measure distributional responses to temperature increases in the elevational limits of the avifaunas of two geographically and faunally independent New Guinean mountains, Mt. Karimui and Karkar Island, 47 and 44 y after they were originally surveyed. Although species richness is roughly five times greater on mainland Mt. Karimui than oceanic Karkar Island, distributional shifts at both sites were similar: upslope shifts averaged 113 m (Mt. Karimui) and 152 m (Karkar Island) for upper limits and 95 m (Mt. Karimui) and 123 m (Karkar Island) for lower limits. We incorporated these results into a metaanalysis to compare distributional responses of tropical species with those of temperate-zone species, finding that average upslope shifts in tropical montane species match local temperature increases significantly more closely than in temperate-zone montane species. That tropical species appear to be strong responders has global conservation implications and provides empirical support to hitherto untested models that predict widespread extinctions in upper-elevation tropical endemics with small ranges. PMID:24550460

  1. Nosocomial Bloodstream Infection Due to Candida spp. in China: Species Distribution, Clinical Features, and Outcomes.

    PubMed

    Li, Ying; Du, Mingmei; Chen, Liang-An; Liu, Yunxi; Liang, Zhixin

    2016-08-01

    To investigate the distribution of Candida spp., predictors of mortality, and effects of therapeutic measures on outcomes of nosocomial bloodstream infection (BSI) due to Candida spp. This retrospective, population-based study enrolled adult patients with Candida nosocomial BSI from January 2010 to December 2014 in one tertiary care hospital. The demographics, comorbidities, species distribution, risk factors, and effects of antifungal treatment were assessed. In total, 190 episodes of Candida BSI were identified. The most prevalent species was C. albicans (38.9 %), followed by C. parapsilosis (23.2 %) and C. tropicalis (20.5 %). In vitro susceptibility testing showed that 88.9 % of Candida isolates were susceptible to fluconazole. The 30-day hospital mortality was 27.9 %, while the early mortality (within 7 days) was 16.3 %. In a multivariate regression analysis, the Acute Physiology and Chronic Health Evaluation II score [odds ratio (OR) 1.23; 95 % confidence interval (CI) 1.080-1.390; P = 0.002] and severe sepsis or septic shock (OR 15.35; 95 % CI 2.391-98.502; P = 0.004) were independently correlated with early mortality. Severe sepsis or septic shock (OR 24.75; 95 % CI 5.099-120.162; P < 0.001) was an independent risk factor for 30-day mortality, while proven catheter-related candidemia (OR 0.16; 95 % CI 0.031-0.810; P = 0.027) was a positive factor for 30-day mortality. Early central venous catheter removal and adequate antifungal treatment were closely related to decreased mortality in patients with primary candidemia. The proportion of candidemia caused by C. albicans was lower than that caused by non-albicans species. The severity of illness influenced early mortality, and the origin of the central venous catheter remarkably affected 30-day mortality.

  2. Predicting the potential distribution of invasive exotic species using GIS and information-theoretic approaches: A case of ragweed (Ambrosia artemisiifolia L.) distribution in China

    USGS Publications Warehouse

    Hao, Chen; LiJun, Chen; Albright, Thomas P.

    2007-01-01

    Invasive exotic species pose a growing threat to the economy, public health, and ecological integrity of nations worldwide. Explaining and predicting the spatial distribution of invasive exotic species is of great importance to prevention and early warning efforts. We are investigating the potential distribution of invasive exotic species, the environmental factors that influence these distributions, and the ability to predict them using statistical and information-theoretic approaches. For some species, detailed presence/absence occurrence data are available, allowing the use of a variety of standard statistical techniques. However, for most species, absence data are not available. Presented with the challenge of developing a model based on presence-only information, we developed an improved logistic regression approach using Information Theory and Frequency Statistics to produce a relative suitability map. This paper generated a variety of distributions of ragweed (Ambrosia artemisiifolia L.) from logistic regression models applied to herbarium specimen location data and a suite of GIS layers including climatic, topographic, and land cover information. Our logistic regression model was based on Akaike's Information Criterion (AIC) from a suite of ecologically reasonable predictor variables. Based on the results we provided a new Frequency Statistical method to compartmentalize habitat-suitability in the native range. Finally, we used the model and the compartmentalized criterion developed in native ranges to "project" a potential distribution onto the exotic ranges to build habitat-suitability maps. ?? Science in China Press 2007.

  3. Distribution patterns of Saccharomyces species in cultural landscapes of Germany.

    PubMed

    Brysch-Herzberg, Michael; Seidel, Martin

    2017-08-01

    The distribution patterns of the three Saccharomyces species, Saccharomyces paradoxus, S. uvarum and S. cerevisiae, were investigated by a culture-dependent approach in order to understand better how these species propagate in the cultural landscape of Germany. Saccharomyces paradoxus, the closest relative of S. cerevisiae, is shown to be a true woodland species. It was frequently found in the soil under conifers indicating that S. paradoxus is an autochthonous member of the microbial community in this habitat. Physiological characteristics of the species like the Crabtree effect and high tolerance against ethanol suggest that the species is adapted to regular supply with considerable amounts of sugars. Additionally, a high proportion of the S. paradoxus strains isolated in this study are shown to have the rare ability to ferment melezitose. For these reasons, it is hypothesized that S. paradoxus may be closely associated with the honeydew system in forests. Saccharomyces cerevisiae was rare in most habitats and only exceeded the frequency of S. paradoxus in habitats characterized by modern agricultural mass production of fruit. Both the landscape structure and the agricultural system heavily influence the frequencies of Saccharomyces species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. DISTRIBUTIONS OF LAKE FISHES OF THE NORTHEAST USA--III. SALMONIDAE AND ASSOCIATED COLDWATER SPECIES

    EPA Science Inventory

    We present distributional maps and discuss native status for fish species characteristic of coldwater lakes, sampled from 203 randomly selected lakes in the northeastern USA (New England, New York, New Jersey). Eleven coldwater fish species from four families (Salmonidae, Osmeri...

  5. Biodiversity and the Lotka-Volterra theory of species interactions: open systems and the distribution of logarithmic densities.

    PubMed

    Wilson, William G; Lundberg, Per

    2004-09-22

    Theoretical interest in the distributions of species abundances observed in ecological communities has focused recently on the results of models that assume all species are identical in their interactions with one another, and rely upon immigration and speciation to promote coexistence. Here we examine a one-trophic level system with generalized species interactions, including species-specific intraspecific and interspecific interaction strengths, and density-independent immigration from a regional species pool. Comparisons between results from numerical integrations and an approximate analytic calculation for random communities demonstrate good agreement, and both approaches yield abundance distributions of nearly arbitrary shape, including bimodality for intermediate immigration rates.

  6. At least some meiofaunal species are not everywhere. Indication of geographic, ecological and geological barriers affecting the dispersion of species of Ototyphlonemertes (Nemertea, Hoplonemertea).

    PubMed

    Leasi, Francesca; Andrade, Sónia Cristina da Silva; Norenburg, Jon

    2016-03-01

    Most meiofaunal species are known to have a broad distribution with no apparent barriers to their dispersion. However, different morphological and/or molecular methods supported patterns of diversity and distribution that may be different among taxa while also conflicting within the same group. We accurately assessed the patterns of geographic distribution in actual genetic species of a marine meiofaunal animal model: Ototyphlonemertes. Specimens were collected from several sites around Europe, Northern and Central America, Southern America, Pacific Islands and Asia. We sequenced regions of two mitochondrial and two nuclear genes. Using single-gene, a concatenated data set, multilocus approaches and different DNA taxonomy methods, we disentangled the actual diversity and the spatial structures of haplotypes and tested the possible correlation between genetic diversity and geographic distance. The results show (i) the importance of using several genes to uncover both diversity and highlight phylogeographic relationships among species and that (ii) independent genetic evolutionary entities have a narrower distribution than morphological species. Moreover, (iii) a Mantel test supported a positive correlation between genetic and geographical distance. By sampling from the two sides of Isthmus of Panama, we were additionally able to identify lineage divergence times that are concordant with vicariance mechanisms caused by the geological closure of the seaway across the Isthmus. We therefore propose that in addition to distance, other geological and ecological conditions are also barriers to the dispersion of and gene flow in marine meiofaunal organisms. © 2016 John Wiley & Sons Ltd.

  7. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease

    PubMed Central

    Cárdenas, Anny; Rodriguez-R, Luis M; Pizarro, Valeria; Cadavid, Luis F; Arévalo-Ferro, Catalina

    2012-01-01

    Coral reefs are deteriorating at an alarming rate mainly as a consequence of the emergence of coral diseases. The white plague disease (WPD) is the most prevalent coral disease in the southwestern Caribbean, affecting dozens of coral species. However, the identification of a single causal agent has proved problematic. This suggests more complex etiological scenarios involving alterations in the dynamic interaction between environmental factors, the coral immune system and the symbiotic microbial communities. Here we compare the microbiome of healthy and WPD-affected corals from the two reef-building species Diploria strigosa and Siderastrea siderea collected at the Tayrona National Park in the Caribbean of Colombia. Microbiomes were analyzed by combining culture-dependent methods and pyrosequencing of 16S ribosomal DNA (rDNA) V5-V6 hypervariable regions. A total of 20 410 classifiable 16S rDNA sequences reads were obtained including all samples. No significant differences in operational taxonomic unit diversity were found between healthy and affected tissues; however, a significant increase of Alphaproteobacteria and a concomitant decrease in the Beta- and Gammaproteobacteria was observed in WPD-affected corals of both species. Significant shifts were also observed in the orders Rhizobiales, Caulobacteriales, Burkholderiales, Rhodobacterales, Aleteromonadales and Xanthomonadales, although they were not consistent between the two coral species. These shifts in the microbiome structure of WPD-affected corals suggest a loss of community-mediated growth control mechanisms on bacterial populations specific for each holobiont system. PMID:21955993

  8. On the dangers of model complexity without ecological justification in species distribution modeling

    Treesearch

    David M. Bell; Daniel R. Schlaepfer

    2016-01-01

    Although biogeographic patterns are the product of complex ecological processes, the increasing com-plexity of correlative species distribution models (SDMs) is not always motivated by ecological theory,but by model fit. The validity of model projections, such as shifts in a species’ climatic niche, becomesquestionable particularly during extrapolations, such as for...

  9. Aquatic dance flies (Diptera, Empididae, Clinocerinae and Hemerodromiinae) of Greece: species richness, distribution and description of five new species.

    PubMed

    Ivković, Marija; Ćevid, Josipa; Horvat, Bogdan; Sinclair, Bradley J

    2017-01-01

    All records of aquatic dance flies (37 species in subfamily Clinocerinae and 10 species in subfamily Hemerodromiinae) from the territory of Greece are summarized, including previously unpublished data and data on five newly described species ( Chelifera horvati Ivković & Sinclair, sp. n. , Wiedemannia iphigeniae Ivković & Sinclair, sp. n. , W. ljerkae Ivković & Sinclair, sp. n. , W. nebulosa Ivković & Sinclair, sp. n. and W. pseudoberthelemyi Ivković & Sinclair, sp. n. ). The new species are described and illustrated, the male terminalia of Clinocera megalatlantica (Vaillant) are illustrated and the distributions of all species within Greece are listed. The aquatic Empididae fauna of Greece consists of 47 species, with the following described species reported for the first time: Chelifera angusta Collin, Hemerodromia melangyna Collin, Clinocera megalatlantica , Kowarzia plectrum (Mik), Phaeobalia dimidiata (Loew), W. (Chamaedipsia) beckeri (Mik), W. (Philolutra) angelieri Vaillant and W. (P.) chvali Joost. A key to species of aquatic Empididae of Greece is provided for the first time. Information related to the European Ecoregions in which species were found is given. Compared to the other studied countries in the Balkans, the Greek species assemblage is most similar to that of the Former Yugoslav Republic of Macedonia.

  10. On the statistical mechanics of species abundance distributions.

    PubMed

    Bowler, Michael G; Kelly, Colleen K

    2012-09-01

    A central issue in ecology is that of the factors determining the relative abundance of species within a natural community. The proper application of the principles of statistical physics to species abundance distributions (SADs) shows that simple ecological properties could account for the near universal features observed. These properties are (i) a limit on the number of individuals in an ecological guild and (ii) per capita birth and death rates. They underpin the neutral theory of Hubbell (2001), the master equation approach of Volkov et al. (2003, 2005) and the idiosyncratic (extreme niche) theory of Pueyo et al. (2007); they result in an underlying log series SAD, regardless of neutral or niche dynamics. The success of statistical mechanics in this application implies that communities are in dynamic equilibrium and hence that niches must be flexible and that temporal fluctuations on all sorts of scales are likely to be important in community structure. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Coagulase-negative Staphylococcus species in bulk milk: Prevalence, distribution, and associated subgroup- and species-specific risk factors.

    PubMed

    De Visscher, A; Piepers, S; Haesebrouck, F; Supré, K; De Vliegher, S

    2017-01-01

    Coagulase-negative staphylococci (CNS) have become the main pathogens causing bovine mastitis in recent years. A huge variation in species distribution among herds has been observed in several studies, emphasizing the need to identify subgroup- and species-specific herd-level factors to improve our understanding of the differences in ecological and epidemiological nature between species. The use of bulk milk samples enables the inclusion of a large(r) number of herds needed to identify herd-level risk factors and increases the likelihood of recovering enough isolates per species needed for conducting subgroup- and, eventually, species-specific analyses at the same time. This study aimed to describe the prevalence and distribution of CNS species in bulk milk samples and to identify associated subgroup- and species-specific herd-level factors. Ninety percent of all bulk milk samples yielded CNS. Staphylococcus equorum was the predominant species, followed by Staphylococcus haemolyticus and Staphylococcus epidermidis. A seasonal effect was observed for several CNS species. Bulk milk samples from herds with a loose-pack or a tiestall housing system were more likely to yield CNS species compared with herds with a freestall barn, except for S. epidermidis, Staphylococcus simulans, and Staphylococcus cohnii. In September, herds in which udders were clipped had lower odds of yielding Staphylococcus chromogenes, S. simulans, and Staphylococcus xylosus, the CNS species assumed to be most relevant for udder health, in their bulk milk than herds in which udder clipping was not practiced. Bulk milk of herds participating in a monthly veterinary udder health-monitoring program was more likely to yield these 3 CNS species. Herds always receiving their milk quality premium or predisinfecting teats before attachment of the milking cluster had lower odds of having S. equorum in their bulk milk. Herds not using a single dry cotton or paper towel for each cow during premilking udder

  12. Species Distribution and In Vitro Antifungal Susceptibility of Vulvovaginal Candida Isolates in China

    PubMed Central

    Wang, Feng-Juan; Zhang, Dai; Liu, Zhao-Hui; Wu, Wen-Xiang; Bai, Hui-Hui; Dong, Han-Yu

    2016-01-01

    Background: Vulvovaginal candidiasis (VVC) was a common infection associated with lifelong harassment of woman's social and sexual life. The purpose of this study was to describe the species distribution and in vitro antifungal susceptibility of Candida species (Candida spp.) isolated from patients with VVC over 8 years. Methods: Species which isolated from patients with VVC in Peking University First Hospital were identified using chromogenic culture media. Susceptibility to common antifungal agents was determined using agar diffusion method based on CLSI M44-A2 document. SPSS software (version 14.0, Inc., Chicago, IL, USA) was used for statistical analysis, involving statistical description and Chi-square test. Results: The most common strains were Candida (C.) albicans, 80.5% (n = 1775) followed by C. glabrata, 18.1% (n = 400). Nystatin exhibited excellent activity against all species (<4% resistant [R]). Resistance to azole drugs varied among different species. C. albicans: clotrimazole (3.1% R) < fluconazole (16.6% R) < itraconazole (51.5% R) < miconazole (54.0% R); C. glabrata: miconazole (25.6% R) < clotrimazole (50.5% R) < itraconazole (61.9% R) < fluconazole (73.3% R); Candida krusei: clotrimazole (0 R) < fluconazole (57.7% R) < miconazole (73.1% R) < itraconazole (83.3% R). The susceptibility of fluconazole was noticeably decreasing among all species in the study period. Conclusions: Nystatin was the optimal choice for the treatment of VVC at present. The species distribution and in vitro antifungal susceptibility of Candida spp. isolated from patients with VVC had changed over time. PMID:27174323

  13. Combining citizen science species distribution models and stable isotopes reveals migratory connectivity in the secretive Virginia rail

    USGS Publications Warehouse

    Fournier, Auriel M. V.; Sullivan, Alexis R.; Bump, Joseph K.; Perkins, Marie; Shieldcastle, Mark C.; King, Sammy L.

    2017-01-01

    Stable hydrogen isotope (δD) methods for tracking animal movement are widely used yet often produce low resolution assignments. Incorporating prior knowledge of abundance, distribution or movement patterns can ameliorate this limitation, but data are lacking for most species. We demonstrate how observations reported by citizen scientists can be used to develop robust estimates of species distributions and to constrain δD assignments.We developed a Bayesian framework to refine isotopic estimates of migrant animal origins conditional on species distribution models constructed from citizen scientist observations. To illustrate this approach, we analysed the migratory connectivity of the Virginia rail Rallus limicola, a secretive and declining migratory game bird in North America.Citizen science observations enabled both estimation of sampling bias and construction of bias-corrected species distribution models. Conditioning δD assignments on these species distribution models yielded comparably high-resolution assignments.Most Virginia rails wintering across five Gulf Coast sites spent the previous summer near the Great Lakes, although a considerable minority originated from the Chesapeake Bay watershed or Prairie Pothole region of North Dakota. Conversely, the majority of migrating Virginia rails from a site in the Great Lakes most likely spent the previous winter on the Gulf Coast between Texas and Louisiana.Synthesis and applications. In this analysis, Virginia rail migratory connectivity does not fully correspond to the administrative flyways used to manage migratory birds. This example demonstrates that with the increasing availability of citizen science data to create species distribution models, our framework can produce high-resolution estimates of migratory connectivity for many animals, including cryptic species. Empirical evidence of links between seasonal habitats will help enable effective habitat management, hunting quotas and population monitoring and

  14. Distribution of Malassezia species in seborrhoeic dermatitis: correlation with patients' cellular immune status.

    PubMed

    Prohic, Asja

    2010-07-01

    Malassezia species are implicated in the pathogenesis of seborrhoeic dermatitis (SD), but the relationship between each species and the disorder remains unclear. It is hypothesised that the pathogenesis of SD has an immune component, which is supported by the increased incidence in patients with immunosuppressive disorders. The purpose of our study was to analyse the prevalence of Malassezia species in lesional skin of SD, and to assess the distribution of the species according to severity of the disease and cellular immune status of the patients. Forty SD patients with scalp involvement were included in the study. The samples were obtained by scraping the skin surface of the scalp and then incubated on Sabouraud dextrose agar and modified Dixon agar. The yeasts isolated were identified by their morphological and physiological properties according to the method of Guillot et al. In addition, we performed two-colour flow cytometry analysis to investigate the lymphocyte subpopulations in the peripheral blood. The most commonly isolated species was Malassezia restricta (27.5%), followed by Malassezia globosa (17.5%) and Malassezia slooffiae (15%). We demonstrated low helper/suppressor ratios in 70% patients, because of an increase in the suppressor T-cell population, suggesting an impaired cellular immunity. However, we found no significant difference in the distribution of isolated Malassezia species according to the severity of the scalp involvement and changes in the peripheral blood lymphocyte subpopulations.

