Science.gov

Sample records for affecting tree growth

  1. Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest

    PubMed Central

    Sandor, Manette E.; Chazdon, Robin L.

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields. PMID:24454700

  2. Remnant trees affect species composition but not structure of tropical second-growth forest.

    PubMed

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  3. Size Matters a Lot: Drought-Affected Italian Oaks Are Smaller and Show Lower Growth Prior to Tree Death.

    PubMed

    Colangelo, Michele; Camarero, Jesús J; Borghetti, Marco; Gazol, Antonio; Gentilesca, Tiziana; Ripullone, Francesco

    2017-01-01

    Hydraulic theory suggests that tall trees are at greater risk of drought-triggered death caused by hydraulic failure than small trees. In addition the drop in growth, observed in several tree species prior to death, is often interpreted as an early-warning signal of impending death. We test these hypotheses by comparing size, growth, and wood-anatomy patterns of living and now-dead trees in two Italian oak forests showing recent mortality episodes. The mortality probability of trees is modeled as a function of recent growth and tree size. Drift-diffusion-jump (DDJ) metrics are used to detect early-warning signals. We found that the tallest trees of the anisohydric Italian oak better survived drought contrary to what was predicted by the theory. Dead trees were characterized by a lower height and radial-growth trend than living trees in both study sites. The growth reduction of now-dead trees started about 10 years prior to their death and after two severe spring droughts during the early 2000s. This critical transition in growth was detected by DDJ metrics in the most affected site. Dead trees were also more sensitive to drought stress in this site indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. Since living and dead trees showed similar competition we did not expect that moderate thinning and a reduction in tree density would increase the short-term survival probability of trees.

  4. Size Matters a Lot: Drought-Affected Italian Oaks Are Smaller and Show Lower Growth Prior to Tree Death

    PubMed Central

    Colangelo, Michele; Camarero, Jesús J.; Borghetti, Marco; Gazol, Antonio; Gentilesca, Tiziana; Ripullone, Francesco

    2017-01-01

    Hydraulic theory suggests that tall trees are at greater risk of drought-triggered death caused by hydraulic failure than small trees. In addition the drop in growth, observed in several tree species prior to death, is often interpreted as an early-warning signal of impending death. We test these hypotheses by comparing size, growth, and wood-anatomy patterns of living and now-dead trees in two Italian oak forests showing recent mortality episodes. The mortality probability of trees is modeled as a function of recent growth and tree size. Drift-diffusion-jump (DDJ) metrics are used to detect early-warning signals. We found that the tallest trees of the anisohydric Italian oak better survived drought contrary to what was predicted by the theory. Dead trees were characterized by a lower height and radial-growth trend than living trees in both study sites. The growth reduction of now-dead trees started about 10 years prior to their death and after two severe spring droughts during the early 2000s. This critical transition in growth was detected by DDJ metrics in the most affected site. Dead trees were also more sensitive to drought stress in this site indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. Since living and dead trees showed similar competition we did not expect that moderate thinning and a reduction in tree density would increase the short-term survival probability of trees. PMID:28270816

  5. Drainage affects tree growth and C and N dynamics in a minerotrophic peatland.

    PubMed

    Choi, Woo-Jung; Chang, Scott X; Bhatti, Jagtar S

    2007-02-01

    The lowering of the water table resulting from peatland drainage may dramatically alter C and N cycling in peatland ecosystems, which contain one-third of the total terrestrial C. In this study, tree annual ring width and C (delta(13)C) and N (delta(15)N) isotope ratios in soil and plant tissues (tree foliage, growth rings, and understory foliage) in a black spruce-tamarack (Picea mariana-Larix laricina) mixed-wood forest were examined to study the effects of drainage on tree growth and C and N dynamics in a minerotrophic peatland in west-central Alberta, Canada. Drainage increased the delta(15)N of soil NH4+ from a range of +0.6% per hundred to +2.9% per hundred to a range of +4.6% per hundred to +7.0% per hundred most likely through increased nitrification following enhanced mineralization. Plant uptake of 15N-enriched NH4+ in the drained treatment resulted in higher plant delta15N (+0.8% per hundred to +1.8% per hundred in the drained plots and -3.9% per hundred to -5.4% per hundred in the undrained plots), and deposition of litterfall N enriched with 15N increased the delta15N of total soil N in the surface layer in the drained (+2.9% per hundred) as compared with that in the undrained plots (+0.6% per hundred). The effect of drainage on foliar delta(13)C was species-specific, i.e., only tamarack showed a considerably less negative foliar delta(13)C in the drained (-28.1% per hundred) than in the undrained plots (-29.1% per hundred), indicating improved water use efficiency (WUE) by drainage. Tree ring area increments were significantly increased following drainage, and delta(13)C and delta(15)N in tree growth rings of both species showed responses to drainage retrospectively. Tree-ring delta(13)C data suggested that drainage improved WUE of both species, with a greater and more prolonged response in tamarack than in black spruce. Our results indicate that drainage caused the studied minerotrophic peatland to become a more open ecosystem in terms of C and N

  6. Growth of a Pine Tree

    ERIC Educational Resources Information Center

    Rollinson, Susan Wells

    2012-01-01

    The growth of a pine tree is examined by preparing "tree cookies" (cross-sectional disks) between whorls of branches. The use of Christmas trees allows the tree cookies to be obtained with inexpensive, commonly available tools. Students use the tree cookies to investigate the annual growth of the tree and how it corresponds to the number of whorls…

  7. Ethylenediurea (EDU) affects the growth of ozone-sensitive and tolerant ash (Fraxinus excelsior) trees under ambient O3 conditions.

    PubMed

    Paoletti, Elena; Contran, Nicla; Manning, William J; Tagliaferro, Francesco

    2007-03-21

    Adult ash trees (Fraxinus excelsior L.), known to be sensitive or tolerant to ozone, determined by presence or absence of foliar symptoms in previous years, were treated with ethylenediurea (EDU) at 450 ppm by gravitational trunk infusion over the 2005 growing season (32.5 ppm h AOT40). Tree and shoot growth were recorded in May and September. Leaf area, ectomycorrhizal infection, and leaf and fine root biomass were determined in September. EDU enhanced shoot length and diameter, and the number and area of leaves, in both O3-sensitive and tolerant trees. However, no EDU effects were recorded at the fine root and tree level. Therefore, a potential for EDU protection against O3-caused growth losses of forest trees should be evaluated during longer-term experiments.

