Sample records for affecting stress response

  1. The relationship between personality and the response to acute psychological stress.

    PubMed

    Xin, Yuanyuan; Wu, Jianhui; Yao, Zhuxi; Guan, Qing; Aleman, André; Luo, Yuejia

    2017-12-04

    The present study examined the relationship between personality traits and the response to acute psychological stress induced by a standardized laboratory stress induction procedure (the Trier Social Stress Test, TSST). The stress response was measured with a combination of cardiovascular reactivity, hypothalamic-pituitary-adrenal axis reactivity, and subjective affect (including positive affect, negative affect and subjective controllability) in healthy individuals. The Generalized Estimating Equations (GEE) approach was applied to account for the relationship between personality traits and stress responses. Results suggested that higher neuroticism predicted lower heart rate stress reactivity, lower cortisol stress response, more decline of positive affect and lower subjective controllability. Individuals higher in extraversion showed smaller cortisol activation to stress and less increase of negative affect. In addition, higher openness score was associated with lower cortisol stress response. These findings elucidate that neuroticism, extraversion and openness are important variables associated with the stress response and different dimensions of personality trait are associated with different aspects of the stress response.

  2. Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females

    PubMed Central

    Treadway, Michael T.; Valeri, Linda; Douglas, Samuel

    2017-01-01

    The development of robust laboratory procedures for acute stress induction over the last decades has greatly advanced our understanding of stress responses in humans and their underlying neurobiological mechanisms. Nevertheless, attempts to uncover linear relationships among endocrine, neural, and affective responses to stress have generally yielded inconsistent results. Here, 79 healthy females completed a well established laboratory procedure of acute stress induction that was modified to prolong its effect. Endocrinological and subjective affect assessments revealed stress-induced increases in cortisol release and negative affect that persisted 65 and 100 min after stress onset, respectively, confirming a relatively prolonged acute stress induction. Applying latent class linear mixed modeling on individuals' patterns of cortisol responses identified three distinct trajectories of cortisol response: the hyper-response (n = 10), moderate-response (n = 21), and mild-response (n = 48) groups. Notably, whereas all three groups exhibited a significant stress-induced increase in cortisol release and negative affect, the hyper-response and mild-response groups both reported more negative affect relative to the moderate-response group. Structural MRI revealed no group differences in hippocampal and amygdala volumes, yet a continuous measure of cortisol response (area under the curve) showed that high and low levels of stress-induced cortisol release were associated with less hippocampal gray matter volume compared with moderate cortisol release. Together, these results suggest that distinct trajectories of cortisol response to prolonged acute stress among healthy females may not be captured by conventional linear analyses; instead, quadratic relations may better describe links between cortisol response to stress and affective responses, as well as hippocampal structural variability. SIGNIFICANCE STATEMENT Despite substantial research, it is unclear whether and how individual neuroendocrine stress response patterns are linked to affective responses to stress and structural variability in neuroendocrine regulatory brain regions. By applying latent class linear mixed modeling on individuals' patterns of cortisol responses to a prolonged acute stressor, we identified three distinct trajectories of cortisol response. Relative to the group showing a moderate cortisol response, groups characterized by hyper and mild cortisol response were both associated with more negative affect. Moreover, a continuous measure of cortisol response showed that high and low levels of stress-induced cortisol release correlated with reduced hippocampal gray matter volume. Given that neuroendocrine stress responses are conceptualized as biomarkers of stress susceptibility, these insights may have clinical implications. PMID:28739584

  3. Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females.

    PubMed

    Admon, Roee; Treadway, Michael T; Valeri, Linda; Mehta, Malavika; Douglas, Samuel; Pizzagalli, Diego A

    2017-08-16

    The development of robust laboratory procedures for acute stress induction over the last decades has greatly advanced our understanding of stress responses in humans and their underlying neurobiological mechanisms. Nevertheless, attempts to uncover linear relationships among endocrine, neural, and affective responses to stress have generally yielded inconsistent results. Here, 79 healthy females completed a well established laboratory procedure of acute stress induction that was modified to prolong its effect. Endocrinological and subjective affect assessments revealed stress-induced increases in cortisol release and negative affect that persisted 65 and 100 min after stress onset, respectively, confirming a relatively prolonged acute stress induction. Applying latent class linear mixed modeling on individuals' patterns of cortisol responses identified three distinct trajectories of cortisol response: the hyper-response ( n = 10), moderate-response ( n = 21), and mild-response ( n = 48) groups. Notably, whereas all three groups exhibited a significant stress-induced increase in cortisol release and negative affect, the hyper-response and mild-response groups both reported more negative affect relative to the moderate-response group. Structural MRI revealed no group differences in hippocampal and amygdala volumes, yet a continuous measure of cortisol response (area under the curve) showed that high and low levels of stress-induced cortisol release were associated with less hippocampal gray matter volume compared with moderate cortisol release. Together, these results suggest that distinct trajectories of cortisol response to prolonged acute stress among healthy females may not be captured by conventional linear analyses; instead, quadratic relations may better describe links between cortisol response to stress and affective responses, as well as hippocampal structural variability. SIGNIFICANCE STATEMENT Despite substantial research, it is unclear whether and how individual neuroendocrine stress response patterns are linked to affective responses to stress and structural variability in neuroendocrine regulatory brain regions. By applying latent class linear mixed modeling on individuals' patterns of cortisol responses to a prolonged acute stressor, we identified three distinct trajectories of cortisol response. Relative to the group showing a moderate cortisol response, groups characterized by hyper and mild cortisol response were both associated with more negative affect. Moreover, a continuous measure of cortisol response showed that high and low levels of stress-induced cortisol release correlated with reduced hippocampal gray matter volume. Given that neuroendocrine stress responses are conceptualized as biomarkers of stress susceptibility, these insights may have clinical implications. Copyright © 2017 the authors 0270-6474/17/377995-09$15.00/0.

  4. Catechol-O-Methyltransferase moderates effect of stress mindset on affect and cognition

    PubMed Central

    Akinola, Modupe; Turnwald, Bradley P.; Kaptchuk, Ted J.; Hall, Kathryn T.

    2018-01-01

    There is evidence that altering stress mindset—the belief that stress is enhancing vs. debilitating—can change cognitive, affective and physiological responses to stress. However individual differences in responsiveness to stress mindset manipulations have not been explored. Given the previously established role of catecholamines in both placebo effects and stress, we hypothesized that genetic variation in catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, would moderate responses to an intervention intended to alter participants’ mindsets about stress. Participants (N = 107) were exposed to a stress mindset manipulation (videos highlighting either the enhancing or debilitating effects of stress) prior to engaging in a Trier Social Stress task and subsequent cognitive tasks. The associations of the COMT rs4680 polymorphism with the effect of stress mindset video manipulations on cognitive and affective responses were examined. Genetic variation at rs4680 modified the effects of stress mindset on affective and cognitive responses to stress. Individuals homozygous for rs4680 low-activity allele (met/met) were responsive to the stress-is-enhancing mindset manipulation as indicated by greater increases in positive affect, improved cognitive functioning, and happiness bias in response to stress. Conversely, individuals homozygous for the high-activity allele (val/val) were not as responsive to the stress mindset manipulation. These results suggest that responses to stress mindset intervention may vary with COMT genotype. These findings contribute to the understanding of gene by environment interactions for mindset interventions and stress reactivity and therefore warrant further investigations. PMID:29677196

  5. Trait mindfulness modulates neuroendocrine and affective responses to social evaluative threat.

    PubMed

    Brown, Kirk Warren; Weinstein, Netta; Creswell, J David

    2012-12-01

    Individual differences in mindfulness have been associated with numerous self-report indicators of stress, but research has not examined how mindfulness may buffer neuroendocrine and psychological stress responses under controlled laboratory conditions. The present study investigated the role of trait mindfulness in buffering cortisol and affective responses to a social evaluative stress challenge versus a control task. Participants completed measures of trait mindfulness, perceived stress, anxiety, and fear of negative evaluation before being randomized to complete the Trier Social Stress Test (TSST; Kirschbaum et al., 1993) or a control task. At points throughout the session, participants provided five saliva samples to assess cortisol response patterns, and completed four self-report measures of anxiety and negative affect to assess psychological responses. In accord with hypotheses, higher trait mindfulness predicted lower cortisol responses to the TSST, relative to the control task, as well as lower anxiety and negative affect. These relations remained significant when controlling for the role of other variables that predicted cortisol and affective responses. The findings suggest that trait mindfulness modulates cortisol and affective responses to an acute social stressor. Further research is needed to understand the neural pathways through which mindfulness impacts these responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The Relationship between Rumination and Affective, Cognitive, and Physiological Responses to Stress in Adolescents.

    PubMed

    Aldao, Amelia; McLaughlin, Katie A; Hatzenbuehler, Mark L; Sheridan, Margaret A

    Although previous studies have established that rumination influences responses to stressful life events, the mechanisms underlying this relationship remain inadequately understood. The current study examines the relationship between trait rumination and affective, cognitive, and physiological responses to a standardized laboratory-based stressor in adolescents. A community-based sample of adolescents (N = 157) aged 13-17 completed the Trier Social Stress Test (TSST). Affective, cognitive, and physiological responses were obtained before, during, and after the TSST. Adolescents who engaged in habitual rumination experienced greater negative affect and more negative cognitive appraisals in response to the TSST than adolescents with lower levels of rumination. Rumination was unrelated to heart rate reactivity, but predicted slower heart rate recovery from the TSST, indicating that rumination might be specifically associated with physiological recovery from stress. Rumination is associated with negative affective, cognitive, and physiological responses following stressors, suggesting potential mechanisms through which it might increase risk for psychopathology.

  7. Dysfunctional Attitudes and Affective Responses to Daily Stressors: Separating Cognitive, Genetic, and Clinical Influences on Stress Reactivity

    PubMed Central

    Conway, Christopher C.; Slavich, George M.; Hammen, Constance

    2016-01-01

    Despite decades of research examining diathesis-stress models of emotional disorders, it remains unclear whether dysfunctional attitudes interact with stressful experiences to shape affect on a daily basis and, if so, how clinical and genetic factors influence these associations. To address these issues, we conducted a multi-level daily diary study that examined how dysfunctional attitudes and stressful events relate to daily fluctuations in negative and positive affect in 104 young adults. Given evidence that clinical and genetic factors underlie stress sensitivity, we also examined how daily affect is influenced by internalizing and externalizing symptoms and brain-derived neurotrophic factor (BDNF) genotype, which have been shown to influence neural, endocrine, and affective responses to stress. In multivariate models, internalizing symptoms and BDNF Val66Met genotype independently predicted heightened negative affect on stressful days, but dysfunctional attitudes did not. Specifically, the BDNF Met allele and elevated baseline internalizing symptomatology predicted greater increases in negative affect in stressful circumstances. These data are the first to demonstrate that BDNF genotype and stress are jointly associated with daily fluctuations in negative affect, and they challenge the assumption that maladaptive beliefs play a strong independent role in determining affective responses to everyday stressors. The results may thus inform the development of new multi-level theories of psychopathology and guide future research on predictors of affective lability. PMID:27041782

  8. Effects of Acute Stress on Thrombosis.

    PubMed

    Bentur, Ohad S; Sarig, Galit; Brenner, Benjamin; Jacob, Giris

    2018-06-18

    Stress, the nonspecific response to any demand for change, is an adaptive response of the human body to various stimulants. As such, stress-induced hypercoagulation may represent an adaptive response to bleeding. Numerous epidemiological studies have revealed that a correlation exists between stress and thrombotic risk and biochemically, links of the relationship between psychological stress and coagulation pathways have been made. The stress reaction is coupled with neurohormonal changes mediated mainly by the sympathetic neural system and the hypothalamic-pituitary-adrenal axis. Singling out the specific pathways affecting coagulation in this complex response is hampered by many confounders. The mediators of the stress reaction (neurotransmitters and hormones) can directly affect platelets and the coagulation cascade and indirectly affect hemostasis via changes in hemodynamics. In this review, the authors will delineate the distinct neurobiological mechanisms that govern the effects of stress on coagulation, and report their recent findings. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Subgenual anterior cingulate-insula resting-state connectivity as a neural correlate to trait and state stress resilience.

    PubMed

    Shao, Robin; Lau, Way K W; Leung, Mei-Kei; Lee, Tatia M C

    2018-07-01

    Accumulating evidence indicates important roles of the subgenual anterior cingulate cortex and rostral limbic regions such as the anterior insula, in regulating stress-related affective responses and negative affect states in general. However, research is lacking in simultaneously assessing the inter-relations between trait and state affective responses to stress, and the functional connectivity between the subgenual anterior cingulate and anterior insula. This preliminary research involved matched healthy participants with high (N = 10) and low (N = 10) self-reported trait stress resilience, and assessed their affective and subgenual anterior cingulate-anterior insula resting-state functional connectivity patterns before and after a psychosocial stress task. We found that while the low-resilience group displayed higher trait negative affect and perceived greater task-related stress, only the high-resilience group showed increase of negative affect, along with greater decrease of left subgenual anterior cingulate-right anterior insula connectivity, following stress induction. Moreover, the functional connectivity change mediated group difference in affect change following stress task. We speculate that the contingent increase of negative affect, and the associated temporary decoupling of subgenual anterior cingulate-insula circuitry, may represent a normative and adaptive stress response underpinned by adaptive and dynamic interplay between the default mode and salience networks. Such findings, if consolidated, have important implications for promoting stress resilience and reducing risk for stress-related affective disorders. Copyright © 2018. Published by Elsevier Inc.

  10. Relationship between obesity, negative affect and basal heart rate in predicting heart rate reactivity to psychological stress among adolescents.

    PubMed

    Park, Andres E; Huynh, Pauline; Schell, Anne M; Baker, Laura A

    2015-08-01

    Reduced cardiovascular responses to psychological stressors have been found to be associated with both obesity and negative affect in adults, but have been less well studied in children and adolescent populations. These findings have most often been interpreted as reflecting reduced sympathetic nervous system response, perhaps associated with heightened baseline sympathetic activation among the obese and those manifesting negative affect. However, obesity and negative affect may themselves be correlated, raising the question of whether they both independently affect cardiovascular reactivity. The present study thus examined the separate effects of obesity and negative affect on both cardiovascular and skin conductance responses to stress (e.g., during a serial subtraction math task) in adolescents, while controlling for baseline levels of autonomic activity during rest. Both obesity and negative affect had independent and negative associations with cardiovascular reactivity, such that reduced stress responses were apparent for obese adolescents and those with high levels of negative affect. In contrast, neither obesity nor negative affect was related to skin conductance responses to stress, implicating specifically noradrenergic mechanisms rather than sympathetic mechanisms generally as being deficient. Moreover, baseline heart rate was unrelated to obesity in this sample, which suggests that heightened baseline of sympathetic activity is not necessary for the reduced cardiovascular reactivity to stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The role of stress mindset in shaping cognitive, emotional, and physiological responses to challenging and threatening stress.

    PubMed

    Crum, Alia J; Akinola, Modupe; Martin, Ashley; Fath, Sean

    2017-07-01

    Prior research suggests that altering situation-specific evaluations of stress as challenging versus threatening can improve responses to stress. The aim of the current study was to explore whether cognitive, physiological and affective stress responses can be altered independent of situation-specific evaluations by changing individuals' mindsets about the nature of stress in general. Using a 2 × 2 design, we experimentally manipulated stress mindset using multi-media film clips orienting participants (N = 113) to either the enhancing or debilitating nature of stress. We also manipulated challenge and threat evaluations by providing positive or negative feedback to participants during a social stress test. Results revealed that under both threat and challenge stress evaluations, a stress-is-enhancing mindset produced sharper increases in anabolic ("growth") hormones relative to a stress-is-debilitating mindset. Furthermore, when the stress was evaluated as a challenge, a stress-is-enhancing mindset produced sharper increases in positive affect, heightened attentional bias towards positive stimuli, and greater cognitive flexibility, whereas a stress-is-debilitating mindset produced worse cognitive and affective outcomes. These findings advance stress management theory and practice by demonstrating that a short manipulation designed to generate a stress-is-enhancing mindset can improve responses to both challenging and threatening stress.

  12. Pediatricians' affective communication behavior attenuates parents' stress response during the medical interview.

    PubMed

    Gemmiti, Marco; Hamed, Selei; Lauber-Biason, Anna; Wildhaber, Johannes; Pharisa, Cosette; Klumb, Petra L

    2017-03-01

    To investigate whether the medical interview in the pediatric context generates a stressful response in parents in form of heightened cortisol activity, and whether pediatricians' empathetic communication is able to attenuate this stress response. 68 parents were recruited at pediatric out-patient and in-patient consultations. Salivary samples were collected between 60 and 30min prior to the consultation, shortly before the consultation, 20min as well as 45min after the consultation. 19 pediatricians participated in the study and effectuated the medical visit as usual. We videotaped the consultations and coded pediatricians' affective communication using the RIAS and the Four Habits Coding Scheme. Parents' cortisol increased during the medical visit with a peak at 20min after the medical encounter. Furthermore, multilevel analysis revealed a lesser increase in parents' cortisol response associated with pediatricians' levels in supportive communication behaviors. As indicated by their humoral stress responses, the medical encounter was stressful for the parents. Pediatricians' affective communication modulated this stress response in that more supportive communication was related to smaller cortisol increases. Pediatricians' affective communication behavior during the medical visit can alleviate parents' distress and anxiety, representing a source of social and emotional support. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Sex differences in physiological and affective responses to stress in remitted depression.

    PubMed

    Bagley, Sara L; Weaver, Terri L; Buchanan, Tony W

    2011-08-03

    Major depressive disorder (MDD) is associated with alterations in stress physiology. Severe melancholic depression is characterized by hypercortisolism, but community dwelling mildly depressed individuals and those with remitted MDD have shown reduced or normal reactivity to stress. There are also pronounced sex differences both in the incidence of MDD and in stress reactivity. To explore the relationships among depression history, sex differences, and stress, we examined stress reactivity in people with and without a history of MDD. Twenty-two participants with remitted MDD (12 men and 10 women) and 36 never depressed comparison participants (22 men and 14 women) participated in the study. Cortisol and alpha-amylase (sAA) were sampled from saliva before, 10 min after, and 30 min after the Trier Social Stress Test (TSST). Participants filled out the Positive Affect Negative Affect Schedule (PANAS) before and after they underwent the TSST. Women with remitted MDD showed reduced cortisol response to the TSST compared with the never MDD women, while men with remitted MDD showed comparable cortisol reactivity to the never depressed men. The groups did not differ on sAA reactivity to stress. The remitted MDD group (overall and men and women separately) reported greater negative affect both before and after stress compared to the never depressed group. Women from both groups reported greater post-stress negative affect than men. In contrast, men from both groups reported higher positive affect before and after stress than women. Given that the sex difference findings were not dependent on depression history, self-reported affective differences in response to stress may predate depressive symptoms and contribute to sex differences in depression incidence. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Mood and autonomic responses to repeated exposure to the Trier Social Stress Test for Groups (TSST-G).

    PubMed

    Boesch, Maria; Sefidan, Sandra; Ehlert, Ulrike; Annen, Hubert; Wyss, Thomas; Steptoe, Andrew; La Marca, Roberto

    2014-05-01

    A group version of the Trier Social Stress Test (TSST-G) was introduced as a standardized, economic and efficient tool to induce a psychobiological stress response simultaneously in a group of subjects. The aim of the present study was to examine the efficacy of the TSST-G to repeatedly induce an affective and autonomic stress response while comparing two alternative protocols for the second examination. Healthy young male recruits participated twice in the TSST-G 10 weeks apart. In the first examination, the TSST-G consisted of a combination of mental arithmetic and a fake job interview (TSST-G-1st; n=294). For the second examination, mental arithmetic was combined with either (a) a defensive speech in response to a false shoplifting accusation (TSST-G-2nd-defence; n=105), or (b) a speech on a more neutral topic selected by the investigators (TSST-G-2nd-presentation; n=100). Affect ratings and salivary alpha-amylase (sAA) were determined immediately before and after the stress test, while heart rate (HR) and heart rate variability (HRV) were measured continuously. TSST-G-1st resulted in a significant increase of negative affect, HR, and sAA, and a significant decrease in positive affect and HRV. TSST-G-2nd, overall, resulted in a significant increase of HR and sAA (the latter only in response to TSST-G-2nd-defence) and a decrease in HRV, while no significant affect alterations were found. When comparing both, TSST-G-2nd-defence and -2nd-presentation, the former resulted in a stronger stress response with regard to HR and HRV. The findings reveal that the TSST-G is a useful protocol to repeatedly evoke an affective and autonomic stress response, while repetition leads to affective but not necessarily autonomic habituation. When interested in examining repeated psychosocial stress reactivity, a task that requires an ego-involving effort, such as a defensive speech, seems to be significantly superior to a task using an impersonal speech. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Gender differences in responses to cues presented in the natural environment of cigarette smokers.

    PubMed

    Wray, Jennifer M; Gray, Kevin M; McClure, Erin A; Carpenter, Matthew J; Tiffany, Stephen T; Saladin, Michael E

    2015-04-01

    Although the evidence is mixed, female smokers appear to have more difficulty quitting smoking than male smokers. Craving, stress, and negative affect have been hypothesized as potential factors underlying gender differences in quit rates. In the current study, the cue-reactivity paradigm was used to assess craving, stress, and negative affect in response to cues presented in the natural environment of cigarette smokers using ecological momentary assessment. Seventy-six daily smokers (42% female) responded to photographs (smoking, stress, and neutral) presented 4 times per day on an iPhone over the course of 2 weeks. Both smoking and stress cues elicited stronger cigarette craving and stress responses compared to neutral cues. Compared with males, females reported higher levels of post-stress cue craving, stress, and negative affect, but response to smoking cues did not differ by gender. Findings from this project were largely consistent with results from laboratory-based research and extend previous work by measuring response to cues in the natural environment of cigarette smokers. This study extends previous cue reactivity ecological momentary assessment research by using a new platform and by measuring response to stress cues outside of the laboratory. Findings from this project highlight the importance of addressing coping in response to stress cues in clinical settings, especially when working with female smokers. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Does unconscious stress play a role in prolonged cardiovascular stress recovery?

    PubMed

    Brosschot, J F; Geurts, S A E; Kruizinga, I; Radstaak, M; Verkuil, B; Quirin, M; Kompier, M A J

    2014-08-01

    According to recent insights, humans might not be aware of a substantial part of their cognitive stress representations while these still have prolonged physiological effects. 'Unconscious stress' can be measured by implicit affect (IA) tests. It was shown that IA predicts physiological stress responses, in fact better than explicit ('conscious') affect. It is not known yet whether IA is associated with concurrent prolonged stress responses. In two studies (n = 62 and 123), anger harassment was used to induce stress. Blood pressure (BP) and heart rate (HR) were measured continuously. During BP and HR recovery, IA was measured by an 'anger' version of the implicit association test (IAT) or the implicit positive and negative affect test (IPANAT). Blood pressure and HR increased during anger harassment and recovery afterwards. When using the IPANAT BP recovery levels were lower when positive IA was high and higher when negative IA was high, independent of explicit affect and rumination. These results were not found using the IAT. These results provide preliminary evidence that physiological stress recovery is associated with IA. This is in line with the theory that unconscious stress is responsible for a-possibly considerable-part of unhealthy prolonged stress-related physiological activity. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Phosphate-Dependent Root System Architecture Responses to Salt Stress1[OPEN

    PubMed Central

    Sommerfeld, Hector Montero; ter Horst, Anneliek; Haring, Michel A.

    2016-01-01

    Nutrient availability and salinity of the soil affect the growth and development of plant roots. Here, we describe how inorganic phosphate (Pi) availability affects the root system architecture (RSA) of Arabidopsis (Arabidopsis thaliana) and how Pi levels modulate responses of the root to salt stress. Pi starvation reduced main root length and increased the number of lateral roots of Arabidopsis Columbia-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75 mm) on all measured RSA components. At higher salt concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid signaling compared with the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general, lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied, and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By genome-wide association mapping, 12 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses. PMID:27208277

  18. An investigation of coping strategies associated with job stress in teachers.

    PubMed

    Griffith, J; Steptoe, A; Cropley, M

    1999-12-01

    School teaching is regarded as a stressful occupation, but the perception of the job as stressful may be influenced by coping responses and social support. To assess the associations between teacher stress, psychological coping responses and social support, taking into account the plaintive set engendered by negative affectivity. Questionnaire survey of 780 primary and secondary school teachers (53.5% response rate). In stepwise multiple regression, social support at work and the coping responses behavioural disengagement and suppression of competing activities predicted job stress independently of age, gender, class size, occupational grade and negative affectivity. High job stress was associated with low social support at work and greater use of coping by disengagement and suppression of competing activities. It is suggested that behavioural disengagement and suppression of competing activities are maladaptive responses in a teaching environment and may actually contribute to job stress. Coping and social support not only moderate the impact of stressors on well-being but influence the appraisal of environmental demands as stressful.

  19. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response.

    PubMed

    Geva, Nirit; Defrin, Ruth

    2018-04-01

    The effect of acute stress on pain threshold and intolerance threshold are reported as producing either hypoalgesia or hyperalgesia. Yet, the contribution of individual stress reactivity in this respect has not been established. The aim was to test 2 pain modulation paradigms under acute stress manipulation, to our knowledge, for the first time, to study whether stress differentially affects pain modulation, and whether the effect is related to individual stress response. Participants were 31 healthy subjects. Conditioned pain modulation (CPM) and pain adaptation were measured before and after inducing an acute stress response using the Montreal Imaging Stress Task. Subjects' stress response was evaluated according to salivary cortisol, autonomic function, and perceived stress and anxiety. The Montreal Imaging Stress Task induced a validated stress response. On a group level, stress induced reduction in CPM magnitude and increase in pain adaptation compared with baseline. These responses correlated with stress reactivity. When the group was subdivided according to stress reactivity, only high stress responders exhibited reduced CPM whereas only low stress responders exhibited increased pain adaptation. The results suggest that acute stress may induce opposite effects on pain modulation, depending on individual stress reactivity magnitude, with an advantage to low stress responders. This study evaluated the effect of acute stress on pain modulation. Pain modulation under stress is affected by individual stress responsiveness; decreased CPM occurs in high stress responders whereas increased pain adaptation occurs in low stress responders. Identification of high stress responders may promote better pain management. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  20. A chloroplast-targeted cabbage DEAD-box RNA helicase BrRH22 confers abiotic stress tolerance to transgenic Arabidopsis plants by affecting translation of chloroplast transcripts.

    PubMed

    Nawaz, Ghazala; Lee, Kwanuk; Park, Su Jung; Kim, Yeon-Ok; Kang, Hunseung

    2018-06-01

    Although the roles of many DEAD-box RNA helicases (RHs) have been determined in the nucleus as well as in cytoplasm during stress responses, the importance of chloroplast-targeted DEAD-box RHs in stress response remains largely unknown. In this study, we determined the function of BrRH22, a chloroplast-targeted DEAD-box RH in cabbage (Brassica rapa), in abiotic stress responses. The expression of BrRH22 was markedly increased by drought, heat, salt, or cold stress and by ABA treatment, but was largely decreased by UV stress. Expression of BrRH22 in Arabidopsis enhanced germination and plantlet growth under high salinity or drought stress. BrRH22-expressing plants displayed a higher cotyledon greening and better plantlet growth upon ABA treatment due to decreases in the levels of ABI3, ABI4, and ABI5. Further, BrRH22 affected translation of several chloroplast transcripts under stress. Notably, BrRH22 had RNA chaperone function. These results altogether suggest that chloroplast-transported BrRH22 contributes positively to the response of transgenic Arabidopsis to abiotic stress by affecting translation of chloroplast genes via its RNA chaperone activity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Stress-Induced Inflammatory Responses in Women: Effects of Race and Pregnancy

    PubMed Central

    Christian, Lisa M.; Glaser, Ronald; Porter, Kyle; Iams, Jay D.

    2013-01-01

    Objective African Americans experience preterm birth at nearly twice the rate of Whites. Chronic stress associated with minority status is implicated in this disparity. Inflammation is a key biological pathway by which stress may affect birth outcomes. This study examined effects of race and pregnancy on stress-induced inflammatory responses. Methods Thirty-nine women in the 2nd trimester of pregnancy (19 African American; 20 White) and 39 demographically similar nonpregnant women completed an acute stressor (Trier Social Stress Test). Psychosocial characteristics, health behaviors, and affective responses were assessed. Serum interleukin(IL)-6 was measured via high sensitivity ELISA at baseline, 45 minutes, and 120 minutes post-stressor. Results IL-6 responses at 120 minutes post-stressor were 46% higher in African Americans versus Whites (95%CI:8%-81%; t(72)=3.51, p=.001). This effect was present in pregnancy and nonpregnancy. IL-6 responses at 120 minutes post-stressor tended to be lower (15%) in pregnant versus nonpregnant women (95%CI:-5%-32%; p=0.14). Racial differences in inflammatory responses were not accounted for by demographics, psychological characteristics, health behaviors, or differences in salivary cortisol across the study session. Pregnant Whites showed lower negative affective responses than nonpregnant women of either race (ps≤.007). Conclusion This study provides novel evidence that stress-induced inflammatory responses are more robust among African American women versus Whites during pregnancy and nonpregnancy. The ultimate impact of stress on health is a function of stressor exposure and physiological responses. Individual differences in stress-induced inflammatory responses represent a clear target for continued research efforts in racial disparities in health during pregnancy and nonpregnancy. PMID:23873713

  2. Impaired Memory Retrieval Correlates with Individual Differences in Cortisol Response but Not Autonomic Response

    ERIC Educational Resources Information Center

    Tranel, Daniel; Adolphs, Ralph; Buchanan, Tony W.

    2006-01-01

    Stress can enhance or impair memory performance. Both cortisol release and sympathetic nervous system responses have been implicated in these differential effects. Here we investigated how memory retrieval might be affected by stress-induced cortisol release, independently of sympathetic nervous system stress responses. Thirty-two healthy…

  3. Personality differences in the susceptibility to stress-eating: The influence of emotional control and impulsivity.

    PubMed

    Van Blyderveen, Sherry; Lafrance, Adele; Emond, Michael; Kosmerly, Stacey; O'Connor, Megan; Chang, Felicia

    2016-12-01

    Stress has been associated with deviations from typical eating patterns, with respect to both food choice and overall caloric intake. Both increases and decreases in dietary intake have been previously noted in response to stress. The purpose of the present study was to determine whether the affect regulation strategies of emotional control and impulsivity predict susceptibility to eating in response to stress. Specifically, it was anticipated that emotional suppression would predict decreases in caloric intake, whereas impulsivity would predict increases in caloric intake, in response to a stressor. Participants were randomly assigned to view either a video designed to elicit stress or a control video. Food was provided during the video and the amount and type of food consumed was measured. Participants' nutritional intake was greater in the stress condition than in the control condition. One aspect of affect regulation, impulsivity, moderated this relationship, with a tendency for greater impulsivity to be associated with greater caloric intake in the stress condition. The degree of negative affect that participants experienced in the stress condition predicted food choice and overall caloric intake. Both emotional control and impulsivity moderated the relationship between negative affect and both food choice and caloric intake in the stress condition. The present study highlights the importance of considering the personality attributes of both impulsivity and emotional suppression in understanding stress eating. Copyright © 2016. Published by Elsevier Ltd.

  4. Cortisol Stress Response Variability in Early Adolescence Attachment, Affect and Sex

    PubMed Central

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J.; Wynne-Edwards, Katherine; Wright, Joan M.; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic–pituitary–adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents. PMID:27468997

  5. Cortisol Stress Response Variability in Early Adolescence: Attachment, Affect and Sex.

    PubMed

    Cameron, Catherine Ann; McKay, Stacey; Susman, Elizabeth J; Wynne-Edwards, Katherine; Wright, Joan M; Weinberg, Joanne

    2017-01-01

    Attachment, affect, and sex shape responsivity to psychosocial stress. Concurrent social contexts influence cortisol secretion, a stress hormone and biological marker of hypothalamic-pituitary-adrenal axis activity. Patterns of attachment, emotion status, and sex were hypothesized to relate to bifurcated, that is, accentuated and attenuated, cortisol reactivity. The theoretical framework for this study posits that multiple individual differences mediate a cortisol stress response. The effects of two psychosocial stress interventions, a modified Trier Social Stress Test for Teens and the Frustration Social Stressor for Adolescents were developed and investigated with early adolescents. Both of these protocols induced a significant stress reaction and evoked predicted bifurcation in cortisol responses; an increase or decrease from baseline to reactivity. In Study I, 120 predominantly middle-class, Euro-Canadian early adolescents with a mean age of 13.43 years were studied. The girls' attenuated cortisol reactivity to the public performance stressor related significantly to their self-reported lower maternal-attachment and higher trait-anger. In Study II, a community sample of 146 predominantly Euro-Canadian middle-class youth, with an average age of 14.5 years participated. Their self-reports of higher trait-anger and trait-anxiety, and lower parental attachment by both sexes related differentially to accentuated and attenuated cortisol reactivity to the frustration stressor. Thus, attachment, affect, sex, and the stressor contextual factors were associated with the adrenal-cortical responses of these adolescents through complex interactions. Further studies of individual differences in physiological responses to stress are called for in order to clarify the identities of concurrent protective and risk factors in the psychosocial stress and physiological stress responses of early adolescents.

  6. Protective Effect of Self-Compassion to Emotional Response among Students with Chronic Academic Stress

    PubMed Central

    Zhang, Yonghong; Luo, Xi; Che, Xianwei; Duan, Wenjie

    2016-01-01

    The literature has shown that self-compassion is a protective factor of an individual’s emotional response to chronic stress. However, this stress-buffering effect has not been completely analyzed in individuals who report significantly high academic stress. The present study explored the role of self-compassion in a group of undergraduate students who experience chronic academic stress. A total of 208 undergraduate students who were preparing for the Postgraduate Entrance Examination (PEE) were recruited and completed the Self-Compassion Scale, Adolescent Self-Rating Life Event Check List, and Positive and Negative Affect Schedule. Differences analysis confirmed that the participants reported significantly higher academic stress than their peers who were not preparing for PEE. Self-compassion positively related to positive affect but negatively related to negative affect and learning stress. Further analysis showed that self-compassion negatively mediated the relationship between chronic academic stress and negative affect. Findings imply that self-compassion-centered interventions can be developed in the educational context to assist students cope with chronic academic stress. PMID:27920736

  7. AT1 and AT2 Receptors in the Prelimbic Cortex Modulate the Cardiovascular Response Evoked by Acute Exposure to Restraint Stress in Rats.

    PubMed

    Brasil, Taíz F S; Fassini, Aline; Corrêa, Fernando M

    2018-01-01

    The prelimbic cortex (PL) is an important structure in the neural pathway integrating stress responses. Brain angiotensin is involved in cardiovascular control and modulation of stress responses. Blockade of angiotensin receptors has been reported to reduce stress responses. Acute restraint stress (ARS) is a stress model, which evokes sustained blood pressure increase, tachycardia, and reduction in tail temperature. We therefore hypothesized that PL locally generated angiotensin and angiotensin receptors modulate stress autonomic responses. To test this hypothesis, we microinjected an angiotensin-converting enzyme (ACE) inhibitor or angiotensin antagonists into the PL, prior to ARS. Male Wistar rats were used; guide cannulas were bilaterally implanted in the PL for microinjection of vehicle or drugs. A polyethylene catheter was introduced into the femoral artery to record cardiovascular parameters. Tail temperature was measured using a thermal camera. ARS was started 10 min after PL treatment with drugs. Pretreatment with ACE inhibitor lisinopril (0.5 nmol/100 nL) reduced the pressor response, but did not affect ARS-evoked tachycardia. At a dose of 1 nmol/100 nL, it reduced both ARS pressor and tachycardic responses. Pretreatment with candesartan, AT1 receptor antagonist reduced ARS-evoked pressor response, but not tachycardia. Pretreatment with PD123177, AT2 receptor antagonist, reduced tachycardia, but did not affect ARS pressor response. No treatment affected ARS fall in tail temperature. Results suggest involvement of PL angiotensin in the mediation of ARS cardiovascular responses, with participation of both AT1 and AT2 receptors. In conclusion, results indicate that PL AT1-receptors modulate the ARS-evoked pressor response, while AT2-receptors modulate the tachycardic component of the autonomic response.

  8. Physiological stress reactivity and empathy following social exclusion: a test of the defensive emotional analgesia hypothesis.

    PubMed

    Bass, Ellyn Charlotte; Stednitz, Sarah Josephine; Simonson, Kevin; Shen, Tori; Gahtan, Ethan

    2014-01-01

    Experiences of social exclusion elicit social pain responses. The current study examined the ability of social exclusion to activate physiological stress responses and adaptively modulate affect and empathy consistent with "defensive emotional analgesia." Measures of affect and empathy, and saliva samples for cortisol and alpha-amylase (sAA) analysis, were collected before and after subjects participated in a computer game ("Cyberball") designed to manipulate feelings of social exclusion. Contrary to our hypotheses, social exclusion was associated with a reduction in cortisol, and social inclusion with an increase in cortisol. Both Cyberball groups showed increases in sAA and decreases in both positive and negative affect, with the greatest drop in affect occurring after social exclusion. Empathy did not differ between the social exclusion and inclusion groups and was not correlated with cortisol or sAA levels. These results support the presence of a defensive response to social exclusion in which central stress pathways controlling cortisol release are inhibited. Cortisol and sAA were shown to have distinct patterns of responses to psychological stress, with sAA responding more rapidly. Related methodological concerns for the use of these physiological stress markers and of Cyberball in social neuroscience research are discussed.

  9. Abiotic and Biotic Stressors Causing Equivalent Mortality Induce Highly Variable Transcriptional Responses in the Soybean Aphid

    PubMed Central

    Enders, Laramy S.; Bickel, Ryan D.; Brisson, Jennifer A.; Heng-Moss, Tiffany M.; Siegfried, Blair D.; Zera, Anthony J.; Miller, Nicholas J.

    2014-01-01

    Environmental stress affects basic organismal functioning and can cause physiological, developmental, and reproductive impairment. However, in many nonmodel organisms, the core molecular stress response remains poorly characterized and the extent to which stress-induced transcriptional changes differ across qualitatively different stress types is largely unexplored. The current study examines the molecular stress response of the soybean aphid (Aphis glycines) using RNA sequencing and compares transcriptional responses to multiple stressors (heat, starvation, and plant defenses) at a standardized stress level (27% adult mortality). Stress-induced transcriptional changes showed remarkable variation, with starvation, heat, and plant defensive stress altering the expression of 3985, 510, and 12 genes, respectively. Molecular responses showed little overlap across all three stressors. However, a common transcriptional stress response was identified under heat and starvation, involved with up-regulation of glycogen biosynthesis and molecular chaperones and down-regulation of bacterial endosymbiont cellular and insect cuticular components. Stressor-specific responses indicated heat affected expression of heat shock proteins and cuticular components, whereas starvation altered a diverse set of genes involved in primary metabolism, oxidative reductive processes, nucleosome and histone assembly, and the regulation of DNA repair and replication. Exposure to host plant defenses elicited the weakest response, of which half of the genes were of unknown function. This study highlights the need for standardizing stress levels when comparing across stress types and provides a basis for understanding the role of general vs. stressor specific molecular responses in aphids. PMID:25538100

  10. The role of sleep in adolescents' daily stress recovery: Negative affect spillover and positive affect bounce-back effects.

    PubMed

    Chue, Amanda E; Gunthert, Kathleen C; Kim, Rebecca W; Alfano, Candice A; Ruggiero, Aria R

    2018-07-01

    The present study examined the role of sleep in daily affective stress recovery processes in adolescents. Eighty-nine American adolescents recorded their emotions and stress through daily surveys and sleep with Fitbit devices for two weeks. Results show that objectively measured sleep (sleep onset latency and sleep debt) moderated negative affective responses to previous-day stress, such that stress-related negative affect spillover effects became more pronounced as amount of sleep decreased. Total sleep time and sleep debt moderated cross-day positive affect "bounce-back" effects. With more sleep, morning positive affect on days following high stress tended to bounce back to the levels that were common following low stress days. Conversely, if sleep was short following high stress days, positive affect remained low the next morning. No evidence for subjective sleep quality as a moderator of spillover/bounce-back effects was found. This research suggests that sleep quantity could relate to overnight affective stress recovery. Copyright © 2018. Published by Elsevier Ltd.

  11. Stress Reactivity in Traditional Chinese Medicine–Based Subgroups of Patients with Irritable Bowel Syndrome

    PubMed Central

    Chang, Megan C.; Shapiro, David; Joshi, Aditi; Shahabi, Leila; Tan, Steven; Smith, Suzanne; Hui, Ka Kit; Tillisch, Kirsten; Mayer, Emeran A.

    2014-01-01

    Abstract Objectives: This study aimed to examine differences in autonomic responses to stress, pain perception, and the role of negative affect in these responses in individuals with irritable bowel syndrome (IBS) according to Traditional Chinese Medicine (TCM) classifications. Design: Fifty-nine female patients with IBS age 18–65 years diagnosed by TCM practitioners as showing primarily an excess (n=32) or an overlap (n=27) pattern (mixed excess and deficiency) were assessed for symptom differences, heart rate, and skin conductance responses to a psychosocial stressor and pain perception. Settings/Locations: University of California in Los Angeles, California. Results: Compared with the excess group, the overlap group showed significantly greater overall gastrointestinal symptom severity, abdominal pain, and negative affect. The excess group with higher levels of negative affect showed greater reactivity to stress, whereas the overlap group showed an opposite response pattern. The overlap group showed increased cold sensitivity. Conclusions: IBS patients with the overlap pattern have greater disease severity and comorbidity than those with excess alone. Those with excess showed a pattern of increased stress response with greater negative affect, whereas the overlap group with greater deficiency showed lower physiologic arousal with greater negative affect, consistent with depletion resulting from allostatic load. PMID:24256027

  12. Evidence of major genes affecting stress response in rainbow trout using Bayesian methods of complex segregation analysis

    USDA-ARS?s Scientific Manuscript database

    As a first step towards the genetic mapping of quantitative trait loci (QTL) affecting stress response variation in rainbow trout, we performed complex segregation analyses (CSA) fitting mixed inheritance models of plasma cortisol using Bayesian methods in large full-sib families of rainbow trout. ...

  13. Diurnal fluctuations in HPA and neuropeptide Y-ergic systems underlie differences in vulnerability to traumatic stress responses at different zeitgeber times.

    PubMed

    Cohen, Shlomi; Vainer, Ella; Matar, Michael A; Kozlovsky, Nitsan; Kaplan, Zeev; Zohar, Joseph; Mathé, Aleksander A; Cohen, Hagit

    2015-02-01

    The hypothalamic-pituitary-adrenal (HPA) axis displays a characteristic circadian pattern of corticosterone release, with higher levels at the onset of the active phase and lower levels at the onset of the inactive phase. As corticosterone levels modify the response to stress and influence the susceptibility to and/or severity of stress-related sequelae, we examined the effects of an acute psychological trauma applied at different zeitgeber times (ZTs) on behavioral stress responses. Rats were exposed to stress either at the onset of the inactive-(light) phase (ZT=0) or at the onset of the active-(dark) phase (ZT=12). Their behavior in the elevated plus-maze and acoustic startle response paradigms were assessed 7 days post exposure for retrospective classification into behavioral response groups. Serum corticosterone levels and the dexamethasone suppression test were used to assess the stress response and feedback inhibition of the HPA axis. Immunoreactivity for neuropeptide Y (NPY) and NPY-Y1 receptor (Y1R) in the paraventricular (PVN) and arcuate (ARC) hypothalamic nuclei, hippocampus, and basolateral amygdala were measured. The behavioral effects of NPY/Y1R antagonist microinfused into the PVN 30 min before stress exposure during the inactive or active phase, respectively, were evaluated. PVN immunoreactivity for NPY and Y1R was measured 1 day after the behavioral tests. The time of day of the traumatic exposure markedly affected the pattern of the behavioral stress response and the prevalence of rats showing an extreme behavioral response. Rats exposed to the stressor at the onset of their inactive phase displayed a more traumatic behavioral response, faster post-exposure corticosterone decay, and a more pronounced stress-induced decline in NPY and Y1R expression in the PVN and arcuate hypothalamic nuclei. Blocking PVN Y1R before stress applied in the active phase, or administering NPY to the PVN before stress applied in the inactive phase, had a resounding behavioral effect. The time at which stress occurred significantly affected the behavioral stress response. Diurnal variations in HPA and NPY/Y1R significantly affect the behavioral response, conferring more resilience at the onset of the active phase and more vulnerability at the onset of the inactive phase, implying that NPY has a significant role in conferring resilience to stress-related psychopathology.

  14. Diurnal Fluctuations in HPA and Neuropeptide Y-ergic Systems Underlie Differences in Vulnerability to Traumatic Stress Responses at Different Zeitgeber Times

    PubMed Central

    Cohen, Shlomi; Vainer, Ella; Matar, Michael A; Kozlovsky, Nitsan; Kaplan, Zeev; Zohar, Joseph; Mathé, Aleksander A; Cohen, Hagit

    2015-01-01

    The hypothalamic–pituitary–adrenal (HPA) axis displays a characteristic circadian pattern of corticosterone release, with higher levels at the onset of the active phase and lower levels at the onset of the inactive phase. As corticosterone levels modify the response to stress and influence the susceptibility to and/or severity of stress-related sequelae, we examined the effects of an acute psychological trauma applied at different zeitgeber times (ZTs) on behavioral stress responses. Rats were exposed to stress either at the onset of the inactive-(light) phase (ZT=0) or at the onset of the active-(dark) phase (ZT=12). Their behavior in the elevated plus-maze and acoustic startle response paradigms were assessed 7 days post exposure for retrospective classification into behavioral response groups. Serum corticosterone levels and the dexamethasone suppression test were used to assess the stress response and feedback inhibition of the HPA axis. Immunoreactivity for neuropeptide Y (NPY) and NPY-Y1 receptor (Y1R) in the paraventricular (PVN) and arcuate (ARC) hypothalamic nuclei, hippocampus, and basolateral amygdala were measured. The behavioral effects of NPY/Y1R antagonist microinfused into the PVN 30 min before stress exposure during the inactive or active phase, respectively, were evaluated. PVN immunoreactivity for NPY and Y1R was measured 1 day after the behavioral tests. The time of day of the traumatic exposure markedly affected the pattern of the behavioral stress response and the prevalence of rats showing an extreme behavioral response. Rats exposed to the stressor at the onset of their inactive phase displayed a more traumatic behavioral response, faster post-exposure corticosterone decay, and a more pronounced stress-induced decline in NPY and Y1R expression in the PVN and arcuate hypothalamic nuclei. Blocking PVN Y1R before stress applied in the active phase, or administering NPY to the PVN before stress applied in the inactive phase, had a resounding behavioral effect. The time at which stress occurred significantly affected the behavioral stress response. Diurnal variations in HPA and NPY/Y1R significantly affect the behavioral response, conferring more resilience at the onset of the active phase and more vulnerability at the onset of the inactive phase, implying that NPY has a significant role in conferring resilience to stress-related psychopathology. PMID:25241802

  15. Increased neural responses to empathy for pain might explain how acute stress increases prosociality

    PubMed Central

    Tomova, L.; Majdandžić, J.; Hummer, A.; Windischberger, C.; Heinrichs, M.

    2017-01-01

    Abstract Recent behavioral investigations suggest that acute stress can increase prosocial behavior. Here, we investigated whether increased empathy represents a potential mechanism for this finding. Using functional magnetic resonance imaging, we assessed the effects of acute stress on neural responses related to automatic and regulatory components of empathy for pain as well as subsequent prosocial behavior. Stress increased activation in brain areas associated with the automatic sharing of others’ pain, such as the anterior insula, the anterior midcingulate cortex, and the primary somatosensory cortex. In addition, we found increased prosocial behavior under stress. Furthermore, activation in the anterior midcingulate cortex mediated the effects of stress on prosocial behavior. However, stressed participants also displayed stronger and inappropriate other-related responses in situations which required them to take the perspective of another person, and to regulate their automatic affective responses. Thus, while acute stress may increase prosocial behavior by intensifying the sharing of others’ emotions, this comes at the cost of reduced cognitive appraisal abilities. Depending on the contextual constraints, stress may therefore affect empathy in ways that are either beneficial or detrimental. PMID:27798249

  16. Early caregiving and physiological stress responses.

    PubMed

    Luecken, Linda J; Lemery, Kathryn S

    2004-05-01

    Inadequate early caregiving has been associated with risks of stress-related psychological and physical illness over the life span. Dysregulated physiological stress responses may represent a mechanism linking early caregiving to health outcomes. This paper reviews evidence linking early caregiving to physiological responses that can increase vulnerability to stress-related illness. A number of high-risk family characteristics, including high conflict, divorce, abuse, and parental psychopathology, are considered in the development of stress vulnerability. Three theoretical pathways linking caregiving to physiological stress responses are outlined: genetic, psychosocial, and cognitive-affective. Exciting preliminary evidence suggests that early caregiving can impact long-term physiological stress responses. Directions for future research in this area are suggested.

  17. Interaction between Nitrogen and Phosphate Stress Responses in Sinorhizobium meliloti

    DOE PAGES

    Hagberg, Kelly L.; Yurgel, Svetlana N.; Mulder, Monika; ...

    2016-11-30

    Bacteria have developed various stress response pathways to improve their assimilation and allocation of limited nutrients, such as nitrogen and phosphate. While both the nitrogen stress response (NSR) and phosphate stress response (PSR) have been studied individually, there are few experiments reported that characterize effects of multiple stresses on one or more pathways in Sinorhizobium meliloti, a facultatively symbiotic, nitrogen-fixing bacteria. The PII proteins, GlnB and GlnK, regulate the NSR activity, but analysis of global transcription changes in a PII deficient mutant suggest that the S. meliloti PII proteins may also regulate the PSR. PII double deletion mutants grow verymore » slowly and pseudoreversion of the slow growth phenotype is common. In order to understand this phenomenon better, transposon mutants were isolated that had a faster growing phenotype. One mutation was in phoB, the response regulator for a two component regulatory system that is important in the PSR. phoB::Tn5 mutants had different phenotypes in the wild type compared to a PII deficient background. This led to the hypothesis that phosphate stress affects the NSR and conversely, that nitrogen stress affects the PSR. These results show that phosphate availability affects glutamine synthetase activity and expression, which are often used as indicators of NSR activity, but that nitrogen availability did not affect alkaline phosphatase activity and expression, which are indicators of PSR activity. Finally, we conclude that the NSR is co-regulated by nitrogen and phosphate, whereas the PSR does not appear to be co-regulated by nitrogen in addition to its known phosphate regulation.« less

  18. Interaction between Nitrogen and Phosphate Stress Responses in Sinorhizobium meliloti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagberg, Kelly L.; Yurgel, Svetlana N.; Mulder, Monika

    Bacteria have developed various stress response pathways to improve their assimilation and allocation of limited nutrients, such as nitrogen and phosphate. While both the nitrogen stress response (NSR) and phosphate stress response (PSR) have been studied individually, there are few experiments reported that characterize effects of multiple stresses on one or more pathways in Sinorhizobium meliloti, a facultatively symbiotic, nitrogen-fixing bacteria. The PII proteins, GlnB and GlnK, regulate the NSR activity, but analysis of global transcription changes in a PII deficient mutant suggest that the S. meliloti PII proteins may also regulate the PSR. PII double deletion mutants grow verymore » slowly and pseudoreversion of the slow growth phenotype is common. In order to understand this phenomenon better, transposon mutants were isolated that had a faster growing phenotype. One mutation was in phoB, the response regulator for a two component regulatory system that is important in the PSR. phoB::Tn5 mutants had different phenotypes in the wild type compared to a PII deficient background. This led to the hypothesis that phosphate stress affects the NSR and conversely, that nitrogen stress affects the PSR. These results show that phosphate availability affects glutamine synthetase activity and expression, which are often used as indicators of NSR activity, but that nitrogen availability did not affect alkaline phosphatase activity and expression, which are indicators of PSR activity. Finally, we conclude that the NSR is co-regulated by nitrogen and phosphate, whereas the PSR does not appear to be co-regulated by nitrogen in addition to its known phosphate regulation.« less

  19. Stress and anxiety effects on positive skin test responses in young adults with allergic rhinitis.

    PubMed

    Heffner, Kathi L; Kiecolt-Glaser, Janice K; Glaser, Ronald; Malarkey, William B; Marshall, Gailen D

    2014-07-01

    Anxiety and psychological stress affect allergy-related immune function. How these relations influence the evaluations of patients with allergic rhinitis is unknown. To examine whether anxiety and stress exposure affect skin prick test (SPT) responses to common allergens for which patients with atopy showed no prior positive SPT response. Patients with allergic rhinitis, evidenced by clinical history and SPT results, were admitted twice to a hospital research unit for 4 hours. In a crossover design, SPT wheals were assessed before and after the Trier Social Stress Test and then the following morning; for comparison, SPT wheals were assessed before and after a laboratory session without a stressor. Analyses focused on wheal responses for common allergens that tested negative (wheal size <3 mm larger than saline) from SPTs performed at multiple baseline assessments. After the Trier Social Stress Test, more anxious patients with atopy had a higher incidence of positive SPT reactions to antigens that previously tested negative. Anxiety was unrelated to positive SPT incidence under nonstressful conditions. Based on clinical symptom reports, newly positive SPT reactions after the stressor were apparently corrections of previously false-negative SPT reactions. The SPT wheal responses for allergens previously testing negative were enhanced after a stressor. Histamine (positive control) or saline (negative control) SPT responses were not affected. A laboratory stressor affected allergen SPT responses in more anxious patients with allergic rhinitis. In addition to clinical history, assessment of anxiety and current stress at the time of the SPT may provide valuable information about a patient's allergic status and aid in clinical decision making. Copyright © 2014 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  20. Rett syndrome: a preliminary analysis of stereotypy, stress, and negative affect.

    PubMed

    Quest, Kelsey M; Byiers, Breanne J; Payen, Ameante; Symons, Frank J

    2014-05-01

    Rett syndrome (RTT) is a neurodevelopmental disorder primarily affecting females. It is characterized by apparently normative development of motor and communicative abilities followed by deterioration in these domains. Stereotypic hand movements are one of the core diagnostic criteria for RTT. There is some anecdotal but limited scientific evidence that changes in hand stereotypy may be a sign of increased anxiety or arousal (i.e., a 'stress response') in RTT. Understanding stress responsivity is difficult in RTT because almost all individuals are nonverbal or otherwise severely communicatively impaired. This study used direct behavioral observation to quantify and compare the frequency of hand stereotypy and signs of negative affect during presumed periods of high and low stress associated with functional analysis conditions (negative reinforcement ['escape'] and control ['free play'], respectively) for 5 females with RTT (mean age=17.8; range 4-47). Negative affect was more likely to occur during negative reinforcement ('stress') conditions for each participant whereas hand stereotypies did not differ across conditions for any of the participants. Although preliminary, the results suggest that hand stereotypy may not be a valid behavioral 'stress-response' indicator in females with RTT. Alternatively, the approach we used may have been limited and not sufficient to evoke a stress response. Either way, more work with direct relevance to improving our understanding of hand stereotypy and anxiety in RTT in relation to social context appears warranted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Preconception Alcohol Increases Offspring Vulnerability to Stress

    PubMed Central

    Jabbar, Shaima; Chastain, Lucy G; Gangisetty, Omkaram; Cabrera, Miguel A; Sochacki, Kamil; Sarkar, Dipak K

    2016-01-01

    The effect of preconception drinking by the mother on the life-long health outcomes of her children is not known, and therefore, in this study using an animal model, we determined the impact of preconception alcohol drinking of the mother on offspring stress response during adulthood. In our preconception alcohol exposure model, adult female rats were fed with 6.7% alcohol in their diet for 4 weeks, went without alcohol for 3 weeks and were bred to generate male and female offspring. Preconception alcohol-exposed offsprings' birth weight, body growth, stress response, anxiety-like behaviors, and changes in stress regulatory gene and protein hormone levels were evaluated. In addition, roles of epigenetic mechanisms in preconception alcohol effects were determined. Alcohol feeding three weeks prior to conception significantly affected pregnancy outcomes of female rats, with respect to delivery period and birth weight of offspring, without affecting maternal care behaviors. Preconception alcohol negatively affected offspring adult health, producing an increased stress hormone response to an immune challenge. In addition, preconception alcohol was associated with changes in expression and methylation profiles of stress regulatory genes in various brain areas. These changes in stress regulatory genes were normalized following treatment with a DNA methylation blocker during the postnatal period. These data highlight the novel possibility that preconception alcohol affects the inheritance of stress-related diseases possibly by epigenetic mechanisms. PMID:27296153

  2. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance.

    PubMed

    Kim, Sunmi; Kang, Jung-Youn; Cho, Dong-Im; Park, Ji Hye; Kim, Soo Young

    2004-10-01

    Phytohormone abscisic acid (ABA) regulates stress-responsive gene expression during vegetative growth, which is mediated largely by cis-elements sharing the ACGTGGC consensus. Although many transcription factors are known to bind the elements in vitro, only a few have been demonstrated to have in vivo functions and their specific roles in ABA/stress responses are mostly unknown. Here, we report that ABF2, an ABF subfamily member of bZIP proteins interacting with the ABA-responsive elements, is involved in ABA/stress responses. Its overexpression altered ABA sensitivity, dehydration tolerance, and the expression levels of ABA/stress-regulated genes. Furthermore, ABF2 overexpression promoted glucose-induced inhibition of seedling development, whereas its mutation impaired glucose response. The reduced sugar sensitivity was not observed with mutants of two other ABF family members, ABF3 and ABF4. Instead, these mutants displayed defects in ABA, salt, and dehydration responses, which were not observed with the abf2 mutant. Our data indicate distinct roles of ABF family members: whereas ABF3 and ABF4 play essential roles in ABA/stress responses, ABF2 is required for normal glucose response. We also show that ABF2 overexpression affects multiple stress tolerance.

  3. Cardiovascular and Affective Responses to Social Stress in Adolescents with Internalizing and Externalizing Problems

    ERIC Educational Resources Information Center

    Hastings, Paul D.; Zahn-Waxler, Carolyn; Usher, Barbara A.

    2007-01-01

    Behavioral responses to stress and challenge are based in emotional and physiological arousal reactions. Adolescents with maladaptive or problematic behavior patterns, such as internalizing or externalizing problems, are likely to show atypical emotional and physiological reactions to stress. Relations between problems and reactions to stress were…

  4. Optimism and pessimism are related to different components of the stress response in healthy older people.

    PubMed

    Puig-Perez, Sara; Villada, Carolina; Pulopulos, Matias M; Almela, Mercedes; Hidalgo, Vanesa; Salvador, Alicia

    2015-11-01

    Some personality traits have key importance for health because they can affect the maintenance and evolution of different disorders with a high prevalence in older people, including stress pathologies and diseases. In this study we investigated how two relevant personality traits, optimism and pessimism, affect the psychophysiological response of 72 healthy participants (55 to 76 years old) exposed to either a psychosocial stress task (Trier Social Stress Test, TSST) or a control task; salivary cortisol, heart rate (HR) and situational appraisal were measured. Our results showed that optimism was related to faster cortisol recovery after exposure to stress. Pessimism was not related to the physiological stress response, but it was associated with the perception of the stress task as more difficult. Thus, higher optimism was associated with better physiological adjustment to a stressful situation, while higher pessimism was associated with worse psychological adjustment to stress. These results highlight different patterns of relationships, with optimism playing a more important role in the physiological component of the stress response, and pessimism having a greater effect on situational appraisal. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The impact of acute stress on hormones and cytokines, and how their recovery is affected by music-evoked positive mood

    PubMed Central

    Koelsch, Stefan; Boehlig, Albrecht; Hohenadel, Maximilian; Nitsche, Ines; Bauer, Katrin; Sack, Ulrich

    2016-01-01

    Stress and recovery from stress significantly affect interactions between the central nervous system, endocrine pathways, and the immune system. However, the influence of acute stress on circulating immune-endocrine mediators in humans is not well known. Using a double-blind, randomized study design, we administered a CO2 stress test to n = 143 participants to identify the effects of acute stress, and recovery from stress, on serum levels of several mediators with immune function (IL-6, TNF-α, leptin, and somatostatin), as well as on noradrenaline, and two hypothalamic–pituitary–adrenal axis hormones (ACTH and cortisol). Moreover, during a 1 h-recovery period, we repeatedly measured these serum parameters, and administered an auditory mood-induction protocol with positive music and a neutral control stimulus. The acute stress elicited increases in noradrenaline, ACTH, cortisol, IL-6, and leptin levels. Noradrenaline and ACTH exhibited the fastest and strongest stress responses, followed by cortisol, IL-6 and leptin. The music intervention was associated with more positive mood, and stronger cortisol responses to the acute stressor in the music group. Our data show that acute (CO2) stress affects endocrine, immune and metabolic functions in humans, and they show that mood plays a causal role in the modulation of responses to acute stress. PMID:27020850

  6. Trait rumination and response to negative evaluative lab-induced stress: neuroendocrine, affective, and cognitive outcomes.

    PubMed

    Vrshek-Schallhorn, Suzanne; Velkoff, Elizabeth A; Zinbarg, Richard E

    2018-04-06

    Theoretical models of depression posit that, under stress, elevated trait rumination predicts more pronounced or prolonged negative affective and neuroendocrine responses, and that trait rumination hampers removing irrelevant negative information from working memory. We examined several gaps regarding these models in the context of lab-induced stress. Non-depressed undergraduates completed a rumination questionnaire and either a negative-evaluative Trier Social Stress Test (n = 55) or a non-evaluative control condition (n = 69), followed by a modified Sternberg affective working memory task assessing the extent to which irrelevant negative information can be emptied from working memory. We measured shame, negative and positive affect, and salivary cortisol four times. Multilevel growth curve models showed rumination and stress interactively predicted cortisol reactivity; however, opposite predictions, greater rumination was associated with blunted cortisol reactivity to stress. Elevated trait rumination interacted with stress to predict augmented shame reactivity. Rumination and stress did not significantly interact to predict working memory performance, but under control conditions, rumination predicted greater difficulty updating working memory. Results support a vulnerability-stress model of trait rumination with heightened shame reactivity and cortisol dysregulation rather than hyper-reactivity in non-depressed emerging adults, but we cannot provide evidence that working memory processes are critical immediately following acute stress.

  7. A comparison of the transcriptome of Drosophila melanogaster in response to entomopathogenic fungus, ionizing radiation, starvation and cold shock.

    PubMed

    Moskalev, Alexey; Zhikrivetskaya, Svetlana; Krasnov, George; Shaposhnikov, Mikhail; Proshkina, Ekaterina; Borisoglebsky, Dmitry; Danilov, Anton; Peregudova, Darya; Sharapova, Irina; Dobrovolskaya, Eugenia; Solovev, Ilya; Zemskaya, Nadezhda; Shilova, Lyubov; Snezhkina, Anastasia; Kudryavtseva, Anna

    2015-01-01

    The molecular mechanisms that determine the organism's response to a variety of doses and modalities of stress factors are not well understood. We studied effects of ionizing radiation (144, 360 and 864 Gy), entomopathogenic fungus (10 and 100 CFU), starvation (16 h), and cold shock (+4, 0 and -4°C) on an organism's viability indicators (survival and locomotor activity) and transcriptome changes in the Drosophila melanogaster model. All stress factors but cold shock resulted in a decrease of lifespan proportional to the dose of treatment. However, stress-factors affected locomotor activity without correlation with lifespan. Our data revealed both significant similarities and differences in differential gene expression and the activity of biological processes under the influence of stress factors. Studied doses of stress treatments deleteriously affect the organism's viability and lead to different changes of both general and specific cellular stress response mechanisms.

  8. Temperature stress affects the expression of immune response genes in the alfalfa leafcutting bee (Megachile rotundata)

    USDA-ARS?s Scientific Manuscript database

    The alfalfa leafcutting bee (Megachile rotundata) is affected by a fungal disease called chalkbrood. In several species of bees, chalkbrood is more likely to occur in larvae kept at 25-30 C than at 35 C. We found that both high and low temperature stress increased the expression of immune response g...

  9. Increased neural responses to empathy for pain might explain how acute stress increases prosociality.

    PubMed

    Tomova, L; Majdandžic, J; Hummer, A; Windischberger, C; Heinrichs, M; Lamm, C

    2017-03-01

    Recent behavioral investigations suggest that acute stress can increase prosocial behavior. Here, we investigated whether increased empathy represents a potential mechanism for this finding. Using functional magnetic resonance imaging, we assessed the effects of acute stress on neural responses related to automatic and regulatory components of empathy for pain as well as subsequent prosocial behavior. Stress increased activation in brain areas associated with the automatic sharing of others' pain, such as the anterior insula, the anterior midcingulate cortex, and the primary somatosensory cortex. In addition, we found increased prosocial behavior under stress. Furthermore, activation in the anterior midcingulate cortex mediated the effects of stress on prosocial behavior. However, stressed participants also displayed stronger and inappropriate other-related responses in situations which required them to take the perspective of another person, and to regulate their automatic affective responses. Thus, while acute stress may increase prosocial behavior by intensifying the sharing of others' emotions, this comes at the cost of reduced cognitive appraisal abilities. Depending on the contextual constraints, stress may therefore affect empathy in ways that are either beneficial or detrimental. © The Author (2016). Published by Oxford University Press.

  10. Vascular adaptive responses to physical exercise and to stress are affected differently by nandrolone administration.

    PubMed

    Bruder-Nascimento, T; Cordellini, S

    2011-04-01

    Androgenic anabolic steroid, physical exercise and stress induce cardiovascular adaptations including increased endothelial function. The present study investigated the effects of these conditions alone and in combination on the vascular responses of male Wistar rats. Exercise was started at 8 weeks of life (60-min swimming sessions 5 days per week for 8 weeks, while carrying a 5% body-weight load). One group received nandrolone (5 mg/kg, twice per week for 8 weeks, im). Acute immobilization stress (2 h) was induced immediately before the experimental protocol. Curves for noradrenaline were obtained for thoracic aorta, with and without endothelium from sedentary and trained rats, submitted or not to stress, treated or not with nandrolone. None of the procedures altered the vascular reactivity to noradrenaline in denuded aorta. In intact aorta, stress and exercise produced vascular adaptive responses characterized by endothelium-dependent hyporeactivity to noradrenaline. These conditions in combination did not potentiate the vascular adaptive response. Exercise-induced vascular adaptive response was abolished by nandrolone. In contrast, the aortal reactivity to noradrenaline of sedentary rats and the vascular adaptive response to stress of sedentary and trained rats were not affected by nandrolone. Maximum response for 7-10 rats/group (g): sedentary 3.8 ± 0.2 vs trained 3.0 ± 0.2*; sedentary/stress 2.7 ± 0.2 vs trained/stress 3.1 ± 0.1*; sedentary/nandrolone 3.6 ± 0.1 vs trained/nandrolone 3.8 ± 0.1; sedentary/stress/nandrolone 3.2 ± 0.1 vs trained/stress/nandrolone 2.5 ± 0.1*; *P < 0.05 compared to its respective control. Stress and physical exercise determine similar vascular adaptive response involving distinct mechanisms as indicated by the observation that only the physical exercise-induced adaptive response was abolished by nandrolone.

  11. Age differences in emotional responses to daily stress: The role of timing, severity, and global perceived stress

    PubMed Central

    Scott, Stacey B.; Sliwinski, Martin J.; Blanchard Fields, Fredda

    2013-01-01

    Research on age differences in emotional responses to daily stress has produced inconsistent findings. Guided by recent theoretical advances in aging theory (Charles, 2010) that emphasize the importance of context for predicting when and how age is related to affective well-being, the current study examined age differences in emotional responses to everyday stressors. The present study examines how three contextual features (e.g., timing of exposure, stressor severity, global perceived stress [GPS]) moderate age differences in emotional experience in an ecological momentary assessment study of adults aged 18–81 (N=190). Results indicated older adults’ negative affect (NA) was less affected by exposure to recent stressors than younger adults, but that there were no age differences in the effects of stressor exposure three to six hours afterward. Higher levels of GPS predicted amplified NA responses to daily stress, and controlling for GPS eliminated age differences in NA responses to stressors. No age differences in NA responses as a function of stressor severity were observed. In contrast, older age was associated with less of a decrease in PA when exposed to recent stressors or with more severe recent stressors. There were no age differences in the effect of previous stressor exposure or severity on PA, nor any interactions between momentary or previous stress and GPS on PA. Together, these results support the notion that chronic stress plays a central role in emotional experience in daily life. Implications of these results for emotion theories of aging are discussed. PMID:24364410

  12. The contribution of trait negative affect and stress to recall for bodily states.

    PubMed

    Ma-Kellams, Christine; Lai, Lei; Taylor, Shelley E; Lerner, Jennifer S

    2016-12-01

    How does trait negative affect shape somatic memory of stressful events? We hypothesized that negative affect would impair accurate recall of one's own heart rate during stressful situations. Two bio-behavioral studies used a new paradigm to test retrospective visceral perception and assessed whether negative affective states experienced during aversive events (i.e., the Trier Stress Task-Time 1) would retrospectively shape recall of past heart rate (Time 2), even when accounting for actual heart rate at the time of each stressful event (Time 1). Results across both studies showed that individual differences in negative affect in response to a stressful task predicted visceral recollections, and those who experienced more negative affect were more inaccurate. Negative affect was associated with a tendency to remember visceral reactions as worse than they actually were. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Sirtuins regulate proteomic responses near thermal tolerance limits in the blue mussels Mytilus galloprovincialis and Mytilus trossulus.

    PubMed

    Vasquez, M Christina; Beam, Michelle; Blackwell, Shelley; Zuzow, Marcus J; Tomanek, Lars

    2017-12-01

    The blue mussels Mytilus galloprovincialis and M. trossulus are competing species with biogeographical ranges set in part by environmental exposure to heat and hyposalinity. The underlying cellular mechanisms influencing interspecific differences in stress tolerance are unknown, but are believed to be under regulation by sirtuins, nicotinamide adenine dinucleotide (NAD + )-dependent deacylases that play a critical role in the cellular stress response. A comparison of the proteomic responses of M. galloprovincialis and M. trossulus to an acute heat shock in the presence and absence of the sirtuin inhibitor suramin (SIRT1, 2 and 5) showed that sirtuins affected molecular chaperones, oxidative stress proteins, metabolic enzymes, cytoskeletal and signaling proteins more in the heat-sensitive M. trossulus than in the heat-tolerant M. galloprovincialis Interactions between sirtuin inhibition and changes in the abundance of proteins of β-oxidation and oxidative stress in M. trossulus suggest a greater role of sirtuins in shifting metabolism to reduce the production of reactive oxygen species near thermal limits. Furthermore, RNA-binding proteins initiating and inhibiting translation were affected by suramin in M. galloprovincialis and M. trossulus , respectively. Western blot analysis showed that the levels of mitochondrial sirtuin 5 (SIRT5) were generally three times higher and increased with acute heat stress in response to sirtuin inhibition in M. trossulus but not in M. galloprovincialis , suggesting a possible feedback response in the former species and a greater reliance on SIRT5 for its stress response. Our findings suggest that SIRT5 plays an important role in setting interspecific differences in stress tolerance in Mytilus by affecting the stress proteome. © 2017. Published by The Company of Biologists Ltd.

  14. Dietary modification of brain function: effects on neuroendocrine and psychological determinants of mental health- and stress-related disorders.

    PubMed

    Waladkhani, A R; Hellhammer, J

    2008-01-01

    Stress is associated with both psychological and biological adaptation. Chronic stress, however, impairs adaptation, and may finally lead to illness, in part through unhealthy changes in nutritional behavior. This chapter shows how physiological and psychological stress responses are affected by different food ingredients, and how stress affects health behavior, for example food choice. It becomes obvious that nutrition is closely linked to food choice and that food ingredients affect a broad range of neuroendocrine and related psychological processes, which regulate adaptation to chronic stress. Thus, dietary modification may become a valuable tool to modify the susceptibility to stress and stress-related disorders.

  15. Sexually Dimorphic Responses to Early Adversity: Implications for Affective Problems and Autism Spectrum Disorder

    PubMed Central

    Davis, Elysia Poggi; Pfaff, Donald

    2014-01-01

    During gestation, development proceeds at a pace that is unmatched by any other stage of the lifecycle. For these reason the human fetus is particularly susceptible not only to organizing influences, but also to pathogenic disorganizing influences. Growing evidence suggests that exposure to prenatal adversity leads to neurological changes that underlie lifetime risks for mental illness. Beginning early in gestation, males and females show differential developmental trajectories and responses to stress. It is likely that sex-dependent organization of neural circuits during the fetal period influences differential vulnerability to mental health problems. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two developmental disorders: affective problems (greater female prevalence) and autism spectrum disorder (greater male prevalence). Recent prospective studies illustrating the neurodevelopmental consequences of fetal exposure to stress and stress hormones for males and females are considered here. Plausible biological mechanisms including the role of the sexually differentiated placenta are discussed. We consider in this review evidence that sexually dimorphic responses to early life stress are linked to two sets of developmental disorders: affective problems (greater female prevalence) and autism spectrum disorders (greater male prevalence). PMID:25038479

  16. Dealing with feeling: Specific emotion regulation skills predict responses to stress in psychosis.

    PubMed

    Lincoln, Tania M; Hartmann, Maike; Köther, Ulf; Moritz, Steffen

    2015-08-15

    Elevated negative affect is an established link between minor stressors and psychotic symptoms. Less clear is why people with psychosis fail to regulate distressing emotions effectively. This study tests whether subjective, psychophysiological and symptomatic responses to stress can be predicted by specific emotion regulation (ER) difficulties. Participants with psychotic disorders (n=35) and healthy controls (n=28) were assessed for ER-skills at baseline. They were then exposed to a noise versus no stressor on different days, during which self-reported stress responses, state paranoia and skin conductance levels (SCL) were assessed. Participants with psychosis showed a stronger increase in self-reported stress and SCL in response to the stressor than healthy controls. Stronger increases in self-reported stress were predicted by a reduced ability to be aware of and tolerate distressing emotions, whereas increases in SCL were predicted by a reduced ability to be aware of, tolerate, accept and modify them. Although paranoid symptoms were not significantly affected by the stressors, individual variation in paranoid responses was also predicted by a reduced ability to be aware of and tolerate emotions. Differences in stress responses in the samples were no longer significant after controlling for ER skills. Thus, interventions that improve ER-skills could reduce stress-sensitivity in psychosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. A Heartfelt Response: Oxytocin Effects on Response to Social Stress in Men and Women

    PubMed Central

    Kubzansky, Laura D; Mendes, Wendy Berry; Appleton, Allison A.; Block, Jason; Adler, Gail K

    2012-01-01

    Background Animal research indicates that oxytocin is involved in social behavior, stress regulation, and positive physiologic adaptation. This study examines whether oxytocin enhances adaptive responses to social stress and compares effects between men and women. Methods Hypotheses were tested with a placebo-controlled, double-blind experiment. Social stress was induced. Changes in cardiovascular reactivity, affect, and behavior were assessed. Results Participants given oxytocin, relative to placebo, responded to social stress with a challenge orientation characterized by a benign pattern of cardiovascular reactivity. Gender differences emerged. Men given oxytocin reported less negative affect and had greater vagal rebound, while women given oxytocin reported more anger and had better math performance following social stress. Discussion Findings indicate oxytocin stimulates an approach-oriented cardiovascular profile during social stress, suggesting mechanisms by which oxytocin might improve physical health. However, before considering oxytocin as therapeutic or uniformly enhancing health, greater understanding of possible gender differences in effects is needed. PMID:22387929

  18. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation1[OPEN

    PubMed Central

    Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2016-01-01

    Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307

  19. Effect of chronic mild stress on hippocampal transcriptome in mice selected for high and low stress-induced analgesia and displaying different emotional behaviors.