  15. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America

    PubMed Central

    Harsch, Melanie A.; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)–despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species’ elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834

  16. Simulations inform design of regional occupancy-based monitoring for a sparsely distributed, territorial species

    Treesearch

    Quresh S. Latif; Martha M. Ellis; Victoria A. Saab; Kim Mellen-McLean

    2017-01-01

    Sparsely distributed species attract conservation concern, but insufficient information on population trends challenges conservation and funding prioritization. Occupancy-based monitoring is attractive for these species, but appropriate sampling design and inference depend on particulars of the study system. We employed spatially explicit simulations to identify...

  17. Ecophysiology of wetland plant roots: A modelling comparison of aeration in relation to species distribution

    USGS Publications Warehouse

    Sorrell, B.K.; Mendelssohn, I.A.; McKee, K.L.; Woods, R.A.

    2000-01-01

    This study examined the potential for inter-specific differences in root aeration to determine wetland plant distribution in nature. We compared aeration in species that differ in the type of sediment and depth of water they colonize. Differences in root anatomy, structure and physiology were applied to aeration models that predicted the maximum possible aerobic lengths and development of anoxic zones in primary adventitious roots. Differences in anatomy and metabolism that provided higher axial fluxes of oxygen allowed deeper root growth in species that favour more reducing sediments and deeper water. Modelling identified factors that affected growth in anoxic soils through their effects on aeration. These included lateral root formation, which occurred at the expense of extension of the primary root because of the additional respiratory demand they imposed, reducing oxygen fluxes to the tip and stele, and the development of stelar anoxia. However, changes in sediment oxygen demand had little detectable effect on aeration in the primary roots due to their low wall permeability and high surface impedance, but appeared to reduce internal oxygen availability by accelerating loss from laterals. The development of pressurized convective gas flow in shoots and rhizomes was also found to be important in assisting root aeration, as it maintained higher basal oxygen concentrations at the rhizome-root junctions in species growing into deep water. (C) 2000 Annals of Botany Company.

  18. An updated understanding of Texas bumble bee (Hymenoptera: Apidae) species presence and potential distributions in Texas, USA

    PubMed Central

    2017-01-01

    Texas is the second largest state in the United States of America, and the largest state in the contiguous USA at nearly 700,000 sq. km. Several Texas bumble bee species have shown evidence of declines in portions of their continental ranges, and conservation initiatives targeting these species will be most effective if species distributions are well established. To date, statewide bumble bee distributions for Texas have been inferred primarily from specimen records housed in natural history collections. To improve upon these maps, and help inform conservation decisions, this research aimed to (1) update existing Texas bumble bee presence databases to include recent (2007–2016) data from citizen science repositories and targeted field studies, (2) model statewide species distributions of the most common bumble bee species in Texas using MaxEnt, and (3) identify conservation target areas for the state that are most likely to contain habitat suitable for multiple declining species. The resulting Texas bumble bee database is comprised of 3,580 records, to include previously compiled museum records dating from 1897, recent field survey data, and vetted records from citizen science repositories. These data yielded an updated state species list that includes 11 species, as well as species distribution models (SDMs) for the most common Texas bumble bee species, including two that have shown evidence of range-wide declines: B. fraternus (Smith, 1854) and B. pensylvanicus (DeGeer, 1773). Based on analyses of these models, we have identified conservation priority areas within the Texas Cross Timbers, Texas Blackland Prairies, and East Central Texas Plains ecoregions where suitable habitat for both B. fraternus and B. pensylvanicus are highly likely to co-occur. PMID:28828241

  19. An updated understanding of Texas bumble bee (Hymenoptera: Apidae) species presence and potential distributions in Texas, USA.

    PubMed

    Beckham, Jessica L; Atkinson, Samuel

    2017-01-01

    Texas is the second largest state in the United States of America, and the largest state in the contiguous USA at nearly 700,000 sq. km. Several Texas bumble bee species have shown evidence of declines in portions of their continental ranges, and conservation initiatives targeting these species will be most effective if species distributions are well established. To date, statewide bumble bee distributions for Texas have been inferred primarily from specimen records housed in natural history collections. To improve upon these maps, and help inform conservation decisions, this research aimed to (1) update existing Texas bumble bee presence databases to include recent (2007-2016) data from citizen science repositories and targeted field studies, (2) model statewide species distributions of the most common bumble bee species in Texas using MaxEnt, and (3) identify conservation target areas for the state that are most likely to contain habitat suitable for multiple declining species. The resulting Texas bumble bee database is comprised of 3,580 records, to include previously compiled museum records dating from 1897, recent field survey data, and vetted records from citizen science repositories. These data yielded an updated state species list that includes 11 species, as well as species distribution models (SDMs) for the most common Texas bumble bee species, including two that have shown evidence of range-wide declines: B. fraternus (Smith, 1854) and B. pensylvanicus (DeGeer, 1773) . Based on analyses of these models, we have identified conservation priority areas within the Texas Cross Timbers, Texas Blackland Prairies, and East Central Texas Plains ecoregions where suitable habitat for both B. fraternus and B. pensylvanicus are highly likely to co-occur.

  20. Artificial light at night affects sleep behaviour differently in two closely related songbird species.

    PubMed

    Sun, Jiachen; Raap, Thomas; Pinxten, Rianne; Eens, Marcel

    2017-12-01

    Artificial light at night (ALAN) or light pollution is an increasing and worldwide problem. There is growing concern that because of the disruption of natural light cycles, ALAN may pose serious risks for wildlife. While ALAN has been shown to affect many aspects of animal behaviour and physiology, few studies have experimentally studied whether individuals of different species in the wild respond differently to ALAN. Here, we investigated the effect of ALAN on sleep behaviour in two closely related songbird species inhabiting the same study area and roosting/breeding in similar nest boxes. We experimentally exposed free-living great tits (Parus major) and blue tits (Cyanistes caeruleus) to artificial light inside their nest boxes and observed changes in their sleep behaviour compared to the previous night when the nest boxes were dark. In line with previous studies, sleep behaviour of both species did not differ under dark conditions. ALAN disrupted sleep in both great and blue tits. However, compared to blue tits, great tits showed more pronounced effects and more aspects of sleep were affected. Light exposed great tits entered the nest boxes and fell asleep later, woke up and exited the nest boxes earlier, and the total sleep amount and sleep percentage were reduced. By contrast, these changes in sleep behaviour were not found in light exposed blue tits. Our field experiment, using exactly the same light manipulation in both species, provides direct evidence that two closely related species respond differently to ALAN, while their sleep behaviour under dark conditions was similar. Our research suggests that findings for one species cannot necessarily be generalised to other species, even closely-related species. Furthermore, species-specific effects could have implications for community dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted

  2. Biodiversity and the Lotka-Volterra theory of species interactions: open systems and the distribution of logarithmic densities.

    PubMed Central

    Wilson, William G.; Lundberg, Per

    2004-01-01

    Theoretical interest in the distributions of species abundances observed in ecological communities has focused recently on the results of models that assume all species are identical in their interactions with one another, and rely upon immigration and speciation to promote coexistence. Here we examine a one-trophic level system with generalized species interactions, including species-specific intraspecific and interspecific interaction strengths, and density-independent immigration from a regional species pool. Comparisons between results from numerical integrations and an approximate analytic calculation for random communities demonstrate good agreement, and both approaches yield abundance distributions of nearly arbitrary shape, including bimodality for intermediate immigration rates. PMID:15347523

  3. A differential equation for the asymptotic fitness distribution in the Bak-Sneppen model with five species.

    PubMed

    Schlemm, Eckhard

    2015-09-01

    The Bak-Sneppen model is an abstract representation of a biological system that evolves according to the Darwinian principles of random mutation and selection. The species in the system are characterized by a numerical fitness value between zero and one. We show that in the case of five species the steady-state fitness distribution can be obtained as a solution to a linear differential equation of order five with hypergeometric coefficients. Similar representations for the asymptotic fitness distribution in larger systems may help pave the way towards a resolution of the question of whether or not, in the limit of infinitely many species, the fitness is asymptotically uniformly distributed on the interval [fc, 1] with fc ≳ 2/3. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Herbivore species identity and composition affect soil enzymatic activity through altered plant composition in a coastal tallgrass prairie

    USDA-ARS?s Scientific Manuscript database

    Although single species of herbivores are known to affect soil microbial communities, the effects of herbivore species identity and functional composition on soil microbes is unknown. We tested the effects of single species of orthopterans and multiple species combinations on soil enzymatic activity...

  5. Historical and ecological drivers of the spatial pattern of Chondrichthyes species richness in the Mediterranean Sea

    PubMed Central

    Serna-Quintero, José Miguel; Camiñas, Juan Antonio; Fernández, Ignacio de Loyola; Real, Raimundo; Macías, David

    2017-01-01

    Chondrichthyes, which include Elasmobranchii (sharks and batoids) and Holocephali (chimaeras), are a relatively small group in the Mediterranean Sea (89 species) playing a key role in the ecosystems where they are found. At present, many species of this group are threatened as a result of anthropogenic effects, including fishing activity. Knowledge of the spatial distribution of these species is of great importance to understand their ecological role and for the efficient management of their populations, particularly if affected by fisheries. This study aims to analyze the spatial patterns of the distribution of Chondrichthyes species richness in the Mediterranean Sea. Information provided by the studied countries was used to model geographical and ecological variables affecting the Chondrichthyes species richness. The species were distributed in 16 Operational Geographical Units (OGUs), derived from the Geographical Sub-Areas (GSA) adopted by the General Fisheries Commission of the Mediterranean Sea (GFCM). Regression analyses with the species richness as a target variable were adjusted with a set of environmental and geographical variables, being the model that links richness of Chondrichthyes species with distance to the Strait of Gibraltar and number of taxonomic families of bony fishes the one that best explains it. This suggests that both historical and ecological factors affect the current distribution of Chondrichthyes within the Mediterranean Sea. PMID:28406963

  6. A Community Perspective on the Effects of Climate Change on Species Distributions in the Boreal Forest of the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Morelli, T. L.; DeLuca, W. V.; Duclos, T. R.; Foster, J. R.; Siren, A. P.

    2016-12-01

    The way that climate change will impact species ranges through habitat change and modify species interactions is not well enough understood. We took a community view of the climate-vulnerable, biologically-important spruce-fir forest ecosystem of the northeastern U.S., examining if and how species are responding to warming and changing precipitation patterns. We examined how fluctuations in temperature and snowpack influence distributional shifts along elevational and latitudinal gradients; for example, milder winter conditions may allow generalist carnivores such as bobcats to access boreal forest habitat, increasing direct and indirect competition with Canada lynx and American marten for prey. In another example of climate-driven predation shifts, upslope shifts of American red squirrels may increase predation rates on vulnerable montane songbirds. We combined data from weather stations with model-based high resolution data to obtain information on historical and present climate variables. We forecasted spruce-fir forest extent using landscape and ecosystem models under a combination of global circulation model projections and representative concentration pathways for the northern Appalachians. Presence and abundance data from animal surveys were used to build occupancy models to assess the habitat, climate, and species relationships. Species responded individually with geographic variation in response within and across species. Some species closely tracked climate changes, whereas others showed no response, or even responses such as shifts southward that were counter to what would be expected. For example, although low elevation boreal bird species showed evidence of expanding upslope, most high elevation species expanded downslope. This work highlights the need to take a mechanistic perspective of species responses to climate change and avoid generalizations of simple shifts northward and upward. Understanding how climate change affects community dynamics will

  7. Climate Change and the Distribution of Neotropical Red-Bellied Toads (Melanophryniscus, Anura, Amphibia): How to Prioritize Species and Populations?

    PubMed Central

    Zank, Caroline; Becker, Fernando Gertum; Abadie, Michelle; Baldo, Diego; Maneyro, Raúl; Borges-Martins, Márcio

    2014-01-01

    We used species distribution modeling to investigate the potential effects of climate change on 24 species of Neotropical anurans of the genus Melanophryniscus. These toads are small, have limited mobility, and a high percentage are endangered or present restricted geographical distributions. We looked at the changes in the size of suitable climatic regions and in the numbers of known occurrence sites within the distribution limits of all species. We used the MaxEnt algorithm to project current and future suitable climatic areas (a consensus of IPCC scenarios A2a and B2a for 2020 and 2080) for each species. 40% of the species may lose over 50% of their potential distribution area by 2080, whereas 28% of species may lose less than 10%. Four species had over 40% of the currently known occurrence sites outside the predicted 2080 areas. The effect of climate change (decrease in climatic suitable areas) did not differ according to the present distribution area, major habitat type or phylogenetic group of the studied species. We used the estimated decrease in specific suitable climatic range to set a conservation priority rank for Melanophryniscus species. Four species were set to high conservation priority: M. montevidensis, (100% of its original suitable range and all known occurrence points potentially lost by 2080), M. sp.2, M. cambaraensis, and M. tumifrons. Three species (M. spectabilis, M. stelzneri, and M. sp.3) were set between high to intermediate priority (more than 60% decrease in area predicted by 2080); nine species were ranked as intermediate priority, while eight species were ranked as low conservation priority. We suggest that monitoring and conservation actions should be focused primarily on those species and populations that are likely to lose the largest area of suitable climate and the largest number of known populations in the short-term. PMID:24755937

  8. Holocene re-colonisation, central-marginal distribution and habitat specialisation shape population genetic patterns within an Atlantic European grass species.

    PubMed

    Harter, D E V; Jentsch, A; Durka, W

    2015-05-01

    Corynephorus canescens (L.) P.Beauv. is an outbreeding, short-lived and wind-dispersed grass species, highly specialised on scattered and disturbance-dependent habitats of open sandy sites. Its distribution ranges from the Iberian Peninsula over Atlantic regions of Western and Central Europe, but excludes the two other classical European glacial refuge regions on the Apennine and Balkan Peninsulas. To investigate genetic patterns of this uncommon combination of ecological and biogeographic species characteristics, we analysed AFLP variation among 49 populations throughout the European distribution range, expecting (i) patterns of SW European glacial refugia and post-glacial expansion to the NE; (ii) decreasing genetic diversity from central to marginal populations; and (iii) interacting effects of high gene flow and disturbance-driven genetic drift. Decreasing genetic diversity from SW to NE and distinct gene pool clustering imply refugia on the Iberian Peninsula and in western France, from where range expansion originated towards the NE. High genetic diversity within and moderate genetic differentiation among populations, and a significant pattern of isolation-by-distance indicate a gene flow drift equilibrium within C. canescens, probably due to its restriction to scattered and dynamic habitats and limited dispersal distances. These features, as well as the re-colonisation history, were found to affect genetic diversity gradients from central to marginal populations. Our study emphasises the need for including the specific ecology into analyses of species (re-)colonisation histories and range centre-margin analyses. To account for discontinuous distributions, new indices of marginality were tested for their suitability in studies of centre-periphery gradients. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Decoding Size Distribution Patterns in Marine and Transitional Water Phytoplankton: From Community to Species Level

    PubMed Central

    Roselli, Leonilde; Basset, Alberto

    2015-01-01

    Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons) and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape). We tested the hypothesis focusing on resource availability (nutrients and light) and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism’s behavior which exploring patch resources in transitional and marine phytoplankton communities. PMID:25974052

  10. Distribution and occupancy of introduced species: a baseline inventory from Phase 3 plots across the country

    Treesearch

    Bethany K. Schulz; W. Keith Moser

    2012-01-01

    Invasive plant species have significant negative impacts in many ecosystems and are found in many forests around the world. Although not all introduced species become invasive, there are numerous examples of species escaping cultivation and invading natural ecosystems years or even decades after their initial introduction. Regional distributions of invasive species are...

  11. Elevation and stream-size thresholds affect distributions of native and exotic warmwater fishes in Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2004-01-01

    This study was conducted to assess the influence of elevation and stream width on the occurrence of 28 native and six exotic fish species using data collected (1954-2003) from 1,114 stream reaches in Wyoming. Medians and ranges of elevation and stream width were used to assess how elevation and stream width influenced the occurrence of individual species and to indicate which species had large and small ranges of distribution. Twenty-four species were common at elevations below 1,550 m and 31 species occurred in streams less than 20 m wide. The six exotic species had the potential to overlap all of the native species with regard to both elevation and stream width. In general, species that were collected over a wide range of elevations were also collected over a wide range of stream widths. Red shiner (Cyprinella lutrensis) and river carpsucker (Carpiodes carpio) occurred over the smallest elevation ranges ( 2,500 m). Longnose sucker and white sucker (Catostomus commersoni) occurred over the greatest ranges in stream widths (> 90 m), and brook stickleback (Culaea inconstans), black bullhead (Ameiurus melas), and quillback (Carpiodes cyprinus) were found over the lowest ranges in stream widths (< 12 m). The distributions of native and exotic species in streams that transition from the Rocky Mountains to the Great Plains were largely explained by elevation and stream width.

  12. Aquatic dance flies (Diptera, Empididae, Clinocerinae and Hemerodromiinae) of Greece: species richness, distribution and description of five new species

    PubMed Central

    Ivković, Marija; Ćevid, Josipa; Horvat, Bogdan; Sinclair, Bradley J.

    2017-01-01

    Abstract All records of aquatic dance flies (37 species in subfamily Clinocerinae and 10 species in subfamily Hemerodromiinae) from the territory of Greece are summarized, including previously unpublished data and data on five newly described species (Chelifera horvati Ivković & Sinclair, sp. n., Wiedemannia iphigeniae Ivković & Sinclair, sp. n., W. ljerkae Ivković & Sinclair, sp. n., W. nebulosa Ivković & Sinclair, sp. n. and W. pseudoberthelemyi Ivković & Sinclair, sp. n.). The new species are described and illustrated, the male terminalia of Clinocera megalatlantica (Vaillant) are illustrated and the distributions of all species within Greece are listed. The aquatic Empididae fauna of Greece consists of 47 species, with the following described species reported for the first time: Chelifera angusta Collin, Hemerodromia melangyna Collin, Clinocera megalatlantica, Kowarzia plectrum (Mik), Phaeobalia dimidiata (Loew), W. (Chamaedipsia) beckeri (Mik), W. (Philolutra) angelieri Vaillant and W. (P.) chvali Joost. A key to species of aquatic Empididae of Greece is provided for the first time. Information related to the European Ecoregions in which species were found is given. Compared to the other studied countries in the Balkans, the Greek species assemblage is most similar to that of the Former Yugoslav Republic of Macedonia. PMID:29362533

  13. New species and new distributional records of Neotropical Mantispidae (Insecta: Neuroptera).

    PubMed

    Ardila-Camacho, Adrian; Calle-tobÓn, Arley; Wolff, Marta; Stange, Lionel A

    2018-04-23

    The Neotropical fauna of Mantispidae is currently composed of 106 species. We provide new distributional records of Mantispidae from Colombia and Panama. Three new species are described, one in Symphrasinae from Colombia, and two in Mantispinae from Colombia and Panama. Haematomantispa nubeculosa (Navás, 1933) and Leptomantispa axillaris (Navás, 1908) are reported from Colombia for the first time, the former being the first record of the genus in the country. New locality records for other species previously known from Colombia are also given. For Panama, we report Anchieta fasciatella (Westwood, 1867) and Trichoscelia iridella (Westwood, 1867) for the first time, the former is herein newly transferred from Plega to Anchieta. Three names Mantispa confluens Navás, 1914, n. syn., Buyda apicata Navás, 1926, n. syn., and Mantispa neotropica Navás, 1933, n. syn., are here synonymized with Buyda phthisica (Gerstaecker, 1885). Updated keys for the genera of Mantispinae, and species of genera Trichoscelia, Buyda, and Climaciella from Colombia are included. With this new information, the known species richness of Mantispidae from Colombia increases from 21 to 26, and from 16 to 19 species in Panama.