  8. Traffic pollution affects P. pinea growth according to tree ring width and C and N isotopic composition

    NASA Astrophysics Data System (ADS)

    Battipaglia, Giovanna; Marzaioli, Fabio; Lubritto, Carmine; Altieri, Simona; Strumia, Sandro; Cherubini, Paolo; Cotrufo, M. Francesca

    2010-05-01

    Urbanization and industrialization are rapidly growing, as a consequence roads and their associated vehicular traffic exerts major and increasing impacts on adjacent ecosystems. Various studies have shown the impact of vehicle exhausts on road side vegetation through their visible and non-visible effects (Farmer and Lyon 1977, Sarkar et al., 1986, Angold 1997, Nuhoglu 2005) but, presently there is little known about the long term effect of air pollution on vegetation and on trees, in particular. Developing proxies for atmospheric pollution that would be used to identify the physiological responses of trees under roadside car exhaust pollution stress is needed. In this context we propose a novel method to determine the effect of car exhaust pollution on tree growth, coupling classical dendrochronological analyses and analyses of 15N and 13C in tree rings, soils and leaves with tree ring radiocarbon (14C) data. Pinus pinea individuals, adjacent to main roads in the urban area of Caserta (South Italy) and exposed to large amounts of traffic exhausts since 1980, were sampled and the time-related trend in the growth residuals was estimated. We found a consistent decrease in the ring width starting from 1980, with a slight increase in δ13C value, which was considered to be a consequence of environmental stress. No clear pattern was identified in δ15N, while an increasing effect of the fossil fuel dilution on the atmospheric bomb-enriched 14C background was detected in tree rings, as a consequence of the increase in traffic exhausts. Our findings suggest that radiocarbon is a very sensitive tool to investigate small-scale (i.e. traffic exhaust at the level crossing) and large-scale (urban area pollution) induced disturbances. References Angold PG. Impact of a road upon adjacent heathland vegetations: effect on plant species compositions. J Appl Ecol 1997; 34 (2): 409-417. Farmer JC, Lyon TDB. Lead in Glasgow street dirt and soil. Sci Tot Environ 1977; 8: 89-93. Nuhoglu

  9. Long-term exposure to twice-ambient ozone (O3) affects carbon sink strength, allocation and stem growth in adult central European forest trees

    NASA Astrophysics Data System (ADS)

    Grams, T. E.; Matyssek, R.

    2009-12-01

    Amongst air pollutants, ground-level ozone (O3) is potentially the most detrimental to vegetation. Spreading globally, enhanced O3 levels are predicted to increase, in particular, in rapidly developing countries and, thus, O3 must now be considered in climate change scenarios and post-Kyoto policies. Here, we present an appraisal of a unique 8-year free-air O3 fumigation experiment on adult European beech (Fagus sylvatica) and Noway spruce (Picea abies), ecologically and economically important, late-succession tree species in Central Europe. For the first time, whole-plant canopies of naturally grown, 60 to 70 years old forest trees were exposed to twice-ambient O3 levels for a total of eight years. Throughout the study period, enhanced O3 uptake in the elevated O3 treatment affected net C fixation and distinctly weakened the whole-stem growth in beech. In contrast, adult spruce at the same site did not display decline in stem biomass development. Those findings corroborate species-specific sensitivities to O3 reported from previous chamber studies on juvenile beech and spruce trees. Carbon allocation of adult trees, as a mechanistical basis of growth processes, was investigated through stable isotope tracer experiments using 13C depleted CO2 at the canopy level. To this end, a novel free-air CO2 exposure system, named tubeFACE, was developed, which employed micro-porous PVC tubes hanging through the canopy of adult trees. In a 19-day 13CO2/12CO2 labeling experiment, CO2 with a δ13C of -46.9 ‰ was continuously released into the canopy to increase [CO2] by 100 µmol mol-1, resulting in a reduction in δ13C of about 8 ‰. Subsequently, C allocation to respiratory pools of various tree organs was studied. Similar to the reduced stem growth in beech, elevated O3 significantly reduced allocation of labeled C to stem respiration, whereas in spruce such a reduction was not found. Hence, our study underlines the need to understand O3 risks by species, so that modeling

  10. Growing up or growing out? How soil pH and light affect seedling growth of a relictual rainforest tree

    PubMed Central

    Offord, Catherine A.; Meagher, Patricia F.; Zimmer, Heidi C.

    2014-01-01

    Seedling growth rates can have important long-term effects on forest dynamics. Environmental variables such as light availability and edaphic factors can exert a strong influence on seedling growth. In the wild, seedlings of Wollemi pine (Wollemia nobilis) grow on very acid soils (pH ∼4.3) in deeply shaded sites (∼3 % full sunlight). To examine the relative influences of these two factors on the growth of young W. nobilis seedlings, we conducted a glasshouse experiment growing seedlings at two soil pH levels (4.5 and 6.5) under three light levels: low (5 % full sun), medium (15 %) and high (50 %). Stem length and stem diameter were measured, stem number and branch number were counted, and chlorophyll and carotenoid content were analysed. In general, increased plant growth was associated with increased light, and with low pH irrespective of light treatment, and pigment content was higher at low pH. Maximum stem growth occurred in plants grown in the low pH/high light treatment combination. However, stem number was highest in low pH/medium light. We hypothesize that these differences in stem development of W. nobilis among light treatments were due to this species' different recruitment strategies in response to light: greater stem growth at high light and greater investment in multiple stem production at low light. The low light levels in the W. nobilis habitat may be a key limitation on stem growth and hence W. nobilis recruitment from seedling to adult. Light and soil pH are two key factors in the growth of this threatened relictual rainforest species. PMID:24790132

  11. Growing up or growing out? How soil pH and light affect seedling growth of a relictual rainforest tree.

    PubMed

    Offord, Catherine A; Meagher, Patricia F; Zimmer, Heidi C

    2014-01-01

    Seedling growth rates can have important long-term effects on forest dynamics. Environmental variables such as light availability and edaphic factors can exert a strong influence on seedling growth. In the wild, seedlings of Wollemi pine (Wollemia nobilis) grow on very acid soils (pH ∼4.3) in deeply shaded sites (∼3 % full sunlight). To examine the relative influences of these two factors on the growth of young W. nobilis seedlings, we conducted a glasshouse experiment growing seedlings at two soil pH levels (4.5 and 6.5) under three light levels: low (5 % full sun), medium (15 %) and high (50 %). Stem length and stem diameter were measured, stem number and branch number were counted, and chlorophyll and carotenoid content were analysed. In general, increased plant growth was associated with increased light, and with low pH irrespective of light treatment, and pigment content was higher at low pH. Maximum stem growth occurred in plants grown in the low pH/high light treatment combination. However, stem number was highest in low pH/medium light. We hypothesize that these differences in stem development of W. nobilis among light treatments were due to this species' different recruitment strategies in response to light: greater stem growth at high light and greater investment in multiple stem production at low light. The low light levels in the W. nobilis habitat may be a key limitation on stem growth and hence W. nobilis recruitment from seedling to adult. Light and soil pH are two key factors in the growth of this threatened relictual rainforest species.