    PubMed

    Lisowski, Pawel; Juszczak, Grzegorz R; Goscik, Joanna; Wieczorek, Marek; Zwierzchowski, Lech; Swiergiel, Artur H

    2011-01-01

    There is increasing evidence that mood disorders may derive from the impact of environmental pressure on genetically susceptible individuals. Stress-induced hippocampal plasticity has been implicated in depression. We studied hippocampal transcriptomes in strains of mice that display high (HA) and low (LA) swim stress-induced analgesia and that differ in emotional behaviors and responses to different classes of antidepressants. Chronic mild stress (CMS) affected expression of a number of genes common for both strains. CMS also produced strain specific changes in expression suggesting that hippocampal responses to stress depend on genotype. Considerably larger number of genes, biological processes, molecular functions, biochemical pathways, and gene networks were affected by CMS in LA than in HA mice. The results suggest that potential drug targets against detrimental effects of stress include glutamate transporters, and cholinergic, cholecystokinin (CCK), glucocorticoids, and thyroid hormones receptors. Furthermore, some biological processes evoked by stress and different between the strains, such as apoptosis, neurogenesis and chromatin modifications, may be responsible for the long-term, irreversible effects of stress and suggest a role for epigenetic regulation of mood related stress responses. Copyright © 2010 Elsevier B.V. and ECNP. All rights reserved.

  20. The Implicit Positive and Negative Affect Test: Validity and Relationship with Cardiovascular Stress-Responses

    PubMed Central

    van der Ploeg, Melanie M.; Brosschot, Jos F.; Thayer, Julian F.; Verkuil, Bart

    2016-01-01

    Self-report, i.e., explicit, measures of affect cannot fully explain the cardiovascular (CV) responses to stressors. Measuring affect beyond self-report, i.e., using implicit measures, could add to our understanding of stress-related CV activity. The Implicit Positive and Negative Affect Test (IPANAT) was administered in two studies to test its ecological validity and relation with CV responses and self-report measures of affect. In Study 1 students (N = 34) viewed four film clips inducing anger, happiness, fear, or no emotion, and completed the IPANAT and the Positive And Negative Affect Scale at baseline and after each clip. Implicit negative affect (INA) was higher and implicit positive affect (IPA) was lower after the anger inducing clip and vice versa after the happiness inducing clip. In Study 2 students performed a stressful math task with (n = 14) or without anger harassment (n = 15) and completed the IPANAT and a Visual Analog Scale as an explicit measure afterwards. Systolic (SBP), diastolic (DBP) blood pressure, heart rate (HR), heart rate variability (HRV), and total peripheral resistance (TPR) were recorded throughout. SBP and DBP were higher and TPR was lower in the harassment condition during the task with a prolonged effect on SBP and DBP during recovery. As expected, explicit negative affect (ENA) was higher and explicit positive affect (EPA) lower after harassment, but ENA and EPA were not related to CV activity. Although neither INA nor IPA differed between the tasks, during both tasks higher INA was related to higher SBP, lower HRV and lower TPR and to slower recovery of DBP after both tasks. Low IPA was related to slower recovery of SBP and DBP after the tasks. Implicit affect was not related to recovery of HR, HRV, and TPR. In conclusion, the IPANAT seems to respond to film clip-induced negative and positive affect and was related to CV activity during and after stressful tasks. These findings support the theory that implicitly measured affect can add to the explanation of prolonged stress-related CV responses that influence CV health. PMID:27065908

  1. The Implicit Positive and Negative Affect Test: Validity and Relationship with Cardiovascular Stress-Responses.

    PubMed

    van der Ploeg, Melanie M; Brosschot, Jos F; Thayer, Julian F; Verkuil, Bart

    2016-01-01

    Self-report, i.e., explicit, measures of affect cannot fully explain the cardiovascular (CV) responses to stressors. Measuring affect beyond self-report, i.e., using implicit measures, could add to our understanding of stress-related CV activity. The Implicit Positive and Negative Affect Test (IPANAT) was administered in two studies to test its ecological validity and relation with CV responses and self-report measures of affect. In Study 1 students (N = 34) viewed four film clips inducing anger, happiness, fear, or no emotion, and completed the IPANAT and the Positive And Negative Affect Scale at baseline and after each clip. Implicit negative affect (INA) was higher and implicit positive affect (IPA) was lower after the anger inducing clip and vice versa after the happiness inducing clip. In Study 2 students performed a stressful math task with (n = 14) or without anger harassment (n = 15) and completed the IPANAT and a Visual Analog Scale as an explicit measure afterwards. Systolic (SBP), diastolic (DBP) blood pressure, heart rate (HR), heart rate variability (HRV), and total peripheral resistance (TPR) were recorded throughout. SBP and DBP were higher and TPR was lower in the harassment condition during the task with a prolonged effect on SBP and DBP during recovery. As expected, explicit negative affect (ENA) was higher and explicit positive affect (EPA) lower after harassment, but ENA and EPA were not related to CV activity. Although neither INA nor IPA differed between the tasks, during both tasks higher INA was related to higher SBP, lower HRV and lower TPR and to slower recovery of DBP after both tasks. Low IPA was related to slower recovery of SBP and DBP after the tasks. Implicit affect was not related to recovery of HR, HRV, and TPR. In conclusion, the IPANAT seems to respond to film clip-induced negative and positive affect and was related to CV activity during and after stressful tasks. These findings support the theory that implicitly measured affect can add to the explanation of prolonged stress-related CV responses that influence CV health.

  2. Stress vulnerability in male youth with Internet Gaming Disorder.

    PubMed

    Kaess, Michael; Parzer, Peter; Mehl, Laura; Weil, Luisa; Strittmatter, Esther; Resch, Franz; Koenig, Julian

    2017-03-01

    Internet Gaming Disorder [IGD] was introduced as new behavioral addiction in DSM-5 Section 3. Vulnerability to stress is a potential predisposing factor for IGD. Given a lack of preexisting empirical data, the study investigated differences in the psychological and neurobiological response to acute stress in patients with IGD. 24 young men (mean age 18.38 years; range 13-25 years) fulfilling DSM-5 criteria for IGD and 25 matched controls underwent the Trier Social Stress Test [TSST]. Participants provided hair samples for the analysis of basal hypothalamic-pituitary-adrenal [HPA] axis activity and clinical interviews were conducted to assess psychopathology. During the experiment, participants reported on their subjective stress experience and momentary affect, provided samples of salivary cortisol and their heart rate was continuously recorded. Patients with IGD reported greater everyday and chronic stress, as well as psychopathological comorbidity. No differences were found on measures of hair cortisol. Compared to controls, IGD patients showed an attenuated cortisol response (χ 2 (7) =25.75, p<0.001) and greater negative affect (χ 2 (7) =17.25, p=0.016) in response to acute stress. Heart rate (χ 2 (1) =5.49, p=0.019), negative affect (χ 2 (1) =5.60, p=0.018) and subjective stress (χ 2 (1) =5.55, p=0.019) were transiently increased in IGD patients. After adjusting for sportive activities, IGD patients showed transiently decreased cortisol (χ 2 (1) =5.20, p=0.022), potentially indicating general HPA-axis dysfunction beyond altered reactivity. Stress reactivity showed correlations with IGD symptom severity. Findings illustrate differences in acute psychological and neurobiological stress reactivity in patients with IGD. Alterations of the stress response system may be involved in the development and maintenance of IGD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The Vascular Pathogen Verticillium longisporum Does Not Affect Water Relations and Plant Responses to Drought Stress of Its Host, Brassica napus.

    PubMed

    Lopisso, Daniel Teshome; Knüfer, Jessica; Koopmann, Birger; von Tiedemann, Andreas

    2017-04-01

    Verticillium longisporum is a host-specific vascular pathogen of oilseed rape (Brassica napus L.) that causes economic crop losses by impairing plant growth and inducing premature senescence. This study investigates whether plant damage through Verticillium stem striping is due to impaired plant water relations, whether V. longisporum affects responses of a susceptible B. napus variety to drought stress, and whether drought stress, in turn, affects plant responses to V. longisporum. Two-factorial experiments on a susceptible cultivar of B. napus infected or noninfected with V. longisporum and exposed to three watering levels (30, 60, and 100% field capacity) revealed that drought stress and V. longisporum impaired plant growth by entirely different mechanisms. Although both stresses similarly affected plant growth parameters (plant height, hypocotyl diameter, and shoot and root dry matter), infection of B. napus with V. longisporum did not affect any drought-related physiological or molecular genetic plant parameters, including transpiration rate, stomatal conductance, photosynthesis rate, water use efficiency, relative leaf water content, leaf proline content, or the expression of drought-responsive genes. Thus, this study provides comprehensive physiological and molecular genetic evidence explaining the lack of wilt symptoms in B. napus infected with V. longisporum. Likewise, drought tolerance of B. napus was unaffected by V. longisporum, as was the level of disease by drought conditions, thus excluding a concerted action of both stresses in the field. Although it is evident that drought and vascular infection with V. longisporum impair plant growth by different mechanisms, it remains to be determined by which other factors V. longisporum causes crop loss.

  4. Physiological Regulation of Stress in Referred Adolescents: The Role of the Parent-Adolescent Relationship

    ERIC Educational Resources Information Center

    Willemen, Agnes M.; Schuengel, Carlo; Koot, Hans M.

    2009-01-01

    Background: Psychopathology in youth appears to be linked to deficits in regulating affective responses to stressful situations. In children, high-quality parental support facilitates affect regulation. However, in adolescence, the role of parent-child interaction in the regulation of affect is unclear. This study examined physiological reactivity…

  5. Effects of single cortisol administrations on human affect reviewed: Coping with stress through adaptive regulation of automatic cognitive processing.

    PubMed

    Putman, Peter; Roelofs, Karin

    2011-05-01

    The human stress hormone cortisol may facilitate effective coping after psychological stress. In apparent agreement, administration of cortisol has been demonstrated to reduce fear in response to stressors. For anxious patients with phobias or posttraumatic stress disorder this has been ascribed to hypothetical inhibition of retrieval of traumatic memories. However, such stress-protective effects may also work via adaptive regulation of early cognitive processing of threatening information from the environment. This paper selectively reviews the available literature on effects of single cortisol administrations on affect and early cognitive processing of affectively significant information. The concluded working hypothesis is that immediate effects of high concentration of cortisol may facilitate stress-coping via inhibition of automatic processing of goal-irrelevant threatening information and through increased automatic approach-avoidance responses in early emotional processing. Limitations in the existing literature and suggestions for future directions are briefly discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. A nervous tumor microenvironment: the impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response.

    PubMed

    Eng, Jason W-L; Kokolus, Kathleen M; Reed, Chelsey B; Hylander, Bonnie L; Ma, Wen W; Repasky, Elizabeth A

    2014-11-01

    Long conserved mechanisms maintain homeostasis in living creatures in response to a variety of stresses. However, continuous exposure to stress can result in unabated production of stress hormones, especially catecholamines, which can have detrimental health effects. While the long-term effects of chronic stress have well-known physiological consequences, recent discoveries have revealed that stress may affect therapeutic efficacy in cancer. Growing epidemiological evidence reveals strong correlations between progression-free and long-term survival and β-blocker usage in cancer patients. In this review, we summarize the current understanding of how the catecholamines, epinephrine and norepinephrine, affect cancer cell survival and tumor progression. We also highlight new data exploring the potential contributions of stress to immunosuppression in the tumor microenvironment and the implications of these findings for the efficacy of immunotherapies.

  7. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress

    PubMed Central

    Yang, Yongchao; Mo, Yanling; Yang, Xiaozheng; Zhang, Haifei; Wang, Yongqi; Li, Hao; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Osmotic stress adversely affects the growth, fruit quality and yield of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Increasing the tolerance of watermelon to osmotic stress caused by factors such as high salt and water deficit is an effective way to improve crop survival in osmotic stress environments. Roots are important organs in water absorption and are involved in the initial response to osmosis stress; however, few studies have examined the underlying mechanism of tolerance to osmotic stress in watermelon roots. For better understanding of this mechanism, the inbred watermelon accession M08, which exhibits relatively high tolerance to water deficits, was treated with 20% polyethylene glycol (PEG) 6000. The root samples were harvested at 6 h after PEG treatment and untreated samples were used as controls. Transcriptome analyses were carried out by Illumina RNA sequencing. A total of 5246 differentially expressed genes were identified. Gene ontology enrichment and biochemical pathway analyses of these 5246 genes showed that short-term osmotic stress affected osmotic adjustment, signal transduction, hormone responses, cell division, cell cycle and ribosome, and M08 may repress root growth to adapt osmotic stress. The results of this study describe the watermelon root transcriptome under osmotic stress and propose new insight into watermelon root responses to osmotic stress at the transcriptome level. Accordingly, these results allow us to better understand the molecular mechanisms of watermelon in response to drought stress and will facilitate watermelon breeding projects to improve drought tolerance. PMID:27861528

  8. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    PubMed

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  9. Sex and stress: Men and women show different cortisol responses to psychological stress induced by the Trier social stress test and the Iowa singing social stress test.

    PubMed

    Reschke-Hernández, Alaine E; Okerstrom, Katrina L; Bowles Edwards, Angela; Tranel, Daniel

    2017-01-02

    Acute psychological stress affects each of us in our daily lives and is increasingly a topic of discussion for its role in mental illness, aging, cognition, and overall health. A better understanding of how such stress affects the body and mind could contribute to the development of more effective clinical interventions and prevention practices. Over the past 3 decades, the Trier Social Stress Test (TSST) has been widely used to induce acute stress in a laboratory setting based on the principles of social evaluative threat, namely, a judged speech-making task. A comparable alternative task may expand options for examining acute stress in a controlled laboratory setting. This study uses a within-subjects design to examine healthy adult participants' (n = 20 men, n = 20 women) subjective stress and salivary cortisol responses to the standard TSST (involving public speaking and math) and the newly created Iowa Singing Social Stress Test (I-SSST). The I-SSST is similar to the TSST but with a new twist: public singing. Results indicated that men and women reported similarly high levels of subjective stress in response to both tasks. However, men and women demonstrated different cortisol responses; men showed a robust response to both tasks, and women displayed a lesser response. These findings are in line with previous literature and further underscore the importance of examining possible sex differences throughout various phases of research, including design, analysis, and interpretation of results. Furthermore, this nascent examination of the I-SSST suggests a possible alternative for inducing stress in the laboratory. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Age differences in emotional responses to daily stress: the role of timing, severity, and global perceived stress.

    PubMed

    Scott, Stacey B; Sliwinski, Martin J; Blanchard-Fields, Fredda

    2013-12-01

    Research on age differences in emotional responses to daily stress has produced inconsistent findings. Guided by recent theoretical advances in aging theory (S. T. Charles, 2010, Strength and vulnerability integration: A model of emotional well-being across adulthood, Psychological Bulletin, Vol. 136, pp. 1068-1091) that emphasize the importance of context for predicting when and how age is related to affective well-being, the current study examined age differences in emotional responses to everyday stressors. The present study examined how three contextual features (e.g., timing of exposure, stressor severity, global perceived stress [GPS]) moderate age differences in emotional experience in an ecological momentary assessment study of adults (N = 190) aged 18-81 years. Results indicated that older adults' negative affect (NA) was less affected by exposure to recent stressors than younger adults, but that there were no age differences in the effects of stressor exposure 3-6 hr afterward. Higher levels of GPS predicted amplified NA responses to daily stress, and controlling for GPS eliminated age differences in NA responses to stressors. No age differences in NA responses as a function of stressor severity were observed. In contrast, older age was associated with less of a decrease in PA when exposed to recent stressors or with more severe recent stressors. There were no age differences in the effect of previous stressor exposure or severity on PA, or any interactions between momentary or previous stress and GPS on PA. Together, these results support the notion that chronic stress plays a central role in emotional experience in daily life. We discuss the implications of these results for emotion theories of aging. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    PubMed

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.

  12. Biotechnological approaches to study plant responses to stress.

    PubMed

    Pérez-Clemente, Rosa M; Vives, Vicente; Zandalinas, Sara I; López-Climent, María F; Muñoz, Valeria; Gómez-Cadenas, Aurelio

    2013-01-01

    Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upregulation of the antioxidant machinery, and accumulation of compatible solutes. Over the last few decades advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to abiotic stress conditions. In this paper, recent progresses on systematic analyses of plant responses to stress including genomics, proteomics, metabolomics, and transgenic-based approaches are summarized.

  13. Biotechnological Approaches to Study Plant Responses to Stress

    PubMed Central

    Pérez-Clemente, Rosa M.; Vives, Vicente; Zandalinas, Sara I.; López-Climent, María F.; Muñoz, Valeria; Gómez-Cadenas, Aurelio

    2013-01-01

    Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upregulation of the antioxidant machinery, and accumulation of compatible solutes. Over the last few decades advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to abiotic stress conditions. In this paper, recent progresses on systematic analyses of plant responses to stress including genomics, proteomics, metabolomics, and transgenic-based approaches are summarized. PMID:23509757

  14. Role of the autonomic nervous system and baroreflex in stress-evoked cardiovascular responses in rats.

    PubMed

    Dos Reis, Daniel Gustavo; Fortaleza, Eduardo Albino Trindade; Tavares, Rodrigo Fiacadori; Corrêa, Fernando Morgan Aguiar

    2014-07-01

    Restraint stress (RS) is an experimental model to study stress-related cardiovascular responses, characterized by sustained pressor and tachycardiac responses. We used pharmacologic and surgical procedures to investigate the role played by sympathetic nervous system (SNS) and parasympathetic nervous system (PSNS) in the mediation of stress-evoked cardiovascular responses. Ganglionic blockade with pentolinium significantly reduced RS-evoked pressor and tachycardiac responses. Intravenous treatment with homatropine methyl bromide did not affect the pressor response but increased tachycardia. Pretreatment with prazosin reduced the pressor and increased the tachycardiac response. Pretreatment with atenolol did not affect the pressor response but reduced tachycardia. The combined treatment with atenolol and prazosin reduced both pressor and tachycardiac responses. Adrenal demedullation reduced the pressor response without affecting tachycardia. Sinoaortic denervation increased pressor and tachycardiac responses. The results indicate that: (1) the RS-evoked cardiovascular response is mediated by the autonomic nervous system without an important involvement of humoral factors; (2) hypertension results primarily from sympathovascular and sympathoadrenal activation, without a significant involvement of the cardiac sympathetic component (CSNS); (3) the abrupt initial peak in the hypertensive response to restraint is sympathovascular-mediated, whereas the less intense but sustained hypertensive response observed throughout the remaining restraint session is mainly mediated by sympathoadrenal activation and epinephrine release; (4) tachycardia results from CSNS activation, and not from PSNS inhibition; (5) RS evokes simultaneous CSNS and PSNS activation, and heart rate changes are a vector of both influences; (6) the baroreflex is functional during restraint, and modulates both the vascular and cardiac responses to restraint.

  15. Sex differences in physiological reactivity to acute psychosocial stress in adolescence.

    PubMed

    Ordaz, Sarah; Luna, Beatriz

    2012-08-01

    Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic-pituitary-adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corticolimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Sex differences in physiological reactivity to acute psychosocial stress in adolescence

    PubMed Central

    Ordaz, Sarah; Luna, Beatriz

    2012-01-01

    Summary Females begin to demonstrate greater negative affective responses to stress than males in adolescence. This may reflect the concurrent emergence of underlying differences in physiological response systems, including corticolimbic circuitries, the hypothalamic—pituitary— adrenal axis (HPAA), and the autonomic nervous system (ANS). This review examines when sex differences in physiological reactivity to acute psychosocial stress emerge and the directionality of these differences over development. Indeed, the literature indicates that sex differences emerge during adolescence and persist into adulthood for all three physiological response systems. However, the directionality of the differences varies by system. The emerging corti-colimbic reactivity literature suggests greater female reactivity, particularly in limbic regions densely innervated by gonadal hormone receptors. In contrast, males generally show higher levels of HPAA and ANS reactivity. We argue that the contrasting directionality of corticolimbic and peripheral physiological responses may reflect specific effects of gonadal hormones on distinct systems and also sex differences in evolved behavioral responses that demand different levels of peripheral physiological activation. Studies that examine both subjective reports of negative affect and physiological responses indicate that beginning in adolescence, females respond to acute stressors with more intense negative affect than males despite their comparatively lower peripheral physiological responses. This dissociation is not clearly explained by sex differences in the strength of the relationship between physiological and subjective responses. We suggest that females' greater subjective responsivity may instead arise from a greater activity in brain regions that translate stress responses to subjective awareness in adolescence. Future research directions include investigations of the role of pubertal hormones in physiological reactivity across all systems, examining the relationship of corticolimbic reactivity and negative affect, and sex differences in emotion regulation processes. PMID:22281210

  17. Overexpression of an Arabidopsis heterogeneous nuclear ribonucleoprotein gene, AtRNP1, affects plant growth and reduces plant tolerance to drought and salt stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhenyu, E-mail: wzy72609@163.com; Zhao, Xiuyang, E-mail: xiuzh@psb.vib-ugent.be; Wang, Bing, E-mail: wangbing@ibcas.ac.cn

    Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studiesmore » revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.« less

  18. Respiratory sinus arrhythmia during worry forecasts stress-related increases in psychological distress.

    PubMed

    Gouin, Jean-Philippe; Deschênes, Sonya S; Dugas, Michel J

    2014-09-01

    Respiratory sinus arrhythmia (RSA) has been conceptualized as an index of emotion regulation abilities. Although resting RSA has been associated with both concurrent and prospective affective responses to stress, the impact of RSA reactivity on emotional responses to stress is inconsistent across studies. The type of emotional stimuli used to elicit these phasic RSA responses may influence the adaptive value of RSA reactivity. We propose that RSA reactivity to a personally relevant worry-based stressor might forecast future affective responses to stress. To evaluate whether resting RSA and RSA reactivity to worry inductions predict stress-related increases in psychological distress, an academic stress model was used to prospectively examine changes in psychological distress from the well-defined low- and high-stress periods. During the low-stress period, 76 participants completed self-report mood measures and had their RSA assessed during a resting baseline, free worry period and worry catastrophizing interview. Participants completed another mood assessment during the high-stress period. Results indicated that baseline psychological distress predicted larger decreases in RSA during the worry inductions. Lower resting RSA and greater RSA suppression to the worry inductions at baseline prospectively predicted larger increases in psychological distress from the low- to high-stress period, even after accounting for the impact of baseline distress on RSA. These results provide further evidence that RSA may represent a unique index of emotion regulation abilities in times of stress.

  19. A comparison of the transcriptome of Drosophila melanogaster in response to entomopathogenic fungus, ionizing radiation, starvation and cold shock

    PubMed Central

    2015-01-01

    Background The molecular mechanisms that determine the organism's response to a variety of doses and modalities of stress factors are not well understood. Results We studied effects of ionizing radiation (144, 360 and 864 Gy), entomopathogenic fungus (10 and 100 CFU), starvation (16 h), and cold shock (+4, 0 and -4°C) on an organism's viability indicators (survival and locomotor activity) and transcriptome changes in the Drosophila melanogaster model. All stress factors but cold shock resulted in a decrease of lifespan proportional to the dose of treatment. However, stress-factors affected locomotor activity without correlation with lifespan. Our data revealed both significant similarities and differences in differential gene expression and the activity of biological processes under the influence of stress factors. Conclusions Studied doses of stress treatments deleteriously affect the organism's viability and lead to different changes of both general and specific cellular stress response mechanisms. PMID:26694630

  20. Exogenous testosterone enhances cortisol and affective responses to social-evaluative stress in dominant men.

    PubMed

    Knight, Erik L; Christian, Colton B; Morales, Pablo J; Harbaugh, William T; Mayr, Ulrich; Mehta, Pranjal H

    2017-11-01

    Stress often precedes the onset of mental health disorders and is linked to negative impacts on physical health as well. Prior research indicates that testosterone levels are related to reduced stress reactivity in some cases but correlate with increased stress responses in other cases. To resolve these inconsistencies, we tested the causal influence of testosterone on stress reactivity to a social-evaluative stressor. Further, prior work has failed to consider status-relevant individual differences such as trait dominance that may modulate the influence of testosterone on responses to stressors. Participants (n=120 males) were randomly assigned to receive exogenous testosterone or placebo (n=60 testosterone treatment group) via topical gel prior to a well-validated social-evaluative stressor. Compared to placebo, testosterone significantly increased cortisol and negative affect in response to the stressor, especially for men high in trait dominance (95% confidence intervals did not contain zero). The findings suggest that the combination of high testosterone and exposure to status-relevant social stress may confer increased risk for stress-mediated disorders, particularly for individuals high in trait dominance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of prenatal stress and emotional reactivity of the mother on emotional and cognitive abilities in lambs.

    PubMed

    Coulon, Marjorie; Nowak, Raymond; Andanson, Stephane; Petit, Bérengère; Lévy, Frédéric; Boissy, Alain

    2015-07-01

    Consequences of prenatal stress on emotional reactivity and cognitive abilities in offspring are under-documented in precocial mammals. Here, we investigated to what extent emotional reactivity, judgment bias and spatial learning abilities of lambs are affected by chronic stress during late pregnancy and by their dams' emotional reactivity. The 20 highest-responsive (HR) and 20 lowest-responsive (LR) ewes from a population of 120 Romane ewes were selected according to their pre-mating reactivity to social isolation in a new environment. Over the final third of pregnancy, 10 HR ewes and 10 LR ewes were exposed daily to various unpredictable aversive events such as restraint, mixing groups and transport while the other 20 selected ewes were not. In a human and an object test, prenatally-stressed lambs were more fearful than control lambs, but the prenatal stress effect was moderated by the reactivity of the mothers: prenatally-stressed lambs from ewes with high emotional reactivity were more affected. Prenatally-stressed lambs did not perform as well as control lambs in a maze test and showed pessimistic-like judgment in a cognitive bias test. Prenatally-stressed lambs were thus characterized by a negative affective state with increased fear reactions and impaired cognitive evaluation. The development of negative moods could have long-lasting consequences on the coping strategies of the lambs in response to their rearing conditions. © 2015 Wiley Periodicals, Inc.

  2. Transcriptome comparison in the pituitary-adrenal axis between Beagle and Chinese Field dogs after chronic stress exposure.

    PubMed

    Luo, Wei; Fang, Meixia; Xu, Haiping; Xing, Huijie; Nie, Qinghua

    2015-10-01

    Chronic stress can induce a series of maladjustments, and the response to stress is partly regulated by the hypothalamus-pituitary-adrenal axis. The aim of this study was to investigate the genetic mechanisms of this axis regulating stress responsiveness. The pituitary and adrenal cortex of Beagle and Chinese Field Dog (CFD) from a stress exposure group [including Beagle pituitary 1 (BP1), CFD pituitary 1 (CFDP1), Beagle adrenal cortex 1 (BAC1), CFD adrenal cortex 1 (CFDAC1)] and a control group [including Beagle pituitary 2 (BP2), CFD pituitary 2 (CFDP2), Beagle adrenal cortex 2 (BAC2), CFD adrenal cortex 2 (CFDAC2)], selected to perform RNA-seq transcriptome comparisons, showed that 40, 346, 376, 69, 70, 38, 57 and 71 differentially expressed genes were detected in BP1 vs. BP2, CFDP1 vs. CFDP2, BP1 vs. CFDP1, BP2 vs. CFDP2, BAC1 vs. BAC2, CFDAC1 vs. CFDAC2, BAC1 vs. CFDAC1 and BAC2 vs. CFDAC2 respectively. NPB was a gene common to BAC1 vs. BAC2 and CFDAC1 vs. CFDAC2, indicating it was a potential gene affecting response to chronic stress, regardless of the extent of chronic stress induced. PLP1 was a gene common to BP1 vs. CFDP1 and BP2 vs. CFDP2, suggesting its important roles in affecting the stress-tolerance difference between the two breeds, regardless of whether there was stress exposure or not. Pathway analysis found 12, 4, 11 and 1 enriched pathway in the comparisons of BP1 vs. CFDP1, BP2 vs. CFDP2, CFDP1 vs. CFDP2 and BAC1 vs. BAC2 respectively. Glutamatergic synapse, neuroactive ligand-receptor interaction, retrograde endocannabinoid signaling, GABAergic synapse, calcium signaling pathway and dopaminergic synapse were the most significantly enriched pathways in both CFDP1 vs. CFDP2 and BP1 vs. CFDP1. GO, KEGG pathway and gene network analysis demonstrated that GRIA3, GRIN2A, GRIN2B and NPY were important in regulating the stress response in CFD. Nevertheless, ADORA1, CAMK2A, GRM1, GRM7 and NR4A1 might be critical genes contributing to the stress-tolerance difference between CFD and Beagle when subjected to stress exposure. In addition, RGS4 and SYN1 might play important roles both in regulating the stress response in CFD and in affecting the stress-tolerance difference in different breeds. These observations clearly showed that some genes in the adrenal cortex and pituitary could regulate the stress response in Beagle and CFDs, whereas some others could affect the stress-tolerance difference between these two breeds. Our results can contribute to a more comprehensive understanding of the genetic mechanisms of response to chronic stress. © 2015 Stichting International Foundation for Animal Genetics.

  3. The effect of thought importance on stress responses: a test of the metacognitive model.

    PubMed

    Capobianco, Lora; Morrison, Anthony P; Wells, Adrian

    2018-03-01

    Negative metacognitive beliefs are central determinants of distress in the metacognitive model of psychological vulnerability to stress. The current study tested this assertion in 75 undergraduate students assigned to either experimental (metacognitive belief manipulation) or control (no metacognitive belief manipulation) condition. All participants underwent a fake EEG, where they were told that the EEG would detect negative thoughts. The experimental subjects were informed that if they had a negative thought they may be exposed to a contingent burst of loud noise, while the control condition was told that they may be exposed to a burst of loud noise at random. Participants also underwent the Trier Social Stress Test. The results showed that on physiological measures (skin conductance level) there were no significant differences between groups. However, on self-report measures (positive and negative affect) participants in the experimental condition reported greater levels of negative affect and lower levels of positive affect in response to stress and maintained low positive affect at recovery. The results are consistent with the metacognitive model and suggest that metacognitive beliefs impact on positive and negative affect in reaction to and recovery from stress exposure.

  4. Acute effects of brisk walking on sugary snack cravings in overweight people, affect and responses to a manipulated stress situation and to a sugary snack cue: a crossover study.

    PubMed

    Ledochowski, Larissa; Ruedl, Gerhard; Taylor, Adrian H; Kopp, Martin

    2015-01-01

    Research has shown that acute exercise reduces urges for chocolate in normal weight people. This study aimed to examine the effects of an acute exercise bout on urges to consume sugary snacks, affect as well as 'psychological and physiological responses' to stress and a 'sugary snack cue', in overweight individuals. Following 3 days of chocolate-abstinence, 47 overweight, sugary snack consumers were assessed, in 2 randomly ordered conditions, in a within-subject design: 15-min brisk walk or passive control. Following each, participants completed 2 tasks: Stroop color-word interference task, and handling sugary snacks. Urges for sugary snacks, affective activation and valence were assessed. ANOVAs revealed significant condition x time interaction effects for: urges to consume sugary snacks, affective valence and activation. Obtained data show that exercise reduces urges for sugary snacks and attenuates urges in response to the stress situation and the cue in overweight people.

  5. Responses to Positive Affect Predict Mood Symptoms in Children under Conditions of Stress: A Prospective Study

    ERIC Educational Resources Information Center

    Bijttebier, Patricia; Raes, Filip; Vasey, Michael W.; Feldman, Gregory C.

    2012-01-01

    Rumination to negative affect has been linked to the onset and maintenance of mood disorders in adults as well as children. Responses to positive affect have received far less attention thus far. A few recent studies in adults suggest that responses to positive affect are involved in the development of both depressive and hypomanic symptoms, but…

  6. Early Sensory Over-Responsivity in Toddlers with Autism Spectrum Disorders as a Predictor of Family Impairment and Parenting Stress

    ERIC Educational Resources Information Center

    Ben-Sasson, A.; Soto, T. W.; Martinez-Pedraza, F.; Carter, A. S.

    2013-01-01

    Background: Sensory over-responsivity (SOR) affects many individuals with autism spectrum disorders (ASD), often leading to stressful encounters during daily routines. Methods: This study describes the associations between early SOR symptoms and the longitudinal course of restrictions in family life activities and parenting stress across three…

  7. Effect of chronic stress on short and long-term plasticity in dentate gyrus; study of recovery and adaptation.

    PubMed

    Radahmadi, M; Hosseini, N; Nasimi, A

    2014-11-07

    Stress dramatically affects synaptic plasticity of the hippocampus, disrupts paired-pulse facilitation and impairs long-term potentiation (LTP). This study was performed to find the effects of chronic restraint stress and recovery period on excitability, paired-pulse response, LTP and to find probable adaptation to very long stress in the dentate gyrus. Thirty-eight male Wistar rats were randomly divided into four groups of Control, Rest-Stress (21 days stress), Stress-Rest (recovery) and Stress-Stress (42 days stress: adaptation). Chronic restraint stress was applied 6-h/day. Input-output functions, paired-pulse responses and LTP were recorded from the dentate gyrus while stimulating the perforant pathway. We found that chronic stress attenuated the responsiveness, paired-pulse response and LTP in the dentate gyrus. A 21-day recovery period, after the stress, improved all the three responses toward normal, indicating reversibility of these stress-related hippocampal changes. There was no significant adaptation to very long stress, probably due to severity of stress. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    PubMed

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress may affect memory processes beyond the hippocampus and that these stress effects are due to the action of glucocorticoids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. When you see it coming: Stressor anticipation modulates stress effects on negative affect.

    PubMed

    Neubauer, Andreas B; Smyth, Joshua M; Sliwinski, Martin J

    2018-04-01

    Research on the effect of exposure to minor stressors in people's daily lives consistently reports negative effects on indicators of well-being, often coined stress reactivity. Recent advances in the intensity of data collection have brought about an increasing interest in within-day associations of stress exposure and indicators of well-being, including dynamic aspects of the stress response such as stress recovery. In the present work, we investigated the other end of the stress response: the anticipation of a stressor. We hypothesized that anticipation of an upcoming stressor would be accompanied by higher negative affect. Based on the anticipatory coping account, lower negative affect after occurrence of anticipated (vs. not anticipated) stressors was predicted. We approached this question with a measurement burst study that allowed us to disentangle variation in stress processes across different time scales. One-hundred and seventy-five participants (mean age = 50, range 20-79) completed up to 3 measurement bursts. Each burst consisted of an ecological momentary assessment with 5 assessments per day over 7 days. In line with our expectations, negative affect was significantly higher after stressor anticipation, especially on days with high levels of intrusive thoughts. However, negative affect was not lower after anticipated (vs. not anticipated) stressors. Findings point to the role of perseverative cognition in the effect of stressor anticipation. Directions for future research including the role of controllability and effects on stress recovery are outlined. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Exposure to Solute Stress Affects Genome-Wide Expression but Not the Polycyclic Aromatic Hydrocarbon-Degrading Activity of Sphingomonas sp. Strain LH128 in Biofilms

    PubMed Central

    Fida, Tekle Tafese; Breugelmans, Philip; Lavigne, Rob; Coronado, Edith; Johnson, David R.; van der Meer, Jan Roelof; Mayer, Antonia P.; Heipieper, Hermann J.; Hofkens, Johan

    2012-01-01

    Members of the genus Sphingomonas are important catalysts for removal of polycyclic aromatic hydrocarbons (PAHs) in soil, but their activity can be affected by various stress factors. This study examines the physiological and genome-wide transcription response of the phenanthrene-degrading Sphingomonas sp. strain LH128 in biofilms to solute stress (invoked by 450 mM NaCl solution), either as an acute (4-h) or a chronic (3-day) exposure. The degree of membrane fatty acid saturation was increased as a response to chronic stress. Oxygen consumption in the biofilms and phenanthrene mineralization activities of biofilm cells were, however, not significantly affected after imposing either acute or chronic stress. This finding was in agreement with the transcriptomic data, since genes involved in PAH degradation were not differentially expressed in stressed conditions compared to nonstressed conditions. The transcriptomic data suggest that LH128 adapts to NaCl stress by (i) increasing the expression of genes coping with osmolytic and ionic stress such as biosynthesis of compatible solutes and regulation of ion homeostasis, (ii) increasing the expression of genes involved in general stress response, (iii) changing the expression of general and specific regulatory functions, and (iv) decreasing the expression of protein synthesis such as proteins involved in motility. Differences in gene expression between cells under acute and chronic stress suggest that LH128 goes through changes in genome-wide expression to fully adapt to NaCl stress, without significantly changing phenanthrene degrading activity. PMID:23001650

  11. Evolution of mechanical properties of M50 bearing steel due to rolling contact fatigue

    NASA Astrophysics Data System (ADS)

    Allison, Bryan D.

    Current bearing life models significantly under predict the life of bearings made of modern ultra-clean steels. New life models that include the constitutive response of the material are needed. However, the constitutive response of bearing steel is known to change during bearing operation. In the current study, the evolution of the mechanical properties of M50 bearing steel due to rolling contact fatigue (RCF) was investigated. A combination of M50 balls and rods were subjected to RCF testing under various conditions (e.g. number of RCF cycles, applied Hertzian stress, and interacting material). Additionally, some of the balls tested went through a proprietary mechanical process to induce compressive residual stresses over the first several hundred microns into the depth of the ball prior to RCF testing. After RCF testing, the specimens were subjected to a number of tests. First, the residual stresses within the subsurface RCF affected region were measured via x-ray diffraction. The residual stresses within the mechanically processed (MP) balls were found to not significantly change due to RCF, while a linear relationship was found between the maximum residual stress with the RCF affected zone and the Hertzian stress for the unprocessed balls. Then, the specimens were sectioned, polished, and chemically etched to study the evolution of the microstructure due to RCF. A similar relationship was found between the size of the dark etching region (DER) and the Hertzian stress. Formation of a light etching region (LER) is demonstrated to not correlate with a decrease in material strength and hardness, but it does serve as a predictor for failure due to spall. Micro-indentation was performed within subsurface to estimate the local yield stress. Micro-indentation is not able to provide information about the stress-strain response, only the yield strength. Hence, a novel method to extract and test miniature compression specimens from within the RCF affected regions of balls after RCF was developed. Using this method, it is possible to determine the full stress-strain response of material after material that has undergone RCF. The micro-hardness of the material within the RCF affected region was found to increase by nearly 10% and yield strength increased 13% when high contact stress levels were employed in fatigue experiments. It was demonstrated that the number of cycles does contribute to hardness increase, but the applied Hertzian stress is the dominant factor. Mechanical processing was found to significantly retard the rate of mechanical property evolution, implying that it would also significantly improve the life. Similarly, it was observed that the rate of hardening is slower when silicon nitride is used to interact with the M50 specimen than another M50 component. This supports the idea that hybrid bearings last longer than more traditional all-steel bearings. Finally, an empirical model of the evolution of the constitutive response of the bearing material within the RCF affected region was developed based on the results of these analyses. This model can be used to predict the constitutive response of the material within the RCF affected region of an M50 steel ball, given the initial hardness, number of RCF cycles, and applied Hertzian stress. Further, it is now possible to solve the local yield strength as a function of depth within the RCF affected region given these same parameters.

  12. Stress modulation of cognitive and affective processes

    PubMed Central

    CAMPEAU, SERGE; LIBERZON, ISRAEL; MORILAK, DAVID; RESSLER, KERRY

    2012-01-01

    This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects. PMID:21790481

  13. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.

    PubMed

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle)' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle)' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.

  14. Parenting Mediates the Impact of Caregivers' Distress on Children's Well-Being in Families Affected by HIV/AIDS

    PubMed Central

    Chi, Peilian; Li, Xiaoming; Tam, Cheuk Chi; Du, Hongfei; Guoxiang, Zhao; Zhao, Junfeng

    2015-01-01

    Parental illness imposes great challenges to children's life and mental health. Having a parent infected by HIV may further challenge children's psychological well-being. Existing studies have demonstrated a negative impact of caregiver's distress on children's well-being. Limited studies examined the potential pathways of the link. This study aims to examine whether parenting stress, parenting competence and parental responsiveness can explain the relationship between caregivers' distress and children's well-being. A community sample of children of parents living with HIV and their current caregivers (n = 754 dyads) was recruited in rural central China. Children completed the measures on their psychological well-being and perceived parental responsiveness of their caregivers. Caregivers reported on their psychological well-being, parenting stress, and parenting competence. Structural equation modeling analysis showed that caregivers' distress indirectly affect children's well-being through parenting stress, parenting competence and parental responsiveness. Parenting stress explained the impact of caregiver's distress on parental responsiveness and showed pervasive effects on parenting competence. Our findings lend credence to family-based intervention for children affected by HIV and affirm the importance of incorporating the cognitive, emotional and behavioral components of parenting practices in such intervention. PMID:26078116

  15. Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses[OPEN

    PubMed Central

    Robbins, Neil E.

    2016-01-01

    Water is the most limiting resource on land for plant growth, and its uptake by plants is affected by many abiotic stresses, such as salinity, cold, heat, and drought. While much research has focused on exploring the molecular mechanisms underlying the cellular signaling events governing water-stress responses, it is also important to consider the role organismal structure plays as a context for such responses. The regulation of growth in plants occurs at two spatial scales: the cell and the organ. In this review, we focus on how the regulation of growth at these different spatial scales enables plants to acclimate to water-deficit stress. The cell wall is discussed with respect to how the physical properties of this structure affect water loss and how regulatory mechanisms that affect wall extensibility maintain growth under water deficit. At a higher spatial scale, the architecture of the root system represents a highly dynamic physical network that facilitates access of the plant to a heterogeneous distribution of water in soil. We discuss the role differential growth plays in shaping the structure of this system and the physiological implications of such changes. PMID:27503468

  16. Everyday stress response targets in the science of behavior change.

    PubMed

    Smyth, Joshua M; Sliwinski, Martin J; Zawadzki, Matthew J; Scott, Stacey B; Conroy, David E; Lanza, Stephanie T; Marcusson-Clavertz, David; Kim, Jinhyuk; Stawski, Robert S; Stoney, Catherine M; Buxton, Orfeu M; Sciamanna, Christopher N; Green, Paige M; Almeida, David M

    2018-02-01

    Stress is an established risk factor for negative health outcomes, and responses to everyday stress can interfere with health behaviors such as exercise and sleep. In accordance with the Science of Behavior Change (SOBC) program, we apply an experimental medicine approach to identifying stress response targets, developing stress response assays, intervening upon these targets, and testing intervention effectiveness. We evaluate an ecologically valid, within-person approach to measuring the deleterious effects of everyday stress on physical activity and sleep patterns, examining multiple stress response components (i.e., stress reactivity, stress recovery, and stress pile-up) as indexed by two key response indicators (negative affect and perseverative cognition). Our everyday stress response assay thus measures multiple malleable stress response targets that putatively shape daily health behaviors (physical activity and sleep). We hypothesize that larger reactivity, incomplete recovery, and more frequent stress responses (pile-up) will negatively impact health behavior enactment in daily life. We will identify stress-related reactivity, recovery, and response in the indicators using coordinated analyses across multiple naturalistic studies. These results are the basis for developing a new stress assay and replicating the initial findings in a new sample. This approach will advance our understanding of how specific aspects of everyday stress responses influence health behaviors, and can be used to develop and test an innovative ambulatory intervention for stress reduction in daily life to enhance health behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    EPA Science Inventory

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  18. Daytime soybean transcriptome fluctuations during water deficit stress

    USDA-ARS?s Scientific Manuscript database

    Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-s...

  19. Food availability is expressed through physiological stress indicators in nestling white ibis: A food supplementation experiment

    USGS Publications Warehouse

    Herring, G.; Cook, Mark I.; Gawlik, D.E.; Call, Erynn M.

    2011-01-01

    Physiological responses to environmental stress such as adrenocortical hormones and cellular stress proteins have recently emerged as potentially powerful tools for investigating physiological effects of avian food limitation. However, little is known about the physiological stress responses of free-living nestling birds to environmental variation in food availability. We experimentally tested how hydrologically mediated changes in food availability affect the physiological stress responses of juvenile white ibises Eudocimus albus in a fluctuating wetland. We provided supplementary food to free-living nestlings during 2years with contrasting hydrologic and food availability conditions, and used plasma (PCORT) and faecal (FCORT) corticosterone and heat shock proteins (HSP60 and HSP70) from first-hatched (A-nestlings) and second-hatched (B-nestlings) to detect relatively short- to long-term responses to food limitation. Nestling physiological stress responses were relatively low in all treatments during the year with optimal food availability, but PCORT, FCORT and HSP60 levels increased during the poor food year. FCORT and HSP60 responses were clearly due to nutritional condition as elevated concentrations were evident primarily in control nestlings. Significant year by hatch order interactions for both FCORT and HSP60 revealed that these increases were largely incurred by B-nestlings. FCORT and HSP60 responses were also well developed early in neonatal development and remained elevated for the duration of the experiment suggesting a chronic stress response. PCORT and HSP70 were less informative stress responses. The nutritionally mediated increases in FCORT and HSP60 provide compelling evidence that white ibis nestlings can be physiologically affected by environmental food levels. FCORT and HSP60 are effective indicators of nutritional mediated stress for nestling white ibises and potentially for other species prone to capture or handling stress. ?? 2010 The Authors. Functional Ecology ?? 2010 British Ecological Society.

  20. The rat closely mimics oxidative stress and inflammation in humans after exercise but not after exercise combined with vitamin C administration.

    PubMed

    Veskoukis, Aristidis S; Goutianos, Georgios; Paschalis, Vassilis; Margaritelis, Nikos V; Tzioura, Aikaterini; Dipla, Konstantina; Zafeiridis, Andreas; Vrabas, Ioannis S; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-04-01

    The purpose of the present study was to directly compare oxidative stress and inflammation responses between rats and humans. We contrasted rat and human oxidative stress and inflammatory responses to exercise (pro-oxidant stimulus) and/or vitamin C (anti-oxidant stimulus) administration. Vitamin C was administered orally in both species (16 mg kg(-1) of body weight). Twelve redox biomarkers and seven inflammatory biomarkers were determined in plasma and erythrocytes pre- and post-exercise or pre- and post-exercise combined with vitamin C administration. Exercise increased oxidative stress and induced an inflammatory state in rats and humans. There were only 1/19 significant species × exercise interactions (catalase), indicating similar responses to exercise between rats and humans in redox and inflammatory biomarkers. Vitamin C decreased oxidative stress and increased antioxidant capacity only in humans and did not affect the redox state of rats. In contrast, vitamin C induced an anti-inflammatory state only in rats and did not affect the inflammatory state of humans. There were 10/19 significant species × vitamin C interactions, indicating that rats poorly mimic human oxidative stress and inflammatory responses to vitamin C administration. Exercise after acute vitamin C administration altered redox state only in humans and did not affect the redox state of rats. On the contrary, inflammation biomarkers changed similarly after exercise combined with vitamin C in both rats and humans. The rat adequately mimics human responses to exercise in basic blood redox/inflammatory profile, yet this is not the case after exercise combined with vitamin C administration.

  1. Is 1/f sound more effective than simple resting in reducing stress response?

    PubMed

    Oh, Eun-Joo; Cho, Il-Young; Park, Soon-Kwon

    2014-01-01

    It has been previously demonstrated that listening to 1/f sound effectively reduces stress. However, these findings have been inconsistent and further study on the relationship between 1/f sound and the stress response is consequently necessary. The present study examined whether sound with 1/f properties (1/f sound) affects stress-induced electroencephalogram (EEG) changes. Twenty-six subjects who voluntarily participated in the study were randomly assigned to the experimental or control group. Data from four participants were excluded because of EEG artifacts. A mental arithmetic task was used as a stressor. Participants in the experiment group listened to 1/f sound for 5 minutes and 33 seconds, while participants in the control group sat quietly for the same duration. EEG recordings were obtained at various points throughout the experiment. After the experiment, participants completed a questionnaire on the affective impact of the 1/f sound. The results indicated that the mental arithmetic task effectively induced a stress response measurable by EEG. Relative theta power at all electrode sites was significantly lower than baseline in both the control and experimental group. Relative alpha power was significantly lower, and relative beta power was significantly higher in the T3 and T4 areas. Secondly, 1/f sound and simple resting affected task-associated EEG changes in a similar manner. Finally, participants reported in the questionnaire that they experienced a positive feeling in response to the 1/f sound. Our results suggest that a commercialized 1/f sound product is not more effective than simple resting in alleviating the physiological stress response.

  2. Effects of pre-experience of social exclusion on hypothalamus-pituitary-adrenal axis and catecholaminergic responsiveness to public speaking stress.

    PubMed

    Weik, Ulrike; Kuepper, Yvonne; Hennig, Juergen; Deinzer, Renate

    2013-01-01

    Being socially excluded is associated with a variety of psychological changes and with an increased risk of disease. Today, the immediate physiological consequences of being socially excluded are not well understood. In two recent studies employing a standardized exclusion paradigm (Cyberball) we found social exclusion in this virtual game did not alter cortisol secretion directly. However, exclusion pre-experience suppresses the normal cortisol response to public speaking stress in women. The present study aims to replicate our previous finding and further elucidate it by analyzing for the first time whether this alteration of cortisol-responsiveness is associated to ACTH and whether the catecholaminergic system is affected as well. Women were randomly assigned to Cyberball-induced exclusion (SE, n = 22) or inclusion (SI, n = 21), respectively. Immediately afterwards they were subjected to public speaking stress. Salivary cortisol, plasma ACTH, catecholamines and estradiol were assessed as were psychological distress and mood. Cyberball exclusion led to a highly significant immediate increase in negative affect in excluded women. After public speaking negative affect in included women increased as well and groups no longer differed. We replicate our previous finding of cortisol non-responsiveness to public speaking stress after exclusion pre-experience and find this effect to be significantly correlated with ACTH alterations. No such effects are observed for catecholamines. We replicated our previous study result of a suppressed cortisol stress response after a short exclusion experience via Cyberball, thereby underlining the profound effects of social exclusion on a subsequent cortisol stress response. This further demonstrates that these alterations are associated with ACTH. Lack of effects on catecholamines is discussed in view of the tend-and-befriend hypothesis but also from a methodological perspective.

  3. Effects of Pre-Experience of Social Exclusion on Hypothalamus-Pituitary-Adrenal Axis and Catecholaminergic Responsiveness to Public Speaking Stress

    PubMed Central

    Weik, Ulrike; Kuepper, Yvonne; Hennig, Juergen; Deinzer, Renate

    2013-01-01

    Backround Being socially excluded is associated with a variety of psychological changes and with an increased risk of disease. Today, the immediate physiological consequences of being socially excluded are not well understood. In two recent studies employing a standardized exclusion paradigm (Cyberball) we found social exclusion in this virtual game did not alter cortisol secretion directly. However, exclusion pre-experience suppresses the normal cortisol response to public speaking stress in women. The present study aims to replicate our previous finding and further elucidate it by analyzing for the first time whether this alteration of cortisol-responsiveness is associated to ACTH and whether the catecholaminergic system is affected as well. Methods Women were randomly assigned to Cyberball-induced exclusion (SE, n = 22) or inclusion (SI, n = 21), respectively. Immediately afterwards they were subjected to public speaking stress. Salivary cortisol, plasma ACTH, catecholamines and estradiol were assessed as were psychological distress and mood. Results Cyberball exclusion led to a highly significant immediate increase in negative affect in excluded women. After public speaking negative affect in included women increased as well and groups no longer differed. We replicate our previous finding of cortisol non-responsiveness to public speaking stress after exclusion pre-experience and find this effect to be significantly correlated with ACTH alterations. No such effects are observed for catecholamines. Conclusions We replicated our previous study result of a supressed cortisol stress response after a short exclusion experience via Cyberball, thereby underlining the profound effects of social exclusion on a subsequent cortisol stress response. This further demonstrates that these alterations are associated with ACTH. Lack of effects on catecholamines is discussed in view of the tend-and-befriend hypothesis but also from a methodological perspective. PMID:23573255

  4. Endoplasmic Reticulum Stress Caused by Lipoprotein Accumulation Suppresses Immunity against Bacterial Pathogens and Contributes to Immunosenescence

    PubMed Central

    Singh, Jogender

    2017-01-01

    ABSTRACT The unfolded protein response (UPR) is a stress response pathway that is activated upon increased unfolded and/or misfolded proteins in the endoplasmic reticulum (ER), and enhanced ER stress response prolongs life span and improves immunity. However, the mechanism by which ER stress affects immunity remains poorly understood. Using the nematode Caenorhabditis elegans, we show that mutations in the lipoproteins vitellogenins, which are homologs of human apolipoprotein B-100, resulted in upregulation of the UPR. Lipoprotein accumulation in the intestine adversely affects the immune response and the life span of the organism, suggesting that it could be a contributing factor to immunosenescence. We show that lipoprotein accumulation inhibited the expression of several immune genes encoding proteins secreted by the intestinal cells in an IRE-1-independent manner. Our studies provide a mechanistic explanation for adverse effects caused by protein aggregation and ER stress on immunity and highlight the role of an IRE-1-independent pathway in the suppression of the expression of genes encoding secreted proteins. PMID:28559483

  5. Development of sensors for monitoring oxygen and free radicals in plant physiology

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Prachee

    Oxygen plays a critical role in the physiology of photosynthetic organisms, including bioenergetics, metabolism, development, and stress response. Oxygen levels affect photosynthesis, respiration, and alternative oxidase pathways. Likewise, the metabolic rate of spatially distinct plant cells (and therefore oxygen flux) is known to be affected by biotic stress (e.g., herbivory) and environmental stress (e.g., salt/nutrient stress). During aerobic metabolism, cells produce reactive oxygen species (ROS) as a by product. Plants also produce ROS during adaptation to stress (e.g., abscisic acid (ABA) mediated stress responses). If stress conditions are prolonged, ROS levels surpass the capacity of detoxifying mechanisms within the cell, resulting in oxidative damage. While stress response pathways such as ABA-mediated mechanisms have been well characterized (e.g., water stress, inhibited shoot growth, synthesis of storage proteins in seeds), the connection between ROS production, oxygen metabolism and stress response remains unknown. In part, this is because details of oxygen transport at the interface of cell(s) and the surrounding microenvironment remains nebulous. The overall goal of this research was to develop oxygen and Free radical sensors for studying stress signaling in plants. Recent developments in nanomaterials and data acquisition systems were integrated to develop real-time, non-invasive oxygen and Free radical sensors. The availability of these sensors for plant physiologists is an exciting opportunity to probe the functional realm of cells and tissues in ways that were not previously possible.

  6. Sex differences in corticotropin-releasing factor receptor-1 action within the dorsal raphe nucleus in stress responsivity.

    PubMed

    Howerton, Alexis R; Roland, Alison V; Fluharty, Jessica M; Marshall, Anikò; Chen, Alon; Daniels, Derek; Beck, Sheryl G; Bale, Tracy L

    2014-06-01

    Women are twice as likely as men to suffer from stress-related affective disorders. Corticotropin-releasing factor (CRF) is an important link between stress and mood, in part through its signaling in the serotonergic dorsal raphe (DR). Development of CRF receptor-1 (CRFr1) antagonists has been a focus of numerous clinical trials but has not yet been proven efficacious. We hypothesized that sex differences in CRFr1 modulation of DR circuits might be key determinants in predicting therapeutic responses and affective disorder vulnerability. Male and female mice received DR infusions of the CRFr1 antagonist, NBI 35965, or CRF and were evaluated for stress responsivity. Sex differences in indices of neural activation (cFos) and colocalization of CRFr1 throughout the DR were examined. Whole-cell patch-clamp electrophysiology assessed sex differences in serotonin neuron membrane characteristics and responsivity to CRF. Males showed robust behavioral and hypothalamic-pituitary-adrenal axis responses to DR infusion of NBI 35965 and CRF, whereas females were minimally responsive. Sex differences were also found for both CRF-induced DR cFos and CRFr1 co-localization throughout the DR. Electrophysiologically, female serotonergic neurons showed blunted membrane excitability and divergent inhibitory postsynaptic current responses to CRF application. These studies demonstrate convincing sex differences in CRFr1 activity in the DR, where blunted female responses to NBI 35965 and CRF suggest unique stress modulation of the DR. These sex differences might underlie affective disorder vulnerability and differential sensitivity to pharmacologic treatments developed to target the CRF system, thereby contributing to a current lack of CRFr1 antagonist efficacy in clinical trials. © 2013 Published by Society of Biological Psychiatry on behalf of Society of Biological Psychiatry.

  7. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress.

    PubMed

    Lennartsson, Anna-Karin; Theorell, Töres; Kushnir, Mark M; Bergquist, Jonas; Jonsdottir, Ingibjörg H

    2013-09-01

    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) have been suggested to play a protective role during acute psychosocial stress, because they act as antagonists to the effects of the stress hormone cortisol. This study aims to investigate whether prolonged psychosocial stress, measured as perceived stress at work during the past week, is related to the capacity to produce DHEA and DHEA-S during acute psychosocial stress. It also aims to investigate whether prolonged perceived stress affects the balance between production of cortisol and DHEA-S during acute psychosocial stress. Thirty-six healthy subjects (19 men and 17 women, mean age 37 years, SD 5 years), were included. Perceived stress at work during the past week was measured by using the Stress-Energy (SE) Questionnaire. The participants were divided into three groups based on their mean scores; Low stress, Medium stress and High stress. The participants underwent the Trier Social Stress Test (TSST) and blood samples were collected before, directly after the stress test, and after 30 min of recovery. General Linear Models were used to investigate if the Medium stress group and the High stress group differ regarding stress response compared to the Low stress group. Higher perceived stress at work was associated with attenuated DHEA-S response during acute psychosocial stress. Furthermore, the ratio between the cortisol production and the DHEA-S production during the acute stress test were higher in individuals reporting higher perceived stress at work compared to individuals reporting low perceived stress at work. There was no statistical difference in DHEA response between the groups. This study shows that prolonged stress, measured as perceived stress at work during the past week, seems to negatively affect the capacity to produce DHEA-S during acute stress. Given the protective functions of DHEA-S, attenuated DHEA-S production during acute stress may lead to higher risk for adverse effects on psychological and physiological health, particularly if stress exposure continues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The psychology of psychiatric genetics: evidence that positive emotions in females moderate genetic sensitivity to social stress associated with the BDNF Val-sup-6-sup-6Met polymorphism.

    PubMed

    Wichers, Marieke; Kenis, Gunter; Jacobs, Nele; Myin-Germeys, Inez; Schruers, Koen; Mengelers, Ron; Delespaul, Philippe; Derom, Catherine; Vlietinck, Robert; van Os, Jim

    2008-08-01

    Previous work indicated protective effects of positive emotions on genetically influenced stress sensitivity. Given the fact that expression of brain-derived-neurotrophic-factor (BDNF) is associated with stress-induced behavioral changes, it was hypothesized that the BDNF Val-sup-6-sup-6Met genotype may mediate genetic effects on stress sensitivity, conditional on the level of concurrent positive emotions. Subjects (n=446) participated in a momentary assessment study, collecting appraisals of stress and affect in the flow of daily life. Multilevel regression analyses examined moderation of daily life stress-induced negative affect (NA) by BDNF genotype, and to what degree this was conditional on concurrent positive emotions. Results showed that heterozygous BDNF "Met" carriers exhibited an increased NA response to social stress compared with "Val/Val" subjects. Positive emotions at the time of the stressor decreased BDNF genetic moderation of the NA response to social stress in a dose-response fashion. This effect was most pronounced in BDNF Met carriers. Thus, the impact of BDNF genotype on stress sensitivity is conditional on the experience of positive emotions. Interdisciplinary research in psychology and psychiatric genetics may lead to the improvement of treatment choices in stress-related disorders. Copyright (c) 2008 APA, all rights reserved.

  9. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    USDA-ARS?s Scientific Manuscript database

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant unde...

  10. Psychological Stress and the Cutaneous Immune Response: Roles of the HPA Axis and the Sympathetic Nervous System in Atopic Dermatitis and Psoriasis

    PubMed Central

    Hall, Jessica M. F.; Cruser, desAnges; Podawiltz, Alan; Mummert, Diana I.; Jones, Harlan; Mummert, Mark E.

    2012-01-01

    Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis. PMID:22969795

  11. Effect of acute psychological stress on response inhibition: An event-related potential study.

    PubMed

    Qi, Mingming; Gao, Heming; Liu, Guangyuan

    2017-04-14

    This study aimed to investigate the effect of acute psychological stress on response inhibition and its electrophysiological correlates using a dual-task paradigm. Acute stress was induced by a primary task (mental arithmetic task), which consisted of a stress block and a control block. Response inhibition was measured using a secondary task (Go/NoGo task). In each trial, a Go/NoGo stimulus was presented immediately after the mental arithmetic task. The results revealed increased subjective stress and negative affect for the stress relative to control block, suggesting that the mental arithmetic task triggered a reliable stress response. ERPs locked to the Go/NoGo stimuli revealed that decreased P2 and increased N2 components were evoked for the stress block compared to the control block. These results demonstrated that acute psychological stress alters the response inhibition process by reducing the early selective attention process and enhancing the cognitive control process. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress.

    PubMed

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Flooding is a serious abiotic stress for soybean because it restricts growth and reduces grain yields. To investigate the effect of gibberellic acid (GA) on soybean under flooding stress, root proteins were analyzed using a gel-free proteomic technique. Proteins were extracted from the roots of 4-days-old soybean seedlings exposed to flooding stress in the presence and absence of exogenous GA3 for 2 days. A total of 307, 324, and 250 proteins were identified from untreated, and flooding-treated soybean seedlings without or with GA3, respectively. Secondary metabolism- and cell-related proteins, and proteins involved in protein degradation/synthesis were decreased by flooding stress; however, the levels of these proteins were restored by GA3 supplementation under flooding. Fermentation- and cell wall-related proteins were not affected by GA3 supplementation. Furthermore, putative GA-responsive proteins, which were identified by the presence of a GA-responsive element in the promoter region, were less abundant by flooding stress; however, these proteins were more abundant by GA3 supplementation under flooding. Taken together, these results suggest that GA3 affects the abundance of proteins involved in secondary metabolism, cell cycle, and protein degradation/synthesis in soybeans under flooding stress.

  13. Systems biology meets stress ecology: linking molecular and organismal stress responses in Daphnia magna

    PubMed Central

    Heckmann, Lars-Henrik; Sibly, Richard M; Connon, Richard; Hooper, Helen L; Hutchinson, Thomas H; Maund, Steve J; Hill, Christopher J; Bouetard, Anthony; Callaghan, Amanda

    2008-01-01

    Background Ibuprofen and other nonsteroidal anti-inflammatory drugs have been designed to interrupt eicosanoid metabolism in mammals, but little is known of how they affect nontarget organisms. Here we report a systems biology study that simultaneously describes the transcriptomic and phenotypic stress responses of the model crustacean Daphnia magna after exposure to ibuprofen. Results Our findings reveal intriguing similarities in the mode of action of ibuprofen between vertebrates and invertebrates, and they suggest that ibuprofen has a targeted impact on reproduction at the molecular, organismal, and population level in daphnids. Microarray expression and temporal real-time quantitative PCR profiles of key genes suggest early ibuprofen interruption of crustacean eicosanoid metabolism, which appears to disrupt signal transduction affecting juvenile hormone metabolism and oogenesis. Conclusion Combining molecular and organismal stress responses provides a guide to possible chronic consequences of environmental stress for population health. This could improve current environmental risk assessment by providing an early indication of the need for higher tier testing. Our study demonstrates the advantages of a systems approach to stress ecology, in which Daphnia will probably play a major role. PMID:18291039

  14. Central Metabolic Responses to Ozone and Herbivory Affect Photosynthesis and Stomatal Closure1[OPEN

    PubMed Central

    Khaling, Eliezer; Lassueur, Steve

    2016-01-01

    Plants have evolved adaptive mechanisms that allow them to tolerate a continuous range of abiotic and biotic stressors. Tropospheric ozone (O3), a global anthropogenic pollutant, directly affects living organisms and ecosystems, including plant-herbivore interactions. In this study, we investigate the stress responses of Brassica nigra (wild black mustard) exposed consecutively to O3 and the specialist herbivore Pieris brassicae. Transcriptomics and metabolomics data were evaluated using multivariate, correlation, and network analyses for the O3 and herbivory responses. O3 stress symptoms resembled those of senescence and phosphate starvation, while a sequential shift from O3 to herbivory induced characteristic plant defense responses, including a decrease in central metabolism, induction of the jasmonic acid/ethylene pathways, and emission of volatiles. Omics network and pathway analyses predicted a link between glycerol and central energy metabolism that influences the osmotic stress response and stomatal closure. Further physiological measurements confirmed that while O3 stress inhibited photosynthesis and carbon assimilation, sequential herbivory counteracted the initial responses induced by O3, resulting in a phenotype similar to that observed after herbivory alone. This study clarifies the consequences of multiple stress interactions on a plant metabolic system and also illustrates how omics data can be integrated to generate new hypotheses in ecology and plant physiology. PMID:27758847

  15. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  16. The effect of social stress on chronic pain perception in female and male mice.

    PubMed

    Aghajani, Marjan; Vaez Mahdavi, Mohammad Reza; Khalili Najafabadi, Mohsen; Ghazanfari, Tooba

    2012-01-01

    The current investigations on social stress primarily point to the negative health consequences of being in a stressful social hierarchy. The repetitive nature of such stressors seems to affect behavioral response to pain both in rodents and humans. Moreover, a large discrepancy in the possibility of social stresses affecting pain perception in the two genders exists. The present study examined the effect of chronic social stress on nociceptive responses of both sexes by implementing of food deprivation, food intake inequality and unstable social status (cage-mate change every 3 days) for a period of 14 days in 96 Balb/c mice. In this regard we injected 20 µl formalin 2% into the plantar surface of hind paw at the end of stress period and scored pain behaviors of all subjects, then serum concentrations of proinflammatory cytokines were measured. Our results showed that there was significant difference in chronic phase of formalin test following implementation of food deprivation and inequality (P<0.05) as compared to control group, so that pain perception was decreased considerably and this decline in inequality exposed subjects was well above isolated ones (P<0.05); whereas unstable social situation did not affect pain perception. Moreover, IL-1 and IL-6 concentrations in serum of stressed mice of both genders were well above control group (p<0.05). Finally, despite chronic pain perception in control and unstable male subjects was larger than females; the decrease of chronic pain perception in male stressed animals (poverty and inequality experienced subjects) was much more than stressed females. These results revealed that although food deprivation and social inequality can induce hypoalgesia, some socioeconomic situations like social instability don't affect pain sensation, whereas there were similar increases of proinflammatory cytokines level in all socially stressed subjects. In addition, males display larger hypoalgesic responses to inequality as compared with females.

  17. Early environmental predictors of the affective and interpersonal constructs of psychopathy.

    PubMed

    Daversa, Maria T

    2010-02-01

    Early childhood maltreatment (i.e., physical, sexual, emotional abuse) and caregiver disruptions are hypothesized to be instrumental in altering the neurobiology of the brain, particularly the amygdala, and contributing to the development of the affective deficits examined in individuals with psychopathy. Exposure to early untoward life events in models of rodent and nonhuman primates changes the neurobiology of the stress response. It is hypothesized that these changes may permanently shape brain regions that mediate stress and emotion and therefore play a role in the etiology of affective disorders in humans. The significance of experience (e.g., the intensity/severity, chronicity/duration, and developmental timing of experiences) and how the accompanying changes in the activity of the hypothalamic-pituitary-adrenocortical system affect alterations in the amygdala are discussed as critical contributors to the etiology of psychopathy. A model is proposed in which early maltreatment experiences contribute to alterations to the amygdala and produce a blunted or dissociative response to stress, a key factor in the affective deficits observed in psychopaths.

  18. Dispositional Affect Moderates the Stress-Buffering Effect of Social Support on Risk for Developing the Common Cold.

    PubMed

    Janicki Deverts, Denise; Cohen, Sheldon; Doyle, William J

    2017-10-01

    The aim was to examine whether trait positive and negative affect (PA, NA) moderate the stress-buffering effect of perceived social support on risk for developing a cold subsequent to being exposed to a virus that causes mild upper respiratory illness. Analyses were based on archival data from 694 healthy adults (M age  = 31.0 years, SD = 10.7 years; 49.0% female; 64.6% Caucasian). Perceived social support and perceived stress were assessed by self-report questionnaire and trait affect by aggregating responses to daily mood items administered by telephone interview across several days. Subsequently, participants were exposed to a virus that causes the common cold and monitored for 5 days for clinical illness (infection + objective signs of illness). Two 3-way interactions emerged-Support × Stress × PA and Support × Stress × NA. The nature of these effects was such that among persons with high trait PA or low trait NA, greater social support attenuated the risk of developing a cold when under high but not low perceived stress; this stress-buffering effect did not emerge among persons with low trait PA or high trait NA. Dispositional affect might be used to identify individuals who may be most responsive to social support and support-based interventions. © 2016 Wiley Periodicals, Inc.

  19. Reactions of transcendental meditators and nonmeditators to stress films. A cognitive study.

    PubMed

    Kanas, N; Horowitz, M J

    1977-12-01

    To experimentally test the claimed stress-reducing effects of Transcendental Meditation (TM), two stress films were shown to a group of 60 meditators and nonmeditators. Stress response was observed through the use of cognitive and affective measures employing content analysis techniques and self-ratings. The meditators did not show less stress response than the nonmeditators. On several self-rating scales, a group of subjects who had signed up to be initiated into TM rated themselves significantly more stressed and emotionally distressed than either a control group or meditators. There was a trend for meditators who meditated during the experiment to show less stress response to the films than meditators who were told not to meditate; however, this difference was significant on only one measure, a subjective stress scale.

  20. Bruxism affects stress responses in stressed rats.

    PubMed

    Sato, Chikatoshi; Sato, Sadao; Takashina, Hirofumi; Ishii, Hidenori; Onozuka, Minoru; Sasaguri, Kenichi

    2010-04-01

    It has been proposed that suppression of stress-related emotional responses leads to the simultaneous activation of both sympathetic and parasympathetic divisions of the autonomic nervous system (ANS) and that the expression of these emotional states has a protective effect against ulcerogenesis. In the present study, we investigated whether stress-induced bruxism activity (SBA) has a physiological effect of on the stress-induced changes of the stomach, thymus, and spleen as well as blood leukocytes, cortisol, and adrenaline. This study demonstrated that SBA attenuated the stress-induced ulcer genesis as well as degenerative changes of thymus and spleen. SBA also attenuated increases of adrenaline, cortisol, and neutrophils in the blood. In conclusion, expression of aggression through SBA during stress exposure attenuates both stress-induced ANS response, including gastric ulcer formation.

  1. Neuropeptide y gates a stress-induced, long-lasting plasticity in the sympathetic nervous system.

    PubMed

    Wang, Qian; Wang, Manqi; Whim, Matthew D

    2013-07-31

    Acute stress evokes the fight-or-flight reflex, which via release of the catecholamine hormones affects the function of every major organ. Although the reflex is transient, it has lasting consequences that produce an exaggerated response when stress is reexperienced. How this change is encoded is not known. We investigated whether the reflex affects the adrenal component of the sympathetic nervous system, a major branch of the stress response. Mice were briefly exposed to the cold-water forced swim test (FST) which evoked an increase in circulating catecholamines. Although this hormonal response was transient, the FST led to a long-lasting increase in the catecholamine secretory capacity measured amperometrically from chromaffin cells and in the expression of tyrosine hydroxylase. A variety of approaches indicate that these changes are regulated postsynaptically by neuropeptide Y (NPY), an adrenal cotransmitter. Using immunohistochemistry, RT-PCR, and NPY(GFP) BAC mice, we find that NPY is synthesized by all chromaffin cells. Stress failed to increase secretory capacity in NPY knock-out mice. Genetic or pharmacological interference with NPY and Y1 (but not Y2 or Y5) receptor signaling attenuated the stress-induced change in tyrosine hydroxylase expression. These results indicate that, under basal conditions, adrenal signaling is tonically inhibited by NPY, but stress overrides this autocrine negative feedback loop. Because acute stress leads to a lasting increase in secretory capacity in vivo but does not alter sympathetic tone, these postsynaptic changes appear to be an adaptive response. We conclude that the sympathetic limb of the stress response exhibits an activity-dependent form of long-lasting plasticity.