  14. Contemporary California indian uses for food of species affected by Phytophthora ramorum

    Treesearch

    Beverly R. Ortiz

    2008-01-01

    This paper provides a brief survey of contemporary central and northwest California Indian uses for food of regulated hosts and associated species affected by Phytophthora ramorum, including recipes from Karuk/Shasta/Abenake elder Josephine Peters. It contextualizes these food uses in terms of their on-going significance in cultural, social and...

  15. Mercury toxicity to freshwater organisms: extrapolation using species sensitivity distribution.

    PubMed

    Rodrigues, Andreia C M; Jesus, Fátima T; Fernandes, Marco A F; Morgado, Fernando; Soares, Amadeu M V M; Abreu, Sizenando N

    2013-08-01

    Mercury toxicity to aquatic organisms was evaluated in different taxonomic groups showing the following species sensitivity gradient: Daphnia magna > Daphnia longispina > Pseudokirchneriella subcapitata > Chlorella vulgaris > Lemna minor > Chironomus riparius. Toxicity values ranged from 3.49 μg/L (48 h-EC₅₀ of D. magna) to 1.58 mg/L (48 h-EC₅₀ of C. riparius). A species sensitivity distribution was used to estimate hazardous mercury concentration at 5 % level (HC5) and the predicted no effect concentration (PNEC). The HC5 was 3.18 μg Hg/L and the PNEC varied between 0.636 and 3.18 μg Hg/L, suggesting no risk of acute toxicity to algae, plants, crustaceans and insects in most freshwaters.

  16. Indicator 1.07. Number and geographic distribution of forest-associated species at risk of losing genetic variation and locally adapted genotypes

    Treesearch

    C. H. Flather; M. S Knowles; C. H. Sieg

    2011-01-01

    This indicator provides information on the number and distribution of forest-associated species at risk of losing genetic variation across their geographic range. Comparing a species' current geographic distribution with its historic distribution is the basis for identifying those species whose range has contracted significantly. Human activities are accelerating...

  17. A significant upward shift in plant species optimum elevation during the 20th century.

    PubMed

    Lenoir, J; Gégout, J C; Marquet, P A; de Ruffray, P; Brisse, H

    2008-06-27

    Spatial fingerprints of climate change on biotic communities are usually associated with changes in the distribution of species at their latitudinal or altitudinal extremes. By comparing the altitudinal distribution of 171 forest plant species between 1905 and 1985 and 1986 and 2005 along the entire elevation range (0 to 2600 meters above sea level) in west Europe, we show that climate warming has resulted in a significant upward shift in species optimum elevation averaging 29 meters per decade. The shift is larger for species restricted to mountain habitats and for grassy species, which are characterized by faster population turnover. Our study shows that climate change affects the spatial core of the distributional range of plant species, in addition to their distributional margins, as previously reported.

  18. Species distribution modeling in regions of high need and limited data: waterfowl of China

    USGS Publications Warehouse

    Prosser, Diann J.; Ding, Changqing; Erwin, R. Michael; Mundkur, Taej; Sullivan, Jeffery D.; Ellis, Erle C.

    2018-01-01

    BackgroundA number of conservation and societal issues require understanding how species are distributed on the landscape, yet ecologists are often faced with a lack of data to develop models at the resolution and extent desired, resulting in inefficient use of conservation resources. Such a situation presented itself in our attempt to develop waterfowl distribution models as part of a multi-disciplinary team targeting the control of the highly pathogenic H5N1 avian influenza virus in China.MethodsFaced with limited data, we built species distribution models using a habitat suitability approach for China’s breeding and non-breeding (hereafter, wintering) waterfowl. An extensive review of the literature was used to determine model parameters for habitat modeling. Habitat relationships were implemented in GIS using land cover covariates. Wintering models were validated using waterfowl census data, while breeding models, though developed for many species, were only validated for the one species with sufficient telemetry data available.ResultsWe developed suitability models for 42 waterfowl species (30 breeding and 39 wintering) at 1 km resolution for the extent of China, along with cumulative and genus level species richness maps. Breeding season models showed highest waterfowl suitability in wetlands of the high-elevation west-central plateau and northeastern China. Wintering waterfowl suitability was highest in the lowland regions of southeastern China. Validation measures indicated strong performance in predicting species presence. Comparing our model outputs to China’s protected areas indicated that breeding habitat was generally better covered than wintering habitat, and identified locations for which additional research and protection should be prioritized.ConclusionsThese suitability models are the first available for many of China’s waterfowl species, and have direct utility to conservation and habitat planning and prioritizing management of critically

  19. Effects of urbanization on carnivore species distribution and richness

    USGS Publications Warehouse

    Ordenana, Miguel A.; Crooks, Kevin R.; Boydston, Erin E.; Fisher, Robert N.; Lyren, Lisa M.; Siudyla, Shalene; Haas, Christopher D.; Harris, Sierra; Hathaway, Stacie A.; Turschak, Greta M.; Miles, A. Keith; Van Vuren, Dirk H.

    2010-01-01

    Urban development can have multiple effects on mammalian carnivore communities. We conducted a meta-analysis of 7,929 photographs from 217 localities in 11 camera-trap studies across coastal southern California to describe habitat use and determine the effects of urban proximity (distance to urban edge) and intensity (percentage of area urbanized) on carnivore occurrence and species richness in natural habitats close to the urban boundary. Coyotes (Canis latrans) and bobcats (Lynx rufus) were distributed widely across the region. Domestic dogs (Canis lupus familiaris), striped skunks (Mephitis mephitis), raccoons (Procyon lotor), gray foxes (Urocyon cinereoargenteus), mountain lions (Puma concolor), and Virginia opossums (Didelphis virginiana) were detected less frequently, and long-tailed weasels (Mustela frenata), American badgers (Taxidea taxus), western spotted skunks (Spilogale gracilis), and domestic cats (Felis catus) were detected rarely. Habitat use generally reflected availability for most species. Coyote and raccoon occurrence increased with both proximity to and intensity of urbanization, whereas bobcat, gray fox, and mountain lion occurrence decreased with urban proximity and intensity. Domestic dogs and Virginia opossums exhibited positive and weak negative relationships, respectively, with urban intensity but were unaffected by urban proximity. Striped skunk occurrence increased with urban proximity but decreased with urban intensity. Native species richness was negatively associated with urban intensity but not urban proximity, probably because of the stronger negative response of individual species to urban intensity.

  20. Modelling both dominance and species distribution provides a more complete picture of changes to mangrove ecosystems under climate change.

    PubMed

    Crase, Beth; Vesk, Peter A; Liedloff, Adam; Wintle, Brendan A

    2015-08-01

    Dominant species influence the composition and abundance of other species present in ecosystems. However, forecasts of distributional change under future climates have predominantly focused on changes in species distribution and ignored possible changes in spatial and temporal patterns of dominance. We develop forecasts of spatial changes for the distribution of species dominance, defined in terms of basal area, and for species occurrence, in response to sea level rise for three tree taxa within an extensive mangrove ecosystem in northern Australia. Three new metrics are provided, indicating the area expected to be suitable under future conditions (Eoccupied ), the instability of suitable area (Einstability ) and the overlap between the current and future spatial distribution (Eoverlap ). The current dominance and occurrence were modelled in relation to a set of environmental variables using boosted regression tree (BRT) models, under two scenarios of seedling establishment: unrestricted and highly restricted. While forecasts of spatial change were qualitatively similar for species occurrence and dominance, the models of species dominance exhibited higher metrics of model fit and predictive performance, and the spatial pattern of future dominance was less similar to the current pattern than was the case for the distributions of species occurrence. This highlights the possibility of greater changes in the spatial patterning of mangrove tree species dominance under future sea level rise. Under the restricted seedling establishment scenario, the area occupied by or dominated by a species declined between 42.1% and 93.8%, while for unrestricted seedling establishment, the area suitable for dominance or occurrence of each species varied from a decline of 68.4% to an expansion of 99.5%. As changes in the spatial patterning of dominance are likely to cause a cascade of effects throughout the ecosystem, forecasting spatial changes in dominance provides new and

  1. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Treesearch

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  2. Checklist of American sand flies (Diptera, Psychodidae, Phlebotominae): genera, species, and their distribution

    PubMed Central

    Shimabukuro, Paloma Helena Fernandes; de Andrade, Andrey José; Galati, Eunice Aparecida Bianchi

    2017-01-01

    Abstract Phlebotomine sand flies are dipteran insects of medical importance because many species are involved in the transmission of pathogens between human and non-human animals. A total of 530 American species of sand flies is presented in an updated checklist, along with their author(s) and year of publication using the classification by Galati (1995, 2003). Distribution by country is also provided. PMID:28794674

  3. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species

    PubMed Central

    Antunes, Jorge T.; Leão, Pedro N.; Vasconcelos, Vítor M.

    2015-01-01

    Cylindrospermopsis raciborskii is a cyanobacterial species extensively studied for its toxicity, bloom formation and invasiveness potential, which have consequences to public and environmental health. Its current geographical distribution, spanning different climates, suggests that C. raciborskii has acquired the status of a cosmopolitan species. From phylogeography studies, a tropical origin for this species seems convincing, with different conjectural routes of expansion toward temperate climates. This expansion may be a result of the species physiological plasticity, or of the existence of different ecotypes with distinct environmental requirements. In particular, C. raciborskii is known to tolerate wide temperature and light regimes and presents diverse nutritional strategies. This cyanobacterium is also thought to have benefited from climate change conditions, regarding its invasiveness into temperate climates. Other factors, recently put forward, such as allelopathy, may also be important to its expansion. The effect of C. raciborskii in the invaded communities is still mostly unknown but may strongly disturb species diversity at different trophic levels. In this review we present an up-to-date account of the distribution, phylogeography, ecophysiology, as well some preliminary reports of the impact of C. raciborskii in different organisms. PMID:26042108

  4. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species.

    PubMed

    Antunes, Jorge T; Leão, Pedro N; Vasconcelos, Vítor M

    2015-01-01

    Cylindrospermopsis raciborskii is a cyanobacterial species extensively studied for its toxicity, bloom formation and invasiveness potential, which have consequences to public and environmental health. Its current geographical distribution, spanning different climates, suggests that C. raciborskii has acquired the status of a cosmopolitan species. From phylogeography studies, a tropical origin for this species seems convincing, with different conjectural routes of expansion toward temperate climates. This expansion may be a result of the species physiological plasticity, or of the existence of different ecotypes with distinct environmental requirements. In particular, C. raciborskii is known to tolerate wide temperature and light regimes and presents diverse nutritional strategies. This cyanobacterium is also thought to have benefited from climate change conditions, regarding its invasiveness into temperate climates. Other factors, recently put forward, such as allelopathy, may also be important to its expansion. The effect of C. raciborskii in the invaded communities is still mostly unknown but may strongly disturb species diversity at different trophic levels. In this review we present an up-to-date account of the distribution, phylogeography, ecophysiology, as well some preliminary reports of the impact of C. raciborskii in different organisms.

  5. How will climate change affect the potential distribution of Eurasian Tree Sparrows Passer montanus in North America?

    USGS Publications Warehouse

    Graham, Jim; Jarnevich, Catherine; Young, Nick; Newman, Greg; Stohlgren, Thomas

    2011-01-01

    Habitat suitability models have been used to predict the present and future potential distribution of a variety of species. Eurasian tree sparrows Passer montanus, native to Eurasia, have established populations in other parts of the world. In North America, their current distribution is limited to a relatively small region around its original introduction to St. Louis, Missouri. We combined data from the Global Biodiversity Information Facility with current and future climate data to create habitat suitability models using Maxent for this species. Under projected climate change scenarios, our models show that the distribution and range of the Eurasian tree sparrow could increase as far as the Pacific Northwest and Newfoundland. This is potentially important information for prioritizing the management and control of this non-native species.

  6. A new species of Eidmanacris Chopard, 1956, with notes on its distribution in Brazilian caves (Phalangopsidae, Luzarinae).

    PubMed

    Bolfarini, Marcio P

    2016-02-23

    The genus Eidmanacris comprises 19 species distributed through Brazil, Bolivia ad Paraguay. In Brazil, the genus has a broad distribution, but its occurrence in Brazilian caves is poorly known; the only species recorded is E. alboannulata for the cave "Gruta da Toca", Itirapina municipality, São Paulo State. In this study I describe a species, E. lencionii Bolfarini, n. sp., with a discussion on its distribution in Brazilian caves, and its relation with the hypogean environment. The type material is deposited in the Museu de Zoologia da Universidade de São Paulo (MZSP) and the Laboratório de Estudos Subterrâneos da Universidade Federal de São Carlos (LES/UFSCar).

  7. Species abundance distributions in neutral models with immigration or mutation and general lifetimes.

    PubMed

    Lambert, Amaury

    2011-07-01

    We consider a general, neutral, dynamical model of biodiversity. Individuals have i.i.d. lifetime durations, which are not necessarily exponentially distributed, and each individual gives birth independently at constant rate λ. Thus, the population size is a homogeneous, binary Crump-Mode-Jagers process (which is not necessarily a Markov process). We assume that types are clonally inherited. We consider two classes of speciation models in this setting. In the immigration model, new individuals of an entirely new species singly enter the population at constant rate μ (e.g., from the mainland into the island). In the mutation model, each individual independently experiences point mutations in its germ line, at constant rate θ. We are interested in the species abundance distribution, i.e., in the numbers, denoted I(n)(k) in the immigration model and A(n)(k) in the mutation model, of species represented by k individuals, k = 1, 2, . . . , n, when there are n individuals in the total population. In the immigration model, we prove that the numbers (I(t)(k); k ≥ 1) of species represented by k individuals at time t, are independent Poisson variables with parameters as in Fisher's log-series. When conditioning on the total size of the population to equal n, this results in species abundance distributions given by Ewens' sampling formula. In particular, I(n)(k) converges as n → ∞ to a Poisson r.v. with mean γ/k, where γ : = μ/λ. In the mutation model, as n → ∞, we obtain the almost sure convergence of n (-1) A(n)(k) to a nonrandom explicit constant. In the case of a critical, linear birth-death process, this constant is given by Fisher's log-series, namely n(-1) A(n)(k) converges to α(k)/k, where α : = λ/(λ + θ). In both models, the abundances of the most abundant species are briefly discussed.

  8. Linking Wildfire and Climate as Drivers of Plant Species and Community-level Change

    NASA Astrophysics Data System (ADS)

    Newingham, B. A.; Hudak, A. T.; Bright, B. C.

    2015-12-01

    Plant species distributions and community shifts after fire are affected by burn severity, elevation, aspect, and climate. However, little empirical data exists on long-term (decadal) recovery after fire across these interacting factors, limiting understanding of fire regime characteristics and climate in post-fire community trajectories. We examined plant species and community responses a decade after fire across five fires in ponderosa pine, dry mixed coniferous, and moist mixed coniferous forests across the western USA. Using field data, we determined changes in plant communities one and ten years post-fire across gradients of burn severity, elevation, and aspect. Existing published work has shown that plant species distributions can be accurately predicted from physiologically relevant climate variables using non-parametric Random Forests models; such models have also been linked to projected climate profiles in 2030, 2060, and 2090 generated from three commonly used general circulation models (GCMs). We explore the possibility that fire and climate are coupled drivers affecting plant species distributions. Climate change may not manifest as a slow shift in plant species distributions, but as sudden, localized events tied to changing fire and other disturbance regimes.

  9. Habitat interaction between two species of chipmunk in the Basin and Range Province of Nevada

    USGS Publications Warehouse

    Lowrey, Christopher; Longshore, Kathleen M.

    2013-01-01

    Interspecies interactions can affect how species are distributed, put constraints on habitat expansion, and reduce the fundamental niche of the affected species. Using logistic regression, we analyzed and compared 174 Tamias palmeri and 94 Tamias panamintinus within an isolated mountain range of the Basin and Range Province of southern Nevada. Tamias panamintinus was more likely to use pinyon/ponderosa/fir mixed forests than pinyon alone, compared to random sites. In the presence of T palmeri, however, interaction analyses indicated T. panamintinus was less likely to occupy the mixed forests and more likely near large rocks on southern aspects. This specie s-by-habitat interaction data suggest that T. palmeri excludes T panamintinus from areas of potentially suitable habitat. Climate change may adversely affect species of restricted distribution. Habitat isolation and species interactions in this region may thus increase survival risks as climate temperatures rise.

  10. Breeding density, fine-scale tracking, and large-scale modeling reveal the regional distribution of four seabird species.

    PubMed

    Wakefield, Ewan D; Owen, Ellie; Baer, Julia; Carroll, Matthew J; Daunt, Francis; Dodd, Stephen G; Green, Jonathan A; Guilford, Tim; Mavor, Roddy A; Miller, Peter I; Newell, Mark A; Newton, Stephen F; Robertson, Gail S; Shoji, Akiko; Soanes, Louise M; Votier, Stephen C; Wanless, Sarah; Bolton, Mark

    2017-10-01

    Population-level estimates of species' distributions can reveal fundamental ecological processes and facilitate conservation. However, these may be difficult to obtain for mobile species, especially colonial central-place foragers (CCPFs; e.g., bats, corvids, social insects), because it is often impractical to determine the provenance of individuals observed beyond breeding sites. Moreover, some CCPFs, especially in the marine realm (e.g., pinnipeds, turtles, and seabirds) are difficult to observe because they range tens to ten thousands of kilometers from their colonies. It is hypothesized that the distribution of CCPFs depends largely on habitat availability and intraspecific competition. Modeling these effects may therefore allow distributions to be estimated from samples of individual spatial usage. Such data can be obtained for an increasing number of species using tracking technology. However, techniques for estimating population-level distributions using the telemetry data are poorly developed. This is of concern because many marine CCPFs, such as seabirds, are threatened by anthropogenic activities. Here, we aim to estimate the distribution at sea of four seabird species, foraging from approximately 5,500 breeding sites in Britain and Ireland. To do so, we GPS-tracked a sample of 230 European Shags Phalacrocorax aristotelis, 464 Black-legged Kittiwakes Rissa tridactyla, 178 Common Murres Uria aalge, and 281 Razorbills Alca torda from 13, 20, 12, and 14 colonies, respectively. Using Poisson point process habitat use models, we show that distribution at sea is dependent on (1) density-dependent competition among sympatric conspecifics (all species) and parapatric conspecifics (Kittiwakes and Murres); (2) habitat accessibility and coastal geometry, such that birds travel further from colonies with limited access to the sea; and (3) regional habitat availability. Using these models, we predict space use by birds from unobserved colonies and thereby map the

  11. Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah

    USGS Publications Warehouse

    Zimmermann, N.E.; Edwards, T.C.; Moisen, Gretchen G.; Frescino, T.S.; Blackard, J.A.

    2007-01-01

    1. Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. 2. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. 3. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. 4. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited

  12. Remote sensing-based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah

    PubMed Central

    ZIMMERMANN, N E; EDWARDS, T C; MOISEN, G G; FRESCINO, T S; BLACKARD, J A

    2007-01-01

    Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited more from

  13. Effects of urbanization on the distribution and abundance of amphibians and invasive species in southern California streams

    USGS Publications Warehouse

    Riley, S.P.D.; Busteed, G.T.; Kats, L.B.; Vandergon, T.L.; Lee, L.F.S.; Dagit, R.G.; Kerby, J.L.; Fisher, R.N.; Sauvajot, R.M.