  12. Detecting Coppice Legacies from Tree Growth

    PubMed Central

    Müllerová, Jana; Pejcha, Vít; Altman, Jan; Plener, Tomáš; Dörner, Petr; Doležal, Jiří

    2016-01-01

    In coppice-with-standards, once a common type of management in Central European lowland forests, selected trees (standards) were left to grow mature among the regularly harvested coppice stools to obtain construction wood. After the underwood was harvested, the forest canopy opened rapidly, giving standard trees an opportunity to benefit from reduced competition. Although this silvicultural system virtually disappeared after WWII, historical management cycles can still be traced in the tree-rings of remaining standards. Our research aims at answering the question whether tree-ring series of standard trees can be used to reconstruct past management practices. The study was carried out on 117 oak standard trees from five sites situated in formerly coppiced calcareous oak-hornbeam and acidophilous oak forests in the Bohemian Karst Protected Landscape Area, Czech Republic. The evaluation was based on the analysis of growth releases representing the response of the standards to coppicing events, and comparison to the archival records of coppice events. Our results showed that coppicing events can be successfully detected by tree-ring analysis, although there are some limitations. Altogether 241 releases were identified (49% of major releases). Large number of releases could be related to historical records, with the major ones giving better results. The overall probability of correct detection (positive predictive power) was 58%, ranging from 50 to 67%, probability for major releases was 78%, ranging from 63 to 100% for different sites. The ability of individual trees to mirror past coppice events was significantly affected by competition from neighboring trees (their number and the sum of distance-weighted basal areas). A dendro-ecological approach to the study of forest management history can serve as an input for current attempts of coppice reintroduction and for conservation purposes. PMID:26784583

  13. Detecting Coppice Legacies from Tree Growth.

    PubMed

    Müllerová, Jana; Pejcha, Vít; Altman, Jan; Plener, Tomáš; Dörner, Petr; Doležal, Jiří

    2016-01-01

    In coppice-with-standards, once a common type of management in Central European lowland forests, selected trees (standards) were left to grow mature among the regularly harvested coppice stools to obtain construction wood. After the underwood was harvested, the forest canopy opened rapidly, giving standard trees an opportunity to benefit from reduced competition. Although this silvicultural system virtually disappeared after WWII, historical management cycles can still be traced in the tree-rings of remaining standards. Our research aims at answering the question whether tree-ring series of standard trees can be used to reconstruct past management practices. The study was carried out on 117 oak standard trees from five sites situated in formerly coppiced calcareous oak-hornbeam and acidophilous oak forests in the Bohemian Karst Protected Landscape Area, Czech Republic. The evaluation was based on the analysis of growth releases representing the response of the standards to coppicing events, and comparison to the archival records of coppice events. Our results showed that coppicing events can be successfully detected by tree-ring analysis, although there are some limitations. Altogether 241 releases were identified (49% of major releases). Large number of releases could be related to historical records, with the major ones giving better results. The overall probability of correct detection (positive predictive power) was 58%, ranging from 50 to 67%, probability for major releases was 78%, ranging from 63 to 100% for different sites. The ability of individual trees to mirror past coppice events was significantly affected by competition from neighboring trees (their number and the sum of distance-weighted basal areas). A dendro-ecological approach to the study of forest management history can serve as an input for current attempts of coppice reintroduction and for conservation purposes.

  14. Factors affecting bone growth.

    PubMed

    Gkiatas, Ioannis; Lykissas, Marios; Kostas-Agnantis, Ioannis; Korompilias, Anastasios; Batistatou, Anna; Beris, Alexandros

    2015-02-01

    Bone growth and development are products of the complex interactions of genetic and environmental factors. Longitudinal bone growth depends on the growth plate. The growth plate has 5 different zones-each with a different functional role-and is the final target organ for longitudinal growth. Bone length is affected by several systemic, local, and mechanical factors. All these regulation systems control the final length of bones in a complicated way. Despite its significance to bone stability, bone growth in width has not been studied as extensively as longitudinal bone growth. Bone growth in width is also controlled by genetic factors, but mechanical loading regulates periosteal apposition. In this article, we review the most recent data regarding bone growth from the embryonic age and analyze the factors that control bone growth. An understanding of this complex system is important in identifying metabolic and developmental bone diseases and fracture risk.

  15. Root-zone temperatures affect phenology of bud break, flower cluster development, shoot extension growth and gas exchange of 'Braeburn' (Malus domestica) apple trees.

    PubMed

    Greer, Dennis H; Wünsche, Jens N; Norling, Cara L; Wiggins, Harry N

    2006-01-01

    We investigated the effects of root-zone temperature on bud break, flowering, shoot growth and gas exchange of potted mature apple (Malus domestica (Borkh.)) trees with undisturbed roots. Soil respiration was also determined. Potted 'Braeburn' apple trees on M.9 rootstock were grown for 70 days in a constant day/night temperature regime (25/18 degrees C) and one of three constant root-zone temperatures (7, 15 and 25 degrees C). Both the proportion and timing of bud break were significantly enhanced as root-zone temperature increased. Rate of floral cluster opening was also markedly increased with increasing root-zone temperature. Shoot length increased but shoot girth growth declined as root-zone temperatures increased. Soil respiration and leaf photosynthesis generally increased as root-zone temperatures increased. Results indicate that apple trees growing in regions where root zone temperatures are < or = 15 degrees C have delayed bud break and up to 20% fewer clusters than apple trees exposed to root zone temperatures of > or = 15 degrees C. The effect of root-zone temperature on shoot performance may be mediated through the mobilization of root reserves, although the role of phytohormones cannot be discounted. Variation in leaf photosynthesis across the temperature treatments was inadequately explained by stomatal conductance. Given that root growth increases with increasing temperature, changes in sink activity induced by the root-zone temperature treatments provide a possible explanation for the non-stomatal effect on photosynthesis. Irrespective of underlying mechanisms, root-zone temperatures influence bud break and flowering in apple trees.

  16. Tree Growth Rings: What They Tell Us.

    ERIC Educational Resources Information Center

    Sunal, Dennis W.; Sunal, Cynthia Szymanski

    1991-01-01

    Activities in which students can learn to determine the history of a tree from the growth pattern recorded in the rings of a cross-section of a tree are described. Activities include background information, objectives, a list of needed materials per group, and procedures. Cross-sections of four different tree types are included if real tree…

  17. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees

    PubMed Central

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. ‘Golden Delicious.’ To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  18. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.