  2. Sources of variation in plasma corticosterone and dehydroepiandrosterone in the male northern cardinal (Cardinalis cardinalis): II. Effects of urbanization, food supplementation and social stress.

    PubMed

    Wright, Sarah; Fokidis, H Bobby

    2016-09-01

    Perturbations in an organism's environment can induce significant shifts in hormone secretory patterns. In this context, the glucocorticoid (GC) steroids secreted by the adrenal cortex have received much attention from ecologists and behaviorists due to their role in the vertebrate stress response. Adrenal GCs, such as corticosterone (CORT), are highly responsive to instability in environmental and social conditions. However, little is understood about how adrenal dehydroepiandrosterone (DHEA) is influenced by changing conditions. We conducted field experiments to determine how circulating CORT and DHEA vary during restraint stress in the male northern cardinals (Cardinalis cardinalis). Specifically, we examined how four different changes in the physical (urbanization and food availability) and social (territorial conflict, distress of a mate) environment affect CORT and DHEA levels. The majority of cardinals responded to restraint stress by increasing and decreasing CORT and DHEA, respectively, however this depended on sampling context. Cardinals sampled from urban habitats had both lower initial and restraint stress CORT concentrations, but a comparable DHEA pattern to those sampled from a forest. Supplementing food to territorial males did not alter circulating initial DHEA or CORT concentrations nor did it change the response to restraint stress when compared to unsupplemented controls. Exposing cardinals to varying durations of song playback, which mimics a territorial intrusion, did not affect CORT levels, but did attenuate the DHEA response to restraint stress. Examining a larger dataset of males captured before, after or at the same time as their female mate, allowed us to address how the stress of a captured mate affected the male's CORT and DHEA response. Males showed elevated initial and restraint CORT and DHEA when their female mate was captured first. Taken together, these data demonstrate that both CORT and DHEA secretion patterns depends on environmental, and particularly current social conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mannitol Metabolism in Celery Stressed by Excess Macronutrients.

    PubMed Central

    Stoop, JMH.; Pharr, D. M.

    1994-01-01

    The effect of excess macronutrients in the root environment on mannitol and sucrose metabolism was investigated in celery (Apium graveolens L. var dulce [Mill.] Pers.). Plant growth was inhibited progressively as macronutrient concentration in the media, as measured by electrical conductivity (E.C.), increased from 1.0 to 11.9 decisiemens m-1. Plants grown for 35 d at higher E.C. had a lower water content but similar dry weight in their roots, leaves, and petioles compared to plants grown at lower E.C. Macronutrient concentrations of leaves, roots, and petioles were not affected by the imposed stress, indicating that the macronutrient stress resulted in a water-deficit stress response rather than a salt-specific response. Mannitol accumulated in sink tissues and was accompanied by a drastic decrease in activity of mannitol-1-oxidoreductase. Sucrose concentration and activities of sucrose-metabolizing enzymes in sink tissues were not affected by the macronutrient stress. Mature leaves exhibited increased concentrations of both mannitol and sucrose, together with increased activity of mannose-6-phosphate reductase and sucrose phosphate synthase, in response to macronutrient stress. Thus, mannitol accumulation in osmotically stressed celery is regulated by diminished catabolism in sink tissues and increased capacity for mannitol biosynthesis in source leaves. PMID:12232345

  4. Serum melatonin concentration in the child with non-organic failure to thrive: comparison with other types of stress.

    PubMed

    Muñoz-Hoyos, A; Molina-Carballo, A; Uberos, J; Contreras-Chova, F; Del Carmen Augustin-Morales, M; Ruiz-Alba, M; Galdó-Muñoz, G

    2009-01-01

    Human beings must adapt both to novel, unfavourable conditions and to circumstances of physical or psychological isolation. The initial response to stress depends fundamentally on the activation of the HPA axis. In regaining homeostatic equilibrium, melatonin plays a role due to its synchronising and anti-stress properties. To study the role of melatonin and the pineal gland in the organic and/or behavioural response to acute or chronic stress, 311 children were divided into two large groups: 1) Control Group - 121 healthy children classified, in turn, into 4 control subgroups, one for each pathology being studied; 2) Problem Groups, classified as traumatic stress (n=58), surgical stress (n=38), psychic stress (n=64) and febrile stress (n=30), according to pre-established clinical criteria. These groups were sub-classified according to the degree (low or high) and duration (acute or chronic) of the stress. This study used a case controlled, cross sectional design. Serum melatonin was measured by radioimmunoassay (RIA). In all the situations of acute stress, melatonin increased at a rate directly proportional to the severity and/or duration of the stress-causing stimulus. In contrast, in chronic stress, i.e. the Affective Deprivation Syndrome (or Psychological Dwarfism) with or without non-organic failure to thrive, resulted in the opposite response with a significant reduction of melatonin. In conclusion, in acute stress an increase in the bioavailability of melatonin could contribute to maintaining homeostatic balance. The lack of an appropriate response to acute stress could make some groups of patients (Affective deprivation syndrome with or without growth failure) predisposed to suffer depressive symptoms associated with a wide range of neurological, endocrinological or immunological consequences.

  5. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress

    USDA-ARS?s Scientific Manuscript database

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms...

  6. Evaluation and expression analysis of alfalfa genotypes in response to prolonged salt stress

    USDA-ARS?s Scientific Manuscript database

    Salinity is one of the most important abiotic stresses that adversely affect plant growth and productivity globally. In order to tackle this complex problem, it is important to link the biochemical and physiological responses with the underlying genetic mechanisms. In this study, we used 12 previous...

  7. Caregiving and Developmental Factors Differentiating Young At-Risk Urban Children Showing Resilient Versus Stress-Affected Outcomes: A Replication and Extension.

    ERIC Educational Resources Information Center

    Wyman, Peter A.; And Others

    1999-01-01

    Tested hypotheses from an organizational-developmental model for childhood resilience among 7- to 9-year olds. Found that caregiving factors and early development differentiated children with resilient and stress-affected adaptations. Variables reflecting emotionally responsive, competent parenting were direct, proximal predictors of resilience…

  8. Physical activity and negative affective reactivity in daily life.

    PubMed

    Puterman, Eli; Weiss, Jordan; Beauchamp, Mark R; Mogle, Jacqueline; Almeida, David M

    2017-12-01

    The results from experimental studies indicate that physically active individuals remain calmer and report less anxiety after the induction of a standardized stressor. The current study extends this research to real life, and examines whether daily physical activity attenuates negative affect that occurs in response to naturally occurring daily stressors. The current study used data from the second wave of the National Study of Daily Experiences, a sub-study of the second wave of the Midlife in the United States Study (MIDUS-II) of 2,022 individuals aged 33-84 questioned nightly for eight consecutive days about their general affect and affective responses to stressful events and their engagement in physical activity. Results indicated that while negative affect is significantly elevated on days with stressful events compared to days free of events in all individuals, these effects are attenuated in those who remain physically active when compared to those who were underactive. This was also true for any day participants were physically active. Importantly, negative affect in response to any specific stressor was reduced the closer in time that the stressor occurred to the bout of exercise in underactive participants, while, in active participants, negative affect in response to any stressor remained low throughout the entire day that participants reported that they were active. Given the significant mental and physical health implications of elevated affective reactivity observed in previous studies, the current study sheds further light on the importance of remaining physically active in times of stress. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. High positive affect shortly after missile attacks and the heightened risk of posttraumatic stress disorder among Israeli adolescents.

    PubMed

    Israel-Cohen, Yael; Kashy-Rosenbaum, Gabriela; Kaplan, Oren

    2014-06-01

    Previous research has demonstrated that positive emotions help build psychological resources and facilitate adaptation to stress, yet few studies have considered the possible negative effects of positive emotions on stress. This study examined the relationship between high arousal, positive and negative affect, and posttraumatic stress disorder (PTSD) symptoms among 503 Israeli adolescents following a period of escalated missile attacks on their city. Our findings revealed that not only negative affect, but also positive affect at very high levels exhibited 2 weeks following missile attacks were independently associated with PTSD symptoms 2½ months later (η(2) = .09, η(2) = .02, respectively). Although the literature recognizes the risk factor of negative affect on the development of PTSD, we suggest that also positive affect at high levels immediately after such experiences may be a case of emotion context insensitivity and thus a maladaptive response to trauma. Further research should examine the mechanisms associated with positive emotions and PTSD. Copyright © 2014 International Society for Traumatic Stress Studies.

  10. Meta-Analysis of the Effect of Overexpression of Dehydration-Responsive Element Binding Family Genes on Temperature Stress Tolerance and Related Responses

    PubMed Central

    Dong, Chao; Ma, Yuanchun; Zheng, Dan; Wisniewski, Michael; Cheng, Zong-Ming

    2018-01-01

    Dehydration-responsive element binding proteins are transcription factors that play a critical role in plant response to temperature stress. Over-expression of DREB genes has been demonstrated to enhance temperature stress tolerance. A series of physiological and biochemical modifications occur in a complex and integrated way when plants respond to temperature stress, which makes it difficult to assess the mechanism underlying the DREB enhancement of stress tolerance. A meta-analysis was conducted of the effect of DREB overexpression on temperature stress tolerance and the various parameters modulated by overexpression that were statistically quantified in 75 published articles. The meta-analysis was conducted to identify the overall influence of DREB on stress-related parameters in transgenic plants, and to determine how different experimental variables affect the impact of DREB overexpression. Viewed across all the examined studies, 7 of the 8 measured plant parameters were significantly (p ≤ 0.05) modulated in DREB-transgenic plants when they were subjected to temperature stress, while 2 of the 8 parameters were significantly affected in non-stressed control plants. The measured parameters were modulated by 32% or more by various experimental variables. The modulating variables included, acclimated or non-acclimated, type of promoter, stress time and severity, source of the donor gene, and whether the donor and recipient were the same genus. These variables all had a significant effect on the observed impact of DREB overexpression. Further studies should be conducted under field conditions to better understand the role of DREB transcription factors in enhancing plant tolerance to temperature stress. PMID:29896212

  11. Unique genetic loci identified for emotional behavior in control and chronic stress conditions.

    PubMed

    Carhuatanta, Kimberly A K; Shea, Chloe J A; Herman, James P; Jankord, Ryan

    2014-01-01

    An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior.

  12. Acute stress affects risk taking but not ambiguity aversion

    PubMed Central

    Buckert, Magdalena; Schwieren, Christiane; Kudielka, Brigitte M.; Fiebach, Christian J.

    2014-01-01

    Economic decisions are often made in stressful situations (e.g., at the trading floor), but the effects of stress on economic decision making have not been systematically investigated so far. The present study examines how acute stress influences economic decision making under uncertainty (risk and ambiguity) using financially incentivized lotteries. We varied the domain of decision making as well as the expected value of the risky prospect. Importantly, no feedback was provided to investigate risk taking and ambiguity aversion independent from learning processes. In a sample of 75 healthy young participants, 55 of whom underwent a stress induction protocol (Trier Social Stress Test for Groups), we observed more risk seeking for gains. This effect was restricted to a subgroup of participants that showed a robust cortisol response to acute stress (n = 26). Gambling under ambiguity, in contrast to gambling under risk, was not influenced by the cortisol response to stress. These results show that acute psychosocial stress affects economic decision making under risk, independent of learning processes. Our results further point to the importance of cortisol as a mediator of this effect. PMID:24834024

  13. Acute stress affects risk taking but not ambiguity aversion.

    PubMed

    Buckert, Magdalena; Schwieren, Christiane; Kudielka, Brigitte M; Fiebach, Christian J

    2014-01-01

    Economic decisions are often made in stressful situations (e.g., at the trading floor), but the effects of stress on economic decision making have not been systematically investigated so far. The present study examines how acute stress influences economic decision making under uncertainty (risk and ambiguity) using financially incentivized lotteries. We varied the domain of decision making as well as the expected value of the risky prospect. Importantly, no feedback was provided to investigate risk taking and ambiguity aversion independent from learning processes. In a sample of 75 healthy young participants, 55 of whom underwent a stress induction protocol (Trier Social Stress Test for Groups), we observed more risk seeking for gains. This effect was restricted to a subgroup of participants that showed a robust cortisol response to acute stress (n = 26). Gambling under ambiguity, in contrast to gambling under risk, was not influenced by the cortisol response to stress. These results show that acute psychosocial stress affects economic decision making under risk, independent of learning processes. Our results further point to the importance of cortisol as a mediator of this effect.

  14. Unique genetic loci identified for emotional behavior in control and chronic stress conditions

    PubMed Central

    Carhuatanta, Kimberly A. K.; Shea, Chloe J. A.; Herman, James P.; Jankord, Ryan

    2014-01-01

    An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior. PMID:25374516

  15. A history of major depressive disorder and the response to stress.

    PubMed

    Ilgen, Mark A; Hutchison, Kent E

    2005-06-01

    The occurrence of Major Depressive Disorder (MDD) has been linked to an increased vulnerability to stress. However, the specific behavioral and affective aspects that may underlie this vulnerability to stress have not been well studied. This study examined sensitivity to a stress manipulation in 62 participants, 30 with and 32 without a previous episode of MDD. Comparisons were made between those with a history of depression and those without, randomized to either the high or low stress conditions on self-report measures of affect and behavior measures of performance. A significant interaction was found between depression history and level of stress on measures of self-report tension and behavioral performance on the experimental task. Specifically, those with a history of MDD in the high stress condition reported significantly more tension than other participants. Additionally, participants in the high stress condition without a history of MDD responded to uncontrollable stress by responding at a significantly higher rate on the task while those individuals with a history of MDD responded to uncontrollable stress by maintaining a relatively low level of responding. No differences in self-report depressed affect were found. The study utilized a laboratory stressor in a sample composed primarily of college students. A history of MDD appears to be associated with an increased sensitivity to uncontrollable stress. This vulnerability may manifest itself in the subjective state of individuals (i.e., tension) or in their behavioral responses to stress.

  16. A dynamic system analysis of dyadic flexibility and stability across the Face-to-Face Still-Face procedure: application of the State Space Grid.

    PubMed

    Provenzi, Livio; Borgatti, Renato; Menozzi, Giorgia; Montirosso, Rosario

    2015-02-01

    The Face-to-Face Still-Face (FFSF) paradigm allows to study the mother-infant dyad as a dynamic system coping with social stress perturbations. The State Space Grid (SSG) method is thought to depict both flexibility and stability of the dyad across perturbations, but previous SSG evidence for the FFSF is limited. The main aims were: (1) to investigate mother-infant dyadic flexibility and stability across the FFSF using the SSG; (2) to evaluate the influence of dyadic functioning during Play on infant Still-Face response and of infant stress response in affecting dyadic functioning during Reunion. Forty 4-month-old infants and their mothers were micro-analytically coded during a FFSF and eight SSG dyadic states were obtained. Dyadic flexibility and attractor states were assessed during Play and Reunion. Infants' stress response was coded as negative engagement during the Still-Face episode. Two dyadic states, "maternal hetero-regulation" and "affective mismatch", showed significant changes in the number of visits from Play to Reunion. During Play "maternal positive support to infant play" emerged as attractor state, whereas during Reunion a second attractor emerged, namely "affective mismatch". Dyadic affective mismatch during Play correlated with infants' negative engagement during Still-Face, whereas infants' response to Still-Face resulted in minor social matching during Reunion. Findings provide new insights into the flexible, yet stable, functioning of the mother-infant dyad as a dynamic system. Evidence of a reciprocal influence between dyadic functioning and infant social stress response are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Setting apart the affected: the use of behavioral criteria in animal models of post traumatic stress disorder.

    PubMed

    Cohen, Hagit; Zohar, Joseph; Matar, Michael A; Zeev, Kaplan; Loewenthal, Uri; Richter-Levin, Gal

    2004-11-01

    Post-traumatic stress disorder (PTSD) affects about 20-30% of exposed individuals. Clinical studies of PTSD generally employ stringent criteria for inclusion in study populations, and yet in animal studies the data collection and analysis are generally expressed as a function of exposed vs nonexposed populations, regardless of individual variation in response. Prior data support an approach to animal models analogous to inclusion criteria in clinical studies. This series of studies sought to assess prevalence rates of maladaptive vs adaptive responses determined according to a more stringent approach to the concept of inclusion/exclusion criteria (cutoff behavioral criteria-CBC), consisting of two successive behavioral tests (elevated plus maze and acoustic startle response tests). The rats were exposed to stressors in two different paradigms; exposure to a predator and underwater trauma. The prevalence rates of maladaptive responses to stress in these two distinct models dropped over time from 90% in the acute phase to 25% enduring/maladaptive response at 7 days, to remain constant over 30 days. As setting the affected individuals apart from the unaffected approximates clinical studies, it might also help to clarify some of the pending issues in PTSD research.

  18. Detection of quantitative trait loci affecting response to crowding stress in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Aquaculture environmental stressors such as handling, overcrowding, sub-optimal water quality parameters and social interactions negatively impact growth, feed intake, feed efficiency, disease resistance, flesh quality and reproductive performance in rainbow trout. To identify QTL affecting response...

  19. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring.

    PubMed

    Karbaschi, Roxana; Zardooz, Homeira; Khodagholi, Fariba; Dargahi, Leila; Salimi, Mina; Rashidi, FatemehSadat

    2017-01-01

    The mother's consumption of high-fat food can affect glucose metabolism and the hypothalamic-pituitary-adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. Female rats were randomly divided into normal and high-fat diet groups and were fed in accordance with their given diets from pre-pregnancy to the end of lactation. The offspring were divided into control (NC and HFC) and stress (NS and HFS) groups based on their mothers' diet and exposure to stress in adulthood. After the two-week stress induction period was over, an intraperitoneal glucose tolerance test (IPGTT) was performed and plasma glucose and insulin levels were assessed. The pancreas was then removed for measuring insulin secretion from the isolated islets as well as glucose transporter 2 mRNA expression and protein levels. According to the results obtained, plasma corticosterone concentrations increased significantly on days 1 and 14 of the stress induction period and were lower on the last day compared to on the first day. In both the NS and HFS groups, stress reduced plasma insulin concentration in the IPGTT without changing the plasma glucose concentration, suggesting an increased insulin sensitivity in the NS and HFS groups, although more markedly in the latter. Stress reduced insulin secretion (at high glucose concentrations) and increased glucose transporter 2 mRNA and protein expression, especially in the HFS group. Mothers' high-fat diet appears to intensify the stress response by changing the programming of the neuroendocrine system in the offspring.

  20. Examining coaches' perceptions of how their stress influences the coach-athlete relationship.

    PubMed

    Thelwell, Richard C; Wagstaff, Christopher R D; Chapman, Michael T; Kenttä, Göran

    2017-10-01

    This study extends recent coach stress research by evaluating how coaches perceive their stress experiences to affect athletes, and the broader coach-athlete relationship. A total of 12 coaches working across a range of team sports at the elite level took part in semi-structured interviews to investigate the 3 study aims: how they perceive athletes to detect signals of coach stress; how they perceive their stress experiences to affect athletes; and, how effective they perceive themselves to be when experiencing stress. Following content analysis, data suggested that coaches perceived athletes able to detect when they were experiencing stress typically via communication, behavioural, and stylistic cues. Although coaches perceived their stress to have some positive effects on athletes, the overwhelming effects were negative and affected "performance and development", "psychological and emotional", and "behavioural and interaction" factors. Coaches also perceived themselves to be less effective when stressed, and this was reflected in their perceptions of competence, self-awareness, and coaching quality. An impactful finding is that coaches are aware of how a range of stress responses are expressed by themselves, and to how they affect athletes, and their coaching quality. Altogether, findings support the emerging view that coach stress affects their own, and athlete performance.

  1. Affective stress responses during leisure time: Validity evaluation of a modified version of the Stress-Energy Questionnaire.

    PubMed

    Hadžibajramović, Emina; Ahlborg, Gunnar; Håkansson, Carita; Lundgren-Nilsson, Åsa; Grimby-Ekman, Anna

    2015-12-01

    Psychosocial stress at work is one of the most important factors behind increasing sick-leave rates. In addition to work stressors, it is important to account for non-work-related stressors when assessing stress responses. In this study, a modified version of the Stress-Energy Questionnaire (SEQ), the SEQ during leisure time (SEQ-LT) was introduced for assessing the affective stress response during leisure time. The aim of this study was to investigate the internal construct validity of the SEQ-LT. A second aim was to define the cut-off points for the scales, which could indicate high and low levels of leisure-time stress and energy, respectively. Internal construct validity of the SEQ-LT was evaluated using a Rasch analysis. We examined the unidimensionality and other psychometric properties of the scale by the fit to the Rasch model. A criterion-based approach was used for classification into high and low stress/energy levels. The psychometric properties of the stress and energy scales of the SEQ-LT were satisfactory, having accommodated for local dependency. The cut-off point for low stress was proposed to be in the interval between 2.45 and 3.02 on the Rasch metric score; while for high stress, it was between 3.65 and 3.90. The suggested cut-off points for the low and high energy levels were values between 1.73-1.97 and 2.66-3.08, respectively. The stress and energy scale of the SEQ-LT satisfied the measurement criteria defined by the Rasch analysis and it provided a useful tool for non-work-related assessment of stress responses. We provide guidelines on how to interpret the scale values. © 2015 the Nordic Societies of Public Health.

  2. International business travel: impact on families and travellers

    PubMed Central

    Espino, C; Sundstrom, S; Frick, H; Jacobs, M; Peters, M

    2002-01-01

    Objectives: Spouses and staff of the World Bank Group (WBG) were questioned about the impact of international business travel on families and travellers. Dependent variables were self reported stress, concern about the health of the traveller, and negative impact on the family. We hypothesised that several travel factors (independent variables) would be associated with these impacts. These travel factors had to do with the frequency, duration, and predictability of travel and its interference with family activities. Methods: Survey forms were developed and distributed to all spouses of travelling staff as well as a small sample of operational staff. Kendall's tau b correlation coefficients of response frequencies were computed with the data from scaled items. Written responses to open ended questions were categorised. Results: Response rates for spouses and staff were 24% and 36%, respectively. Half the spouse sample (n=533) and almost 75% of the staff sample (n=102) reported high or very high stress due to business travel. Self reported spouse stress was associated with six out of eight travel factors. Female spouses, those with children, and younger spouses reported greater stress. Self reported staff stress was significantly associated with four out of nine travel factors. Further insight into how business travel affects families and staff (including children's behavioural changes) and how families cope was gained through responses to written questions. Conclusions: The findings support the notion that lengthy and frequent travel and frequent changes in travel dates which affect family plans, all characteristic of WBG missions, negatively affects many spouses and children (particularly young children) and that the strain on families contributes significantly to the stress staff feel about their travel. Policies or management practices that take into consideration family activities and give staff greater leeway in controlling and refusing travel may help relieve stress. PMID:11983846

  3. International business travel: impact on families and travellers.

    PubMed

    Espino, C M; Sundstrom, S M; Frick, H L; Jacobs, M; Peters, M

    2002-05-01

    Spouses and staff of the World Bank Group (WBG) were questioned about the impact of international business travel on families and travellers. Dependent variables were self reported stress, concern about the health of the traveller, and negative impact on the family. We hypothesised that several travel factors (independent variables) would be associated with these impacts. These travel factors had to do with the frequency, duration, and predictability of travel and its interference with family activities. Survey forms were developed and distributed to all spouses of travelling staff as well as a small sample of operational staff. Kendall's tau b correlation coefficients of response frequencies were computed with the data from scaled items. Written responses to open ended questions were categorised. Response rates for spouses and staff were 24% and 36%, respectively. Half the spouse sample (n=533) and almost 75% of the staff sample (n=102) reported high or very high stress due to business travel. Self reported spouse stress was associated with six out of eight travel factors. Female spouses, those with children, and younger spouses reported greater stress. Self reported staff stress was significantly associated with four out of nine travel factors. Further insight into how business travel affects families and staff (including children's behavioural changes) and how families cope was gained through responses to written questions. The findings support the notion that lengthy and frequent travel and frequent changes in travel dates which affect family plans, all characteristic of WBG missions, negatively affects many spouses and children (particularly young children) and that the strain on families contributes significantly to the stress staff feel about their travel. Policies or management practices that take into consideration family activities and give staff greater leeway in controlling and refusing travel may help relieve stress.

  4. Effect of temperature in multiple biomarkers of oxidative stress in coastal shrimp.

    PubMed

    Vinagre, Catarina; Madeira, Diana; Mendonça, Vanessa; Dias, Marta; Roma, Joma; Diniz, Mário S

    2014-04-01

    Various studies in captivity and in the wild have pointed to the effect of season, and temperature in particular, in the levels of the oxidative stress biomarkers currently used for environmental quality assessment. However, knowledge on how temperature affects the oxidative stress response is unavailable for most species. This study investigated the effect of increasing temperature on lipid peroxidation, catalase activity, superoxide dismutase and glutathione-S-transferase in the shrimps, Palaemon elegans and Palaemon serratus. It was concluded that increasing temperatures significantly affect all the biomarkers tested in both species, with the exception of superoxide dismutase in P. serratus which was not affected by temperature. The oxidative stress response was more intense in P. elegans, than in P. serratus, producing higher peaks of all biomarkers at temperatures between 22°C and 26°C, followed by low levels at higher temperatures. It was concluded that monitoring of ecosystems using oxidative stress biomarkers should take into account the species and thermal history of the organisms. Sampling should be avoided during heat waves and immediately after heat waves. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of Stress and Bupropion on Craving, Withdrawal Symptoms, and Mood in Smokers

    PubMed Central

    Drone, David; Thuras, Paul; Hatsukami, Dorothy K.; Brauer, Lisa; Adson, David E.; al’Absi, Mustafa

    2011-01-01

    Introduction: Studies suggest that in smokers attempting to quit smoking, the occurrence of stressful events is associated with smoking relapse. The purpose of this study was to determine the effect of bupropion (an agent known to increase smoking cessation rates) on the craving, withdrawal, and mood response to stressful tasks administered in a laboratory setting. Methods: Response to three tasks (a speech, math, and cold pressor task) was measured in 65 smokers during ad libitum smoking. Smokers were then randomized to either bupropion or placebo. Fourteen days after starting medication, 43 subjects (28 receiving bupropion and 15 receiving placebo) quit smoking and laboratory procedures were repeated on the third day of abstinence. Results: Prior to cessation, stressors presented in a laboratory setting increased craving, nicotine withdrawal symptoms, and subjective distress but decreased positive affect. Thirty minutes of relaxation after the stressors did not result in these measures returning to prestress levels. During the nicotine withdrawal period, stress-induced responses were generally smaller than during the precessation period. Bupropion (relative to placebo) reduced overall levels of craving and withdrawal symptoms but did not have significant effects on response to stress during the nicotine withdrawal period. Conclusions: This study demonstrates that stress results in sustained increases in craving and withdrawal symptoms and changes in mood symptoms and that bupropion affects overall levels of these symptoms. Further research is needed to determine if modifying response to stress is predictive of an effective treatment for facilitating smoking cessation. PMID:21378081

  6. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    PubMed

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Comparative Transcriptome Analysis Reveals Different Molecular Mechanisms of Bacillus coagulans 2-6 Response to Sodium Lactate and Calcium Lactate during Lactic Acid Production

    PubMed Central

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that ‘ATP-binding cassette transporters’ were significantly affected by calcium lactate stress, and ‘amino sugar and nucleotide sugar metabolism’ was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of ‘glycolysis/gluconeogenesis’ genes but positive effect on the expression of ‘citrate cycle (TCA cycle)’ genes. However, calcium lactate stress had positive influence on the expression of ‘glycolysis/gluconeogenesis’ genes and had minor influence on ‘citrate cycle (TCA cycle)’ genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans. PMID:25875592

  8. Surplus dietary tryptophan reduces plasma cortisol and noradrenaline concentrations and enhances recovery after social stress in pigs.

    PubMed

    Koopmans, Sietse Jan; Ruis, Marko; Dekker, Ruud; van Diepen, Hans; Korte, Mechiel; Mroz, Zdzislaw

    2005-07-21

    Social stress occurs in intensive pig farming due to aggressive behavior. This stress may be reduced at elevated dietary levels of tryptophan (TRP). In this study, we compared the effects of high (13.2%) vs. normal (3.4%) dietary TRP to large neutral amino acid (LNAA) ratios on behavior and stress hormones in catheterized pigs ( approximately 50 kg BW), which were exposed to social stress by placing them twice into the territory of a dominant pig ( approximately 60 kg) for 15 min. Pre-stress plasma TRP concentrations were 156+/-15 vs. 53+/-6 micromol/l (p<0.01) in pigs on the high vs. normal TRP diets, respectively. Pre-stress plasma cortisol and noradrenaline concentrations were twofold (p<0.01) and 1.4-fold (p<0.05) lower but plasma adrenaline concentration was similar in pigs on the high vs. normal TRP diets, respectively. During the social confrontations, pigs on the high vs. normal TRP diets show a tendency towards reduced active avoidance behavior (3.2+/-1.1 vs. 6.7+/-1.2 min, p<0.1) but their physical activity (8.5+/-0.6 vs. 10.2+/-0.8 min) and aggressive attitude towards the dominant pig (11+/-3 vs. 7+/-2 times biting) were similar. Immediate (+5 min) post-stress plasma cortisol, noradrenaline and adrenaline responses were similar among dietary groups. After the social confrontations, the post-stress plasma cortisol, noradrenaline and adrenaline concentrations and/or curves (from +5 min to 2 h) were lower/steeper (p<0.05) in pigs on the high vs. normal TRP diets. In summary, surplus TRP in diets for pigs (1) does not significantly affect behavior when exposed to social stress, (2) reduces basal plasma cortisol and noradrenaline concentrations, (3) does not affect the immediate hormonal response to stress, and (4) reduces the long-term hormonal response to stress. In general, pigs receiving high dietary TRP were found to be less affected by stress.

  9. Fibroblast Growth Factor 8 Deficiency Compromises the Functional Response of the Serotonergic System to Stress

    PubMed Central

    Brooks, Leah R.; Pals, Heide L.; Enix, Courtney L.; Woolaver, Rachel A.; Paul, Evan D.; Lowry, Christopher A.; Tsai, Pei-San

    2014-01-01

    Functionally heterogeneous populations of serotonergic neurons, located within the dorsal raphe nucleus (DR), play a role in stress-related behaviors and neuropsychiatric illnesses such as anxiety and depression. Abnormal development of these neurons may permanently alter their structure and connections, making the organism more susceptible to anxiety-related disorders. A factor that critically regulates the development of serotonergic neurons is fibroblast growth factor 8 (Fgf8). In this study, we used acute restraint stress followed by behavioral testing to examine whether Fgf8 signaling during development is important for establishing functional stress- and anxiety-related DR neurocircuits in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8 were exposed to acute restraint stress and then tested for anxiety-like behavior on the elevated plus-maze. Further, we measured c-Fos immunostaining as a marker of serotonergic neuronal activation and tissue 5-hydroxyindoleacetic acid concentrations as a marker of serotonin functional output. Results showed that Fgf8 hypomorphs exhibited 1) an exaggerated response of DR anxiety-promoting circuits and 2) a blunted response of a DR panic-inhibiting circuit to stress, effects that together were associated with increased baseline anxiety-like behavior. Overall, our results provide a neural substrate upon which Fgf8 deficiency could affect stress response and support the hypothesis that developmental disruptions of serotonergic neurons affect their postnatal functional integrity. PMID:24992493

  10. Fibroblast growth factor 8 deficiency compromises the functional response of the serotonergic system to stress.

    PubMed

    Brooks, Leah R; Pals, Heide L; Enix, Courtney L; Woolaver, Rachel A; Paul, Evan D; Lowry, Christopher A; Tsai, Pei-San

    2014-01-01

    Functionally heterogeneous populations of serotonergic neurons, located within the dorsal raphe nucleus (DR), play a role in stress-related behaviors and neuropsychiatric illnesses such as anxiety and depression. Abnormal development of these neurons may permanently alter their structure and connections, making the organism more susceptible to anxiety-related disorders. A factor that critically regulates the development of serotonergic neurons is fibroblast growth factor 8 (Fgf8). In this study, we used acute restraint stress followed by behavioral testing to examine whether Fgf8 signaling during development is important for establishing functional stress- and anxiety-related DR neurocircuits in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8 were exposed to acute restraint stress and then tested for anxiety-like behavior on the elevated plus-maze. Further, we measured c-Fos immunostaining as a marker of serotonergic neuronal activation and tissue 5-hydroxyindoleacetic acid concentrations as a marker of serotonin functional output. Results showed that Fgf8 hypomorphs exhibited 1) an exaggerated response of DR anxiety-promoting circuits and 2) a blunted response of a DR panic-inhibiting circuit to stress, effects that together were associated with increased baseline anxiety-like behavior. Overall, our results provide a neural substrate upon which Fgf8 deficiency could affect stress response and support the hypothesis that developmental disruptions of serotonergic neurons affect their postnatal functional integrity.

  11. Sex differences in chronic stress responses and Alzheimer's disease.

    PubMed

    Yan, Yan; Dominguez, Sky; Fisher, Daniel W; Dong, Hongxin

    2018-02-01

    Clinical studies indicate that Alzheimer's disease (AD) disproportionately affects women in both disease prevalence and severity, but the mechanisms underlying this sex divergence are unknown. Though some have suggested this difference in risk is a reflection of known differences in longevity between men and women, mounting clinical and preclinical evidence supports women also having intrinsic susceptibilities towards the disease. While a number of potential risk factors have been hypothesized to affect these differences in risks, none have been definitively verified. In this review, we discuss a novel hypothesis whereby women's susceptibility to chronic stress also mediates increased risk for AD. As stress is a risk factor for AD, and women are twice as likely to develop mood disorders where stress is a major etiology, it is possible that sex dimorphisms in stress responses contribute to the increase in women with AD. In line with this, sex divergence in biochemical responses to stress have been noted along the hypothalamic-pituitary-adrenal (HPA) axis and among known molecular effectors of AD, with crosstalk between these processes also being likely. In addition, activation of the cortical corticotrophin-releasing factor receptor 1 (CRF1) signaling pathway leads to distinct female-biased increases in molecules associated with AD pathogenesis. Therefore, the different biochemical responses to stress between women and men may represent an intrinsic, sex-dependent risk factor for AD.

  12. Affective reactivity to daily life stress: Relationship to positive psychotic and depressive symptoms in a general population sample.

    PubMed

    Booij, Sanne H; Snippe, Evelien; Jeronimus, Bertus F; Wichers, Marieke; Wigman, Johanna T W

    2018-01-01

    Increased affective reactivity to daily life stress has been found in individuals with psychosis and depression, and in those at risk for these conditions. Because depressive and psychotic symptoms often co-occur, increased affective reactivity in these disorders may be explained by the presence of depressive symptoms, psychotic symptoms, or both. Therefore, we examined whether affective reactivity to daily stress is related to positive psychotic symptoms, independently of depressive symptoms, and vice versa. We used data from an intensive sampling study in the general population (n = 411), with three measurements a day (t = 90). The following subjective stressors were assessed: appraisal of activities, appraisal of social interactions, and experienced physical discomfort. Affective reactivity was conceptualized as both the positive affect (PA) and negative affect (NA) response to these stressors. By means of mixed model analyses, it was examined whether affective reactivity was independently related to depressive and/or positive psychotic symptoms. The PA response to activities and NA response to social interactions were negatively and positively related to depressive symptoms, respectively, independent of psychotic symptoms. In contrast, no (in)dependent association was found between positive psychotic symptoms and affective reactivity to any of the daily life stressors. These findings were confirmed in a subsample with increased symptoms. The prevalence of positive psychotic symptoms was relatively low in this general population sample. Increased affect reactivity predicts depressive symptoms, but not positive psychotic symptoms. Affective reactivity may still facilitate the development of psychotic symptomatology via its impact on depressive symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Global transcriptome analysis of grapevine (Vitis vinifera L.) leaves under salt stress reveals differential response at early and late stages of stress in table grape cv. Thompson Seedless.

    PubMed

    Upadhyay, Anuradha; Gaonkar, Tulsi; Upadhyay, Ajay Kumar; Jogaiah, Satisha; Shinde, Manisha P; Kadoo, Narendra Y; Gupta, Vidya S

    2018-05-31

    Among the different abiotic stresses, salt stress has a significant effect on the growth and yield of grapevine (Vitis vinifera L.). In this study, we employed RNA sequence based transcriptome analysis to study salinity stress response in grape variety Thompson Seedless. Salt stress adversely affected the growth related and physiological parameters and the effect on physiological parameters was significant within 10 days of stress imposition. A total of 343 genes were differentially expressed in response to salt stress. Among the differentially expressed genes (DEGs) only 42 genes were common at early and late stages of stress. The gene enrichment analysis revealed that GO terms related to transcription factors were over-represented. Among the DEGs, 52 were transcription factors belonging to WRKY, EREB, MYB, NAC and bHLH families. Salt stress significantly affected several pathways like metabolic pathways, biosynthesis of secondary metabolites, membrane transport development related pathways etc. 343 DEGs were distributed on all the 19 chromosomes, however clustered regions of DEGs were present on chromosomes 2, 5, 6 and 12 suggesting probable QTLs for imparting tolerance to salt and other abiotic stresses. Real-time PCR of selected genes in control and treated samples of grafted and own root vines demonstrated that rootstock influenced expression of salt stress responsive genes. Microsatellite regions were identified in ten selected salt responsive genes and highly polymorphic markers were identified using fifteen grape genotypes. This information will be useful for the identification of key genes involved in salt stress tolerance in grape. The identified DEGs could also be useful for genome wide analysis for the identification of polymorphic markers for their subsequent use in molecular breeding for developing salt tolerant grape genotypes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Effects of examination stress on psychological responses, sleep and allergic symptoms in atopic and non-atopic students.

    PubMed

    Jernelöv, Susanna; Höglund, Caroline Olgart; Axelsson, John; Axén, Jennie; Grönneberg, Reidar; Grunewald, Johan; Stierna, Pontus; Lekander, Mats

    2009-01-01

    Recent findings indicate that atopics may be more vulnerable to stress than non-atopics. However, the roles of psychological well-being and sleep in this presumed increased sensitivity are not known. To investigate the effects of a brief naturalistic stressor on psychological responses, sleep, and allergic symptoms and to compare those responses between atopic and non-atopic individuals. We assessed atopic and non-atopic students during a period without and during a period with examinations. For both atopic and non-atopic students, tension, anxiety, and depression deteriorated in response to examination, as did sleep latency and sleep quality. Overall, atopics were more tense, had more anxiety, longer sleep latencies, and were less well rested than non-atopics. Non-atopic students rose from bed later during the examination period. In response to examination, atopic students reported increased frequency of stress behaviors (e.g., eating fast), while decreased stress behaviors were reported by non-atopic students. Allergic symptoms were not affected. Atopic students were worse off in aspects of psychological well-being and sleep, but displayed only partly stronger responses to a stressor compared to non-atopic students. In spite of a broad negative response to examination, allergic symptoms were not affected.

  15. A cross-language study of perception of lexical stress in English.

    PubMed

    Yu, Vickie Y; Andruski, Jean E

    2010-08-01

    This study investigates the question of whether language background affects the perception of lexical stress in English. Thirty native English speakers and 30 native Chinese learners of English participated in a stressed-syllable identification task and a discrimination task involving three types of stimuli (real words/pseudowords/hums). The results show that both language groups were able to identify and discriminate stress patterns. Lexical and segmental information affected the English and Chinese speakers in varying degrees. English and Chinese speakers showed different response patterns to trochaic vs. iambic stress across the three types of stimuli. An acoustic analysis revealed that two language groups used different acoustic cues to process lexical stress. The findings suggest that the different degrees of lexical and segmental effects can be explained by language background, which in turn supports the hypothesis that language background affects the perception of lexical stress in English.

  16. FUS/TLS assembles into stress granules and is a prosurvival factor during hyperosmolar stress.

    PubMed

    Sama, Reddy Ranjith K; Ward, Catherine L; Kaushansky, Laura J; Lemay, Nathan; Ishigaki, Shinsuke; Urano, Fumihiko; Bosco, Daryl A

    2013-11-01

    FUsed in Sarcoma/Translocated in LipoSarcoma (FUS/TLS or FUS) has been linked to several biological processes involving DNA and RNA processing, and has been associated with multiple diseases, including myxoid liposarcoma and amyotrophic lateral sclerosis (ALS). ALS-associated mutations cause FUS to associate with stalled translational complexes called stress granules under conditions of stress. However, little is known regarding the normal role of endogenous (non-disease linked) FUS in cellular stress response. Here, we demonstrate that endogenous FUS exerts a robust response to hyperosmolar stress induced by sorbitol. Hyperosmolar stress causes an immediate re-distribution of nuclear FUS to the cytoplasm, where it incorporates into stress granules. The redistribution of FUS to the cytoplasm is modulated by methyltransferase activity, whereas the inhibition of methyltransferase activity does not affect the incorporation of FUS into stress granules. The response to hyperosmolar stress is specific, since endogenous FUS does not redistribute to the cytoplasm in response to sodium arsenite, hydrogen peroxide, thapsigargin, or heat shock, all of which induce stress granule assembly. Intriguingly, cells with reduced expression of FUS exhibit a loss of cell viability in response to sorbitol, indicating a prosurvival role for endogenous FUS in the cellular response to hyperosmolar stress. Copyright © 2013 Wiley Periodicals, Inc.

  17. FUS/TLS assembles into stress granules and is a prosurvival factor during hyperosmolar stress

    PubMed Central

    Sama, Reddy Ranjith K; Ward, Catherine L.; Kaushansky, Laura J.; Lemay, Nathan; Ishigaki, Shinsuke; Urano, Fumihiko; Bosco, Daryl A.

    2014-01-01

    FUsed in Sarcoma/Translocated in LipoSarcoma (FUS/TLS or FUS) has been linked to several biological processes involving DNA and RNA processing, and has been associated with multiple diseases, including myxoid liposarcoma and amyotrophic lateral sclerosis (ALS). ALS-associated mutations cause FUS to associate with stalled translational complexes called stress granules under conditions of stress. However, little is known regarding the normal role of endogenous (non-disease linked) FUS in cellular stress response. Here, we demonstrate that endogenous FUS exerts a robust response to hyperosmolar stress induced by sorbitol. Hyperosmolar stress causes an immediate re-distribution of nuclear FUS to the cytoplasm, where it incorporates into stress granules. The redistribution of FUS to the cytoplasm is modulated by methyltransferase activity, whereas the inhibition of methyltransferase activity does not affect the incorporation of FUS into stress granules. The response to hyperosmolar stress is specific, since endogenous FUS does not redistribute to the cytoplasm in response to sodium arsenite, hydrogen peroxide, thapsigargin, or heat shock, all of which induce stress granule assembly. Intriguingly, cells with reduced expression of FUS exhibit a loss of cell viability in response to sorbitol, indicating a prosurvival role for endogenous FUS in the cellular response to hyperosmolar stress. PMID:23625794

  18. Poverty and involuntary engagement stress responses: examining the link to anxiety and aggression within low-income families.

    PubMed

    Wolff, Brian C; Santiago, Catherine DeCarlo; Wadsworth, Martha E

    2009-05-01

    Families living with the burdens of poverty-related stress are at risk for developing a range of psychopathology. The present study examines the year-long prospective relationships among poverty-related stress, involuntary engagement stress response (IESR) levels, and anxiety symptoms and aggression in an ethnically diverse sample of 98 families (300 individual family members) living at or below 150% of the US federal poverty line. Hierarchical Linear Modeling (HLM) moderator model analyses provided strong evidence that IESR levels moderated the influence of poverty-related stress on anxiety symptoms and provided mixed evidence for the same interaction effect on aggression. Higher IESR levels, a proxy for physiological stress reactivity, worsened the impact of stress on symptoms. Understanding how poverty-related stress and involuntary stress responses affect psychological functioning has implications for efforts to prevent or reduce psychopathology, particularly anxiety, among individuals and families living in poverty.

  19. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response

    PubMed Central

    Kumar, Akhilesh; Birnbaum, Michael D; Patel, Devang M; Morgan, William M; Singh, Jayanti; Barrientos, Antoni; Zhang, Fangliang

    2016-01-01

    Arginyltransferase 1 (Ate1) mediates protein arginylation, a poorly understood protein posttranslational modification (PTM) in eukaryotic cells. Previous evidence suggest a potential involvement of arginylation in stress response and this PTM was traditionally considered anti-apoptotic based on the studies of individual substrates. However, here we found that arginylation promotes cell death and/or growth arrest, depending on the nature and intensity of the stressing factor. Specifically, in yeast, mouse and human cells, deletion or downregulation of the ATE1 gene disrupts typical stress responses by bypassing growth arrest and suppressing cell death events in the presence of disease-related stressing factors, including oxidative, heat, and osmotic stresses, as well as the exposure to heavy metals or radiation. Conversely, in wild-type cells responding to stress, there is an increase of cellular Ate1 protein level and arginylation activity. Furthermore, the increase of Ate1 protein directly promotes cell death in a manner dependent on its arginylation activity. Finally, we found Ate1 to be required to suppress mutation frequency in yeast and mammalian cells during DNA-damaging conditions such as ultraviolet irradiation. Our study clarifies the role of Ate1/arginylation in stress response and provides a new mechanism to explain the link between Ate1 and a variety of diseases including cancer. This is also the first example that the modulation of the global level of a PTM is capable of affecting DNA mutagenesis. PMID:27685622

  20. Grin and bear it: the influence of manipulated facial expression on the stress response.

    PubMed

    Kraft, Tara L; Pressman, Sarah D

    2012-01-01

    In the study reported here, we investigated whether covertly manipulating positive facial expressions would influence cardiovascular and affective responses to stress. Participants (N = 170) naive to the purpose of the study completed two different stressful tasks while holding chopsticks in their mouths in a manner that produced a Duchenne smile, a standard smile, or a neutral expression. Awareness was manipulated by explicitly asking half of all participants in the smiling groups to smile (and giving the other half no instructions related to smiling). Findings revealed that all smiling participants, regardless of whether they were aware of smiling, had lower heart rates during stress recovery than the neutral group did, with a slight advantage for those with Duchenne smiles. Participants in the smiling groups who were not explicitly asked to smile reported less of a decrease in positive affect during a stressful task than did the neutral group. These findings show that there are both physiological and psychological benefits from maintaining positive facial expressions during stress.

  1. Sex differences in emotional and physiological responses to the Trier Social Stress Test✰

    PubMed Central

    Kelly, Megan M.; Tyrka, Audrey R.; Anderson, George M.; Price, Lawrence H.; Carpenter, Linda L.

    2015-01-01

    Women are more likely than men to be diagnosed with depression and anxiety-related disorders, and it has been hypothesized that this difference is related to sex differences in stress reactivity. Women typically report higher levels of negative affect than men in response to psychosocial stressors, but the evidence for sex differences in physiological reactivity to stressful situations is not consistent. The present study sought to expand this work by evaluating sex differences in reactivity to a social stress challenge across neuroendocrine, autonomic and affective response domains. Participants (32 women, 30 men) completed a standardized psychosocial stress challenge (i.e., the Trier Social Stress Test (TSST)), during which several physiological (e.g., cortisol reactivity, heart rate) and psychological (e.g., depression, irritability, anger, fear) measures were assessed. The findings demonstrated that cortisol reactivity and the magnitude of autonomic responding failed to reliably discriminate between women and men. However, women reported more fear, irritability, confusion and less happiness immediately following the TSST compared to men. The broader implications of these results and how they relate to sex differences in the etiology and clinical presentation of anxiety and mood disorders are discussed. PMID:17466262

  2. Leaf Responses to Mild Drought Stress in Natural Variants of Arabidopsis1[OPEN

    PubMed Central

    Clauw, Pieter; Coppens, Frederik; De Beuf, Kristof; Dhondt, Stijn; Van Daele, Twiggy; Maleux, Katrien; Storme, Veronique; Clement, Lieven; Gonzalez, Nathalie; Inzé, Dirk

    2015-01-01

    Although the response of plants exposed to severe drought stress has been studied extensively, little is known about how plants adapt their growth under mild drought stress conditions. Here, we analyzed the leaf and rosette growth response of six Arabidopsis (Arabidopsis thaliana) accessions originating from different geographic regions when exposed to mild drought stress. The automated phenotyping platform WIWAM was used to impose stress early during leaf development, when the third leaf emerges from the shoot apical meristem. Analysis of growth-related phenotypes showed differences in leaf development between the accessions. In all six accessions, mild drought stress reduced both leaf pavement cell area and number without affecting the stomatal index. Genome-wide transcriptome analysis (using RNA sequencing) of early developing leaf tissue identified 354 genes differentially expressed under mild drought stress in the six accessions. Our results indicate the existence of a robust response over different genetic backgrounds to mild drought stress in developing leaves. The processes involved in the overall mild drought stress response comprised abscisic acid signaling, proline metabolism, and cell wall adjustments. In addition to these known severe drought-related responses, 87 genes were found to be specific for the response of young developing leaves to mild drought stress. PMID:25604532

  3. Enhancing effects of acute psychosocial stress on priming of non-declarative memory in healthy young adults.

    PubMed

    Hidalgo, Vanesa; Villada, Carolina; Almela, Mercedes; Espín, Laura; Gómez-Amor, Jesús; Salvador, Alicia

    2012-05-01

    Social stress affects cognitive processes in general, and memory performance in particular. However, the direction of these effects has not been clearly established, as it depends on several factors. Our aim was to determine the impact of the hypothalamus-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS) reactivity to psychosocial stress on short-term non-declarative memory and declarative memory performance. Fifty-two young participants (18 men, 34 women) were subjected to the Trier Social Stress Task (TSST) and a control condition in a crossover design. Implicit memory was assessed by a priming test, and explicit memory was assessed by the Rey Auditory Verbal Learning Test (RAVLT). The TSST provoked greater salivary cortisol and salivary alpha-amylase (sAA) responses than the control task. Men had a higher cortisol response to stress than women, but no sex differences were found for sAA release. Stress was associated with an enhancement of priming but did not affect declarative memory. Additionally, the enhancement on the priming test was higher in those whose sAA levels increased more in response to stress (r(48) = 0.339, p = 0.018). Our results confirm an effect of acute stress on priming, and that this effect is related to SNS activity. In addition, they suggest a different relationship between stress biomarkers and the different memory systems.

  4. Daily stress and the trajectory of mood: spillover, response assimilation, contrast, and chronic negative affectivity.

    PubMed

    Marco, C A; Suls, J

    1993-06-01

    Experience sampling methodology was used to examine the effects of current and prior problems on negative mood within and across days. Forty male community residents wore signal watches and kept dairy records of problem occurrence and mood 8 times a day for 8 consecutive days. Trait negative affectivity (NA), prior mood, and concurrent stress were related to mood during the day. Mood in response to a current problem was worse if the prior time had been problem free than if the prior time had been stressful. High NA Ss were more reactive to concurrent stressors than were low NAs, but the effect was small. NA and current-day stress were the major influences of mood across days. High NAs were more distressed by current-day problems and recovered more slowly from problems of the preceding day. The benefits of conceptualizing the effects of daily stressors on mood in terms of spillover, response assimilation, habituation, and contrast are discussed.

  5. Electric foot shock stress adaptation: Does it exist or not?

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2015-06-01

    Stress adaptation is a protective phenomenon against repeated stress exposure and is characterized by a decreased responsiveness to a repeated stress stimulus. The adaptation is associated with a complex cascade of events, including the changes in behavior, neurotransmitter and gene expression levels. The non-adaptation or maladaptation to stress may underlie the affective disorders, such as anxiety, depression and post-traumatic stress disorder (PTSD). Electric foot shock is a complex stressor, which includes both physical and emotional components. Unlike immobilization, restraint and cold immersion stress, the phenomenon of stress adaptation is not very well defined in response to electric foot shock. A number of preclinical studies have reported the development of adaptation to electric foot shock stress. However, evidence also reveals the non-adaptive behavior in response to foot shocks. The distinct adaptive/non-adaptive responses may be possibly influenced by the type, intensity, and duration of the stress. The present review discusses the existence or non-existence of adaptation to electric foot shock stress along with possible mechanism. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. The Buffer Effect of Therapy Dog Exposure on Stress Reactivity in Undergraduate Students

    PubMed Central

    Fiocco, Alexandra J.; Hunse, Anastasia M.

    2017-01-01

    Stress is an insidious health risk that is commonly reported among university students. While research suggests that dog exposure may facilitate recovery from a stress response, little is known about the buffer effect of dog exposure on the stress response to a future stressor. This study examined whether interaction with a therapy dog could reduce the strength of the physiological stress response when exposed to a subsequent stressor. Sixty-one university students were randomly assigned to either a therapy dog (TD, n = 31) or a no-dog control (C, n = 30) group. The stress response was measured by electrodermal activity (EDA) in response to the Paced Auditory Serial Addition Test (PASAT). Participants also completed questionnaires that assessed pet attitude, general stress levels, and affect. Analyses of covariance (ANCOVAs) showed that increase in EDA was significantly more pronounced in the C group than in the TD group (p < 0.01). Pet attitudes did not modulate the buffer effect of therapy dog exposure. Results suggest that therapy dog exposure may buffer the stress response in university students, which has implications for the promotion of a viable stress management program on university campuses. PMID:28665340

  7. Acute Effects of Brisk Walking on Sugary Snack Cravings in Overweight People, Affect and Responses to a Manipulated Stress Situation and to a Sugary Snack Cue: A Crossover Study

    PubMed Central

    Ledochowski, Larissa; Ruedl, Gerhard; Taylor, Adrian H.; Kopp, Martin

    2015-01-01

    Research has shown that acute exercise reduces urges for chocolate in normal weight people. This study aimed to examine the effects of an acute exercise bout on urges to consume sugary snacks, affect as well as ‘psychological and physiological responses’ to stress and a ‘sugary snack cue’, in overweight individuals. Following 3 days of chocolate-abstinence, 47 overweight, sugary snack consumers were assessed, in 2 randomly ordered conditions, in a within-subject design: 15-min brisk walk or passive control. Following each, participants completed 2 tasks: Stroop color–word interference task, and handling sugary snacks. Urges for sugary snacks, affective activation and valence were assessed. ANOVAs revealed significant condition x time interaction effects for: urges to consume sugary snacks, affective valence and activation. Obtained data show that exercise reduces urges for sugary snacks and attenuates urges in response to the stress situation and the cue in overweight people. PMID:25760042

  8. High-fat diet effects on metabolic responses to chronic stress.

    PubMed

    Nemati, Marzieh; Zardooz, Homeira; Rostamkhani, Fatemeh; Abadi, Alireza; Foroughi, Forough

    2017-07-01

    High-fat diets and chronic stress are prevalent risk factors for various chronic diseases in modern societies. This study investigated the effect of high-fat diet on glucose-related metabolic responses to chronic foot-shock stress. Male rats were divided into high-fat diet (containing 54.21% saturated and 44.89% unsaturated fatty acids) and normal diet groups and then into stress and non-stress subgroups. The diets were applied for 5 weeks, and stress was induced during the last week of the diet course. Plasma levels of metabolic parameters, HOMA-IR index, intra-abdominal fat weight, and islets' insulin secretion were assessed. High-fat diet increased abdominal fat weight and plasma leptin, and insulin levels in response to stress without affecting HOMA-IR index and islets' insulin secretion. High proportion of unsaturated fat may not lead to deleterious metabolic responses; however combined with chronic stress has a synergistic and adverse effect on visceral adiposity and results in elevated plasma leptin.

  9. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis.

    PubMed

    Ali, Muhammad Amjad; Azeem, Farrukh; Nawaz, Muhammad Amjad; Acet, Tuba; Abbas, Amjad; Imran, Qari Muhammad; Shah, Kausar Hussain; Rehman, Hafiz Mamoon; Chung, Gyuhwa; Yang, Seung Hwan; Bohlmann, Holger

    2018-04-17

    Plant WRKY transcription factors play a vital role in abiotic stress tolerance and regulation of plant defense responses. This study examined AtWRKY11 and AtWRKY17 expression under ABA, salt, and osmotic stress at different developmental stages in Arabidopsis. We used reverse transcriptase PCR, quantitative real-time PCR, and promoter:GUS lines to analyze expression. Both genes were upregulated in response to abiotic stress. Next, we applied the same stressors to seedlings of T-DNA insertion wrky11 and 17 knock-out mutants (single and double). Under stress, the mutants exhibited slower germination and compromised root growth compared with the wild type. In most cases, double-mutant seedlings were more affected than single mutants. These results suggest that wrky11 and wrky17 are not strictly limited to plant defense responses but are also involved in conferring stress tolerance. Copyright © 2018 Elsevier GmbH. All rights reserved.

  10. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    PubMed

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  11. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection

    PubMed Central

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M.

    2017-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development. PMID:28644404

  12. Contribution of trans regulatory eQTL to cryptic genetic variation in C. elegans.

    PubMed

    Snoek, Basten L; Sterken, Mark G; Bevers, Roel P J; Volkers, Rita J M; Van't Hof, Arjen; Brenchley, Rachel; Riksen, Joost A G; Cossins, Andrew; Kammenga, Jan E

    2017-06-29

    Cryptic genetic variation (CGV) is the hidden genetic variation that can be unlocked by perturbing normal conditions. CGV can drive the emergence of novel complex phenotypes through changes in gene expression. Although our theoretical understanding of CGV has thoroughly increased over the past decade, insight into polymorphic gene expression regulation underlying CGV is scarce. Here we investigated the transcriptional architecture of CGV in response to rapid temperature changes in the nematode Caenorhabditis elegans. We analyzed regulatory variation in gene expression (and mapped eQTL) across the course of a heat stress and recovery response in a recombinant inbred population. We measured gene expression over three temperature treatments: i) control, ii) heat stress, and iii) recovery from heat stress. Compared to control, exposure to heat stress affected the transcription of 3305 genes, whereas 942 were affected in recovering animals. These affected genes were mainly involved in metabolism and reproduction. The gene expression pattern in recovering animals resembled both the control and the heat-stress treatment. We mapped eQTL using the genetic variation of the recombinant inbred population and detected 2626 genes with an eQTL in the heat-stress treatment, 1797 in the control, and 1880 in the recovery. The cis-eQTL were highly shared across treatments. A considerable fraction of the trans-eQTL (40-57%) mapped to 19 treatment specific trans-bands. In contrast to cis-eQTL, trans-eQTL were highly environment specific and thus cryptic. Approximately 67% of the trans-eQTL were only induced in a single treatment, with heat-stress showing the most unique trans-eQTL. These results illustrate the highly dynamic pattern of CGV across three different environmental conditions that can be evoked by a stress response over a relatively short time-span (2 h) and that CGV is mainly determined by response related trans regulatory eQTL.

  13. Estrogen supplementation attenuates glucocorticoid and catecholamine responses to mental stress in perimenopausal women.

    PubMed

    Komesaroff, P A; Esler, M D; Sudhir, K

    1999-02-01

    Estrogens are reported to provide protection against the development of cardiovascular disease in women, but the mechanisms underlying these effects are not well defined. We hypothesized that estrogen might affect the hormonal responses to stress. We therefore studied cortisol, ACTH, epinephrine, norepinephrine, and norepinephrine spillover and hemodynamic responses to a 10-min mental arithmetic test in 12 perimenopausal women randomized to 8 weeks of estrogen supplementation (estradiol valerate, 2 mg daily; n = 7) or placebo (n = 5). Total body and forearm norepinephrine spillover were measured by radiotracer methodology. After supplementation with estradiol, the increases in both systolic and diastolic blood pressure in response to mental stress were reduced, and cortisol, ACTH, plasma epinephrine and norepinephrine, and total body norepinephrine spillover responses to stress were significantly attenuated (P < 0.05 in each case). Forearm norepinephrine spillover was unchanged by estrogen, and there was no change in any of the responses after placebo. We conclude that estrogen supplementation in perimenopausal women attenuates blood pressure, glucocorticoid, and catecholamine responses to psychological stress.

  14. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    PubMed Central

    Negrón-Oyarzo, Ignacio; Aboitiz, Francisco; Fuentealba, Pablo

    2016-01-01

    Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders. PMID:26904302

  15. Differential effects of tianeptine on the dorsal hippocampal volume of rats submitted to maternal separation followed by chronic unpredictable stress in adulthood.

    PubMed

    Pollano, Antonella; Zalosnik, María I; Durando, Patricia E; Suárez, Marta M

    2016-11-01

    Early maternal separation (MS) may produce lasting effects in the dorsal hippocampus (DH) that can change its response to chronic stress in adulthood. Chronic stress affects DH morphology and function, but tianeptine (an anti-depressant) can reverse the stress-induced morphological impairments. Morphologic alterations of hippocampus can affect contextual memory. Therefore, we evaluated the effect of tianeptine in MS and chronically stressed rats on: 1) volume of the DH and its areas using stereology and 2) hippocampal-dependent memory using a fear conditioning test. Male Wistar rats were subjected to daily MS for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50 and 74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle, providing eight groups: AFR-unstressed/vehicle (n = 5 for stereology, n = 18 for fear conditioning test); AFR unstressed/tianeptine (n = 6 and n = 10); AFR-chronic stress/vehicle (n = 6 and n = 14); AFR-chronic stress/tianeptine (n = 6 and n = 10), MS-unstressed/vehicle (n = 5 and n = 19), MS-unstressed/tianeptine (n = 6 and n = 10), MS-chronic stress/vehicle (n = 6 and n = 18), and MS-chronic stress/tianeptine (n = 6 and n = 10). MS-chronic stress/tianeptine rats showed a diminished CA1 area than the corresponding MS-unstressed/tianeptine rats. The combination of stressors produced a freezing response similar to those of the control group during postconditioning. During retrieval, MS led to a diminished freezing response compared to the AFR-unstressed groups. Tianeptine had no effect on freezing behavior. Our results show that tianeptine can affect the CA1 area volume differently depending on the nature and quantity of stressors but cannot alter freezing to context.

  16. Leptin inhibits and ghrelin augments hypothalamic noradrenaline release after stress.

    PubMed

    Kawakami, Akio; Okada, Nobukazu; Rokkaku, Kumiko; Honda, Kazufumi; Ishibashi, Shun; Onaka, Tatsushi

    2008-09-01

    Metabolic conditions affect hypothalamo-pituitary-adrenal responses to stressful stimuli. Here we examined effects of food deprivation, leptin and ghrelin upon noradrenaline release in the hypothalamic paraventricular nucleus (PVN) and plasma adrenocorticotropic hormone (ACTH) concentrations after stressful stimuli. Food deprivation augmented both noradrenaline release in the PVN and the increase in plasma ACTH concentration following electrical footshocks (FSs). An intracerebroventricular injection of leptin attenuated the increases in hypothalamic noradrenaline release and plasma ACTH concentrations after FSs, while ghrelin augmented these responses. These data suggest that leptin inhibits and ghrelin facilitates neuroendocrine stress responses via noradrenaline release and indicate that a decrease in leptin and an increase in ghrelin release after food deprivation might contribute to augmentation of stress-induced ACTH release in a fasting state.

  17. The role of metacognitive beliefs in stress sensitisation, self-esteem variability, and the generation of paranoia.

    PubMed

    Palmier-Claus, J E; Dunn, G; Morrison, A P; Lewis, S W

    2011-11-01

    INTRODUCTION. Stress sensitisation may play a key role in the formation of psychosis. The authors examined whether metacognitive beliefs and self-esteem moderate affective response to stress, and whether subtle fluctuations in self-esteem act as a mediator between stress and attenuated psychotic phenomena. METHOD. 70 healthy volunteers completed two conditions of the same experimental tasks, which were designed to be either neutral or stress inducing. Ambulant assessments of negative affect, self-esteem, and suspicious thoughts were taken before and after each task, and standardised questionnaires were completed at the beginning or end of each session. RESULTS. Metacognitive belief subscales, but not self-esteem, moderated the association between stress and resultant negative affect, and negative affect and suspicious thinking. Individuals who placed greater emphasis on controlling their thoughts had greater variability in their self-esteem during the stress condition, which in turn predicted the severity of their attenuated psychotic phenomena. DISCUSSION. Metacognitive beliefs may sensitise an individual to minor stressors, by increasing affective reactivity and causing subtle shifts in appraisals of self-worth. Psychosocial intervention may wish to target these beliefs in order to desensitise an individual to negative events.

  18. Can decision-making skills affect responses to psychological stress in healthy women?

    PubMed

    Santos-Ruiz, Ana; Garcia-Rios, M Carmen; Fernandez-Sanchez, José Carlos; Perez-Garcia, Miguel; Muñoz-García, Miguel Angel; Peralta-Ramirez, Maria Isabel

    2012-12-01

    In recent studies showing how stress can affect an individual's decision-making process, the cognitive component of decision-making could also be considered a coping resource available to individuals when faced with a stressful situation. The Iowa Gambling Task (IGT) constitutes the standard test for the assessment of decision-making skills under conditions of uncertainty. Responses of the hypothalamic-pituitary-adrenal (HPA) axis to psychosocial stress, in turn, have been estimated by means of cortisol measurements. Our main objective in this study was to test if good and bad IGT performers show distinct HPA axis responses, when challenged in a classic psychosocial stress test. Because women have been shown to outperform men on the IGT under the influence of psychosocial stress, we chose a sample of 40 women to take the IGT before they were exposed to a public speaking task in a virtual environment. The activation of the HPA axis, involved in the stress response, was assessed by examining the levels of cortisol in the subjects' saliva at the following four stages: before the challenge, after the challenge, and 10 and 20 min after the task. Participants were divided into two groups according to their level of performance, good or poor, on the IGT. Results showed statistically significant differences between the groups for pre-exposure cortisol levels and for cortisol levels 20 min after exposure. Overall cortisol levels were significantly higher in the group with poor performance on the IGT. It appears that good decision-making, which may be an important resource for coping with stress, is associated with a lower HPA axis response to a psychosocial stressor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Overexpression of GmHsp90s, a Heat Shock Protein 90 (Hsp90) Gene Family Cloning from Soybean, Decrease Damage of Abiotic Stresses in Arabidopsis thaliana

    PubMed Central

    Xue, Dong; Zhao, Jinming; Gai, Junyi; Guo, Na; Xing, Han

    2013-01-01

    Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max) remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1–GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1) in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline. PMID:23936107

  20. Association of Constitutive Hyperphosphorylation of Hsf1p with a Defective Ethanol Stress Response in Saccharomyces cerevisiae Sake Yeast Strains

    PubMed Central

    Noguchi, Chiemi; Watanabe, Daisuke; Zhou, Yan; Akao, Takeshi

    2012-01-01

    Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains. PMID:22057870

  1. Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses.

    PubMed

    Carvalho, L C; Coito, J L; Gonçalves, E F; Chaves, M M; Amâncio, S

    2016-01-01

    Worldwide, extensive agricultural losses are attributed to drought, often in combination with heat in Mediterranean climate regions, where grapevine traditionally grows. The available scenarios for climate change suggest increases in aridity in these regions. Under natural conditions plants are affected by a combination of stresses, triggering synergistic or antagonistic physiological, metabolic or transcriptomic responses unique to the combination. However the study of such stresses in a controlled environment can elucidate important mechanisms by allowing the separation of the effects of individual stresses. To gather those effects, cuttings of two grapevine varieties, Touriga Nacional (TN) and Trincadeira (TR), were grown under controlled conditions and subjected to three abiotic stresses (drought - WS, heat - HS and high light - LS) individually and in combination two-by-two (WSHS, WSLS, HSLS) or all three (WSHSLS). Photosynthesis, water status, contents of H2 O2 , abscisic acid and metabolites of the ascorbate-glutathione cycle were measured in the leaves. Common and distinct response features were identified in the different stress combinations. Photosynthesis was not hindered in TN by LS, while even individual stresses severely affect photosynthesis in TR. Abscisic acid may be implicated in grapevine osmotic responses since it is correlated with tolerance parameters, especially in combined stresses involving drought. Overall, the responses to drought-including treatments were clearly distinct to those without drought. From the specific behaviours of the varieties, it can be concluded that TN shows a higher capacity for heat dissipation and for withstanding high light intensities, indicating better adjustment to warm conditions, provided that water supply is plentiful. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains.

    PubMed

    Noguchi, Chiemi; Watanabe, Daisuke; Zhou, Yan; Akao, Takeshi; Shimoi, Hitoshi

    2012-01-01

    Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast during sake fermentation and under acute ethanol stress was severely impaired compared to that of laboratory yeast. Moreover, the Hsf1p of modern sake yeast was highly and constitutively hyperphosphorylated, irrespective of the extracellular stress. Since HSF1 allele replacement did not significantly affect the HSE-mediated ethanol stress response or Hsf1p phosphorylation patterns in either sake or laboratory yeast, the regulatory machinery of Hsf1p is presumed to function differently between these types of yeast. To identify phosphatases whose loss affected the control of Hsf1p, we screened a series of phosphatase gene deletion mutants in a laboratory strain background. Among the 29 mutants, a Δppt1 mutant exhibited constitutive hyperphosphorylation of Hsf1p, similarly to the modern sake yeast strains, which lack the entire PPT1 gene locus. We confirmed that the expression of laboratory yeast-derived functional PPT1 recovered the HSE-mediated stress response of sake yeast. In addition, deletion of PPT1 in laboratory yeast resulted in enhanced fermentation ability. Taken together, these data demonstrate that hyperphosphorylation of Hsf1p caused by loss of the PPT1 gene at least partly accounts for the defective stress response and high ethanol productivity of modern sake yeast strains.

  3. Acute stress affects prospective memory functions via associative memory processes.

    PubMed

    Szőllősi, Ágnes; Pajkossy, Péter; Demeter, Gyula; Kéri, Szabolcs; Racsmány, Mihály

    2018-01-01

    Recent findings suggest that acute stress can improve the execution of delayed intentions (prospective memory, PM). However, it is unclear whether this improvement can be explained by altered executive control processes or by altered associative memory functioning. To investigate this issue, we used physical-psychosocial stressors to induce acute stress in laboratory settings. Then participants completed event- and time-based PM tasks requiring the different contribution of control processes and a control task (letter fluency) frequently used to measure executive functions. According to our results, acute stress had no impact on ongoing task performance, time-based PM, and verbal fluency, whereas it enhanced event-based PM as measured by response speed for the prospective cues. Our findings indicate that, here, acute stress did not affect executive control processes. We suggest that stress affected event-based PM via associative memory processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Involvement of the cervical sympathetic nervous system in the changes of calcium homeostasis during turpentine oil-induced stress in rats.

    PubMed

    Stern, J E; Ladizesky, M G; Keller Sarmiento, M I; Cardinali, D P

    1993-03-01

    Hypocalcemia is a common finding during stress. The objective of this study was to examine: (a) the changes in circulating calcium, parathyroid hormone (PTH) and calcitonin (CT) concentration in rats stressed by being given a subcutaneous injection of turpentine oil, and (b) the involvement of the sympathetic cervical pathway in stress-induced changes of calcium homeostasis. Four hours after receiving turpentine oil or vehicle, rats were subjected either to hypocalcemia, by being given EDTA intraperitoneally, or to hypercalcemia, by being injected CaCl2 intraperitoneally. Significant changes in serum calcium (10% decrease), serum PTH (28% increase) and CT levels (40% decrease) were observed in stressed rats. EDTA administration brought about a significantly greater hypocalcemia, and a higher PTH secretory response in turpentine oil-stressed rats. During stress, the increase of serum calcium after CaCl2 was significantly smaller, and the rise of CT was greater than in controls. In the case of CT the changes were still observed in rats subjected to superior cervical ganglionectomy (SCGx) 14 days earlier. In the case of PTH, the increase found in stressed rats, but not the augmented response after EDTA, was blunted by SCGx. The potentiation of hypocalcemia brought about by turpentine oil was no longer observed in SCGx rats. In vehicle-treated controls, SCGx delayed PTH response to hypocalcemia, but did not affect the increased response of CT to CaCl2 challenge. The results indicate that a number of changes in calcium homeostasis arise during turpentine oil stress in rats. SCGx was effective to modify the set point for PTH release, but played a minor role in affecting the augmentation of CT release during stress.

  5. Transcriptional regulation of temperature stress response during development in the alfalfa leafcutting bee, Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    Insects can be significantly affected by temperature induced stress. While evidence of the physiological consequences of temperature stress is growing, very little is known about how insects respond at the genetic level to these stressors. The alfalfa leafcutting bee, Megachile rotundata, an emergin...

  6. Effects of Fe and Mn deficiencies on the protein profiles of tomato (Solanum lycopersicum) xylem sap as revealed by shotgun analyses.

    PubMed

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2018-01-06

    The aim of this work was to study the effects of Fe and Mn deficiencies on the xylem sap proteome of tomato using a shotgun proteomic approach, with the final goal of elucidating plant response mechanisms to these stresses. This approach yielded 643 proteins reliably identified and quantified with 70% of them predicted as secretory. Iron and Mn deficiencies caused statistically significant and biologically relevant abundance changes in 119 and 118 xylem sap proteins, respectively. In both deficiencies, metabolic pathways most affected were protein metabolism, stress/oxidoreductases and cell wall modifications. First, results suggest that Fe deficiency elicited more stress responses than Mn deficiency, based on the changes in oxidative and proteolytic enzymes. Second, both nutrient deficiencies affect the secondary cell wall metabolism, with changes in Fe deficiency occurring via peroxidase activity, and in Mn deficiency involving peroxidase, Cu-oxidase and fasciclin-like arabinogalactan proteins. Third, the primary cell wall metabolism was affected by both nutrient deficiencies, with changes following opposite directions as judged from the abundances of several glycoside-hydrolases with endo-glycolytic activities and pectin esterases. Fourth, signaling pathways via xylem involving CLE and/or lipids as well as changes in phosphorylation and N-glycosylation also play a role in the responses to these stresses. Biological significance In spite of being essential for the delivery of nutrients to the shoots, our knowledge of xylem responses to nutrient deficiencies is very limited. The present work applies a shotgun proteomic approach to unravel the effects of Fe and Mn deficiencies on the xylem sap proteome. Overall, Fe deficiency seems to elicit more stress in the xylem sap proteome than Mn deficiency, based on the changes measured in proteolytic and oxido-reductase proteins, whereas both nutrients exert modifications in the composition of the primary and secondary cell wall. Cell wall modifications could affect the mechanical and permeability properties of the xylem sap vessels, and therefore ultimately affect solute transport and distribution to the leaves. Results also suggest that signaling cascades involving lipid and peptides might play a role in nutrient stress signaling and pinpoint interesting candidates for future studies. Finally, both nutrient deficiencies seem to affect phosphorylation and glycosylation processes, again following an opposite pattern. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Sustained release of corticosterone in rats affects reactivity, but does not affect habituation to immobilization and acoustic stimuli.