    2005-01-01

    Urbanization negatively affects natural ecosystems in many ways, and aquatic systems in particular. Urbanization is also cited as one of the potential contributors to recent dramatic declines in amphibian populations. From 2000 to 2002 we determined the distribution and abundance of native amphibians and exotic predators and characterized stream habitat and invertebratecommunities in 35 streams in an urbanized landscape north of Los Angeles (U.S.A.). We measured watershed development as the percentage of area within each watershed occupied by urban land uses. Streams in more developed watersheds often had exotic crayfish (Procambarus clarkii) and fish, and had fewer native species such as California newts (Taricha torosa) and California treefrogs (Hyla cadaverina). These effects seemed particularly evident above 8% development, a result coincident with other urban stream studies that show negative impacts beginning at 10-15% urbanization. For Pacific treefrogs (H. regilla), the most widespread native amphibian, abundance was lower in the presence of exotic crayfish, although direct urbanization effects were not found. Benthic macroinvertebrate communities were also less diverse in urban streams, especially for sensitive species. Faunal community changes in urban streams may be related to changes in physical stream habitat, such as fewer pool and more run habitats and increased water depth and flow, leading to more permanent streams. Variation in stream permanence was particularly evident in 2002, a dry year when many natural streams were dry but urban streams were relatively unchanged. Urbanization has significantly altered stream habitat in this region and may enhance invasion by exotic species and negatively affect diversity and abundance of native amphibians. ??2005 Society for Conservation Biology.

  14. Larvae of uncommon caridean decapods in the German Bight: Species composition, distribution and abundance

    NASA Astrophysics Data System (ADS)

    Wehrtmann, I. S.; Greve, W.

    1995-03-01

    Typically, the most abundant group of shrimp larvae in the German Bight is formed by representatives of the family Crangonidae. Larvae of the remaining species have been largely ignored, and only scarce information concerning their ecology is available. Thus, the purpose of the present study was to determine the species composition, distribution and abundance of noncrangonid shrimp larvae in the German Bight in July 1990, after the mildest winter of the century. The material is based upon plankton samples collected at 77 stations, covering the entire German Bight. Eight species were identified, as well as larvae of Palaemonidae and Processa-juveniles. Processa nouveli holthuisi (53.0%) and P. modica (31.3%) were predominant in the collection. The distribution of the two species was clearly separated: the main concentration of P. nouveli holthuisi (peak concentration of 1.94 larvae per m3) was confined to the northwest corner of the German Bight, while a majority of P. modica larvae (peak concentration of 0.54 larvae per m3) occurred at the southwesterly stations. The spatial distribution of Caridion steveni and Eualus occultus around Helgoland indicates the presence of an adult population at the only rocky island in the study area. Other taxa, such as larvae of Palaemonidae and juvenile Pandalina brevirostris were collected exclusively in estuarine habitats. Based upon both the results of the present study and comparable data, we conclude that developmental stages of ten non-crangonid species, as well as representatives of Palaemonidae, can be expected to occur in the plankton of the German Bight. The extremely mild temperatures of the preceding winter may have been, in part, responsible for the relatively high densities of some taxa encountered during our plankton survey. We assume that warm winter temperatures favour the immigration, reproduction and survival of cold-sensitive species.

  15. From ratites to rats: the size of fleshy fruits shapes species' distributions and continental rainforest assembly

    PubMed Central

    Rossetto, Maurizio; Kooyman, Robert; Yap, Jia-Yee S.; Laffan, Shawn W.

    2015-01-01

    Seed dispersal is a key process in plant spatial dynamics. However, consistently applicable generalizations about dispersal across scales are mostly absent because of the constraints on measuring propagule dispersal distances for many species. Here, we focus on fleshy-fruited taxa, specifically taxa with large fleshy fruits and their dispersers across an entire continental rainforest biome. We compare species-level results of whole-chloroplast DNA analyses in sister taxa with large and small fruits, to regional plot-based samples (310 plots), and whole-continent patterns for the distribution of woody species with either large (more than 30 mm) or smaller fleshy fruits (1093 taxa). The pairwise genomic comparison found higher genetic distances between populations and between regions in the large-fruited species (Endiandra globosa), but higher overall diversity within the small-fruited species (Endiandra discolor). Floristic comparisons among plots confirmed lower numbers of large-fruited species in areas where more extreme rainforest contraction occurred, and re-colonization by small-fruited species readily dispersed by the available fauna. Species' distribution patterns showed that larger-fruited species had smaller geographical ranges than smaller-fruited species and locations with stable refugia (and high endemism) aligned with concentrations of large fleshy-fruited taxa, making them a potentially valuable conservation-planning indicator. PMID:26645199

  16. From ratites to rats: the size of fleshy fruits shapes species' distributions and continental rainforest assembly.

    PubMed

    Rossetto, Maurizio; Kooyman, Robert; Yap, Jia-Yee S; Laffan, Shawn W

    2015-12-07

    Seed dispersal is a key process in plant spatial dynamics. However, consistently applicable generalizations about dispersal across scales are mostly absent because of the constraints on measuring propagule dispersal distances for many species. Here, we focus on fleshy-fruited taxa, specifically taxa with large fleshy fruits and their dispersers across an entire continental rainforest biome. We compare species-level results of whole-chloroplast DNA analyses in sister taxa with large and small fruits, to regional plot-based samples (310 plots), and whole-continent patterns for the distribution of woody species with either large (more than 30 mm) or smaller fleshy fruits (1093 taxa). The pairwise genomic comparison found higher genetic distances between populations and between regions in the large-fruited species (Endiandra globosa), but higher overall diversity within the small-fruited species (Endiandra discolor). Floristic comparisons among plots confirmed lower numbers of large-fruited species in areas where more extreme rainforest contraction occurred, and re-colonization by small-fruited species readily dispersed by the available fauna. Species' distribution patterns showed that larger-fruited species had smaller geographical ranges than smaller-fruited species and locations with stable refugia (and high endemism) aligned with concentrations of large fleshy-fruited taxa, making them a potentially valuable conservation-planning indicator. © 2015 The Author(s).

  17. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  18. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  19. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  20. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  1. 50 CFR 402.45 - Alternative consultation on FIFRA actions that are not likely to adversely affect listed species...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OF COMMERCE); ENDANGERED SPECIES COMMITTEE REGULATIONS SUBCHAPTER A INTERAGENCY COOPERATION-ENDANGERED SPECIES ACT OF 1973, AS AMENDED Counterpart Regulations Governing Actions by the U.S... that are not likely to adversely affect listed species or critical habitat. 402.45 Section 402.45...

  2. Distribution and diversity of fungal species in and adjacent to the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balice, R.G.; Jarmie, N.; Rogers, F.J.

    1997-12-01

    Fungi have demonstrated their ability to diversify and specialize to take advantage of new environments (Murphy 1996). These species are essential to the normal functioning of ecosystems and the impacts of human activities may be harmful to fungi. There is a need to inventory fungi throughout the range of their environments. Previously archived information representing 43 sample locations was used to perform a preliminary evaluation of the distributions and diversity of fungal species at the Los Alamos National Laboratory and in adjacent environments. Presence-absence data for 71 species of fungi in five habitats, pinon-juniper, canyon-bottom ponderosa pine, ponderosa pine, canyon-bottommore » mixed conifer, and mixed conifer were analyzed. The results indicate that even though fungi occur in each of the habitats, fungal species are not distributed evenly among these habitats. The richness of fungal species is greater in the canyon-bottom mixed conifer and mixed conifer habitats than in the pinon-juniper, canyon-bottom ponderosa pine or ponderosa pine habitats. All but three of the fungal species were recorded in either the canyon-bottom mixed conifer or the mixed conifer habitats, and all but seven of the fungal species were found in the mixed conifer habitat.« less

  3. Mesocosm validation of the marine No Effect Concentration of dissolved copper derived from a species sensitivity distribution.

    PubMed

    Foekema, E M; Kaag, N H B M; Kramer, K J M; Long, K

    2015-07-15

    The Predicted No Effect Concentration (PNEC) for dissolved copper based on the species sensitivity distribution (SSD) of 24 marine single species tests was validated in marine mesocosms. To achieve this, the impact of actively maintained concentrations of dissolved copper on a marine benthic and planktonic community was studied in 18 outdoor 4.6m(3) mesocosms. Five treatment levels, ranging from 2.9 to 31μg dissolved Cu/L, were created in triplicate and maintained for 82days. Clear effects were observed on gastropod and bivalve molluscs, phytoplankton, zooplankton, sponges and sessile algae. The most sensitive biological endpoints; reproduction success of the bivalve Cerastoderma edule, copepod population development and periphyton growth were significantly affected at concentrations of 9.9μg Cu/L and higher. The No Observed Effect Concentration (NOEC) derived from this study was 5.7μg dissolved Cu/L. Taking into account the DOC concentration of the mesocosm water this NOEC is comparable to the PNEC derived from the SSD. Copyright © 2015. Published by Elsevier B.V.

  4. Climate and soil type together explain the distribution of microendemic species in a biodiversity hotspot.

    PubMed

    Nattier, Romain; Grandcolas, Philippe; Pellens, Roseli; Jourdan, Hervé; Couloux, Arnaud; Poulain, Simon; Robillard, Tony

    2013-01-01

    The grasshopper genus Caledonula, endemic to New Caledonia, was studied to understand the evolution of species distributions in relation to climate and soil types. Based on a comprehensive sampling of 80 locations throughout the island, the genus was represented by five species, four of which are new to science, of which three are described here. All the species have limited distributions in New Caledonia. Bioclimatic niche modelling shows that all the species were found in association with a wet climate and reduced seasonality, explaining their restriction to the southern half of the island. The results suggest that the genus was ancestrally constrained by seasonality. A molecular phylogeny was reconstructed using two mitochondrial and two nuclear markers. The partially resolved tree showed monophyly of the species found on metalliferous soils, and molecular dating indicated a rather recent origin for the genus. Adaptation to metalliferous soils is suggested by both morphological changes and radiation on these soils. The genus Caledonula is therefore a good model to understand the origin of microendemism in the context of recent and mixed influences of climate and soil type.

  5. Species Boundaries Between Three Sympatric Oak Species: Quercus aliena, Q. dentata, and Q. variabilis at the Northern Edge of Their Distribution in China.

    PubMed

    Lyu, Jia; Song, Jia; Liu, Yuan; Wang, Yuyao; Li, Junqing; Du, Fang K

    2018-01-01

    Oaks are important timber trees with wide distributions in China, but few genetic studies have been conducted on a fine scale. In this study, we seek to investigate the genetic diversity and differentiation of three sympatric oak species ( Quercus aliena Blume, Quercus dentata Thunb. ex Murray, and Quercus variabilis Blume) in their northern distribution in China using 17 bi-parentally inherited nSSRs markers and five maternally inherited chloroplast DNA (cpDNA) fragments. Both the cpDNA and the nSSRs show a high level of genetic differentiation between different oak sections. The chloroplast haplotypes are clustered into two lineages. Clear species boundaries are detected between Q. variabilis and either Q. aliena or Q. dentata . The sharing of chloroplast haplotype H1 between Q. aliena and Q. dentata suggests very recent speciation and incomplete lineage sorting or introgression of H1 from one species to another. The nSSRs data indicate a complete fixation of variation within sites for all three oak species, and that extensive gene flow occurs within species whereas only limited gene flow is detected between Q. aliena and Q. dentata and nearly no gene flow can be detected between Q. aliena and Q. variabilis and between Q. dentata and Q. variabilis . Prezygotic isolation may have contributed to the species boundaries of these three sympatric oak species.

  6. Species Boundaries Between Three Sympatric Oak Species: Quercus aliena, Q. dentata, and Q. variabilis at the Northern Edge of Their Distribution in China

    PubMed Central

    Lyu, Jia; Song, Jia; Liu, Yuan; Wang, Yuyao; Li, Junqing; Du, Fang K.

    2018-01-01

    Oaks are important timber trees with wide distributions in China, but few genetic studies have been conducted on a fine scale. In this study, we seek to investigate the genetic diversity and differentiation of three sympatric oak species (Quercus aliena Blume, Quercus dentata Thunb. ex Murray, and Quercus variabilis Blume) in their northern distribution in China using 17 bi-parentally inherited nSSRs markers and five maternally inherited chloroplast DNA (cpDNA) fragments. Both the cpDNA and the nSSRs show a high level of genetic differentiation between different oak sections. The chloroplast haplotypes are clustered into two lineages. Clear species boundaries are detected between Q. variabilis and either Q. aliena or Q. dentata. The sharing of chloroplast haplotype H1 between Q. aliena and Q. dentata suggests very recent speciation and incomplete lineage sorting or introgression of H1 from one species to another. The nSSRs data indicate a complete fixation of variation within sites for all three oak species, and that extensive gene flow occurs within species whereas only limited gene flow is detected between Q. aliena and Q. dentata and nearly no gene flow can be detected between Q. aliena and Q. variabilis and between Q. dentata and Q. variabilis. Prezygotic isolation may have contributed to the species boundaries of these three sympatric oak species. PMID:29662501

  7. The biodiversity of species and their rates of extinction, distribution, and protection.

    PubMed

    Pimm, S L; Jenkins, C N; Abell, R; Brooks, T M; Gittleman, J L; Joppa, L N; Raven, P H; Roberts, C M; Sexton, J O

    2014-05-30

    Recent studies clarify where the most vulnerable species live, where and how humanity changes the planet, and how this drives extinctions. We assess key statistics about species, their distribution, and their status. Most are undescribed. Those we know best have large geographical ranges and are often common within them. Most known species have small ranges. The numbers of small-ranged species are increasing quickly, even in well-known taxa. They are geographically concentrated and are disproportionately likely to be threatened or already extinct. Current rates of extinction are about 1000 times the likely background rate of extinction. Future rates depend on many factors and are poised to increase. Although there has been rapid progress in developing protected areas, such efforts are not ecologically representative, nor do they optimally protect biodiversity. Copyright © 2014, American Association for the Advancement of Science.

  8. Dispersal limitation does not control high elevational distribution of alien plant species in the southern Sierra Nevada, California

    USGS Publications Warehouse

    Rundel, Philip W.; Keeley, Jon E.

    2016-01-01

    Patterns of elevational distribution of alien plant species in the southern Sierra Nevada of California were used to test the hypothesis that alien plant species invading high elevations around the world are typically climate generalists capable of growing across a wide elevational range. The Sierra Nevada has been heavily impacted for more than a century and a half, first by heavy grazing up into high elevation meadows, followed by major logging, and finally, by impacts associated with recreational use. The comparative elevational patterns of distribution and growth form were compared for native and alien plant species in the four families (Asteraceae, Brassicaceae, Fabaceae, and Poaceae) that contribute the majority of naturalized aliens in the study area. The distribution of realized climatic niche breadth, as measured by elevational range of occurrence, was virtually identical for alien and native species, with both groups showing a roughly Gaussian distribution peaking with species whose range covers a span of 1500–1999 m. In contrast to alien species, which only rarely occurred at higher elevations, native species showed a distribution of upper elevation limits peaking at 3000–3499 m, an elevation that corresponds to the zone of upper montane and subalpine forests. Consistent with a hypothesis of abiotic limitations, only a few alien species have been ecologically successful invaders at subalpine and alpine elevations above 2500 m. The low diversity of aliens able to become established in these habitats is unlikely due to dispersal limitations, given the long history of heavy grazing pressure at high elevations across this region. Instead, this low diversity is hypothesized to be a function of life history traits and multiple abiotic stresses that include extremes of cold air and soil temperature, heavy snowfall, short growing seasons, and low resource availability. These findings have significant implications for resource managers.

  9. Marine species distribution shifts on the U.S. Northeast Continental Shelf under continued ocean warming

    NASA Astrophysics Data System (ADS)

    Kleisner, Kristin M.; Fogarty, Michael J.; McGee, Sally; Hare, Jonathan A.; Moret, Skye; Perretti, Charles T.; Saba, Vincent S.

    2017-04-01

    The U.S. Northeast Continental Shelf marine ecosystem has warmed much faster than the global ocean and it is expected that this enhanced warming will continue through this century. Complex bathymetry and ocean circulation in this region have contributed to biases in global climate model simulations of the Shelf waters. Increasing the resolution of these models results in reductions in the bias of future climate change projections and indicates greater warming than suggested by coarse resolution climate projections. Here, we used a high-resolution global climate model and historical observations of species distributions from a trawl survey to examine changes in the future distribution of suitable thermal habitat for various demersal and pelagic species on the Shelf. Along the southern portion of the shelf (Mid-Atlantic Bight and Georges Bank), a projected 4.1 °C (surface) to 5.0 °C (bottom) warming of ocean temperature from current conditions results in a northward shift of the thermal habitat for the majority of species. While some southern species like butterfish and black sea bass are projected to have moderate losses in suitable thermal habitat, there are potentially significant increases for many species including summer flounder, striped bass, and Atlantic croaker. In the north, in the Gulf of Maine, a projected 3.7 °C (surface) to 3.9 °C (bottom) warming from current conditions results in substantial reductions in suitable thermal habitat such that species currently inhabiting this region may not remain in these waters under continued warming. We project a loss in suitable thermal habitat for key northern species including Acadian redfish, American plaice, Atlantic cod, haddock, and thorney skate, but potential gains for some species including spiny dogfish and American lobster. We illustrate how changes in suitable thermal habitat of important commercially fished species may impact local fishing communities and potentially impact major fishing ports

  10. Deriving the species richness distribution of Geotrupinae (Coleoptera: Scarabaeoidea) in Mexico from the overlap of individual model predictions.

    PubMed

    Trotta-Moreu, Nuria; Lobo, Jorge M

    2010-02-01

    Predictions from individual distribution models for Mexican Geotrupinae species were overlaid to obtain a total species richness map for this group. A database (GEOMEX) that compiles available information from the literature and from several entomological collections was used. A Maximum Entropy method (MaxEnt) was applied to estimate the distribution of each species, taking into account 19 climatic variables as predictors. For each species, suitability values ranging from 0 to 100 were calculated for each grid cell on the map, and 21 different thresholds were used to convert these continuous suitability values into binary ones (presence-absence). By summing all of the individual binary maps, we generated a species richness prediction for each of the considered thresholds. The number of species and faunal composition thus predicted for each Mexican state were subsequently compared with those observed in a preselected set of well-surveyed states. Our results indicate that the sum of individual predictions tends to overestimate species richness but that the selection of an appropriate threshold can reduce this bias. Even under the most optimistic prediction threshold, the mean species richness error is 61% of the observed species richness, with commission errors being significantly more common than omission errors (71 +/- 29 versus 18 +/- 10%). The estimated distribution of Geotrupinae species richness in Mexico in discussed, although our conclusions are preliminary and contingent on the scarce and probably biased available data.