    PubMed

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback.

  19. Tree growth and competition in an old-growth Picea abies forest of boreal Sweden: influence of tree spatial patterning

    USGS Publications Warehouse

    Fraver, Shawn; D'Amato, Anthony W.; Bradford, John B.; Jonsson, Bengt Gunnar; Jönsson, Mari; Esseen, Per-Anders

    2013-01-01

    Question: What factors best characterize tree competitive environments in this structurally diverse old-growth forest, and do these factors vary spatially within and among stands? Location: Old-growth Picea abies forest of boreal Sweden. Methods: Using long-term, mapped permanent plot data augmented with dendrochronological analyses, we evaluated the effect of neighbourhood competition on focal tree growth by means of standard competition indices, each modified to include various metrics of trees size, neighbour mortality weighting (for neighbours that died during the inventory period), and within-neighbourhood tree clustering. Candidate models were evaluated using mixed-model linear regression analyses, with mean basal area increment as the response variable. We then analysed stand-level spatial patterns of competition indices and growth rates (via kriging) to determine if the relationship between these patterns could further elucidate factors influencing tree growth. Results: Inter-tree competition clearly affected growth rates, with crown volume being the size metric most strongly influencing the neighbourhood competitive environment. Including neighbour tree mortality weightings in models only slightly improved descriptions of competitive interactions. Although the within-neighbourhood clustering index did not improve model predictions, competition intensity was influenced by the underlying stand-level tree spatial arrangement: stand-level clustering locally intensified competition and reduced tree growth, whereas in the absence of such clustering, inter-tree competition played a lesser role in constraining tree growth. Conclusions: Our findings demonstrate that competition continues to influence forest processes and structures in an old-growth system that has not experienced major disturbances for at least two centuries. The finding that the underlying tree spatial pattern influenced the competitive environment suggests caution in interpreting traditional tree

  20. Parameterization of tree-ring growth in Siberia

    NASA Astrophysics Data System (ADS)

    Tychkov, Ivan; Popkova, Margarita; Shishov, Vladimir; Vaganov, Eugene

    2016-04-01

    No doubt, climate-tree growth relationship is an one of the useful and interesting subject of studying in dendrochronology. It provides an information of tree growth dependency on climatic environment, but also, gives information about growth conditions and whole tree-ring growth process for long-term periods. New parameterization approach of the Vaganov-Shashkin process-based model (VS-model) is developed to described critical process linking climate variables with tree-ring formation. The approach (co-called VS-Oscilloscope) is presented as a computer software with graphical interface. As most process-based tree-ring models, VS-model's initial purpose is to describe variability of tree-ring radial growth due to variability of climatic factors, but also to determinate principal factors limiting tree-ring growth. The principal factors affecting on the growth rate of cambial cells in the VS-model are temperature, day light and soil moisture. Detailed testing of VS-Oscilloscope was done for semi-arid area of southern Siberia (Khakassian region). Significant correlations between initial tree-ring chronologies and simulated tree-ring growth curves were obtained. Direct natural observations confirm obtained simulation results including unique growth characteristic for semi-arid habitats. New results concerning formation of wide and narrow rings under different climate conditions are considered. By itself the new parameterization approach (VS-oscilloscope) is an useful instrument for better understanding of various processes in tree-ring formation. The work was supported by the Russian Science Foundation (RSF # 14-14-00219).

  1. Tree demography dominates long-term growth trends inferred from tree rings.

    PubMed

    Brienen, Roel J W; Gloor, Manuel; Ziv, Guy

    2017-02-01

    Understanding responses of forests to increasing CO2 and temperature is an important challenge, but no easy task. Tree rings are increasingly used to study such responses. In a recent study, van der Sleen et al. (2014) Nature Geoscience, 8, 4 used tree rings from 12 tropical tree species and find that despite increases in intrinsic water use efficiency, no growth stimulation is observed. This challenges the idea that increasing CO2 would stimulate growth. Unfortunately, tree ring analysis can be plagued by biases, resulting in spurious growth trends. While their study evaluated several biases, it does not account for all. In particular, one bias may have seriously affected their results. Several of the species have recruitment patterns, which are not uniform, but clustered around one specific year. This results in spurious negative growth trends if growth rates are calculated in fixed size classes, as 'fast-growing' trees reach the sampling diameter earlier compared to slow growers and thus fast growth rates tend to have earlier calendar dates. We assessed the effect of this 'nonuniform age bias' on observed growth trends and find that van der Sleen's conclusions of a lack of growth stimulation do not hold. Growth trends are - at least partially - driven by underlying recruitment or age distributions. Species with more clustered age distributions show more negative growth trends, and simulations to estimate the effect of species' age distributions show growth trends close to those observed. Re-evaluation of the growth data and correction for the bias result in significant positive growth trends of 1-2% per decade for the full period, and 3-7% since 1950. These observations, however, should be taken cautiously as multiple biases affect these trend estimates. In all, our results highlight that tree ring studies of long-term growth trends can be strongly influenced by biases if demographic processes are not carefully accounted for.

  2. Long tree-ring chronologies provide evidence of recent tree growth decrease in a Central African tropical forest.

    PubMed

    Battipaglia, Giovanna; Zalloni, Enrica; Castaldi, Simona; Marzaioli, Fabio; Cazzolla-Gatti, Roberto; Lasserre, Bruno; Tognetti, Roberto; Marchetti, Marco; Valentini, Riccardo

    2015-01-01

    It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2.

  3. Long Tree-Ring Chronologies Provide Evidence of Recent Tree Growth Decrease in a Central African Tropical Forest

    PubMed Central

    Battipaglia, Giovanna; Zalloni, Enrica; Castaldi, Simona; Marzaioli, Fabio; Cazzolla- Gatti, Roberto; Lasserre, Bruno; Tognetti, Roberto; Marchetti, Marco; Valentini, Riccardo

    2015-01-01

    It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2. PMID:25806946

  4. Identifying ontogenetic, environmental and individual components of forest tree growth

    PubMed Central

    Chaubert-Pereira, Florence; Caraglio, Yves; Lavergne, Christian; Guédon, Yann

    2009-01-01

    Background and Aims This study aimed to identify and characterize the ontogenetic, environmental and individual components of forest tree growth. In the proposed approach, the tree growth data typically correspond to the retrospective measurement of annual shoot characteristics (e.g. length) along the trunk. Methods Dedicated statistical models (semi-Markov switching linear mixed models) were applied to data sets of Corsican pine and sessile oak. In the semi-Markov switching linear mixed models estimated from these data sets, the underlying semi-Markov chain represents both the succession of growth phases and their lengths, while the linear mixed models represent both the influence of climatic factors and the inter-individual heterogeneity within each growth phase. Key Results On the basis of these integrative statistical models, it is shown that growth phases are not only defined by average growth level but also by growth fluctuation amplitudes in response to climatic factors and inter-individual heterogeneity and that the individual tree status within the population may change between phases. Species plasticity affected the response to climatic factors while tree origin, sampling strategy and silvicultural interventions impacted inter-individual heterogeneity. Conclusions The transposition of the proposed integrative statistical modelling approach to cambial growth in relation to climatic factors and the study of the relationship between apical growth and cambial growth constitute the next steps in this research. PMID:19684021