    PubMed

    Tanke, Marit A C; Fokkema, Dirk S; Doornbos, Bennard; Postema, Folkert; Korf, Jakob

    2008-07-18

    Depression is often preceded by stressful life events and accompanied with elevated cortisol levels and glucocorticoid resistance. It has been suggested that a major depressive disorder may result from impaired coping with and adaptation to stress. The question is whether or not hypothalamus-pituitary-adrenal (HPA)-axis dysfunction influences the process of adaptation. We examined the effect of a dysregulated HPA-axis on the adaptation to acoustic stimuli in rats with or without preceding restraint stress. HPA-axis function was altered via slow release of corticosterone (CORT, 90 mg) from subcutaneously implanted pellets for 7 or 14 days. The rate of body temperature increases during restraint (10 min) and the response to acoustic stimuli (of 80+120 dB) were used to quantify daily stress reactivity. Rats habituated to either stress regardless of CORT treatment. CORT treatment combined with restraint decreased the initial reactivity and the variability in response, but the rate of habituation was not influenced. These results show that suppressing normal HPA-axis function by chronic exposure to CORT does affect the course of habituation, but not habituation per se. This implies that altered HPA-axis function in depressed patients may not be causally related to stress coping, but instead may influence the course of the disorder.

  8. Early life stress affects mortality rate more than social behavior, gene expression or oxidative damage in honey bee workers.

    PubMed

    Rueppell, Olav; Yousefi, Babak; Collazo, Juan; Smith, Daniel

    2017-04-01

    Early life stressors can affect aging and life expectancy in positive or negative ways. Individuals can adjust their behavior and molecular physiology based on early life experiences but relatively few studies have connected such mechanisms to demographic patterns in social organisms. Sociality buffers individuals from environmental influences and it is unclear how much early life stress affects later life history. Workers of the honey bee (Apis mellifera L.) were exposed to two stressors, Varroa parasitism and Paraquat exposure, early in life. Consequences were measured at the molecular, behavioral, and demographic level. While treatments did not significantly affect levels of oxidative damage, expression of select genes, and titers of the common deformed wing virus, most of these measures were affected by age. Some of the age effects, such as declining levels of deformed wing virus and oxidative damage, were opposite to our predictions but may be explained by demographic selection. Further analyses suggested some influences of worker behavior on mortality and indicated weak treatment effects on behavior. The latter effects were inconsistent among the two experiments. However, mortality rate was consistently reduced by Varroa mite stress during development. Thus, mortality was more responsive to early life stress than our other response variables. The lack of treatment effects on these measures may be due to the social organization of honey bees that buffers the individual from the impact of stressful developmental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Early Life Stress Affects Mortality Rate More than Social Behavior, Gene Expression or Oxidative Damage in Honey Bee Workers

    PubMed Central

    Rueppell, Olav; Yousefi, Babak; Collazo, Juan; Smith, Daniel

    2017-01-01

    Early life stressors can affect aging and life expectancy in positive or negative ways. Individuals can adjust their behavior and molecular physiology based on early life experiences but relatively few studies have connected such mechanisms to demographic patterns in social organisms. Sociality buffers individuals from environmental influences and it is unclear how much early life stress affects later life history. Workers of the honey bee (Apis mellifera L.) were exposed to two stressors, Varroa parasitism and paraquat exposure, early in life. Consequences were measured at the molecular, behavioral, and demographic level. While treatments did not significantly affect levels of oxidative damage, expression of select genes, and titers of the common deformed wing virus, most of these measures were affected by age. Some of the age effects, such as declining levels of deformed wing virus and oxidative damage, were opposite to our predictions but may be explained by demographic selection. Further analyses suggested some influences of worker behavior on mortality and indicated weak treatment effects on behavior. The latter effects were inconsistent among the two experiments. However, mortality rate was consistently reduced by Varroa mite stress during development. Thus, mortality was more responsive to early life stress than our other response variables. The lack of treatment effects on these measures may be due to the social organization of honey bees that buffers the individual from the impact of stressful developmental conditions. PMID:28122251

  10. Immune status influences fear and anxiety responses in mice after acute stress exposure

    PubMed Central

    Clark, Sarah M.; Sand, Joseph; Francis, T. Chase; Nagaraju, Anitha; Michael, Kerry C.; Keegan, Achsah D.; Kusnecov, Alexander; Gould, Todd D.; Tonelli, Leonardo H.

    2014-01-01

    Significant evidence suggests that exposure to traumatic and/or acute stress in both mice and humans results in compromised immune function that in turn may affect associated brain processes. Additionally, recent studies in mouse models of immune deficiency have suggested that adaptive immunity may play a role during traumatic stress exposure and that impairments in lymphocyte function may contribute to increased susceptibility to various psychogenic stressors. However, rodent studies on the relationship between maladaptive stress responses and lymphocyte deficiency have been complicated by the fact that genetic manipulations in these models may also result in changes in CNS function due to the expression of targeted genes in tissues other than lymphocytes, including the brain. To address these issues we utilized mice with a deletion of recombination-activating gene 2 (Rag2), which has no confirmed expression in the CNS; thus, its loss should result in the absence of mature lymphocytes without altering CNS function directly. Stress responsiveness of immune deficient Rag2−/− mice on a BALB/c background was evaluated in three different paradigms: predator odor exposure (POE), fear conditioning (FC) and learned helplessness (LH). These models are often used to study different aspects of stress responsiveness after the exposure to an acute stressor. In addition, immunoblot analysis was used to assess hippocampal BDNF expression under both stressed and non-stressed conditions. Subsequent to POE, Rag2−/− mice exhibited a reduced acoustic startle response compared to BALB/c mice; no significant differences in behavior were observed in either FC or LH. Furthermore, analysis of hippocampal BDNF indicated that Rag2−/− mice have elevated levels of the mature form of BDNF compared to BALB/c mice. Results from our studies suggest that the absence of mature lymphocytes is associated with increased resilience to stress exposure in the POE and does not affect behavioral responses in the FC and LH paradigms. These findings indicate that lymphocytes play a specific role in stress responsiveness dependent upon the type, nature and intensity of the stressor. PMID:24524915

  11. Corticotropin-releasing hormone-binding protein and stress: from invertebrates to humans.

    PubMed

    Ketchesin, Kyle D; Stinnett, Gwen S; Seasholtz, Audrey F

    2017-09-01

    Corticotropin-releasing hormone (CRH) is a key regulator of the stress response. This peptide controls the hypothalamic-pituitary-adrenal (HPA) axis as well as a variety of behavioral and autonomic stress responses via the two CRH receptors, CRH-R1 and CRH-R2. The CRH system also includes an evolutionarily conserved CRH-binding protein (CRH-BP), a secreted glycoprotein that binds CRH with subnanomolar affinity to modulate CRH receptor activity. In this review, we discuss the current literature on CRH-BP and stress across multiple species, from insects to humans. We describe the regulation of CRH-BP in response to stress, as well as genetic mouse models that have been utilized to elucidate the in vivo role(s) of CRH-BP in modulating the stress response. Finally, the role of CRH-BP in the human stress response is examined, including single nucleotide polymorphisms in the human CRHBP gene that are associated with stress-related affective disorders and addiction. Lay summary The stress response is controlled by corticotropin-releasing hormone (CRH), acting via CRH receptors. However, the CRH system also includes a unique CRH-binding protein (CRH-BP) that binds CRH with an affinity greater than the CRH receptors. In this review, we discuss the role of this highly conserved CRH-BP in regulation of the CRH-mediated stress response from invertebrates to humans.

  12. Trauma- and Stress-Induced Response in Veterans with Alcohol Dependence and Comorbid Post-Traumatic Stress Disorder.

    PubMed

    Ralevski, Elizabeth; Southwick, Steven; Jackson, Eric; Jane, Jane Serrita; Russo, Melanie; Petrakis, Ismene

    2016-08-01

    Alcohol dependence (AD) and post-traumatic stress disorder (PTSD) commonly co-occur, and the co-occurrence is associated with worse prognosis than either disorder absent the other. Craving is an important construct related to relapse, but the relationship between PTSD symptoms, craving, and relapse is not well understood. Several studies have documented the relationship between stress and craving in individuals without comorbid PTSD, but the effect on those with comorbid PTSD is not well known. A small literature suggests that trauma imagery affects craving. This is the first study to explore the effects of trauma-induced and stress-induced scripts on alcohol craving, affect, cardiovascular, and cortisol responses in the laboratory. Veterans (n = 25) diagnosed with AD and PTSD who were participating in a randomized clinical treatment trial took part in this laboratory study. Baseline assessment included PTSD symptoms and drinking quantity and frequency over 3 months before study initiation. In the laboratory, participants were exposed to neutral, stressful, and trauma scripts randomly assigned. Main outcomes included craving, anxiety, mood states, salivary cortisol, and cardiovascular responses. Both stress and trauma scripts produced greater increases in craving, negative affect, and cardiovascular reactivity, compared to neutral scripts. Trauma scripts produced significantly stronger craving for alcohol and greater cardiovascular reactivity than stress scripts. Also, trauma-induced but not stress-induced craving was positively correlated with baseline levels of drinking. There were no changes in cortisol levels from pre- to postexposure of any scripts. The results highlight that trauma cues are more salient in inducing alcohol craving than stress cues and higher reactivity is related to more baseline drinking. This finding is consistent with clinical observations that show an association between PTSD symptoms and alcohol relapse. It also underscores the importance of adequate treatment of PTSD as reactivity related to trauma cues and reminders may be an important factor in craving and relapse. Copyright © 2016 by the Research Society on Alcoholism.

  13. Resilience in Adolescents with Cancer: Association of Coping with Positive and Negative Affect.

    PubMed

    Murphy, Lexa K; Bettis, Alexandra H; Gruhn, Meredith A; Gerhardt, Cynthia A; Vannatta, Kathryn; Compas, Bruce E

    2017-10-01

    To examine the prospective association between adolescents' coping with cancer-related stress and observed positive and negative affect during a mother-adolescent interaction task involving discussion of cancer-related stressors. Adolescents (age 10-15 years) self-reported about their coping and affect approximately 2 months after cancer diagnosis. Approximately 3 months later, adolescents and mothers were video recorded having a discussion about cancer, and adolescents were coded for expression of positive affect (positive mood) and negative affect (sadness and anxiety). Adolescents' use of secondary control coping (i.e., acceptance, cognitive reappraisal, and distraction) in response to cancer-related stress predicted higher levels of observed positive affect, but not negative affect, over time. Findings provide support for the importance of coping in the regulation of positive emotions. The potential role of coping in preventive interventions to enhance resilience in adolescents facing cancer-related stress is highlighted.

  14. Stress-Preventive Management Competencies, Psychosocial Work Environments, and Affective Well-Being: A Multilevel, Multisource Investigation.

    PubMed

    Toderi, Stefano; Balducci, Cristian

    2018-02-26

    The Management Competencies for Preventing and Reducing Stress at Work framework represents one of the few tailored models of leadership for work stress prevention purposes, but it has never been empirically evaluated. The aim of this study was to investigate whether supervisors' stress-preventive management competencies, as measured by the Stress Management Competencies Indicator Tool (SMCIT), are related to employees' affective well-being through psychosocial work environmental factors. To this end, multilevel structural equation modelling (MSEM) was developed and tested, including data provided by both supervisors and employees. Supervisors ( n = 84) self-assessed their stress-preventive management competencies (i.e., being respectful and responsible, managing and communicating existing and future work, reasoning and managing difficult situations, and managing the individual within the team) with a previously validated reduced version of the SMCIT. The supervised employees ( n = 584) rated job content (e.g., job demands) and work context (e.g., role clarity) psychosocial factors and their job-related affective well-being. Supervisors' job-related affective well-being was also included in the tested model. The results revealed that the stress-preventive competencies factor was related to employees' affective well-being through the psychosocial work environment only when the latter was operationalized by means of contextual work factors. Supervisors' affective well-being was related to their stress-preventive competencies, but it was not related to employees' affective well-being. We discuss the implications of the results obtained.

  15. Simulating Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi

    NASA Technical Reports Server (NTRS)

    Manchiraju, Sivom; Gaydosh, Darrell J.; Noebe, Ronald D.; Anderson, Peter M.

    2011-01-01

    A microstructure-based FEM model that couples crystal plasticity, crystallographic descriptions of the B2-B19' martensitic phase transformation, and anisotropic elasticity is used to simulate thermal cycling and isothermal deformation in polycrystalline NiTi (49.9at% Ni). The model inputs include anisotropic elastic properties, polycrystalline texture, DSC data, and a subset of isothermal deformation and load-biased thermal cycling data. A key experimental trend is captured.namely, the transformation strain during thermal cycling is predicted to reach a peak with increasing bias stress, due to the onset of plasticity at larger bias stress. Plasticity induces internal stress that affects both thermal cycling and isothermal deformation responses. Affected thermal cycling features include hysteretic width, two-way shape memory effect, and evolution of texture with increasing bias stress. Affected isothermal deformation features include increased hardening during loading and retained martensite after unloading. These trends are not captured by microstructural models that lack plasticity, nor are they all captured in a robust manner by phenomenological approaches. Despite this advance in microstructural modeling, quantitative differences exist, such as underprediction of open loop strain during thermal cycling.

  16. Job Stress and Self-Efficacy among Psychiatric Nursing Working in Mental Health Hospitals at Cairo, Egypt

    ERIC Educational Resources Information Center

    Zaki, Rania. A.

    2016-01-01

    Nursing stress is considered a problem that affects the practice worldwide. Job stress is a harmful response physically and emotionally when the nurses' skills, resources, and needs could not fulfill the requirement of the job. This study was aimed to assess job stress and self-efficacy among psychiatric nursing working in mental health hospitals…

  17. Functional β2-adrenoceptors in rat left atria: effect of foot-shock stress.

    PubMed

    Moura, André Luiz de; Hyslop, Stephen; Grassi-Kassisse, Dora M; Spadari, Regina C

    2017-09-01

    Altered sensitivity to the chronotropic effect of catecholamines and a reduction in the β 1 /β 2 -adrenoceptor ratio have previously been reported in right atria of stressed rats, human failing heart, and aging. In this report, we investigated whether left atrial inotropism was affected by foot-shock stress. Male rats were submitted to 3 foot-shock sessions and the left atrial inotropic response, adenylyl cyclase activity, and β-adrenoceptor expression were investigated. Left atria of stressed rats were supersensitive to isoprenaline when compared with control rats and this effect was abolished by ICI118,551, a selective β 2 -receptor antagonist. Schild plot slopes for the antagonism between CGP20712A (a selective β 1 -receptor antagonist) and isoprenaline differed from unity in atria of stressed but not control rats. Atrial sensitivity to norepinephrine, as well as basal and forskolin- or isoprenaline-stimulated adenylyl cyclase activities were not altered by stress. The effect of isoprenaline on adenylyl cyclase stimulation was partially blocked by ICI118,551 in atrial membranes of stressed rats. These findings indicate that foot-shock stress equally affects inotropism and chronotropism and that β 2 -adrenoceptor upregulation contributes to the enhanced inotropic response to isoprenaline.

  18. Taking stress response out of the box: stability, discontinuity, and temperament effects on HPA and SNS across social stressors in mother-infant dyads.

    PubMed

    Laurent, Heidemarie K; Ablow, Jennifer C; Measelle, Jeffrey

    2012-01-01

    This study investigated continuity and stability of hypothalamic-pituitary-adrenal (HPA) and sympathetic nervous system (SNS) response measures in mother-infant dyads across 2 different types of social stress sessions. Synchrony of response trajectories across systems (SNS-HPA coordination) and partners (mother-infant attunement) was addressed, as were associations with infant temperament. Primiparous mothers and their 18-month-old infants (n = 86 dyads) completed an attachment stressor--Strange Situation (Ainsworth, Blehar, Waters, & Wall, 1978)--at Session 1 and challenge stressors--cleanup task and emotion task battery--at Session 2. Mother and infant saliva samples collected to index pre-stress, stress, and post-stress response during each session were assayed for cortisol (HPA marker) and salivary alpha-amylase (sAA; SNS marker). Multilevel modeling of cortisol/sAA trajectories across sessions revealed rank-order stability in mother/infant stress measures but discontinuity in absolute levels; cortisol trajectories were higher during attachment stress, and sAA trajectories were higher during challenge stress. Varying degrees of mother-infant attunement were found across sessions/systems. Infant surgency predicted higher stress measures, and negative affect and effortful control predicted lower stress measures, though associations depended on session/system. Findings are discussed in terms of advancing a multisystemic, contextual definition of developing stress responsiveness.

  19. The serotonin transporter polymorphism (5-HTTLPR) and cortisol stress responsiveness: preliminary evidence for a modulating role for sleep quality.

    PubMed

    van Dalfsen, Jens H; Markus, C Rob

    2018-05-23

    The short (S) allele of a functional polymorphism (5-HTTLPR) within the promoter region of the serotonin transporter gene (SLC6A4) is found to predispose the risk for stress-related affective disorders relative to the long (L) allele. Evidence suggests that elevated stress reactivity of the hypothalamic-pituitary-adrenal (HPA) axis might underlie this association although there is little understanding about the origin of inconsistent findings. Since inadequate sleep is commonly known to promote HPA stress reactivity, it might well play an important modulating role. The present study tested this hypothesis by investigating whether sleep quality moderates the relationship between 5-HTTLPR and cortisol stress responsiveness. From a large 5-HTTLPR database (n = 771), a sample of healthy male and female participants homozygous for either the 5-HTTLPR S-allele (n = 25) or L-allele (n = 25) were assessed for sleep quality and salivary cortisol secretion during acute laboratory stress. Diminished sleep quality was found to exclusively potentiate cortisol stress reactivity in the homozygous L-allele genotype. Accounting for this 5-HTTLPR-dependent influence enhanced the predictive value of 5-HTTLPR on cortisol stress responsiveness, revealing greater HPA reactivity in S-allele relative to L-allele carriers. Current findings suggest that variations in sleep quality may serve as a confounding factor in the search for genetic differences in stress sensitivity and related affective disorders.

  20. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework.

    PubMed

    Calabrese, Edward J; Bachmann, Kenneth A; Bailer, A John; Bolger, P Michael; Borak, Jonathan; Cai, Lu; Cedergreen, Nina; Cherian, M George; Chiueh, Chuang C; Clarkson, Thomas W; Cook, Ralph R; Diamond, David M; Doolittle, David J; Dorato, Michael A; Duke, Stephen O; Feinendegen, Ludwig; Gardner, Donald E; Hart, Ronald W; Hastings, Kenneth L; Hayes, A Wallace; Hoffmann, George R; Ives, John A; Jaworowski, Zbigniew; Johnson, Thomas E; Jonas, Wayne B; Kaminski, Norbert E; Keller, John G; Klaunig, James E; Knudsen, Thomas B; Kozumbo, Walter J; Lettieri, Teresa; Liu, Shu-Zheng; Maisseu, Andre; Maynard, Kenneth I; Masoro, Edward J; McClellan, Roger O; Mehendale, Harihara M; Mothersill, Carmel; Newlin, David B; Nigg, Herbert N; Oehme, Frederick W; Phalen, Robert F; Philbert, Martin A; Rattan, Suresh I S; Riviere, Jim E; Rodricks, Joseph; Sapolsky, Robert M; Scott, Bobby R; Seymour, Colin; Sinclair, David A; Smith-Sonneborn, Joan; Snow, Elizabeth T; Spear, Linda; Stevenson, Donald E; Thomas, Yolene; Tubiana, Maurice; Williams, Gary M; Mattson, Mark P

    2007-07-01

    Many biological subdisciplines that regularly assess dose-response relationships have identified an evolutionarily conserved process in which a low dose of a stressful stimulus activates an adaptive response that increases the resistance of the cell or organism to a moderate to severe level of stress. Due to a lack of frequent interaction among scientists in these many areas, there has emerged a broad range of terms that describe such dose-response relationships. This situation has become problematic because the different terms describe a family of similar biological responses (e.g., adaptive response, preconditioning, hormesis), adversely affecting interdisciplinary communication, and possibly even obscuring generalizable features and central biological concepts. With support from scientists in a broad range of disciplines, this article offers a set of recommendations we believe can achieve greater conceptual harmony in dose-response terminology, as well as better understanding and communication across the broad spectrum of biological disciplines.

  1. The effects of mind-body training on stress reduction, positive affect, and plasma catecholamines.

    PubMed

    Jung, Ye-Ha; Kang, Do-Hyung; Jang, Joon Hwan; Park, Hye Yoon; Byun, Min Soo; Kwon, Soo Jin; Jang, Go-Eun; Lee, Ul Soon; An, Seung Chan; Kwon, Jun Soo

    2010-07-26

    This study was designed to assess the association between stress, positive affect and catecholamine levels in meditation and control groups. The meditation group consisted of 67 subjects who regularly engaged in mind-body training of "Brain-Wave Vibration" and the control group consisted of 57 healthy subjects. Plasma catecholamine (norepinephrine (NE), epinephrine (E), and dopamine (DA)) levels were measured, and a modified form of the Stress Response Inventory (SRI-MF) and the Positive Affect and Negative Affect Scale (PANAS) were administered. The meditation group showed higher scores on positive affect (p=.019) and lower scores on stress (p<.001) compared with the control group. Plasma DA levels were also higher in the meditation (p=.031) than in the control group. The control group demonstrated a negative correlation between stress and positive affects (r=-.408, p=.002), whereas this correlation was not observed in the meditation group. The control group showed positive correlations between somatization and NE/E (r=.267, p=.045) and DA/E (r=.271, p=.042) ratios, whereas these correlations did not emerge in the meditation group. In conclusion, these results suggest that meditation as mind-body training is associated with lower stress, higher positive affect and higher plasma DA levels when comparing the meditation group with the control group. Thus, mind-body training may influence stress, positive affect and the sympathetic nervous system including DA activity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Prenatal stress effects in a wild, long-lived primate: predictive adaptive responses in an unpredictable environment.

    PubMed

    Berghänel, Andreas; Heistermann, Michael; Schülke, Oliver; Ostner, Julia

    2016-09-28

    Prenatal maternal stress affects offspring phenotype in numerous species including humans, but it is debated whether these effects are evolutionarily adaptive. Relating stress to adverse conditions, current explanations invoke either short-term developmental constraints on offspring phenotype resulting in decelerated growth to avoid starvation, or long-term predictive adaptive responses (PARs) resulting in accelerated growth and reproduction in response to reduced life expectancies. Two PAR subtypes were proposed, acting either on predicted internal somatic states or predicted external environmental conditions, but because both affect phenotypes similarly, they are largely indistinguishable. Only external (not internal) PARs rely on high environmental stability particularly in long-lived species. We report on a crucial test case in a wild long-lived mammal, the Assamese macaque (Macaca assamensis), which evolved and lives in an unpredictable environment where external PARs are probably not advantageous. We quantified food availability, growth, motor skills, maternal caretaking style and maternal physiological stress from faecal glucocorticoid measures. Prenatal maternal stress was negatively correlated to prenatal food availability and led to accelerated offspring growth accompanied by decelerated motor skill acquisition and reduced immune function. These results support the 'internal PAR' theory, which stresses the role of stable adverse internal somatic states rather than stable external environments. © 2016 The Author(s).

  3. Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output.

    PubMed

    Belda, Xavier; Nadal, Roser; Armario, Antonio

    2016-08-11

    Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors.

  4. Critical features of acute stress-induced cross-sensitization identified through the hypothalamic-pituitary-adrenal axis output

    PubMed Central

    Belda, Xavier; Nadal, Roser; Armario, Antonio

    2016-01-01

    Stress-induced sensitization represents a process whereby prior exposure to severe stressors leaves animals or humans in a hyper-responsive state to further stressors. Indeed, this phenomenon is assumed to be the basis of certain stress-associated pathologies, including post-traumatic stress disorder and psychosis. One biological system particularly prone to sensitization is the hypothalamic-pituitary-adrenal (HPA) axis, the prototypic stress system. It is well established that under certain conditions, prior exposure of animals to acute and chronic (triggering) stressors enhances HPA responses to novel (heterotypic) stressors on subsequent days (e.g. raised plasma ACTH and corticosterone levels). However, such changes remain somewhat controversial and thus, the present study aimed to identify the critical characteristics of the triggering and challenging stressors that affect acute stress-induced HPA cross-sensitization in adult rats. We found that HPA cross-sensitization is markedly influenced by the intensity of the triggering stressor, whereas the length of exposure mainly affects its persistence. Importantly, HPA sensitization is more evident with mild than strong challenging stressors, and it may remain unnoticed if exposure to the challenging stressor is prolonged beyond 15 min. We speculate that heterotypic HPA sensitization might have developed to optimize biologically adaptive responses to further brief stressors. PMID:27511270

  5. Inhibition of anandamide hydrolysis dampens the neuroendocrine response to stress in neonatal rats subjected to suboptimal rearing conditions.

    PubMed

    McLaughlin, Ryan Joseph; Verlezza, Silvanna; Gray, Jennifer Megan; Hill, Matthew Nicholas; Walker, Claire-Dominique

    2016-01-01

    Exposure to stress during early development can exert profound effects on the maturation of the neuroendocrine stress axis. The endocannabinoid (ECB) system has recently surfaced as a fundamental component of the neuroendocrine stress response; however, the effect of early-life stress on neonatal ECB signaling and the capacity to which ECB enhancement may modulate neonatal stress responses is relatively unknown. The present study assessed whether exposure to early-life stress in the form of limited access to nesting/bedding material (LB) from postnatal (PND) day 2 to 9 alters neuroendocrine activity and hypothalamic ECB content in neonatal rats challenged with a novel immobilization stressor. Furthermore, we examined whether inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of anandamide (AEA) affects neuroendocrine responses in PND10 pups as a function of rearing conditions. Neonatal rats showed a robust increase in corticosterone (CORT) and adrenocorticotropin hormone (ACTH) secretion in response to immobilization stress, which was significantly blunted in pups reared in LB conditions. Accordingly, LB pups exhibited reduced stress-induced Fos immunoreactivity in the paraventricular nucleus of the hypothalamus, with no significant differences in hypothalamic ECB content. Administration of the FAAH inhibitor URB597 (0.3 mg/kg, ip) 90 min prior to immobilization stress significantly dampened stress-induced CORT release, but only in pups reared in LB conditions. These results suggest that rearing in restricted bedding conditions dampens the neuroendocrine response to stress, while augmenting AEA mitigates stress-induced alterations in glucocorticoid secretion preferentially in pups subjected to early-life stress.

  6. The stress response system of proteins: Implications for bioreactor scaleup

    NASA Technical Reports Server (NTRS)

    Goochee, Charles F.

    1988-01-01

    Animal cells face a variety of environmental stresses in large scale bioreactors, including periodic variations in shear stress and dissolved oxygen concentration. Diagnostic techniques were developed for identifying the particular sources of environmental stresses for animal cells in a given bioreactor configuration. The mechanisms by which cells cope with such stresses was examined. The individual concentrations and synthesis rates of hundreds of intracellular proteins are affected by the extracellular environment (medium composition, dissolved oxygen concentration, ph, and level of surface shear stress). Techniques are currently being developed for quantifying the synthesis rates and concentrations of the intracellular proteins which are most sensitive to environmental stress. Previous research has demonstrated that a particular set of stress response proteins are synthesized by mammalian cells in response to temperature fluctuations, dissolved oxygen deprivation, and glucose deprivation. Recently, it was demonstrated that exposure of human kidney cells to high shear stress results in expression of a completely distinct set of intracellular proteins.

  7. Sex differences in the effects of adolescent stress on adult brain inflammatory markers in rats

    PubMed Central

    Pyter, Leah M.; Kelly, Sean D.; Harrell, Constance S.; Neigh, Gretchen N.

    2013-01-01

    Both basic and clinical research indicates that females are more susceptible to stress-related affective disorders than males. One of the mechanisms by which stress induces depression is via inflammatory signaling in the brain. Stress during adolescence, in particular, can also disrupt the activation and continued development of both the hypothalamic–pituitary–adrenal (HPA) and –gonadal (HPG) axes, both of which modulate inflammatory pathways and brain regions involved in affective behavior. Therefore, we tested the hypothesis that adolescent stress differentially alters brain inflammatory mechanisms associated with affective-like behavior into adulthood based on sex. Male and female Wistar rats underwent mixed-modality stress during adolescence (PND 37–48) and were challenged with lipopolysaccharide (LPS; 250 μg/kg, i.p.) or saline 4.5 weeks later (in adulthood). Hippocampal inflammatory marker gene expression and circulating HPA and HPG axes hormone concentrations were then determined. Despite previous studies indicating that adolescent stress induces affective-like behaviors in female rats only, this study demonstrated that adolescent stress increased hippocampal inflammatory responses to LPS in males only, suggesting that differences in neuroinflammatory signaling do not drive the divergent affective-like behaviors. The sex differences in inflammatory markers were not associated with differences in corticosterone. In females that experienced adolescent stress, LPS increased circulating estradiol. Estradiol positively correlated with hippocampal microglial gene expression in control female rats, whereas adolescent stress negated this relationship. Thus, estradiol in females may potentially protect against stress-induced increases in neuroinflammation. PMID:23348027

  8. [Sleep quality and occupational stress relationship analysis of 1413 train drivers in a railway bureau].

    PubMed

    Gu, G Z; Yu, S F; Zhou, W H; Wu, H; Kang, L; Chen, R

    2017-07-20

    Objective: To investigate sleep quality status of train drivers. Methods: By using cluster sampling method, a cross-sectional study was conducted in 1413 train drivers (including passenger train drivers 301, freight train drivers 683, passenger shunting train drivers 350, and high speed train drivers 79) from a railway bureau. The occupational stressors, strains, personalities and sleep quality were measured using occupational stress instruments and effort-reward imbalance questionnaire. Results: The train drivers of poor sleep quality was 48.34%. Sleep quality scores among different among different job category (job title) , exercise, smoking and drinking were statistical significance ( P <0.01) . Differences of sleep quality among different educational level, marry status, age, length of service groups weren't statistical significance ( P >0.05) . Correlation: analysis revealed that sleep quality score was related negatively to job satisfaction, reward, working stability, promotion opportunities, positive affectivity, esteem and self-esteem scores ( r : -0.454, -0.207, -0.329,-0.170, -0.291, -0.103, -0.139, P <0.01 or P <0.05) , positively to social support, effort, role conflict, conflict between groups, conflict in groups, responsibility for person, responsibility for thing, psychological needs, physiological needs, daily stress, negative affectivity, depressive symptoms scores ( r : 0.338, 0.524, 0.226, 0.094, 0.182, 0.210, 0.247, 0.190, 0.615, 0.550, 0.345, 0.570, P <0.01) . Nonparametric test found that train drivers of group with high sleep quality score reported higher scores for physiological need, psychological need, effort, role conflict, conflict between groups, social support, daily stress, depressive symptoms, responsibility for person, responsibility for thing, negative affectivity and coping scores than the group of lower sleep quality score ( P <0.01) . But reword, job satisfaction, positive affectivity, self-esteem working stability and Promotion opportunities scores were lower than the group of lower sleep quality score (P<0.01) . Multivariate logistic regression analysis revealed the risk for more physiological needs, more effort, more depressive symptoms and more daily stress for drivers occured the risk of poor sleep quality were more than two times as high as that of drivers with less physiological needs, less effort, less depressive symptoms and less daily stress ( OR =2.905~2.005) . Conclusions Different types of locomotive drivers get different level of sleep quality. Sleep quality was affected by occupational stress largely. Reducing the occupational stress may contribute to improve the sleep quality of train drivers.

  9. Effects of maternal cortisol treatment on offspring size, responses to stress, and anxiety-related behavior in wild largemouth bass (Micropterus salmoides).

    PubMed

    Redfern, Julia C; Cooke, Steven J; Lennox, Robert J; Nannini, Michael A; Wahl, David H; Gilmour, Kathleen M

    2017-10-15

    Cortisol, the main glucocorticoid stress hormone in teleost fish, is of interest as a mediator of maternal stress on offspring characteristics because it plays an organizational role during early development. The present study tested the hypothesis that maternal exposure to cortisol treatment prior to spawn affects offspring phenotype using wild largemouth bass (Micropterus salmoides). Baseline and stress-induced cortisol concentrations, body size (i.e. length and mass), and behavior (i.e. anxiety, exploration, boldness, and aggression) were assessed at different offspring life-stages and compared between offspring of control and cortisol-treated females. Cortisol administration did not affect spawning success or timing, nor were whole-body cortisol concentrations different between embryos from cortisol-treated and control females. However, maternal cortisol treatment had significant effects on offspring stress responsiveness, mass, and behavior. Compared to offspring of control females, offspring of cortisol-treated females exhibited larger mass right after hatch, and young-of-the-year mounted an attenuated cortisol response to an acute stressor, and exhibited less thigmotaxic anxiety, exploratory behavior, boldness and aggression. Thus, offspring phenotype was affected by elevated maternal cortisol levels despite the absence of a significant increase in embryo cortisol concentrations, suggesting that a mechanism other than the direct deposition of cortisol into eggs mediates effects on offspring. The results of the present raise questions about the mechanisms through which maternal stress influences offspring behavior and physiology, as well as the impacts of such phenotypic changes on offspring fitness. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Gene expression profiling of drought stress responses in widely adapted wheat cutlivars TAM 111 and TAM 112

    USDA-ARS?s Scientific Manuscript database

    Water deficit stress between the booting and grain filling stages significantly affect grain yield and quality of hard red winter wheat. Several stress tolerant cultivars with different adaptation mechanisms have been released and are widely cultivated on the Southern Great Plains of the US. How...

  11. Transcriptional Profiling in Cotton Associated with Bacillus Subtilis (UFLA285) Induced Biotic-Stress Tolerance

    USDA-ARS?s Scientific Manuscript database

    Abstract Lint yield and quality in cotton is greatly affected by water-deficit stress. The principal aim of this study was to identify cotton genes associated metabolic pathways involved in the water-deficit stress response. Gene expression profiles were developed for leaf and root tissues subject...

  12. Chronic Stress, Depression and Immunity in Spouses of Metastatic Breast Cancer Patients

    ERIC Educational Resources Information Center

    Mortimer, Jane S. Blake; Sephton, Sandra E.; Kimerling, Rachel; Butler, Lisa; Bernstein, Aaron S.; Spiegel, David

    2005-01-01

    Objective: The objective of this study was to examine how the chronicity of stress affects psychological stress-responses, depressive symptoms, and "in vivo" immunocompetence in spouses of women with metastatic breast cancer. Methods: Participants were 34 spouses of breast cancer patients. Their wives had been living with a diagnosis of…

  13. Differential adaptation of two varieties of common bean to abiotic stress: I. Effects of drought on yield and photosynthesis.

    PubMed

    Lizana, Carolina; Wentworth, Mark; Martinez, Juan P; Villegas, Daniel; Meneses, Rodrigo; Murchie, Erik H; Pastenes, Claudio; Lercari, Bartolomeo; Vernieri, Paulo; Horton, Peter; Pinto, Manuel

    2006-01-01

    The yield of 24 commercial varieties and accessions of common bean (Phaseolus vulgaris) has been determined at different sites in Chile and Bolivia. Statistical analysis was performed in order to characterize whether a particular variety was more or less stable in yield under different environmental conditions. Amongst these, two varieties have been identified for more detailed study: one variety has a higher than average yield under unstressed conditions but is strongly affected by stress, and another has a reduced yield under unstressed conditions but is less affected by stress. The contrasting rate of abscission of the reproductive organs under drought stress was clearly consistent with these differences. The more tolerant genotype shows a great deal of plasticity at the biochemical and cellular level when exposed to drought stress, in terms of stomatal conductance, photosynthetic rate, abscisic acid synthesis, and resistance to photoinhibition. By contrast, the former lacks such plasticity, but shows an enhanced tendency for a morphological response, the movement of leaves, which appears to be its principal response to drought stress.

  14. Characterization of proteins in soybean roots under flooding and drought stresses.

    PubMed

    Oh, MyeongWon; Komatsu, Setsuko

    2015-01-30

    Flooding and drought affect soybean growth because soybean is a stress-sensitive crop. In 2-day-old plants exposed to 2-day flooding or drought, the fresh weight of roots was markedly suppressed, although the root morphology clearly differed between two conditions. To understand the response mechanisms of soybean to flooding and drought stresses, a gel-free proteomic technique was used. A total of 97 and 48 proteins were significantly changed in response to flooding and drought stresses, respectively. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to flooding and drought stresses, respectively. The mRNA expression levels of S-adenosylmethionine synthetase genes displayed a similar tendency to the changes in protein abundance. These results suggest that S-adenosylmethionine synthetase is involved in the regulation of stress response because it was changed in response to flooding and drought stresses. This study reported on the response mechanisms of soybean to flooding and drought stresses using the gel-free proteomic technique. Proteins involved in protein synthesis were decreased by flooding stress and increased by drought. Glycolysis-related proteins were increased in roots by both flooding and drought stresses. Fermentation, stress, and cell wall-related proteins were increased in response to flooding stress, whereas cell organization and redox-related proteins were increased under drought stress. Among the identified proteins, three S-adenosylmethionine synthetases were commonly decreased and increased in response to flooding and drought stresses, respectively. The mRNA expression levels of S-adenosylmethionine synthetase genes displayed a similar tendency to the changes in protein abundance. These results suggest that S-adenosylmethionine synthetase is involved in the regulation of stress response because it was changed in response to flooding and drought stresses. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Prosocial Behavior Mitigates the Negative Effects of Stress in Everyday Life

    PubMed Central

    Raposa, Elizabeth B.; Laws, Holly B.; Ansell, Emily B.

    2015-01-01

    Recent theories of stress reactivity posit that, when stressed, individuals tend to seek out opportunities to affiliate with and nurture others in order to prevent or mitigate the negative effects of stress. However, few studies have tested empirically the role of prosocial behavior in reducing negative emotional responses to stress. The current analyses used daily diary data to investigate whether engaging in prosocial behavior buffered the negative effects of naturally-occurring stressors on emotional well-being. Results showed that on a given day, prosocial behavior moderated the effects of stress on positive affect, negative affect, and overall mental health. Findings suggest that affiliative behavior may be an important component of coping with stress, and indicate that engaging in prosocial behavior might be an effective strategy for reducing the impact of stress on emotional functioning. PMID:27500075

  16. Prosocial Behavior Mitigates the Negative Effects of Stress in Everyday Life.

    PubMed

    Raposa, Elizabeth B; Laws, Holly B; Ansell, Emily B

    2016-07-01

    Recent theories of stress reactivity posit that, when stressed, individuals tend to seek out opportunities to affiliate with and nurture others in order to prevent or mitigate the negative effects of stress. However, few studies have tested empirically the role of prosocial behavior in reducing negative emotional responses to stress. The current analyses used daily diary data to investigate whether engaging in prosocial behavior buffered the negative effects of naturally-occurring stressors on emotional well-being. Results showed that on a given day, prosocial behavior moderated the effects of stress on positive affect, negative affect, and overall mental health. Findings suggest that affiliative behavior may be an important component of coping with stress, and indicate that engaging in prosocial behavior might be an effective strategy for reducing the impact of stress on emotional functioning.

  17. The Trier Social Stress Test as a paradigm to study how people respond to threat in social interactions

    PubMed Central

    Frisch, Johanna U.; Häusser, Jan A.; Mojzisch, Andreas

    2015-01-01

    In our lives, we face countless situations in which we are observed and evaluated by our social interaction partners. Social-evaluative threat is frequently associated with strong neurophysiological stress reactions, in particular, an increase in cortisol levels. Yet, social variables do not only cause stress, but they can also buffer the neurophysiological stress response. Furthermore, social variables can themselves be affected by the threat or the threat-induced neurophysiological stress response. In order to study this complex interplay of social-evaluative threat, social processes and neurophysiological stress responses, a paradigm is needed that (a) reliably induces high levels of social-evaluative threat and (b) is extremely adaptable to the needs of the researcher. The Trier Social Stress Test (TSST) is a well-established paradigm in biopsychology that induces social-evaluative threat in the laboratory by subjecting participants to a mock job-interview. In this review, we aim at demonstrating the potential of the TSST for studying the complex interplay of social-evaluative threat, social processes and neurophysiological stress responses. PMID:25698987

  18. Conceptual framework and trend analysis of water-level responses to hydrologic stresses, Pahute Mesa–Oasis Valley groundwater basin, Nevada, 1966-2016

    USGS Publications Warehouse

    Jackson, Tracie R.; Fenelon, Joseph M.

    2018-05-31

    This report identifies water-level trends in wells and provides a conceptual framework that explains the hydrologic stresses and factors causing the trends in the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, southern Nevada. Water levels in 79 wells were analyzed for trends between 1966 and 2016. The magnitude and duration of water-level responses to hydrologic stresses were analyzed graphically, statistically, and with water-level models.The conceptual framework consists of multiple stress-specific conceptual models to explain water-level responses to the following hydrologic stresses: recharge, evapotranspiration, pumping, nuclear testing, and wellbore equilibration. Dominant hydrologic stresses affecting water-level trends in each well were used to categorize trends as nonstatic, transient, or steady state.The conceptual framework of water-level responses to hydrologic stresses and trend analyses provide a comprehensive understanding of the PMOV basin and vicinity. The trend analysis links water-level fluctuations in wells to hydrologic stresses and potential factors causing the trends. Transient and steady-state trend categorizations can be used to determine the appropriate water-level data for groundwater studies.

  19. [The Effects of Neurofeedback Training on Physical, Psychoemotional Stress Response and Self-Regulation for Late Adolescence: A Non-Randomized Trial].

    PubMed

    Choi, Moon Ji; Park, Wan Ju

    2018-04-01

    The aim of this study was to analyze the effects of neurofeedback training for reducing stress and enhancing self-regulation in late adolescence to identify the possibility of use for nursing intervention. A nonequivalent control group pre-post quasi-experimental design was used. Participants were 78 late adolescents assigned to the experimental group (n=39) that received the neurofeedback training and the control group (n=39). Data were collected on heart rate variability (HRV) and skin conductance level (SCL) to assess stress-biomarker response. The questionnaire contained 164 items from: Positive and Negative Affect Schedule (PANAS), Symptom Checklist-90-Revised (SCL-90-R) and Self-regulatory Ability scale. The neurofeedback training was based on the general adaptation syndrome and body-mind medicine. The intervention was conducted in a total of 10 sessions for 30 minutes per session with high-beta, theta and sensory motor rhythm training on scalp at central zero. There were significant difference in standard deviation of normal to normal interval (p=.036) in HRV and SCL (p=.029) of stress-biomarker response between the two groups. Negative affect (p=.036) in PANAS and obsessive compulsive (p=.023) and depression (p<.001) in SCL-90-R were statistically significant. Self-regulation mode (p=.004) in self-regulation ability scale showed a significant difference between the two groups. The results indicated that the neurofeedback training is effective in stress-biomarkers, psychoemotional stress response and self-regulation. Therefore, neurofeedback training using neuroscientific approach based on brain-mind-body model can be used as an effective nursing intervention for late adolescents in clinics and communities for effective stress responses. © 2018 Korean Society of Nursing Science.

  20. Homeodomain protein Otp affects developmental neuropeptide switching in oxytocin neurons associated with a long-term effect on social behavior

    PubMed Central

    Wircer, Einav; Blechman, Janna; Borodovsky, Nataliya; Tsoory, Michael; Nunes, Ana Rita; Oliveira, Rui F; Levkowitz, Gil

    2017-01-01

    Proper response to stress and social stimuli depends on orchestrated development of hypothalamic neuronal circuits. Here we address the effects of the developmental transcription factor orthopedia (Otp) on hypothalamic development and function. We show that developmental mutations in the zebrafish paralogous gene otpa but not otpb affect both stress response and social preference. These behavioral phenotypes were associated with developmental alterations in oxytocinergic (OXT) neurons. Thus, otpa and otpb differentially regulate neuropeptide switching in a newly identified subset of OXT neurons that co-express the corticotropin-releasing hormone (CRH). Single-cell analysis revealed that these neurons project mostly to the hindbrain and spinal cord. Ablation of this neuronal subset specifically reduced adult social preference without affecting stress behavior, thereby uncoupling the contribution of a specific OXT cluster to social behavior from the general otpa−/− deficits. Our findings reveal a new role for Otp in controlling developmental neuropeptide balance in a discrete OXT circuit whose disrupted development affects social behavior. DOI: http://dx.doi.org/10.7554/eLife.22170.001 PMID:28094761

  1. The ties that bind: Ingroup ties are linked with diminished inflammatory immune responses and fewer mental health symptoms through less rumination.

    PubMed

    Ysseldyk, Renate; McQuaid, Robyn J; McInnis, Opal A; Anisman, Hymie; Matheson, Kimberly

    2018-01-01

    The present research explored whether components of social identity, namely ingroup ties, affect, and centrality, were differentially linked to mental health and inflammatory immune responses, and whether rumination mediated those relations. Study 1 (N = 138) indicated that stronger ingroup ties were associated with fewer mental health (depressive and post-traumatic stress) symptoms; those relations were mediated by the tendency for individuals with strong ties to rely less on ruminative coping to deal with a stressful life event. Study 2 (N = 54) demonstrated that ingroup ties were negatively associated with depressive symptoms, dispositional rumination, as well as stress-linked inflammatory elements at the physiological level. Consistent associations for centrality and ingroup affect were absent, suggesting that ingroup ties may have unique health benefits.

  2. Stress Memory and the Inevitable Effects of Drought: A Physiological Perspective

    PubMed Central

    Fleta-Soriano, Eva; Munné-Bosch, Sergi

    2016-01-01

    Plants grow and develop by adjusting their physiology to changes in their environment. Changes in the abiotic environment occur over years, seasons, and days, but also over minutes and even seconds. In this ever-changing environment, plants may adjust their structure and function rapidly to optimize growth and reproduction. Plant responses to reiterated drought (i.e., repeated cycles of drought) differ from those to single incidences of drought; in fact, in nature, plants are usually exposed to repeated cycles of drought that differ in duration and intensity. Nowadays, there is increased interest in better understanding mechanisms of plant response to reiterated drought due, at least in part, to the discovery of epigenomic changes that trigger drought stress memory in plants. Beyond epigenomic changes, there are, however, other aspects that should be considered in the study of plant responses to reiterated drought: from changes in other “omics” approaches (transcriptomics, proteomics, and metabolomics), to changes in plant structure; all of which may help us to better understand plant stress memory and its underlying mechanisms. Here, we present an example in which reiterated drought affects the pigment composition of leaves in the ornamental plant Silene dioica and discuss the importance of structural changes (in this case in the photosynthetic apparatus) for the plant response to reiterated drought; they represent a stress imprint that can affect plant response to subsequent stress episodes. Emphasis is placed on the importance of considering structural changes, in addition to physiological adjustments at the “omics” level, to understand stress memory in plants better. PMID:26913046

  3. Adolescent chronic variable social stress influences exploratory behavior and nicotine responses in male, but not female, BALB/cJ mice.

    PubMed

    Caruso, M J; Reiss, D E; Caulfield, J I; Thomas, J L; Baker, A N; Cavigelli, S A; Kamens, H M

    2018-04-01

    Anxiety disorders and nicotine use are significant contributors to global morbidity and mortality as independent and comorbid diseases. Early-life stress, potentially via stress-induced hypothalamic-pituitary-adrenal axis (HPA) dysregulation, can exacerbate both. However, little is known about the factors that predispose individuals to the development of both anxiety disorders and nicotine use. Here, we examined the relationship between anxiety-like behaviors and nicotine responses following adolescent stress. Adolescent male and female BALB/cJ mice were exposed to either chronic variable social stress (CVSS) or control conditions. CVSS consisted of repeated cycles of social isolation and social reorganization. In adulthood, anxiety-like behavior and social avoidance were measured using the elevated plus-maze (EPM) and social approach-avoidance test, respectively. Nicotine responses were assessed with acute effects on body temperature, corticosterone production, locomotor activity, and voluntary oral nicotine consumption. Adolescent stress had sex-dependent effects on nicotine responses and exploratory behavior, but did not affect anxiety-like behavior or social avoidance in males or females. Adult CVSS males exhibited less exploratory behavior, as indicated by reduced exploratory locomotion in the EPM and social approach-avoidance test, compared to controls. Adolescent stress did not affect nicotine-induced hypothermia in either sex, but CVSS males exhibited augmented nicotine-induced locomotion during late adolescence and voluntarily consumed less nicotine during adulthood. Stress effects on male nicotine-induced locomotion were associated with individual differences in exploratory locomotion in the EPM and social approach-avoidance test. Relative to controls, adult CVSS males and females also exhibited reduced corticosterone levels at baseline and adult male CVSS mice exhibited increased corticosterone levels following an acute nicotine injection. Results suggest that the altered nicotine responses observed in CVSS males may be associated with HPA dysregulation. Taken together, adolescent social stress influences later-life nicotine responses and exploratory behavior. However, there is little evidence of an association between nicotine responses and prototypical anxiety-like behavior or social avoidance in BALB/cJ mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The Relative Salience of Daily and Enduring Influences on Off-Job Reactions to Work Stress.

    PubMed

    Calderwood, Charles; Ackerman, Phillip L

    2016-12-01

    Work stress is an important determinant of employee health and wellness. The occupational health community is recognizing that one contributor to these relationships may be the presence of negative off-job reactivity to work, which we argue involves continued thoughts directed towards work (cognitive reactivity), continued negative mood stemming from work (affective reactivity), and the alteration of post-work behaviours in response to work factors (behavioural reactivity). We explored the relative contributions of daily work stressors, affective traits, and subjective job stress perceptions to negative off-job reactivity. These relationships were evaluated in a study of hospital nurses (n = 75), who completed trait measures and then provided self-assessments of daily work stress and off-job reactions for four work days. The results of several multilevel analyses indicated that a main-effects model best described the data when predicting cognitive, affective, and behavioural reactivity from daily work stressors, affective traits, and subjective job stress perceptions. A series of multilevel dominance analyses revealed that subjective job stress perceptions dominated the prediction of behavioural reactivity, while trait negative affect dominated the prediction of affective reactivity. Theoretical implications and the relative salience of daily and enduring contributors to negative off-job reactivity are discussed. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Long-Term Citalopram Treatment Alters the Stress Responses of the Cortical Dopamine and Noradrenaline Systems: the Role of Cortical 5-HT1A Receptors

    PubMed Central

    Kaneko, Fumi; Kishikawa, Yuki; Hanada, Yuuki; Yamada, Makiko; Kakuma, Tatsuyuki; Kawahara, Hiroshi; Nishi, Akinori

    2016-01-01

    Background: Cortical dopamine and noradrenaline are involved in the stress response. Citalopram, a selective serotonin reuptake inhibitor, has direct and indirect effects on the serotonergic system. Furthermore, long-term treatment with citalopram affects the dopamine and noradrenaline systems, which could contribute to the therapeutic action of antidepressants. Methods: The effects of long-term treatment with citalopram on the responses of the dopamine and noradrenaline systems in the rat prefrontal cortex to acute handling stress were evaluated using in vivo microdialysis. Results: Acute handling stress increased dopamine and noradrenaline levels in the prefrontal cortex. The dopamine and noradrenaline responses were suppressed by local infusion of a 5-HT1A receptor agonist, 7-(Dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-ol;hydrobromide, into the prefrontal cortex. The dopamine response was abolished by long-term treatment with citalopram, and the abolished dopamine response was reversed by local infusion of a 5-HT1A receptor antagonist, (Z)-but-2-enedioic acid;N-[2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-N-pyridin-2-ylcyclohexanecarboxamide into the prefrontal cortex. On the other hand, long-term treatment with citalopram reduced the basal noradrenaline levels (approximately 40% of the controls), but not the basal dopamine levels. The noradrenaline response was maintained despite the low basal noradrenaline levels. Signaling from the 5-HT1A receptors and α2-adrenoceptors was not involved in the decrease in the basal noradrenaline levels but partially affected the noradrenaline response. Conclusions: Chronic citalopram treatment differentially suppresses the dopamine and noradrenaline systems in the prefrontal cortex, and the dopamine stress response was preferentially controlled by upregulating 5-HT1A receptor signaling. Our findings provide insight into how antidepressants modulate the dopamine and noradrenaline systems to overcome acute stress. PMID:27029212

  6. Assessment of Male Anthropometric Trends and the Effects on Thermal Regulatory Models

    DTIC Science & Technology

    2007-08-01

    However, simulated Tcr responses to heat stress in each somatotype were similar in the 2004 and 1988 populations. In conclusion, an increase in body...each somatotype , differences in physiological responses were minimal and insignificant between the 1988 and 2004 datasets. 1988 2004 n 1773 480 Age...Yet, the change in each somatotype between 1988 and 2004 had a minimal affect on simulated Tcr response to heat stress. In this study, “small

  7. Time dependent effects of stress prior to encoding on event-related potentials and 24 h delayed retrieval.

    PubMed

    Quaedflieg, Conny W E M; Schwabe, Lars; Meyer, Thomas; Smeets, Tom

    2013-12-01

    Stress can exert profound effects on memory encoding. Here, we investigated whether (sub)cortical information processing during encoding and memory retrieval at a 24 h delayed test are affected by the temporal proximity between stress and memory encoding. Sixty-four participants engaged in the Maastricht Acute Stress Test (MAST) or a no-stress control condition either immediately before (i.e., proximate condition) or 30 min before (i.e., distant condition) a picture encoding task. In general, stress decreased the number of freely recalled and recognized pictures and increased the number of false alarms. However, timing of stress exposure did not differentially affect picture recall, recognition or selective attention processes (i.e., LPP). Nevertheless, stress-induced cortisol responses and correctly recognized neutral pictures were positively associated within the proximate stress condition but negatively associated within the distant stress condition. These findings suggest that the time at which a stressor is applied might differentially impact the association between stress-induced cortisol elevations and memory formation and indicate the need for a finer delineation of the time window during which glucocorticoids affect memory formation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Heat stress in pregnant sows: Thermal responses and subsequent performance of sows and their offspring.

    PubMed

    Lucy, Matthew C; Safranski, Timothy J

    2017-09-01

    Seasonal infertility is a significant problem in the swine industry, and may be influenced by photoperiod and heat stress. Heat stress during gestation in particular affects pregnancy, resulting in long-term developmental damage to the offspring. This review summarizes what is known about how heat stress on the pregnant sow affects lactation and her offspring. Sows responded to heat stress during gestation with increased rectal temperature, respiration rate, and skin temperature, and tended to reduce their activity-which may have changed their body composition, increasing the adipose-to-muscle ratio. Heat stress during gestation caused temporary insulin resistance during lactation, but this metabolic state did not seem to affect health, lactation, or rebreeding performance of the sow. Heat-stressed sows also presented with a shorter gestation period and reduced litter birth weight, although weaning weights are not affected when these sows are moved to thermoneutral conditions for lactation. The offspring of gestational heat-stressed sows, however, possessed unique phenotypes, including elevated body temperature, greater fat deposition, and impaired gonad development. Thus, gestational heat stress may significantly impact a herd through its effects on sows and their offspring. Further work is necessary to determine the magnitude of the effects across fa cilities and breeds. © 2017 Wiley Periodicals, Inc.

  9. Transposable elements contribute to activation of maize genes in response to abiotic stress.

    PubMed

    Makarevitch, Irina; Waters, Amanda J; West, Patrick T; Stitzer, Michelle; Hirsch, Candice N; Ross-Ibarra, Jeffrey; Springer, Nathan M

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as "junk" DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize.

  10. Early life stress in rats sex-dependently affects remote endocrine rather than behavioral consequences of adult exposure to contextual fear conditioning.

    PubMed

    Fuentes, Sílvia; Daviu, Núria; Gagliano, Humberto; Belda, Xavier; Armario, Antonio; Nadal, Roser

    2018-05-30

    Exposure to electric foot-shocks can induce in rodents contextual fear conditioning, generalization of fear to other contexts and sensitization of the hypothalamic-pituitary-adrenal (HPA) axis to further stressors. All these aspects are relevant for the study of post-traumatic stress disorder. In the present work we evaluated in rats the sex differences and the role of early life stress (ELS) in fear memories, generalization and sensitization. During the first postnatal days subjects were exposed to restriction of nesting material along with exposure to a "substitute" mother. In the adulthood they were exposed to (i) a contextual fear conditioning to evaluate long-term memory and extinction and (ii) to a novel environment to study cognitive fear generalization and HPA axis heterotypic sensitization. ELS did not alter acquisition, expression or extinction of context fear conditioned behavior (freezing) in either sex, but reduced activity in novel environments only in males. Fear conditioning associated hypoactivity in novel environments (cognitive generalization) was greater in males than females but was not specifically affected by ELS. Although overall females showed greater basal and stress-induced levels of ACTH and corticosterone, an interaction between ELS, shock exposure and sex was found regarding HPA hormones. In males, ELS did not affect ACTH response in any situation, whereas in females, ELS reduced both shock-induced sensitization of ACTH and its conditioned response to the shock context. Also, shock-induced sensitization of corticosterone was only observed in males and ELS specifically reduced corticosterone response to stressors in males but not females. In conclusion, ELS seems to have only a minor impact on shock-induced behavioral conditioning, while affecting the unconditioned and conditioned responses of HPA hormones in a sex-dependent manner. Copyright © 2018. Published by Elsevier Inc.

  11. Strain-rate dependence of ramp-wave evolution and strength in tantalum

    DOE PAGES

    Lane, J. Matthew D.; Foiles, Stephen M.; Lim, Hojun; ...

    2016-08-25

    We have conducted molecular dynamics (MD) simulations of quasi-isentropic ramp-wave compression to very high pressures over a range of strain rates from 10 11 down to 10 8 1/s. Using scaling methods, we collapse wave profiles from various strain rates to a master profile curve, which shows deviations when material response is strain-rate dependent. Thus, we can show with precision where, and how, strain-rate dependence affects the ramp wave. We find that strain rate affects the stress-strain material response most dramatically at strains below 20%, and that above 30% strain the material response is largely independent of strain rate. Wemore » show good overall agreement with experimental stress-strain curves up to approximately 30% strain, above which simulated response is somewhat too stiff. We postulate that this could be due to our interatomic potential or to differences in grain structure and/or size between simulation and experiment. Strength is directly measured from per-atom stress tensor and shows significantly enhanced elastic response at the highest strain rates. As a result, this enhanced elastic response is less pronounced at higher pressures and at lower strain rates.« less

  12. Serotonin Coordinates Responses to Social Stress-What We Can Learn from Fish.

    PubMed

    Backström, Tobias; Winberg, Svante

    2017-01-01

    Social interaction is stressful and subordinate individuals are often subjected to chronic stress, which greatly affects both their behavior and physiology. In teleost fish the social position of an individual may have long-term effects, such as effects on migration, age of sexual maturation or even sex. The brain serotonergic system plays a key role in coordinating autonomic, behavioral and neuroendocrine stress responses. Social subordination results in a chronic activation of the brain serotonergic system an effect, which seems to be central in the subordinate phenotype. However, behavioral effects of short-term acute activation of the serotonergic system are less obvious. As in other vertebrates, divergent stress coping styles, often referred to as proactive and reactive, has been described in teleosts. As demonstrated by selective breeding, stress coping styles appear to be partly heritable. However, teleost fish are characterized by plasticity, stress coping style being affected by social experience. Again, the brain serotonergic system appears to play an important role. Studies comparing brain gene expression of fish of different social rank and/or displaying divergent stress coping styles have identified several novel factors that seem important for controlling aggressive behavior and stress coping, e.g., histamine and hypocretin/orexin. These may also interact with brain monoaminergic systems, including serotonin.

  13. The Art of Being Flexible: How to Escape from Shade, Salt, and Drought1

    PubMed Central

    Pierik, Ronald; Testerink, Christa

    2014-01-01

    Environmental stresses, such as shading of the shoot, drought, and soil salinity, threaten plant growth, yield, and survival. Plants can alleviate the impact of these stresses through various modes of phenotypic plasticity, such as shade avoidance and halotropism. Here, we review the current state of knowledge regarding the mechanisms that control plant developmental responses to shade, salt, and drought stress. We discuss plant hormones and cellular signaling pathways that control shoot branching and elongation responses to shade and root architecture modulation in response to drought and salinity. Because belowground stresses also result in aboveground changes and vice versa, we then outline how a wider palette of plant phenotypic traits is affected by the individual stresses. Consequently, we argue for a research agenda that integrates multiple plant organs, responses, and stresses. This will generate the scientific understanding needed for future crop improvement programs aiming at crops that can maintain yields under variable and suboptimal conditions. PMID:24972713

  14. Associations of borderline personality disorder traits with stressful events and emotional reactivity in women with bulimia nervosa.

    PubMed

    Pearson, Carolyn M; Lavender, Jason M; Cao, Li; Wonderlich, Stephen A; Crosby, Ross D; Engel, Scott G; Mitchell, James E; Peterson, Carol B; Crow, Scott J

    2017-07-01

    Borderline personality disorder (BPD) traits are common among those with bulimia nervosa (BN). However, how these traits impact the state experience of precipitants of BN behavior, such as stressful events and emotional reactivity, has not been determined. Thus, the purpose of this naturalistic study was to examine this trait-state association in BN. Women with DSM-IV BN (N = 133) completed a baseline measure of personality pathology traits, and subsequently recorded their affective state and the frequency and perception of 3 types of stressful events (interpersonal, work/environment, and daily hassles) several times per day for 2 weeks using ecological momentary assessment (EMA). Pearson correlations assessed the associations between BPD traits (affective lability, identity problems, insecure attachment, and cognitive dysregulation) and (a) frequency of stressful events and (b) perception of stressful events. Generalized linear models (GLM) were used to evaluate the relationship between BPD traits and changes in negative affect following stressful events. Results revealed that while all traits were significantly associated with perceived stressfulness, certain BPD traits were significantly associated with the frequency of stressful events. Individuals with higher trait insecure attachment experienced larger increases in negative affect following interpersonal stressful events. These findings suggest that interventions focused on addressing stressful events and enhancing adaptive emotional responses to interpersonal events may be particularly useful for a subset of individuals with BN with BPD-related personality characteristics, including insecure attachment, affective lability, and identity problems. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Prenatal Stress, Prematurity, and Asthma.

    PubMed

    Medsker, Brock; Forno, Erick; Simhan, Hyagriv; Celedón, Juan C

    2015-12-01

    Asthma is the most common chronic disease of childhood, affecting millions of children in the United States and worldwide. Prematurity is a risk factor for asthma, and certain ethnic or racial minorities such as Puerto Ricans and non-Hispanic blacks are disproportionately affected by both prematurity and asthma. In this review, we examine current evidence to support maternal psychosocial stress as a putative link between prematurity and asthma, while also focusing on disruption of the hypothalamic-pituitary-adrenal (HPA) axis and immune responses as potential underlying mechanisms for stress-induced "premature asthma." Prenatal stress may cause not only abnormalities in the HPA axis but also epigenetic changes in the fetal glucocorticoid receptor gene (NR3C1), leading to impaired glucocorticoid metabolism. Moreover, maternal stress can alter fetal cytokine balance, favoring TH2 (allergic) immune responses characteristic of atopic asthma: interleukin 6 (IL-6), which has been associated with premature labor, can promote TH2 responses by stimulating production of IL-4 and IL-13. Given a link among stress, prematurity, and asthma, future research should include birth cohorts aimed at confirming and better characterizing "premature asthma." If confirmed, clinical trials of prenatal maternal stress reduction would be warranted to reduce the burden of these common comorbidities. While awaiting the results of such studies, sound policies to prevent domestic and community violence (eg, from firearms) are justified, not only by public safety but also by growing evidence of detrimental effects of violence-induced stress on psychiatric and somatic health.

  16. Prenatal stress, prematurity and asthma

    PubMed Central

    Medsker, Brock; Forno, Erick; Simhan, Hyagriv; Celedón, Juan C.

    2016-01-01

    Asthma is the most common chronic disease of childhood, affecting millions of children in the U.S. and worldwide. Prematurity is a risk factor for asthma, and certain ethnic or racial minorities such as Puerto Ricans and non-Hispanic Blacks are disproportionately affected by both prematurity and asthma. In this review, we examine current evidence to support maternal psychosocial stress as a putative link between prematurity and asthma, while also focusing on disruption of the hypothalamic-pituitary-adrenal (HPA) axis and immune responses as potential underlying mechanisms for stress-induced “premature asthma”. Prenatal stress may not only cause abnormalities in the HPA axis but also epigenetic changes in the fetal glucocorticoid receptor gene (NR3C1), leading to impaired glucocorticoid metabolism. Moreover, maternal stress can alter fetal cytokine balance, favoring Th2 (allergic) immune responses characteristic of atopic asthma: IL-6, which has been associated with premature labor, can promote Th2 responses by stimulating production of IL-4 and IL-13. Given a link among stress, prematurity, and asthma, future research should include birth cohorts aimed at confirming and better characterizing “premature asthma”. If confirmed, clinical trials of prenatal maternal stress reduction would be warranted to reduce the burden of these common co-morbidities. While awaiting the results of such studies, sound policies to prevent domestic and community violence (e.g. from firearms) are justified, not only by public safety but also by growing evidence of detrimental effects of violence-induced stress on psychiatric and somatic health. PMID:26676148

  17. Stressed to death: implication of lymphocyte apoptosis for psychoneuroimmunology

    NASA Technical Reports Server (NTRS)

    Shi, Yufang; Devadas, Satish; Greeneltch, Kristy M.; Yin, Deling; Allan Mufson, R.; Zhou, Jian-nian

    2003-01-01

    Psychological and physical stressors best exemplify the intercommunication of the immune and the nervous systems. It has been shown that stress significantly impacts leukocyte cellularity and immune responses and alters susceptibility to various diseases. While acute stress has been shown to enhance immune responses, chronic stress often leads to immunosuppression. Among many criteria examined upon exposure to chronic stress, the reduction in lymphocyte mitogenic response and lymphocyte cellularity are commonly assessed. We have reported that chronic restraint stress could induce lymphocyte reduction, an effect dependent on endogenous opioids. Interestingly, the effect of endogenous opioids was found to be exerted through increasing the expression of a cell death receptor, Fas, and an increased sensitivity of lymphocytes to apoptosis. Stress-induced lymphocyte reduction was not affected by adrenalectomy. In this review, based on available literature and our recent data, we will discuss the role of the hypothalamic-pituitary-adrenal axis and endogenous opioids and examine the mechanisms by which chronic stress modulates lymphocyte apoptosis.

  18. The tomato mutant ars1 (altered response to salt stress 1) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation.

    PubMed

    Campos, Juan F; Cara, Beatriz; Pérez-Martín, Fernando; Pineda, Benito; Egea, Isabel; Flores, Francisco B; Fernandez-Garcia, Nieves; Capel, Juan; Moreno, Vicente; Angosto, Trinidad; Lozano, Rafael; Bolarin, Maria C

    2016-06-01

    A screening under salt stress conditions of a T-DNA mutant collection of tomato (Solanum lycopersicum L.) led to the identification of the altered response to salt stress 1 (ars1) mutant, which showed a salt-sensitive phenotype. Genetic analysis of the ars1 mutation revealed that a single T-DNA insertion in the ARS1 gene was responsible of the mutant phenotype. ARS1 coded for an R1-MYB type transcription factor and its expression was induced by salinity in leaves. The mutant reduced fruit yield under salt acclimation while in the absence of stress the disruption of ARS1 did not affect this agronomic trait. The stomatal behaviour of ars1 mutant leaves induced higher Na(+) accumulation via the transpiration stream, as the decreases of stomatal conductance and transpiration rate induced by salt stress were markedly lower in the mutant plants. Moreover, the mutation affected stomatal closure in a response mediated by abscisic acid (ABA). The characterization of tomato transgenic lines silencing and overexpressing ARS1 corroborates the role of the gene in regulating the water loss via transpiration under salinity. Together, our results show that ARS1 tomato gene contributes to reduce transpirational water loss under salt stress. Finally, this gene could be interesting for tomato molecular breeding, because its manipulation could lead to improved stress tolerance without yield penalty under optimal culture conditions. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress.

    PubMed

    Zhou, Rong; Yu, Xiaqing; Ottosen, Carl-Otto; Rosenqvist, Eva; Zhao, Liping; Wang, Yinlei; Yu, Wengui; Zhao, Tongmin; Wu, Zhen

    2017-01-25

    Abiotic stresses due to environmental factors could adversely affect the growth and development of crops. Among the abiotic stresses, drought and heat stress are two critical threats to crop growth and sustainable agriculture worldwide. Considering global climate change, incidence of combined drought and heat stress is likely to increase. The aim of this study was to shed light on plant growth performance and leaf physiology of three tomatoes cultivars ('Arvento', 'LA1994' and 'LA2093') under control, drought, heat and combined stress. Shoot fresh and dry weight, leaf area and relative water content of all cultivars significantly decreased under drought and combined stress as compared to control. The net photosynthesis and starch content were significantly lower under drought and combined stress than control in the three cultivars. Stomata and pore length of the three cultivars significantly decreased under drought and combined stress as compared to control. The tomato 'Arvento' was more affected by heat stress than 'LA1994' and 'LA2093' due to significant decreases in shoot dry weight, chlorophyll a and carotenoid content, starch content and NPQ (non-photochemical quenching) only in 'Arvento' under heat treatment. By comparison, the two heat-tolerant tomatoes were more affected by drought stress compared to 'Arvento' as shown by small stomatal and pore area, decreased sucrose content, Φ PSII (quantum yield of photosystem II), ETR (electron transport rate) and q L (fraction of open PSII centers) in 'LA1994' and 'LA2093'. The three cultivars showed similar response when subjected to the combination of drought and heat stress as shown by most physiological parameters, even though only 'LA1994' and 'LA2093' showed decreased F v /F m (maximum potential quantum efficiency of photosystem II), Φ PSII , ETR and q L under combined stress. The cultivars differing in heat sensitivity did not show difference in the combined stress sensitivity, indicating that selection for tomatoes with combined stress tolerance might not be correlated with the single stress tolerance. In this study, drought stress had a predominant effect on tomato over heat stress, which explained why simultaneous application of heat and drought revealed similar physiological responses to the drought stress. These results will uncover the difference and linkage between the physiological response of tomatoes to drought, heat and combined stress and be important for the selection and breeding of tolerant tomato cultivars under single and combine stress.

  20. Aneuploidy-induced cellular stresses limit autophagic degradation

    PubMed Central

    Santaguida, Stefano; Vasile, Eliza; White, Eileen; Amon, Angelika

    2015-01-01

    An unbalanced karyotype, a condition known as aneuploidy, has a profound impact on cellular physiology and is a hallmark of cancer. Aneuploid cells experience a number of stresses that are caused by aneuploidy-induced proteomic changes. How the aneuploidy-associated stresses affect cells and whether cells respond to them are only beginning to be understood. Here we show that autophagosomal cargo such as protein aggregates accumulate within lysosomes in aneuploid cells. This causes a lysosomal stress response. Aneuploid cells activate the transcription factor TFEB, a master regulator of autophagic and lysosomal gene expression, thereby increasing the expression of genes needed for autophagy-mediated protein degradation. Accumulation of autophagic cargo within the lysosome and activation of TFEB-responsive genes are also observed in cells in which proteasome function is inhibited, suggesting that proteotoxic stress causes TFEB activation. Our results reveal a TFEB-mediated lysosomal stress response as a universal feature of the aneuploid state. PMID:26404941

  1. High environmental ammonia exposure has developmental-stage specific and long-term consequences on the cortisol stress response in zebrafish.

    PubMed

    Williams, Tegan A; Bonham, Luke A; Bernier, Nicholas J

    2017-12-01

    The capacity for early life environmental stressors to induce programming effects on the endocrine stress response in fish is largely unknown. In this study we determined the effects of high environmental ammonia (HEA) exposure on the stress response in larval zebrafish, assessed the tolerance of embryonic and larval stages to HEA, and evaluated whether early life HEA exposure has long-term consequences on the cortisol response to a novel stressor. Exposure to 500-2000μM NH 4 Cl for 16h did not affect the gene expression of corticotropin-releasing factor (CRF) system components in 1day post-fertilization (dpf) embryos, but differentially increased crfa, crfb and CRF binding protein (crfbp) expression and stimulated both dose- and time-dependent increases in the whole body cortisol of 5dpf larvae. Pre-acclimation to HEA at 1dpf did not affect the cortisol response to a subsequent NH 4 Cl exposure at 5dpf. In contrast, pre-acclimation to HEA at 5dpf caused a small but significant reduction in the cortisol response to a second NH 4 Cl exposure at 10dpf. While continuous exposure to 500-2000μM NH 4 Cl between 0 and 5dpf had a modest effect on mean survival time, exposure to 400-1000μM NH 4 Cl between 10 and 14dpf decreased mean survival time in a dose-dependent manner. Moreover, pre-acclimation to HEA at 5dpf significantly decreased the risk of mortality to continuous NH 4 Cl exposure between 10 and 14dpf. Finally, while HEA at 1dpf did not affect the cortisol stress response to a novel vortex stressor at 5dpf, the same HEA treatment at 5dpf abolished vortex stressor-induced increases in whole body cortisol at 10 and 60dpf. Together these results show that the impact of HEA on the cortisol stress response during development is life-stage specific and closely linked to ammonia tolerance. Further, we demonstrate that HEA exposure at the larval stage can have persistent effects on the capacity to respond to stressors in later life. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Chimeric tRNAs as tools to induce proteome damage and identify components of stress responses.