  11. Current Knowledge of Leishmania Vectors in Mexico: How Geographic Distributions of Species Relate to Transmission Areas

    PubMed Central

    González, Camila; Rebollar-Téllez, Eduardo A.; Ibáñez-Bernal, Sergio; Becker-Fauser, Ingeborg; Martínez-Meyer, Enrique; Peterson, A. Townsend; Sánchez-Cordero, Víctor

    2011-01-01

    Leishmaniases are a group of vector-borne diseases with different clinical manifestations caused by parasites transmitted by sand fly vectors. In Mexico, the sand fly Lutzomyia olmeca olmeca is the only vector proven to transmit the parasite Leishmania mexicana to humans, which causes leishmaniasis. Other vector species with potential medical importance have been obtained, but their geographic distributions and relation to transmission areas have never been assessed. We modeled the ecological niches of nine sand fly species and projected niches to estimate potential distributions by using known occurrences, environmental coverages, and the algorithms GARP and Maxent. All vector species were distributed in areas with known recurrent transmission, except for Lu. diabolica, which appeared to be related only to areas of occasional transmission in northern Mexico. The distribution of Lu. o. olmeca does not overlap with all reported cutaneous leishmaniasis cases, suggesting that Lu. cruciata and Lu. shannoni are likely also involved as primary vectors in those areas. Our study provides useful information of potential risk areas of leishmaniasis transmission in Mexico. PMID:22049037

  12. The Anthelmintic Ingredient Moxidectin Negatively Affects Seed Germination of Three Temperate Grassland Species

    PubMed Central

    Eichberg, Carsten; Wohde, Manuel; Müller, Kerstin; Rausch, Anja; Scherrmann, Christina; Scheuren, Theresa; Düring, Rolf-Alexander; Donath, Tobias W.

    2016-01-01

    In animal farming, anthelmintics are regularly applied to control gastrointestinal nematodes. There is plenty of evidence that also non-target organisms, such as dung beetles, are negatively affected by residues of anthelmintics in faeces of domestic ungulates. By contrast, knowledge about possible effects on wild plants is scarce. To bridge this gap of knowledge, we tested for effects of the common anthelmintic formulation Cydectin and its active ingredient moxidectin on seed germination. We conducted a feeding experiment with sheep and germination experiments in a climate chamber. Three wide-spread plant species of temperate grasslands (Centaurea jacea, Galium verum, Plantago lanceolata) were studied. We found significant influences of both, Cydectin and moxidectin, on germination of the tested species. Across species, both formulation and active ingredient solely led to a decrease in germination percentage and synchrony of germination and an increase in mean germination time with the formulation showing a more pronounced response pattern. Our study shows for the first time that anthelmintics have the potential to negatively affect plant regeneration. This has practical implications for nature conservation since our results suggest that treatments of livestock with anthelmintics should be carefully timed to not impede endozoochorous seed exchange between plant populations. PMID:27846249

  13. A species-specific nucleosomal signature defines a periodic distribution of amino acids in proteins.

    PubMed

    Quintales, Luis; Soriano, Ignacio; Vázquez, Enrique; Segurado, Mónica; Antequera, Francisco

    2015-04-01

    Nucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts. We show that mononucleosomal DNA follows a highly structured base composition pattern, which differs among species despite the high degree of histone conservation. These nucleosomal signatures are present in transcribed and non-transcribed regions across the genome. In the case of open reading frames, they correctly predict the relative distribution of codons on mononucleosomal DNA, and they also determine a periodicity in the average distribution of amino acids along the proteins. These results establish a direct and species-specific connection between the position of each codon around the histone octamer and protein composition.

  14. 76 FR 31019 - Distribution of Continued Dumping and Subsidy Offset to Affected Domestic Producers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ...Pursuant to the Continued Dumping and Subsidy Offset Act of 2000, this document is U.S. Customs and Border Protection's notice of intent to distribute assessed antidumping or countervailing duties (known as the continued dumping and subsidy offset) for Fiscal Year 2011 in connection with countervailing duty orders, antidumping duty orders, or findings under the Antidumping Act of 1921. This document sets forth the case name and number of each order or finding for which funds may become available for distribution, together with the list of affected domestic producers, based on the list supplied by the United States International Trade Commission (USITC) associated with each order or finding, who are potentially eligible to receive a distribution. This document also provides the instructions for affected domestic producers (and anyone alleging eligibility to receive a distribution) to file certifications to claim a distribution in relation to the listed orders or findings.

  15. 75 FR 30529 - Distribution of Continued Dumping and Subsidy Offset to Affected Domestic Producers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ...Pursuant to the Continued Dumping and Subsidy Offset Act of 2000, this document is U.S. Customs and Border Protection's notice of intent to distribute assessed antidumping or countervailing duties (known as the continued dumping and subsidy offset) for Fiscal Year 2010 in connection with countervailing duty orders, antidumping duty orders, or findings under the Antidumping Act of 1921. This document sets forth the case name and number of each order or finding for which funds may become available for distribution, together with the list of affected domestic producers, based on the list supplied by the United States International Trade Commission (USITC) associated with each order or finding, who are potentially eligible to receive a distribution. This document also provides the instructions for affected domestic producers (and anyone alleging eligibility to receive a distribution) to file certifications to claim a distribution in relation to the listed orders or findings.

  16. 77 FR 32717 - Distribution of Continued Dumping and Subsidy Offset to Affected Domestic Producers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ...Pursuant to the Continued Dumping and Subsidy Offset Act of 2000, this document is U.S. Customs and Border Protection's notice of intent to distribute assessed antidumping or countervailing duties (known as the continued dumping and subsidy offset) for Fiscal Year 2012 in connection with countervailing duty orders, antidumping duty orders, or findings under the Antidumping Act of 1921. This document sets forth the case name and number of each order or finding for which funds may become available for distribution, together with the list of affected domestic producers, based on the list supplied by the United States International Trade Commission (USITC) associated with each order or finding, who are potentially eligible to receive a distribution. This document also provides the instructions for affected domestic producers (and anyone alleging eligibility to receive a distribution) to file certifications to claim a distribution in relation to the listed orders or findings.

  17. 78 FR 32713 - Distribution of Continued Dumping and Subsidy Offset to Affected Domestic Producers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ...Pursuant to the Continued Dumping and Subsidy Offset Act of 2000, this document is U.S. Customs and Border Protection's notice of intent to distribute assessed antidumping or countervailing duties (known as the continued dumping and subsidy offset) for Fiscal Year 2013 in connection with countervailing duty orders, antidumping duty orders, or findings under the Antidumping Act of 1921. This document sets forth the case name and number of each order or finding for which funds may become available for distribution, together with the list of affected domestic producers, based on the list supplied by the United States International Trade Commission (USITC) associated with each order or finding, who are potentially eligible to receive a distribution. This document also provides the instructions for affected domestic producers (and anyone alleging eligibility to receive a distribution) to file certifications to claim a distribution in relation to the listed orders or findings.

  18. Polar Ice Sheets Drive Paleohydroclimate Affecting Terrestrial Plant Distribution and CO2 Exchange Potential during the Upper Carboniferous

    NASA Astrophysics Data System (ADS)

    White, J. D.; Poulsen, C. J.; Montanez, I. P.; McElwain, J.; Wilson, J. P.; Hren, M. T.

    2016-12-01

    Variation in atmospheric CO2 concentration and presence or absence of polar ice sheets simulated for 310 mya using the GENESIS model show changes in terrestrial temperature, precipitation, and potential evapotranspiration at mid and lower latitudes. Classifying the data into Holdridge life zones for simulations with 280, 560, and 1120 ppm CO2, in the presence of a southern Gondwanan ice sheet resulted in progressive increase of cool temperate, humid-to-subhumid and tropical subhumid zones. Without the ice sheet, subtropical subhumid to semiarid zones expanded. Simulation results show that approximately 50% of the land area was classified as polar or tundra followed by 35 to 42%, depending on the scenario, classified as sub-tropical semiarid-to-subhumid. Only 5-8% were classified as temperate humid-to-subhumid or tropical humid-to-perhumid. Also, the absence of ice sheets reduced the moister sub-climates, such as within the tropical climate zone. Because different plant assemblages dominated each climate zone, for example cordaitaleans in the subtropical and medullosans and lycophytes in the tropics, physiological differences in these plants may have resulted in unequal CO2 exchange feedbacks to the atmosphere during climate shifts. Previous physiological modeling based on plant foliar traits indicates that late Paleozoic plant species differed in CO2 uptake capacity with highest sensitivity to water availability during periods with low atmospheric CO2 concentration. This implies that vegetation climate feedbacks during this period may have been non-uniform during climate change events. Inference of plant contribution to climate forcing must rely on understanding geographic distribution of affected vegetation, inherent vegetation physiological properties, and antecedent atmospheric CO2 concentrations. Our results indicate that seasonally dry climates prevailed in the low-latitude land area, and that slightly cooler temperatures than today must be considered. This

  19. Method for estimating potential tree-grade distributions for northeastern forest species

    Treesearch

    Daniel A. Yaussy; Daniel A. Yaussy

    1993-01-01

    Generalized logistic regression was used to distribute trees into four potential tree grades for 20 northeastern species groups. The potential tree grade is defined as the tree grade based on the length and amount of clear cuttings and defects only, disregarding minimum grading diameter. The algorithms described use site index and tree diameter as the predictive...

  20. Simple yet effective: Historical proximity variables improve the species distribution models for invasive giant hogweed (Heracleum mantegazzianum s.l.) in Poland

    PubMed Central

    Jarzyna, Ingeborga; Obidziński, Artur; Tokarska-Guzik, Barbara; Sotek, Zofia; Pabjanek, Piotr; Pytlarczyk, Adam; Sachajdakiewicz, Izabela

    2017-01-01

    Species distribution models are scarcely applicable to invasive species because of their breaking of the models’ assumptions. So far, few mechanistic, semi-mechanistic or statistical solutions like dispersal constraints or propagule limitation have been applied. We evaluated a novel quasi-semi-mechanistic approach for regional scale models, using historical proximity variables (HPV) representing a state of the population in a given moment in the past. Our aim was to test the effects of addition of HPV sets of different minimal recentness, information capacity and the total number of variables on the quality of the species distribution model for Heracleum mantegazzianum on 116000 km2 in Poland. As environmental predictors, we used fragments of 103 1×1 km, world- wide, free-access rasters from WorldGrids.org. Single and ensemble models were computed using BIOMOD2 package 3.1.47 working in R environment 3.1.0. The addition of HPV improved the quality of single and ensemble models from poor to good and excellent. The quality was the highest for the variants with HPVs based on the distance from the most recent past occurrences. It was mostly affected by the algorithm type, but all HPV traits (minimal recentness, information capacity, model type or the number of the time periods) were significantly important determinants. The addition of HPVs improved the quality of current projections, raising the occurrence probability in regions where the species had occurred before. We conclude that HPV addition enables semi-realistic estimation of the rate of spread and can be applied to the short-term forecasting of invasive or declining species, which also break equal-dispersal probability assumptions. PMID:28926580

  1. Simple yet effective: Historical proximity variables improve the species distribution models for invasive giant hogweed (Heracleum mantegazzianum s.l.) in Poland.

    PubMed

    Mędrzycki, Piotr; Jarzyna, Ingeborga; Obidziński, Artur; Tokarska-Guzik, Barbara; Sotek, Zofia; Pabjanek, Piotr; Pytlarczyk, Adam; Sachajdakiewicz, Izabela

    2017-01-01

    Species distribution models are scarcely applicable to invasive species because of their breaking of the models' assumptions. So far, few mechanistic, semi-mechanistic or statistical solutions like dispersal constraints or propagule limitation have been applied. We evaluated a novel quasi-semi-mechanistic approach for regional scale models, using historical proximity variables (HPV) representing a state of the population in a given moment in the past. Our aim was to test the effects of addition of HPV sets of different minimal recentness, information capacity and the total number of variables on the quality of the species distribution model for Heracleum mantegazzianum on 116000 km2 in Poland. As environmental predictors, we used fragments of 103 1×1 km, world- wide, free-access rasters from WorldGrids.org. Single and ensemble models were computed using BIOMOD2 package 3.1.47 working in R environment 3.1.0. The addition of HPV improved the quality of single and ensemble models from poor to good and excellent. The quality was the highest for the variants with HPVs based on the distance from the most recent past occurrences. It was mostly affected by the algorithm type, but all HPV traits (minimal recentness, information capacity, model type or the number of the time periods) were significantly important determinants. The addition of HPVs improved the quality of current projections, raising the occurrence probability in regions where the species had occurred before. We conclude that HPV addition enables semi-realistic estimation of the rate of spread and can be applied to the short-term forecasting of invasive or declining species, which also break equal-dispersal probability assumptions.

  2. Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology.

    PubMed

    Di Marco, Moreno; Buchanan, Graeme M; Szantoi, Zoltan; Holmgren, Milena; Grottolo Marasini, Gabriele; Gross, Dorit; Tranquilli, Sandra; Boitani, Luigi; Rondinini, Carlo

    2014-01-01

    Although conservation intervention has reversed the decline of some species, our success is outweighed by a much larger number of species moving towards extinction. Extinction risk modelling can identify correlates of risk and species not yet recognized to be threatened. Here, we use machine learning models to identify correlates of extinction risk in African terrestrial mammals using a set of variables belonging to four classes: species distribution state, human pressures, conservation response and species biology. We derived information on distribution state and human pressure from satellite-borne imagery. Variables in all four classes were identified as important predictors of extinction risk, and interactions were observed among variables in different classes (e.g. level of protection, human threats, species distribution ranges). Species biology had a key role in mediating the effect of external variables. The model was 90% accurate in classifying extinction risk status of species, but in a few cases the observed and modelled extinction risk mismatched. Species in this condition might suffer from an incorrect classification of extinction risk (hence require reassessment). An increased availability of satellite imagery combined with improved resolution and classification accuracy of the resulting maps will play a progressively greater role in conservation monitoring.

  3. Species distribution models: A comparison of statistical approaches for livestock and disease epidemics.

    PubMed

    Hollings, Tracey; Robinson, Andrew; van Andel, Mary; Jewell, Chris; Burgman, Mark

    2017-01-01

    In livestock industries, reliable up-to-date spatial distribution and abundance records for animals and farms are critical for governments to manage and respond to risks. Yet few, if any, countries can afford to maintain comprehensive, up-to-date agricultural census data. Statistical modelling can be used as a proxy for such data but comparative modelling studies have rarely been undertaken for livestock populations. Widespread species, including livestock, can be difficult to model effectively due to complex spatial distributions that do not respond predictably to environmental gradients. We assessed three machine learning species distribution models (SDM) for their capacity to estimate national-level farm animal population numbers within property boundaries: boosted regression trees (BRT), random forests (RF) and K-nearest neighbour (K-NN). The models were built from a commercial livestock database and environmental and socio-economic predictor data for New Zealand. We used two spatial data stratifications to test (i) support for decision making in an emergency response situation, and (ii) the ability for the models to predict to new geographic regions. The performance of the three model types varied substantially, but the best performing models showed very high accuracy. BRTs had the best performance overall, but RF performed equally well or better in many simulations; RFs were superior at predicting livestock numbers for all but very large commercial farms. K-NN performed poorly relative to both RF and BRT in all simulations. The predictions of both multi species and single species models for farms and within hypothetical quarantine zones were very close to observed data. These models are generally applicable for livestock estimation with broad applications in disease risk modelling, biosecurity, policy and planning.

  4. Species distribution models: A comparison of statistical approaches for livestock and disease epidemics

    PubMed Central

    Robinson, Andrew; van Andel, Mary; Jewell, Chris; Burgman, Mark

    2017-01-01

    In livestock industries, reliable up-to-date spatial distribution and abundance records for animals and farms are critical for governments to manage and respond to risks. Yet few, if any, countries can afford to maintain comprehensive, up-to-date agricultural census data. Statistical modelling can be used as a proxy for such data but comparative modelling studies have rarely been undertaken for livestock populations. Widespread species, including livestock, can be difficult to model effectively due to complex spatial distributions that do not respond predictably to environmental gradients. We assessed three machine learning species distribution models (SDM) for their capacity to estimate national-level farm animal population numbers within property boundaries: boosted regression trees (BRT), random forests (RF) and K-nearest neighbour (K-NN). The models were built from a commercial livestock database and environmental and socio-economic predictor data for New Zealand. We used two spatial data stratifications to test (i) support for decision making in an emergency response situation, and (ii) the ability for the models to predict to new geographic regions. The performance of the three model types varied substantially, but the best performing models showed very high accuracy. BRTs had the best performance overall, but RF performed equally well or better in many simulations; RFs were superior at predicting livestock numbers for all but very large commercial farms. K-NN performed poorly relative to both RF and BRT in all simulations. The predictions of both multi species and single species models for farms and within hypothetical quarantine zones were very close to observed data. These models are generally applicable for livestock estimation with broad applications in disease risk modelling, biosecurity, policy and planning. PMID:28837685

  5. Landscape-scale determinants of native and nonnative Great Plains fish distributions

    USGS Publications Warehouse

    Stewart, David R.; Walters, Annika W.; Rahel, Frank J.

    2015-01-01

    The similar relationships between native and non-native fish species richness are likely evidence that they share similar ecological rules, which supports that non-native species become naturalized and they may be affected by the same environmental factors that determine distribution of native species.

  6. Tracking lags in historical plant species' shifts in relation to regional climate change.

    PubMed

    Ash, Jeremy D; Givnish, Thomas J; Waller, Donald M

    2017-03-01

    Can species shift their distributions fast enough to track changes in climate? We used abundance data from the 1950s and the 2000s in Wisconsin to measure shifts in the distribution and abundance of 78 forest-understory plant species over the last half-century and compare these shifts to changes in climate. We estimated temporal shifts in the geographic distribution of each species using vectors to connect abundance-weighted centroids from the 1950s and 2000s. These shifts in distribution reflect colonization, extirpation, and changes in abundance within sites, separately quantified here. We then applied climate analog analyses to compute vectors representing the climate change that each species experienced. Species shifted mostly to the northwest (mean: 49 ± 29 km) primarily reflecting processes of colonization and changes in local abundance. Analog climates for these species shifted even further to the northwest, however, exceeding species' shifts by an average of 90 ± 40 km. Most species thus failed to match recent rates of climate change. These lags decline in species that have colonized more sites and those with broader site occupancy, larger seed mass, and higher habitat fidelity. Thus, species' traits appear to affect their responses to climate change, but relationships are weak. As climate change accelerates, these lags will likely increase, potentially threatening the persistence of species lacking the capacity to disperse to new sites or locally adapt. However, species with greater lags have not yet declined more in abundance. The extent of these threats will likely depend on how other drivers of ecological change and interactions among species affect their responses to climate change. © 2016 John Wiley & Sons Ltd.

  7. Species distribution modelling for conservation of an endangered endemic orchid

    PubMed Central

    Wang, Hsiao-Hsuan; Wonkka, Carissa L.; Treglia, Michael L.; Grant, William E.; Smeins, Fred E.; Rogers, William E.