  5. Growth strain in coconut palm trees.

    PubMed

    Huang, Yan S; Chen, Shin S; Lin, Tsan P; Chen, Yuh S

    2002-03-01

    Until recently, growth stress studies have been made only on coniferous and dicotyledonous trees. Growth stress of trees is thought to be initiated in newly formed secondary xylem cells. This stress can accumulate for years and is distributed inside the trunk. Major characteristics of the trunk of monocotyledonous trees include numerous vascular bundles scattered inside the ground tissue and the lack of secondary growth for enlarging the diameter of the trunk. We used the strain gauge method to measure the released growth strain of the monocotyledonous woody palm, coconut (Cocos nucifera L.), and to investigate the surface growth strain of the trunk and central cylinder at different trunk heights. The internal strains of both vertical and leaning trunks were measured and compared with those of coniferous and dicotyledonous trees. We found that tensile stress existed longitudinally on the surface of vertically growing trunks, whereas compression stress was found at the bending position of leaning trunks. Compression stress was found in the outer part of the central cylinder, whereas tensile stress is generally found in the outer part of the trunk in coniferous and dicotyledonous trees. The distribution of strain in the palm trunk is similar to that of compression wood of the leaning trunk of a conifer. Specific gravity was greater in the outer part of the trunk than in the inner part of the trunk. This difference may be related to the distribution of growth stress.

  6. Charcoal kiln relicts - a favorable site for tree growth?

    NASA Astrophysics Data System (ADS)

    Buras, Allan; Hirsch, Florian; van der Maaten, Ernst; Takla, Melanie; Räbiger, Christin; Cruz Garcia, Roberto; Schneider, Anna; Raab, Alexandra; Raab, Thomas; Wilmking, Martin

    2015-04-01

    Soils with incompletely combusted organic material (aka 'black carbon') are considered fertile for plant growth. Considerable enrichment of soils with black carbon is known from Chernozems, from anthropogenic induced altering of soils like the 'Terra Preta' in South America (e.g. Glaser, 2001), and from charcoal kiln relicts. Recent studies have reported a high spatial frequency of charcoal kiln relicts in the Northeastern German lowlands (Raab et al., 2015), which today are often overgrown by forest plantations. In this context the question arises whether these sites are favorable for tree growth. Here we compare the performance of 22 Pinus sylvestris individuals - a commonly used tree species in forestry - growing on charcoal kiln relicts with 22 control trees. Growth performance (height growth and diameter growth) of the trees was determined using dendrochronological techniques, i.e. standard ring-width measurements were undertaken on each two cores per tree and tree height was measured in the field. Several other wood properties such as annual wood density, average resin content, as well as wood chemistry were analyzed. Our results indicate that trees growing on charcoal kiln relicts grow significantly less and have a significantly lower wood density in comparison with control trees. Specific chemical components such as Manganese as well as resin contents were significantly higher in kiln trees. These results highlight that tree growth on charcoal kiln relicts is actually hampered instead of enhanced. Possibly this is a combined effect of differing physical soil properties which alter soil water accessibility for plants and differing chemical soil properties which may negatively affect tree growth either if toxic limits are surpassed or if soil nutrient availability is decreased. Additional soil analyses with respect to soil texture and soil chemistry shall reveal further insight into this hypothesis. Given the frequent distribution of charcoal kiln relicts in

  7. Photoperiodic growth control in perennial trees.

    PubMed

    Azeez, Abdul; Sane, Aniruddha P

    2015-01-01

    Plants have to cope with changing seasons and adverse environmental conditions. Being sessile, plants have developed elaborate mechanisms for their survival that allow them to sense and adapt to the environment and reproduce successfully. A major adaptive trait for the survival of trees of temperate and boreal forests is the induction of growth cessation in anticipation of winters. In the last few years enormous progress has been made to elucidate the molecular mechanisms underlying SDs induced growth cessation in model perennial tree hybrid aspen (Populus tremula × P. tremuloides). In this review we discuss the molecular mechanism underlying photoperiodic control of growth cessation and adaptive responses.

  8. Photoperiodic growth control in perennial trees

    PubMed Central

    Azeez, Abdul; Sane, Aniruddha P

    2015-01-01

    Plants have to cope with changing seasons and adverse environmental conditions. Being sessile, plants have developed elaborate mechanisms for their survival that allow them to sense and adapt to the environment and reproduce successfully. A major adaptive trait for the survival of trees of temperate and boreal forests is the induction of growth cessation in anticipation of winters. In the last few years enormous progress has been made to elucidate the molecular mechanisms underlying SDs induced growth cessation in model perennial tree hybrid aspen (Populus tremula × P. tremuloides). In this review we discuss the molecular mechanism underlying photoperiodic control of growth cessation and adaptive responses. PMID:26340077

  9. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes

    PubMed Central

    Petermann, Jana S.; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W.; Gossner, Martin M.

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and

  10. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.

    PubMed

    Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and

  11. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth

    PubMed Central

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-01-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In contrast to random species loss, the non-random extinction scenarios were based on the tree species’ local rarity and specific leaf area – traits that may strongly influence the way herbivory is affected by plant species richness. Herbivory increased with tree species richness across all scenarios and was unaffected by the different species compositions in the random and non-random extinction scenarios. Whereas tree growth rates were positively related to herbivory on plots with smaller trees, growth rates significantly declined with increasing herbivory on plots with larger trees. Our results suggest that the effects of herbivory on growth rates increase from monocultures to the most species-rich plant communities and that negative effects with increasing tree species richness become more pronounced with time as trees grow larger. Synthesis. Our results indicate that key trophic interactions can be quick to become established in forest plantations (i.e. already 2.5 years after tree planting). Stronger herbivory effects on tree growth with increasing tree species richness suggest a potentially important role of herbivory in regulating ecosystem functions and the structural development of species-rich forests from the very start of secondary forest succession. The lack of significant differences between the extinction scenarios, however, contrasts with findings from natural forests of higher successional age, where rarity had negative effects on herbivory. This indicates that

  12. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth.