    PubMed

    Geslain, Renaud; Cubells, Laia; Bori-Sanz, Teresa; Alvarez-Medina, Roberto; Rossell, David; Martí, Elisa; Ribas de Pouplana, Lluís

    2010-03-01

    Misfolded proteins are caused by genomic mutations, aberrant splicing events, translation errors or environmental factors. The accumulation of misfolded proteins is a phenomenon connected to several human disorders, and is managed by stress responses specific to the cellular compartments being affected. In wild-type cells these mechanisms of stress response can be experimentally induced by expressing recombinant misfolded proteins or by incubating cells with large concentrations of amino acid analogues. Here, we report a novel approach for the induction of stress responses to protein aggregation. Our method is based on engineered transfer RNAs that can be expressed in cells or tissues, where they actively integrate in the translation machinery causing general proteome substitutions. This strategy allows for the introduction of mutations of increasing severity randomly in the proteome, without exposing cells to unnatural compounds. Here, we show that this approach can be used for the differential activation of the stress response in the Endoplasmic Reticulum (ER). As an example of the applications of this method, we have applied it to the identification of human microRNAs activated or repressed during unfolded protein stress.

  3. [Stress-induced cellular adaptive mutagenesis].

    PubMed

    Zhu, Linjiang; Li, Qi

    2014-04-01

    The adaptive mutations exist widely in the evolution of cells, such as antibiotic resistance mutations of pathogenic bacteria, adaptive evolution of industrial strains, and cancerization of human somatic cells. However, how these adaptive mutations are generated is still controversial. Based on the mutational analysis models under the nonlethal selection conditions, stress-induced cellular adaptive mutagenesis is proposed as a new evolutionary viewpoint. The hypothetic pathway of stress-induced mutagenesis involves several intracellular physiological responses, including DNA damages caused by accumulation of intracellular toxic chemicals, limitation of DNA MMR (mismatch repair) activity, upregulation of general stress response and activation of SOS response. These responses directly affect the accuracy of DNA replication from a high-fidelity manner to an error-prone one. The state changes of cell physiology significantly increase intracellular mutation rate and recombination activity. In addition, gene transcription under stress condition increases the instability of genome in response to DNA damage, resulting in transcription-associated DNA mutagenesis. In this review, we summarize these two molecular mechanisms of stress-induced mutagenesis and transcription-associated DNA mutagenesis to help better understand the mechanisms of adaptive mutagenesis.

  4. Progesterone production is affected by unfolded protein response (UPR) signaling during the luteal phase in mice.

    PubMed

    Park, Hyo-Jin; Park, Sun-Ji; Koo, Deog-Bon; Lee, Sang-Rae; Kong, Il-Keun; Ryoo, Jae-Woong; Park, Young-Il; Chang, Kyu-Tae; Lee, Dong-Seok

    2014-09-15

    We examined whether the three unfolded protein response (UPR) signaling pathways, which are activated in response to endoplasmic reticulum (ER)-stress, are involved in progesterone production in the luteal cells of the corpus luteum (CL) during the mouse estrous cycle. The luteal phase of C57BL/6 female mice (8 weeks old) was divided into two stages: the functional stage (16, 24, and 48 h) and the regression stage (72 and 96 h). Western blotting and reverse transcription (RT)-PCR were performed to analyze UPR protein/gene expression levels in each stage. We investigated whether ER stress affects the progesterone production by using Tm (0.5 μg/g BW) or TUDCA (0.5 μg/g BW) through intra-peritoneal injection. Our results indicate that expressions of Grp78/Bip, p-eIF2α/ATF4, p50ATF6, and p-IRE1/sXBP1 induced by UPR activation were predominantly maintained in functional and early regression stages of the CL. Furthermore, the expression of p-JNK, CHOP, and cleaved caspase3 as ER-stress mediated apoptotic factors increased during the regression stage. Cleaved caspase3 levels increased in the late-regression stage after p-JNK and CHOP expression in the early-regression stage. Additionally, although progesterone secretion and levels of steroidogenic enzymes decreased following intra-peritoneal injection of Tunicamycin, an ER stress inducer, the expression of Grp78/Bip, p50ATF6, and CHOP dramatically increased. These results suggest that the UPR signaling pathways activated in response to ER stress may play important roles in the regulation of the CL function. Furthermore, our findings enhance the understanding of the basic mechanisms affecting the CL life span. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. EFFECTS OF OZONE AND WATER STRESS ON CANOPY TEMPERATURE, WATER USE, AND WATER USE EFFICIENCY OF ALFALFA

    EPA Science Inventory

    Ozone (O3) and soil water deficit are two environmental stresses that significantly affect the growth and yield of alfalfa. However, little is known of the responses of field-grown alfalfa to O3, and the effects of the interaction between O3 and water stress on canopy temperature...

  6. Acute Stress and Perceptual Load Consume the Same Attentional Resources: A Behavioral-ERP Study

    PubMed Central

    Tiferet-Dweck, Chen; Hensel, Michael; Kirschbaum, Clemens; Tzelgov, Joseph; Friedman, Alon; Salti, Moti

    2016-01-01

    Stress and perceptual load affect selective attention in a paradoxical manner. They can facilitate selectivity or disrupt it. This EEG study was designed to examine the reciprocal relations between stress, load and attention. Two groups of subjects, one that performed the Trier Social Stress Test (TSST), and a control group, were asked to respond to a target letter under low and high perceptual load in the absence or presence of a distractor. In the control group, the distractor increased response times (RTs) for high and low load. In the TSST group, distractor increased RTs under low load only. ERPs showed that distractor’s presentation attenuated early visual P1 component and shortened its latency. In the TSST group, distractor reduced P1 component under high load but did not affect its latency. Source localization demonstrated reduced activation in V1 in response to distractors presence in the P1 time window for the TSST group compared to the control group. A behavioral replication revealed that in the TSST group distractors were less perceived under high load. Taken together, our results show that stress and perceptual load affect selectivity through the early stages of visual processing and might increase selectivity in a manner that would block conscious perception of irrelevant stimuli. PMID:27196027

  7. Crop Production under Drought and Heat Stress: Plant Responses and Management Options

    PubMed Central

    Fahad, Shah; Bajwa, Ali A.; Nazir, Usman; Anjum, Shakeel A.; Farooq, Ayesha; Zohaib, Ali; Sadia, Sehrish; Nasim, Wajid; Adkins, Steve; Saud, Shah; Ihsan, Muhammad Z.; Alharby, Hesham; Wu, Chao; Wang, Depeng; Huang, Jianliang

    2017-01-01

    Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical, and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological, and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions, and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future. PMID:28706531

  8. Relationships Between Gum-Chewing and Stress.

    PubMed

    Konno, Michiyo; Takeda, Tomotaka; Kawakami, Yoshiaki; Suzuki, Yoshihiro; Kawano, Yoshiaki; Nakajima, Kazunori; Ozawa, Takamitsu; Ishigami, Keiichi; Takemura, Naohiro; Sakatani, Kaoru

    2016-01-01

    Studies have shown that chewing is thought to affect stress modification in humans. Also, studies in animals have demonstrated that active chewing of a wooden stick during immobilization stress ameliorates the stress-impaired synaptic plasticity and prevents stress-induced noradrenaline release in the amygdala. On the other hand, studies have suggested that the right prefrontal cortex (PFC) dominates the regulation of the stress response system, including the hypothalamic-pituitary-adrenal (HPA) axis. The International Affective Digitized Sounds-2 (IADS) is widely used in the study of emotions and neuropsychological research. Therefore, in this study, the effects of gum-chewing on physiological and psychological (including PFC activity measured by NIRS) responses to a negative stimulus selected from the IADS were measured and analyzed. The study design was approved by the Ethics Committee of Tokyo Dental College (No. 436). We studied 11 normal adults using: cerebral blood oxygenation in the right medial PFC by multi-channel NIRS; alpha wave intensity by EEG; autonomic nervous function by heart rate; and emotional conditions by the State-Trait Anxiety Inventory (STAI) test and the 100-mm visual analogue scale (VAS). Auditory stimuli selected were fewer than 3.00 in Pleasure value. Sounds were recorded in 3 s and reproduced at random using software. Every task session was designed in a block manner; seven rests: Brown Noise (30 s) and six task blocks: auditory stimuli or auditory stimuli with gum-chewing (30 s). During the test, the participants' eyes were closed. Paired Student's t-test was used for the comparison (P<0.05). Gum-chewing showed a significantly greater activation in the PFC, alpha wave appearance rate and HR. Gum-chewing also showed a significantly higher VAS score and a smaller STAI level indicating 'pleasant'. Gum-chewing affected physiological and psychological responses including PFC activity. This PFC activation change might influence the HPA axis and ANS activities. In summary, within the limitations of this study, the findings suggest that gum-chewing reduced stress-related responses. Gum-chewing might have a possible effect on stress coping.

  9. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence

    PubMed Central

    2011-01-01

    Background The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Results Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Conclusions Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions. PMID:21880152

  10. Daytime soybean transcriptome fluctuations during water deficit stress.

    PubMed

    Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Marcolino-Gomes, Juliana; Nakayama, Thiago Jonas; Molinari, Hugo Bruno Correa; Lobo, Francisco Pereira; Harmon, Frank G; Nepomuceno, Alexandre Lima

    2015-07-07

    Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression. We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55% were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52% exhibited expression oscillations in a 24 h period. This number increased to 39.23% when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period. Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and genes whose expression oscillates under conditions of water deficit. These results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.

  11. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence.

    PubMed

    Goldová, Jana; Ulrych, Aleš; Hercík, Kamil; Branny, Pavel

    2011-08-31

    The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions.

  12. Cortisol response to an induction of negative affect among adolescents with and without loss of control eating.

    PubMed

    Radin, Rachel M; Shomaker, Lauren B; Kelly, Nichole R; Pickworth, Courtney K; Thompson, Katherine A; Brady, Sheila M; Demidowich, Andrew; Galescu, Ovidiu; Altschul, Anne M; Shank, Lisa M; Yanovski, Susan Z; Tanofsky-Kraff, Marian; Yanovski, Jack A

    2016-12-01

    Adults with binge eating disorder may have an exaggerated or blunted cortisol response to stress. Yet, limited data exist among youth who report loss of control (LOC) eating, a developmental precursor to binge eating disorder. We studied cortisol reactivity among 178 healthy adolescents with and without LOC eating. Following a buffet lunch meal adolescents were randomly assigned to watch a neutral or sad film clip. After, they were offered snacks from a multi-item array to assess eating in the absence of hunger. Salivary cortisol was collected at -80, 0, 30 and 50 min relative to film administration, and state mood ratings were reported before and after the film. Adolescents with LOC had greater increases in negative affect during the experimental paradigm in both conditions (ps > 0.05). Depressive symptoms, but not LOC, related to a greater cortisol response in the sad film condition (ps > 0.05). Depressive symptoms and state LOC were related to different aspects of eating behaviour, independent of film condition or cortisol response (ps > 0.05). A film clip that induced depressed state affect increased salivary cortisol only in adolescents with more elevated depressive symptoms. Adolescents with and without LOC were differentiated by greater increases in state depressed affect during laboratory test meals but had no difference in cortisol reactivity. Future studies are required to determine if adolescents with LOC manifest alterations in stress reactivity to alternative stress-inducing situations. © 2015 World Obesity Federation.

  13. Ontogeny of the cortisol stress response in channel catfish (Ictalurus punctatus)

    USDA-ARS?s Scientific Manuscript database

    Cortisol is a glucocorticoid hormone which is an endocrine signaling molecule in all vertebrates and acts through intracellular glucocorticoid receptors (GR). Cortisol affects many biological functions including immunity, stress, growth, ion homeostasis, and reproduction. The objective of this stu...

  14. Stressor-specific effects of sex on HPA axis hormones and activation of stress-related neurocircuitry.

    PubMed

    Babb, Jessica A; Masini, Cher V; Day, Heidi E W; Campeau, Serge

    2013-11-01

    Experiencing stress can be physically and psychologically debilitating to an organism. Women have a higher prevalence of some stress-related mental illnesses, the reasons for which are unknown. These experiments explore differential HPA axis hormone release in male and female rats following acute stress. Female rats had a similar threshold of HPA axis hormone release following low intensity noise stress as male rats. Sex did not affect the acute release, or the return of HPA axis hormones to baseline following moderate intensity noise stress. Sensitive indices of auditory functioning obtained by modulation of the acoustic startle reflex by weak pre-pulses did not reveal any sexual dimorphism. Furthermore, male and female rats exhibited similar c-fos mRNA expression in the brain following noise stress, including several sex-influenced stress-related regions. The HPA axis response to noise stress was not affected by stage of estrous cycle, and ovariectomy significantly increased hormone release. Direct comparison of HPA axis hormone release to two different stressors in the same animals revealed that although female rats exhibit robustly higher HPA axis hormone release after restraint stress, the same effect was not observed following moderate and high intensity loud noise stress. Finally, the differential effect of sex on HPA axis responses to noise and restraint stress cannot readily be explained by differential social cues or general pain processing. These studies suggest the effect of sex on acute stress-induced HPA axis hormone activity is highly dependent on the type of stressor.

  15. Reactivity to interpersonal stress in patients with eating disorders: A systematic review and meta-analysis of studies using an experimental paradigm.

    PubMed

    Monteleone, Alessio Maria; Treasure, Janet; Kan, Carol; Cardi, Valentina

    2018-04-01

    Reactivity to interpersonal stress in patients with eating disorders: A systematic review and meta-analysis of studies using an experimental paradigm. NEUROSCI BIOBEHAV REV XXX-XXX, 2018.- Social difficulties have been implicated in the development and maintenance of eating disorder symptoms. The aim of this work was to conduct a systematic review and meta-analysis of experimental studies testing patientsö reactivity to interpersonal stress, compared to healthy controls. Thirty-four studies were included. Meta-analyses were conducted on 16 studies and on following outcomes: attention bias and interference to threatening faces, cortisol, heart rate and negative affect before and after exposure to interpersonal stress. Patients showed heightened attention bias and interference to threatening faces. Lower heart rate after exposure to interpersonal stress and greater negative affect before and after interpersonal stress were observed in the clinical group compared to controls. Surprisingly, only a small minority of studies included measures of abnormal eating behaviour and attitudes. This seems a missed opportunity for testing the causal and maintaining role that abnormalities in interpersonal stress response play in eating disorders. Nonetheless, findings corroborate the hypothesis that patients' response to interpersonal stress differs from that of healthy controls. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    PubMed

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  17. The ties that bind: Ingroup ties are linked with diminished inflammatory immune responses and fewer mental health symptoms through less rumination

    PubMed Central

    McQuaid, Robyn J.; McInnis, Opal A.; Anisman, Hymie; Matheson, Kimberly

    2018-01-01

    The present research explored whether components of social identity, namely ingroup ties, affect, and centrality, were differentially linked to mental health and inflammatory immune responses, and whether rumination mediated those relations. Study 1 (N = 138) indicated that stronger ingroup ties were associated with fewer mental health (depressive and post-traumatic stress) symptoms; those relations were mediated by the tendency for individuals with strong ties to rely less on ruminative coping to deal with a stressful life event. Study 2 (N = 54) demonstrated that ingroup ties were negatively associated with depressive symptoms, dispositional rumination, as well as stress-linked inflammatory elements at the physiological level. Consistent associations for centrality and ingroup affect were absent, suggesting that ingroup ties may have unique health benefits. PMID:29684053

  18. No evidence for an effect of traffic noise on the development of the corticosterone stress response in an urban exploiter.

    PubMed

    Angelier, Frédéric; Meillère, Alizée; Grace, Jacquelyn K; Trouvé, Colette; Brischoux, François

    2016-06-01

    Anthropogenic noise can have important physiological and behavioral effects on wild animals. For example, urban noise could lead to a state of chronic stress and could alter the development of the hypothalamus-pituitary-adrenal (HPA) axis. Supporting this hypothesis, several studies have found that human disturbance is associated with increased circulating corticosterone (CORT) levels. However, it remains unclear whether increased CORT levels are the result of anthropogenic noise or other anthropogenic factors. Here, we experimentally tested the impact of urban noise on the CORT stress response in an urban exploiter (the house sparrow, Passer domesticus) by exposing chicks to a traffic noise ('disturbed chicks') or not ('control chicks'). If noise exposure has a negative impact on developing chicks, we predicted that (1) disturbed chicks will grow slower, will be in poorer condition, and will have a lower fledging probability than controls; (2) disturbed chicks will have higher baseline CORT levels than control; (3) the CORT stress response will be affected by this noise exposure. Contrary to these predictions, we found no effect of our experiment on growth, body condition, and fledging success, suggesting that house sparrow chicks were not negatively affected by this noise exposure. Moreover, we did not find any effect of noise exposure on either baseline CORT levels or the CORT stress response of chicks. This suggests not only that house sparrow chicks did not perceive this noise as stressful, but also that the development of the HPA axis was not affected by such noise exposure. Our study suggests that, contrary to urban avoiders, urban exploiters might be relatively insensitive to urban noise during their development. Further comparative studies are now needed to understand whether such insensitivity to anthropogenic noise is a consistent phenomenon in urban exploiters and whether this is a major requirement of an urban way of life. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Stress-Induced Microglia Activation and Monocyte Trafficking to the Brain Underlie the Development of Anxiety and Depression.

    PubMed

    Ramirez, Karol; Fornaguera-Trías, Jaime; Sheridan, John F

    2017-01-01

    Psychosocial stress is capable of causing immune dysregulation and increased neuroinflammatory signaling by repeated activation of the neuroendocrine and autonomic systems that may contribute to the development of anxiety and depression. The stress model of repeated social defeat (RSD) recapitulates many of the stress-driven alterations in the neuroimmune system seen in humans experiencing repeated forms of stress and associated affective disorders. For example, RSD-induced neuronal and microglia activation corresponds with sympathetic outflow to the peripheral immune system and increased ability of bone marrow derived myeloid progenitor cells (MPC) to redistribute throughout the body, including to the central nervous system (CNS), reinforcing stress-associated behaviors. An overview of the neuroendocrine, immunological, and behavioral stress-induced responses will be reviewed in this chapter using RSD to illustrate the mechanisms leading to stress-related alterations in inflammation in both the periphery and CNS, and stress-related changes in behavioral responses.

  20. Prenatal lipopolysaccharide exposure increases anxiety-like behaviors and enhances stress-induced corticosterone responses in adult rats.

    PubMed

    Lin, Yu-Lung; Lin, Shu-Yi; Wang, Sabrina

    2012-03-01

    Maternal infection during pregnancy may affect fetal brain development and lead to neurological and mental disorders. Previously, we used lipopolysaccharide [LPS, 33 μg/kg, intraperitoneal injection] exposure on gestation day 10.5 to mimic maternal bacterial infection in rats and found reduced dopaminergic and serotoninergic neurons in the offspring. In the present study, we examined the anxiety and stress responses of the affected offspring and the neurophysiological changes in their brains. Our results show that LPS rats displayed more anxiety-like behaviors and heightened stress responses. Dopamine (DA) in the nucleus accumbens and serotonin (5-HT) in the medial prefrontal cortex and the hippocampus were significantly reduced in LPS rats. Their glucocorticoid receptors in the dorsal hippocampus and the 5-HT(1A) receptors in the dorsal and ventral hippocampus were also reduced. In addition, chronic but not acute fluoxetine treatment reversed the behavioral changes and increased hippocampal 5-HT(1A) receptor expression. This study demonstrates that LPS exposure during a critical time of embryonic development could produce long-term reduction of DA and 5-HT and other neurophysiological changes; such alterations may be associated with the increases in stress response and anxiety-like behaviors in the offspring. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit.

    PubMed

    Rienth, Markus; Torregrosa, Laurent; Luchaire, Nathalie; Chatbanyong, Ratthaphon; Lecourieux, David; Kelly, Mary T; Romieu, Charles

    2014-04-28

    Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity of including different developmental stages and especially several daytime points in transcriptomic studies.

  2. [Non-neuronal effects of muscarinic antagonists in the prophylaxis of stress].

    PubMed

    Nezhinskaia, G I; Vladykin, A L; Sapronov, N S

    2008-01-01

    We have studied the stress-limiting role of the immune reaction initiated by cholinergic antagonists and the influence of these drugs on the dynamics of antibody formation in the spleen and the blood serum corticosterone level. The protective effect of immune reaction initiated by methacine (muscarinic receptor antagonist) or hexamethonium (nicotinic receptor antagonist) in prevention of stress gastric ulcer in rats (induced by water immersion stress, WIS) was estimated upon administration of the drugs for 5 days (local response) or 14 days (systemic response) prior to WIS. The pharmacological effects of drugs were estimated upon their administration 30 minutes prior to WIS. It is shown that, if cholinergic antagonists affect the systemic immune response the induction of WIS at this level of immune reaction leads to the effective prevention of stress gastric ulcer. The administration of methacine (but not hexamethonium) 14 days prior to WIS effectively reduces gastric lesions up to 1.0 +/- 0.1 arbitrary units in comparison to 3.6 + 0.2 arbitrary units in the control group. Under effective prophylaxis, the number of antibody-forming cells (AFC/10(6) of splenocytes) and corticosterone concentration are close to their basal level, while under stress conditions, these parameters significantly increase up to 870 +/- 21 and 350 +/- 4 vs. 100 +/- 17 and 107 +/- 6 in the control group, accordingly. It is established that both methacine and hexamethonium remain immunologically active for 28 days and more: the maximum amount of AFC upon administration of hexamethonium and methacine was on the 5th day and 14th day, respectively. Thus, determination of the drug influence on the systemic immune response allows one to predict the non-neuronal effects of cholinergic antagonists and, in this way, to affect the pathogenesis of stress gastric ulcer. Estimation of the AFC response and corticosterone level after WIS shows the efficacy ofprophylaxis of the gastric stress lesion.

  3. Long term effects of childhood trauma on cortisol stress reactivity in adulthood and relationship to the occurrence of depression.

    PubMed

    Suzuki, Akiko; Poon, Lucia; Papadopoulos, Andrew S; Kumari, Veena; Cleare, Anthony J

    2014-12-01

    Childhood trauma may have longstanding effects on individuals' propensity to react adversely to stress, and also predisposes individuals to suffer from depression. The current study aimed to examine stress reactivity in individuals with and without a history of childhood trauma by measuring cortisol responses to the passive viewing of stressful images, specifically including images relevant to childhood trauma. In addition, participants with and without a diagnosis of current depression were studied to investigate whether cortisol stress reactivity may underlie resilience or vulnerability to depression. The study involved 17 healthy participants with and 24 without a history of childhood trauma; and 21 depressed patients with and 18 without a history of childhood trauma. Salivary cortisol was measured before, during and after participants were shown affectively laden images, including standardised scenes from the International Affective Picture System and also images suggestive of childhood abuse. Cortisol stress reactivity to the passive image viewing was compared between groups. In those who had experienced childhood trauma, cortisol stress responses were overall low and the same in those who were depressed and those who were not (mean stress reactivity variable - depressed: 0.8 nmol/l; non-depressed: 0.72 nmol/l). In contrast, cortisol stress reactivity was raised in depressed subjects relative to those who were not depressed in those without a history of childhood trauma (mean stress reactivity variable - depressed: 3.75 nmol/l; non-depressed: 0.1 nmol/l). A history of childhood trauma has longstanding effects on adulthood cortisol responses to stress, particularly in that depressed individuals with a history of childhood trauma show blunted cortisol responses. However, there were no differences between abused depressed and abused non-depressed subjects on cortisol stress responses, suggesting that such a finding does not explain subsequent susceptibility to depression. On the other hand, patients who experience depression without a history of childhood trauma show enhanced cortisol stress reactivity, which could help explain the aetiology of their depressive illnesses. Differences between the current findings and those using other pharmacological and stress challenge paradigms may relate to the type of stimuli used and to dysfunction at different levels of the hypothalamic-pituitary-adrenal (HPA) axis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Stress response of Salmo salar (Linnaeus 1758) facing low abundance infestation of Caligus rogercresseyi (Boxshall & Bravo 2000), an object in the tank, and handling.

    PubMed

    González Gómez, M P; Marín Arribas, S L; Vargas-Chacoff, L

    2016-07-01

    This study looks at how low infestation loads of adult Caligus rogercresseyi and other stressors affect the physiology of Salmo salar. Experimental fish groups were with (infested) or without (control) exposure to the parasite. The parasite cohort was followed for 78 days post-infestation (dpi), and only adult lice were observed. Additional stressors were applied at 60 and 75 dpi. The analysis included measurements of fish physiology and weight. Low-level infestations by adult C. rogercresseyi for more than 50 dpi induced moderate stress in S. salar as well as a high energy demand and increased small skin mucous cells. Threshold lice loads were identified, and above those loads, a high stress response was observed. Additional stressors altered fish physiology, inducing downregulation of the cortisol response after the first stressor and upregulation after the second stressor, but infested fish responded more strongly. Parasitism by C. rogercresseyi is energetically demanding, affecting the primary and secondary responses (e.g. cortisol and glucose levels), as well as the tertiary response (fish weight). © 2015 John Wiley & Sons Ltd.

  5. Energetic stress: The reciprocal relationship between energy availability and the stress response.

    PubMed

    Harrell, C S; Gillespie, C F; Neigh, G N

    2016-11-01

    The worldwide epidemic of metabolic syndromes and the recognized burden of mental health disorders have driven increased research into the relationship between the two. A maladaptive stress response is implicated in both mental health disorders and metabolic disorders, implicating the hypothalamic-pituitary-adrenal (HPA) axis as a key mediator of this relationship. This review explores how an altered energetic state, such as hyper- or hypoglycemia, as may be manifested in obesity or diabetes, affects the stress response and the HPA axis in particular. We propose that changes in energetic state or energetic demands can result in "energetic stress" that can, if prolonged, lead to a dysfunctional stress response. In this review, we summarize the role of the hypothalamus in modulating energy homeostasis and then briefly discuss the relationship between metabolism and stress-induced activation of the HPA axis. Next, we examine seven mechanisms whereby energetic stress interacts with neuroendocrine stress response systems, including by glucocorticoid signaling both within and beyond the HPA axis; by nutrient-induced changes in glucocorticoid signaling; by impacting the sympathetic nervous system; through changes in other neuroendocrine factors; by inducing inflammatory changes; and by altering the gut-brain axis. Recognizing these effects of energetic stress can drive novel therapies and prevention strategies for mental health disorders, including dietary intervention, probiotics, and even fecal transplant. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. COMT Val158Met Genotype Selectively Alters Prefrontal [18F]Fallypride Displacement and Subjective Feelings of Stress in Response to a Psychosocial Stress Challenge

    PubMed Central

    Lataster, Johan; Ceccarini, Jenny; Kenis, Gunther; Booij, Linda; Pruessner, Jens; Van Laere, Koen; van Winkel, Ruud; van Os, Jim; Myin-Germeys, Inez

    2013-01-01

    Catechol-O-methyltransferase (COMT) plays an essential role in degradation of extracellular dopamine in prefrontal regions of the brain. Although a polymorphism in this gene, COMT Val158Met, affects human behavior in response to stress little is known about its effect on dopaminergic activity associated with the human stress response, which may be of interest for stress-related psychiatric disorders such as psychosis. We aimed to investigate the effect of variations in COMT genotype on in vivo measures of stress-induced prefrontal cortex (PFC) dopaminergic processing and subjective stress responses. A combined sample of healthy controls and healthy first-degree relatives of psychosis patients (n = 26) were subjected to an [18F]fallypride Positron Emission Tomography scan. Psychosocial stress during the scan was induced using the Montreal Imaging Stress Task and subjective stress was assessed every 12 minutes. Parametric t-maps, generated using the linear extension of the simplified reference region model, revealed an effect of COMT genotype on the spatial extent of [18F]fallypride displacement. Detected effects of exposure to psychosocial stress were unilateral and remained restricted to the left superior and right inferior frontal gyrus, with Met-hetero- and homozygotes showing less [18F]fallypride displacement than Val-homozygotes. Additionally, Met-hetero- and homozygotes experienced larger subjective stress responses than Val-homozygotes. The direction of the effects remained the same when the data was analyzed separately for controls and first-degree relatives. The human stress response may be mediated in part by COMT-dependent dopaminergic PFC activity, providing speculation for the neurobiology underlying COMT-dependent differences in human behaviour following stress. Implications of these results for stress-related psychopathology and models of dopaminergic functioning are discussed. PMID:23799032

  7. COMT Val158Met genotype selectively alters prefrontal [18F]fallypride displacement and subjective feelings of stress in response to a psychosocial stress challenge.

    PubMed

    Hernaus, Dennis; Collip, Dina; Lataster, Johan; Ceccarini, Jenny; Kenis, Gunther; Booij, Linda; Pruessner, Jens; Van Laere, Koen; van Winkel, Ruud; van Os, Jim; Myin-Germeys, Inez

    2013-01-01

    Catechol-O-methyltransferase (COMT) plays an essential role in degradation of extracellular dopamine in prefrontal regions of the brain. Although a polymorphism in this gene, COMT Val(158)Met, affects human behavior in response to stress little is known about its effect on dopaminergic activity associated with the human stress response, which may be of interest for stress-related psychiatric disorders such as psychosis. We aimed to investigate the effect of variations in COMT genotype on in vivo measures of stress-induced prefrontal cortex (PFC) dopaminergic processing and subjective stress responses. A combined sample of healthy controls and healthy first-degree relatives of psychosis patients (n = 26) were subjected to an [(18)F]fallypride Positron Emission Tomography scan. Psychosocial stress during the scan was induced using the Montreal Imaging Stress Task and subjective stress was assessed every 12 minutes. Parametric t-maps, generated using the linear extension of the simplified reference region model, revealed an effect of COMT genotype on the spatial extent of [(18)F]fallypride displacement. Detected effects of exposure to psychosocial stress were unilateral and remained restricted to the left superior and right inferior frontal gyrus, with Met-hetero- and homozygotes showing less [(18)F]fallypride displacement than Val-homozygotes. Additionally, Met-hetero- and homozygotes experienced larger subjective stress responses than Val-homozygotes. The direction of the effects remained the same when the data was analyzed separately for controls and first-degree relatives. The human stress response may be mediated in part by COMT-dependent dopaminergic PFC activity, providing speculation for the neurobiology underlying COMT-dependent differences in human behaviour following stress. Implications of these results for stress-related psychopathology and models of dopaminergic functioning are discussed.

  8. Affect and Self-Regulation

    ERIC Educational Resources Information Center

    Malmivuori, Marja-Liisa

    2006-01-01

    This paper presents affect as an essential aspect of students' self-reflection and self-regulation. The introduced concepts of self-system and self-system process stress the importance of self-appraisals of personal competence and agency in affective responses and self-regulation in problem solving. Students are viewed as agents who constantly…

  9. The Effect of Pet Remedy on the Behaviour of the Domestic Dog (Canis familiaris).

    PubMed

    Taylor, Sienna; Madden, Joah

    2016-10-25

    Stress-affected behaviour in companion animals can have an adverse effect on animal health and welfare and their relationships with humans. This stress can be addressed using chemical treatments, often in conjunction with behavioural therapies. Here, we investigated the efficacy of one commercial pharmacological intervention, Pet Remedy, advertised as a natural stress relief product for mammals. We aimed to see whether the product lowered stress-affected behaviour in dogs placed in a non-familiar environment. Behavioural responses of 28 dogs were video recorded using a double-blind, placebo-controlled, and counterbalanced repeated measures design. Dogs were exposed to both a placebo and Pet Remedy plug-in diffuser for 30 min with an intervening period of approximately 7 days between conditions. Multivariate regression analysis identified no significant differences in behaviour in either the Pet Remedy or placebo condition. In conclusion, in the current study, Pet Remedy did not reduce behavioural indicators indicative of a stress response. To determine the effects of Pet Remedy, future research using a larger sample size and controlling for breed would be beneficial.

  10. Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid.

    PubMed

    Chen, Can; Pan, Junfeng; Yang, Xiaobing; Xiao, He; Zhang, Yaoling; Si, Meiru; Shen, Xihui; Wang, Yao

    2017-03-01

    Corynebacterium glutamicum can survive by using ferulic acid as the sole carbon source. In this study, we assessed the response of C. glutamicum to ferulic acid stress by means of a global transcriptional response analysis. The transcriptional data showed that several genes involved in degradation of ferulic acid were affected. Moreover, several genes related to the stress response; protein protection or degradation and DNA repair; replication, transcription and translation; and the cell envelope were differentially expressed. Deletion of the katA or sigE gene in C. glutamicum resulted in a decrease in cell viability under ferulic acid stress. These insights will facilitate further engineering of model industrial strains, with enhanced tolerance to ferulic acid to enable easy production of biofuels from lignocellulose.

  11. Protracted effects of chronic stress on serotonin-dependent thermoregulation.

    PubMed

    Natarajan, Reka; Northrop, Nicole A; Yamamoto, Bryan K

    2015-01-01

    Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. The body temperature is controlled in part, by the medial preoptic area (mPOA) of the hypothalamus. To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress (CUS) paradigm produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 d of CUS. Four days after the last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10 °C were recorded. The CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that the CUS induced changes to the 5HTergic system alter mPOA function in thermoregulation. These findings help us to explain the mechanisms underlying chronic stress-induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed.

  12. Protracted effects of chronic stress on serotonin dependent thermoregulation

    PubMed Central

    Natarajan, Reka; Northrop, Nicole A.; Yamamoto, Bryan K.

    2016-01-01

    Chronic stress is known to affect serotonin (5HT) neurotransmission in the brain and to alter body temperature. Body temperature is controlled in part, by the medial preoptic area of the hypothalamus (mPOA). To investigate the effect of chronic stress on 5HT and how it affects body temperature regulation, we examined whether exposure to a chronic unpredictable stress paradigm (CUS) produces long-term alterations in thermoregulatory function of the mPOA through decreased 5HT neurotransmission. Adult male Sprague-Dawley rats underwent 21 days of CUS. Four days after last stress exposure, basal body temperature in the home cage and body temperature in a cold room maintained at 10°C were recorded. CUS rats had significantly higher subcutaneous basal body temperature at 13:00 h compared to unstressed (NoStress) rats. Whereas the NoStress rats were able to significantly elevate body temperature from basal levels at 30 and 60 min of exposure to the cold room, the CUS rats showed a hypothermic response to the cold. Treatment during CUS with metyrapone, a corticosterone synthesis inhibitor, blocked stress-induced decrease in body temperature in response to the cold challenge. CUS also decreased 5HT transporter protein immunoreactivity in the mPOA and 5HT2A/C agonist injection into the mPOA after CUS exposure caused stressed rats to exhibit a sensitized hyperthermic response to cold. These results indicate that CUS induced changes to the 5HTergic system alters mPOA function in thermoregulation. These findings help explain mechanisms underlying chronic stress induced disorders such as chronic fatigue syndrome wherein long lasting thermoregulatory deficits are observed. PMID:26414686

  13. Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thialiana subjected to bisphenol A exposure.

    PubMed

    Ali, Imran; Jan, Mehmood; Wakeel, Abdul; Azizullah, Azizullah; Liu, Bohan; Islam, Faisal; Ali, Abid; Daud, M K; Liu, Yihua; Gan, Yinbo

    2017-10-01

    Bisphenol A (BPA), an important raw material in plastic industry, has become a serious environmental contaminant due to its wide spread use in different products and increasing release into the environment. BPA is known to cause adverse effects in living organisms including plants. Several studies reported that BPA affects growth and development in plants, mainly through oxidative stress. Plants are known to generally cope with stress mainly through hormonal regulation and adaptation, but little is known about the role of plant hormones in plants under BPA stress. The present study was conducted to investigate the role of ethylene in BPA induced oxidative stress in plants using Arabidopsis thaliana as a test plant. The response of ethylene insensitive mutants of Arabidopsis (ein2-1 and etr1-3) to BPA exposure was studied in comparison to the wild type Arabidopsis (WT). In all three genotypes, exposure to BPA adversely affected cellular structures, stomata and light-harvesting pigments. An increase in reactive oxygen species (ROS) lipid peroxidation and other oxidative stress markers indicated that BPA induced toxicity through oxidative stress. However, the overall results revealed that WT Arabidopsis had more pronounced BPA induced damages while ein2-1 and etr1-3 mutants withstood the BPA induced stress more efficiently. The activity of antioxidant enzymes and expression of antioxidants related genes revealed that the antioxidant defense system in both mutants was more efficiently activated than in WT against BPA induced oxidative stress, which further evidenced the involvement of ethylene in regulating BPA induced oxidative stress. It is concluded that ethylene perception and signaling may be involved in BPA induced oxidative stress responses in plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Searching for Affective and Cognitive Restoration: Examining the Restorative Effects of Casual Video Game Play.

    PubMed

    Rupp, Michael A; Sweetman, Richard; Sosa, Alejandra E; Smither, Janan A; McConnell, Daniel S

    2017-11-01

    We investigated the effects of a passive break, relaxation activity, and casual video game on affect, stress, engagement, and cognitive performance. Reducing stress and improving cognitive performance is critical across many domains. Previous studies investigated taking a break, relaxation techniques, or playing a game; however, these methods have not been compared within a single experiment. Participants completed a baseline affective and cognitive assessment (ACA), which included the Positive and Negative Affect Schedule, shortened version of the Dundee Stress State Questionnaire, and backward digit-span. Next, participants completed a vigilance task, followed by another ACA. Participants were then assigned at random to complete a break or relaxation activity or play a casual video game, followed by a final ACA. Participants who played the casual video game exhibited greater engagement and affective restoration than the relaxation condition. The break condition slightly decreased affect and prevented cognitive restoration. Playing a casual video game even briefly can restore individuals' affective abilities, making it a suitable activity to restore mood in response to stress. However, future research is needed to find activities capable of cognitive restoration. Many activities in life require sustained cognitive demand, which are stressful and decrease performance, especially for workers in performance-critical domains. Our research suggests some leisure activities are better than others for restoring fatigued affective processes.

  15. Geographic variation in responses of European yellow dung flies to thermal stress.

    PubMed

    Bauerfeind, Stephanie S; Sørensen, Jesper G; Loeschcke, Volker; Berger, David; Broder, E Dale; Geiger, Madeleine; Ferrari, Manuela; Blanckenhorn, Wolf U

    2018-04-01

    Climatic conditions can be very heterogeneous even over small geographic scales, and are believed to be major determinants of the abundance and distribution of species and populations. Organisms are expected to evolve in response to the frequency and magnitude of local thermal extremes, resulting in local adaptation. Using replicate yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae) populations from cold (northern Europe) and warm climates (southern Europe), we compared 1) responses to short-term heat and cold shocks in both sexes, 2) heat shock protein (Hsp70) expression in adults and eggs, and 3) female reproductive traits when facing short-term heat stress during egg maturation. Contrary to expectations, thermal traits showed minor geographic differentiation, with weak evidence for greater heat resistance of southern flies but no differentiation in cold resistance. Hsp70 protein expression was little affected by heat stress, indicating systemic rather than induced regulation of the heat stress response, possibly related to this fly group's preference for cold climes. In contrast, sex differences were pronounced: males (which are larger) endured hot temperatures longer, while females featured higher Hsp70 expression. Heat stress negatively affected various female reproductive traits, reducing first clutch size, overall reproductive investment, egg lipid content, and subsequent larval hatching. These responses varied little across latitude but somewhat among populations in terms of egg size, protein content, and larval hatching success. Several reproductive parameters, but not Hsp70 expression, exhibited heritable variation among full-sib families. Rather than large-scale clinal geographic variation, our study suggests some local geographic population differentiation in the ability of yellow dung flies to buffer the impact of heat stress on reproductive performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Responsive Proteins in Wheat Cultivars with Contrasting Nitrogen Efficiencies under the Combined Stress of High Temperature and Low Nitrogen

    PubMed Central

    Abd_Allah, Elsayed Fathi; Nauman, Mohd; Asif, Ambreen; Hashem, Abeer; Alqarawi, Abdulaziz A.

    2017-01-01

    Productivity of wheat (Triticum aestivum) is markedly affected by high temperature and nitrogen deficiency. Identifying the functional proteins produced in response to these multiple stresses acting in a coordinated manner can help in developing tolerance in the crop. In this study, two wheat cultivars with contrasting nitrogen efficiencies (N-efficient VL616 and N-inefficient UP2382) were grown in control conditions, and under a combined stress of high temperature (32 °C) and low nitrogen (4 mM), and their leaf proteins were analysed in order to identify the responsive proteins. Two-dimensional electrophoresis unravelled sixty-one proteins, which varied in their expression in wheat, and were homologous to known functional proteins involved in biosynthesis, carbohydrate metabolism, energy metabolism, photosynthesis, protein folding, transcription, signalling, oxidative stress, water stress, lipid metabolism, heat stress tolerance, nitrogen metabolism, and protein synthesis. When exposed to high temperature in combination with low nitrogen, wheat plants altered their protein expression as an adaptive means to maintain growth. This response varied with cultivars. Nitrogen-efficient cultivars showed a higher potential of redox homeostasis, protein stability, osmoprotection, and regulation of nitrogen levels. The identified stress-responsive proteins can pave the way for enhancing the multiple-stress tolerance in wheat and developing a better understanding of its mechanism. PMID:29186028

  17. Pre-spawning parental stress affects channel catfish, Ictalurus punctatus reproduction and subsequent progeny performance

    USDA-ARS?s Scientific Manuscript database

    Routine fish handling procedures associated with seining, selecting, transportation, crowding, weighing, and stripping have shown to cause negative physiological responses to hatchery performance. In teleosts, cortisol is the main corticosteroid released during stress, and hence, plasma cortisol co...

  18. Bell pepper rootstock response to Phytophthora capsici under salinity stress

    USDA-ARS?s Scientific Manuscript database

    Vegetable grafting is currently used as an eco-friendly technology to increase crop productivity and overcome several biotic and abiotic stress conditions that affect Cucurbitaceae and Solanaceae vegetable crops. In recent years, researchers with breeding programs and seed companies have selected ro...

  19. Comparative transcriptome analysis of pepper (Capsicum annuum) revealed common regulons in multiple stress conditions and hormone treatments.

    PubMed

    Lee, Sanghyeob; Choi, Doil

    2013-09-01

    Global transcriptome analysis revealed common regulons for biotic/abiotic stresses, and some of these regulons encoding signaling components in both stresses were newly identified in this study. In this study, we aimed to identify plant responses to multiple stress conditions and discover the common regulons activated under a variety of stress conditions. Global transcriptome analysis revealed that salicylic acid (SA) may affect the activation of abiotic stress-responsive genes in pepper. Our data indicate that methyl jasmonate (MeJA) and ethylene (ET)-responsive genes were primarily activated by biotic stress, while abscisic acid (ABA)-responsive genes were activated under both types of stresses. We also identified differentially expressed gene (DEG) responses to specific stress conditions. Biotic stress induces more DEGs than those induced by abiotic and hormone applications. The clustering analysis using DEGs indicates that there are common regulons for biotic or abiotic stress conditions. Although SA and MeJA have an antagonistic effect on gene expression levels, SA and MeJA show a largely common regulation as compared to the regulation at the DEG expression level induced by other hormones. We also monitored the expression profiles of DEG encoding signaling components. Twenty-two percent of these were commonly expressed in both stress conditions. The importance of this study is that several genes commonly regulated by both stress conditions may have future applications for creating broadly stress-tolerant pepper plants. This study revealed that there are complex regulons in pepper plant to both biotic and abiotic stress conditions.

  20. Proteome response of fish under multiple stress exposure: Effects of pesticide mixtures and temperature increase.

    PubMed

    Gandar, Allison; Laffaille, Pascal; Marty-Gasset, Nathalie; Viala, Didier; Molette, Caroline; Jean, Séverine

    2017-03-01

    Aquatic systems can be subjected to multiple stressors, including pollutant cocktails and elevated temperature. Evaluating the combined effects of these stressors on organisms is a great challenge in environmental sciences. To the best of our knowledge, this is the first study to assess the molecular stress response of an aquatic fish species subjected to individual and combined pesticide mixtures and increased temperatures. For that, goldfish (Carassius auratus) were acclimated to two different temperatures (22 and 32°C) for 15 days. They were then exposed for 96h to a cocktail of herbicides and fungicides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin and tebuconazole) at two environmentally relevant concentrations (total concentrations of 8.4μgL -1 and 42μgL -1 ) at these two temperatures (22 and 32°C). The molecular response in liver was assessed by 2D-proteomics. Identified proteins were integrated using pathway enrichment analysis software to determine the biological functions involved in the individual or combined stress responses and to predict the potential deleterious outcomes. The pesticide mixtures elicited pathways involved in cellular stress response, carbohydrate, protein and lipid metabolisms, methionine cycle, cellular functions, cell structure and death control, with concentration- and temperature-dependent profiles of response. We found that combined temperature increase and pesticide exposure affected the cellular stress response: the effects of oxidative stress were more marked and there was a deregulation of the cell cycle via apoptosis inhibition. Moreover a decrease in the formation of glucose by liver and in ketogenic activity was observed in this multi-stress condition. The decrease in both pathways could reflect a shift from a metabolic compensation strategy to a conservation state. Taken together, our results showed (1) that environmental cocktails of herbicides and fungicides induced important changes in pathways involved in metabolism, cell structure and cell cycle, with possible deleterious outcomes at higher biological scales and (2) that increasing temperature could affect the response of fish to pesticide exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Nitrate and Ammonium Contribute to the Distinct Nitrogen Metabolism of Populus simonii during Moderate Salt Stress

    PubMed Central

    Meng, Sen; Su, Li; Li, Yiming; Wang, Yinjuan; Zhang, Chunxia; Zhao, Zhong

    2016-01-01

    Soil salinity is a major abiotic stressor affecting plant growth. Salinity affects nitrification and ammonification in the soil, however, limited information is available on the influence of different N sources on N metabolism during salt stress. To understand the N metabolism changes in response to different N sources during moderate salt stress, we investigated N uptake, assimilation and the transcript abundance of associated genes in Populus simonii seedlings treated with moderate salt stress (75mM NaCl) under hydroponic culture conditions with nitrate (NO3-) or ammonium (NH4+). Salt stress negatively affected plant growth in both NH4+-fed and NO3--fed plants. Both NH4+ uptake and the total N concentration were significantly increased in the roots of the NH4+-fed plants during salt stress. However, the NO3- uptake and nitrate reductase (NR) and nitrite reductase (NiR) activity primarily depended on the NO3- supply and was not influenced by salt stress. Salt stress decreased glutamine synthetase (GS) and glutamate synthase (GOGAT) activity in the roots and leaves. Most genes associated with NO3-uptake, reduction and N metabolism were down-regulated or remained unchanged; while two NH4+ transporter genes closely associated with NH4+ uptake (AMT1;2 and AMT1;6) were up-regulated in response to salt stress in the NH4+-fed plants. The accumulation of different amino acid compounds was observed in the NH4+- and NO3-- fed plants during salt treatment. The results suggested that N metabolism in P. simonii plants exposed to salt enhanced salt resistance in the plants that were fed with NO3- instead of NH4+ as the sole N source. PMID:26950941

  2. Sources of Stress, Coping Strategies, Emotional Experience: Effects of the Level of Experience in Primary School Teachers in France

    ERIC Educational Resources Information Center

    Carton, Annie; Fruchart, Eric

    2014-01-01

    This study attempted to determine whether the level of experience affected sources of stress, coping responses and emotional experience in primary school teachers. The first aim was to identify sources of stress and to evaluate coping strategies using the questionnaire of Graziani et al. ("Journal de Thérapie Comportementale et…

  3. Perspective Taking, Cultural Stress, and the Individual: From the Inside Out

    DTIC Science & Technology

    2014-05-01

    how Soldier individual differences, cultural stress, and perspective taking affect decision making through the Relevant Information for Social ...Cultural Depiction. This report will show that inclusion of individual difference variables is essential to social -cultural model development, which will...are capable of inducing a stress response. Common external stressors fall within four general categories: personal, social /familial, work, and the

  4. Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants

    PubMed Central

    Baek, Dongwon; Chun, Hyun Jin; Yun, Dae-Jin; Kim, Min Chul

    2017-01-01

    The maintenance of inorganic phosphate (Pi) homeostasis is essential for plant growth and yield. Plants have evolved strategies to cope with Pi starvation at the transcriptional, post-transcriptional, and post-translational levels, which maximizes its availability. Many transcription factors, miRNAs, and transporters participate in the Pi starvation signaling pathway where their activities are modulated by sugar and phytohormone signaling. Environmental stresses significantly affect the uptake and utilization of nutrients by plants, but their effects on the Pi starvation response remain unclear. Recently, we reported that Pi starvation signaling is affected by abiotic stresses such as salt, abscisic acid, and drought. In this review, we identified transcription factors, such as MYB, WRKY, and zinc finger transcription factors with functions in Pi starvation and other environmental stress signaling. In silico analysis of the promoter regions of Pi starvation-responsive genes, including phosphate transporters, microRNAs, and phosphate starvation–induced genes, suggest that their expression may be regulated by other environmental stresses, such as hormones, drought, cold, heat, and pathogens as well as by Pi starvation. Thus, we suggest the possibility of cross-talk between Pi starvation signaling and other environmental stress signaling pathways. PMID:29047263

  5. Emotion and sex of facial stimuli modulate conditional automaticity in behavioral and neuronal interference in healthy men.

    PubMed

    Kohn, Nils; Fernández, Guillén

    2017-12-06

    Our surrounding provides a host of sensory input, which we cannot fully process without streamlining and automatic processing. Levels of automaticity differ for different cognitive and affective processes. Situational and contextual interactions between cognitive and affective processes in turn influence the level of automaticity. Automaticity can be measured by interference in Stroop tasks. We applied an emotional version of the Stroop task to investigate how stress as a contextual factor influences the affective valence-dependent level of automaticity. 120 young, healthy men were investigated for behavioral and brain interference following a stress induction or control procedure in a counter-balanced cross-over-design. Although Stroop interference was always observed, sex and emotion of the face strongly modulated interference, which was larger for fearful and male faces. These effects suggest higher automaticity when processing happy and also female faces. Supporting behavioral patterns, brain data show lower interference related brain activity in executive control related regions in response to happy and female faces. In the absence of behavioral stress effects, congruent compared to incongruent trials (reverse interference) showed little to no deactivation under stress in response to happy female and fearful male trials. These congruency effects are potentially based on altered context- stress-related facial processing that interact with sex-emotion stereotypes. Results indicate that sex and facial emotion modulate Stroop interference in brain and behavior. These effects can be explained by altered response difficulty as a consequence of the contextual and stereotype related modulation of automaticity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress

    NASA Technical Reports Server (NTRS)

    Meerlo, P.; Koehl, M.; van der Borght, K.; Turek, F. W.

    2002-01-01

    Chronic sleep restriction is an increasing problem in many countries and may have many, as yet unknown, consequences for health and well being. Studies in both humans and rats suggest that sleep deprivation may activate the hypothalamic-pituitary-adrenal (HPA) axis, one of the main neuroendocrine stress systems. However, few attempts have been made to examine how sleep loss affects the HPA axis response to subsequent stressors. Furthermore, most studies applied short-lasting total sleep deprivation and not restriction of sleep over a longer period of time, as often occurs in human society. Using the rat as our model species, we investigated: (i) the HPA axis activity during and after sleep deprivation and (ii) the effect of sleep loss on the subsequent HPA response to a novel stressor. In one experiment, rats were subjected to 48 h of sleep deprivation by placing them in slowly rotating wheels. Control rats were placed in nonrotating wheels. In a second experiment, rats were subjected to an 8-day sleep restriction protocol allowing 4 h of sleep each day. To test the effects of sleep loss on subsequent stress reactivity, rats were subjected to a 30-min restraint stress. Blood samples were taken at several time points and analysed for adrenocorticotropic hormone (ACTH) and corticosterone. The results show that ACTH and corticosterone concentrations were elevated during sleep deprivation but returned to baseline within 4 h of recovery. After 1 day of sleep restriction, the ACTH and corticosterone response to restraint stress did not differ between control and sleep deprived rats. However, after 48 h of total sleep deprivation and after 8 days of restricted sleep, the ACTH response to restraint was significantly reduced whereas the corticosterone response was unaffected. These results show that sleep loss not only is a mild activator of the HPA axis itself, but also affects the subsequent response to stress. Alterations in HPA axis regulation may gradually appear under conditions of long total sleep deprivation but also after repeated sleep curtailment.

  7. Identification of single nucleotide polymorphism markers associated with cortisol response to crowding in Rainbow Trout

    USDA-ARS?s Scientific Manuscript database

    Understanding stress responses is essential for improving animal welfare and increasing agriculture production efficiency. Previously, we reported microsatellite markers associated with quantitative trait loci (QTL) affecting plasma cortisol response to crowding in rainbow trout. Our main objectives...

  8. Chronic stress impairs acoustic conditioning more than visual conditioning in rats: morphological and behavioural evidence.

    PubMed

    Dagnino-Subiabre, A; Terreros, G; Carmona-Fontaine, C; Zepeda, R; Orellana, J A; Díaz-Véliz, G; Mora, S; Aboitiz, F

    2005-01-01

    Chronic stress affects brain areas involved in learning and emotional responses. These alterations have been related with the development of cognitive deficits in major depression. The aim of this study was to determine the effect of chronic immobilization stress on the auditory and visual mesencephalic regions in the rat brain. We analyzed in Golgi preparations whether stress impairs the neuronal morphology of the inferior (auditory processing) and superior colliculi (visual processing). Afterward, we examined the effect of stress on acoustic and visual conditioning using an avoidance conditioning test. We found that stress induced dendritic atrophy in inferior colliculus neurons and did not affect neuronal morphology in the superior colliculus. Furthermore, stressed rats showed a stronger impairment in acoustic conditioning than in visual conditioning. Fifteen days post-stress the inferior colliculus neurons completely restored their dendritic structure, showing a high level of neural plasticity that is correlated with an improvement in acoustic learning. These results suggest that chronic stress has more deleterious effects in the subcortical auditory system than in the visual system and may affect the aversive system and fear-like behaviors. Our study opens a new approach to understand the pathophysiology of stress and stress-related disorders such as major depression.

  9. Quantitative Phosphoproteomic Analysis Provides Insight into the Response to Short-Term Drought Stress in Ammopiptanthus mongolicus Roots.

    PubMed

    Sun, Huigai; Xia, Bolin; Wang, Xue; Gao, Fei; Zhou, Yijun

    2017-10-17

    Drought is one of the major abiotic stresses that negatively affects plant growth and development. Ammopiptanthus mongolicus is an ecologically important shrub in the mid-Asia desert region and used as a model for abiotic tolerance research in trees. Protein phosphorylation participates in the regulation of various biological processes, however, phosphorylation events associated with drought stress signaling and response in plants is still limited. Here, we conducted a quantitative phosphoproteomic analysis of the response of A. mongolicus roots to short-term drought stress. Data are available via the iProx database with project ID IPX0000971000. In total, 7841 phosphorylation sites were found from the 2019 identified phosphopeptides, corresponding to 1060 phosphoproteins. Drought stress results in significant changes in the abundance of 103 phosphopeptides, corresponding to 90 differentially-phosphorylated phosphoproteins (DPPs). Motif-x analysis identified two motifs, including [pSP] and [RXXpS], from these DPPs. Functional enrichment and protein-protein interaction analysis showed that the DPPs were mainly involved in signal transduction and transcriptional regulation, osmotic adjustment, stress response and defense, RNA splicing and transport, protein synthesis, folding and degradation, and epigenetic regulation. These drought-corresponsive phosphoproteins, and the related signaling and metabolic pathways probably play important roles in drought stress signaling and response in A. mongolicus roots. Our results provide new information for understanding the molecular mechanism of the abiotic stress response in plants at the posttranslational level.

  10. Rapid accumulation of glutathione during light stress in Arabidopsis.

    PubMed

    Choudhury, Feroza K; Devireddy, Amith R; Azad, Rajeev K; Shulaev, Vladimir; Mittler, Ron

    2018-05-25

    Environmental stress conditions can drastically affect plant growth and productivity. In contrast to soil moisture or salinity that can gradually change over a period of days or weeks, changes in light intensity or temperature can occur very rapidly, sometimes over the course of minutes or seconds. We previously reported that in response to rapid changes in light intensity (0-60 sec), Arabidopsis thaliana plants mount a large-scale transcriptomic response that includes several different transcripts essential for light stress acclimation. Here, we expand our analysis of the rapid response of Arabidopsis to light stress using a metabolomics approach and identify 111 metabolites that significantly alter in their level during the first 90 sec of light stress exposure. We further show that the levels of free and total glutathione accumulate rapidly during light stress in Arabidopsis and that the accumulation of total glutathione during light stress is associated with an increase in nitric oxide (NO) levels. We further suggest that the increase in precursors for glutathione biosynthesis could be linked to alterations in photorespiration, and that phosphoenolpyruvate could represent a major energy and carbon source for rapid metabolic responses. Taken together, our analysis could be used as an initial road map for the identification of different pathways that could be used to augment the rapid response of plants to abiotic stress. In addition, it highlights the important role of glutathione in these responses.

  11. Global Metabolic Responses to Salt Stress in Fifteen Species

    PubMed Central

    Pollak, Georg R.; Kuehne, Andreas; Sauer, Uwe

    2016-01-01

    Cells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown. Moreover, it is mostly unclear which, if any, of the metabolic responses to osmotic stress are conserved among diverse organisms or confined to particular groups of species. Here we investigate the global metabolic responses of twelve bacteria, two yeasts and two human cell lines exposed to sustained hyperosmotic salt stress by measuring semiquantitative levels of hundreds of cellular metabolites using nontargeted metabolomics. Beyond the accumulation of osmoprotectants, we observed significant changes of numerous metabolites in all species. Global metabolic responses were predominantly species-specific, yet individual metabolites were characteristically affected depending on species’ taxonomy, natural habitat, envelope structure or salt tolerance. Exploiting the breadth of our dataset, the correlation of individual metabolite response magnitudes across all species implicated lower glycolysis, tricarboxylic acid cycle, branched-chain amino acid metabolism and heme biosynthesis to be generally important for salt tolerance. Thus, our findings place the global metabolic salt stress response into a phylogenetic context and provide insights into the cellular phenotype associated with salt tolerance. PMID:26848578

  12. Breeding status affects the hormonal and metabolic response to acute stress in a long-lived seabird, the king penguin.

    PubMed

    Viblanc, Vincent A; Gineste, Benoit; Robin, Jean-Patrice; Groscolas, René

    2016-09-15

    Stress responses are suggested to physiologically underlie parental decisions promoting the redirection of behaviour away from offspring care when survival is jeopardized (e.g., when facing a predator). Besides this classical view, the "brood-value hypothesis" suggests that parents' stress responses may be adaptively attenuated to increase fitness, ensuring continued breeding when the relative value of the brood is high. Here, we test the brood-value hypothesis in breeding king penguins (Aptenodytes patagonicus), long-lived seabirds for which the energy commitment to reproduction is high. We subjected birds at different breeding stages (courtship, incubation and chick brooding) to an acute 30-min capture stress and measured their hormonal (corticosterone, CORT) and metabolic (non-esterified fatty acid, NEFA) responses to stress. We found that CORT responses were markedly attenuated in chick-brooding birds when compared to earlier stages of breeding (courtship and incubation). In addition, NEFA responses appeared to be rapidly attenuated in incubating and brooding birds, but a progressive increase in NEFA plasma levels in courting birds suggested energy mobilization to deal with the threat. Our results support the idea that stress responses may constitute an important life-history mechanism mediating parental reproductive decisions in relation to their expected fitness outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Exocrine pancreas ER stress is differentially induced by different fatty acids.

    PubMed

    Danino, Hila; Ben-Dror, Karin; Birk, Ruth

    2015-12-10

    Exocrine pancreas acinar cells have a highly developed endoplasmic reticulum (ER), accommodating their high protein production rate. Overload of dietary fat (typical to obesity) is a recognized risk factor in pancreatitis and pancreatic cancer. Dietary fat, especially saturated fat, has been suggested by others and us to induce an acinar lipotoxic effect. The effect of different dietary fatty acids on the ER stress response is unknown. We studied the effect of acute (24h) challenge with different fatty acids (saturated, mono and poly-unsaturated) at different concentrations (between 200 and 500µM, typical to normal and obese states, respectively), testing fat accumulation, ER stress indicators, X-box binding protein 1 (Xbp1) splicing and nuclear translocation, as well as unfolded protein response (UPR) transcripts and protein levels using exocrine pancreas acinar AR42J and primary cells. Acute exposure of AR42J cells to different fatty acids caused increased accumulation of triglycerides, dependent on the type of fat. Different FAs had different effects on ER stress: most notably, saturated palmitic acid significantly affected the UPR response, as demonstrated by altered Xbp1 splicing, elevation in transcript levels of UPR (Xbp, CHOP, Bip) and immune factors (Tnfα, Tgfβ), and enhanced Xbp1 protein levels and Xbp1 time-dependent nuclear translocation. Poly-unsaturated FAs caused milder elevation of ER stress markers, while mono-unsaturated oleic acid attenuated the ER stress response. Thus, various fatty acids differentially affect acinar cell fat accumulation and, apart from oleic acid, induce ER stress. The differential effect of the various fatty acids could have potential nutritional and therapeutic implications. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Symptoms of attention deficit hyperactivity disorder in children are associated with cortisol responses to psychosocial stress but not with daily cortisol levels.

    PubMed

    Pesonen, Anu-Katriina; Kajantie, Eero; Jones, Alexander; Pyhälä, Riikka; Lahti, Jari; Heinonen, Kati; Eriksson, Johan G; Strandberg, Timo E; Räikkönen, Katri

    2011-11-01

    We tested associations of diurnal hypothalamic-pituitary adrenal axis (HPAA) activity and its response to stress with behavioral symptoms of Attention Deficit Hyperactivity Disorder (ADHD) among 272 eight-year-old children. We measured their diurnal salivary cortisol and salivary cortisol responses to the Trier Social Stress Test for Children (TSST-C). Mothers rated their child's behavior with the ADHD-IV Rating Scale and the Child Behavior Checklist (CBCL). There were no significant associations between ADHD symptoms and diurnal cortisol concentrations. The boys with predominantly inattentive symptoms of ADHD (ADHD-I; scores at or above the 90th percentile) had 26% lower mean salivary cortisol levels during the TSST-C than the boys with scores below this cutoff. In the girls with symptoms of ADHD-I, initial salivary cortisol levels prior to the TSST-C were higher and fell more rapidly during and after the TSST-C, which was not seen in the remaining girls (P = 0.007 for interaction 'ADHD-I × sampling time'). Controlling for Oppositional Defiant Disorder/Conduct Disorder and Anxiety Disorder or excluding children with these comorbid problems did not substantially affect these findings. We conclude that the boys and the girls with behavioral symptoms of ADHD-I had reduced HPAA responsiveness to stress, which is also seen in people after traumatic events or with chronic stress. Their diurnal cortisol rhythm was not affected. Thus, ADHD-I may be associated with dysregulation of the HPAA or reduced engagement with stressful stimuli. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Genome-wide screen for inositol auxotrophy in Saccharomyces cerevisiae implicates lipid metabolism in stress response signaling.

    PubMed

    Villa-García, Manuel J; Choi, Myung Sun; Hinz, Flora I; Gaspar, María L; Jesch, Stephen A; Henry, Susan A

    2011-02-01

    Inositol auxotrophy (Ino(-) phenotype) in budding yeast has classically been associated with misregulation of INO1 and other genes involved in lipid metabolism. To identify all non-essential yeast genes that are necessary for growth in the absence of inositol, we carried out a genome-wide phenotypic screening for deletion mutants exhibiting Ino(-) phenotypes under one or more growth conditions. We report the identification of 419 genes, including 385 genes not previously reported, which exhibit this phenotype when deleted. The identified genes are involved in a wide range of cellular processes, but are particularly enriched in those affecting transcription, protein modification, membrane trafficking, diverse stress responses, and lipid metabolism. Among the Ino(-) mutants involved in stress response, many exhibited phenotypes that are strengthened at elevated temperature and/or when choline is present in the medium. The role of inositol in regulation of lipid metabolism and stress response signaling is discussed.

  16. Interparental Aggression and Infant Patterns of Adrenocortical and Behavioral Stress Responses

    PubMed Central

    Towe-Goodman, Nissa R.; Stifter, Cynthia A.; Mills-Koonce, W. Roger; Granger, Douglas A.

    2011-01-01

    Drawing on emotional security theory, this study examined linkages between interparental aggression, infant self-regulatory behaviors, and patterns of physiological and behavioral stress responses in a diverse sample of 735 infants residing in predominately low-income, nonmetropolitan communities. Latent profile analysis revealed four classes of adrenocortical and behavioral stress response patterns at 7-months of age, using assessments of behavioral and cortisol reactivity to an emotion eliciting challenge, as well as global ratings of the child’s negative affect and basal cortisol levels. The addition of covariates within the latent profile model suggested that children with more violence in the home and who used less caregiver-oriented regulation strategies were more likely to exhibit a pattern of high cortisol reactivity with moderate signs of distress rather than the average stress response, suggesting possible patterns of adaptation in violent households. PMID:22127795

  17. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  18. The role of the anterodorsal thalami nuclei in the regulation of adrenal medullary function, beta-adrenergic cardiac receptors and anxiety responses in maternally deprived rats under stressful conditions.

    PubMed

    Suárez, M M; Rivarola, M A; Molina, S M; Levin, G M; Enders, J; Paglini, P

    2004-09-01

    Maternal separation can interfere with growth and development of the brain and represents a significant risk factor for adult psychopathology. In rodents, prolonged separation from the mother affects the behavioral and endocrine responses to stress for the lifetime of the animal. Limbic structures such as the anterodorsal thalamic nuclei (ADTN) play an important role in the control of neuroendocrine and sympathetic-adrenal function. In view of these findings we hypothesized that the function of the ADTN may be affected in an animal model of maternal deprivation. To test this hypothesis female rats were isolated 4.5 h daily, during the first 3 weeks of life and tested as adults. We evaluated plasma epinephrine (E) and norepinephrine (NE), cardiac adrenoreceptors and anxiety responses after maternal deprivation and variable chronic stress (VCS) in ADTN-lesioned rats. Thirty days after ADTN lesion, in non-maternally deprived rats basal plasma NE concentration was greater and cardiac beta-adrenoreceptor density was lower than that in the sham-lesioned group. Maternal deprivation induced a significant increase in basal plasma NE concentration, which was greater in lesioned rats, and cardiac beta-adrenoreceptor density was decreased in lesioned rats. After VCS plasma catecholamine concentration was much greater in non-maternally deprived rats than in maternally-deprived rats; cardiac beta-adrenoreceptor density was decreased by VCS in both maternally-deprived and non-deprived rats, but more so in non-deprived rats, and further decreased by the ADTN lesion. In the plus maze test, the number of open arm entries was greater in the maternally deprived and in the stressed rats. Thus, sympathetic-adrenal medullary activation produced by VCS was much greater in non-deprived rats, and was linked to a down regulation of myocardial beta-adrenoceptors. The ADTN are not responsible for the reduced catecholamine responses to stress in maternally-deprived rats. Maternal deprivation or chronic stress also induced a long term anxiolytic effect, which was also not affected by ADTN lesion.

  19. Proteomics Analysis of Alfalfa Response to Heat Stress

    PubMed Central

    Li, Weimin; Wei, Zhenwu; Qiao, Zhihong; Wu, Zinian; Cheng, Lixiang; Wang, Yuyang

    2013-01-01

    The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin) seedlings were exposed to 25°C (control) and 40°C (heat stress) in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa. PMID:24324825

  20. The RdDM Pathway Is Required for Basal Heat Tolerance in Arabidopsis

    PubMed Central

    Jonak, Claudia

    2013-01-01

    Heat stress affects epigenetic gene silencing in Arabidopsis. To test for a mechanistic involvement of epigenetic regulation in heat-stress responses, we analyzed the heat tolerance of mutants defective in DNA methylation, histone modifications, chromatin-remodeling, or siRNA-based silencing pathways. Plants deficient in NRPD2, the common second-largest subunit of RNA polymerases IV and V, and in the Rpd3-type histone deacetylase HDA6 were hypersensitive to heat exposure. Microarray analysis demonstrated that NRPD2 and HDA6 have independent roles in transcriptional reprogramming in response to temperature stress. The misexpression of protein-coding genes in nrpd2 mutants recovering from heat correlated with defective epigenetic regulation of adjacent transposon remnants which involved the loss of control of heat-stress-induced read-through transcription. We provide evidence that the transcriptional response to temperature stress, at least partially, relies on the integrity of the RNA-dependent DNA methylation pathway. PMID:23376771

  1. Metabolic and stress-related roles of prolactin-releasing peptide.

    PubMed

    Onaka, Tatsushi; Takayanagi, Yuki; Leng, Gareth

    2010-05-01

    In the modern world, improvements in human health can be offset by unhealthy lifestyle factors, including the deleterious consequences of stress and obesity. For energy homeostasis, humoral factors and neural afferents from the gastrointestinal tract, in combination with long-term nutritional signals, communicate information to the brain to regulate energy intake and expenditure. Energy homeostasis and stress interact with each other, and stress affects both food intake and energy expenditure. Prolactin-releasing peptide, synthesized in discrete neuronal populations in the hypothalamus and brainstem, plays an important role in integrating these responses. This review describes how prolactin-releasing peptide neurons receive information concerning both internal metabolic states and environmental conditions, and play a key role in energy homeostasis and stress responses. 2010 Elsevier Ltd. All rights reserved.

  2. Narrative Centrality and Negative Affectivity: Independent and Interactive Contributors to Stress Reactions

    PubMed Central

    Rubin, David C.; Boals, Adriel; Hoyle, Rick H.

    2014-01-01

    Reactions to stressful negative events have long been studied using approaches based on either the narrative interpretation of the event or the traits of the individual. Here, we integrate these two approaches by using individual differences measures of both the narrative interpretation of the stressful event as central to one’s life and the personality characteristic of negative affectivity. We show that they each have independent contributions to stress reactions, and that high levels on both produce greater than additive effects. The effects on posttraumatic stress symptoms are substantial for both undergraduates (Study 1, n = 2,296; Study 3, n = 488) and veterans (Study 2, n = 104), with mean levels for participants low on both measures near floor on posttraumatic stress symptoms and those high on both measures scoring at or above diagnostic thresholds. Study 3 included three measures of narrative centrality and three of negative affectivity to demonstrate that the effects were not limited to a single measure. In Study 4 (n = 987), measures associated with symptoms of posttraumatic stress correlated substantially with either with measures of narrative centrality or measures of negative affectivity. The concepts of narrative centrality and negative affectivity and the results are consistent with findings from clinical populations using similar measures and with current approaches to therapy. In broad non-clinical populations, such as those used here, the results suggest that we might be able to substantially increase our ability to account for the severity of stress response by including both concepts. PMID:24294867

  3. Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice.

    PubMed

    Wang, Yongfu; Wu, Jing; Zhu, Bi; Li, Chaocui; Cai, Jing-Xia

    2012-03-01

    It is established that stress impairs spatial learning and memory via the hypothalamus-pituitary-adrenal axis response. Dopamine D1 receptors were also shown to be responsible for a stress-induced deficit of working memory. However, whether stress affects the subsequent emotional learning and memory is not elucidated yet. Here, we employed the well-established one-trial step-through task to study the effect of an acute psychological stress (induced by tail hanging for 5, 10, or 20 min) on emotional learning and memory, and the possible mechanisms as well. We demonstrated that tail hanging induced an obvious stress response. Either an acute tail-hanging stress or a single dose of intraperitoneally injected dopamine D1 receptor antagonist (SCH23390) significantly decreased the step-through latency in the one-trial step-through task. However, SCH23390 prevented the acute tail-hanging stress-induced decrease in the step-through latency. In addition, the effects of tail-hanging stress and/or SCH23390 on the changes in step-through latency were not through non-memory factors such as nociceptive perception and motor function. Our data indicate that the hyperactivation of dopamine D1 receptors mediated the stress-induced deficit of emotional learning and memory. This study may have clinical significance given that psychological stress is considered to play a role in susceptibility to some mental diseases such as depression and post-traumatic stress disorder.

  4. Trait reappraisal amplifies subjective defeat, sadness, and negative affect in response to failure versus success in nonclinical and psychosis populations.

    PubMed

    Johnson, Judith; Gooding, Patricia A; Wood, Alex M; Taylor, Peter J; Tarrier, Nicholas

    2011-11-01

    Perceptions of defeat have been linked to a range of clinical disorders including psychosis. Perceived defeat sometimes increases in response to failure, but the strength of this association varies between individuals. The present research investigated whether trait reappraisal, a thought-focused coping style, amplified response to stressful events. Two studies (Study 1, n = 120 nonclinical participants; Study 2, n = 77 participants with schizophrenia-spectrum disorders) investigated whether trait reappraisal amplified feelings of defeat following an experience of failure versus success. Frequent reappraisers showed the largest increases in subjective defeat after failure versus success in both studies, with nonclinical participants with greater habitual reappraisal also showing larger increases in sadness and general negative affect. Frequent use of reappraisal may confer vulnerability to subjective defeat in response to stressful life events among nonclinical and clinical populations and could be an area for relapse prevention interventions to target.

  5. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    PubMed

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings

    USDA-ARS?s Scientific Manuscript database

    Plant recovery status after cryopreservation by vitrification had a negative relationship to the oxidative stress induced by reactive oxygen species (ROS). Arabidopsis thaliana seedlings germinated for 48-h or 72-h with different cryopreservation survival tolerances were examined at five steps of a ...