    2015-01-01

    Concerns regarding the long-term viability of threatened and endangered plant species are increasingly warranted given the potential impacts of climate change and habitat fragmentation on unstable and isolated populations. Orchidaceae is the largest and most diverse family of flowering plants, but it is currently facing unprecedented risks of extinction. Despite substantial conservation emphasis on rare orchids, populations continue to decline. Spiranthes parksii (Navasota ladies' tresses) is a federally and state-listed endangered terrestrial orchid endemic to central Texas. Hence, we aimed to identify potential factors influencing the distribution of the species, quantify the relative importance of each factor and determine suitable habitat for future surveys and targeted conservation efforts. We analysed several geo-referenced variables describing climatic conditions and landscape features to identify potential factors influencing the likelihood of occurrence of S. parksii using boosted regression trees. Our model classified 97 % of the cells correctly with regard to species presence and absence, and indicated that probability of existence was correlated with climatic conditions and landscape features. The most influential variables were mean annual precipitation, mean elevation, mean annual minimum temperature and mean annual maximum temperature. The most likely suitable range for S. parksii was the eastern portions of Leon and Madison Counties, the southern portion of Brazos County, a portion of northern Grimes County and along the borders between Burleson and Washington Counties. Our model can assist in the development of an integrated conservation strategy through: (i) focussing future survey and research efforts on areas with a high likelihood of occurrence, (ii) aiding in selection of areas for conservation and restoration and (iii) framing future research questions including those necessary for predicting responses to climate change. Our model could also

  8. Species distribution modelling for conservation of an endangered endemic orchid.

    PubMed

    Wang, Hsiao-Hsuan; Wonkka, Carissa L; Treglia, Michael L; Grant, William E; Smeins, Fred E; Rogers, William E

    2015-04-21

    Concerns regarding the long-term viability of threatened and endangered plant species are increasingly warranted given the potential impacts of climate change and habitat fragmentation on unstable and isolated populations. Orchidaceae is the largest and most diverse family of flowering plants, but it is currently facing unprecedented risks of extinction. Despite substantial conservation emphasis on rare orchids, populations continue to decline. Spiranthes parksii (Navasota ladies' tresses) is a federally and state-listed endangered terrestrial orchid endemic to central Texas. Hence, we aimed to identify potential factors influencing the distribution of the species, quantify the relative importance of each factor and determine suitable habitat for future surveys and targeted conservation efforts. We analysed several geo-referenced variables describing climatic conditions and landscape features to identify potential factors influencing the likelihood of occurrence of S. parksii using boosted regression trees. Our model classified 97 % of the cells correctly with regard to species presence and absence, and indicated that probability of existence was correlated with climatic conditions and landscape features. The most influential variables were mean annual precipitation, mean elevation, mean annual minimum temperature and mean annual maximum temperature. The most likely suitable range for S. parksii was the eastern portions of Leon and Madison Counties, the southern portion of Brazos County, a portion of northern Grimes County and along the borders between Burleson and Washington Counties. Our model can assist in the development of an integrated conservation strategy through: (i) focussing future survey and research efforts on areas with a high likelihood of occurrence, (ii) aiding in selection of areas for conservation and restoration and (iii) framing future research questions including those necessary for predicting responses to climate change. Our model could also

  9. Ecological interactions in Aedes species on Reunion Island.

    PubMed

    Bagny Beilhe, L; Delatte, H; Juliano, S A; Fontenille, D; Quilici, S

    2013-12-01

    Two invasive, container-breeding mosquito species, Aedes aegypti (Stegomyia aegypti) and Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae), have different distribution patterns on Reunion Island. Aedes albopictus occurs in all areas and Ae. aegypti colonizes only some restricted areas already occupied by Ae. albopictus. This study investigates the abiotic and biotic ecological mechanisms that determine the distribution of Aedes species on Reunion Island. Life history traits (duration of immature stages, survivorship, fecundity, estimated finite rate of increase) in Ae. aegypti and Ae. albopictus were compared at different temperatures. These fitness measures were characterized in both species in response to competitive interactions among larvae. Aedes aegypti was drastically affected by temperature, performing well only at around 25 °C, at which it achieved its highest survivorship and greatest estimated rate of increase. The narrow distribution of this species in the field on Reunion Island may thus relate to its poor ability to cope with unfavourable temperatures. Aedes aegypti was also more negatively affected by high population densities and to some extent by interactions with Ae. albopictus, particularly in the context of limited food supplies. Aedes albopictus exhibited better population performance across a range of environmental conditions. Its ecological plasticity and its superior competitive ability relative to its congener may further enhance its invasion success on Reunion Island. © 2012 The Royal Entomological Society.

  10. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change.

    PubMed

    Zhang, Keliang; Yao, Linjun; Meng, Jiasong; Tao, Jun

    2018-09-01

    Paeonia (Paeoniaceae), an economically important plant genus, includes many popular ornamentals and medicinal plant species used in traditional Chinese medicine. Little is known about the properties of the habitat distribution and the important eco-environmental factors shaping the suitability. Based on high-resolution environmental data for current and future climate scenarios, we modeled the present and future suitable habitat for P. delavayi and P. rockii by Maxent, evaluated the importance of environmental factors in shaping their distribution, and identified distribution shifts under climate change scenarios. The results showed that the moderate and high suitable areas for P. delavayi and P. rockii encompassed ca. 4.46×10 5 km 2 and 1.89×10 5 km 2 , respectively. Temperature seasonality and isothermality were identified as the most critical factors shaping P. delavayi distribution, and UVB-4 and annual precipitation were identified as the most critical for shaping P. rockii distribution. Under the scenario with a low concentration of greenhouse gas emissions (RCP2.6), the range of both species increased as global warming intensified; however, under the scenario with higher concentrations of emissions (RCP8.5), the suitable habitat range of P. delavayi decreased while P. rockii increased. Overall, our prediction showed that a shift in distribution of suitable habitat to higher elevations would gradually become more significant. The information gained from this study should provide a useful reference for implementing long-term conservation and management strategies for these species. Copyright © 2018. Published by Elsevier B.V.

  11. Seagrass species distribution, density and coverage at Panggang Island, Jakarta

    NASA Astrophysics Data System (ADS)

    Wahab, Iswandi; Madduppa, Hawis; Kawaroe, Mujizat

    2017-01-01

    This study aimed to assess species distribution, density and coverage of seagrass in Panggang Island, within Kepulauan Seribu Marine National Park, northern Jakarta. Seagrass sampling was conducted between March to April 2016 at three observation stations in the West, East, and South of Panggang Island. A total of 6 seagrass species was recorded during sampling period, including Cymodocea rotundata, C. serulata, Halodule uninervis, Syiringodium isoetifolium, Enhalus acoroides, and Thalassia hempricii. All species were observed in the South station, while in the West and East station found only three species (C. rotundata, E. acoroides, and T. hemprichii). While, C. rotundata and T. hemprichii were observed at all station. The highest density was observed for C. rotundata (520 ind/m2) and for T. hempricii (619 ind/m2) in the West station and South Station, respectively. The lowest density was observed in South Station for C. serulata (18 ind/m2), Halodule uninervis (20 ind/m2), and Syiringodium isoetifolium (15 ind/m2). Seagrass coverage of Thalassia hempricii was the highest (43.60%) and the lowest observed at Syiringodium isoetifolium (0.40%). This could be basic information for the management of seagrass ecosystem in the Kepulauan Seribu Marine National Park.

  12. Flea species infesting dogs in Spain: updated spatial and seasonal distribution patterns.

    PubMed

    Gálvez, R; Montoya, A; Checa, R; Martín, O; Marino, V; Miró, G

    2017-03-01

    This entomological survey examines the spatial and seasonal distribution patterns of flea species infesting dogs in Spain. Bioclimatic zones covering broad climate and vegetation ranges were surveyed according to size. In a cross-sectional spatial survey carried out from late May 2013 to mid-July 2015, 1084 dogs from 42 different locations were examined. A total of 3032 fleas were collected and identified as belonging to the following species: Ctenocephalides felis (Siphonaptera: Pulicidae) (81.7%, 2476 fleas); Ctenocephalides canis (11.4%, 347 fleas); Pulex irritans (Siphonaptera: Pulicidae) (6.9%, 208 fleas), and Echidnophaga gallinacea (Siphonaptera: Pulicidae) (0.03%, one flea). Variables observed to have effects on flea abundance were animal weight, sex, length of hair and habitat. In the seasonal survey conducted from June 2014 to June 2015, 1014 fleas were collected from 239 dogs at 30 veterinary practices across Spain. Peaks in C. felis abundance were observed in early summer and late autumn, whereas high numbers of P. irritans and C. canis were recorded in autumn. Numbers of fleas detected in winter were low overall. Based on these findings, the present study updates the spatial and seasonal distributions of flea species in Spain and assesses the impacts of host and habitat variables on flea infestation. © 2016 The Royal Entomological Society.

  13. A missing geographic link in the distribution of the genus Echinotriton (Caudata: Salamandridae) with description of a new species from southern China.

    PubMed

    Hou, Mian; Wu, Yunke; Yang, Kelin; Zheng, Sheng; Yuan, Zhiyong; Li, Pipeng

    2014-12-12

    Disjunct geographic distribution of a species or a group of species is the product of long-term interaction between organisms and the environment. Filling the distributional gap by discovery of a new population or a species has significant biogeographic implications, because it suggests a much wider past distribution and provides evidence for the route of range expansion/contraction. The salamandrid genus Echinotriton (commonly known as spiny salamanders, spiny newts, or crocodile newts) has two species that are restricted to two widely separated areas, one in eastern Zhejiang province, China and the other in the Ryukyu Archipelago of Japan. It has been hypothesized that Echinotriton was once continuously distributed between the two areas through a historical land bridge that connected mainland China, Taiwan, and the archipelago. Finding fossils or relic populations along the postulated distribution are strong evidence for the hypothesis. Hundred-twenty-two years after the description of E. andersoni and eight-one years after that of E. chinhaiensis, we discover a third species of Echinotriton in southern China, which fills the distributional gap of the former two species. Species status of the new species is confirmed through molecular phylogenetic analysis and morphological comparison. Mitochondrial DNA indicates that the new species is sister to E. chinhaiensis, while nuclear DNA does not support this relationship. The new species has a very large quadrate projection, a single line of lateral warts pierced by distal rib extremities, normally developed 5th toes, and conical skin tubercles. Our discovery supports the hypothesis that there was a continuous distribution of Echinotriton from eastern coastal China to the Ryukyu Archipelago. We suggest that other species of this genus may also be found in Taiwan. Due to the rarity of this new species, we urge all hobbyists to refrain themselves from collecting this salamander or leaking locality information if

  14. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    PubMed Central

    Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  15. A new species of Desmopachria Babington (Coleoptera: Dytiscidae) from Cuba with a prediction of its geographic distribution and notes on other Cuban species of the genus.

    PubMed

    Megna, Yoandri S; Sánchez-Fernández, David

    2014-01-10

    A new species, Desmopachria andreae sp. n. is described from Cuba. Diagnostic characters including illustrations of male genitalia are provided and illustrated for the five species of the genus occurring on the island. For these five species both a simple key to adults and maps of their known distribution in Cuba are also provided. Using a Maximun Entropy method (MaxEnt), a distribution model was developed for D. andreae sp.n. Based on the model's predictions, this species has a higher probability of occurring in high altitude forests (above 1000 m a.s.l.), characterised by relatively low temperatures especially during the hottest and wettest seasons, specifically, the mountainous areas of the Macizo de Guamuhaya (Central Cuba), Sierra Maestra (S Cuba) and Nipe-Sagua-Baracoa (NE Cuba). In some of these areas the species has not yet been recorded, and should be searched for in future field surveys.

  16. On the proportional abundance of species: Integrating population genetics and community ecology.

    PubMed

    Marquet, Pablo A; Espinoza, Guillermo; Abades, Sebastian R; Ganz, Angela; Rebolledo, Rolando

    2017-12-01

    The frequency of genes in interconnected populations and of species in interconnected communities are affected by similar processes, such as birth, death and immigration. The equilibrium distribution of gene frequencies in structured populations is known since the 1930s, under Wright's metapopulation model known as the island model. The equivalent distribution for the species frequency (i.e. the species proportional abundance distribution (SPAD)), at the metacommunity level, however, is unknown. In this contribution, we develop a stochastic model to analytically account for this distribution (SPAD). We show that the same as for genes SPAD follows a beta distribution, which provides a good description of empirical data and applies across a continuum of scales. This stochastic model, based upon a diffusion approximation, provides an alternative to neutral models for the species abundance distribution (SAD), which focus on number of individuals instead of proportions, and demonstrate that the relative frequency of genes in local populations and of species within communities follow the same probability law. We hope our contribution will help stimulate the mathematical and conceptual integration of theories in genetics and ecology.

  17. The Effects of Sub-Regional Climate Velocity on the Distribution and Spatial Extent of Marine Species Assemblages.

    PubMed

    Kleisner, Kristin M; Fogarty, Michael J; McGee, Sally; Barnett, Analie; Fratantoni, Paula; Greene, Jennifer; Hare, Jonathan A; Lucey, Sean M; McGuire, Christopher; Odell, Jay; Saba, Vincent S; Smith, Laurel; Weaver, Katherine J; Pinsky, Malin L

    2016-01-01

    Many studies illustrate variable patterns in individual species distribution shifts in response to changing temperature. However, an assemblage, a group of species that shares a common environmental niche, will likely exhibit similar responses to climate changes, and these community-level responses may have significant implications for ecosystem function. Therefore, we examine the relationship between observed shifts of species in assemblages and regional climate velocity (i.e., the rate and direction of change of temperature isotherms). The assemblages are defined in two sub-regions of the U.S. Northeast Shelf that have heterogeneous oceanography and bathymetry using four decades of bottom trawl survey data and we explore temporal changes in distribution, spatial range extent, thermal habitat area, and biomass, within assemblages. These sub-regional analyses allow the dissection of the relative roles of regional climate velocity and local physiography in shaping observed distribution shifts. We find that assemblages of species associated with shallower, warmer waters tend to shift west-southwest and to shallower waters over time, possibly towards cooler temperatures in the semi-enclosed Gulf of Maine, while species assemblages associated with relatively cooler and deeper waters shift deeper, but with little latitudinal change. Conversely, species assemblages associated with warmer and shallower water on the broad, shallow continental shelf from the Mid-Atlantic Bight to Georges Bank shift strongly northeast along latitudinal gradients with little change in depth. Shifts in depth among the southern species associated with deeper and cooler waters are more variable, although predominantly shifts are toward deeper waters. In addition, spatial expansion and contraction of species assemblages in each region corresponds to the area of suitable thermal habitat, but is inversely related to assemblage biomass. This suggests that assemblage distribution shifts in

  18. The Effects of Sub-Regional Climate Velocity on the Distribution and Spatial Extent of Marine Species Assemblages

    PubMed Central

    Kleisner, Kristin M.; Fogarty, Michael J.; McGee, Sally; Barnett, Analie; Fratantoni, Paula; Greene, Jennifer; Hare, Jonathan A.; Lucey, Sean M.; McGuire, Christopher; Odell, Jay; Saba, Vincent S.; Smith, Laurel; Weaver, Katherine J.; Pinsky, Malin L.

    2016-01-01

    Many studies illustrate variable patterns in individual species distribution shifts in response to changing temperature. However, an assemblage, a group of species that shares a common environmental niche, will likely exhibit similar responses to climate changes, and these community-level responses may have significant implications for ecosystem function. Therefore, we examine the relationship between observed shifts of species in assemblages and regional climate velocity (i.e., the rate and direction of change of temperature isotherms). The assemblages are defined in two sub-regions of the U.S. Northeast Shelf that have heterogeneous oceanography and bathymetry using four decades of bottom trawl survey data and we explore temporal changes in distribution, spatial range extent, thermal habitat area, and biomass, within assemblages. These sub-regional analyses allow the dissection of the relative roles of regional climate velocity and local physiography in shaping observed distribution shifts. We find that assemblages of species associated with shallower, warmer waters tend to shift west-southwest and to shallower waters over time, possibly towards cooler temperatures in the semi-enclosed Gulf of Maine, while species assemblages associated with relatively cooler and deeper waters shift deeper, but with little latitudinal change. Conversely, species assemblages associated with warmer and shallower water on the broad, shallow continental shelf from the Mid-Atlantic Bight to Georges Bank shift strongly northeast along latitudinal gradients with little change in depth. Shifts in depth among the southern species associated with deeper and cooler waters are more variable, although predominantly shifts are toward deeper waters. In addition, spatial expansion and contraction of species assemblages in each region corresponds to the area of suitable thermal habitat, but is inversely related to assemblage biomass. This suggests that assemblage distribution shifts in

  19. Distribution, habitat affinities and phenology of the Micrargus herbigradus-species group (Araneae: Linyphiidae) in Poland.

    PubMed

    Wiśniewski, Konrad; Rozwałka, Robert; Wesołowska, Wanda

    2018-01-01

    We review the known information on the distribution and habitat affinities of the Micrargus herbigradus -species group in Poland. The analysis is based on a thorough literature survey, our own materials, and verification of some older collections. We give new diagnostic drawings and review the characters that are useful in identification of species within the group. Three species are present in Poland: M. herbigradus (Blackwall, 1854), M. apertus (O.-P. Cambridge, 1870) and M. georgescuae Millidge, 1976. The latter is recorded for the first time in the country, and we add numerous new localities for the two former species. Micrargus herbigradus is common and widespread in Poland, living in various habitats, with only a slight preference to forests. In contrast, M. apertus is widely distributed but rarely found, while its affinity to forests is the highest within the group. The records of this species are most numerous in lowland forests (up to c. 300 m a.s.l), but it can also be found at higher altitudes. M. georgescuae is found only in montane habitats, both in the Sudetes and the Carpathian Mountains, from above 650 m a.s.l. The adults of all three species occur the whole year round, but seem to be most abundant in May and June.

  20. Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge.

    PubMed

    Benoit, Roland G; Szpunar, Karl K; Schacter, Daniel L

    2014-11-18

    Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode's emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior.

  1. Studies in Hawaiian Diptera III: New Distributional Records for Canacidae and a New Endemic Species of Procanace

    PubMed Central

    2016-01-01

    Abstract The distributions of Hawaiian Canacidae, comprising nearly 800 individual collection events, are reviewed and a total of four new island records are reported. These include Canaceoides angulatus from Kahoolawae and Procanace bifurcata from Molokai and Maui, and Procanace constricta from Oahu. A new species from Kauai, Procanace hardyi O'Grady and Pak, is described. This species is closely related to P. constricta from Oahu, Maui, Molokai and Hawaii and shares a similar constriction of the abdomen between tergites four and five but differs in the configuration of the seventh abdominal tergite. Detailed distribution maps for all species are included. PMID:27226743

  2. 137Cs distribution among annual rings of different tree species contaminated after the Chernobyl accident.

    PubMed

    Soukhova, N V; Fesenko, S V; Klein, D; Spiridonov, S I; Sanzharova, N I; Badot, P M

    2003-01-01

    The distributions of 137Cs among annual rings of Pinus sylvestris and Betula pendula at four experimental sites located in the most contaminated areas in the Russian territory after the Chernobyl accident in 1986 were studied. Trees of different ages were sampled from four forest sites with different tree compositions and soil properties. The data analysis shows that 137Cs is very mobile in wood and the 1986 rings do not show the highest contamination. The difference between pine and birch in the pattern of radial 137Cs distribution can be satisfactorily explained by the difference in radial ray composition. 137Cs radial distribution in the wood can be described as the sum of two exponential functions for both species. The function parameters are height, age and species dependent. The distribution of 137Cs in birch wood reveals much more pronounced dependence on site characteristics and/or the age of trees than pines. The data obtained can be used to assess 137Cs content in wood.

  3. Probabilistic accounting of uncertainty in forecasts of species distributions under climate change

    Treesearch

    Seth J. Wenger; Nicholas A. Som; Daniel C. Dauwalter; Daniel J. Isaak; Helen M. Neville; Charles H. Luce; Jason B. Dunham; Michael K. Young; Kurt D. Fausch; Bruce E. Rieman

    2013-01-01

    Forecasts of species distributions under future climates are inherently uncertain, but there have been few attempts to describe this uncertainty comprehensively in a probabilistic manner. We developed a Monte Carlo approach that accounts for uncertainty within generalized linear regression models (parameter uncertainty and residual error), uncertainty among competing...

  4. Environmental factors prevail over dispersal constraints in determining the distribution and assembly of Trichoptera species in mountain lakes.