    PubMed

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-05-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In contrast to random species loss, the non-random extinction scenarios were based on the tree species' local rarity and specific leaf area - traits that may strongly influence the way herbivory is affected by plant species richness. Herbivory increased with tree species richness across all scenarios and was unaffected by the different species compositions in the random and non-random extinction scenarios. Whereas tree growth rates were positively related to herbivory on plots with smaller trees, growth rates significantly declined with increasing herbivory on plots with larger trees. Our results suggest that the effects of herbivory on growth rates increase from monocultures to the most species-rich plant communities and that negative effects with increasing tree species richness become more pronounced with time as trees grow larger. Synthesis. Our results indicate that key trophic interactions can be quick to become established in forest plantations (i.e. already 2.5 years after tree planting). Stronger herbivory effects on tree growth with increasing tree species richness suggest a potentially important role of herbivory in regulating ecosystem functions and the structural development of species-rich forests from the very start of secondary forest succession. The lack of significant differences between the extinction scenarios, however, contrasts with findings from natural forests of higher successional age, where rarity had negative effects on herbivory. This indicates that the

  13. Biodiversity promotes tree growth during succession in subtropical forest.

    PubMed

    Barrufol, Martin; Schmid, Bernhard; Bruelheide, Helge; Chi, Xiulian; Hector, Andrew; Ma, Keping; Michalski, Stefan; Tang, Zhiyao; Niklaus, Pascal A

    2013-01-01

    Losses of plant species diversity can affect ecosystem functioning, with decreased primary productivity being the most frequently reported effect in experimental plant assemblages, including tree plantations. Less is known about the role of biodiversity in natural ecosystems, including forests, despite their importance for global biogeochemical cycling and climate. In general, experimental manipulations of tree diversity will take decades to yield final results. To date, biodiversity effects in natural forests therefore have only been reported from sample surveys or meta-analyses with plots not initially selected for diversity. We studied biomass and growth of subtropical forests stands in southeastern China. Taking advantage of variation in species recruitment during secondary succession, we adopted a comparative study design selecting forest plots to span a gradient in species richness. We repeatedly censored the stem diameter of two tree size cohorts, comprising 93 species belonging to 57 genera and 33 families. Tree size and growth were analyzed in dependence of species richness, the functional diversity of growth-related traits, and phylogenetic diversity, using both general linear and structural equation modeling. Successional age covaried with diversity, but differently so in the two size cohorts. Plot-level stem basal area and growth were positively related with species richness, while growth was negatively related to successional age. The productivity increase in species-rich, functionally and phylogenetically diverse plots was driven by both larger mean sizes and larger numbers of trees. The biodiversity effects we report exceed those from experimental studies, sample surveys and meta-analyses, suggesting that subtropical tree diversity is an important driver of forest productivity and re-growth after disturbance that supports the provision of ecological services by these ecosystems.

  14. The effect of size and competition on tree growth rate in old-growth coniferous forests

    USGS Publications Warehouse

    Das, Adrian

    2012-01-01

    Tree growth and competition play central roles in forest dynamics. Yet models of competition often neglect important variation in species-specific responses. Furthermore, functions used to model changes in growth rate with size do not always allow for potential complexity. Using a large data set from old-growth forests in California, models were parameterized relating growth rate to tree size and competition for four common species. Several functions relating growth rate to size were tested. Competition models included parameters for tree size, competitor size, and competitor distance. Competitive strength was allowed to vary by species. The best ranked models (using Akaike’s information criterion) explained between 18% and 40% of the variance in growth rate, with each species showing a strong response to competition. Models indicated that relationships between competition and growth varied substantially among species. The results also suggested that the relationship between growth rate and tree size can be complex and that how we model it can affect not only our ability to detect that complexity but also whether we obtain misleading results. In this case, for three of four species, the best model captured an apparent and unexpected decline in potential growth rate for the smallest trees in the data set.

  15. Tree shelter and interplanted n-fixing shrub effects on crop tree growth on a calcareous minesoil

    SciTech Connect

    Kost, D.A.; Larson, M.M.; Vimmerstedt, J.P.

    1996-12-31

    In southeastern Ohio, we installed three studies to test the effects of plastic tube tree shelters and interplanted N-fixing shrubs on crop tree survival and growth. Study 1 on graded gray cast overburden used white ash (Fraxinus Americana L.) and a hybrid willow (Salix matsudana x alba, or Austree) as crop trees. These were tested in factorial combination with 1.2 m tall tree shelters (present or absent) and N-fixing shrubs [none, bristly locust (Robinia fertilis Ashe), or Siberian peashrub (Caragana arborescens Lam. )]. Study 2 evaluated growth of bur oak (Quercus macrocarpa Michx.) as affected by soil surf ace (graded cast overburden or ripped topsoil), presence of tree shelters, and presence of interplanted Siberian peashrub. Study 3 tested Austree growth as affected by soil surf ace and presence of tree shelters. After four or five growing seasons, overall crop tree survivals were white ash (80%), bur oak (52%), and Austree (10% in study 1 and 25% in study 3). All crop tree species tended to survive better with tree shelters but only Austree in study 3 (36% with shelter vs. 14% without shelter) showed a significant difference. Tree shelters increased heights of white ash (102 cm with shelter vs. 21 cm without shelter) and bur oak (84 cm vs. 27 cm). Crop tree survival and growth were not affected significantly by interplanted N-fixing shrubs or by soil surface. In study 1 (cast overburden only), peashrub (64%) survived better than bristly locust (31%) but locust was taller (74 cm vs. 45 cm). In study 2, peashrub survived better on ripped topsoil (53%) than cast overburden (17%), but height was not impressive on either soil (41{+-}11 cm).

  16. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level

    PubMed Central

    Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2015-01-01

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188

  17. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level.

    PubMed

    Einzmann, Helena J R; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2014-11-11

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ(13)C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests.

  18. Precipitation variability in tropical forests most strongly affecting trees with low wood density

    NASA Astrophysics Data System (ADS)

    Zvoleff, A. I.; Ahumada, J. A.; Beaudrot, L.