  7. Family Context and Young Children's Responses to Earthquake

    ERIC Educational Resources Information Center

    Proctor, Laura J.; Fauchier, Angele; Oliver, Pamella H.; Ramos, Michelle C.; Rios, Martha A.; Margolin, Gayla

    2007-01-01

    Background: Family context can affect children's vulnerability to various stresses, but little is known regarding the role of family variables on children's reactions to natural disaster. This prospective study examined the influence of predisaster observed parenting behaviors and postdisaster parental stress on young children's distress following…

  8. Recognizing Posttraumatic Stress in Children.

    ERIC Educational Resources Information Center

    Richards, Terri; Bates, Cory

    1997-01-01

    Children who are exposed to violence may develop posttraumatic stress disorder (PTSD). To effectively work with children's responses to trauma, school personnel must be familiar with symptoms of PTSD and prepare possible coping strategies. The paper presents examples of affective, cognitive, and behavioral coping strategies that are effective for…

  9. Affective and inflammatory responses among orchestra musicians in performance situation.

    PubMed

    Pilger, Alexander; Haslacher, Helmuth; Ponocny-Seliger, Elisabeth; Perkmann, Thomas; Böhm, Karl; Budinsky, Alexandra; Girard, Angelika; Klien, Katharina; Jordakieva, Galateja; Pezawas, Lukas; Wagner, Oswald; Godnic-Cvar, Jasminka; Winker, Robert

    2014-03-01

    A number of studies have shown that mental challenge under controlled experimental conditions is associated with elevations in inflammatory markers such as interleukin-6 (IL-6) and C-reactive protein (CRP). However, relatively little work has been done on the effects of 'naturalistic' stressors on acute changes in inflammatory markers. The present study examined whether perceived arousal, valence and dominance in musicians are associated with pro-inflammatory and oxidative responses to a concert situation. Blood and salivary samples obtained from 48 members of a symphony orchestra on the day of rehearsal (i.e., control situation) and on the following day of premiere concert (i.e., test situation) were used to determine changes in salivary cortisol, pro-inflammatory markers (plasma myeloperoxidase, serum CRP, plasma IL-6), oxidative stress markers (paraoxonase1 activity and malondialdehyde), and homocysteine, a risk factor for vascular disease. Results of regression analyses showed a significant trend to increased myeloperoxidase (MPO) response in individuals with low valence score. Both affective states, valence and arousal, were identified as significant predictors of cortisol response during concert. In addition, control levels of plasma malondialdehyde were positively correlated with differences in IL-6 levels between premiere and rehearsal (r=.38, p=.012), pointing to higher oxidative stress in individuals with pronounced IL-6 response. Our results indicate that stress of public performance leads to increased concentrations of plasma MPO (20%), IL-6 (27%) and salivary cortisol (44%) in musicians. The decreasing effect of pleasantness on the MPO response was highly pronounced in non-smokers (r=-.60, p<.001), suggesting a significant role of emotional valence in stress-induced secretion of MPO. Additional studies are needed to assess the generalizability of these findings to other 'naturalistic' stress situations. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Absence of neurogenic response following robust predator-induced stress response.

    PubMed

    Lau, Catherine; Hebert, Mark; Vani, Marc A; Walling, Sue; Hayley, Shawn; Lagace, Diane C; Blundell, Jacqueline

    2016-12-17

    Traumatic events contribute to a variety of neuropsychiatric disorders including post-traumatic stress disorder (PTSD). Identifying the neural mechanisms that affect the stress response may improve treatment for stress-related disorders. Neurogenesis, the production of neurons, occurs within the adult brain and disturbances in neurogenesis in the subgranular zone (SGZ) of the hippocampus have been linked to mood and anxiety disorders. Chronic stress models have mainly suggested correlations with stress reducing adult SGZ neurogenesis, whereas acute stress models and those with a naturalistic component that are also associated with long-lasting behavioral changes have produced inconsistent results. Therefore, the goal of the current study was to examine the effects of acute predator stress on adult neurogenesis. Predator stress involved a single 10-min unprotected rat to cat exposure that has previously been shown to produce contextual fear, hyperarousal, and anxiety-like behavior lasting at least 3weeks. As expected, predator stress produced a stress response as detected by elevated corticosterone (CORT) levels immediately after stress. Despite this robust stress response, there was no significant difference between stressed and handled control rats in the number of proliferating or surviving cells as assessed by a 5-bromo-2'-deoxyuridine-immunoreactive (BrdU-IR) labeling 2h or 4weeks post-stress throughout the rostro-caudal axis of the SGZ, respectively. Additionally, 90% of 4-week-old BrdU-IR cells in both conditions expressed NeuN, suggesting no change in cell fate with stress exposure. Overall, these data give caution to the notion that acute predator stress can alter the production or survival of adult-generated cells. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  12. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean.

    PubMed

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak; Rohila, Jai S

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2.

  13. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean

    PubMed Central

    Das, Aayudh; Eldakak, Moustafa; Paudel, Bimal; Kim, Dea-Wook; Hemmati, Homa; Basu, Chhandak

    2016-01-01

    Drought and heat are among the major abiotic stresses that affect soybean crops worldwide. During the current investigation, the effect of drought, heat, and drought plus heat stresses was compared in the leaves of two soybean varieties, Surge and Davison, combining 2D-DIGE proteomic data with physiology and biochemical analyses. We demonstrated how 25 differentially expressed photosynthesis-related proteins affect RuBisCO regulation, electron transport, Calvin cycle, and carbon fixation during drought and heat stress. We also observed higher abundance of heat stress-induced EF-Tu protein in Surge. It is possible that EF-Tu might have activated heat tolerance mechanisms in the soybean. Higher level expressions of heat shock-related protein seem to be regulating the heat tolerance mechanisms. This study identifies the differential expression of various abiotic stress-responsive proteins that regulate various molecular processes and signaling cascades. One inevitable outcome from the biochemical and proteomics assays of this study is that increase of ROS levels during drought stress does not show significant changes at the phenotypic level in Davison and this seems to be due to a higher amount of carbonic anhydrase accumulation in the cell which aids the cell to become more resistant to cytotoxic concentrations of H2O2. PMID:27034942

  14. Biomarkers of Psychological Stress in Health Disparities Research

    PubMed Central

    Djuric, Zora; Bird, Chloe E.; Furumoto-Dawson, Alice; Rauscher, Garth H.; Ruffin, Mack T.; Stowe, Raymond P.; Tucker, Katherine L.; Masi, Christopher M.

    2009-01-01

    Psychological stress can contribute to health disparities in populations that are confronted with the recurring stress of everyday life. A number of biomarkers have been shown to be affected by psychological stress. These biomarkers include allostatic load, which is a summary measure of the cumulative biological burden of the repeated attempts to adapt to daily stress. Allostatic load includes effects on the hypothalamic-pituitary axis, the sympathetic nervous system and the cardiovascular system. These in turn affect the immune system via bidirectional signaling pathways. Evidence is also building that psychological stress, perhaps via heightened inflammatory states, can increase oxidative stress levels and DNA damage. The inter-relationships of ethnicity, genotype, gene expression and ability to adequately mitigate stress response are just starting to be appreciated. The need to conduct these studies in disadvantaged populations is clear and requires methods to address potential logistical barriers. Biomarkers can help characterize and quantify the biological impact of psychological stress on the etiology of health disparities. PMID:20305736

  15. Prenatal stress changes learning strategies in adulthood.

    PubMed

    Schwabe, Lars; Bohbot, Veronique D; Wolf, Oliver T

    2012-11-01

    It is well known that stressful experiences may shape hippocampus-dependent learning and memory processes. However, although most studies focused on the impact of stress at the time of learning or memory testing, very little is known about how stress during critical periods of brain development affects learning and memory later in life. In this study, we asked whether prenatal stress exposure may influence the engagement of hippocampus-dependent spatial learning strategies and caudate nucleus-dependent response learning strategies in later life. To this end, we tested healthy participants whose mothers had experienced major negative life events during their pregnancy in a virtual navigation task that can be solved by spatial and response strategies. We found that young adults with prenatal stress used rigid response learning strategies more often than flexible spatial learning strategies compared with participants whose mothers did not experience major negative life events during pregnancy. Individual differences in acute or chronic stress do not account for these findings. Our data suggest that the engagement of hippocampal and nonhippocampal learning strategies may be influenced by stress very early in life. Copyright © 2012 Wiley Periodicals, Inc.

  16. Expression of immunoregulatory genes and its relationship to lead exposure and lead-mediated oxidative stress in wild ungulates from an abandoned mining area.

    PubMed

    Rodríguez-Estival, Jaime; de la Lastra, José M Pérez; Ortiz-Santaliestra, Manuel E; Vidal, Dolors; Mateo, Rafael

    2013-04-01

    Lead (Pb) is a highly toxic metal that can induce oxidative stress and affect the immune system by modifying the expression of immunomodulator-related genes. The aim of the present study was to investigate the association between Pb exposure and the transcriptional profiles of some cytokines, as well as the relationship between Pb exposure and changes in oxidative stress biomarkers observed in the spleen of wild ungulates exposed to mining pollution. Red deer and wild boar from the mining area studied had higher spleen, liver, and bone Pb levels than controls, indicating a chronic exposure to Pb pollution. Such exposure caused a depletion of spleen glutathione levels in both species and disrupted the activity of antioxidant enzymes, suggesting the generation of oxidative stress conditions. Deer from the mining area also showed an induced T-helper (Th )-dependent immune response toward the Th 2 pathway, whereas boar from the mining area showed a cytokine profile suggesting an inclination of the immune response toward the Th 1 pathway. These results indicate that environmental exposure to Pb may alter immune responses in wild ungulates exposed to mining pollution. However, evidence of direct relationships between Pb-mediated oxidative stress and the changes detected in immune responses were not found. Further research is needed to evaluate the immunotoxic potential of Pb pollution, also considering the prevalence of chronic infectious diseases in wildlife in environments affected by mining activities. Copyright © 2013 SETAC.

  17. Blockade of central vasopressin receptors reduces the cardiovascular response to acute stress in freely moving rats.

    PubMed

    Stojicić, S; Milutinović-Smiljanić, S; Sarenac, O; Milosavljević, S; Paton, J F R; Murphy, D; Japundzić-Zigon, N

    2008-04-01

    To investigate the contribution of central vasopressin receptors to blood pressure (BP) and heart rate (HR) response to stress we injected non-peptide selective V(1a) (SR49059), V(1b) (SSR149415), V(2) (SR121463) receptor antagonists, diazepam or vehicle in the lateral cerebral ventricle of conscious freely moving rats stressed by blowing air on their heads for 2 min. Cardiovascular effects of stress were evaluated by analyzing maximum increase of BP and HR (MAX), latency of maximum response (LAT), integral under BP and HR curve (integral), duration of their recovery and spectral parameters of BP and HR indicative of increased sympathetic outflow (LF(BP) and LF/HF(HR)). Moreover, the increase of serum corticosterone was measured. Exposure to air-jet stress induced simultaneous increase in BP and HR followed by gradual decline during recovery while LF(BP) oscillation remained increased as well as serum corticosterone level. Rats pre-treated with vasopressin receptor antagonists were not sedated while diazepam induced sedation that persisted during exposure to stress. V(1a), V(1b) and V(2) receptor antagonists applied separately did not modify basal values of cardiovascular parameters but prevented the increase in integral(BP). In addition, V(1b) and V(2) receptor antagonists reduced BP(MAX) whereas V(1a), V(1b) antagonist and diazepam reduced HR(MAX) induced by exposure to air-jet stress. All drugs shortened the recovery period, prevented the increase of LF(BP) without affecting the increase in serum corticosterone levels. Results indicate that vasopressin receptors located within the central nervous system mediate, in part, the cardiovascular response to air-jet stress without affecting either the neuroendocrine component or inducing sedation. They support the view that the V(1b) receptor antagonist may be of potential therapeutic value in reducing arterial pressure induced by stress-related disorders.

  18. Loss of Mitofusin 2 Promotes Endoplasmic Reticulum Stress*

    PubMed Central

    Ngoh, Gladys A.; Papanicolaou, Kyriakos N.; Walsh, Kenneth

    2012-01-01

    The outer mitochondrial membrane GTPase mitofusin 2 (Mfn2) is known to regulate endoplasmic reticulum (ER) shape in addition to its mitochondrial fusion effects. However, its role in ER stress is unknown. We report here that induction of ER stress with either thapsigargin or tunicamycin in mouse embryonic fibroblasts leads to up-regulation of Mfn2 mRNA and protein levels with no change in the expression of the mitochondrial shaping factors Mfn1, Opa1, Drp1, and Fis1. Genetic deletion of Mfn2 but not Mfn1 in mouse embryonic fibroblasts or cardiac myocytes in mice led to an increase in the expression of the ER chaperone proteins. Genetic ablation of Mfn2 in mouse embryonic fibroblasts amplified ER stress and exacerbated ER stress-induced apoptosis. Deletion of Mfn2 delayed translational recovery through prolonged eIF2α phosphorylation associated with decreased GADD34 and p58IPK expression and elevated C/EBP homologous protein induction at late time points. These changes in the unfolded protein response were coupled to increased cell death reflected by augmented caspase 3/7 activity, lactate dehydrogenase release from cells, and an increase in propidium iodide-positive nuclei in response to thapsigargin or tunicamycin treatment. In contrast, genetic deletion of Mfn1 did not affect ER stress-mediated increase in ER chaperone synthesis or eIF2α phosphorylation. Additionally, ER stress-induced C/EBP homologous protein, GADD34, and p58IPK induction and cell death were not affected by loss of Mfn1. We conclude that Mfn2 but not Mfn1 is an ER stress-inducible protein that is required for the proper temporal sequence of the ER stress response. PMID:22511781

  19. Effect of short-term weight loss on mental stress-induced cardiovascular and pro-inflammatory responses in women.

    PubMed

    Endrighi, Romano; Hamer, Mark; Hackett, Ruth A; Carvalho, Livia A; Jackson, Sarah E; Wardle, Jane; Steptoe, Andrew

    2015-01-01

    Epidemiologic evidence links psychosocial stress with obesity but experimental studies examining the mechanisms that mediates the effect of stress on adiposity are scarce. The aim of this study was to investigate whether changes in adiposity following minimal weight loss affect heightened stress responses in women, and examine the role of the adipokine leptin in driving inflammatory responses. Twenty-three overweight or obese, but otherwise healthy, women (M age = 30.41 ± 8.0 years; BMI = 31.9 ± 4.1 kg/m(2)) completed standardized acute mental stress before and after a 9-week calorie restriction program designed to modify adiposity levels. Cardiovascular (blood pressure and heart rate) and inflammatory cytokines (leptin and interleukin-6; IL-6) responses to mental stress were assessed several times between baseline and a 45-min post-stress recovery period. There were modest changes in adiposity measures while the adipokine leptin was markedly reduced (-27%) after the intervention. Blood pressure reactivity was attenuated (-3.38 ± 1.39 mmHg) and heart rate recovery was improved (2.07 ± 0.96 Bpm) after weight loss. Blood pressure responses were inversely associated with changes in waist to hip ratio post intervention. Decreased levels of circulating leptin following weight loss were inversely associated with the IL-6 inflammatory response to stress (r = -0.47). We offered preliminary evidence suggesting that modest changes in adiposity following a brief caloric restriction program may yield beneficial effect on cardiovascular stress responses. In addition, reductions in basal leptin activity might be important in blunting pro-inflammatory responses. Large randomized trials of the effect of adiposity on autonomic responses are thus warranted.

  20. Opposite Roles for p38MAPK-Driven Responses and Reactive Oxygen Species in the Persistence and Resolution of Radiation-Induced Genomic Instability

    PubMed Central

    Werner, Erica; Wang, Huichen; Doetsch, Paul W.

    2014-01-01

    We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET) radiation such as X-rays or high-charge and high-energy (HZE) particle high-LET radiation such as 56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS) levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization. PMID:25271419

  1. Stress tolerances of nullmutants of function-unknown genes encoding menadione stress-responsive proteins in Aspergillus nidulans.

    PubMed

    Leiter, Éva; Bálint, Mihály; Miskei, Márton; Orosz, Erzsébet; Szabó, Zsuzsa; Pócsi, István

    2016-07-01

    A group of menadione stress-responsive function-unkown genes of Aspergillus nidulans (Locus IDs ANID_03987.1, ANID_06058.1, ANID_10219.1, and ANID_10260.1) was deleted and phenotypically characterized. Importantly, comparative and phylogenetic analyses of the tested A. nidulans genes and their orthologs shed light only on the presence of a TANGO2 domain with NRDE protein motif in the translated ANID_06058.1 gene but did not reveal any recognizable protein-encoding domains in other protein sequences. The gene deletion strains were subjected to oxidative, osmotic, and metal ion stress and, surprisingly, only the ΔANID_10219.1 mutant showed an increased sensitivity to 0.12 mmol l(-1) menadione sodium bisulfite. The gene deletions affected the stress sensitivities (tolerances) irregularly, for example, some strains grew more slowly when exposed to various oxidants and/or osmotic stress generating agents, meanwhile the ΔANID_10260.1 mutant possessed a wild-type tolerance to all stressors tested. Our results are in line with earlier studies demonstrating that the deletions of stress-responsive genes do not confer necessarily any stress-sensitivity phenotypes, which can be attributed to compensatory mechanisms based on other elements of the stress response system with overlapping functions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities

    PubMed Central

    Hussain, Hafiz A.; Hussain, Saddam; Khaliq, Abdul; Ashraf, Umair; Anjum, Shakeel A.; Men, Shengnan; Wang, Longchang

    2018-01-01

    Plants face a combination of different abiotic stresses under field conditions which are lethal to plant growth and production. Simultaneous occurrence of chilling and drought stresses in plants due to the drastic and rapid global climate changes, can alter the morphological, physiological and molecular responses. Both these stresses adversely affect the plant growth and yields due to physical damages, physiological and biochemical disruptions, and molecular changes. In general, the co-occurrence of chilling and drought combination is even worse for crop production rather than an individual stress condition. Plants attain various common and different physiological and molecular protective approaches for tolerance under chilling and drought stresses. Nevertheless, plant responses to a combination of chilling and drought stresses are unique from those to individual stress. In the present review, we summarized the recent evidence on plant responses to chilling and drought stresses on shared as well as unique basis and tried to find a common thread potentially underlying these responses. We addressed the possible cross talk between plant responses to these stresses and discussed the potential management strategies for regulating the mechanisms of plant tolerance to drought and/or chilling stresses. To date, various novel approaches have been tested in minimizing the negative effects of combine stresses. Despite of the main improvements there is still a big room for improvement in combination of drought and chilling tolerance. Thus, future researches particularly using biotechnological and molecular approaches should be carried out to develop genetically engineered plants with enhanced tolerance against these stress factors. PMID:29692787

  3. Work stress and innate immune response.

    PubMed

    Boscolo, P; Di Gioacchino, M; Reale, M; Muraro, R; Di Giampaolo, L

    2011-01-01

    Several reports highlight the relationship between blood NK cytotoxic activity and life style. Easy life style, including physical activity, healthy dietary habits as well as good mental health are characterized by an efficient immune response. Life style is related to the type of occupational activity since work has a central part in life either as source of income or contributing to represent the social identity. Not only occupational stress, but also job loss or insecurity are thus considered serious stressful situations, inducing emotional disorders which may affect both neuroendocrine and immune systems; reduced reactivity to mitogens and/or decreased blood NK cytotoxic activity was reported in unemployed workers or in those with a high perception of job insecurity and/or job stress. Although genetic factors have a key role in the pathogenesis of autoimmune disorders, occupational stress (as in night shifts) was reported associated to an increased incidence of autoimmune disorders. Monitoring blood NK response may thus be included in the health programs as an indirect index of stressful job and/or poor lifestyle.

  4. Anthocyanins of Coloured Wheat Genotypes in Specific Response to SalStress.

    PubMed

    Mbarki, Sonia; Sytar, Oksana; Zivcak, Marek; Abdelly, Chedly; Cerda, Artemio; Brestic, Marian

    2018-06-23

    The present study investigated the effect of salt stress on the development of adaptive responses and growth parameters of different coloured wheat genotypes. The different coloured wheat genotypes have revealed variation in the anthocyanin content, which may affect the development of adaptive responses under increasing salinity stress. In the early stage of treatment with salt at a lower NaCl concentration (100 mM), anthocyanins and proline accumulate, which shows rapid development of the stress reaction. A dose-dependent increase in flavonol content was observed for wheat genotypes with more intense purple-blue pigmentation after treatment with 150 mM and 200 mM NaCl. The content of Na⁺ and K⁺ obtained at different levels of salinity based on dry weight (DW) was more than 3 times greater than the control, with a significant increase of both ions under salt stress. Overall, our results demonstrated that coloured wheat genotypes with high anthocyanin content are able to maintain significantly higher dry matter production after salt stress treatment.

  5. Transcriptomic Profiling of the Maize (Zea mays L.) Leaf Response to Abiotic Stresses at the Seedling Stage.

    PubMed

    Li, Pengcheng; Cao, Wei; Fang, Huimin; Xu, Shuhui; Yin, Shuangyi; Zhang, Yingying; Lin, Dezhou; Wang, Jianan; Chen, Yufei; Xu, Chenwu; Yang, Zefeng

    2017-01-01

    Abiotic stresses, including drought, salinity, heat, and cold, negatively affect maize ( Zea mays L.) development and productivity. To elucidate the molecular mechanisms of resistance to abiotic stresses in maize, RNA-seq was used for global transcriptome profiling of B73 seedling leaves exposed to drought, salinity, heat, and cold stress. A total of 5,330 differentially expressed genes (DEGs) were detected in differential comparisons between the control and each stressed sample, with 1,661, 2,019, 2,346, and 1,841 DEGs being identified in comparisons of the control with salinity, drought, heat, and cold stress, respectively. Functional annotations of DEGs suggested that the stress response was mediated by pathways involving hormone metabolism and signaling, transcription factors (TFs), very-long-chain fatty acid biosynthesis and lipid signaling, among others. Of the obtained DEGs (5,330), 167 genes are common to these four abiotic stresses, including 10 up-regulated TFs (five ERFs, two NACs, one ARF, one MYB, and one HD-ZIP) and two down-regulated TFs (one b-ZIP and one MYB-related), which suggested that common mechanisms may be initiated in response to different abiotic stresses in maize. This study contributes to a better understanding of the molecular mechanisms of maize leaf responses to abiotic stresses and could be useful for developing maize cultivars resistant to abiotic stresses.

  6. An Insight into microRNA156 Role in Salinity Stress Responses of Alfalfa.

    PubMed

    Arshad, Muhammad; Gruber, Margaret Y; Wall, Ken; Hannoufa, Abdelali

    2017-01-01

    Salinity is one of the major abiotic stresses affecting alfalfa productivity. Developing salinity tolerant alfalfa genotypes could contribute to sustainable crop production. The functions of microRNA156 (miR156) have been investigated in several plant species, but so far, no studies have been published that explore the role of miR156 in alfalfa response to salinity stress. In this work, we studied the role of miR156 in modulating commercially important traits of alfalfa under salinity stress. Our results revealed that overexpression of miR156 increased biomass, number of branches and time to complete growth stages, while it reduced plant height under control and salinity stress conditions. We observed a miR156-related reduction in neutral detergent fiber under non-stress, and acid detergent fiber under mild salinity stress conditions. In addition, enhanced total Kjeldahl nitrogen content was recorded in miR156 overexpressing genotypes under severe salinity stress. Furthermore, alfalfa genotypes overexpressing miR156 exhibited an altered ion homeostasis under salinity conditions. Under severe salinity stress, miR156 downregulated SPL transcription factor family genes, modified expression of other important transcription factors, and downstream salt stress responsive genes. Taken together, our results reveal that miR156 plays a role in mediating physiological and transcriptional responses of alfalfa to salinity stress.

  7. PREFERENTIAL SECRETION OF INDUCIBLE HSP70 BY VITILIGO MELANOCYTES UNDER STRESS

    PubMed Central

    Mosenson, Jeffrey A.; Flood, Kelsey; Klarquist, Jared; Eby, Jonathan M.; Koshoffer, Amy; Boissy, Raymond E.; Overbeck, Andreas; C.Tung, Rebecca; Poole, I. Caroline Le

    2014-01-01

    SUMMARY Inducible HSP70 (HSP70i) chaperones peptides from stressed cells, protecting them from apoptosis. Upon extracellular release, HSP70i serves an adjuvant function, enhancing immune responses to bound peptides. We questioned whether HSP70i differentially protects control and vitiligo melanocytes from stress and subsequent immune responses. We compared expression of HSP70i in skin samples, evaluated the viability of primary vitiligo and control melanocytes exposed to bleaching phenols, and measured secreted HSP70i. We determined whether HSP70i traffics to melanosomes to contact immunogenic proteins by cell fractionation, western blotting, electron microscopy and confocal microscopy. Viability of vitiligo and control melanocytes was equally affected under stress. However, vitiligo melanocytes secreted increased amounts of HSP70i in response to MBEH, corroborating with aberrant HSP70i expression in patient skin. Intracellular HSP70i colocalized with melanosomes, and more so in response to MBEH in vitiligo melanocytes. Thus whereas either agent is cytotoxic to melanocytes, MBEH preferentially induces immune responses to melanocytes. PMID:24354861

  8. Multiparity reveals the blunting effect of breastfeeding on physiological reactivity to psychological stress.

    PubMed

    Tu, M T; Lupien, S J; Walker, C-D

    2006-07-01

    Rat studies show that hypothalamic-pituitary-adrenal (HPA) responsiveness to physical and emotional stressors is attenuated during lactation, although situations evoking pup endangerment can supersede this phenomenon. In the human population, blunted cortisol responses are seen in primiparous breastfeeding compared to bottlefeeding mothers following physical stress, but not after psychosocial stress. It is currently unknown whether stressor salience (child-related versus nonrelated stressor) has a differential effect on cortisol reactivity as a function of infant feeding choice and whether HPA responses to stress could be modified by parity. We investigated the impact of infant feeding type and maternal parity on salivary cortisol and alpha-amylase response to stress in 5-20-week postpartum mothers using exposure to the Trier Social Stress Test (TSST) and to an emotional film evoking threats to a child. Analyses show that alpha-amylase responses were similar in all groups and for both types of stress, suggesting that sympathetic reactivity was independent of infant feeding type and parity. By contrast, cortisol response was affected by these variables. In primiparous mothers, cortisol reactivity to psychological stressors did not vary as a function of infant feeding type while, among multiparous mothers, breastfeeding was associated with reduced responsiveness to the TSST and child-related stressor. We speculate that changes in neural mechanisms occurring as a result of pregnancy and lactation and that modulate the HPA axis in women might be exacerbated with multiple repeats of the pregnancy/lactation period. This would serve to 'desensitise' stress circuits and reduce the overall stress-induced cortisol secretion after multiple births.

  9. Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part II: responses in the leaves and general conclusions.

    PubMed

    Vanhoudt, Nathalie; Cuypers, Ann; Horemans, Nele; Remans, Tony; Opdenakker, Kelly; Smeets, Karen; Bello, Daniel Martinez; Havaux, Michel; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Vandenhove, Hildegarde

    2011-06-01

    The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress. Seventeen-day-old Arabidopsis thaliana seedlings, grown on a modified Hoagland solution under controlled conditions, were exposed to 0, 0.1, 1, 10 and 100 μM uranium for 1, 3 and 7 days. While in Part I of this study oxidative stress related responses in the roots were discussed, this second Part II discusses oxidative stress related responses in the leaves and general conclusions drawn from the results of the roots and the leaves will be presented. As several responses were already visible following 1 day exposure, when uranium concentrations in the leaves were negligible, a root-to-shoot signaling system was suggested in which plastids could be important sensing sites. While lipid peroxidation, based on the amount of thiobarbituric acid reactive compounds, was observed after exposure to 100 μM uranium, affecting membrane structure and function, a transient concentration dependent response pattern was visible for lipoxygenase initiated lipid peroxidation. This transient character of uranium stress responses in leaves was emphasized by results of lipoxygenase (LOX2) and antioxidative enzyme transcript levels, enzyme capacities and glutathione concentrations both in time as with concentration. The ascorbate redox balance seemed an important modulator of uranium stress responses in the leaves as in addition to the previous transient responses, the total ascorbate concentration and ascorbate/dehydroascorbate redox balance increased in a concentration and time dependent manner. This could represent either a slow transient response or a stable increase with regard to plant acclimation to uranium stress. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Perinatal asphyxia exerts lifelong effects on neuronal responsiveness to stress in specific brain regions in the rat.

    PubMed

    Salchner, Peter; Engidawork, Ephrem; Hoeger, Harald; Lubec, Barbara; Singewald, Nicolas

    2003-09-01

    Perinatal asphyxia (PA) causes irreversible damage to the brain of newborns and can produce neurologic and behavioral changes later in life. To identify neuronal substrates underlying the effects of PA, we investigated whether and how neuronal responsiveness to an established stress challenge is affected. We used Fos expression as a marker of neuronal activation and examined the pattern of Fos expression in response to acute swim stress in 24-month-old rats exposed to a 20-minute PA insult. Swim stress produced a similar pattern of Fos expression in control and asphyxiated rats in 34 brain areas. Asphyxiated rats displayed a higher number of stress-induced Fos-positive cells in the nucleus of the solitary tract, parabrachial nucleus, periaqueductal gray, paraventricular hypothalamic nucleus, nucleus accumbens, caudate-putamen, and prelimbic cortex. No differences in the Fos response to stress were observed in other regions, including the locus ceruleus, amygdala, hippocampus, or septum. These data provide functional anatomic evidence that PA has lifelong effects on neuronal communication and leads to an abnormal, augmented neuronal responsiveness to stress in specific brain areas, particularly in the main telencephalic target regions of the mesencephalic dopamine projections, as well as in a functionally related set of brain regions associated with autonomic and neuroendocrine regulation.

  11. Understanding the Experiences of Women, Graduate Student Stress, and Lack of Marital/Social Support: A Mixed Method Inquiry

    ERIC Educational Resources Information Center

    Williams-Tolliver, Sarah D.

    2010-01-01

    The purpose of this study was to explore how women attending graduate degree programs in public universities in Virginia were affected by such issues as stress and lack of marital/social support. Utilizing a mixed method approach for data collection, 23 participants completed demographic data, an essay response, and the PSS-10 Stress Scale; 8 were…

  12. The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses.

    PubMed

    Zhu, Qiang; Dugardeyn, Jasper; Zhang, Chunyi; Mühlenbock, Per; Eastmond, Peter J; Valcke, Roland; De Coninck, Barbara; Oden, Sevgi; Karampelias, Michael; Cammue, Bruno P A; Prinsen, Els; Van Der Straeten, Dominique

    2014-02-01

    Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.

  13. Lichen growth responses to stress induced by automobile exhaust pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrey, J.D.; Hale, M.E. Jr.

    1979-04-27

    Growth rates were significantly suppressed in juvenile thalli (less than 0.1 square millimeter in initial size) of the saxicolous lichen Pseudoparmelia baltimorensis from a Potomac River island with high atmospheric lead burden as compared to the case for a similar island with a lower lead burden. However, larger thalli showed no significant changes in growth response as a result of atmospheric pollution stress. Disruptions in lichen growth thus appear to affect life stages when growth is most rapid and food reserves are low. Once a minimum thallus size is attained, the stress tolerance of the lichen increases.

  14. Nutritional stress affects corticosterone deposition in feathers of Caspian tern chicks

    USGS Publications Warehouse

    Patterson, Allison G. L.; Kitaysky, Alexander S.; Lyons, Donald E.; Roby, Daniel D.

    2015-01-01

    Stressful environmental conditions affect the adrenocortical function of developing animals, which can have consequences for their fitness. Discovery of the avian stress hormone corticosterone (CORT) in feathers has the potential to broaden the application of endocrine research in ecological and evolutionary studies of wild birds by providing a long-term measure of CORT secretion. Mechanisms of CORT deposition in feathers are not well known and few studies have related feather CORT to circulating plasma CORT during feather growth. Our objective was to experimentally test the validity of using feather CORT as a measure of CORT secretion in developing birds experiencing nutritional stress. Caspian tern Hydroprogne caspia chicks were fed ad libitum or restricted (35% less than ad libitum) diets for four weeks. We measured CORT in feathers from these chicks to examine the relationship between feather CORT concentrations and nutritional limitation, circulating plasma CORT, and feather development. We found that feather CORT was higher in controls fed ad libitum than in restricted individuals, despite higher levels of plasma CORT in restricted chicks compared to controls. Feather mass and growth rates were strongly and positively related to feather CORT concentrations in both treatments. This is the first experimental study to show that feather CORT concentrations can be lower in response to nutritional stress, even when plasma CORT concentrations are elevated. Our results indicate that CORT deposition in feathers may be confounded when feather mass and growth rates are compromised by nutritional stress. We conclude that feather CORT can be used for assessing nutritional stress in growing birds, but the direction of response depends on how strongly stress affects feather development.

  15. Exposure to stressful environments - Strategy of adaptive responses

    NASA Technical Reports Server (NTRS)

    Farhi, Leon E.

    1991-01-01

    Stresses such as hypoxia, water lack, and heat exposure can produce strains in more than a single organ system, in turn stimulating the body to adapt in multiple ways. Nevertheless, a general strategy of the various adaptive responses emerges when the challenges are divided into three groups: (1) conditions that affect the supply of essential molecules, (2) stresses that prevent the body from regulating properly the output of waste products such as CO2 and heat, and (3) environments that disrupt body transport systems. Problems may arise when there is a conflict between two stresses requiring conflicting adaptive changes. An alternative to adaptation, creation of microenvironment, is often favored by the animal.

  16. A New Role for Carbonic Anhydrase 2 in the Response of Fish to Copper and Osmotic Stress: Implications for Multi-Stressor Studies

    PubMed Central

    de Polo, Anna; Margiotta-Casaluci, Luigi; Lockyer, Anne E.; Scrimshaw, Mark D.

    2014-01-01

    The majority of ecotoxicological studies are performed under stable and optimal conditions, whereas in reality the complexity of the natural environment faces organisms with multiple stressors of different type and origin, which can activate pathways of response often difficult to interpret. In particular, aquatic organisms living in estuarine zones already impacted by metal contamination can be exposed to more severe salinity variations under a forecasted scenario of global change. In this context, the present study aimed to investigate the effect of copper exposure on the response of fish to osmotic stress by mimicking in laboratory conditions the salinity changes occurring in natural estuaries. We hypothesized that copper-exposed individuals are more sensitive to osmotic stresses, as copper affects their osmoregulatory system by acting on a number of osmotic effector proteins, among which the isoform two of the enzyme carbonic anhydrase (CA2) was identified as a novel factor linking the physiological responses to both copper and osmotic stress. To test this hypothesis, two in vivo studies were performed using the euryhaline fish sheepshead minnow (Cyprinodon variegatus) as test species and applying different rates of salinity transition as a controlled way of dosing osmotic stress. Measured endpoints included plasma ions concentrations and gene expression of CA2 and the α1a-subunit of the enzyme Na+/K+ ATPase. Results showed that plasma ions concentrations changed after the salinity transition, but notably the magnitude of change was greater in the copper-exposed groups, suggesting a sensitizing effect of copper on the responses to osmotic stress. Gene expression results demonstrated that CA2 is affected by copper at the transcriptional level and that this enzyme might play a role in the observed combined effects of copper and osmotic stress on ion homeostasis. PMID:25272015

  17. Job Stressors, Personality and Burnout in Primary School Teachers

    ERIC Educational Resources Information Center

    Kokkinos, Constantinos M.

    2007-01-01

    Background: Teaching is considered a highly stressful occupation. Burnout is a negative affective response occurring as a result of chronic work stress. While the early theories of burnout focused exclusively on work-related stressors, recent research adopts a more integrative approach where both environmental and individual factors are studied.…

  18. Exploring the role of trehalose metabolism in resistance to oxidative and desiccation stress in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a pathogenic filamentous fungus that primarily affects maize. We are exploring stress response mechanisms in F. verticillioides, particularly the role of trehalose, a disaccharide known to be involved in the ability of several organisms to withstand desiccation or drought...

  19. Chronic stress exposure may affect the brain's response to high calorie food cues and predispose to obesogenic eating habits

    USDA-ARS?s Scientific Manuscript database

    Exaggerated reactivity to food cues involving calorically-dense foods may significantly contribute to food consumption beyond caloric need Exaggerated reactivity to food cues involving calorically-dense foods may significantly contribute to food consumption beyond caloric need. Chronic stress, whi...

  20. Influence of a prenatal stressor on ACTH-induced cortisol secretion in yearling Brahman heifers

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to test whether prenatal stress affects postnatal adrenocortical responsiveness to exogenous adrenocorticotropin-releasing hormone (ACTH) in calves of Brahman cows transported for 2-hour periods at 60, 80, 100, 120, and 140 days of gestation. Prenatally stressed yearl...

  1. Compassion Fatigue and School Personnel: Remaining Open to the Affective Needs of Students.

    ERIC Educational Resources Information Center

    Kees, Nathalie L.; Lashwood, Patricia A.

    1996-01-01

    Compassion fatigue, or secondary traumatic stress response, describes the reaction of counselors, teachers, and others who work with trauma survivors. They may experience stress or restimulation of their own traumatic experiences. Cognitive and behavioral techniques focused on prevention and intervention can help them cope. (SK)

  2. “The program affects me ‘cause it gives away stress”: Urban Students’ Qualitative Perspectives on Stress and a School-Based Mindful Yoga Intervention

    PubMed Central

    Dariotis, Jacinda K.; Cluxton-Keller, Fallon; Mirabal-Beltran, Roxanne; Gould, Laura Feagans; Greenberg, Mark T.; Mendelson, Tamar

    2016-01-01

    School-based mindfulness and yoga studies generally measure stress-related outcomes using quantitative measures. This study answers the following research questions: how do youth define stress and in what ways, if any, was a mindful yoga intervention helpful to youth during experiences of stress. To explore youths’ own perspectives on stress, stressors in youths’ lives, and perceived changes in responses to stress post-intervention, we conducted focus group discussions with 22 middle school students from low-income urban communities following a 16-week mindful yoga intervention. Using thematic analysis, three themes emerged: (1) youth conflated stress with negative emotions; (2) peer and family conflicts were common stressors; and (3) youth reported improved impulse control and emotional regulation following the intervention. Study findings have implications for refining intervention content (e.g., discussions of stress), as well as informing the selection and development of quantitative measures for future research on stress and stress responses in urban youth. PMID:27688017

  3. Reproduction elevates the corticosterone stress response in common fruit bats.

    PubMed

    Klose, Stefan M; Smith, Carolynn L; Denzel, Andrea J; Kalko, Elisabeth K V

    2006-04-01

    Changes in reproductive state or the environment may affect the sensitivity of the hypothalamic-pituitary-andrenal (HPA) axis. However, little is known about the dynamics of the resulting corticosteroid stress response, in particular in tropical mammals. In this study, we address the modulation of corticosterone release in response to different reproductive conditions and seasonality in 326 free-living common fruit-eating bats (Artibeus jamaicensis) on Barro Colorado Island in Panama during dry and wet seasons. We present strong evidence that stress sensitivity is primarily modulated by reproductive condition. In reproductively active females, corticosterone increases were more rapid and reached higher levels, but also decreased significantly faster than in inactive females. The corticosterone response was weaker in reproducing males than in females and delayed compared to non-reproductive males. Testes volume in reproductively active males was negatively correlated with corticosterone concentrations. Our findings suggest differentiated dynamics in the corticosterone stress response between sexes, potentially reflecting conflicting ecological demands. In females, a strong acute corticosterone response may represent high stress- and risk-sensitivity that facilitates escape and thus helps to protect reproduction. In males, suppression during reproductive activity could reflect lowered stress sensitivity to avoid chronically elevated corticosterone levels in times of frequent aggressive and therefore costly inter-male encounters.

  4. A specific area of olfactory cortex involved in stress hormone responses to predator odours.

    PubMed

    Kondoh, Kunio; Lu, Zhonghua; Ye, Xiaolan; Olson, David P; Lowell, Bradford B; Buck, Linda B

    2016-04-07

    Instinctive reactions to danger are critical to the perpetuation of species and are observed throughout the animal kingdom. The scent of predators induces an instinctive fear response in mice that includes behavioural changes, as well as a surge in blood stress hormones that mobilizes multiple body systems to escape impending danger. How the olfactory system routes predator signals detected in the nose to achieve these effects is unknown. Here we identify a specific area of the olfactory cortex in mice that induces stress hormone responses to volatile predator odours. Using monosynaptic and polysynaptic viral tracers, we found that multiple olfactory cortical areas transmit signals to hypothalamic corticotropin-releasing hormone (CRH) neurons, which control stress hormone levels. However, only one minor cortical area, the amygdalo-piriform transition area (AmPir), contained neurons upstream of CRH neurons that were activated by volatile predator odours. Chemogenetic stimulation of AmPir activated CRH neurons and induced an increase in blood stress hormones, mimicking an instinctive fear response. Moreover, chemogenetic silencing of AmPir markedly reduced the stress hormone response to predator odours without affecting a fear behaviour. These findings suggest that AmPir, a small area comprising <5% of the olfactory cortex, plays a key part in the hormonal component of the instinctive fear response to volatile predator scents.

  5. Genome-Wide Survey of Cold Stress Regulated Alternative Splicing in Arabidopsis thaliana with Tiling Microarray

    PubMed Central

    Leviatan, Noam; Alkan, Noam; Leshkowitz, Dena; Fluhr, Robert

    2013-01-01

    Alternative splicing plays a major role in expanding the potential informational content of eukaryotic genomes. It is an important post-transcriptional regulatory mechanism that can increase protein diversity and affect mRNA stability. Alternative splicing is often regulated in a tissue-specific and stress-responsive manner. Cold stress, which adversely affects plant growth and development, regulates the transcription and splicing of plant splicing factors. This can affect the pre-mRNA processing of many genes. To identify cold regulated alternative splicing we applied Affymetrix Arabidopsis tiling arrays to survey the transcriptome under cold treatment conditions. A novel algorithm was used for detection of statistically relevant changes in intron expression within a transcript between control and cold growth conditions. A reverse transcription polymerase chain reaction (RT-PCR) analysis of a number of randomly selected genes confirmed the changes in splicing patterns under cold stress predicted by tiling array. Our analysis revealed new types of cold responsive genes. While their expression level remains relatively unchanged under cold stress their splicing pattern shows detectable changes in the relative abundance of isoforms. The majority of cold regulated alternative splicing introduced a premature termination codon (PTC) into the transcripts creating potential targets for degradation by the nonsense mediated mRNA decay (NMD) process. A number of these genes were analyzed in NMD-defective mutants by RT-PCR and shown to evade NMD. This may result in new and truncated proteins with altered functions or dominant negative effects. The results indicate that cold affects both quantitative and qualitative aspects of gene expression. PMID:23776682

  6. Zinc stress affects ionome and metabolome in tea plants.

    PubMed

    Zhang, Yinfei; Wang, Yu; Ding, Zhaotang; Wang, Hui; Song, Lubin; Jia, Sisi; Ma, Dexin

    2017-02-01

    The research of physiological responses to Zn stress in plants has been extensively studied. However, the ionomics and metabolomics responses of plants to Zn stress remain largely unknown. In present study, the nutrient elements were identified involved in ion homeostasis and metabolomics changes related to Zn deficiency or excess in tea plants. Nutrient element analysis demonstrated that the concentrations of Zn affected the ion-uptake in roots and the nutrient element transportation to leaves, leading to the different distribution of P, S, Al, Ca, Fe and Cu in the tea leaves or roots. Metabolomics analysis revealed that Zn deficiency or excess differentially influenced the metabolic pathways in the tea leaves. More specifically, Zn deficiency affected the metabolism of carbohydrates, and Zn excess affected flavonoids metabolism. Additionally, the results showed that both Zn deficiency and Zn excess led to reduced nicotinamide levels, which speeded up NAD + degradation and thus reduced energy metabolism. Furthermore, element-metabolite correlation analysis illustrated that Zn contents in the tea leaves were positively correlated with organic acids, nitrogenous metabolites and some carbohydrate metabolites, and negatively correlated with the metabolites involved in secondary metabolism and some other carbohydrate metabolites. Meanwhile, metabolite-metabolite correlation analysis demonstrated that organic acids, sugars, amino acids and flavonoids played dominant roles in the regulation of the tea leaf metabolism under Zn stress. Therefore, the conclusion should be drawn that the tea plants responded to Zn stress by coordinating ion-uptake and regulation of metabolism of carbohydrates, nitrogenous metabolites, and flavonoids. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Using New Approaches in Neurobiology to Rethink Stress-Induced Amnesia

    PubMed Central

    2018-01-01

    Purpose of Review Psychological stress can impact memory systems in several different ways. In individuals with healthy defense and coping systems, stress results in the formation of negatively valenced memories whose ability to induce emotional and somatic distress subsides with time. Vulnerable individuals, however, go on to develop stress-related disorders such as post-traumatic stress disorder (PTSD) and suffer from significant memory abnormalities. Whether expressed as intrusive trauma memories, partial amnesia, or dissociative amnesia, such abnormalities are thought to be the core source of patients’ symptoms, which are often debilitating and implicate an entire socio-cognitive-affective spectrum. Recent Findings With this in mind, and focusing on stress-responsive hippocampal microcircuits, this article highlights recent advances in the neurobiology of memory that allow us to (1) isolate and visualize memory circuits, (2) change their activity using genetic tools and state-dependent manipulations, and (3) directly examine their impact on socio-affective circuits and global network connectivity. By integrating these approaches, we are now in a position to address important questions that have troubled psychiatry for a long time—questions such as are traumatic memories special, and why are stress effects on memory diverse. Summary Furthering our fundamental understanding of memory in the framework of adaptive and maladaptive stress responses has the potential to boost the development of new treatments that can benefit patients suffering from psychological trauma. PMID:29657916

  8. Using New Approaches in Neurobiology to Rethink Stress-Induced Amnesia.

    PubMed

    Radulovic, Jelena

    2017-03-01

    Psychological stress can impact memory systems in several different ways. In individuals with healthy defense and coping systems, stress results in the formation of negatively valenced memories whose ability to induce emotional and somatic distress subsides with time. Vulnerable individuals, however, go on to develop stress-related disorders such as post-traumatic stress disorder (PTSD) and suffer from significant memory abnormalities. Whether expressed as intrusive trauma memories, partial amnesia, or dissociative amnesia, such abnormalities are thought to be the core source of patients' symptoms, which are often debilitating and implicate an entire socio-cognitive-affective spectrum. With this in mind, and focusing on stress-responsive hippocampal microcircuits, this article highlights recent advances in the neurobiology of memory that allow us to (1) isolate and visualize memory circuits, (2) change their activity using genetic tools and state-dependent manipulations, and (3) directly examine their impact on socio-affective circuits and global network connectivity. By integrating these approaches, we are now in a position to address important questions that have troubled psychiatry for a long time-questions such as are traumatic memories special, and why are stress effects on memory diverse. Furthering our fundamental understanding of memory in the framework of adaptive and maladaptive stress responses has the potential to boost the development of new treatments that can benefit patients suffering from psychological trauma.

  9. Effects of acute psychological stress on placebo and nocebo responses in a clinically relevant model of visceroception.

    PubMed

    Roderigo, Till; Benson, Sven; Schöls, Margarita; Hetkamp, Madeleine; Schedlowski, Manfred; Enck, Paul; Elsenbruch, Sigrid

    2017-08-01

    There is evidence to suggest a role of emotions in placebo and nocebo effects, but whether acute psychological stress changes the magnitude of placebo or nocebo responses has not been tested. In a clinically relevant model of visceroception, we assessed effects of acute psychological stress on changes in urgency and pain in response to positive or negative treatment suggestions. In 120 healthy volunteers, perceived urge-to-defecate and pain in response to individually calibrated rectal distensions were measured with visual analogue scales during a BASELINE. Participants then underwent the Trier Social Stress Test (N = 60) or a simple cognitive task (control, N = 60) and were randomized to positive (placebo), negative (nocebo), or neutral treatment information regarding intravenous administration of saline. The series of distensions was repeated, and changes in visual analogue scales from BASELINE to TEST were compared between groups using analysis of covariance and planned post hoc tests. Treatment information emerged as a main factor (P <0.001), supporting treatment information effects for both urgency and pain. Effects for urgency were modulated by stress (interaction effect: P <0.05): Positive information reduced urgency (P = 0.025), while negative information increased urgency (P = 0.026) only in stressed groups. For pain, effects of stress emerged for nocebo responses, which were only evident in stressed groups (P = 0.009). This is the first experimental study supporting effects of acute psychological stress on placebo and nocebo responses in visceroception. Results call for mechanistic as well as patient studies to assess how psychological stress shapes patients' treatment expectations and thereby affects health outcomes.

  10. Glucocorticoids, epigenetic control and stress resilience

    PubMed Central

    Reul, Johannes M.H.M.; Collins, Andrew; Saliba, Richard S.; Mifsud, Karen R.; Carter, Sylvia D.; Gutierrez-Mecinas, Maria; Qian, Xiaoxiao; Linthorst, Astrid C.E.

    2014-01-01

    Glucocorticoid hormones play a pivotal role in the response to stressful challenges. The surge in glucocorticoid hormone secretion after stress needs to be tightly controlled with characteristics like peak height, curvature and duration depending on the nature and severity of the challenge. This is important as chronic hyper- or hypo-responses are detrimental to health due to increasing the risk for developing a stress-related mental disorder. Proper glucocorticoid responses to stress are critical for adaptation. Therefore, the tight control of baseline and stress-evoked glucocorticoid secretion are important constituents of an organism's resilience. Here, we address a number of mechanisms that illustrate the multitude and complexity of measures safeguarding the control of glucocorticoid function. These mechanisms include the control of mineralocorticoid (MR) and glucocorticoid receptor (GR) occupancy and concentration, the dynamic control of free glucocorticoid hormone availability by corticosteroid-binding globulin (CBG), and the control exerted by glucocorticoids at the signaling, epigenetic and genomic level on gene transcriptional responses to stress. We review the beneficial effects of regular exercise on HPA axis and sleep physiology, and cognitive and anxiety-related behavior. Furthermore, we describe that, possibly through changes in the GABAergic system, exercise reduces the impact of stress on a signaling pathway specifically in the dentate gyrus that is strongly implicated in the behavioral response to that stressor. These observations underline the impact of life style on stress resilience. Finally, we address how single nucleotide polymorphisms (SNPs) affecting glucocorticoid action can compromise stress resilience, which becomes most apparent under conditions of childhood abuse. PMID:27589660

  11. Sex and migratory strategy influence corticosterone levels in winter-grown feathers, with positive breeding effects in a migratory pelagic seabird.

    PubMed

    Pérez, Cristóbal; Granadeiro, José Pedro; Dias, Maria P; Catry, Paulo

    2016-08-01

    To overcome unpredictable stressful transitory events, animals trigger an allostatic response involving the hypothalamic-pituitary-adrenal cortex. This hormonal response, which involves the release of glucocorticoids which in turn mediate between the main physiological mechanisms that regulate the energetic demands and resource allocation trade-off with behavioural responses to environmental perturbations and may ultimately lead to variation in fitness. We have used the Cory's shearwater Calonectris borealis, a sexually dimorphic pelagic seabird with a partial migratory strategy, as a model bird species to analyse a number of traits related to the stress response. We investigated whether the activation of a stressful response, mediated by corticosterone, during the wintering period (1) correlated with the previous breeding success, (2) was affected by the migratory behaviour of male birds and (3) had consequences in the fitness of the birds. Corticosterone levels in feathers grown overwinter were analysed in 61 adult birds during three consecutive migratory periods (2009-2012) and in 14 immature birds in the wintering period 2010-2011. Moreover, the levels of corticosterone were analysed in experimental birds which were freed from their reproductive duties and compared with control birds which raised fledglings to the end of the breeding period. The results show that the levels of corticosterone were sex dependent, differed between years and were affected by the migratory strategy performed by the birds. The activation of the stressful response over the wintering period generated residual carry-over effects that positively affected the reproductive output in the subsequent breeding stage, a phenomenon previously undescribed in a long-lived pelagic seabird. Our study provides evidence that the analysis of corticosterone from feathers is a useful tool to evaluate carry-over effects in birds far away from breeding sites, opening new possibilities for future studies in this field.

  12. Learning During Stressful Times

    PubMed Central

    Shors, Tracey J.

    2012-01-01

    Stressful life events can have profound effects on our cognitive and motor abilities, from those that could be construed as adaptive to those not so. In this review, I discuss the general notion that acute stressful experience necessarily impairs our abilities to learn and remember. The effects of stress on operant conditioning, that is, learned helplessness, as well as those on classical conditioning procedures are discussed in the context of performance and adaptation. Studies indicating sex differences in learning during stressful times are discussed, as are those attributing different responses to the existence of multiple memory systems and nonlinear relationships. The intent of this review is to highlight the apparent plasticity of the stress response, how it might have evolved to affect both performance and learning processes, and the potential problems with interpreting stress effects on learning as either good or bad. An appreciation for its plasticity may provide new avenues for investigating its underlying neuronal mechanisms. PMID:15054128

  13. Psychoneuroimmunology in Pregnancy: Immune Pathways Linking Stress with Maternal Health, Adverse Birth Outcomes, and Fetal Development

    PubMed Central

    Christian, Lisa M.

    2011-01-01

    It is well-established that psychological stress promotes immune dysregulation in nonpregnant humans and animals. Stress promotes inflammation, impairs antibody responses to vaccination, slows wound healing, and suppresses cell-mediated immune function. Importantly, the immune system changes substantially to support healthy pregnancy, with attenuation of inflammatory responses and impairment of cell-mediated immunity. This adaptation is postulated to protect the fetus from rejection by the maternal immune system. Thus, stress-induced immune dysregulation during pregnancy has unique implications for both maternal and fetal health, particularly preterm birth. However, very limited research has examined stress-immune relationships in pregnancy. The application of psychoneuroimmunology research models to the perinatal period holds great promise for elucidating biological pathways by which stress may affect adverse pregnancy outcomes, maternal health, and fetal development. PMID:21787802

  14. Transcriptional Modulation of Ethylene Response Factor Protein JERF3 in the Oxidative Stress Response Enhances Tolerance of Tobacco Seedlings to Salt, Drought, and Freezing1[C][W][OA

    PubMed Central

    Wu, Lijun; Zhang, Zhijin; Zhang, Haiwen; Wang, Xue-Chen; Huang, Rongfeng

    2008-01-01

    Abiotic stresses such as drought, cold, and salinity affect normal growth and development in plants. The production and accumulation of reactive oxygen species (ROS) cause oxidative stress under these abiotic conditions. Recent research has elucidated the significant role of ethylene response factor (ERF) proteins in plant adaptation to abiotic stresses. Our earlier functional analysis of an ERF protein, JERF3, indicated that JERF3-expressing tobacco (Nicotiana tabacum) adapts better to salinity in vitro. This article extends that study by showing that transcriptional regulation of JERF3 in the oxidative stress response modulates the increased tolerance to abiotic stresses. First, we confirm that JERF3-expressing tobacco enhances adaptation to drought, freezing, and osmotic stress during germination and seedling development. Then we demonstrate that JERF3-expressing tobacco imparts not only higher expression of osmotic stress genes compared to wild-type tobacco, but also the activation of photosynthetic carbon assimilation/metabolism and oxidative genes. More importantly, this regulation of the expression of oxidative genes subsequently enhances the activities of superoxide dismutase but reduces the content of ROS in tobacco under drought, cold, salt, and abscisic acid treatments. This indicates that JERF3 also modulates the abiotic stress response via the regulation of the oxidative stress response. Further assays indicate that JERF3 activates the expression of reporter genes driven by the osmotic-responsive GCC box, DRE, and CE1 and by oxidative-responsive as-1 in transient assays, suggesting the transcriptional activation of JERF3 in the expression of genes involved in response to oxidative and osmotic stress. Our results therefore establish that JERF3 activates the expression of such genes through transcription, resulting in decreased accumulation of ROS and, in turn, enhanced adaptation to drought, freezing, and salt in tobacco. PMID:18945933

  15. Behavioural response to combined insecticide and temperature stress in natural populations of Drosophila melanogaster.

    PubMed

    Fournier-Level, A; Neumann-Mondlak, A; Good, R T; Green, L M; Schmidt, J M; Robin, C

    2016-05-01

    Insecticide resistance evolves extremely rapidly, providing an illuminating model for the study of adaptation. With climate change reshaping species distribution, pest and disease vector control needs rethinking to include the effects of environmental variation and insect stress physiology. Here, we assessed how both long-term adaptation of populations to temperature and immediate temperature variation affect the genetic architecture of DDT insecticide response in Drosophila melanogaster. Mortality assays and behavioural assays based on continuous activity monitoring were used to assess the interaction between DDT and temperature on three field-derived populations from climate extremes (Raleigh for warm temperate, Tasmania for cold oceanic and Queensland for hot tropical). The Raleigh population showed the highest mortality to DDT, whereas the Queensland population, epicentre for derived alleles of the resistance gene Cyp6g1, showed the lowest. Interaction between insecticide and temperature strongly affected mortality, particularly for the Tasmanian population. Activity profiles analysed using self-organizing maps show that the insecticide promoted an early response, whereas elevated temperature promoted a later response. These distinctive early or later activity phases revealed similar responses to temperature and DDT dose alone but with more or less genetic variance depending on the population. This change in genetic variance among populations suggests that selection particularly depleted genetic variance for DDT response in the Queensland population. Finally, despite similar (co)variation between traits in benign conditions, the genetic responses across population differed under stressful conditions. This showed how stress-responsive genetic variation only reveals itself in specific conditions and thereby escapes potential trade-offs in benign environments. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  16. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley.

    PubMed

    Santamaria, M E; Diaz, Isabel; Martinez, Manuel

    2018-01-01

    Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit) treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production.

  17. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley

    PubMed Central

    Santamaria, M. E.; Diaz, Isabel; Martinez, Manuel

    2018-01-01

    Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit) treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production. PMID:29681917

  18. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  19. Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta).

    PubMed

    Ruan, Meng-Bin; Guo, Xin; Wang, Bin; Yang, Yi-Ling; Li, Wen-Qi; Yu, Xiao-Ling; Zhang, Peng; Peng, Ming

    2017-06-15

    The myeloblastosis (MYB) transcription factor superfamily is the largest transcription factor family in plants, playing different roles during stress response. However, abiotic stress-responsive MYB transcription factors have not been systematically studied in cassava (Manihot esculenta), an important tropical tuber root crop. In this study, we used a genome-wide transcriptome analysis to predict 299 putative MeMYB genes in the cassava genome. Under drought and cold stresses, many MeMYB genes exhibited different expression patterns in cassava leaves, indicating that these genes might play a role in abiotic stress responses. We found that several stress-responsive MeMYB genes responded to abscisic acid (ABA) in cassava leaves. We characterize four MeMYBs, namely MeMYB1, MeMYB2, MeMYB4, and MeMYB9, as R2R3-MYB transcription factors. Furthermore, RNAi-driven repression of MeMYB2 resulted in drought and cold tolerance in transgenic cassava. Gene expression assays in wild-type and MeMYB2-RNAi cassava plants revealed that MeMYB2 may affect other MeMYBs as well as MeWRKYs under drought and cold stress, suggesting crosstalk between MYB and WRKY family genes under stress conditions in cassava. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Increased risk of coronary heart disease among individuals reporting adverse impact of stress on their health: the Whitehall II prospective cohort study

    PubMed Central

    Nabi, Hermann; Kivimäki, Mika; Batty, G. David; Shipley, Martin J.; Britton, Annie; Brunner, Eric J.; Vahtera, Jussi; Lemogne, Cédric; Elbaz, Alexis; Singh-Manoux, Archana

    2013-01-01

    Aim Response to stress can vary greatly between individuals. However, it remains unknown whether perceived impact of stress on health is associated with adverse health outcomes. We examined whether individuals who report that stress adversely affects their health are at increased risk of coronary heart disease (CHD) compared with those who report that stress has no adverse health impact. Methods and results Analyses are based on 7268 men and women (mean age: 49.5 years, interquartile range: 11 years) from the British Whitehall II cohort study. Over 18 years of follow-up, there were 352 coronary deaths or first non-fatal myocardial infarction (MI) events. After adjustment for sociodemographic characteristics, participants who reported at baseline that stress has affected their health ‘a lot or extremely’ had a 2.12 times higher (95% CI 1.52–2.98) risk of coronary death or incident non-fatal MI when compared with those who reported no effect of stress on their health. This association was attenuated but remained statistically significant after adjustment for biological, behavioural, and other psychological risk factors including perceived stress levels, and measures of social support; fully adjusted hazard ratio: 1.49 (95% CI 1.01–2.22). Conclusions In this prospective cohort study, the perception that stress affects health, different from perceived stress levels, was associated with an increased risk of coronary heart disease. Randomized controlled trials are needed to determine whether disease risk can be reduced by increasing clinical attention to those who complain that stress greatly affects their health. PMID:23804585

  1. Affective personality as cognitive-emotional presymptom profiles regulatory for self-reported health predispositions.

    PubMed

    Archer, T; Adolfsson, B; Karlsson, E

    2008-08-01

    Three studies that examined the links between affective personality, as constructed from responses to the Positive Affect (PA) and Negative Affect (NA) Scale (PANAS), and individuals' self-report of self-esteem, intrinsic motivation and Beck's Depression Inventory (BDI) depression in high school students and persons in working occupations are described. Self-report estimations of several other neuropsychiatric and psychosocial variables including, the Uppsala Sleep Inventory (USI), the Hospital Anxiety and Depression (HAD) test, Dispositional optimism, Locus of control, the Subjective Stress Experience test (SSE) and the Stress-Energy (SE) test, were also derived. Marked effects due to affective personality type upon somatic and psychological stress, anxiety and depression, self-esteem, internal and external locus of control, optimism, stress and energy, intrinsic motivation, external regulation, identified regulation, major sleep problems, problems falling asleep, and psychophysiological problems were observed; levels of self-esteem, self-motivation and BDI-depression all produced substantial effects on health and well-being. Regression analyses indicated PA was predicted by dispositional optimism (thrice), energy (thrice), and intrinsic motivation, and counter predicted by depression (twice) and stress (twice); and NA by anxiety (twice), stress (twice), psychological stress, identified regulation, BDI depression and psychophysiological problems, and counter predicted by internal locus of control and self-esteem. BDI-depression was predicted by negative affect, major sleep problems and psychophysiological problems (Study III), self-esteem by dispositional optimism and energy, and counter predicted by anxiety, depression and stress (Study I), and intrinsic motivation by dispositional optimism, energy, PA and self-esteem (Study II). These convergent findings are interpreted from a perspective of the cognitive-emotional expressions underlying behavioural or presymptomatic profiles presenting predispositions for health or ill health.

  2. Knockdown of metallothionein 1 and 2 does not affect atrophy or oxidant activity in a novel in vitro model.

    PubMed

    Hyldahl, Robert D; O'Fallon, Kevin S; Schwartz, Lawrence M; Clarkson, Priscilla M

    2010-11-01

    Skeletal muscle atrophy is a significant health problem that results in decreased muscle size and function and has been associated with increases in oxidative stress. The molecular mechanisms that regulate muscle atrophy, however, are largely unknown. The metallothioneins (MT), a family of genes with antioxidant properties, have been found to be consistently upregulated during muscle atrophy, although their function during muscle atrophy is unknown. Therefore, we hypothesized that MT knockdown would result in greater oxidative stress and an enhanced atrophy response in C(2)C(12) myotubes subjected to serum reduction (SR), a novel atrophy-inducing stimulus. Forty-eight hours before SR, myotubes were transfected with small interfering RNA (siRNA) sequences designed to decrease MT expression. Muscle atrophy and oxidative stress were then measured at baseline and for 72 h following SR. Muscle atrophy was quantified by immunocytochemistry and myotube diameter measurements. Oxidative stress was measured using the fluorescent probe 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein. SR resulted in a significant increase in oxidative stress and a decrease in myotube size and protein content. However, there were no differences observed in the extent of muscle atrophy or oxidant activity following MT knockdown. We therefore conclude that the novel SR model results in a strong atrophy response and an increase in oxidant activity in cultured myotubes and that knockdown of MT does not affect that response.

  3. Regulation of the insulin-Akt signaling pathway and glycolysis during dehydration stress in the African clawed frog Xenopus laevis.

    PubMed

    Wu, Cheng-Wei; Tessier, Shannon N; Storey, Kenneth B

    2017-12-01

    Estivation is an adaptive stress response utilized by some amphibians during periods of drought in the summer season. In this study, we examine the regulation of the insulin signaling cascade and glycolysis pathway in the African clawed frog Xenopus laevis during the dehydration stress induced state of estivation. We show that in the brain and heart of X. laevis, dehydration reduces the phosphorylation of the insulin growth factor-1 receptor (IGF-1R), and this is followed by similar reductions in the phosphorylation of the Akt and mechanistic target of rapamycin (mTOR) kinase. Interestingly, phosphorylation levels of IGF-1R and mTOR were not affected in the kidney, and phosphorylation levels of P70S6K and the ribosomal S6 protein were elevated during dehydration stress. Animals under estivation are also susceptible to periods of hypoxia, suggesting that glycolysis may also be affected. We observed that protein levels of many glycolytic enzymes remained unchanged during dehydration; however, the hypoxia response factor-1 alpha (HIF-1α) protein was elevated by greater than twofold in the heart during dehydration. Overall, we provide evidence that shows that the insulin signaling pathway in X. laevis is regulated in a tissue-specific manner during dehydration stress and suggests an important role for this signaling cascade in mediating the estivation response.

  4. Long-Term Acclimation to Different Thermal Regimes Affects Molecular Responses to Heat Stress in a Freshwater Clam Corbicula Fluminea

    NASA Astrophysics Data System (ADS)

    Falfushynska, Halina I.; Phan, Tuan; Sokolova, Inna M.

    2016-12-01

    Global climate change (GCC) can negatively affect freshwater ecosystems. However, the degree to which freshwater populations can acclimate to long-term warming and the underlying molecular mechanisms are not yet fully understood. We used the cooling water discharge (CWD) area of a power plant as a model for long-term warming. Survival and molecular stress responses (expression of molecular chaperones, antioxidants, bioenergetic and protein synthesis biomarkers) to experimental warming (20-41 °C, +1.5 °C per day) were assessed in invasive clams Corbicula fluminea from two pristine populations and a CWD population. CWD clams had considerably higher (by ~8-12 °C) lethal temperature thresholds than clams from the pristine areas. High thermal tolerance of CWD clams was associated with overexpression of heat shock proteins HSP70, HSP90 and HSP60 and activation of protein synthesis at 38 °C. Heat shock response was prioritized over the oxidative stress response resulting in accumulation of oxidative lesions and ubiquitinated proteins during heat stress in CWD clams. Future studies should determine whether the increase in thermal tolerance in CWD clams are due to genetic adaptation and/or phenotypic plasticity. Overall, our findings indicate that C. fluminea has potential to survive and increase its invasive range during warming such as expected during GCC.

  5. Temporal analysis of the spontaneous baroreceptor reflex during mild emotional stress in the rat.

    PubMed

    Bajić, Dragana; Loncar-Turukalo, Tatjana; Stojicić, Sonja; Sarenac, Olivera; Bojić, Tijana; Murphy, David; Paton, Julian F R; Japundzić-Zigon, Nina

    2010-03-01

    The effect of emotional stress on the spontaneous baroreceptor reflex (sBRR) in freely moving rats was investigated. Six male Wistar rats equipped with an intra-arterial polyethylene catheter were exposed to a 2-min air-jet stress. For time course analysis of the sBRR response to stress, the records of systolic blood pressure (SBP) and pulse interval (PI) were divided into five regions: baseline (BASELINE), acute exposure to air-jet stress (STRESS), immediate recovery (IMMED. RECOVERY), remaining recovery (RECOVERY), and delayed response (DELAYED RESPONSE). In addition to sBRR sensitivity and effectiveness, we introduce the sequence coverage area and its median for evaluation of the sBRR operating range and set point. During exposure to STRESS and IMMED. RECOVERY, sBRR sensitivity was preserved, its effectiveness was decreased, its operating range was enlarged, and the set point was shifted towards higher SBP and lower PI values. According to the joint symbolic dynamics analysis, the SBP and PI relationship became less predictable hence more prone to respond to stress. In RECOVERY the parameters regained baseline values and DELAYED RESPONSE occurred during which re-setting of sBRR was noted. It follows that emotional stress modulates sBRR differentially during the time course of stress and recovery, affecting both linearity and unpredictability of the BP and PI relationship.

  6. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.

    PubMed

    Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul

    2013-08-01

    Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.

  7. Penicillium purpurogenum cultures under ethanol-induced stress and its correlation with fungal adhesion and biodegrading ability.

    PubMed

    Gomaa, Ola M; Husseiny, Sherif M; Abd El Kareem, Hussein; Talaat, Riham

    2016-10-01

    Fungi are known to be affected by external environmental stimuli, resulting in different stress response effects, which in turn could be used to enhance its biodegrading ability. In a previous study, ethanol was used to manipulate cell-cell and cell-surface interaction to prevent cell loss and maximize the usage of Penicillium purpurogenum cells in the media, a correlation was drawn between ethanol oxidative stress, surface-bound proteins and fungal adhesion. The present study focuses on a more detailed study of the effect of ethanol on the same fungus. The results show that the presence of Yap1p gene and the detection of an oxidized form of glutathione (GSSG) suggest that a stress response might be involved in the adhesion process. The process of adhesion could be described as a signaling process and it is affected by the germ tube formation as an initial step in adhesion. Protein profile showed polymorphism in surface-bound proteins for cultures amended with ethanol when compared to control cultures. Ethanol also affected the DNA polymorphic profile of DNA, rendering the fungus genetically variable. P. purpurogenum produced phenol oxidase enzyme and could be used to degrade total phenols in olive mill waste water without the formation of biofilm on the surface of the containers.

  8. Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana

    PubMed Central

    Migicovsky, Zoe; Kovalchuk, Igor

    2014-01-01

    Stress has a negative impact on crop yield by altering a gain in biomass and affecting seed set. Recent reports suggest that exposure to stress also influences the response of the progeny. In this paper, we analyzed seed size, leaf size, bolting time and transposon expression in 2 consecutive generations of Arabidopsis thaliana plants exposed to moderate UV-C stress. Since previous reports suggested a potential role of Dicer-like (DCL) proteins in the establishment of transgenerational response, we used dcl2, dcl3 and dcl4 mutants in parallel with wild-type plants. These studies revealed that leaf number decreased in the progeny of UV-C stressed plants, and bolting occurred later. Transposons were also re-activated in the progeny of stressed plants. Changes in the dcl mutants were less prominent than in wild-type plants. DCL2 and DCL3 appeared to be more important in the transgenerational stress memory than DCL4 because transgenerational changes were less profound in the dcl2 and dcl3 mutants. PMID:25482751

  9. Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana.

    PubMed

    Migicovsky, Zoe; Kovalchuk, Igor

    2014-01-01

    Stress has a negative impact on crop yield by altering a gain in biomass and affecting seed set. Recent reports suggest that exposure to stress also influences the response of the progeny. In this paper, we analyzed seed size, leaf size, bolting time and transposon expression in 2 consecutive generations of Arabidopsis thaliana plants exposed to moderate UV-C stress. Since previous reports suggested a potential role of Dicer-like (DCL) proteins in the establishment of transgenerational response, we used dcl2, dcl3 and dcl4 mutants in parallel with wild-type plants. These studies revealed that leaf number decreased in the progeny of UV-C stressed plants, and bolting occurred later. Transposons were also re-activated in the progeny of stressed plants. Changes in the dcl mutants were less prominent than in wild-type plants. DCL2 and DCL3 appeared to be more important in the transgenerational stress memory than DCL4 because transgenerational changes were less profound in the dcl2 and dcl3 mutants.

  10. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea

    PubMed Central

    Su, Liang-Chen; Deng, Bin; Liu, Shuai; Li, Li-Mei; Hu, Bo; Zhong, Yu-Ting; Li, Ling

    2015-01-01

    Histone acetylation, which together with histone methylation regulates gene activity in response to stress, is an important epigenetic modification. There is an increasing research focus on histone acetylation in crops, but there is no information to date in peanut (Arachis hypogaea). We showed that osmotic stress and ABA affect the acetylation of histone H3 loci in peanut seedlings by immunoblotting experiments. Using RNA-seq data for peanut, we found a RPD3/HDA1-like superfamily histone deacetylase (HDAC), termed AhHDA1, whose gene is up-regulated by PEG-induced water limitation and ABA signaling. We isolated and characterized AhHDA1 from A. hypogaea, showing that AhHDA1 is very similar to an Arabidopsis HDAC (AtHDA6) and, in recombinant form, possesses HDAC activity. To understand whether and how osmotic stress and ABA mediate the peanut stress response by epigenetics, the expression of AhHDA1 and stress-responsive genes following treatment with PEG, ABA, and the specific HDAC inhibitor trichostatin A (TSA) were analyzed. AhHDA1 transcript levels were enhanced by all three treatments, as was expression of peanut transcription factor genes, indicating that AhHDA1 might be involved in the epigenetic regulation of stress resistance genes that comprise the responses to osmotic stress and ABA. PMID:26217363

  11. Estradiol Therapy After Menopause Mitigates Effects of Stress on Cortisol and Working Memory.

    PubMed

    Herrera, Alexandra Ycaza; Hodis, Howard N; Mack, Wendy J; Mather, Mara

    2017-12-01

    Postmenopausal estradiol therapy (ET) can reduce the stress response. However, it remains unclear whether such reductions can mitigate effects of stress on cognition. Investigate effects of ET on cortisol response to a physical stressor, cold pressor test (CPT), and whether ET attenuates stress effects on working memory. Women completed the CPT or control condition across two sessions and subsequently completed a sentence span task. General community: Participants were recruited from the Early vs Late Intervention Trial with Estradiol (ELITE). ELITE participants (mean age = 66, standard deviation age = 6.8) in this study did not suffer from any major chronic illness or use medications known to affect the stress response or cognition. Participants had received a median of randomized 4.7 years of estradiol (n = 21) or placebo (n = 21) treatment at time of participation in this study. Salivary cortisol and sentence span task performance. Women assigned to estradiol exhibited blunted cortisol responses to CPT compared with placebo (P = 0.017) and lesser negative effects of stress on working memory (P = 0.048). We present evidence suggesting ET may protect certain types of cognition in the presence of stress. Such estrogenic protection against stress hormone exposure may prove beneficial to both cognition and the neural circuitry that maintains and propagates cognitive faculties. Copyright © 2017 Endocrine Society

  12. Automatic affective-motivational regulation processes underlying supportive dyadic coping: the role of increased implicit positive attitudes toward communal goals in response to a stressed relationship partner.