    PubMed

    de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi

    2015-07-01

    Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran's eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For

  5. Environmental factors prevail over dispersal constraints in determining the distribution and assembly of Trichoptera species in mountain lakes

    PubMed Central

    de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi

    2015-01-01

    Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran’s eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For

  6. Streamlining the use of BOLD specimen data to record species distributions: a case study with ten Nearctic species of Microgastrinae (Hymenoptera: Braconidae)

    PubMed Central

    Penev, Lyubomir; Ratnasingham, Sujeevan; Smith, M. Alex; Sones, Jayme; Telfer, Angela; deWaard, Jeremy R.; Hebert, Paul D. N.

    2014-01-01

    Abstract The Barcode of Life Data Systems (BOLD) is designed to support the generation and application of DNA barcode data, but it also provides a unique source of data with potential for many research uses. This paper explores the streamlining of BOLD specimen data to record species distributions – and its fast publication using the Biodiversity Data Journal (BDJ), and its authoring platform, the Pensoft Writing Tool (PWT). We selected a sample of 630 specimens and 10 species of a highly diverse group of parasitoid wasps (Hymenoptera: Braconidae, Microgastrinae) from the Nearctic region and used the information in BOLD to uncover a significant number of new records (of locality, provinces, territories and states). By converting specimen information (such as locality, collection date, collector, voucher depository) from the BOLD platform to the Excel template provided by the PWT, it is possible to quickly upload and generate long lists of "Material Examined" for papers discussing taxonomy, ecology and/or new distribution records of species. For the vast majority of publications including DNA barcodes, the generation and publication of ancillary data associated with the barcoded material is seldom highlighted and often disregarded, and the analysis of those data sets to uncover new distribution patterns of species has rarely been explored, even though many BOLD records represent new and/or significant discoveries. The introduction of journals specializing in – and streamlining – the release of these datasets, such as the BDJ, should facilitate thorough analysis of these records, as shown in this paper. PMID:25473326

  7. Distribution and status of Sandalwood in Hawai'i

    Treesearch

    Lani Stemmermann

    1990-01-01

    This paper attempts to summarize what is known of the distribution and status of sandalwoods in Hawai'i. Four species of sandalwood are recognized as being endemic to the Hawaiian Islands, and one has been introduced. Ecological factors affecting the present and former distribution of Hawaiian sandalwoods are considered.

  8. Processes at multiple scales affect richness and similarity of non-native plant species in mountains around the world

    Treesearch

    Tim Seipel; Christoph Kueffer; Lisa J. Rew; Curtis C. Daehler; Aníbal Pauchard; Bridgett J. Naylor; Jake M. Alexander; Peter J. Edwards; Catherine G. Parks; Jose Ramon Arevalo; Lohengrin A. Cavieres; Hansjorg Dietz; Gabi Jakobs; Keith McDougall; Rudiger Otto; Neville. Walsh

    2012-01-01

    We compared the distribution of non-native plant species along roads in eight mountainous regions. Within each region, abundance of plant species was recorded at 41-84 sites along elevational gradients using 100-m2 plots located 0, 25 and 75 m from roadsides. We used mixed-effects models to examine how local variation in species richness and...

  9. Species distribution in human immunodeficiency virus-related mycobacterial infections: implications for selection of initial treatment.

    PubMed

    Montessori, V; Phillips, P; Montaner, J; Haley, L; Craib, K; Bessuille, E; Black, W

    1996-06-01

    Management of mycobacterial infection is species specific; however, treatment is prompted by positive smears or cultures, often several weeks before species identification. The objective of this study was to determine the species distribution of mycobacterial isolates from various body sites in patients infected with human immunodeficiency virus (HIV). All mycobacterial isolates recovered at St. Paul's Hospital (Vancouver, British Columbia, Canada) from April 1989 to March 1993 were reviewed. Among 357 HIV-positive patients with mycobacterial infections, 64% (96) of the sputum isolates were Mycobacterium avium complex (MAC), 18% were Mycobacterium tuberculosis, and 17% were Mycobacterium kansasii. Lymph node involvement (25 patients) was due to either MAC (72%) or M. tuberculosis (24%). Two hundred ninety-eight episodes of mycobacteremia were due to MAC (98%), M. tuberculosis (1%), and M. kansasii (1%). Similarly, cultures of 84 bone marrow biopsy specimens (99%), 19 intestinal biopsy specimens (100%), and 30 stool specimens (97%) yielded predominantly MAC. These results have implications for initial therapy, particularly in areas where rapid methods for species identification are not readily available. Because of considerable geographic variation, development of guidelines for selection of initial therapy depends on regional determination of species distribution in HIV-related mycobacterial infections.

  10. Climate controls the distribution of a widespread invasive species: Implications for future range expansion

    USGS Publications Warehouse

    McDowell, W.G.; Benson, A.J.; Byers, J.E.

    2014-01-01

    1. Two dominant drivers of species distributions are climate and habitat, both of which are changing rapidly. Understanding the relative importance of variables that can control distributions is critical, especially for invasive species that may spread rapidly and have strong effects on ecosystems. 2. Here, we examine the relative importance of climate and habitat variables in controlling the distribution of the widespread invasive freshwater clam Corbicula fluminea, and we model its future distribution under a suite of climate scenarios using logistic regression and maximum entropy modelling (MaxEnt). 3. Logistic regression identified climate variables as more important than habitat variables in controlling Corbicula distribution. MaxEnt modelling predicted Corbicula's range expansion westward and northward to occupy half of the contiguous United States. By 2080, Corbicula's potential range will expand 25–32%, with more than half of the continental United States being climatically suitable. 4. Our combination of multiple approaches has revealed the importance of climate over habitat in controlling Corbicula's distribution and validates the climate-only MaxEnt model, which can readily examine the consequences of future climate projections. 5. Given the strong influence of climate variables on Corbicula's distribution, as well as Corbicula's ability to disperse quickly and over long distances, Corbicula is poised to expand into New England and the northern Midwest of the United States. Thus, the direct effects of climate change will probably be compounded by the addition of Corbicula and its own influences on ecosystem function.

  11. Distribution of the anther-smut pathogen Microbotryum on species of the Caryophyllaceae

    PubMed Central

    Hood, Michael E; Mena-Alí, Jorge I; Gibson, Amanda K; Oxelman, Bengt; Giraud, Tatiana; Yockteng, Roxana; Arroyo, Mary T K; Conti, Fabio; Pedersen, Amy B; Gladieux, Pierre; Antonovics, Janis

    2010-01-01

    Summary Understanding disease distributions is of fundamental and applied importance, yet few studies benefit from integrating broad sampling with ecological and phylogenetic data. Here, anther-smut disease, caused by the fungus Microbotryum, was assessed using herbarium specimens of Silene and allied genera of the Caryophyllaceae.A total of 42 000 herbarium specimens were examined, and plant geographical distributions and morphological and life history characteristics were tested as correlates of disease occurrence. Phylogenetic comparative methods were used to determine the association between disease and plant life-span.Disease was found on 391 herbarium specimens from 114 species and all continents with native Silene. Anther smut occurred exclusively on perennial plants, consistent with the pathogen requiring living hosts to overwinter. The disease was estimated to occur in 80% of perennial species of Silene and allied genera. The correlation between plant life-span and disease was highly significant while controlling for the plant phylogeny, but the disease was not correlated with differences in floral morphology.Using resources available in natural history collections, this study illustrates how disease distribution can be determined, not by restriction to a clade of susceptible hosts or to a limited geographical region, but by association with host life-span, a trait that has undergone frequent evolutionary transitions. PMID:20406409

  12. Size of clearcut opening affects species composition, growth rate, and stand characteristics.

    Treesearch

    Martin E. Dale; H. Clay Smith; Jeffrey N. Pearcy

    1995-01-01

    In the late 1950's and early 1960's, a series of studies was installed in the central hardwood forest to determine if size of clearcut opening affects the growth rate and species composition of new stands. In 1991, about 30 years after cutting, stand data were collected in 89 openings ranging in size from 0.04 to 1.61 acres. The number of stems per acre...

  13. Evolutionary Dynamics of Microsatellite Distribution in Plants: Insight from the Comparison of Sequenced Brassica, Arabidopsis and Other Angiosperm Species

    PubMed Central

    Shi, Jiaqin; Huang, Shunmou; Fu, Donghui; Yu, Jinyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2013-01-01

    Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with

  14. Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology

    PubMed Central

    Di Marco, Moreno; Buchanan, Graeme M.; Szantoi, Zoltan; Holmgren, Milena; Grottolo Marasini, Gabriele; Gross, Dorit; Tranquilli, Sandra; Boitani, Luigi; Rondinini, Carlo

    2014-01-01

    Although conservation intervention has reversed the decline of some species, our success is outweighed by a much larger number of species moving towards extinction. Extinction risk modelling can identify correlates of risk and species not yet recognized to be threatened. Here, we use machine learning models to identify correlates of extinction risk in African terrestrial mammals using a set of variables belonging to four classes: species distribution state, human pressures, conservation response and species biology. We derived information on distribution state and human pressure from satellite-borne imagery. Variables in all four classes were identified as important predictors of extinction risk, and interactions were observed among variables in different classes (e.g. level of protection, human threats, species distribution ranges). Species biology had a key role in mediating the effect of external variables. The model was 90% accurate in classifying extinction risk status of species, but in a few cases the observed and modelled extinction risk mismatched. Species in this condition might suffer from an incorrect classification of extinction risk (hence require reassessment). An increased availability of satellite imagery combined with improved resolution and classification accuracy of the resulting maps will play a progressively greater role in conservation monitoring. PMID:24733953

  15. River network architecture, genetic effective size and distributional patterns predict differences in genetic structure across species in a dryland stream fish community.

    PubMed

    Pilger, Tyler J; Gido, Keith B; Propst, David L; Whitney, James E; Turner, Thomas F

    2017-05-01

    Dendritic ecological network (DEN) architecture can be a strong predictor of spatial genetic patterns in theoretical and simulation studies. Yet, interspecific differences in dispersal capabilities and distribution within the network may equally affect species' genetic structuring. We characterized patterns of genetic variation from up to ten microsatellite loci for nine numerically dominant members of the upper Gila River fish community, New Mexico, USA. Using comparative landscape genetics, we evaluated the role of network architecture for structuring populations within species (pairwise F ST ) while explicitly accounting for intraspecific demographic influences on effective population size (N e ). Five species exhibited patterns of connectivity and/or genetic diversity gradients that were predicted by network structure. These species were generally considered to be small-bodied or habitat specialists. Spatial variation of N e was a strong predictor of pairwise F ST for two species, suggesting patterns of connectivity may also be influenced by genetic drift independent of network properties. Finally, two study species exhibited genetic patterns that were unexplained by network properties and appeared to be related to nonequilibrium processes. Properties of DENs shape community-wide genetic structure but effects are modified by intrinsic traits and nonequilibrium processes. Further theoretical development of the DEN framework should account for such cases. © 2017 John Wiley & Sons Ltd.

  16. Antitropical distributions and species delimitation in a group of ophiocomid brittle stars (Echinodermata: Ophiuroidea: Ophiocomidae).

    PubMed

    Naughton, K M; O'Hara, T D; Appleton, B; Cisternas, P A

    2014-09-01

    In this paper we examine the phylogeny and biogeography of the temperate genera of the Ophiocomidae (Echinodermata: Ophiuroidea) which have an interesting asymmetrical anti-tropical distribution, with two genera (Ophiocomina and Ophiopteris) previously considered to have a separate species in both the North and South hemispheres, and the third (Clarkcoma) diversifying in the southern Australian/New Zealand region. Our phylogeny, generated from one mitochondrial and two nuclear markers, revealed that Ophiopteris is sister to a mixed Ophiocomina/Clarkcoma clade. Ophiocomina was polyphyletic, with O. nigra and an undescribed species from the South Atlantic Ocean sister to a clade including Clarkcoma species and O. australis. The phylogeny also revealed a number of recently diverged lineages occurring within Clarkcoma, some of which are considered to be cryptic species due to the similarity in morphology combined with the apparent absence of interbreeding in a sympatric distribution, while the status of others is less certain. The phylogeny provides support for two transequatorial events in the group under study. A molecular clock analysis places both events in the middle to late Miocene. The analysis excludes a tectonic vicariance hypothesis for the antitropical distribution associated with the breakup of Pangaea and also excludes the hypothesis of more recent gene flow associated with Plio/Pleistocene glacial cycling. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests.

    PubMed

    Joly, François-Xavier; Milcu, Alexandru; Scherer-Lorenzen, Michael; Jean, Loreline-Katia; Bussotti, Filippo; Dawud, Seid Muhie; Müller, Sandra; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Vesterdal, Lars; Hättenschwiler, Stephan

    2017-05-01

    Different tree species influence litter decomposition directly through species-specific litter traits, and indirectly through distinct modifications of the local decomposition environment. Whether these indirect effects on decomposition are influenced by tree species diversity is presently not clear. We addressed this question by studying the decomposition of two common substrates, cellulose paper and wood sticks, in a total of 209 forest stands of varying tree species diversity across six major forest types at the scale of Europe. Tree species richness showed a weak but positive correlation with the decomposition of cellulose but not with that of wood. Surprisingly, macroclimate had only a minor effect on cellulose decomposition and no effect on wood decomposition despite the wide range in climatic conditions among sites from Mediterranean to boreal forests. Instead, forest canopy density and stand-specific litter traits affected the decomposition of both substrates, with a particularly clear negative effect of the proportion of evergreen tree litter. Our study suggests that species richness and composition of tree canopies modify decomposition indirectly through changes in microenvironmental conditions. These canopy-induced differences in the local decomposition environment control decomposition to a greater extent than continental-scale differences in macroclimatic conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Removal of perennial herbaceous species affects response of cold desert scrublands to fire

    Treesearch

    Jeanne C. Chambers; David I. Board; Bruce A. Roundy; Peter J. Weisberg

    2017-01-01

    Our results show that loss of perennial herbaceous species, which can result from inappropriate livestock grazing, and loss of shrubs, which often results from fire, interact to affect key functional groups. The implications are that ecosystem resilience to disturbance in Cold Desert shrublands decreases when competition from perennial native grasses and forbs for...

  19. Modelling climate change effects on benthos: Distributional shifts in the North Sea from 2001 to 2099

    NASA Astrophysics Data System (ADS)

    Weinert, Michael; Mathis, Moritz; Kröncke, Ingrid; Neumann, Hermann; Pohlmann, Thomas; Reiss, Henning

    2016-06-01

    In the marine realm, climate change can affect a variety of physico-chemical properties with wide-ranging biological effects, but the knowledge of how climate change affects benthic distributions is limited and mainly restricted to coastal environments. To project the response of benthic species of a shelf sea (North Sea) to the expected climate change, the distributions of 75 marine benthic species were modelled and the spatial changes in distribution were projected for 2099 based on modelled bottom temperature and salinity changes using the IPCC scenario A1B. Mean bottom temperature was projected to increase between 0.15 and 5.4 °C, while mean bottom salinity was projected to moderately increase by 1.7. The spatial changes in species distribution were modelled with Maxent and the direction and extent of these changes were assessed. The results showed a latitudinal northward shift for 64% of the species (maximum 109 km; brittle star Ophiothrix fragilis) and a southward shift for 36% (maximum 101 km; hermit crab Pagurus prideaux and the associated cloak anemone Adamsia carciniopados; 105 km). The relatively low rates of distributional shifts compared to fish or plankton species were probably influenced by the regional topography. The environmental gradients in the central North Sea along the 50 m depth contour might act as a 'barrier', possibly resulting in a compression of distribution range and hampering further shifts to the north. For 49 species this resulted in a habitat loss up to 100%, while only 11 species could benefit from the warming in terms of habitat gain. Particularly the benthic communities of the southern North Sea, where the strongest temperature increase was projected, would be strongly affected by the distributional changes, since key species showed northward shifts and high rates of habitat loss, with potential ramifications for the functioning of the ecosystem.

  20. Dietary Toxicity Thresholds and Ecological Risks for Birds and Mammals Based on Species Sensitivity Distributions.

    PubMed

    Korsman, John C; Schipper, Aafke M; Hendriks, A Jan

    2016-10-04

    Species sensitivity distributions (SSDs) are commonly used in regulatory procedures and ecological risk assessments. Yet, most toxicity threshold and risk assessment studies are based on invertebrates and fish. In the present study, no observed effect concentrations (NOECs) specific to birds and mammals were used to derive SSDs and corresponding hazardous concentrations for 5% of the species (HC5 values). This was done for 41 individual substances as well as for subsets of substances aggregated based on their toxic Mode of Action (MoA). In addition, potential differences in SSD parameters (mean and standard deviation) were investigated in relation to MoA and end point (growth, reproduction, and survival). The means of neurotoxic and respirotoxic compounds were significantly lower than those of narcotics, whereas no differences were found between end points. The standard deviations of the SSDs were similar across MoA's and end points. Finally, the SSDs obtained were used in a case study by calculating Ecological Risks (ER) and multisubstance Potentially Affected Fractions of species (msPAF) based on 19 chemicals in 10 Northwestern European estuaries and coastal areas. The assessment showed that the risks were all below 2.6 × 10 -2 . However, the calculated risks underestimate the actual risks of chemicals in these areas because the potential impacts of substances that were not measured in the field or for which no SSD was available were not included in the risk assessment. The SSDs obtained can be used in regulatory procedures and for assessing the impacts of contaminants on birds and mammals from fish contaminants monitoring programs.

  1. Soil moisture and biogeochemical factors influence the distribution of annual Bromus species

    Treesearch

    Jayne Belnap; John M. Stark; Benjamin M. Rau; Edith B. Allen; Susan Phillips

    2016-01-01

    Abiotic factors have a strong influence on where annual Bromus species are found. At the large regional scale, temperature and precipitation extremes determine the boundaries of Bromus occurrence. At the more local scale, soil characteristics and climate influence distribution, cover, and performance. In hot, dry, summer-rainfall-dominated deserts (Sonoran, Chihuahuan...

  2. Remnant trees affect species composition but not structure of tropical second-growth forest.

    PubMed

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  3. Distribution and density of bird species hazardous to aircraft

    USGS Publications Warehouse

    Robbins, C.S.; Gauthreaux, Sidney A.

    1975-01-01

    Only in the past 5 years has it become feasible to map the relative abundance of North American birds. Two programs presently under way and a third that is in the experimental phase are making possible the up-to-date mapping of abundance as well as distribution. A fourth program that has been used successfully in Europe and on a small scale in parts of North America yields detailed information on breeding distribution. The Breeding Bird Survey, sponsored by the U.S. Bureau of Sport Fisheries and Wildlife and the Canadian Wildlife Service, involves 2,000 randomly distributed roadside counts that are conducted during the height of the breeding season in all U.S. States and Canadian Provinces. Observations of approximately 1.4 million birds per year are entered on magnetic tape and subsequently used both for statistical analysis of population trends and for computer mapping of distribution and abundance. The National Audubon Society's Christmas Bird Count is conducted in about 1,000 circles, each 15 miles (24 km) in diameter, in the latter half of December. Raw data for past years have been published in voluminous reports, but not in a form for ready analysis. Under a contract between the U.S. Air Force and the U. S. Bureau of Sport Fisheries and Wildlife (in cooperation with the National Audubon Society), preliminary maps showing distribution and abundance of selected species that are potential hazards to aircraft are presently being mapped and prepared for publication. The Winter Bird Survey, which is in its fifth season of experimental study in a limited area in Central Maryland, may ultimately replace the Christmas Bird Count source. This Survey consists of a standardized 8-kilometer (5-mile) route covered uniformly once a year during midwinter. Bird Atlas programs, which map distribution but not abundance, are well established in Europe and are gaining interest in America

  4. New Acosmetura species (Orthoptera: Tettigoniidae: Meconematinae) from China, with notes on their distribution.

    PubMed

    Bian, Xun; Shi, Fu-Ming

    2015-11-12

    One new species of Acosmetura (Orthoptera: Tettigoniidae: Meconematinae) is described from China, namely Acosmetura listrica Bian & Shi, sp. nov. and distinctive characters are illustrated. In addition, a key to the known species with morphological photographs of Acosmetura longicercata Liu, Zhou & Bi, 2008 from Tianmushan, Zhejiang is provided in this paper. Based on the comprehensive physical geographical regionalization, Acosmetura listrica sp. nov. is distributed in Huinan and the middle and lower reaches of Changjiang River, which belongs to the Northern Subtropical Humid Climate Zone.