    2014-12-01

    The frequency and intensity of extreme climate events such as drought is expected to increase with climate change, particularly in the Amazon. Reduced dry season precipitation can affect forest growth, while long-term drought can increase tree mortality. Understanding the effects of changing precipitation patterns on tree growth is essential for anticipating the effects of climate change on tropical forests. To address this question we investigate the effect of precipitation variability on tropical forest tree growth using tree data from annually censused 1-ha monitoring plots from the Tropical Ecology Assessment and Monitoring (TEAM) Network, and 5-day precipitation data from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). Significant regional patterns of precipitation variability are apparent across the monitoring sites in the TEAM network, particularly the strong Amazon drought in 2010. Using CHIRPS data, we calculate the Standardized Precipitation Index (SPI), and model the effects of varying SPI on tree growth, while controlling for potential differences in growth between different stem diameter and wood density classes. We find that annual growth increases with declining wood density (p < .01), increasing diameter (p < .01), and increasing SPI (p < .01). We also find statistically significant interaction effects (p < .01) between SPI and wood density: the relationship between SPI and growth is strongest for lower wood densities. This suggests that trees with lower wood density are more sensitive to drought. Interaction effects between diameter class and SPI are not significant. Given the greater sensitivity of fast growing low-density trees to drought, reduced growth of these trees is likely to affect carbon uptake during drought periods disproportionately.

  19. Defoliation by pastoralists affects savanna tree seedling dynamics by limiting the facilitative role of canopy cover.

    PubMed

    Bufford, Jennifer L; Gaoue, Orou G

    2015-07-01

    Recurrent tree defoliation by pastoralists, akin to herbivory, can negatively affect plant reproduction and population dynamics. However, our understanding of the indirect role of defoliation in seedling recruitment and tree-grass dynamics in tropical savanna is limited. In West African savanna, Fulani pastoralists frequently defoliate several fodder tree species to feed livestock in the dry season. We investigated the direct and indirect effects of recurrent defoliation of African mahogany (Khaya senegalensis) by Fulani people on seedling (< 2 cm basal diameter) and sapling dynamics in West Africa using four years of demographic data on seedling and sapling density, growth, and survival, coupled with fruit production and microhabitat data over the same time period. Tree canopy cover facilitated seedlings but had negative effects on sapling growth possibly via intraspecific competition with adult plants. Interspecific competition with grasses strongly reduced seedling survival but had a weak effect on sapling growth. Fire reduced seedling survival and weakly reduced growth of seedlings and saplings, but did not affect sapling survival. These results indicate that the effect of fire on seedlings and saplings is distinct, a mechanism suitable for an episodic recruitment of seedlings into the sapling stage and consistent with predictions from the demographic bottleneck model. Defoliation affected seedling density and sapling growth through changes in canopy cover, but had no effect on seedling growth and sapling survival. In the moist region, sapling density was higher in sites with low-intensity defoliation, indicating that defoliation may strengthen the tree recruitment bottleneck. Our study suggests that large-scale defoliation can alter the facilitative role of nurse trees on seedling dynamics and tree-sapling competition. Given that tree defoliation by local people is a widespread activity throughout savanna-forest systems in West Africa, it has the potential to

  20. Understanding tree growth responses after partial cuttings: A new approach

    PubMed Central

    Rossi, Sergio; Lussier, Jean-Martin; Walsh, Denis; Morin, Hubert

    2017-01-01

    Forest ecosystem management heads towards the use of partial cuttings. However, the wide variation in growth response of residual trees remains unexplained, preventing a suitable prediction of forest productivity. The aim of the study was to assess individual growth and identify the driving factors involved in the responses of residual trees. Six study blocks in even-aged black spruce [Picea mariana (Mill.) B.S.P.] stands of the eastern Canadian boreal forest were submitted to experimental shelterwood and seed-tree treatments. Individual-tree models were applied to 1039 trees to analyze their patterns of radial growth during the 10 years after partial cutting by using the nonlinear Schnute function on tree-ring series. The trees exhibited different growth patterns. A sigmoid growth was detected in 32% of trees, mainly in control plots of older stands. Forty-seven percent of trees located in the interior of residual strips showed an S-shape, which was influenced by stand mortality, harvested intensity and dominant height. Individuals showing an exponential pattern produced the greatest radial growth after cutting and were edge trees of younger stands with higher dominant height. A steady growth decline was observed in 4% of trees, represented by the individuals suppressed and insensitive to the treatment. The analyses demonstrated that individual nonlinear models are able to assess the variability in growth within the stand and the factors involved in the occurrence of the different growth patterns, thus improving understanding of the tree responses to partial cutting. This new approach can sustain forest management strategies by defining the best conditions to optimize the growth yield of residual trees. PMID:28222200

  1. Daylength mediated control of seasonal growth patterns in perennial trees.

    PubMed

    Petterle, Anna; Karlberg, Anna; Bhalerao, Rishikesh P

    2013-06-01

    Daylength is a key regulator of seasonal growth patterns in perennial trees in temperate regions. Cessation of growth is induced by short day signal in these trees before the advent of winter and constitutes a major adaptive developmental program. In this review, we report on the recent progress made in identifying the molecular mechanisms that underlie the daylength mediated control of seasonal growth in perennial trees. A major finding that has emerged from the analysis of this process is that the regulation of growth cessation in perennial trees and flowering time by daylength in annuals such as Arabidopsis thaliana involves identical signalling components.

  2. Explaining biomass growth of tropical canopy trees: the importance of sapwood.

    PubMed

    van der Sande, Masha T; Zuidema, Pieter A; Sterck, Frank

    2015-04-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass growth for 43 tropical canopy trees belonging to four species, in a moist forest in Bolivia. Biomass growth varied strongly among trees, between 17.3 and 367.3 kg year(-1), with an average of 105.4 kg year(-1). We found that variation in biomass growth was chiefly explained by a positive effect of SA, and not by tree size or other traits examined. SA itself was positively associated with sapwood growth, sapwood lifespan and basal area. We speculate that SA positively affects the growth of individual trees mainly by increasing water storage, thus securing water supply to the crown. These positive roles of sapwood on growth apparently offset the increased respiration costs incurred by more sapwood. This is one of the first individual-based studies to show that variation in sapwood traits-and not crown traits-explains variation in growth among tropical canopy trees. Accurate predictions of C dynamics in tropical forests require similar studies on biomass growth of individual trees as well as studies evaluating the dual effect of sapwood (water provision vs. respiratory costs) on tropical tree growth.

  3. Tree growth response to ENSO in Durango, Mexico

    NASA Astrophysics Data System (ADS)

    Pompa-García, Marin; Miranda-Aragón, Liliana; Aguirre-Salado, Carlos Arturo

    2015-01-01

    The dynamics of forest ecosystems worldwide have been driven largely by climatic teleconnections. El Niño-Southern Oscillation (ENSO) is the strongest interannual variation of the Earth's climate, affecting the regional climatic regime. These teleconnections may impact plant phenology, growth rate, forest extent, and other gradual changes in forest ecosystems. The objective of this study was to investigate how Pinus cooperi populations face the influence of ENSO and regional microclimates in five ecozones in northwestern Mexico. Using standard dendrochronological techniques, tree-ring chronologies (TRI) were generated. TRI, ENSO, and climate relationships were correlated from 1950-2010. Additionally, multiple regressions were conducted in order to detect those ENSO months with direct relations in TRI ( p < 0.1). The five chronologies showed similar trends during the period they overlapped, indicating that the P. cooperi populations shared an interannual growth variation. In general, ENSO index showed correspondences with tree-ring growth in synchronous periods. We concluded that ENSO had connectivity with regional climate in northern Mexico and radial growth of P. cooperi populations has been driven largely by positive ENSO values (El Niño episodes).