    PubMed

    Koranyi, Nicolas; Hilpert, Peter; Job, Veronika; Bodenmann, Guy

    2017-09-01

    We examined the implicit affective mechanisms underlying provision of support in intimate dyads. Specifically, we hypothesized that in individuals with high relationship satisfaction, the perception that one's partner is stressed leads to increased implicit positive attitudes toward communal goals. In turn, this change in implicit attitudes facilitates supportive behavior. In two studies, we induced partner stress by instructing participants to either recall a situation where their partner was highly stressed (Study 1; N = 47 university students) or imagine a specific stressful event (excessive workload; Study 2; N = 85 university students). Subsequently, implicit attitudes toward communal goals were assessed with an Implicit Association Test. In both studies, we found that among participants with high relationship satisfaction partner stress increases preferences for communal goals. In addition, implicit preferences for communal goals predicted stronger inclinations to engage in supportive dyadic coping (Study 2). The current findings provide important insights into the implicit cognitive-affective mechanics of dyadic coping. Moreover, they can explain how people manage to avoid experiencing motivational conflicts between partner-oriented and self-oriented goals in situations characterized by high partner stress.

  13. Timing matters: the interval between acute stressors within chronic mild stress modifies behavioral and physiologic stress responses in male rats.

    PubMed

    Cavigelli, Sonia A; Bao, Alexander D; Bourne, Rebecca A; Caruso, Michael J; Caulfield, Jasmine I; Chen, Mary; Smyth, Joshua M

    2018-04-12

    Chronic mild stress can lead to negative health outcomes. Frequency, duration, and intensity of acute stressors can affect health-related processes. We tested whether the temporal pattern of daily acute stressors (clustered or dispersed across the day) affects depression-related physiology. We used a rodent model to keep stressor frequency, duration, and intensity constant, and experimentally manipulated the temporal pattern of acute stressors delivered during the active phase of the day. Adult male Sprague-Dawley rats were exposed to one of three chronic mild stress groups: Clustered: stressors that occurred within 1 hour of each other (n = 21), Dispersed: stressors that were spread out across the active phase (n = 21), and Control: no stressors presented (n = 21). Acute mild stressors included noise, strobe lights, novel cage, cage tilt, wet bedding, and water immersion. Depression-related outcomes included: sucrose preference, body weight, circulating glucocorticoid (corticosterone) concentration after a novel acute stressor and during basal morning and evening times, and endotoxin-induced circulating interleukin-6 concentrations. Compared to control rats, those in the Clustered group gained less weight, consumed less sucrose, had a blunted acute corticosterone response, and an accentuated acute interleukin-6 response. Rats in the Dispersed group had an attenuated corticosterone decline during the active period and after an acute stressor compared to the Control group. During a chronic mild stress experience, the temporal distribution of daily acute stressors affected health-related physiologic processes. Regular exposure to daily stressors in rapid succession may predict more depression-related symptoms, whereas exposure to stressors dispersed throughout the day may predict diminished glucocorticoid negative feedback.

  14. First contact: acute stress reactions and experiences of emergency department consultations following an incident of intimate partner violence.

    PubMed

    Olive, Philippa

    2017-08-01

    The aim of this research was to explore women's emotional and affective responses following an incident of intimate partner violence experienced during emergency department attendances. A growing body of research has explored women's experiences of emergency departments following intimate partner violence still little remains known about the experience and impact of emotional and affective responses during these attendances. A descriptive qualitative design was used, underpinned theoretically by critical realism and postmodern complexity theory to attend to multiple, intersecting mechanisms that lie behind events and experiences. Semistructured interviews with six women who had attended an emergency department directly following an incident of intimate partner violence. Interview data were transcribed and thematically analysed in nvivo9 using a coding framework. There were three interconnected key findings. First, was the commonality of acute stress experiences among women attending an emergency department following partner violence, second was that these acute stress reactions negatively impacted women's consultations, and third was the need for specialist domestic violence services at the point of first contact to assist service users navigate an effective consultation. Acute stress reactions were an important feature of women's experiences of emergency department consultations following intimate partner violence. Attending to psychological first aid; providing a safe and quiet space; and affording access to specialist violence advocacy services at the point of first contact will limit harm and improve health consultation outcomes for this population. This research provides an account of emotional and affective responses experienced by women attending emergency departments following intimate partner violence and explicates how these acute stress reactions impacted their consultation. This research has relevance for practitioners in many first contact health services, such as urgent and emergency care, general practice, community public health and mental health. © 2016 John Wiley & Sons Ltd.

  15. Perceived sources and levels of stress, general self-efficacy and coping strategies in preclinical dental students.

    PubMed

    Ersan, Nilüfer; Dölekoğlu, Semanur; Fişekçioğlu, Erdoğan; İlgüy, Mehmet; Oktay, İnci

    2018-06-01

    Dental education programs are known to be highly stressful and stress can affect general health. The aims were to identify sources of stress among preclinical students and to evaluate their perceived levels of stress, self-efficacy and effective coping strategies in a private dental school. One hundred preclinical students in a Turkish private dental school were surveyed using dental environment stress (DES), perceived stress (PSS), general self-efficacy (G-SES) and brief coping scales (Brief-COPE). Age, gender, history of psychiatric treatment, factors that affected the choice of dentistry, choice rank of dental school, scholarship and income was recorded. 'Exams and grades' followed by 'Fear of failing course or year' were found to be the most stressprovoking factors. The most and the least stressprovoking DES domains were 'Workload' and 'Social stressors', respectively. 'Social stressors' affected male more than female (p < .05). The most and the least common coping strategies were found to be 'Planning', and 'Drug', respectively. Female used 'Instrumental support' more than male (p < .05). Demographic factors had impact on the perceived stress factors and levels, as well as coping strategies. Unlike previous studies establishing high stress levels in dental students, preclinical students displayed moderate level of stress. Clinical dental education might be more responsible for creating stress.

  16. Effects of opioid- and non-opioid analgesics on responses to psychosocial stress in humans.

    PubMed

    Bershad, Anya K; Miller, Melissa A; Norman, Greg J; de Wit, Harriet

    2018-06-01

    Both preclinical and clinical evidence suggests that the endogenous opioid system is involved in responses to stress. For example, in animal models opioid agonists reduce isolation distress whereas opioid antagonists increase isolation distress. We recently reported that the mixed mu agonist and kappa antagonist buprenorphine dampened responses to acute psychosocial stress in humans. Now we extend this to study the effects of a pure mu-opioid agonist, hydromorphone, and a non-opioid analgesic, acetaminophen, on response to social stress. We compared the effect of hydromorphone (2 and 4 mg), acetaminophen (1000 mg) to a placebo using a between subject design. Healthy adult volunteers were randomly assigned to receive placebo (N = 13), 2 mg hydromorphone (N = 12), 4 mg hydromorphone (N = 12), or 1000 mg acetaminophen (paracetamol; N = 13) under double-blind conditions before undergoing a stress task or a control task on two separate sessions. The stress task, consisting of a standardized speaking task and the non-stressful control task were presented in counterbalanced order. Dependent measures included mood ratings, subjective appraisal of the stress (or no-stress) task, salivary cortisol, pupil diameter, heart rate, and blood pressure. The stress task produced its expected increase in heart rate, blood pressure, salivary cortisol, pupil diameter, and subjective ratings of anxiety and negative mood. Hydromorphone dose-dependently dampened cortisol responses to stress, and decreased ratings of how "challenging" participants found the task. Acetaminophen did not affect physiological responses, but, like hydromorphone, decreased ratings of how "challenging" the task was. The hydromorphone results support the idea that the mu-opioid system is involved in physiological responses to acute stress in humans, in line with results from preclinical studies. The non-opioid analgesic acetaminophen did not dampen physiological responses, but did reduce some components of psychological stress. It remains to be determined how both opioid and non-opioid systems mediate the complex physiological and psychological responses to social stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Cellular Levels of Oxidative Stress Affect the Response of Cervical Cancer Cells to Chemotherapeutic Agents

    PubMed Central

    Williams, Vonetta M.; Kokoza, Anatolii; Bashkirova, Svetlana; Duerksen-Hughes, Penelope

    2014-01-01

    Treatment of advanced and relapsed cervical cancer is frequently ineffective, due in large part to chemoresistance. To examine the pathways responsible, we employed the cervical carcinoma-derived SiHa and CaSki cells as cellular models of resistance and sensitivity, respectively, to treatment with chemotherapeutic agents, doxorubicin, and cisplatin. We compared the proteomic profiles of SiHa and CaSki cells and identified pathways with the potential to contribute to the differential response. We then extended these findings by comparing the expression level of genes involved in reactive oxygen species (ROS) metabolism through the use of a RT-PCR array. The analyses demonstrated that the resistant SiHa cells expressed higher levels of antioxidant enzymes. Decreasing or increasing oxidative stress led to protection or sensitization, respectively, in both cell lines, supporting the idea that cellular levels of oxidative stress affect responsiveness to treatment. Interestingly, doxorubicin and cisplatin induced different profiles of ROS, and these differences appear to contribute to the sensitivity to treatment displayed by cervical cancer cells. Overall, our findings demonstrate that cervical cancer cells display variable profiles with respect to their redox-generating and -adaptive systems, and that these different profiles have the potential to contribute to their responses to treatments with chemotherapy. PMID:25478571

  18. Transcriptional profiling of sugarcane leaves and roots under progressive osmotic stress reveals a regulated coordination of gene expression in a spatiotemporal manner

    PubMed Central

    Zamora-Briseño, Jesus A.; Ayala-Sumuano, Jorge T.; Gonzalez-Mendoza, Victor M.; Espadas-Gil, Francisco; Alcaraz, Luis D.; Castaño, Enrique; Keb-Llanes, Miguel A.; Sanchez-Teyer, Felipe

    2017-01-01

    Sugarcane is one of the most important crops worldwide and is a key plant for the global production of sucrose. Sugarcane cultivation is severely affected by drought stress and it is considered as the major limiting factor for their productivity. In recent years, this plant has been subjected to intensive research focused on improving its resilience against water scarcity; particularly the molecular mechanisms in response to drought stress have become an underlying issue for its improvement. To better understand water stress and the molecular mechanisms we performed a de novo transcriptomic assembly of sugarcane (var. Mex 69–290). A total of 16 libraries were sequenced in a 2x100 bp configuration on a HiSeq-Illumina platform. A total of 536 and 750 genes were differentially up-regulated along with the stress treatments for leave and root tissues respectively, while 1093 and 531 genes were differentially down-regulated in leaves and roots respectively. Gene Ontology functional analysis showed that genes related to response of water deprivation, heat, abscisic acid, and flavonoid biosynthesis were enriched during stress treatment in our study. The reliability of the observed expression patterns was confirmed by RT-qPCR. Additionally, several physiological parameters of sugarcane were significantly affected due to stress imposition. The results of this study may help identify useful target genes and provide tissue-specific data set of genes that are differentially expressed in response to osmotic stress, as well as a complete analysis of the main groups is significantly enriched under this condition. This study provides a useful benchmark for improving drought tolerance in sugarcane and other economically important grass species. PMID:29228055

  19. miR-122 promotes hepatic antioxidant defense of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium by directly targeting a metallothionein gene.

    PubMed

    Qiang, Jun; Tao, Yi-Fan; He, Jie; Xu, Pao; Bao, Jin-Wen; Sun, Yi-Lan

    2017-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that regulate target gene expression by binding to the 3'untranslated region (3'UTR) of the target mRNA. MiRNAs regulate a large variety of genes, including those involved in liver homeostasis and energy metabolism. Down-regulated levels of hepatic miR-122 were found in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium (Cd) stress. Here, we report for the first time that reduction of miR-122 post-transcriptionally increased metallothionein (MT) mRNA levels by binding to its 3'UTR, as shown by a 3' UTR luciferase reporter assay. The expression levels of miR-122 were negatively related to MT levels in GIFT under Cd stress. We performed in vivo functional analysis of miR-122 by injecting the fish with a miR-122 antagomir. Inhibition of miR-122 levels in GIFT liver caused a significant increase in MT expression, affected white blood cell and red blood cell counts, and serum alanine and aspartate aminotransferase activities, and glucose levels, all of which may help to relieve Cd stress-related liver stress. miR-122 silencing modulated oxidative stress and stimulated the activity of antioxidant enzymes. Our findings indicate that miR-122 regulated MT levels by binding to the 3'UTR of MT mRNA, and this interaction affected Cd stress induction and the resistance response in GIFT. We concluded that miR-122 plays an important role in regulating the stress response in GIFT liver. Our findings may contribute to understanding the mechanisms of miRNA-mediated gene regulation in tilapia in response to environmental stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Impact of variation in the BDNF gene on social stress sensitivity and the buffering impact of positive emotions: replication and extension of a gene-environment interaction.

    PubMed

    van Winkel, Mark; Peeters, Frenk; van Winkel, Ruud; Kenis, Gunter; Collip, Dina; Geschwind, Nicole; Jacobs, Nele; Derom, Catherine; Thiery, Evert; van Os, Jim; Myin-Germeys, Inez; Wichers, Marieke

    2014-06-01

    A previous study reported that social stress sensitivity is moderated by the brain-derived-neurotrophic-factor(Val66Met) (BDNF rs6265) genotype. Additionally, positive emotions partially neutralize this moderating effect. The current study aimed to: (i) replicate in a new independent sample of subjects with residual depressive symptoms the moderating effect of BDNF(Val66Met) genotype on social stress sensitivity, (ii) replicate the neutralizing impact of positive emotions, (iii) extend these analyses to other variations in the BDNF gene in the new independent sample and the original sample of non-depressed individuals. Previous findings were replicated in an experience sampling method (ESM) study. Negative Affect (NA) responses to social stress were stronger in "Val/Met" carriers of BDNF(Val66Met) compared to "Val/Val" carriers. Positive emotions neutralized the moderating effect of BDNF(Val66Met) genotype on social stress sensitivity in a dose-response fashion. Finally, two of four additional BDNF SNPs (rs11030101, rs2049046) showed similar moderating effects on social stress-sensitivity across both samples. The neutralizing effect of positive emotions on the moderating effects of these two additional SNPs was found in one sample. In conclusion, ESM has important advantages in gene-environment (GxE) research and may attribute to more consistent findings in future GxE research. This study shows how the impact of BDNF genetic variation on depressive symptoms may be explained by its impact on subtle daily life responses to social stress. Further, it shows that the generation of positive affect (PA) can buffer social stress sensitivity and partially undo the genetic susceptibility. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  1. Stress induces equivalent remodeling of hippocampal spine synapses in a simulated postpartum environment and in a female rat model of major depression.

    PubMed

    Baka, Judith; Csakvari, Eszter; Huzian, Orsolya; Dobos, Nikoletta; Siklos, Laszlo; Leranth, Csaba; MacLusky, Neil J; Duman, Ronald S; Hajszan, Tibor

    2017-02-20

    Stress and withdrawal of female reproductive hormones are known risk factors of postpartum depression. Although both of these factors are capable of powerfully modulating neuronal plasticity, there is no direct electron microscopic evidence of hippocampal spine synapse remodeling in postpartum depression. To address this issue, hormonal conditions of pregnancy and postpartum period were simulated in ovariectomized adult female Sprague-Dawley rats (n=76). The number of hippocampal spine synapses and the depressive behavior of rats in an active escape task were investigated in untreated control, hormone-withdrawn 'postpartum', simulated proestrus, and hormone-treated 'postpartum' animals. After 'postpartum' withdrawal of gonadal steroids, inescapable stress caused a loss of hippocampal spine synapses, which was related to poor escape performance in hormone-withdrawn 'postpartum' females. These responses were equivalent with the changes observed in untreated controls that is an established animal model of major depression. Maintaining proestrus levels of ovarian hormones during 'postpartum' stress exposure did not affect synaptic and behavioral responses to inescapable stress in simulated proestrus animals. By contrast, maintaining pregnancy levels of estradiol and progesterone during 'postpartum' stress exposure completely prevented the stress-induced loss of hippocampal spine synapses, which was associated with improved escape performance in hormone-treated 'postpartum' females. This protective effect appears to be mediated by a muted stress response as measured by serum corticosterone concentrations. In line with our emerging 'synaptogenic hypothesis' of depression, the loss of hippocampal spine synapses may be a novel perspective both in the pathomechanism and in the clinical management of postpartum affective illness. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Stress Induces Equivalent Remodeling of Hippocampal Spine Synapses in a Simulated Postpartum Environment and in a Female Rat Model of Major Depression

    PubMed Central

    Baka, Judith; Csakvari, Eszter; Huzian, Orsolya; Dobos, Nikoletta; Siklos, Laszlo; Leranth, Csaba; MacLusky, Neil J; Duman, Ronald S; Hajszan, Tibor

    2017-01-01

    Stress and withdrawal of female reproductive hormones are known risk factors of postpartum depression. Although both of these factors are capable of powerfully modulating neuronal plasticity, there is no direct electron microscopic evidence of hippocampal spine synapse remodeling in postpartum depression. To address this issue, hormonal conditions of pregnancy and postpartum period were simulated in ovariectomized adult female Sprague-Dawley rats (n=76). The number of hippocampal spine synapses and the depressive behavior of rats in an active escape task were investigated in untreated control, hormone-withdrawn ‘postpa rtum’, simulated proestrus, and hormone-treated ‘postpartum’ animals. After ‘postpartum’ withdrawal of gonadal steroids, inescapable stress caused a loss of hippocampal spine synapses, which was related to poor escape performance in hormone-withdrawn ‘postpartum’ females. These responses were equivalent with the changes observed in untreated controls that is an established animal model of major depression. Maintaining proestrus levels of ovarian hormones during ‘postpartum’ stress exposure did not affect synaptic and behavioral responses to inescapable stress in simulated proestrus animals. By contrast, maintaining pregnancy levels of estradiol and progesterone during ‘postpartum’ stress exposure completely prevented the stress-induced loss of hippocampal spine synapses, which was associated with improved escape performance in hormone-treated ‘postpartum’ females. This protective effect appears to be mediated by a muted stress response as measured by serum corticosterone concentrations. In line with our emerging ‘synaptogenic hypothesis’ of depression, the loss of hippocampal spine synapses may be a novel perspective both in the pathomechanism and in the clinical management of postpartum affective illness. PMID:28012870

  3. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    PubMed

    Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Bendix, Claire; Nakayama, Thiago Jonas; Celaya, Brandon; Molinari, Hugo Bruno Correa; de Oliveira, Maria Cristina Neves; Harmon, Frank G; Nepomuceno, Alexandre

    2014-01-01

    Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans.

  4. Diurnal Oscillations of Soybean Circadian Clock and Drought Responsive Genes

    PubMed Central

    Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Bendix, Claire; Nakayama, Thiago Jonas; Celaya, Brandon; Molinari, Hugo Bruno Correa; de Oliveira, Maria Cristina Neves; Harmon, Frank G.; Nepomuceno, Alexandre

    2014-01-01

    Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i) drought stress affects gene expression of circadian clock components and (ii) several stress responsive genes display diurnal oscillation in soybeans. PMID:24475115

  5. Inactivation of GABAA receptor is related to heat shock stress response in organism model Caenorhabditis elegans.

    PubMed

    Camargo, Gabriela; Elizalde, Alejandro; Trujillo, Xochitl; Montoya-Pérez, Rocío; Mendoza-Magaña, María Luisa; Hernandez-Chavez, Abel; Hernandez, Leonardo

    2016-09-01

    The mechanisms underlying oxidative stress (OS) resistance are not completely clear. Caenorhabditis elegans (C. elegans) is a good organism model to study OS because it displays stress responses similar to those in mammals. Among these mechanisms, the insulin/IGF-1 signaling (IIS) pathway is thought to affect GABAergic neurotransmission. The aim of this study was to determine the influence of heat shock stress (HS) on GABAergic activity in C. elegans. For this purpose, we tested the effect of exposure to picrotoxin (PTX), gamma-aminobutyric acid (GABA), hydrogen peroxide, and HS on the occurrence of a shrinking response (SR) after nose touch stimulus in N2 (WT) worms. Moreover, the effect of HS on the expression of UNC-49 (GABAA receptor ortholog) in the EG1653 strain and the effect of GABA and PTX exposure on HSP-16.2 expression in the TJ375 strain were analyzed. PTX 1 mM- or H2O2 0.7 mM-exposed worms displayed a SR in about 80 % of trials. GABA exposure did not cause a SR. HS prompted the occurrence of a SR as did PTX 1 mM or H2O2 0.7 mM exposure. In addition, HS increased UNC-49 expression, and PTX augmented HSP-16.2 expression. Thus, the results of the present study suggest that oxidative stress, through either H2O2 exposure or application of heat shock, inactivates the GABAergic system, which subsequently would affect the oxidative stress response, perhaps by enhancing the activity of transcription factors DAF-16 and HSF-1, both regulated by the IIS pathway and related to hsp-16.2 expression.

  6. Cortical and Autonomic Stress Responses in Adults with High Versus Low Levels of Trait Anxiety: A Pilot Study.

    PubMed

    Brugnera, A; Zarbo, C; Adorni, R; Compare, A; Sakatani, K

    2017-01-01

    Stress responses are mediated by complex patterns of cortical and autonomic activity. Earlier studies showed increased recruitment of the right prefrontal cortex (PFC) and parasympathetic withdrawal during a stress task; however, it remains unclear whether these responses change in relation to different levels of psychopathological symptoms, such as trait anxiety. The present study examines the effect of a mathematical task (with a control condition and a stressful/experimental condition) on the PFC and autonomic activity, using a two-channel near infrared spectroscopy (NIRS) and an ECG monitoring system. After a preliminary screening of 65 subjects, a sample of 12 individuals (6 with the highest and 6 with the lowest scores on an anxiety questionnaire, i.e. the STAI trait) was selected. The two groups were similar regarding demographic variables (age, sex, body mass index) and baseline STAI-state scores. Repeated measures ANOVAs were used to compare changes from baseline in oxyhemoglobin (oxy-Hb), heart rate (HR) and root mean square of successive differences (RMSSD) between the two groups. Individuals affected by high levels of trait anxiety showed a reduced bilateral PFC activity during the entire experimental procedure compared to those with low anxiety. No differences in NIRS channels were found between the two groups. During both conditions, RMSSD was lower among individuals affected by high levels of anxious symptoms. Finally, throughout the procedure, changes in HR were higher in the anxious group. Overall, these findings suggest a reduced PFC activity and a larger parasympathetic withdrawal during a stress task in individuals with high levels of trait anxiety compared to those with low anxiety. These results could represent a starting point for future NIRS and ECG studies on the relationship between mental disorders and acute stress responses.

  7. Peripheral blood mononuclear cells: a potential cellular system to understand differential heat shock response across native cattle (Bos indicus), exotic cattle (Bos taurus), and riverine buffaloes (Bubalus bubalis) of India.

    PubMed

    Kishore, Amit; Sodhi, Monika; Kumari, Parvesh; Mohanty, A K; Sadana, D K; Kapila, Neha; Khate, K; Shandilya, Umesh; Kataria, R S; Mukesh, M

    2014-09-01

    Circulating leukocytes can be used as an effective model to understand the heat stress response of different cattle types and buffaloes. This investigation aimed to determine the temporal profile of HSPs (HSP40, HSP60, HSP70, and HSP90) expression in circulating peripheral blood mononuclear cells (PBMCs) of Murrah buffaloes, Holstein-Friesian (HF), and Sahiwal cows in response to sublethal heat shock at 42 °C. The viability data indicated HF PBMCs to be the most affected to the heat shock, whereas Sahiwal PBMCs were least affected, indicating its better survivability during the heat stress condition. The qRT-PCR expression data showed significant increase in mRNA expression of the analyzed HSPs genes after heat stimuli to the PBMCs under in vitro condition. In each case, the HSPs were most upregulated at 2 h after the heat stress. Among the HSPs, HSP70 was relatively more expressed followed by HSP60 indicating the action of molecular chaperones to stabilize the native conformation of proteins. However, PBMCs from different cattle types and buffaloes showed difference in the extent of transcriptional response. The level of expression of HSPs throughout the time period of heat stress was highest in buffaloes, followed by HF and Sahiwal cows. The higher abundance of HSP70 mRNA at each time point after heat stress showed prolonged effect of heat stress in HF PBMCs. The data presented here provided initial evidence of transcriptional differences in PBMCs of different cattle types and buffaloes and warrant further research.

  8. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing.

    PubMed

    Villarino, Gonzalo H; Bombarely, Aureliano; Giovannoni, James J; Scanlon, Michael J; Mattson, Neil S

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments.

  9. Transcriptomic Analysis of Petunia hybrida in Response to Salt Stress Using High Throughput RNA Sequencing

    PubMed Central

    Villarino, Gonzalo H.; Bombarely, Aureliano; Giovannoni, James J.; Scanlon, Michael J.; Mattson, Neil S.

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments. PMID:24722556

  10. QTL affecting stress response to crowding in a rainbow trout broodstock population

    USDA-ARS?s Scientific Manuscript database

    Background Genomic analyses have the potential to impact selective breeding programs by identifying markers that serve as proxies for traits which are expensive or difficult to measure. Also, identifying genes affecting traits of interest enhances our understanding of their underlying biochemical ...

  11. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen species and malondialdehyde and a decreased content of chlorophyll, indicating that anti-oxidation and detoxification play an important role in response to saline-alkaline stress. Overall, the transcriptome analysis provided novel insights into the saline-alkaline stress tolerance response mechanisms in alfalfa.

  12. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen species and malondialdehyde and a decreased content of chlorophyll, indicating that anti-oxidation and detoxification play an important role in response to saline-alkaline stress. Overall, the transcriptome analysis provided novel insights into the saline-alkaline stress tolerance response mechanisms in alfalfa. PMID:27458463

  13. Effects of therapeutic interventions for foster children on behavioral problems, caregiver attachment, and stress regulatory neural systems.

    PubMed

    Fisher, Philip A; Gunnar, Megan R; Dozier, Mary; Bruce, Jacqueline; Pears, Katherine C

    2006-12-01

    Young children in foster care are exposed to high levels of stress. These experiences place foster children at risk for poor social, academic, and mental heath outcomes. The role of adverse events in stimulating neurobiological stress responses presumably plays a role in shaping neural systems that contribute to these problems. Systematic and developmentally well-timed interventions might have the potential to change developmental trajectories and promote resilience. Moreover, understanding how specific dimensions of early adversity affect underlying stress response systems and how alterations in these systems are related to later psychosocial outcomes might facilitate more precise and targeted interventions. Data are drawn from two ongoing randomized trials involving foster infants/toddlers and preschoolers. Consistent with prior animal models of early adversity, these studies have shown that early adversity-particularly neglect, younger age at first foster placement, and higher number of placements-is associated with altered hypothalamic-pituitary-adrenal (HPA) axis function. The interventions under investigation have produced evidence that it is possible to impact many areas that have been negatively affected by early stress, including HPA axis activity, behavior, and attachment to caregivers.

  14. Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion.

    PubMed

    Kurucz, Vivien; Krüger, Thomas; Antal, Károly; Dietl, Anna-Maria; Haas, Hubertus; Pócsi, István; Kniemeyer, Olaf; Emri, Tamás

    2018-05-10

    Aspergillus fumigatus has to cope with a combination of several stress types while colonizing the human body. A functional interplay between these different stress responses can increase the chances of survival for this opportunistic human pathogen during the invasion of its host. In this study, we shed light on how the H 2 O 2 -induced oxidative stress response depends on the iron available to this filamentous fungus, using transcriptomic analysis, proteomic profiles, and growth assays. The applied H 2 O 2 treatment, which induced only a negligible stress response in iron-replete cultures, deleteriously affected the fungus under iron deprivation. The majority of stress-induced changes in gene and protein expression was not predictable from data coming from individual stress exposure and was only characteristic for the combination of oxidative stress plus iron deprivation. Our experimental data suggest that the physiological effects of combined stresses and the survival of the fungus highly depend on fragile balances between economization of iron and production of essential iron-containing proteins. One observed strategy was the overproduction of iron-independent antioxidant proteins to combat oxidative stress during iron deprivation, e.g. the upregulation of superoxide dismutase Sod1, the thioredoxin reductase Trr1, and the thioredoxin orthologue Afu5g11320. On the other hand, oxidative stress induction overruled iron deprivation-mediated repression of several genes. In agreement with the gene expression data, growth studies underlined that in A. fumigatus iron deprivation aggravates oxidative stress susceptibility. Our data demonstrate that studying stress responses under separate single stress conditions is not sufficient to understand how A. fumigatus adapts in a complex and hostile habitat like the human body. The combinatorial stress of iron depletion and hydrogen peroxide caused clear non-additive effects upon the stress response of A. fumigatus. Our data further supported the view that the ability of A. fumigatus to cause diseases in humans strongly depends on its fitness attributes and less on specific virulence factors. In summary, A. fumigatus is able to mount and coordinate complex and efficient responses to combined stresses like iron deprivation plus H 2 O 2 -induced oxidative stress, which are exploited by immune cells to kill fungal pathogens.

  15. Stress and personality.

    PubMed

    Lecic-Tosevski, D; Vukovic, O; Stepanovic, J

    2011-01-01

    Stress is an adaptation reaction of living organisms in response to internal or external threats to homeostasis. It is considered as a complex defence mechanism representing the final endpoint of numerous dynamic and interconnected factors of biological, psychological and social nature. Stress is not a simple, stimulus-response reaction, but the interaction between an individual and the environment, involving subjective perception and assessment of stressors, thus constituting a highly personalized process. Specific inherited characteristics, early experience in life, and particular, learned cognitive predispositions make individuals more or less susceptible to the effects of stressors. Resilience and vulnerability to stressors as well as intensity of stress response are greatly dependable on age, gender, intelligence, and numerous characteristics of personality, such as hardiness,locus of control, self-efficacy, self-esteem, optimism, hostility (component of type A personality)and type D traits (negative affectivity and social inhibition). To understand the relation between personality and stress, it is essential to recognize the impact of individual differences in the following four aspects: (1) choice or avoidance of environments that are associated with specific stressors, challenges or benefits, (2) way of interpreting a stressful situation and evaluating one's own abilities and capacities for proactive behaviour so as to confront or avoid it, (3) intensity of response to a stressor,and (4) coping strategies employed by the individual facing a stressful situation. Studies have recorded considerable consistency in coping strategies employed to confront stressful situations, independentlyof situational factors and in connection with permanent personality and temperamental traits,such as neuroticism, extraversion, sense of humour, persistence, fatalism, conscientiousness, andopenness to experience. Positive affect has been associated with positive reappraisal (reframing) ofstressful situations, goal-directed problem-focused coping, using spiritual or religious beliefs to seekcomfort, and infusion of meaning into the ordinary events of daily life in order to gain a psychologicaltime-out from distress. Characteristics of a resilient personality are: ability to cope in stressful situations,continuing engagement in activities, flexibility to unexpected changes in life, ability to seeksocial support, perceiving stress as a challenge - a chance for growth and development rather than athreat to life, taking care of one's body, living in harmony with nature, optimism and sense of humour,work and love, developing spiritualism and seeking true sense. The tolerance threshold is individual.However, even persons with mature and integrated personalities exposed to prolonged stress mayexperience failure of their adaptive capacities and psychological or somatic decompensation. Duringthe last years, Life Skills Education has become the focus of particular attention. Educational programsaim at developing the capacities for critical thinking, analyzing and problem-solving, buildingof self-confidence, confronting various negative pressures imposed by the environment, improvingself-assessment, developing communication and social adjustment skills, and gaining control overstressors and one's own affective and behavioral response. Finally, special programs for individualvulnerable population groups (teenagers, elderly persons, patients with AIDS, addictions, etc.) havebeen introduced so as to strengthen their ability to handle specific stressful situations.

  16. The molecular mechanisms of plant plasma membrane intrinsic proteins trafficking and stress response.

    PubMed

    Wang, Xing; Zhang, Ji-long; Feng, Xiu-xiu; Li, Hong-jie; Zhang, Gen-fa

    2017-04-20

    Plasma membrane intrinsic proteins (PIPs) are plant channel proteins located on the plasma membrane. PIPs transfer water, CO 2 and small uncharged solutes through the plasma membrane. PIPs have high selectivity to substrates, suggestive of a central role in maintaining cellular water balance. The expression, activity and localization of PIPs are regulated at the transcriptional and post-translational levels, and also affected by environmental factors. Numerous studies indicate that the expression patterns and localizations of PIPs can change in response to abiotic stresses. In this review, we summarize the mechanisms of PIP trafficking, transcriptional and post-translational regulations, and abiotic stress responses. Moreover, we also discuss the current research trends and future directions on PIPs.

  17. Lithium-induced effects on adult hippocampal neurogenesis are topographically segregated along the dorso-ventral axis of stressed mice.

    PubMed

    O'Leary, Olivia F; O'Connor, Richard M; Cryan, John F

    2012-01-01

    Adult hippocampal neurogenesis is an important process in the regulation of cognition, stress responsivity, and sensitivity to antidepressant and mood stabiliser drugs. Increasing evidence suggests that the hippocampus is functionally divided along its axis with the ventral hippocampus (vHi) playing a preferential role in stress- and anxiety-related processes, while the dorsal hippocampus (dHi) is crucial for spatial learning and memory. However, it is currently unclear whether stress or the medications used to treat stress-related disorders, preferentially affect neurogenesis in the vHi rather than dHi. The aim of this study was to determine whether the mood stabiliser, lithium, preferentially affects cell proliferation and survival in the vHi rather than dHi under stress conditions. To this end, mice of the stress-sensitive strain, BALB/c, underwent chronic exposure to immobilisation stress plus lithium treatment (0.2% lithium-supplemented diet), and the rates of cell proliferation and survival were compared in the dHi and vHi. Lithium preferentially increased cell proliferation in the vHi under stress conditions only. This increase in cell proliferation was secondary to reductions in the survival of newly-born cells. Moreover, lithium-induced decreases in cell survival in the vHi were only observed under stress conditions. Taken together, the data suggest that the turnover of newly-born cells in response to chronic stress and lithium treatment occurs predominantly in the vHi rather than the dHi. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Media exposure to terrorism and people's risk perception: The role of environmental sensitivity and psychophysiological response to stress.

    PubMed

    Rubaltelli, Enrico; Scrimin, Sara; Moscardino, Ughetta; Priolo, Giulia; Buodo, Giulia

    2018-03-02

    Terrorist attacks have a destabilizing impact on the general population, causing distress and fear. However, not all individuals are equally susceptible to the effects of terror threat. This study aimed to examine whether exposure to terrorism-related pictures interacted with individual differences in environmental sensitivity and psychophysiological response to stress to explain people's risk perception, operationalized as perceived likelihood of a terrorist attack and willingness to trade off one's privacy to increase national security. Ninety-five university students were randomly assigned to one of two conditions (terrorism-related vs. neutral pictures). After watching the pictures, they answered questions concerning risk perception and completed questionnaires. Stress was induced by the Mannheim Multicomponent Stress Test, during which heart rate was recorded. Results showed that the perceived likelihood of future attacks was affected by the interaction between exposure to terrorism pictures and psychophysiological reactivity to stress, whereas willingness to trade off one's privacy to improve national security was influenced by the interaction between exposure to terrorism pictures and environmental sensitivity. The study suggests that individuals high in sensitivity and psychophysiological stress reactivity are particularly affected by terrorism-related pictures. Psychologists should direct their efforts to raise general awareness of the negative effects, especially for some people, of such media coverage. © 2018 The British Psychological Society.

  19. Beyond allostatic load: rethinking the role of stress in regulating human development.

    PubMed

    Ellis, Bruce J; Del Giudice, Marco

    2014-02-01

    How do exposures to stress affect biobehavioral development and, through it, psychiatric and biomedical disorder? In the health sciences, the allostatic load model provides a widely accepted answer to this question: stress responses, while essential for survival, have negative long-term effects that promote illness. Thus, the benefits of mounting repeated biological responses to threat are traded off against costs to mental and physical health. The adaptive calibration model, an evolutionary-developmental theory of stress-health relations, extends this logic by conceptualizing these trade-offs as decision nodes in allocation of resources. Each decision node influences the next in a chain of resource allocations that become instantiated in the regulatory parameters of stress response systems. Over development, these parameters filter and embed information about key dimensions of environmental stress and support, mediating the organism's openness to environmental inputs, and function to regulate life history strategies to match those dimensions. Drawing on the adaptive calibration model, we propose that consideration of biological fitness trade-offs, as delineated by life history theory, is needed to more fully explain the complex relations between developmental exposures to stress, stress responsivity, behavioral strategies, and health. We conclude that the adaptive calibration model and allostatic load model are only partially complementary and, in some cases, support different approaches to intervention. In the long run, the field may be better served by a model informed by life history theory that addresses the adaptive role of stress response systems in regulating alternative developmental pathways.

  20. In Silico Investigation of Intracranial Blast Mitigation with Relevance to Military Traumatic Brain Injury

    DTIC Science & Technology

    2010-09-01

    how personal protective equipment affects the brain’s response to blasts. In this study we investigated the effect of the Advanced Combat...analyzing stress wave propagation, which is the main dynamic effect loading the brain tissue during a blast event. We consider two key metrics of stress ...Cauchy stress tensor, and sij ¼ σij − 13σkkδij are the compo- nents of the deviatoric stress tensor (24). Fig. 1 shows snapshots of the pressure

  1. Stomatal Responses to Light and Drought Stress in Variegated Leaves of Hedera helix1

    PubMed Central

    Aphalo, Pedro J.; Sánchez, Rodolfo A.

    1986-01-01

    Direct and indirect mechanisms underlying the light response of stomata were studied in variegated leaves of the juvenile phase of Hedera helix L. Dose response curves of leaf conductance were measured with blue and red light in leaves kept in normal or in an inverted position. In the green portions of the leaves, the sensitivity to blue light was nearly 100 times higher than that to red light. No response to red light was observed in the white portions of the leaves up to 90 micromoles per square meter per second. Red light indirectly affected leaf conductance while blue light had a direct effect. Leaf conductance was found to be more sensitive to drought stress and showed a more persistent aftereffect in the white portions of the leaves. A differential effect of drought stress on the responses to blue and red light was also observed. PMID:16664900

  2. Stomatal Responses to Light and Drought Stress in Variegated Leaves of Hedera helix.

    PubMed

    Aphalo, P J; Sánchez, R A

    1986-07-01

    Direct and indirect mechanisms underlying the light response of stomata were studied in variegated leaves of the juvenile phase of Hedera helix L. Dose response curves of leaf conductance were measured with blue and red light in leaves kept in normal or in an inverted position. In the green portions of the leaves, the sensitivity to blue light was nearly 100 times higher than that to red light. No response to red light was observed in the white portions of the leaves up to 90 micromoles per square meter per second. Red light indirectly affected leaf conductance while blue light had a direct effect. Leaf conductance was found to be more sensitive to drought stress and showed a more persistent aftereffect in the white portions of the leaves. A differential effect of drought stress on the responses to blue and red light was also observed.

  3. Examining the association between adult attachment style and cortisol responses to acute stress

    PubMed Central

    Kidd, Tara; Hamer, Mark; Steptoe, Andrew

    2011-01-01

    Summary The quality of social relationships may contribute to variations in biological stress responses, thereby affecting health risk. The association between an important indicator of social relationships, adult attachment style, and cortisol has been relatively unexplored. The present study examined adult romantic attachment style and cortisol responses to acute laboratory stress. Salivary cortisol was measured in response to two behavioural tasks, a colour/word interference task and mirror tracing task, in 498 healthy men and women from the Heart Scan study, a subsample of the Whitehall II cohort. Participants were classified as secure, fearful, preoccupied or dismissive on the basis of responses to the Relationship Questionnaire. Cortisol output was lowest in the fearful group, followed by the preoccupied group, with both secure and dismissive groups having higher levels. The results from this study tentatively support the proposition that attachment style is a factor in determining the manifestation of HPA dysregulation. PMID:21106296

  4. Exploring the role of trehalose-6-phosphate synthase in oxidation and desiccation stress tolerance of Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a pathogenic filamentous fungus that primarily affects maize. We are exploring stress response mechanisms in F. verticillioides, particularly the role of the disaccharide trehalose. Trehalose-6-phosphate synthase, coded for by the TPS1 gene, catalyzes the first of two ste...

  5. Litters of photosynthetically divergent grasses exhibit differential metabolic responses to warming and elevated CO2

    USDA-ARS?s Scientific Manuscript database

    Climatic stress induced by warming can alter plant metabolism, leading to changes in litter chemistry that can affect soil carbon cycling. Elevated CO2 could partly mitigate warming induced moisture stress, and the degree of this mitigation may vary with plant functional types. We hypothesized that,...

  6. Grain size constraints on twin expansion in hexagonal close packed crystals

    DOE PAGES

    Kumar, Mariyappan Arul; Beyerlein, Irene Jane; Tome, Carlos N.

    2016-10-20

    Deformation twins are stress-induced transformed domains of lamellar shape that form when polycrystalline hexagonal close packed metals, like Mg, are strained. Several studies have reported that the propensity of deformation twinning reduces as grain size decreases. Here, we use a 3D crystal plasticity based micromechanics model to calculate the effect of grain size on the driving forces responsible for expanding twin lamellae. The calculations reveal that constraints from the neighboring grain where the grain boundary and twin lamella meet induce a stress reversal in the twin lamella. A pronounced grain size effect arises as reductions in grain size cause thesemore » stress-reversal fields from twin/grain boundary junctions to affect twin growth. We further show that the severity of this neighboring grain constraint depends on the crystallographic orientation and plastic response of the neighboring grain. We show that these stress-reversal fields from twin/grain boundary junctions will affect twin growth, below a critical parent grain size. Finally, these results reveal an unconventional yet influential role that grain size and grain neighbors can play on deformation twinning.« less

  7. Psychoneuroimmunology of Early-Life Stress: The Hidden Wounds of Childhood Trauma?

    PubMed Central

    Danese, Andrea; J Lewis, Stephanie

    2017-01-01

    The brain and the immune system are not fully formed at birth, but rather continue to mature in response to the postnatal environment. The two-way interaction between the brain and the immune system makes it possible for childhood psychosocial stressors to affect immune system development, which in turn can affect brain development and its long-term functioning. Drawing from experimental animal models and observational human studies, we propose that the psychoneuroimmunology of early-life stress can offer an innovative framework to understand and treat psychopathology linked to childhood trauma. Early-life stress predicts later inflammation, and there are striking analogies between the neurobiological correlates of early-life stress and of inflammation. Furthermore, there are overlapping trans-diagnostic patterns of association of childhood trauma and inflammation with clinical outcomes. These findings suggest new strategies to remediate the effect of childhood trauma before the onset of clinical symptoms, such as anti-inflammatory interventions and potentiation of adaptive immunity. Similar strategies might be used to ameliorate the unfavorable treatment response described in psychiatric patients with a history of childhood trauma. PMID:27629365

  8. The Biology of Behavior: The Attachments and Affects of Adjudicated Youth.

    ERIC Educational Resources Information Center

    Boss, Marion Sutherland; Masiker-Nickel, Pamela

    1997-01-01

    Two teacher-trainers and counselors of adjudicated youth explain how to help young people develop both new thinking processes and responsible, prosocial behaviors. Emphasizes the importance of youth understanding the biological and biographical sources of their responses to stress. (MKA)

  9. IDENTIFICATION OF INTERSPECIES CONCORDANCE OF MECHANISMS OF ARSENIC-INDUCED BLADDER CANCER

    EPA Science Inventory

    Exposure to arsenic causes cancer by inducing a variety of responses that affect the expression of genes associated with numerous biological pathways leading to altered cell growth and proliferation, signaling, apoptosis and oxidative stress response. Affymetrix GeneChip® arrays ...

  10. Cortisol elevation post-hatch affects behavioural performance in zebrafish larvae.

    PubMed

    Best, Carol; Vijayan, Mathilakath M

    2018-02-01

    Maternal cortisol is essential for cortisol stress axis development and de novo production of this steroid commences only after hatch in zebrafish (Danio rerio). However, very little is known about the effect of elevated cortisol levels, during the critical period of stress axis activation, on larval performance. We tested the hypothesis that elevated cortisol levels post-hatch affect behavioural performance and this is mediated by glucocorticoid receptor (GR) activation in zebrafish larvae. The behavioural response included measuring larval activity in response to alternating light and dark cycles, as well as thigmotaxis. Zebrafish larvae at 3days post-fertilization were exposed to waterborne cortisol for 24h to mimic a steroid response to an early-life stressor exposure. Also, larvae were exposed to waterborne RU-486 (a GR antagonist) either in the presence or absence of cortisol to confirm GR activation. Co-treatment with RU-486 completely abolished the upregulation of cortisol-induced 11β-hydroxysteroid dehydrogenase type 2 transcript abundance, confirming GR signalling. Cortisol-exposed larvae displayed increased locomotor activity irrespective of light condition, but showed no changes in thigmotaxis. This cortisol-mediated behavioural response was not affected by co-treatment with RU-486. Cortisol exposure also did not modify the transcript abundances of GR and mineralocorticoid receptor (MR) in zebrafish larvae. Altogether, cortisol stress axis activation post-hatch increases locomotor activity in zebrafish larvae. Our results suggest that GR signalling may not be involved in this behavioural response, leading to the proposal that cortisol action via MR signalling may influence locomotor activity in zebrafish larvae. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A general enhancement of autonomic and cortisol responses during social evaluative threat.

    PubMed

    Bosch, Jos A; de Geus, Eco J C; Carroll, Douglas; Goedhart, Annebet D; Anane, Leila A; van Zanten, Jet J Veldhuizen; Helmerhorst, Eva J; Edwards, Kate M

    2009-10-01

    To examine the Social Self Preservation Theory, which predicts that stressors involving social evaluative threat (SET) characteristically activate the hypothalamic-pituitary-adrenal (HPA) axis. The idea that distinct psychosocial factors may underlie specific patterns of neuroendocrine stress responses has been a topic of recurrent debate. Sixty-one healthy university students (n = 31 females) performed a challenging speech task in one of three conditions that aimed to impose increasing levels of SET: performing the task alone (no social evaluation), with one evaluating observer, or with four evaluating observers. Indices of sympathetic (preejection period) and parasympathetic (heart rate variability) cardiac drive were obtained by impedance- and electrocardiography. Salivary cortisol was used to index HPA activity. Questionnaires assessed affective responses. Affective responses (shame/embarrassment, anxiety, negative affect, and self-esteem), cortisol, heart rate, sympathetic and parasympathetic activation all differentiated evaluative from nonevaluative task conditions (p < .001). The largest effect sizes were observed for cardiac autonomic responses. Physiological reactivity increased in parallel with increasing audience size (p < .001). An increase in cortisol was predicted by sympathetic activation during the task (p < .001), but not by affective responses. It would seem that SET determines the magnitude, rather than the pattern, of physiological activation. This potential to perturb broadly multiple physiological systems may help explain why social stress has been associated with a range of health outcomes. We propose a threshold-activation model as a physiological explanation for why engaging stressors, such as those involving social evaluation or uncontrollability, may seem to induce selectively cortisol release.

  12. Physiological Responses to Salinity Vary with Proximity to the Ocean in a Coastal Amphibian.

    PubMed

    Hopkins, Gareth R; Brodie, Edmund D; Neuman-Lee, Lorin A; Mohammadi, Shabnam; Brusch, George A; Hopkins, Zoë M; French, Susannah S

    2016-01-01

    Freshwater organisms are increasingly exposed to elevated salinity in their habitats, presenting physiological challenges to homeostasis. Amphibians are particularly vulnerable to osmotic stress and yet are often subject to high salinity in a variety of inland and coastal environments around the world. Here, we examine the physiological responses to elevated salinity of rough-skinned newts (Taricha granulosa) inhabiting a coastal stream on the Pacific coast of North America and compare the physiological responses to salinity stress of newts living in close proximity to the ocean with those of newts living farther upstream. Although elevated salinity significantly affected the osmotic (body weight, plasma osmolality), stress (corticosterone), and immune (bactericidal ability) responses of newts, animals found closer to the ocean were generally less reactive to salt stress than those found farther upstream. Our results provide possible evidence for some physiological tolerance in this species to elevated salinity in coastal environments. As freshwater environments become increasingly saline and more stressful, understanding the physiological tolerances of vulnerable groups such as amphibians will become increasingly important to our understanding of their abilities to respond, to adapt, and, ultimately, to survive.

  13. Implications of Differential Stress Response Activation Following Non-Frozen Hepatocellular Storage

    PubMed Central

    Corwin, William L.; Baust, John G.; Van Buskirk, Robert G.

    2013-01-01

    Hepatocytes are critical for numerous cell therapies and in vitro investigations. A limiting factor for their use in these applications is the ability to process and preserve them without loss of viability or functionality. Normal rat hepatocytes (NHEPs) and human hepatoma (C3A) cells were stored at either 4°C or 37°C to examine post-processing stress responses. Resveratrol and salubrinal were used during storage to determine how targeted molecular stress pathway modulation would affect cell survival. This study revealed that storage outcome is dependent upon numerous factors including: cell type, storage media, storage length, storage temperature, and chemical modulator. These data implicate a molecular-based stress response that is not universal but is specific to the set of conditions under which cells are stored. Further, these findings allude to the potential for targeted protection or destruction of particular cell types for numerous applications, from diagnostic cell selection to cell-based therapy. Ultimately, this study demonstrates the need for further in-depth molecular investigations into the cellular stress response to bioprocessing and preservation. PMID:24845253

  14. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    PubMed

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  15. Oxytocin differently regulates pressor responses to stress in WKY and SHR rats: the role of central oxytocin and V1a receptors.

    PubMed

    Wsol, A; Szczepanska-Sadowska, E; Kowalewski, S; Puchalska, L; Cudnoch-Jedrzejewska, A

    2014-01-01

    The role of central oxytocin in the regulation of cardiovascular parameters under resting conditions and during acute stress was investigated in male normotensive Wistar-Kyoto (WKY; n = 40) and spontaneously hypertensive rats (SHR; n = 28). In Experiment 1, mean arterial blood pressure (MABP) and heart rate (HR) were recorded in WKY and SHR rats at rest and after an air-jet stressor during intracerebroventricular (ICV) infusions of vehicle, oxytocin or oxytocin receptor (OTR) antagonist. In Experiment 2, the effects of vehicle, oxytocin and OTR antagonist were determined in WKY rats after prior administration of a V1a vasopressin receptor (V1aR) antagonist. Resting MABP and HR were not affected by any of the ICV infusions either in WKY or in SHR rats. In control experiments (vehicle), the pressor response to stress was significantly higher in SHR. Oxytocin enhanced the pressor response to stress in the WKY rats but reduced it in SHR. During V1aR blockade, oxytocin infusion entirely abolished the pressor response to stress in WKY rats. Combined blockade of V1aR and OTR elicited a significantly greater MABP response to stress than infusion of V1a antagonist and vehicle. This study reveals significant differences in the regulation of blood pressure in WKY and SHR rats during alarming stress. Specifically, the augmentation of the pressor response to stress by exogenous oxytocin in WKY rats is caused by its interaction with V1aR, and endogenous oxytocin regulates the magnitude of the pressor response to stress in WKY rats by simultaneous interaction with OTR and V1aR.

  16. Organ-specific proteomics of soybean seedlings under flooding and drought stresses.

    PubMed

    Wang, Xin; Khodadadi, Ehsaneh; Fakheri, Baratali; Komatsu, Setsuko

    2017-06-06

    Organ-specific analyses enrich the understanding of plant growth and development under abiotic stresses. To elucidate the cellular responses in soybean seedlings exposed to flooding and drought stresses, organ-specific analysis was performed using a gel-free/label-free proteomic technique. Physiological analysis indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were markedly increased in leaf and root of plants treated with 6days of flooding and drought stresses, respectively. Proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominately affected in leaf, hypocotyl, and root in response to flooding and drought. Notably, the tricarboxylic acid cycle was suppressed in leaf and root under both stresses. Moreover, 17 proteins, including beta-glucosidase 31 and beta-amylase 5, were identified in soybean seedlings under both stresses. The protein abundances of beta-glucosidase 31 and beta-amylase 5 were increased in leaf and root under both stresses. Additionally, the gene expression of beta-amylase 5 was upregulated in leaf exposed to the flooding and drought, and the expression level was highly correlated with the protein abundance. These results suggest that beta-amylase 5 may be involved in carbohydrate mobilization to provide energy to the leaf of soybean seedlings exposed to flooding and drought. This study examined the effects of flooding and drought on soybean seedlings in different organs using a gel-free/label-free proteomic approach. Physiological responses indicated that enzyme activities of alcohol dehydrogenase and delta-1-pyrroline-5-carboxylate synthase were increased in leaf and root of soybean seedlings exposed to flooding and drought for 6days. Functional analysis of acquired protein profiles exhibited that proteins related to photosynthesis, RNA, DNA, signaling, and the tricarboxylic acid cycle were predominated affected in leaf, hypocotyl, and root under both stresses. Moreover, the tricarboxylic acid cycle was suppressed in leaf and root of stressed soybean seedlings. Additionally, increased protein abundance of beta-amylase 5 was consistent with upregulated gene expression in the leaf under both stresses, suggesting that carbohydrate metabolism might be governed in response to flooding and drought of soybean seedlings. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  18. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit

    PubMed Central

    2014-01-01

    Background Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Results Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. Conclusions This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity of including different developmental stages and especially several daytime points in transcriptomic studies. PMID:24774299

  19. Effects of acute changes in salinity and temperature on routine metabolism and nitrogen excretion in gambusia (Gambusia affinis) and zebrafish (Danio rerio).

    PubMed

    Uliano, E; Cataldi, M; Carella, F; Migliaccio, O; Iaccarino, D; Agnisola, C

    2010-11-01

    Acute stress may affect metabolism and nitrogen excretion as part of the adaptive response that allows animals to face adverse environmental changes. In the present paper the acute effects of different salinities and temperatures on routine metabolism, spontaneous activity and excretion of ammonia and urea were studied in two freshwater fish: gambusia, Gambusia affinis and zebrafish, Danio rerio, acclimated to 27 degrees C. The effects on gill morphology were also evaluated. Five salinities (0 per thousand, 10 per thousand, 20 per thousand, 30 per thousand and 35 per thousand) were tested in gambusia, while four salinities were used in zebrafish (0 per thousand, 10 per thousand, 20 per thousand and 25 per thousand). Each salinity acute stress was tested alone or in combination with an acute temperature reduction to 20 degrees C. In gambusia, both salinity and temperature acute stress strongly stimulated urea excretion. Routine oxygen consumption was barely affected by acute salinity or temperature stress, and was reduced by the combined effects of temperature and high salinity. Gills maintained their structural integrity in all stressing conditions; hyperplasia and hypertrophy of mitochondria-rich cells were observed. In zebrafish, temperature and salinity acute changes, both alone and in combination, scarcely affected any parameter tested. The major effect observed was a reduction of nitrogen excretion at 20 degrees C-25 per thousand; under these extreme conditions a significant structural disruption of gills was observed. These results confirm the high tolerance to acute salinity and temperature stress in gambusia, and demonstrate the involvement of urea excretion modulation in the stress response in this species. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Early sensory over-responsivity in toddlers with autism spectrum disorders as a predictor of family impairment and parenting stress.

    PubMed

    Ben-Sasson, A; Soto, T W; Martínez-Pedraza, F; Carter, A S

    2013-08-01

    Sensory over-responsivity (SOR) affects many individuals with autism spectrum disorders (ASD), often leading to stressful encounters during daily routines. This study describes the associations between early SOR symptoms and the longitudinal course of restrictions in family life activities and parenting stress across three time-points in families raising a child with ASD (n = 174). Covariates were child diagnostic severity, emotional problems, and maternal affective symptoms. At time 1 mean chronological age was 28.5 months. Children were administered the Autism Diagnostic Observation Schedule (ADOS) and Mullen Scales of Early Learning (MSEL). Parents completed the Infant Toddler Sensory Profile (ITSP), Infant-Toddler Social Emotional Assessment (ITSEA), Beck Anxiety Index (BAI), and the Center for Epidemiologic Studies Depression Inventory (CES-D) at time 1; and the Parenting Stress Index (PSI) and Family Life Impairment Scale (FLIS) at the three annual time-points. Latent Growth Curve Models indicated that higher SOR scores on the ITSP at time 1 were associated with higher initial levels of family life impairment and parenting stress and with a smaller magnitude of change over time. These associations were independent of severity of ADOS social-communication symptoms, MSEL composite score, ITSEA externalizing and anxiety symptoms, and maternal affective symptoms as measured by the BAI and CES-D. On average FLIS and PSI did not change over time, however, there was significant individual variability. Concurrently, SOR at time 1 explained 39-45% of the variance in family stress and impairment variables. An evaluation of SOR should be integrated into the assessment of toddlers with ASD considering their role in family life impairment and stress. © 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.

  1. Sex differences in the stress response in SD rats.

    PubMed

    Lu, Jing; Wu, Xue-Yan; Zhu, Qiong-Bin; Li, Jia; Shi, Li-Gen; Wu, Juan-Li; Zhang, Qi-Jun; Huang, Man-Li; Bao, Ai-Min

    2015-05-01

    Sex differences play an important role in depression, the basis of which is an excessive stress response. We aimed at revealing the neurobiological sex differences in the same study in acute- and chronically-stressed rats. Female Sprague-Dawley (SD) rats were randomly divided into 6 groups: chronic unpredictable mild stress (CUMS), acute foot shock (FS) and controls, animals in all 3 groups were sacrificed in proestrus or diestrus. Male SD rats were randomly divided into 3 groups: CUMS, FS and controls. Comparisons were made of behavioral changes in CUMS and control rats, plasma levels of corticosterone (CORT), testosterone (T) and estradiol (E2), and of the hypothalamic mRNA-expression of stress-related molecules, i.e. estrogen receptor α and β, androgen receptor, aromatase, mineralocorticoid receptor, glucocorticoid receptor, corticotropin-releasing hormone, arginine vasopressin and oxytocin. CUMS resulted in disordered estrus cycles, more behavioral and hypothalamic stress-related molecules changes and a stronger CORT response in female rats compared with male rats. Female rats also showed decreased E2 and T levels after FS and CUMS, while male FS rats showed increased E2 and male CUMS rats showed decreased T levels. Stress affects the behavioral, endocrine and the molecular response of the stress systems in the hypothalamus of SD rats in a clear sexual dimorphic way, which has parallels in human data on stress and depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. OsDREB2A, a Rice Transcription Factor, Significantly Affects Salt Tolerance in Transgenic Soybean

    PubMed Central

    Ma, Qi-bin; Yang, Cun-yi; Mu, Ying-hui; Suo, Hai-cui; Luo, Lai-hui; Nian, Hai

    2013-01-01

    The dehydration responsive element binding (DREB) transcription factors play an important role in regulating stress-related genes. OsDREB2A, a member of the DREBP subfamily of AP2/ERF transcription factors in rice (Oryza sativa), is involved in the abiotic stress response. OsDREB2A expression is induced by drought, low-temperature and salt stresses. Here, we report the ability of OsDREB2A to regulate high-salt response in transgenic soybean. Overexpressing OsDREB2A in soybeans enhanced salt tolerance by accumulating osmolytes, such as soluble sugars and free proline, and improving the expression levels of some stress-responsive transcription factors and key genes. The phenotypic characterization of transgenic soybean were significantly better than those of wild-type (WT). Electrophoresis mobility shift assay (EMSA) revealed that the OsDREB2A can bind to the DRE core element in vitro. These results indicate that OsDREB2A may participate in abiotic stress by directly binding with DRE element to regulate the expression of downstream genes. Overexpression of OsDREB2A in soybean might be used to improve tolerance to salt stress. PMID:24376625

  3. The concept of stress in fish

    USGS Publications Warehouse

    Schreck, Carl B.; Tort, Lluis

    2016-01-01

    The general physiological response of fish to threatening situations, as with all vertebrates, is referred to as stress. A stress response is initiated almost immediately following the perception of a stressor. Mildly stressful situations can have beneficial or positive effects (eustress), while higher severities induce adaptive responses but also can have maladaptive or negative consequences (distress). The stress response is initiated and controlled by two hormonal systems, those leading to the production of corticosteroids (mainly cortisol) and catecholamines (such as adrenaline and noradrenaline and their precursor dopamine). Together these regulate the secondary stress response factors that alter the distribution of necessary resources such as energy sources and oxygen to vital areas of the body, as well as compromise hydromineral imbalance and the immune system. If fish can resist death due to a stressor, they recover to a similar or somewhat similar homeostatic norm. Long-term consequences of repeated or prolonged exposures to stress are maladaptive by negatively affecting other necessary life functions (growth, development, disease resistance, behavior, and reproduction), in large part because of the energetic cost associated with mounting the stress response (allostatic load).There is considerable variation in how fish respond to a stressor because of genetic differences among different taxa and also within stocks and species. Variations within the stress response are introduced by the environmental history of the fish, present ambient environmental conditions, and the fish's present physiological condition. Currently, fish physiology has progressed to the point where we can easily recognize when fish are stressed, but we cannot always recognize when fish are unstressed because the lack of clinical signs of stress does not always correspond to fish being unstressed. In other words, we need to be aware of the possibility of false negatives regarding clinical signs of stress. In addition, we cannot use clinical data to precisely or accurately infer severity of a stressor.

  4. Stress responsiveness and anxiety-like behavior: The early social environment differentially shapes stability over time in a small rodent.

    PubMed

    Sangenstedt, Susanne; Jaljuli, Iman; Sachser, Norbert; Kaiser, Sylvia

    2017-04-01

    The early social environment can profoundly affect behavioral and physiological phenotypes. We investigated how male wild cavy offspring, whose mothers had either lived in a stable (SE) or an unstable social environment (UE) during pregnancy and lactation, differed in their anxiety-like behavior and stress responsiveness. At two different time points in life, we tested the offspring's anxiety-like behavior in a dark-light test and their endocrine reaction to challenge in a cortisol reactivity test. Furthermore, we analyzed whether individual traits remained stable over time. There was no effect of the early social environment on anxiety-like behavior and stress responsiveness. However, at an individual level, anxiety-like behavior was stable over time in UE- but not in SE-sons. Stress responsiveness, in turn, was rather inconsistent in UE-sons and temporally stable in SE-sons. Conclusively, we showed for the first time that the early social environment differentially shapes the stability of behavioral and endocrine traits. At first glance, these results may be surprising, but they can be explained by the different functions anxiety-like behavior and stress responsiveness have. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Apple F-Box Protein MdMAX2 Regulates Plant Photomorphogenesis and Stress Response.

    PubMed

    An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2016-01-01

    MAX2 (MORE AXILLARY GROWTH2) is involved in diverse physiological processes, including photomorphogenesis, the abiotic stress response, as well as karrikin and strigolactone signaling-mediated shoot branching. In this study, MdMAX2, an F-box protein that is a homolog of Arabidopsis MAX2, was identified and characterized. Overexpression of MdMAX2 in apple calli enhanced the accumulation of anthocyanin. Ectopic expression of MdMAX2 in Arabidopsis exhibited photomorphogenesis phenotypes, including increased anthocyanin content and decreased hypocotyl length. Further study indicated that MdMAX2 might promote plant photomorphogenesis by affecting the auxin signaling as well as other plant hormones. Transcripts of MdMAX2 were noticeably up-regulated in response to NaCl and Mannitol treatments. Moreover, compared with the wild-type, the MdMAX2 -overexpressing apple calli and Arabidopsis exhibited increased tolerance to salt and drought stresses. Taken together, these results suggest that MdMAX2 plays a positive regulatory role in plant photomorphogenesis and stress response.

  6. Hormonal contraception use alters stress responses and emotional memory.

    PubMed

    Nielsen, Shawn E; Segal, Sabrina K; Worden, Ian V; Yim, Ilona S; Cahill, Larry

    2013-02-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women - one naturally cycling (NC women, n=42) and one using hormonal contraceptives (HC women, n=36) - viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CPS) or a control procedure. One week later, participants received a surprise free recall test. Saliva samples were collected and later assayed for salivary alpha-amylase (biomarker for norepinephrine) and cortisol. Compared to NC women, HC women exhibited significantly blunted stress hormone responses to the images and CPS. Recall of emotional images differed between HC and NC women depending on noradrenergic and cortisol responses. These findings may have important implications for understanding the neurobiology of emotional memory disorders, especially those that disproportionately affect women. Published by Elsevier B.V.

  7. Pre-pubertal stress exposure affects adult behavioral response in association with changes in circulating corticosterone and brain-derived neurotrophic factor.

    PubMed

    Bazak, Noam; Kozlovsky, Nitsan; Kaplan, Zeev; Matar, Michael; Golan, Hava; Zohar, Joseph; Richter-Levin, Gal; Cohen, Hagit

    2009-07-01

    Early-life stress produces a cascade of neurobiological events that cause enduring changes in neural plasticity and synaptic efficacy that appear to play pivotal roles in the pathophysiology of post-traumatic stress disorder (PTSD). Brain-derived neurotrophic factor (BDNF) has been implicated in the neurobiological mechanisms of these changes, in interaction with components of the stress response, such as corticosterone. This study examined the consequences of juvenile stress for behavior during adulthood in association with circulating corticosterone levels and BDNF expression. The experiments examined single exposure to predator scent stress (soiled cat litter for 10 min) as compared to repeated exposure, early in life and later on. Behavioral responses were assessed in the elevated plus maze and the acoustic startle response paradigms at 28, 60 and 90 days of age. Plasma corticosterone was measured and brain areas analyzed for BDNF levels. The results show that juvenile stress exposure increased anxiety-like behavior and startle amplitude and decreased plasma corticosterone. This response was seen immediately after exposure and also long term. Adult stress exposure increased anxiety-like behavior, startle amplitude and plasma corticosterone. Exposure to both early and later life trauma elicited reduced levels of corticosterone following the initial exposure, which were not raised by re-exposure, and elicited significant downregulation of BDNF mRNA and protein levels in the hippocampus CA1 subregion. The consequences of adult stress exposure were more severe in rats were exposed to the same stressor as juveniles, indicated increased vulnerability. The results suggest that juvenile stress has resounding effects in adulthood reflected in behavioral responses. The concomitant changes in BDNF and corticosterone levels may mediate the changes in neural plasticity and synaptic functioning underlying clinical manifestations of PTSD.

  8. Alfalfa Cellulose Synthase Gene Expression under Abiotic Stress: A Hitchhiker’s Guide to RT-qPCR Normalization

    PubMed Central

    Guerriero, Gea; Legay, Sylvain; Hausman, Jean-Francois

    2014-01-01

    Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L.), no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress) at various time points (e.g. 0, 24, 72 and 96 h). We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots), under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses. PMID:25084115

  9. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  10. "The Program Affects Me 'Cause it Gives Away Stress": Urban Students' Qualitative Perspectives on Stress and a School-Based Mindful Yoga Intervention.

    PubMed

    Dariotis, Jacinda K; Cluxton-Keller, Fallon; Mirabal-Beltran, Roxanne; Gould, Laura Feagans; Greenberg, Mark T; Mendelson, Tamar

    School-based mindfulness and yoga studies generally measure stress-related outcomes using quantitative measures. This study answers the following research questions: How do youth define stress and in what ways, if any, was a mindful yoga intervention helpful to youth during stress experiences? To explore youths' own perspectives on stress, stressors in youths' lives, and perceived changes in responses to stress post-intervention, we conducted focus group discussions with 22 middle school students from low-income urban communities following a 16-week mindful yoga intervention. Using thematic analysis, the following three themes emerged: (1) youth conflated stress with negative emotions; (2) peer and family conflicts were common stressors; and (3) youth reported improved impulse control and emotional regulation following the intervention. Study findings have implications for refining intervention content (e.g., discussions of stress), as well as informing the selection and development of quantitative measures for future research on stress and stress responses in urban youth. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Regulation of the reserve carbohydrate metabolism by alkaline pH and calcium in Neurospora crassa reveals a possible cross-regulation of both signaling pathways.

    PubMed

    Virgilio, Stela; Cupertino, Fernanda Barbosa; Ambrosio, Daniela Luz; Bertolini, Maria Célia

    2017-06-09

    Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses. We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium. We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the reserve carbohydrate glycogen and trehalose. We also demonstrated that calcium stress affects the reserve carbohydrate levels and the response to calcium stress may require PAC-3. Considering that the reserve carbohydrate metabolism may be subjected to different signaling pathways control, our data contribute to the understanding of the N. crassa responses under pH and calcium stresses.

  12. Salubrious effects of oxytocin on social stress-induced deficits

    PubMed Central

    Smith, Adam S.; Wang, Zuoxin

    2012-01-01

    Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While social interactions can attenuate stress and promote health, disruption, confrontations, isolation, or neglect in the social environment can each be major stressors. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to mental and physical health. In contrast, social support can ameliorate stress-induced physiological and immunological deficits, reducing the risk of subsequent psychological distress and improving an individual's overall well-being. For better clinical treatment of these physiological and mental pathologies, it is necessary to understand the regulatory mechanisms of stress-induced pathologies as well as determine the underlying biological mechanisms that regulate social buffering of the stress system. A number of ethologically relevant animal models of social stress and species that form strong adult social bonds have been utilized to study the etiology, treatment, and prevention of stress-related disorders. While undoubtedly a number of biological pathways contribute to the social buffering of the stress response, the convergence of evidence denotes the regulatory effects of oxytocin in facilitating social bond-promoting behaviors and their effect on the stress response. Thus, oxytocin may be perceived as a common regulatory element of the social environment, stress response, and stress-induced risks on mental and physical health. PMID:22178036

  13. Interaction of flooding and salinity stress on baldcypress (Taxodium distichum)

    USGS Publications Warehouse

    Allen, J.A.; Pezeshki, S.R.; Chambers, J.L.

    1996-01-01

    Coastal wetlands of the southeastern United States are threatened by increases in flooding and salinity as a result of both natural processes and man-induced hydrologic alterations. Furthermore, global climate change scenarios suggest that, as a consequence of rising sea levels, much larger areas of coastal wetlands may be affected by flooding and salinity in the next 50 to 100 years. In this paper, we review studies designed to improve our ability to predict and ameliorate the impacts of increased flooding and salinity stress on baldcypress (Taxodium distichum (L.) Rich.), which is a dominant species of many coastal forested wetlands. Specifically, we review studies on species-level responses to flooding and salinity stress, alone and in combination, we summarize two studies on intraspecific variation in response to flooding and salinity stress, we analyze the physiological mechanisms thought to be responsible for the interaction between flooding and salinity stress, and we discuss the implications for coastal wetland loss and the prospects for developing salt-tolerant lines of baldcypress.

  14. Acute psychological stress increases plasma levels of cortisol, prolactin and TSH.

    PubMed

    Schedlowski, M; Wiechert, D; Wagner, T O; Tewes, U

    1992-01-01

    The effects of acute stress during a parachute jump on hormonal responses were studied in 12 experienced and 11 inexperienced military parachutists. Each subject performed two jumps. Prior to and immediately after each jump blood samples were drawn and analysed for plasma levels of cortisol, prolactin, thyrotropin (TSH), somatotropin (STH), and luteinizing hormone (LH). While there was a significant increase in cortisol, prolactin and TSH levels after both jumps, no alterations could be observed in STH and LH levels. Stress-induced hormonal responses were not affected by jump experience. There was also no association between the endocrine variables and anxiety scores.

  15. Physiological and affective reactivity to a 35% CO₂ inhalation challenge in individuals differing in the 5-HTTLPR genotype and trait neuroticism.

    PubMed

    Verschoor, Ellen; Markus, C Rob

    2012-08-01

    The inhalation of 35% carbon dioxide (CO₂) results in an acute stress response in healthy individuals and may accordingly provide a good paradigm to examine potential vulnerability factors for stress reactivity and stress-related psychopathology. It has been proposed that CO₂ reactivity is moderated by genetic (5-HTTLPR) and personality (neuroticism) factors, yet no experimental study has investigated their effects on CO₂ reactivity simultaneously. The current study examined the singular and interactive effects of the 5-HTTLPR genotype and neuroticism in predicting the affective and physiological response to a 35% CO₂ challenge in a healthy sample of male and female students. From a large group of 771 students, 48 carriers of the low/low expressing allele (S/S, S/Lg, Lg/Lg) and 48 carriers of the high/high expressing allele (La/La) with the lowest and the highest neuroticism scores (77 females, 19 males; mean age ± SD: 20.6 ± 2 years) were selected and underwent a 35% CO₂ inhalation. Visual analogue scales for anxiety and discomfort and the Panic Symptom List were used to assess affective symptomatology, while salivary samples and heart rate were assessed to establish the physiological response. A typical pattern of responses to CO₂ was observed, characterised by increases in anxiogenic symptoms and physical panic symptomatology and a reduction in heart rate; however, no effect on salivary cortisol concentration was observed. Additionally, the CO₂ reactivity did not differ between groups divided by the 5-HTTLPR genotype or neuroticism. Findings of the current study do not support a role for singular or interactive effects of the 5-HTTLPR genotype and trait neuroticism on affective and physiological reactivity to a 35% CO₂ inhalation procedure. Copyright © 2011 Elsevier B.V. and ECNP. All rights reserved.