  5. Ventromedial prefrontal cortex supports affective future simulation by integrating distributed knowledge

    PubMed Central

    Benoit, Roland G.; Szpunar, Karl K.; Schacter, Daniel L.

    2014-01-01

    Although the future often seems intangible, we can make it more concrete by imagining prospective events. Here, using functional MRI, we demonstrate a mechanism by which the ventromedial prefrontal cortex supports such episodic simulations, and thereby contributes to affective foresight: This region supports processes that (i) integrate knowledge related to the elements that constitute an episode and (ii) represent the episode’s emergent affective quality. The ventromedial prefrontal cortex achieves such integration via interactions with distributed cortical regions that process the individual elements. Its activation then signals the affective quality of the ensuing episode, which goes beyond the combined affective quality of its constituting elements. The integrative process further augments long-term retention of the episode, making it available at later time points. This mechanism thus renders the future tangible, providing a basis for farsighted behavior. PMID:25368170

  6. Incorporating plant fossil data into species distribution models is not straightforward: Pitfalls and possible solutions

    NASA Astrophysics Data System (ADS)

    Moreno-Amat, Elena; Rubiales, Juan Manuel; Morales-Molino, César; García-Amorena, Ignacio

    2017-08-01

    The increasing development of species distribution models (SDMs) using palaeodata has created new prospects to address questions of evolution, ecology and biogeography from wider perspectives. Palaeobotanical data provide information on the past distribution of taxa at a given time and place and its incorporation on modelling has contributed to advancing the SDM field. This has allowed, for example, to calibrate models under past climate conditions or to validate projected models calibrated on current species distributions. However, these data also bear certain shortcomings when used in SDMs that may hinder the resulting ecological outcomes and eventually lead to misleading conclusions. Palaeodata may not be equivalent to present data, but instead frequently exhibit limitations and biases regarding species representation, taxonomy and chronological control, and their inclusion in SDMs should be carefully assessed. The limitations of palaeobotanical data applied to SDM studies are infrequently discussed and often neglected in the modelling literature; thus, we argue for the more careful selection and control of these data. We encourage authors to use palaeobotanical data in their SDMs studies and for doing so, we propose some recommendations to improve the robustness, reliability and significance of palaeo-SDM analyses.

  7. Species delimitation and biogeography of two fir species (Abies) in central China: cytoplasmic DNA variation.

    PubMed

    Wang, J; Abbott, R J; Peng, Y L; Du, F K; Liu, J-Q

    2011-10-01

    It remains unclear how speciation history might contribute to species-specific variation and affect species delimitation. We examined concordance between cytoplasmic genetic variation and morphological taxonomy in two fir species, Abies chensiensis and A. fargesii, with overlapping distributions in central China. Range-wide genetic variation was investigated using mitochondrial (mt) and plastid (pt) DNA sequences, which contrast in their rates of gene flow. Four mtDNA haplotypes were recovered and showed no obvious species' bias in terms of relative frequency. In contrast, a high level of ptDNA variation was recorded in both species with 3 common ptDNA haplotypes shared between them and 21 rare ptDNA haplotypes specific to one or other species. We argue that the lack of concordance between morphological and molecular variation between the two fir species most likely reflects extensive ancestral polymorphism sharing for both forms of cytoplasmic DNA variation. It is feasible that a relatively fast mutation rate for ptDNA contributed to the production of many species-specific ptDNA haplotypes, which remained rare due to insufficient time passing for their spread and fixation in either species, despite high levels of intraspecific ptDNA gene flow. Our phylogeographic analyses further suggest that polymorphisms in both organelle genomes most likely originated during and following glacial intervals preceding the last glacial maximum, when species distributions became fragmented into several refugia and then expanded in range across central China.

  8. Estimating the Spatial and Temporal Distribution of Species Richness within Sequoia and Kings Canyon National Parks

    PubMed Central

    Wathen, Steve; Thorne, James H.; Holguin, Andrew; Schwartz, Mark W.

    2014-01-01

    Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations. PMID:25469873

  9. Estimating the spatial and temporal distribution of species richness within Sequoia and Kings Canyon National Parks.

    PubMed

    Wathen, Steve; Thorne, James H; Holguin, Andrew; Schwartz, Mark W

    2014-01-01

    Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations.

  10. Factors affecting the distribution of a predatory mite on greenhouse sweet pepper.

    PubMed

    Weintraub, Phyllis G; Kleitman, Sophia; Alchanatis, Victor; Palevsky, Eric

    2007-01-01

    The predatory mite Neoseiulus cucumeris is used for biological control of phytophagous mites and thrips on greenhouse cucumber and sweet pepper. In a previous study, N. cucumeris provided effective control of broad mite but was only rarely found on the sampled leaves, raising questions about the factors affecting N. cucumeris distribution. To determine the distribution of N. cucumeris, leaves of pepper plants were sampled three times per day: just after sunrise, at noon and just before sunset for two years and throughout a 24 h period in one year. The presence of other mites and insects was recorded. Biotic (pollen) and abiotic (temperature, humidity) factors were monitored from the three plant levels. The effect of direct and indirect sunlight on the mites was assessed. N. cucumeris was found primarily in flowers; however, the mite's distribution was affected by other predators (intraguild predation); in the presence of the predatory bug Orius laevigatus virtually no mites occurred in the flowers. Whereas temperature and humidity varied from the top to the lower level of the plants, apparently neither these factors nor the presence of pollen outside the flowers influenced mite distribution. N. cucumeris was found to be negatively phototropic; therefore N. cucumeris were pre-conditioned to light by rearing under light conditions for 4 months before being released. The light-reared mites were initially more numerous during the noon sampling period, however, rearing conditions caused only a temporary and non-significant change in distribution.

  11. Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands.

    PubMed

    Ockinger, Erik; Smith, Henrik G

    2006-09-01

    During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6-10 ha) and one small (0.5-2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km(2) landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at

  12. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes.

    PubMed

    Capinha, César; Larson, Eric R; Tricarico, Elena; Olden, Julian D; Gherardi, Francesca

    2013-08-01

    Climate change will require species to adapt to new conditions or follow preferred climates to higher latitudes or elevations, but many dispersal-limited freshwater species may be unable to move due to barriers imposed by watershed boundaries. In addition, invasive nonnative species may expand into new regions under future climate conditions and contribute to the decline of native species. We evaluated future distributions for the threatened European crayfish fauna in response to climate change, watershed boundaries, and the spread of invasive crayfishes, which transmit the crayfish plague, a lethal disease for native European crayfishes. We used climate projections from general circulation models and statistical models based on Mahalanobis distance to predict climate-suitable regions for native and invasive crayfishes in the middle and at the end of the 21st century. We identified these suitable regions as accessible or inaccessible on the basis of major watershed boundaries and present occurrences and evaluated potential future overlap with 3 invasive North American crayfishes. Climate-suitable areas decreased for native crayfishes by 19% to 72%, and the majority of future suitable areas for most of these species were inaccessible relative to native and current distributions. Overlap with invasive crayfish plague-transmitting species was predicted to increase. Some native crayfish species (e.g., noble crayfish [Astacus astacus]) had no future refugia that were unsuitable for the modeled nonnative species. Our results emphasize the importance of preventing additional introductions and spread of invasive crayfishes in Europe to minimize interactions between the multiple stressors of climate change and invasive species, while suggesting candidate regions for the debatable management option of assisted colonization. © 2013 Society for Conservation Biology.

  13. Temperature induced changes in size dependent distributions of two boreal and three Lusitanian flatfish species: A comparative study

    NASA Astrophysics Data System (ADS)

    van Hal, Ralf; van Kooten, Tobias; Rijnsdorp, Adriaan D.

    2016-01-01

    Changes in spatial distribution in several fish species have been related to recent increase in global temperature. In the North Sea, both a poleward shift and a shift to deeper water have been observed. Here, we study the underlying mechanism of these shifts in a comparative study of the changes in distribution of two boreal flatfish species (plaice Pleuronectes platessa and dab Limanda limanda) and three Lusitanian flatfish species (sole Solea solea, solenette Buglossidium luteum, and scaldfish Arnoglossus laterna) as recorded in annual bottom trawl surveys carried out in the North Sea in late summer since 1985. The distribution is analysed in relation to the bottom temperature at the time of the survey as well as to the seasonal maximum bottom temperature earlier in the year. It is shown that the boreal species plaice and dab moved to deeper water and maintained the seasonal maximum temperature that they experienced in earlier periods, while the Lusitanian species sole, solenette, and scaldfish experienced an increase in the seasonal maximum temperature that they experienced while maintaining their depth distribution. This overall response varied between length classes, reflecting a preference for higher temperature of the smaller length classes. The results lend support to the hypothesis that the fish displayed a direct response to the maximum temperature that occurred during the growth season before the time of sampling.

  14. Diastereoisomer- and species-specific distribution of hexabromocyclododecane (HBCD) in fish and marine invertebrates.

    PubMed

    Son, Min-Hui; Kim, Jongchul; Shin, Eun-Su; Seo, Sung-Hee; Chang, Yoon-Seok

    2015-12-30

    The levels and distributional characteristics of hexabromocyclododecane (HBCD) diastereoisomers have been largely reported for various fish and select shellfish. In this study, we reclassified a number and variety of marine invertebrates, including shellfish, to further contribute to the comprehensive understanding of the effects and assessment of human exposure to HBCD. Overall, 30 marine invertebrate species (n=188) were investigated and the following order of ∑2HBCD (α- and γ-HBCD) was observed: fish>chordata>cephalopoda>echinodermata>bivalve>crustacea. The marine invertebrates that were reclassified into nektonic and benthic organisms showed similar concentration of ∑2HBCD. The feeding habits and modes of the marine organisms were considered to compare the degree of bioaccumulation and diastereoisomer-specific distribution of HBCD due to the effects of the environment in and around pollution sources, as well as the organisms' metabolic capacities. To the best of our knowledge, this is the first study to examine the species-specific distribution patterns of HBCD for both fish and marine invertebrates. We expect to significantly expand the understanding of the environmental fate of HBCD for marine organisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Anatomical, chemical, and ecological factors affecting tree species choice in dendrochemistry studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutter, B.E.; Guyette, R.P.

    1993-07-01

    Recently, element concentrations in tree rings have been used to monitor metal contamination, fertilization, and the effects of acid precipitation on soils. This has stimulated interest in which tree species may be suitable for use in studies of long-term trends in environmental chemistry. Potential radial translocation of elements across living boundaries can be a confounding factor in assessing environmental change. The selection of species which minimizes radial translocation of elements can be critical to the success of dendrochemical research. Criteria for selection of species with characteristics favorable for dendrochemical analysis are categorized into (1) habitat-based factors, (2) xylem-based factors, andmore » (3) element-based factors. A wide geographic range and ecological amplitude provide an advantage in calibration and better controls on the effects of soil chemistry. The most important xylem-based criteria are heartwood moisture content, permeability, and the nature of the sapwood-heartwood transition. The element of interest is important in determining suitable tree species because all elements are not equally mobile or detectable in the xylem. Ideally, the tree species selected for dendrochemical study will be long-lived, grow on a wide range of sites over a large geographic distribution, have a distinct heartwood with a low number of rings in the sapwood, a low heartwood moisture content, and have low radial permeability. Recommended temperate zone North American species include white oak (Quercus alba L.), post oak (Q. stellate Wangenh.), eastern redcedar (funiperus virginiana L.), old-growth Douglas-fir [Pseudoaugu menziesii (Mirb.) Franco] and big sagebrush (Artemisia tridentata Nutt.). In addition, species such as bristlecone pine (Pinus aristata Engelm. syn. longaeva), old-growth redwood [Sequoia sempervirens (D. Don) Endl.], and giant sequoia [S. gigantea (Lindl.) Deene] may be suitable for local purposes. 118 refs., 2 tabs.« less

  16. Geographic Distribution of Leishmania Species in Ecuador Based on the Cytochrome B Gene Sequence Analysis.

    PubMed

    Kato, Hirotomo; Gomez, Eduardo A; Martini-Robles, Luiggi; Muzzio, Jenny; Velez, Lenin; Calvopiña, Manuel; Romero-Alvarez, Daniel; Mimori, Tatsuyuki; Uezato, Hiroshi; Hashiguchi, Yoshihisa

    2016-07-01

    A countrywide epidemiological study was performed to elucidate the current geographic distribution of causative species of cutaneous leishmaniasis (CL) in Ecuador by using FTA card-spotted samples and smear slides as DNA sources. Putative Leishmania in 165 samples collected from patients with CL in 16 provinces of Ecuador were examined at the species level based on the cytochrome b gene sequence analysis. Of these, 125 samples were successfully identified as Leishmania (Viannia) guyanensis, L. (V.) braziliensis, L. (V.) naiffi, L. (V.) lainsoni, and L. (Leishmania) mexicana. Two dominant species, L. (V.) guyanensis and L. (V.) braziliensis, were widely distributed in Pacific coast subtropical and Amazonian tropical areas, respectively. Recently reported L. (V.) naiffi and L. (V.) lainsoni were identified in Amazonian areas, and L. (L.) mexicana was identified in an Andean highland area. Importantly, the present study demonstrated that cases of L. (V.) braziliensis infection are increasing in Pacific coast areas.

  17. Improving environmental assessments by integrating Species Sensitivity Distributions into environmental modeling: examples with two hypothetical oil spills.

    PubMed

    Bejarano, Adriana C; Mearns, Alan J

    2015-04-15

    A three dimensional (3D) trajectory model was used to simulate oil mass balance and environmental concentrations of two 795,000 L hypothetical oil spills modeled under physical and chemical dispersion scenarios. Species Sensitivity Distributions (SSD) for Total Hydrocarbon Concentrations (THCs) were developed, and Hazard Concentrations (HC) used as levels of concern. Potential consequences to entrained water column organisms were characterized by comparing model outputs with SSDs, and obtaining the proportion of species affected (PSA) and areas with oil concentrations exceeding HC5s (Area ⩾ HC5). Under the physically-dispersed oil scenario ⩽ 77% of the oil remains on the water surface and strands on shorelines, while with the chemically-dispersed oil scenario ⩽ 67% of the oil is entrained in the water column. For every 10% increase in chemical dispersion effectiveness, the average PSA and Area ⩾ HC5 increases (range: 0.01-0.06 and 0.50-2.9 km(2), respectively), while shoreline oiling decreases (⩽ 2919 L/km). Integrating SSDs into modeling may improve understanding of scales of potential impacts to water column organisms, while providing net environmental benefit comparison of oil spill response options. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Species Distribution Models and Ecological Suitability Analysis for Potential Tick Vectors of Lyme Disease in Mexico

    PubMed Central

    Illoldi-Rangel, Patricia; Rivaldi, Chissa-Louise; Sissel, Blake; Trout Fryxell, Rebecca; Gordillo-Pérez, Guadalupe; Rodríguez-Moreno, Angel; Williamson, Phillip; Montiel-Parra, Griselda; Sánchez-Cordero, Víctor; Sarkar, Sahotra

    2012-01-01

    Species distribution models were constructed for ten Ixodes species and Amblyomma cajennense for a region including Mexico and Texas. The model was based on a maximum entropy algorithm that used environmental layers to predict the relative probability of presence for each taxon. For Mexico, species geographic ranges were predicted by restricting the models to cells which have a higher probability than the lowest probability of the cells in which a presence record was located. There was spatial nonconcordance between the distributions of Amblyomma cajennense and the Ixodes group with the former restricted to lowlands and mainly the eastern coast of Mexico and the latter to montane regions with lower temperature. The risk of Lyme disease is, therefore, mainly present in the highlands where some Ixodes species are known vectors; if Amblyomma cajennense turns out to be a competent vector, the area of risk also extends to the lowlands and the east coast. PMID:22518171

  19. Species distribution models and ecological suitability analysis for potential tick vectors of lyme disease in Mexico.

    PubMed

    Illoldi-Rangel, Patricia; Rivaldi, Chissa-Louise; Sissel, Blake; Trout Fryxell, Rebecca; Gordillo-Pérez, Guadalupe; Rodríguez-Moreno, Angel; Williamson, Phillip; Montiel-Parra, Griselda; Sánchez-Cordero, Víctor; Sarkar, Sahotra

    2012-01-01

    Species distribution models were constructed for ten Ixodes species and Amblyomma cajennense for a region including Mexico and Texas. The model was based on a maximum entropy algorithm that used environmental layers to predict the relative probability of presence for each taxon. For Mexico, species geographic ranges were predicted by restricting the models to cells which have a higher probability than the lowest probability of the cells in which a presence record was located. There was spatial nonconcordance between the distributions of Amblyomma cajennense and the Ixodes group with the former restricted to lowlands and mainly the eastern coast of Mexico and the latter to montane regions with lower temperature. The risk of Lyme disease is, therefore, mainly present in the highlands where some Ixodes species are known vectors; if Amblyomma cajennense turns out to be a competent vector, the area of risk also extends to the lowlands and the east coast.

  20. Species Composition and Distribution of Adult Anopheles (Diptera: Culicidae) in Panama

    PubMed Central

    LOAIZA, J. R.; BERMINGHAM, E.; SCOTT, M. E.; ROVIRA, J. R.; CONN, J. E.

    2010-01-01

    Anopheles (Diptera: Culicidae) species composition and distribution were studied using human landing catch data over a 35-yr period in Panama. Mosquitoes were collected from 77 sites during 228 field trips carried out by members of the National Malaria Eradication Service. Fourteen Anopheles species were identified. The highest average human biting rates were recorded from Anopheles (Nyssorhynchus) albimanus (Wiedemann) (9.8 bites/person/night) and Anopheles (Anopheles) punctimacula (Dyar and Knab) (6.2 bites/person/night). These two species were also the most common, present in 99.1 and 74.9%, respectively, of the sites. Anopheles (Nyssorhynchus) aquasalis (Curry) was encountered mostly in the indigenous Kuna Yala Comarca along the eastern Atlantic coast, where malaria case history and average human biting rate (9.3 bites/person/night) suggest a local role in malaria transmission. An. albimanus, An. punctimacula, and Anopheles (Anopheles) vestitipennis (Dyar and Knab) were more abundant during the rainy season (May–December), whereas An. aquasalis was more abundant in the dry season (January–April). Other vector species collected in this study were Anopheles (Kerteszia) neivai (Howard, Dyar, and Knab) and Anopheles (Anopheles) pseudopunctipennis s.l. (Theobald). High diversity of Anopheles species and six confirmed malaria vectors in endemic areas of Panama emphasize the need for more detailed studies to better understand malaria transmission dynamics. PMID:18826025