  16. Sleep restriction undermines cardiovascular adaptation during stress, contingent on emotional stability.

    PubMed

    Lü, Wei; Hughes, Brian M; Howard, Siobhán; James, Jack E

    2018-02-01

    Sleep loss is associated with increased cardiovascular disease, but physiological mechanisms accounting for this relationship are largely unknown. One possible mechanism is that sleep restriction exerts effects on cardiovascular stress responses, and that these effects vary between individuals. Emotional stability (ES) is a personality trait pertinent to sleep restriction and stress responding. However, no study to date has explored how ES and sleep-restriction interactively affect cardiovascular stress responses or processes of adaptation during stress. The present study sought to investigate the association between ES and impact of sleep restriction on cardiovascular function during stress, with particular regard to the trajectory of cardiovascular function change across time. Ninety female university students completed a laboratory vigilance stress task while undergoing continuous cardiovascular (SBP, DBP, HR, SV, CO, TPR) monitoring, after either a night of partial sleep restriction (40% of habitual sleep duration) or a full night's rest. Individuals high in ES showed stable and adaptive cardiovascular (SBP, SV, CO) responses throughout stress exposure, regardless of sleep. In contrast, individuals low in ES exhibited cardiovascular adaptation during stress exposure while rested, but disrupted adaption while sleep-restricted. These findings suggest that sleep-restriction undermines healthful cardiovascular adaptation to stress for individuals low in ES. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Transcript Profiling Reveals the Presence of Abiotic Stress and Developmental Stage Specific Ascorbate Oxidase Genes in Plants

    PubMed Central

    Batth, Rituraj; Singh, Kapil; Kumari, Sumita; Mustafiz, Ananda

    2017-01-01

    Abiotic stress and climate change is the major concern for plant growth and crop yield. Abiotic stresses lead to enhanced accumulation of reactive oxygen species (ROS) consequently resulting in cellular damage and major losses in crop yield. One of the major scavengers of ROS is ascorbate (AA) which acts as first line of defense against external oxidants. An enzyme named ascorbate oxidase (AAO) is known to oxidize AA and deleteriously affect the plant system in response to stress. Genome-wide analysis of AAO gene family has led to the identification of five, three, seven, four, and six AAO genes in Oryza sativa, Arabidopsis, Glycine max, Zea mays, and Sorghum bicolor genomes, respectively. Expression profiling of these genes was carried out in response to various abiotic stresses and during various stages of vegetative and reproductive development using publicly available microarray database. Expression analysis in Oryza sativa revealed tissue specific expression of AAO genes wherein few members were exclusively expressed in either root or shoot. These genes were found to be regulated by both developmental cues as well as diverse stress conditions. The qRT-PCR analysis in response to salinity and drought stress in rice shoots revealed OsAAO2 to be the most stress responsive gene. On the other hand, OsAAO3 and OsAAO4 genes showed enhanced expression in roots under salinity/drought stresses. This study provides lead about important stress responsive AAO genes in various crop plants, which could be used to engineer climate resilient crop plants. PMID:28261251

  18. Revealing the cerebral regions and networks mediating vulnerability to depression: oxidative metabolism mapping of rat brain.

    PubMed

    Harro, Jaanus; Kanarik, Margus; Kaart, Tanel; Matrov, Denis; Kõiv, Kadri; Mällo, Tanel; Del Río, Joaquin; Tordera, Rosa M; Ramirez, Maria J

    2014-07-01

    The large variety of available animal models has revealed much on the neurobiology of depression, but each model appears as specific to a significant extent, and distinction between stress response, pathogenesis of depression and underlying vulnerability is difficult to make. Evidence from epidemiological studies suggests that depression occurs in biologically predisposed subjects under impact of adverse life events. We applied the diathesis-stress concept to reveal brain regions and functional networks that mediate vulnerability to depression and response to chronic stress by collapsing data on cerebral long term neuronal activity as measured by cytochrome c oxidase histochemistry in distinct animal models. Rats were rendered vulnerable to depression either by partial serotonergic lesion or by maternal deprivation, or selected for a vulnerable phenotype (low positive affect, low novelty-related activity or high hedonic response). Environmental adversity was brought about by applying chronic variable stress or chronic social defeat. Several brain regions, most significantly median raphe, habenula, retrosplenial cortex and reticular thalamus, were universally implicated in long-term metabolic stress response, vulnerability to depression, or both. Vulnerability was associated with higher oxidative metabolism levels as compared to resilience to chronic stress. Chronic stress, in contrast, had three distinct patterns of effect on oxidative metabolism in vulnerable vs. resilient animals. In general, associations between regional activities in several brain circuits were strongest in vulnerable animals, and chronic stress disrupted this interrelatedness. These findings highlight networks that underlie resilience to stress, and the distinct response to stress that occurs in vulnerable subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Distinct Redox Regulation in Sub-Cellular Compartments in Response to Various Stress Conditions in Saccharomyces cerevisiae

    PubMed Central

    Ayer, Anita; Sanwald, Julia; Pillay, Bethany A.; Meyer, Andreas J.; Perrone, Gabriel G.; Dawes, Ian W.

    2013-01-01

    Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (−340 to −350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H+/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions. PMID:23762325

  20. Tissue-Specific Transcriptomics Reveals an Important Role of the Unfolded Protein Response in Maintaining Fertility upon Heat Stress in Arabidopsis

    PubMed Central

    Zhang, Shuang-Shuang; Yang, Hongxing; Ding, Lan; Song, Ze-Ting; Ma, Hong; Chang, Fang

    2017-01-01

    High temperatures have a great impact on plant reproductive development and subsequent fruit and seed set, but the underlying molecular mechanisms are not well understood. We used transcriptome profiling to investigate the effect of heat stress on reproductive development of Arabidopsis thaliana plants and observed distinct response patterns in vegetative versus reproductive tissues. Exposure to heat stress affected reproductive developmental programs, including early phases of anther/ovule development and meiosis. Also, genes participating in the unfolded protein response (UPR) were enriched in the reproductive tissue-specific genes that were upregulated by heat. Moreover, we found that the UPR-deficient bzip28 bzip60 double mutant was sensitive to heat stresses and had reduced silique length and fertility. Comparison of heat-responsive wild type versus bzip28 bzip60 plants identified 521 genes that were regulated by bZIP28 and bZIP60 upon heat stress during reproductive stages, most of which were noncanonical UPR genes. Chromatin immunoprecipitation coupled with high-throughput sequencing analyses revealed 133 likely direct targets of bZIP28 in Arabidopsis seedlings subjected to heat stress, including 27 genes that were also upregulated by heat during reproductive development. Our results provide important insights into heat responsiveness in Arabidopsis reproductive tissues and demonstrate the protective roles of the UPR for maintaining fertility upon heat stress. PMID:28442596

  1. Effects of two dominance manipulations on the stress response: Cognitive and embodied influences.

    PubMed

    Deuter, Christian Eric; Schächinger, Hartmut; Best, Daniel; Neumann, Roland

    2016-09-01

    In response to stress, physiological and mental resources are allocated towards those systems that are needed for rapid responding in terms of fight or flight. On the other hand, long term regenerative processes such as growth, digestion and reproduction are attenuated. Levels of the sex steroid testosterone are reduced in participants that suffer from chronic stress. However, beyond its role for reproductive functions, testosterone plays an important role in the regulation of social status and dominance, testosterone levels increase during competition or when the social status is challenged. The Trier Social Stress Test (TSST), a laboratory stressor with a substantial social-evaluative component, can provoke an increase in salivary testosterone levels. Still, so far the reported findings regarding acute stress effects on testosterone are equivocal, possibly due to moderating effects. In this study we experimentally manipulated social dominance in 56 healthy participants (28m) by two independent manipulations (body posture and cognitive role taking) and subjected them to the TSST. We analyzed salivary testosterone and cortisol levels as dependent measures for the endocrine stress response. The role taking manipulation interacted with the testosterone response: we found the strongest increase when participants had to put themselves in a dominant (vs. submissive) role. Our results suggest that transient changes in testosterone levels during stress reflect a response to status threat that is affected by social dominance. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Stress enables reinforcement-elicited serotonergic consolidation of fear memory

    PubMed Central

    Baratta, Michael V.; Kodandaramaiah, Suhasa B.; Monahan, Patrick E.; Yao, Junmei; Weber, Michael D.; Lin, Pei-Ann; Gisabella, Barbara; Petrossian, Natalie; Amat, Jose; Kim, Kyungman; Yang, Aimei; Forest, Craig R.; Boyden, Edward S.; Goosens, Ki A.

    2015-01-01

    Background Prior exposure to stress is a risk factor for developing post-traumatic stress disorder (PTSD) in response to trauma, yet the mechanisms by which this occurs are unclear. Using a rodent model of stress-based susceptibility to PTSD, we investigated the role of serotonin in this phenomenon. Methods Adult mice were exposed to repeated immobilization stress or handling, and the role of serotonin in subsequent fear learning was assessed using pharmacological manipulation and western blot detection of serotonin receptors, measurements of serotonin, high-speed optogenetic silencing, and behavior. Results Both dorsal raphe serotonergic activity during aversive reinforcement and amygdala serotonin 2c receptor (5-HT2CR) activity during memory consolidation are necessary for stress enhancement of fear memory, but neither process affects fear memory in unstressed mice. Additionally, prior stress increases amygdala sensitivity to serotonin by promoting surface expression of 5-HT2CR without affecting tissue levels of serotonin in the amygdala. We also show that the serotonin that drives stress enhancement of associative cued fear memory can arise from paired or unpaired footshock, an effect not predicted by theoretical models of associative learning. Conclusion Stress bolsters the consequences of aversive reinforcement, not by simply enhancing the neurobiological signals used to encode fear in unstressed animals, but rather by engaging distinct mechanistic pathways. These results reveal that predictions from classical associative learning models do not always hold for stressed animals, and suggest that 5-HT2CR blockade may represent a promising therapeutic target for psychiatric disorders characterized by excessive fear responses such as that observed in PTSD. PMID:26248536

  3. True or false? Memory is differentially affected by stress-induced cortisol elevations and sympathetic activity at consolidation and retrieval.

    PubMed

    Smeets, Tom; Otgaar, Henry; Candel, Ingrid; Wolf, Oliver T

    2008-11-01

    Adrenal stress hormones released in response to acute stress may yield memory-enhancing effects when released post-learning and impairing effects at memory retrieval, especially for emotional memory material. However, so far these differential effects of stress hormones on the various memory phases for neutral and emotional memory material have not been demonstrated within one experiment. This study investigated whether, in line with their effects on true memory, stress and stress-induced adrenal stress hormones affect the encoding, consolidation, and retrieval of emotional and neutral false memories. Participants (N=90) were exposed to a stressor before encoding, during consolidation, before retrieval, or were not stressed and then were subjected to neutral and emotional versions of the Deese-Roediger-McDermott word list learning paradigm. Twenty-four hours later, recall of presented words (true recall) and non-presented critical lure words (false recall) was assessed. Results show that stress exposure resulted in superior true memory performance in the consolidation stress group and reduced true memory performance in the retrieval stress group compared to the other groups, predominantly for emotional words. These memory-enhancing and memory-impairing effects were strongly related to stress-induced cortisol and sympathetic activity measured via salivary alpha-amylase levels. Neutral and emotional false recall, on the other hand, was neither affected by stress exposure, nor related to cortisol and sympathetic activity following stress. These results demonstrate the importance of stress-induced hormone-related activity in enhancing memory consolidation and in impairing memory retrieval, in particular for emotional memory material.

  4. Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves

    PubMed Central

    Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco

    2015-01-01

    Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. PMID:25324298

  5. Maternal deprivation affects the neuromuscular protein profile of the rat colon in response to an acute stressor later in life.

    PubMed

    Lopes, Luísa V; Marvin-Guy, Laure F; Fuerholz, Andreas; Affolter, Michael; Ramadan, Ziad; Kussmann, Martin; Fay, Laurent B; Bergonzelli, Gabriela E

    2008-04-30

    Early life stress as neonatal maternal deprivation (MD) predisposes rats to alter gut functions in response to acute psychological stressors in adulthood, mimicking features of irritable bowel syndrome (IBS). We applied proteomics to investigate whether MD permanently changes the protein profile of the external colonic neuromuscular layer that may condition the molecular response to an acute stressor later in life. Male rat pups were separated 3 h/day from their mothers during the perinatal period and further submitted to water avoidance (WA) stress during adulthood. Proteins were extracted from the myenteric plexus-longitudinal muscle of control (C), WA and MD+WA rat colon, separated on 2D gels, and identified by mass spectrometry. MD amplified the WA-induced protein changes involved in muscle contractile function, suggesting that stress accumulation along life imbalances the muscle tone towards hypercontractility. Our results also propose a stress dependent regulation of gluconeogenesis. Secretogranin II - the secretoneurin precursor - was induced by MD. The presence of secretoneurin in myenteric ganglia may partially explain the stress-mediated modulation of gastrointestinal motility and/or mucosal inflammation previously described in MD rats. In conclusion, our findings suggest that neonatal stress alters the responses to acute stress in adulthood in intestinal smooth muscle and enteric neurons.

  6. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea

    PubMed Central

    Garg, Rohini; Shankar, Rama; Thakkar, Bijal; Kudapa, Himabindu; Krishnamurthy, Lakshmanan; Mantri, Nitin; Varshney, Rajeev K.; Bhatia, Sabhyata; Jain, Mukesh

    2016-01-01

    Drought and salinity are the major factors that limit chickpea production worldwide. We performed whole transcriptome analyses of chickpea genotypes to investigate the molecular basis of drought and salinity stress response/adaptation. Phenotypic analyses confirmed the contrasting responses of the chickpea genotypes to drought or salinity stress. RNA-seq of the roots of drought and salinity related genotypes was carried out under control and stress conditions at vegetative and/or reproductive stages. Comparative analysis of the transcriptomes revealed divergent gene expression in the chickpea genotypes at different developmental stages. We identified a total of 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-tolerant genotypes, respectively. A significant fraction (~47%) of the transcription factor encoding genes showed differential expression under stress. The key enzymes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein modification, redox homeostasis and cell wall component biogenesis, were affected by drought and/or salinity stresses. Interestingly, transcript isoforms showed expression specificity across the chickpea genotypes and/or developmental stages as illustrated by the AP2-EREBP family members. Our findings provide insights into the transcriptome dynamics and components of regulatory network associated with drought and salinity stress responses in chickpea. PMID:26759178

  7. Zinc Excess Triggered Polyamines Accumulation in Lettuce Root Metabolome, As Compared to Osmotic Stress under High Salinity

    PubMed Central

    Rouphael, Youssef; Colla, Giuseppe; Bernardo, Letizia; Kane, David; Trevisan, Marco; Lucini, Luigi

    2016-01-01

    Abiotic stresses such as salinity and metal contaminations are the major environmental stresses that adversely affect crop productivity worldwide. Crop responses and tolerance to abiotic stress are complex processes for which “-omic” approaches such as metabolomics is giving us a newest view of biological systems. The aim of the current research was to assess metabolic changes in lettuce (Lactuca sativa L.), by specifically probing the root metabolome of plants exposed to elevated isomolar concentrations of NaCl and ZnSO4. Most of the metabolites that were differentially accumulated in roots were identified for stress conditions, however the response was more intense in plants exposed to NaCl. Compounds identified in either NaCl or ZnSO4 conditions were: carbohydrates, phenolics, hormones, glucosinolates, and lipids. Our findings suggest that osmotic stress and the consequent redox imbalance play a major role in determining lettuce root metabolic response. In addition, it was identified that polyamines and polyamine conjugates were triggered as a specific response to ZnSO4. These findings help improve understanding of how plants cope with abiotic stresses. This information can be used to assist decision-making in breeding programs for improving crop tolerance to salinity and heavy metal contaminations. PMID:27375675

  8. Proteometabolomic response of Deinococcus radiodurans exposed to UVC and vacuum conditions: Initial studies prior to the Tanpopo space mission.

    PubMed

    Ott, Emanuel; Kawaguchi, Yuko; Kölbl, Denise; Chaturvedi, Palak; Nakagawa, Kazumichi; Yamagishi, Akihiko; Weckwerth, Wolfram; Milojevic, Tetyana

    2017-01-01

    The multiple extremes resistant bacterium Deinococcus radiodurans is able to withstand harsh conditions of simulated outer space environment. The Tanpopo orbital mission performs a long-term space exposure of D. radiodurans aiming to investigate the possibility of interplanetary transfer of life. The revealing of molecular machinery responsible for survivability of D. radiodurans in the outer space environment can improve our understanding of underlying stress response mechanisms. In this paper, we have evaluated the molecular response of D. radiodurans after the exposure to space-related conditions of UVC irradiation and vacuum. Notably, scanning electron microscopy investigations showed that neither morphology nor cellular integrity of irradiated cells was affected, while integrated proteomic and metabolomic analysis revealed numerous molecular alterations in metabolic and stress response pathways. Several molecular key mechanisms of D. radiodurans, including the tricarboxylic acid cycle, the DNA damage response systems, ROS scavenging systems and transcriptional regulators responded in order to cope with the stressful situation caused by UVC irradiation under vacuum conditions. These results reveal the effectiveness of the integrative proteometabolomic approach as a tool in molecular analysis of microbial stress response caused by space-related factors.

  9. Proteometabolomic response of Deinococcus radiodurans exposed to UVC and vacuum conditions: Initial studies prior to the Tanpopo space mission

    PubMed Central

    Ott, Emanuel; Kawaguchi, Yuko; Kölbl, Denise; Chaturvedi, Palak; Nakagawa, Kazumichi; Yamagishi, Akihiko; Weckwerth, Wolfram

    2017-01-01

    The multiple extremes resistant bacterium Deinococcus radiodurans is able to withstand harsh conditions of simulated outer space environment. The Tanpopo orbital mission performs a long-term space exposure of D. radiodurans aiming to investigate the possibility of interplanetary transfer of life. The revealing of molecular machinery responsible for survivability of D. radiodurans in the outer space environment can improve our understanding of underlying stress response mechanisms. In this paper, we have evaluated the molecular response of D. radiodurans after the exposure to space-related conditions of UVC irradiation and vacuum. Notably, scanning electron microscopy investigations showed that neither morphology nor cellular integrity of irradiated cells was affected, while integrated proteomic and metabolomic analysis revealed numerous molecular alterations in metabolic and stress response pathways. Several molecular key mechanisms of D. radiodurans, including the tricarboxylic acid cycle, the DNA damage response systems, ROS scavenging systems and transcriptional regulators responded in order to cope with the stressful situation caused by UVC irradiation under vacuum conditions. These results reveal the effectiveness of the integrative proteometabolomic approach as a tool in molecular analysis of microbial stress response caused by space-related factors. PMID:29244852

  10. Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas.

    PubMed

    Timmins-Schiffman, Emma; Coffey, William D; Hua, Wilber; Nunn, Brook L; Dickinson, Gary H; Roberts, Steven B

    2014-11-03

    Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end-of-century open ocean pH reductions. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different p CO2 levels for four weeks: 400 μatm (pH 8.0), 800 μatm (pH 7.7), 1000 μatm (pH 7.6), or 2800 μatm (pH 7.3). At the end of the four week exposure period, oysters in all four p CO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated p CO2. Elevated p CO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with p CO2, with numerous processes significantly affected by mechanical stimulation at high versus low p CO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Oyster physiology is significantly altered by exposure to elevated p CO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of p CO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.

  11. Childhood trauma, psychosis liability and social stress reactivity: a virtual reality study.

    PubMed

    Veling, W; Counotte, J; Pot-Kolder, R; van Os, J; van der Gaag, M

    2016-12-01

    Childhood trauma is associated with higher risk for mental disorders, including psychosis. Heightened sensitivity to social stress may be a mechanism. This virtual reality study tested the effect of childhood trauma on level of paranoid ideations and distress in response to social stress, in interaction with psychosis liability and level of social stress exposure. Seventy-five individuals with higher psychosis liability (55 with recent onset psychotic disorder and 20 at ultra-high risk for psychosis) and 95 individuals with lower psychosis liability (42 siblings and 53 controls) were exposed to a virtual café in five experiments with 0-3 social stressors (crowded, other ethnicity and hostility). Paranoid ideation was measured after each experiment. Subjective distress was self-rated before and after experiments. Multilevel random regression analyses were used to test main effects of childhood trauma and interaction effects. Childhood trauma was more prevalent in individuals with higher psychosis liability, and was associated with higher level of (subclinical) psychotic and affective symptoms. Individuals with a history of childhood trauma responded with more subjective distress to virtual social stress exposures. The effects of childhood trauma on paranoia and subjective distress were significantly stronger when the number of virtual environmental stressors increased. Higher psychosis liability increased the effect of childhood trauma on peak subjective distress and stress reactivity during experiments. Childhood trauma is associated with heightened social stress sensitivity and may contribute to psychotic and affective dysregulation later in life, through a sensitized paranoid and stress response to social stressors.

  12. Patterns of Sympathetic Responses Induced by Different Stress Tasks

    PubMed Central

    Fechir, M; Schlereth, T; Purat, T; Kritzmann, S; Geber, C; Eberle, T; Gamer, M; Birklein, F

    2008-01-01

    Stress tasks are used to induce sympathetic nervous system (SNS) arousal. However, the efficacy and the patterns of SNS activation have not been systematically compared between different tasks. Therefore, we analyzed SNS activation during the following stress tasks: Presentation of negative, positive, and – as a control – neutral affective pictures, Color-Word interference test (CWT), mental arithmetic under time limit, singing a song aloud, and giving a spontaneous talk. We examined 11 healthy subjects and recorded the following SNS parameters: Activation of emotional sweating by quantitative sudometry, skin vasoconstriction by laser-Doppler flowmetry, heart rate by ECG, blood pressure by determination of pulse wave transit time (PWTT), and electromyographic (EMG) activity of the trapezius muscle. Moreover, subjective stress ratings were acquired for each task using a visual analog scale. All tasks were felt significantly stressful when compared to viewing neutral pictures. However, SNS activation was not reliable: Affective pictures did not induce a significant SNS response; singing, giving a talk and mental arithmetic selectively increased heart rate and emotional sweating. Only the CWT globally activated the SNS. Regarding all tasks, induction of emotional sweating, increase of heart rate and blood pressure significantly correlated with subjective stress ratings, in contrast to EMG and skin vasoconstriction. Our results show that the activation of the SNS widely varies depending on the stress task. Different stress tasks differently activate the SNS, which is an important finding when considering sympathetic reactions - in clinical situations and in research. PMID:19018304

  13. A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism

    PubMed Central

    Kempa, Stefan; Krasensky, Julia; Dal Santo, Silvia; Kopka, Joachim; Jonak, Claudia

    2008-01-01

    Background Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA) plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. Principal Findings Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. Significance These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology. PMID:19081841

  14. A multispecies approach for understanding neuroimmune mechanisms of stress

    PubMed Central

    Deak, Terrence; Kudinova, Anastacia; Lovelock, Dennis F.; Gibb, Brandon E.; Hennessy, Michael B.

    2017-01-01

    The relationship between stress challenges and adverse health outcomes, particularly for the development of affective disorders, is now well established. The highly conserved neuroimmune mechanisms through which responses to stressors are transcribed into effects on males and females have recently garnered much attention from researchers and clinicians alike. The use of animal models, from mice to guinea pigs to primates, has greatly increased our understanding of these mechanisms on the molecular, cellular, and behavioral levels, and research in humans has identified particular brain regions and connections of interest, as well as associations between stress-induced inflammation and psychiatric disorders. This review brings together findings from multiple species in order to better understand how the mechanisms of the neuroimmune response to stress contribute to stress-related psychopathologies, such as major depressive disorder, schizophrenia, and bipolar disorder. PMID:28566946

  15. A multispecies approach for understanding neuroimmune mechanisms of stress.

    PubMed

    Deak, Terrence; Kudinova, Anastacia; Lovelock, Dennis F; Gibb, Brandon E; Hennessy, Michael B

    2017-03-01

    The relationship between stress challenges and adverse health outcomes, particularly for the development of affective disorders, is now well established. The highly conserved neuroimmune mechanisms through which responses to stressors are transcribed into effects on males and females have recently garnered much attention from researchers and clinicians alike. The use of animal models, from mice to guinea pigs to primates, has greatly increased our understanding of these mechanisms on the molecular, cellular, and behavioral levels, and research in humans has identified particular brain regions and connections of interest, as well as associations between stress-induced inflammation and psychiatric disorders. This review brings together findings from multiple species in order to better understand how the mechanisms of the neuroimmune response to stress contribute to stress-related psychopathologies, such as major depressive disorder, schizophrenia, and bipolar disorder.

  16. Experience Modulates the Reproductive Response to Heat Stress in C. elegans via Multiple Physiological Processes

    PubMed Central

    Gouvêa, Devin Y.; Aprison, Erin Z.; Ruvinsky, Ilya

    2015-01-01

    Natural environments are considerably more variable than laboratory settings and often involve transient exposure to stressful conditions. To fully understand how organisms have evolved to respond to any given stress, prior experience must therefore be considered. We investigated the effects of individual and ancestral experience on C. elegans reproduction. We documented ways in which cultivation at 15°C or 25°C affects developmental time, lifetime fecundity, and reproductive performance after severe heat stress that exceeds the fertile range of the organism but is compatible with survival and future fecundity. We found that experience modulates multiple aspects of reproductive physiology, including the male and female germ lines and the interaction between them. These responses vary in their environmental sensitivity, suggesting the existence of complex mechanisms for coping with unpredictable and stressful environments. PMID:26713620

  17. Individual differences in fear extinction and anxiety-like behavior

    PubMed Central

    King, Gabrielle; Scott, Elliot; Graham, Bronwyn M.; Richardson, Rick

    2017-01-01

    There is growing appreciation for the substantial individual differences in the acquisition and inhibition of aversive associations, and the insights this might give into identifying individuals particularly vulnerable to stress and psychopathology. We examined whether animals that differed in rate of extinction (i.e., Fast versus Slow) were different in their response to an acute stress in adulthood or following a chronic stress that occurred either early or later in life. We found that Slow Extinguishers had significantly poorer extinction retention than Fast Extinguishers, but an acute stressor did not differentially affect anxiety-like behavior in the two groups. Further, while exposure to chronic stress in adulthood did not impact on the extinction phenotypes or anxiety-like behavior, exposure to chronic stress early in life affected both extinction retention and anxiety-like behavior. These findings have implications for the development of a more nuanced approach to identifying those most at risk of anxiety disorders. PMID:28416629

  18. Oxidative stress negatively affects human sperm mitochondrial respiration.

    PubMed

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Improvements in Resilience, Stress, and Somatic Symptoms Following Online Resilience Training

    PubMed Central

    Smith, Brad; Shatté, Andrew; Perlman, Adam; Siers, Michael; Lynch, Wendy D.

    2018-01-01

    Objective: To determine if participation in an online resilience program impacts resilience, stress, and somatic symptoms. Methods: Approximately 600 enrollees in the meQuilibrium resilience program received a series of brief, individually prescribed video, and text training modules in a user-friendly format. Regression models tested how time in the program affected change in resilience from baseline and how changes in resilience affected change in stress and reported symptoms. Results: A significant dose–response was detected, where increases in the time spent in training corresponded to greater improvements in resilience. Degree of change in resilience predicted the magnitude of reduction in stress and symptoms. Participants with the lowest resilience level at baseline experienced greater improvements. Conclusion: Interaction with the online resilience training program had a positive effect on resilience, stress, and symptoms in proportion to the time of use. PMID:28820863

  20. An Experimental Study on the Effectiveness of Disclosing Stressful Life Events and Support Messages: When Cognitive Reappraisal Support Decreases Emotional Distress, and Emotional Support Is Like Saying Nothing at All

    PubMed Central

    Batenburg, Anika; Das, Enny

    2014-01-01

    How can we best support others in difficult times? Studies testing the effects of supportive communication revealed mixed findings. The current study focuses on the effects of supportive communication following different disclosure styles, and includes outcome measures to assess emotional well-being. Hypotheses were tested in a 2 (disclosure style: cognitive reappraisal disclosure vs. emotional disclosure) ×3 (support message: cognitive reappraisal response vs. socio-affective response vs. no response) between subjects factorial design. Receiving a cognitive reappraisal response, rather than a socio-affective response or no response, decreased emotional distress in the emotional disclosure group. Support messages showed no effects in the cognitive reappraisal disclosure group. Although socio-affective responses were positively evaluated, cognitive reappraisal responses may be more effective during emotional upheaval because they provide a positive way out of negative emotions. PMID:25531509

  1. Mother-Child Interactions during Medical Examinations.

    ERIC Educational Resources Information Center

    Bush, Joseph P.; Melamed, Barbara G.

    To determine how parent behaviors affect children's anxiety and coping responses, and to assess how children's behaviors affect parental functioning in stressful medical settings, 50 children between 4 and 10 years of age, who were seen as outpatients in the Pediatric Clinics at Shands Teaching Hospital at the Unviersity of Florida, were…

  2. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis.

    PubMed

    Chen, Mei; Mishra, Sasmita; Heckathorn, Scott A; Frantz, Jonathan M; Krause, Charles

    2014-02-15

    Boron (B) stress (deficiency and toxicity) is common in plants, but as the functions of this essential micronutrient are incompletely understood, so too are the effects of B stress. To investigate mechanisms underlying B stress, we examined protein profiles in leaves of Arabidopsis thaliana plants grown under normal B (30 μM), compared to plants transferred for 60 and 84 h (i.e., before and after initial visible symptoms) in deficient (0 μM) or toxic (3 mM) levels of B. B-responsive polypeptides were sequenced by mass spectrometry, following 2D gel electrophoresis, and 1D gels and immunoblotting were used to confirm the B-responsiveness of some of these proteins. Fourteen B-responsive proteins were identified, including: 9 chloroplast proteins, 6 proteins of photosynthetic/carbohydrate metabolism (rubisco activase, OEC23, photosystem I reaction center subunit II-1, ATPase δ-subunit, glycolate oxidase, fructose bisphosphate aldolase), 6 stress proteins, and 3 proteins involved in protein synthesis (note that the 14 proteins may fall into multiple categories). Most (8) of the B-responsive proteins decreased under both B deficiency and toxicity; only 3 increased with B stress. Boron stress decreased, or had no effect on, 3 of 4 oxidative stress proteins examined, and did not affect total protein. Hence, our results indicate relatively early specific effects of B stress on chloroplasts and protein synthesis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters

    PubMed Central

    Mishra, Avinash; Tanna, Bhakti

    2017-01-01

    Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase), ion channels (Cl−, Ca2+, aquaporins), antioxidant encoding genes (APX, CAT, GST, BADH, SOD) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering. PMID:28572812

  4. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters.

    PubMed

    Mishra, Avinash; Tanna, Bhakti

    2017-01-01

    Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile , and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters ( NHX, SOS, HKT, VTPase ), ion channels (Cl - , Ca 2+ , aquaporins), antioxidant encoding genes ( APX, CAT, GST, BADH, SOD ) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  5. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage.

    PubMed

    Ji, Cheng

    2015-06-03

    Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries.

  6. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity.

    PubMed

    Oyola, Mario G; Handa, Robert J

    2017-09-01

    Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism's response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic-pituitary-gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life.

  7. Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: sex differences in regulation of stress responsivity

    PubMed Central

    Oyola, Mario G.; Handa, Robert J.

    2018-01-01

    Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic–pituitary–adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism’s response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic–pituitary–gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life. PMID:28859530

  8. Chronic stress inhibits growth and induces proteolytic mechanisms through two different nonoverlapping pathways in the skeletal muscle of a teleost fish.

    PubMed

    Valenzuela, Cristián A; Zuloaga, Rodrigo; Mercado, Luis; Einarsdottir, Ingibjörg Eir; Björnsson, Björn Thrandur; Valdés, Juan Antonio; Molina, Alfredo

    2018-01-01

    Chronic stress detrimentally affects animal health and homeostasis, with somatic growth, and thus skeletal muscle, being particularly affected. A detailed understanding of the underlying endocrine and molecular mechanisms of how chronic stress affects skeletal muscle growth remains lacking. To address this issue, the present study assessed primary (plasma cortisol), secondary (key components of the GH/IGF system, muscular proteolytic pathways, and apoptosis), and tertiary (growth performance) stress responses in fine flounder ( Paralichthys adspersus) exposed to crowding chronic stress. Levels of plasma cortisol, glucocorticoid receptor 2 ( gr2), and its target genes ( klf15 and redd1) mRNA increased significantly only at 4 wk of crowding ( P < 0.05). The components of the GH/IGF system, including ligands, receptors, and their signaling pathways, were significantly downregulated at 7 wk of crowding ( P < 0.05). Interestingly, chronic stress upregulated the ubiquitin-proteasome pathway and the intrinsic apoptosis pathways at 4wk ( P < 0.01), whereas autophagy was only significantly activated at 7 wk ( P < 0.05), and meanwhile the ubiquitin-proteasome and the apoptosis pathways returned to control levels. Overall growth was inhibited in fish in the 7-wk chronic stress trial ( P < 0.05). In conclusion, chronic stress directly affects muscle growth and downregulates the GH/IGF system, an action through which muscular catabolic mechanisms are promoted by two different and nonoverlapping proteolytic pathways. These findings provide new information on molecular mechanisms involved in the negative effects that chronic stress has on muscle anabolic/catabolic signaling balance.

  9. The effects of acute foot shock stress on empathy levels in rats.

    PubMed

    Karakilic, Aslı; Kizildag, Servet; Kandis, Sevim; Guvendi, Guven; Koc, Basar; Camsari, Gamze B; Camsari, Ulas M; Ates, Mehmet; Arda, Sevil Gonenc; Uysal, Nazan

    2018-09-03

    Empathy defined as the ability to understand and the share the feelings, thoughts, and attitudes of another, is an important skill in survival and reproduction. Among many factors that affect empathy include psychological stress, anxiety states. The aim of this study was to investigate the impact of acute psychological stress on empathic behavior and its association with oxytocin and vasopressin levels in amygdala and prefrontal cortex. Rats were subjected to 0.2 mA (low) and 1.6 mA (high) intensity of foot shock stress for duration of 20 min. Empathic behavior was found to be improved as a response to low intensity stress, but not to high intensity stress. As a response to lower intensity stress, vasopressin was increased in prefrontal cortex and amygdala; oxytocin was increased in only prefrontal cortex, and corticosterone levels increased in general. Anxiety indicators did not change in low intensity stress group yet; high intensity stress group demonstrated a lesser degree of anxiety response. High intensity stress group stayed unexpectedly more active in middle area of elevated plus maze test equipment, which may support impaired executive decision making abilities in the setting of high anxiety states. Further research is needed to investigate gender effects, the role of dopaminergic system and other stress related pathways in acute stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Long-term programing of psychopathology-like behaviors in male rats by peripubertal stress depends on individual's glucocorticoid responsiveness to stress.

    PubMed

    Walker, Sophie E; Sandi, Carmen

    2018-02-07

    Experience of adversity early in life and dysregulation of hypothalamus-pituitary-adrenocortical (HPA) axis activity are risk factors often independently associated with the development of psychopathological disorders, including depression, PTSD and pathological aggression. Additional evidence suggests that in combination these factors may interact to shape the development and expression of psychopathology differentially, though little is known about underlying mechanisms. Here, we studied the long-term consequences of early life stress exposure on individuals with differential constitutive glucocorticoid responsiveness to repeated stressor exposure, assessing both socio-affective behaviors and brain activity in regions sensitive to pathological alterations following stress. Two rat lines, genetically selected for either low or high glucocorticoid responsiveness to repeated stress were exposed to a series of unpredictable, fear-inducing stressors on intermittent days during the peripuberty period. Results obtained at adulthood indicated that having high glucocorticoid responses to repeated stress and having experience of peripuberty stress independently enhanced levels of psychopathology-like behaviors, as well as increasing basal activity in several prefrontal and limbic brain regions in a manner associated with enhanced behavioral inhibition. Interestingly, peripuberty stress had a differential impact on aggression in the two rat lines, enhancing aggression in the low-responsive line but not in the already high-aggressive, high-responsive rats. Taken together, these findings indicate that aberrant HPA axis activity around puberty, a key period in the development of social repertoire in both rats and humans, may alter behavior such that it becomes anti-social in nature.

  11. Psychostimulants and forced swim stress interaction: how activation of the hypothalamic-pituitary-adrenal axis and stress-induced hyperglycemia are affected.

    PubMed

    Gagliano, Humberto; Ortega-Sanchez, Juan Antonio; Nadal, Roser; Armario, Antonio

    2017-10-01

    We recently reported that simultaneous exposure to amphetamine and various stressors resulted in reduced hypothalamic-pituitary-adrenal (HPA) and glycemic responses to the stressors. Since this is a new and relevant phenomenon, we wanted to further explore this interaction. This study aims (i) to characterize the effect of various doses of amphetamine on the physiological response to a predominantly emotional stressor (forced swim) when the drug was given immediately before stress; (ii) to study if an interaction appears when the drug was given 30 min or 7 days before swim; and (iii) to know whether cocaine causes similar effects when given just before stress. Adult male rats were used and plasma levels of ACTH, corticosterone, and glucose were the outcomes. Amphetamine caused a dose-dependent activation of the HPA axis, but all doses reduced HPA and glycemic responses to swim when given just before the stressor. Importantly, during the post-swim period, the stressor potently inhibited the ACTH response to amphetamine, demonstrating mutual inhibition between the two stimuli. The highest dose of amphetamine also reduced the response to swim when given 30 min before stress, whereas it caused HPA sensitization when given 7 days before. Cocaine also reduced stress-induced HPA activation when given just before swim. The present results demonstrate a negative synergy between psychostimulants (amphetamine and cocaine) and stress regarding HPA and glucose responses when rats were exposed simultaneously to both stimuli. The inhibitory effect of amphetamine is also observed when given shortly before stress, but not some days before.

  12. The stress-buffering effects of a brief dyadic interaction before an acute stressor.

    PubMed

    Pauley, Perry M; Floyd, Kory; Hesse, Colin

    2015-01-01

    Although previous studies have confirmed that affectionate interaction can reduce the effects of stress, whether or not this effect is due more to habituation or the accumulation of affection remains an area of debate. The goal of the present study was to determine how specific acts of affection mitigate the effects of stress. Sixty mixed-sex dyads (half platonic friends and half dating partners) were randomly assigned to one of three conditions, affectionate interaction, quiet rest with the friend/romantic partner present, or separation from the friend/romantic partner, before one of the partners experienced a series of stressful activities. Results revealed that participants in the affection condition experienced the smallest increase in cardiovascular arousal regardless of relationship status. Participants' endocrine responses were more nuanced and depended on both their biological sex and the nature of the relationship with the companion. Given that these systems did not act in concert with one another, results provide mixed evidence for both an accumulation and habituation effect.

  13. Aerobic Fitness Level Affects Cardiovascular and Salivary Alpha Amylase Responses to Acute Psychosocial Stress.

    PubMed

    Wyss, Thomas; Boesch, Maria; Roos, Lilian; Tschopp, Céline; Frei, Klaus M; Annen, Hubert; La Marca, Roberto

    2016-12-01

    Good physical fitness seems to help the individual to buffer the potential harmful impact of psychosocial stress on somatic and mental health. The aim of the present study is to investigate the role of physical fitness levels on the autonomic nervous system (ANS; i.e. heart rate and salivary alpha amylase) responses to acute psychosocial stress, while controlling for established factors influencing individual stress reactions. The Trier Social Stress Test for Groups (TSST-G) was executed with 302 male recruits during their first week of Swiss Army basic training. Heart rate was measured continuously, and salivary alpha amylase was measured twice, before and after the stress intervention. In the same week, all volunteers participated in a physical fitness test and they responded to questionnaires on lifestyle factors and personal traits. A multiple linear regression analysis was conducted to determine ANS responses to acute psychosocial stress from physical fitness test performances, controlling for personal traits, behavioural factors, and socioeconomic data. Multiple linear regression revealed three variables predicting 15 % of the variance in heart rate response (area under the individual heart rate response curve during TSST-G) and four variables predicting 12 % of the variance in salivary alpha amylase response (salivary alpha amylase level immediately after the TSST-G) to acute psychosocial stress. A strong performance at the progressive endurance run (high maximal oxygen consumption) was a significant predictor of ANS response in both models: low area under the heart rate response curve during TSST-G as well as low salivary alpha amylase level after TSST-G. Further, high muscle power, non-smoking, high extraversion, and low agreeableness were predictors of a favourable ANS response in either one of the two dependent variables. Good physical fitness, especially good aerobic endurance capacity, is an important protective factor against health-threatening reactions to acute psychosocial stress.

  14. Cognitive emotion regulation fails the stress test

    PubMed Central

    Raio, Candace M.; Orederu, Temidayo A.; Palazzolo, Laura; Shurick, Ashley A.; Phelps, Elizabeth A.

    2013-01-01

    Cognitive emotion regulation has been widely shown in the laboratory to be an effective way to alter the nature of emotional responses. Despite its success in experimental contexts, however, we often fail to use these strategies in everyday life where stress is pervasive. The successful execution of cognitive regulation relies on intact executive functioning and engagement of the prefrontal cortex, both of which are rapidly impaired by the deleterious effects of stress. Because it is specifically under stressful conditions that we may benefit most from such deliberate forms of emotion regulation, we tested the efficacy of cognitive regulation after stress exposure. Participants first underwent fear-conditioning, where they learned that one stimulus (CS+) predicted an aversive outcome but another predicted a neutral outcome (CS−). Cognitive regulation training directly followed where participants were taught to regulate fear responses to the aversive stimulus. The next day, participants underwent an acute stress induction or a control task before repeating the fear-conditioning task using these newly acquired regulation skills. Skin conductance served as an index of fear arousal, and salivary α-amylase and cortisol concentrations were assayed as neuroendocrine markers of stress response. Although groups showed no differences in fear arousal during initial fear learning, nonstressed participants demonstrated robust fear reduction following regulation training, whereas stressed participants showed no such reduction. Our results suggest that stress markedly impairs the cognitive regulation of emotion and highlights critical limitations of this technique to control affective responses under stress. PMID:23980142

  15. Cancer Survivors’ Responses to Daily Stressors: Implications for Quality of Life

    PubMed Central

    Costanzo, Erin S.; Stawski, Robert S.; Ryff, Carol D.; Coe, Christopher L.; Almeida, David M.

    2012-01-01

    Objective This study examined cancer survivors’ experience of and responses to challenges and stressors associated with every-day living. The impact of daily stressors on quality of life concerns and cortisol patterns was also investigated. Design Participants were 111 cancer survivors who participated in a national telephone diary study of daily experiences (NSDE). Their responses were compared with those of 111 sociodemographically-matched participants with no cancer history using a multilevel modeling approach. Main Outcome Measures Over an 8-day period, participants completed a daily inventory of the occurrence and impact of stressful events, affect, and physical symptoms. Salivary cortisol was sampled 4 times per day, and indices of awakening response (CAR), diurnal slope, and overall output (AUC) were examined. Results Cancer survivors experienced similar numbers and types of stressful events as the comparison group. While appraisals were largely comparable, cancer survivors showed a modest tendency to perceive stressors as more severe and disruptive, particularly those involving interpersonal tensions. The occurrence of stressors was associated with increased negative affect, decreased positive affect, and increased physical symptoms, but little change in cortisol. Relative to the comparison group, cancer survivors showed less pronounced changes in positive affect and cortisol output when stressors occurred, but a greater increase in negative affect in response to interpersonal conflicts. Conclusions Findings indicate that cancer survivors show a resilient ability to respond to day-to-day stressors and challenges. However, daily stressors can have a significant impact on survivors’ mood and physical symptoms and therefore may be an important intervention target. PMID:22268712

  16. Juvenile stress impairs body temperature regulation and augments anticipatory stress-induced hyperthermia responses in rats.

    PubMed

    Yee, Nicole; Plassmann, Kerstin; Fuchs, Eberhard

    2011-09-01

    Clinical studies have implicated adolescence as an important and vulnerable period during which traumatic experiences can predispose individuals to anxiety and mood disorders. As such, a stress model in juvenile rats (age 27-29 d) was previously developed to investigate the long-term effects of stress exposure during adolescence on behavior and physiology. This paradigm involves exposing rats to different stressors on consecutive days over a 3-day period. Here, we studied the effects of juvenile stress on long-term core body temperature regulation and acute stress-induced hyperthermia (SIH) responses using telemetry. We found no differences between control and juvenile stress rats in anxiety-related behavior on the elevated plus maze, which we attribute to stress associated with surgical implantation of telemetry devices. This highlights the severe impact of surgical stress on the results of subsequent behavioral measurements. Nonetheless, juvenile stress disrupted the circadian rhythmicity of body temperature and decreased circadian amplitude. It also induced chronic hypothermia during the dark phase of the day, when rats are most active. When subjected to acute social defeat stress as adults, juvenile stress had no impact on the SIH response relative to controls. However, 24 h later, juvenile stress rats displayed an elevated SIH response in anticipation of social defeat when re-exposed to the social defeat environment. Taken together, our findings indicate that juvenile stress can induce long-term alterations in body temperature regulation and heighten the increase in temperature associated with anticipation of social defeat. The outcomes of behavioral measurements in these experiments, however, are severely affected by surgical stress. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Seasonal heat stress affects adipose tissue proteome toward enrichment of the Nrf2-mediated oxidative stress response in late-pregnant dairy cows.

    PubMed

    Zachut, M; Kra, G; Livshitz, L; Portnick, Y; Yakoby, S; Friedlander, G; Levin, Y

    2017-03-31

    Environmental heat stress and metabolic stress during transition from late gestation to lactation are main factors limiting production in dairy cattle, and there is a complex interaction between them. Many proteins expressed in adipose tissue are involved in metabolic responses to stress. We aimed to investigate the effects of seasonal heat stress on adipose proteome in late-pregnant cows, and to identify biomarkers of heat stress. Late pregnant cows during summer heat stress (S, n=18), or during the winter season (W, n=12) were used. Subcutaneous adipose tissue biopsies sampled 14days prepartum from S (n=10) and W (n=8) were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nano-LC-MS/MS). Plasma concentrations of malondialdehyde and cortisol were higher in S than in W cows. Proteomic analysis revealed that 107/1495 proteins were differentially abundant in S compared to W (P<0.05 and fold change of at least ±1.5). Top canonical pathways in S vs. W adipose were Nrf2-mediated oxidative stress response, acute-phase response, and FXR/RXR and LXR/RXR activation. Novel biomarkers of heat stress in adipose tissue were found. These findings indicate that seasonal heat stress has a unique effect on adipose tissue in late-pregnant cows. This work shows that seasonal heat stress increases plasma concentrations of the oxidative stress marker malondialdehyde and cortisol in transition dairy cows. As many proteins expressed in the adipose tissue are involved in metabolic responses to stress, we investigated the effects of heat stress on the proteome of adipose tissue from late-pregnant cows during summer or winter seasons. We demonstrated that heat stress enriches several stress-related pathways, such as the Nrf2-mediated oxidative stress response and the acute-phase response in adipose tissues. Thus, environmental heat stress has a unique effect on adipose tissue in late-pregnant cows, as part of the regulatory adaptations to chronic heat load during the summer season. In addition, this study presents the widest available dataset of adipose tissue proteome in dairy cows, and revealed several novel biomarkers of heat stress in adipose tissue of dairy cows, the use of which awaits further validation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. When Does Stress Help or Harm? The Effects of Stress Controllability and Subjective Stress Response on Stroop Performance

    PubMed Central

    Henderson, Roselinde K.; Snyder, Hannah R.; Gupta, Tina; Banich, Marie T.

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop improvement. Once again, this pattern was not demonstrated in the group exposed to uncontrollable events. These results suggest that stress controllability and subjective response interact to affect high-level cognitive abilities. Specifically, exposure to moderate, controllable stress benefits performance, but exposure to uncontrollable stress or having a more extreme response to stress tends to harm performance. These findings may provide insights on how to leverage the beneficial effects of stress in a range of settings. PMID:22701442

  19. When does stress help or harm? The effects of stress controllability and subjective stress response on stroop performance.

    PubMed

    Henderson, Roselinde K; Snyder, Hannah R; Gupta, Tina; Banich, Marie T

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual's response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop improvement. Once again, this pattern was not demonstrated in the group exposed to uncontrollable events. These results suggest that stress controllability and subjective response interact to affect high-level cognitive abilities. Specifically, exposure to moderate, controllable stress benefits performance, but exposure to uncontrollable stress or having a more extreme response to stress tends to harm performance. These findings may provide insights on how to leverage the beneficial effects of stress in a range of settings.

  20. Stress attenuates the flexible updating of aversive value

    PubMed Central

    Raio, Candace M.; Hartley, Catherine A.; Orederu, Temidayo A.; Li, Jian; Phelps, Elizabeth A.

    2017-01-01

    In a dynamic environment, sources of threat or safety can unexpectedly change, requiring the flexible updating of stimulus−outcome associations that promote adaptive behavior. However, aversive contexts in which we are required to update predictions of threat are often marked by stress. Acute stress is thought to reduce behavioral flexibility, yet its influence on the modulation of aversive value has not been well characterized. Given that stress exposure is a prominent risk factor for anxiety and trauma-related disorders marked by persistent, inflexible responses to threat, here we examined how acute stress affects the flexible updating of threat responses. Participants completed an aversive learning task, in which one stimulus was probabilistically associated with an electric shock, while the other stimulus signaled safety. A day later, participants underwent an acute stress or control manipulation before completing a reversal learning task during which the original stimulus−outcome contingencies switched. Skin conductance and neuroendocrine responses provided indices of sympathetic arousal and stress responses, respectively. Despite equivalent initial learning, stressed participants showed marked impairments in reversal learning relative to controls. Additionally, reversal learning deficits across participants were related to heightened levels of alpha-amylase, a marker of noradrenergic activity. Finally, fitting arousal data to a computational reinforcement learning model revealed that stress-induced reversal learning deficits emerged from stress-specific changes in the weight assigned to prediction error signals, disrupting the adaptive adjustment of learning rates. Our findings provide insight into how stress renders individuals less sensitive to changes in aversive reinforcement and have implications for understanding clinical conditions marked by stress-related psychopathology. PMID:28973957

  1. GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis.

    PubMed

    Yu, Yang; Liu, Ailin; Duan, Xiangbo; Wang, Sunting; Sun, Xiaoli; Duanmu, Huizi; Zhu, Dan; Chen, Chao; Cao, Lei; Xiao, Jialei; Li, Qiang; Nisa, Zaib Un; Zhu, Yanming; Ding, Xiaodong

    2016-09-01

    This is an original study focus on ERF gene response to alkaline stress. GsERF6 functions as transcription factor and significantly enhanced plant tolerance to bicarbonate (HCO 3 (-) ) in transgenic Arabidopsis . Alkaline stress is one of the most harmful, but little studied environmental factors, which negatively affects plant growth, development and yield. The cause of alkaline stress is mainly due to the damaging consequence of high concentration of the bicarbonate ion, high-pH, and osmotic shock to plants. The AP2/ERF family genes encode plant-specific transcription factors involved in diverse environmental stresses. However, little is known about their physiological functions, especially in alkaline stress responses. In this study, we functionally characterized a novel ERF subfamily gene, GsERF6 from alkaline-tolerant wild soybean (Glycine soja). In wild soybean, GsERF6 was rapidly induced by NaHCO3 treatment, and its overexpression in Arabidopsis enhanced transgenic plant tolerance to NaHCO3 challenge. Interestingly, GsERF6 transgenic lines also displayed increased tolerance to KHCO3 treatment, but not to high pH stress, implicating that GsERF6 may participate specifically in bicarbonate stress responses. We also found that GsERF6 overexpression up-regulated the transcription levels of bicarbonate-stress-inducible genes such as NADP-ME, H (+)-Ppase and H (+)-ATPase, as well as downstream stress-tolerant genes such as RD29A, COR47 and KINI. GsERF6 overexpression and NaHCO3 stress also altered the expression patterns of plant hormone synthesis and hormone-responsive genes. Conjointly, our results suggested that GsERF6 is a positive regulator of plant alkaline stress by increasing bicarbonate ionic resistance specifically, providing a new insight into the regulation of gene expression under alkaline conditions.

  2. Impulsivity and Stress Response in Nondependent Smokers (Tobacco Chippers) in Comparison to Heavy Smokers and Nonsmokers.

    PubMed

    Carim-Todd, Laura; Mitchell, Suzanne H; Oken, Barry S

    2016-05-01

    Tobacco chippers are light smokers with stable patterns of smoking that exhibit lower nicotine dependence severity than heavy smokers. Chippers may provide valuable information about the factors influencing drug dependence. Impulsivity and stress are two factors known to influence smoking. By comparing nondependent smokers (tobacco chippers, n = 25) to dependent smokers (heavy smokers, n = 23) and nonsmokers (n = 25), this study examines the relationship between nicotine dependence, impulsivity, chronic stress, and stress reactivity. A total of 73 adult participants completed a study visit that included questionnaires to measure nicotine dependence, chronic stress, personality, affect, withdrawal, and craving. Impulsivity was measured with the delay discounting task and the flanker task. Stress reactivity was assessed by monitoring respiration, heart rate, and salivary cortisol during performance of a titrated Stroop task. Effects of acute stress on affect and craving were examined. Tobacco chippers were as impulsive as heavy smokers on the delay discounting task but no different from nonsmokers on the flanker task. Heavy smokers reported higher perceived stress than chippers and nonsmokers. Perceived stress was a significant predictor of discounting only in heavy smokers. Acute stress induced changes in respiration, heart rate, and heart rate variability. Craving and negative affect increased after stress in both smoking groups, but craving was associated with affect only in chippers. Tobacco chippers do not differ from heavy smokers in impulsivity, but do differ in perceived stress. One's perception and experience of stress might be associated to nicotine dependence resistance and could inform smoking cessation treatments. By examining impulsivity, chronic stress, and stress reactivity in nondependent smokers (tobacco chippers) compared to dependent smokers and nonsmokers, this study contributes to the understanding of nicotine addiction and informs smoking cessation programs. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Farm Crisis Response: Extension and Research Activities in the North Central Region.

    ERIC Educational Resources Information Center

    Lasley, Paul, Comp.; And Others

    The 12 states comprising the North Central Region have been affected in similar ways by the farm crisis of the 1980s. Statewide surveys show sizeable proportions of farm operations that are experiencing moderately high levels of financial stress. The problems caused by chronic stress on family structure and functioning, the loss of mainstreet…

  4. Effects of high temperature on photosynthesis and related gene expression in poplar

    PubMed Central

    2014-01-01

    Background High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants. Results We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely. Conclusions This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies. PMID:24774695

  5. Effects of high temperature on photosynthesis and related gene expression in poplar.

    PubMed

    Song, Yuepeng; Chen, Qingqing; Ci, Dong; Shao, Xinning; Zhang, Deqiang

    2014-04-28

    High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants. We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely. This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies.

  6. RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3.

    PubMed

    Liu, Xiaoguang; Wu, Yan; Chen, Yuanyuan; Xu, Fang; Halliday, Nigel; Gao, Kexiang; Chan, Kok Gan; Cámara, Miguel

    2016-04-01

    The σ(S) subunit RpoS of RNA polymerase functions as a master regulator of the general stress response in Escherichia coli and related bacteria. RpoS has been reported to modulate biocontrol properties in the rhizobacterium Serratia plymuthica IC1270. However, the role of RpoS in the stress response and biofilm formation in S. plymuthica remains largely unknown. Here we studied the role of RpoS from an endophytic S. plymuthica G3 in regulating these phenotypes. Mutational analysis demonstrated that RpoS positively regulates the global stress response to acid or alkaline stresses, oxidative stress, hyperosmolarity, heat shock and carbon starvation, in addition to proteolytic and chitinolytic activities. Interestingly, rpoS mutations resulted in significantly enhanced swimming motility, biofilm formation and production of the plant auxin indole-3-acetic acid (IAA), which may contribute to competitive colonization and environmental fitness for survival. These findings provide further insight into the strain-specific role of RpoS in the endophytic strain G3 of S. plymuthica, where it confers resistance to general stresses encountered within the plant environment. The heterogeneous functionality of RpoS in rhizosphere and endophytic S. plymuthica populations may provide a selective advantage for better adaptation to various physiological and environmental stresses. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. Nicotine Modulates Multiple Regions in the Limbic Stress Network Regulating Activation of Hypophysiotrophic Neurons in Hypothalamic Paraventricular Nucleus

    PubMed Central

    Yu, Guoliang; Sharp, Burt M.

    2012-01-01

    Nicotine intake affects CNS responses to stressors. We reported that nicotine self-administration (SA) augmented the hypothalamo-pituitary-adrenal (HPA) stress response, in part due to altered neurotransmission and neuropeptide expression within hypothalamic paraventricular nucleus (PVN). Limbic-PVN interactions involving medial prefrontal cortex, amygdala, bed nucleus of the stria terminalis (BST) greatly impact the HPA stress response. Therefore, we investigated the effects of nicotine SA on stress-induced neuronal activation in limbic-PVN network, using c-Fos protein immunohistochemistry and retrograde tracing. Nicotine decreased stress-induced c-Fos in prelimbic cortex (PrL), anteroventral BST (avBST), and peri-PVN; but increased c-Fos induction in medial amygdala (MeA), locus coeruleus, and PVN. Fluoro-gold (FG) was injected into avBST or PVN, since GABAergic neurons in avBST projecting to PVN corticotrophin-releasing factor (CRF) neurons relay information from both PrL glutamatergic and MeA GABAergic neurons. The stress-induced c-Fos expression in retrograde-labeled FG+ neurons was decreased in PrL by nicotine, but increased in MeA, and also reduced in avBST. Therefore, within limbic-PVN network, nicotine SA exerts selective regional effects on neuronal activation by stress. These findings expand the mechanistic framework by demonstrating altered limbic-BST-PVN interactions underlying the disinhibition of PVN CRF neurons, an essential component of the amplified HPA response to stress by nicotine. PMID:22578217

  8. How Do Stress Exposure and Stress Regulation Relate to Borderline Personality Disorder?

    PubMed Central

    Bourvis, Nadège; Aouidad, Aveline; Cabelguen, Clémence; Cohen, David; Xavier, Jean

    2017-01-01

    Borderline personality disorder (BPD) is a severe and frequent disorder characterized by a pervasive pattern of instability affecting impulse control, emotional regulation, cognitive processing, self-image and interpersonal relationships. Patients’ personal histories are often marked by stressful or traumatic experiences, either unique or repeated. Moreover, while clinical signs of the disorder include both chronic and acute features, acute features are mostly triggered by acute stressful situations. Such features include transient cognitive distortion, intense anger, uncontrollable impulsivity, and self-harm behavior – including suicide – and contribute to the burden of the disease. In this paper, we review the various aspects (epidemiological, clinical, and physiological) contributing to the relationship between BDP and stress. In particular, we explore the statistical association between stress exposure and the emergence of BPD while taking into account other psychopathologies, such as post-traumatic stress disorder. Then, the different aspects of stress responses (namely, the phenomenological, behavioral, hormonal, neuro-vegetative and neural responses) are reviewed in BPD patients. Pathophysiological hypotheses are formulated to explain the differences in responses between BPD patients and healthy subjects and their relation to BPD symptoms. Although the pathogenesis remains uncertain, our conclusions seem to reflect a specific biological and neural pattern of altered stress perception and regulation in BPD. PMID:29250007

  9. How Do Stress Exposure and Stress Regulation Relate to Borderline Personality Disorder?

    PubMed

    Bourvis, Nadège; Aouidad, Aveline; Cabelguen, Clémence; Cohen, David; Xavier, Jean

    2017-01-01

    Borderline personality disorder (BPD) is a severe and frequent disorder characterized by a pervasive pattern of instability affecting impulse control, emotional regulation, cognitive processing, self-image and interpersonal relationships. Patients' personal histories are often marked by stressful or traumatic experiences, either unique or repeated. Moreover, while clinical signs of the disorder include both chronic and acute features, acute features are mostly triggered by acute stressful situations. Such features include transient cognitive distortion, intense anger, uncontrollable impulsivity, and self-harm behavior - including suicide - and contribute to the burden of the disease. In this paper, we review the various aspects (epidemiological, clinical, and physiological) contributing to the relationship between BDP and stress. In particular, we explore the statistical association between stress exposure and the emergence of BPD while taking into account other psychopathologies, such as post-traumatic stress disorder. Then, the different aspects of stress responses (namely, the phenomenological, behavioral, hormonal, neuro-vegetative and neural responses) are reviewed in BPD patients. Pathophysiological hypotheses are formulated to explain the differences in responses between BPD patients and healthy subjects and their relation to BPD symptoms. Although the pathogenesis remains uncertain, our conclusions seem to reflect a specific biological and neural pattern of altered stress perception and regulation in BPD.

  10. Symptoms of Posttraumatic Stress Rather Than Mild Traumatic Brain Injury Best Account for Altered Emotional Responses in Military Veterans.

    PubMed

    Marquardt, Craig A; Goldman, Daniel J; Cuthbert, Bruce N; Lissek, Shmuel; Sponheim, Scott R

    2018-02-01

    Emotional dysfunction is evident in posttraumatic stress disorder (PTSD), yet it is unclear what aspects of the disorder most directly relate to aberrant emotional responding. Also, the frequent co-occurrence of blast-related mild traumatic brain injuries (mTBIs) among recently deployed U.S. military personnel complicates efforts to understand the basis for emotional disruption. We studied a cross-sectional sample (enriched for PTSD and mTBI) of 123 U.S. veterans of wars in Iraq and Afghanistan. We measured subjective affective evaluations and peripheral psychophysiological responses to images with pleasant, neutral, unpleasant, and combat-related aversive content. When compared with other postdeployment participants, those who had combat-related PTSD rated pleasant image content as less positive (ηp2 = .04) and less arousing (ηp2 = .06), and exhibited heightened physiological responsivity to combat image content (ηp2 = .07). Symptoms of PTSD were associated with elevated skin conductance responses (β = .28), reduced heart rate deceleration (β = .44 to .47), and increased corrugator facial muscle electromyography (β = .47). No effects for blast-related mTBI were observed across any affective modulation measures. These findings point to a greater impact of PTSD symptomatology than blast-related mTBI on emotional functioning and highlight the utility of dimensional assessments of psychopathology for understanding the effects of combat-stress conditions on adjustment to civilian life. Copyright © 2018 International Society for Traumatic Stress Studies.

  11. Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenerative disorders: role of hormesis and vitagenes.

    PubMed

    Calabrese, Vittorio; Cornelius, Carolin; Stella, Anna Maria Giuffrida; Calabrese, Edward J

    2010-12-01

    The widely accepted oxidative stress theory of aging postulates that aging results from accumulation of oxidative damage. A prediction of this theory is that, among species, differential rates of aging may be apparent on the basis of intrinsic differences in oxidative damage accrual. Although widely accepted, there is a growing number of exceptions to this theory, most contingently related to genetic model organism investigations. Proteins are one of the prime targets for oxidative damage and cysteine residues are particularly sensitive to reversible and irreversible oxidation. The adaptation and survival of cells and organisms requires the ability to sense proteotoxic insults and to coordinate protective cellular stress response pathways and chaperone networks related to protein quality control and stability. The toxic effects that stem from the misassembly or aggregation of proteins or peptides, in any cell type, are collectively termed proteotoxicity. Despite the abundance and apparent capacity of chaperones and other components of homeostasis to restore folding equilibrium, the cell appears poorly adapted for chronic proteotoxic stress which increases in cancer, metabolic and neurodegenerative diseases. Pharmacological modulation of cellular stress response pathways has emerging implications for the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. A critical key to successful medical intervention is getting the dose right. Achieving this goal can be extremely challenging due to human inter-individual variation as affected by age, gender, diet, exercise, genetic factors and health status. The nature of the dose response in and adjacent to the therapeutic zones, over the past decade has received considerable advances. The hormetic dose-response, challenging long-standing beliefs about the nature of the dose-response in a lowdose zone, has the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses, including carnitines. This paper describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including the possible signaling mechanisms by which the carnitine system, by interplaying metabolism, mitochondrial energetics and activation of critical vitagenes, modulates signal transduction cascades that confer cytoprotection against chronic degenerative damage associated to aging and neurodegenerative disorders.

  12. Arbuscular mycorrhiza effects on plant performance under osmotic stress.

    PubMed

    Santander, Christian; Aroca, Ricardo; Ruiz-Lozano, Juan Manuel; Olave, Jorge; Cartes, Paula; Borie, Fernando; Cornejo, Pablo

    2017-10-01

    At present, drought and soil salinity are among the most severe environmental stresses that affect the growth of plants through marked reduction of water uptake which lowers water potential, leading to osmotic stress. In general, osmotic stress causes a series of morphological, physiological, biochemical, and molecular changes that affect plant performance. Several studies have found that diverse types of soil microorganisms improve plant growth, especially when plants are under stressful conditions. Most important are the arbuscular mycorrhizal fungi (AMF) which form arbuscular mycorrhizas (AM) with approximately 80% of plant species and are present in almost all terrestrial ecosystems. Beyond the well-known role of AM in improving plant nutrient uptake, the contributions of AM to plants coping with osmotic stress merit analysis. With this review, we describe the principal direct and indirect mechanisms by which AM modify plant responses to osmotic stress, highlighting the role of AM in photosynthetic activity, water use efficiency, osmoprotectant production, antioxidant activities, and gene expression. We also discuss the potential for using AMF to improve plant performance under osmotic stress conditions and the lines of research needed to optimize AM use in plant production.

  13. Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats.

    PubMed

    Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A; Ulrich-Lai, Yvonne M; Herman, James P

    2015-01-01

    Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic (NA) neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. In this study, we tested the hypothesis that NTS NA A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n = 5; HPA study, n = 5] or vehicle [cardiovascular study, n = 6; HPA study, n = 4]. Rats were exposed to acute restraint stress followed by 14 d of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low-frequency to high-frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress.

  14. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress.

    PubMed

    Leisner, Courtney P; Yendrek, Craig R; Ainsworth, Elizabeth A

    2017-12-12

    Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms underpinning crop responses to abiotic stress. Soybean (Glycine max L. Merr. cv. Pioneer 93B15) was grown in natural production environments with projected changes to environmental conditions predicted for the end of the century, including decreased precipitation, increased tropospheric ozone concentrations ([O 3 ]), or increased temperature. All three environmental stresses significantly decreased leaf-level photosynthesis and stomatal conductance, leading to significant losses in seed yield. This was driven by a significant decrease in the number of pods per node for all abiotic stress treatments. To understand the underlying transcriptomic response involved in the yield response to environmental stress, RNA-Sequencing analysis was performed on the soybean seed coat, a tissue that plays an essential role in regulating carbon and nitrogen transport to developing seeds. Gene expression analysis revealed 49, 148 and 1,576 differentially expressed genes in the soybean seed coat in response to drought, elevated [O 3 ] and elevated temperature, respectively. Elevated [O 3 ] and drought did not elicit substantive transcriptional changes in the soybean seed coat. However, this may be due to the timing of sampling and does not preclude impacts of those stresses on different tissues or different stages in seed coat development. Expression of genes involved in DNA replication and metabolic processes were enriched in the seed coat under high temperate stress, suggesting that the timing of events that are important for cell division and proper seed development were altered in a stressful growth environment.

  15. Modulation of the neonatal pituitary and adrenocortical responses to stress by thyroid hormones in the rat: effects of hypothyroidism and hyperthyroidism.

    PubMed

    Walker, C D; Sizonenko, P C; Aubert, M L

    1989-09-01

    Neonatal rats exhibit a period of diminished pituitary and adrenocortical responses to stress during the first 2 weeks of life. Since thyroid hormones are known to affect brain development, modulation of these responses to stress by alterations in thyroid hormone status have been investigated in hypothyroid (Hypo) and hyperthyroid (Hyper) rat pups. Changes in ACTH and corticosterone (B) levels were measured under basal and stress conditions (3 min exposure to ether vapors) in neonates of various ages (day 5-21). Basal T4 and corticosterone-binding globulin (CBG) levels were also measured. Hypo pups were obtained from methimazole-treated mothers and hyperthyroidism was induced by daily subcutaneous injections of L-T4 (100 micrograms/kg BW) from birth on. In Hyper rats, premature onset of ACTH and B responses to stress was observed in 5-day-old rats while significant ACTH and B secretion only appeared by day 10 in vehicle-injected rats. By contrast, ACTH and B responses to stress were delayed in Hypo pups and only occurred by day 21. The lack of ACTH and B responses to stress of 14-day-old Hypo rats could be reversed by one single L-T4 injection (100 micrograms/kg BW) given 24 h, but not 4 h prior to exposure to stress. On day 21, smaller (p less than 0.05) stress-induced ACTH release was observed both in Hypo and Hyper rats compared to intact rats, concomitant with a diminished ACTH secretion following exogenous ovine CRF (10 micrograms/kg BW, i.p.) administration.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Early-life social experiences in mice affect emotional behaviour and hypothalamic-pituitary-adrenal axis function.

    PubMed

    Ros-Simó, Clara; Valverde, Olga

    2012-09-01

    Early-life stressful experiences are associated to alterations in behavioural responses and development of psychiatric and neurodegenerative diseases. In rodents, individual housing is considered as a stressful condition whilst enriched environment can protect against stress and its negative consequences. Neuroendocrine responses to stress can also be altered by early-life experiences and seem to contribute to behavioural alterations induced by changes in housing conditions. To develop an improved procedure of social isolation throughout development (from pre-adolescence to adulthood) in CD1 mice and to elucidate its effects on behavioural parameters related to stress and neuroendocrine responses compared to enriched or social conditions. CD1 male mice (PND 21) were housed in social/standard conditions, enriched conditions or isolated conditions during seven weeks. After that, different relevant behaviours were evaluated, including locomotor activity, anxiety-like and despair behaviour. Levels of plasma corticosterone were also analysed before and after a stressful event. CD1 mice exposed to an isolated environment exhibited higher locomotion and anxiety-like responses than animals exposed to social or enriched conditions. In addition, isolated animals showed lower basal plasma corticosterone than social or enriched ones but after a stressful event the elevation of plasma corticosterone was higher, suggesting an enhanced response of the HPA axis to a novel and stressful situation. Social interaction is an important feature to display an appropriate behavioural and neuronal development. Habituation to novel stimuli is impaired in subjects exposed to social isolation and induces increased excitability response to stressful events. Social deprivation increases the possibility of altered neuronal function and could facilitate the development of neuropsychiatric disorders in adulthood. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats

    PubMed Central

    Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A.; Ulrich-Lai, Yvonne M.; Herman, James P.

    2015-01-01

    Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. Here, we tested the hypothesis that NTS noradrenergic A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n= 5; HPA study, n= 5], or vehicle [cardiovascular study, n= 6; HPA study, n= 4]. Rats were exposed to acute restraint stress followed by 14 days of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low frequency to high frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress. PMID:25765732

  18. Prediction of life stress on athletes' burnout: the dual role of perceived stress.

    PubMed

    Chyi, Theresa; Lu, Frank Jing-Horng; Wang, Erica T W; Hsu, Ya-Wen; Chang, Ko-Hsin

    2018-01-01

    Although many studies adopted Smith's (1986) cognitive-affective model of athletic burnout in examining stress-burnout relationship, very few studies examined the mediating/moderating role of perceived stress on the stress-burnout relationship. We sampled 195 college student-athletes and assessed their life stress, perceived stress, and burnout. Correlation analyses found all study variables correlated. Two separate hierarchical regression analyses found that the "distress" component of perceived stress mediated athletes' two types of life stress-burnout relationship but "counter-stress" component of perceived stress-moderated athletes' general-life stress-burnout relationship. We concluded that interweaving relationships among athletes' life stress, perceived stress, and burnout are not straightforward. Future research should consider the nature of athletes life stress, and dual role of perceived stress in examining its' association with related psychological responses in athletic settings.

  19. Identification of resilient individuals and those at risk for performance deficits under stress.

    PubMed

    Winslow, Brent D; Carroll, Meredith B; Martin, Jonathan W; Surpris, Glenn; Chadderdon, George L

    2015-01-01

    Human task performance is affected by exposure to physiological and psychological stress. The ability to measure the physiological response to stressors and correlate that to task performance could be used to identify resilient individuals or those at risk for stress-related performance decrements. Accomplishing this prior to performance under severe stress or the development of clinical stress disorders could facilitate focused preparation such as tailoring training to individual needs. Here we measure the effects of stress on physiological response and performance through behavior, physiological sensors, and subjective ratings, and identify which individuals are at risk for stress-related performance decrements. Participants performed military-relevant training tasks under stress in a virtual environment, with autonomic and hypothalamic-pituitary-adrenal axis (HPA) reactivity analyzed. Self-reported stress, as well as physiological indices of stress, increased in the group pre-exposed to socioevaluative stress. Stress response was effectively captured via electrodermal and cardiovascular measures of heart rate and skin conductance level. A resilience classification algorithm was developed based upon physiological reactivity, which correlated with baseline unstressed physiological and self-reported stress values. Outliers were identified in the experimental group that had a significant mismatch between self-reported stress and salivary cortisol. Baseline stress measurements were predictive of individual resilience to stress, including the impact stress had on physiological reactivity and performance. Such an approach may have utility in identifying individuals at risk for problems performing under severe stress. Continuing work has focused on adapting this method for military personnel, and assessing the utility of various coping and decision-making strategies on performance and physiological stress.

  20. Identification of resilient individuals and those at risk for performance deficits under stress

    PubMed Central

    Winslow, Brent D.; Carroll, Meredith B.; Martin, Jonathan W.; Surpris, Glenn; Chadderdon, George L.

    2015-01-01

    Human task performance is affected by exposure to physiological and psychological stress. The ability to measure the physiological response to stressors and correlate that to task performance could be used to identify resilient individuals or those at risk for stress-related performance decrements. Accomplishing this prior to performance under severe stress or the development of clinical stress disorders could facilitate focused preparation such as tailoring training to individual needs. Here we measure the effects of stress on physiological response and performance through behavior, physiological sensors, and subjective ratings, and identify which individuals are at risk for stress-related performance decrements. Participants performed military-relevant training tasks under stress in a virtual environment, with autonomic and hypothalamic-pituitary-adrenal axis (HPA) reactivity analyzed. Self-reported stress, as well as physiological indices of stress, increased in the group pre-exposed to socioevaluative stress. Stress response was effectively captured via electrodermal and cardiovascular measures of heart rate and skin conductance level. A resilience classification algorithm was developed based upon physiological reactivity, which correlated with baseline unstressed physiological and self-reported stress values. Outliers were identified in the experimental group that had a significant mismatch between self-reported stress and salivary cortisol. Baseline stress measurements were predictive of individual resilience to stress, including the impact stress had on physiological reactivity and performance. Such an approach may have utility in identifying individuals at risk for problems performing under severe stress. Continuing work has focused on adapting this method for military personnel, and assessing the utility of various coping and decision-making strategies on performance and physiological stress. PMID:26441503

Top