  4. Affect intensity in voice recognized by tree shrews (Tupaia belangeri).

    PubMed

    Schehka, Simone; Zimmermann, Elke

    2012-06-01

    Shared acoustic cues in speech, music, and nonverbal emotional expressions were postulated to code for emotion quality and intensity favoring the hypothesis of a prehuman origin of affective prosody in human emotional communication. To explore this hypothesis, we examined in playback experiments using a habituation-dishabituation paradigm whether a solitary foraging, highly vocal mammal, the tree shrew, is able to discriminate two behaviorally defined states of affect intensity (low vs. high) from the voice of conspecifics. Playback experiments with communication calls of two different types (chatter call and scream call) given in the state of low affect intensity revealed that habituated tree shrews dishabituated to one call type (the chatter call) and showed a tendency to do so for the other one (the scream call), both given in the state of high affect intensity. Findings suggest that listeners perceive the acoustic variation linked to defined states of affect intensity as different within the same call type. Our findings in tree shrews provide first evidence that acoustically conveyed affect intensity is biologically relevant without any other sensory cue, even for solitary foragers. Thus, the perception of affect intensity in voice conveyed in stressful contexts represents a shared trait of mammals, independent of the complexity of social systems. Findings support the hypothesis that affective prosody in human emotional communication has deep-reaching phylogenetic roots, deriving from precursors already present and relevant in the vocal communication system of early mammals.

  5. Slow growth rates of Amazonian trees: consequences for carbon cycling.

    PubMed

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B; Selhorst, Diogo; Chambers, Jeffrey Q; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-12-20

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only approximately 1 mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests.

  6. Powdery Mildew Decreases the Radial Growth of Oak Trees with Cumulative and Delayed Effects over Years.

    PubMed

    Bert, Didier; Lasnier, Jean-Baptiste; Capdevielle, Xavier; Dugravot, Aline; Desprez-Loustau, Marie-Laure

    2016-01-01

    Quercus robur and Q. petraea are major European forest tree species. They have been affected by powdery mildew caused by Erysiphe alphitoides for more than a century. This fungus is a biotrophic foliar pathogen that diverts photosynthetate from the plant for its own nutrition. We used a dendrochronological approach to investigate the effects of different levels of infection severity on the radial growth of young oak trees. Oak infection was monitored at individual tree level, at two sites in southwestern France, over a five-year period (2001-2005). Mean infection severity was almost 75% (infected leaf area) at the end of the 2001 growing season, at both sites, but only about 40% in 2002, and 8%, 5% and 2% in 2003, 2004 and 2005, respectively. Infection levels varied considerably between trees and were positively related between 2001 and 2002. Increment cores were taken from each tree to assess annual ring widths and increases in basal area. Annual radial growth was standardised to take the effect of tree size into account. Annual standardised radial growth was significantly and negatively correlated with infection severity in the same year, for both 2001 and 2002, and at both sites. The decrease in growth reached 70-90% for highly infected trees. The earlywood width was poorly correlated with infection severity, but the proportion of latewood in tree rings was lower in highly infected trees (60%) than in less heavily infected trees (85%). Infection in 2001 and 2002 was found to have a cumulative effect on radial growth in these years, together with a delayed effect detectable in 2003. Thus, even non-lethal pathogens like powdery mildew can have a significant impact on tree functioning. This impact should be taken into account in growth and yield models, to improve predictions of forest net primary production.

  7. Powdery Mildew Decreases the Radial Growth of Oak Trees with Cumulative and Delayed Effects over Years

    PubMed Central

    Bert, Didier; Lasnier, Jean-Baptiste; Capdevielle, Xavier; Dugravot, Aline; Desprez-Loustau, Marie-Laure

    2016-01-01

    Quercus robur and Q. petraea are major European forest tree species. They have been affected by powdery mildew caused by Erysiphe alphitoides for more than a century. This fungus is a biotrophic foliar pathogen that diverts photosynthetate from the plant for its own nutrition. We used a dendrochronological approach to investigate the effects of different levels of infection severity on the radial growth of young oak trees. Oak infection was monitored at individual tree level, at two sites in southwestern France, over a five-year period (2001–2005). Mean infection severity was almost 75% (infected leaf area) at the end of the 2001 growing season, at both sites, but only about 40% in 2002, and 8%, 5% and 2% in 2003, 2004 and 2005, respectively. Infection levels varied considerably between trees and were positively related between 2001 and 2002. Increment cores were taken from each tree to assess annual ring widths and increases in basal area. Annual radial growth was standardised to take the effect of tree size into account. Annual standardised radial growth was significantly and negatively correlated with infection severity in the same year, for both 2001 and 2002, and at both sites. The decrease in growth reached 70–90% for highly infected trees. The earlywood width was poorly correlated with infection severity, but the proportion of latewood in tree rings was lower in highly infected trees (60%) than in less heavily infected trees (85%). Infection in 2001 and 2002 was found to have a cumulative effect on radial growth in these years, together with a delayed effect detectable in 2003. Thus, even non-lethal pathogens like powdery mildew can have a significant impact on tree functioning. This impact should be taken into account in growth and yield models, to improve predictions of forest net primary production. PMID:27177029

  8. A synthesis of radial growth patterns preceding tree mortality.

    PubMed

    Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M R; Desoto, Lucía; Aakala, Tuomas; Antos, Joseph A; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Čada, Vojtěch; Camarero, Jesus J; Cherubini, Paolo; Cochard, Hervé; Coyea, Marie R; Čufar, Katarina; Das, Adrian J; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J; Hartmann, Henrik; Hereş, Ana-Maria; Hultine, Kevin R; Janda, Pavel; Kane, Jeffrey M; Kharuk, Vyacheslav I; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Linares Calderon, Juan C; Lloret, Francisco; Lobo-Do-Vale, Raquel; Lombardi, Fabio; López Rodríguez, Rosana; Mäkinen, Harri; Mayr, Stefan; Mészáros, Ilona; Metsaranta, Juha M; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M; Rohner, Brigitte; Sangüesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M; Stan, Amanda B; Sterck, Frank; Stojanović, Dejan B; Suarez, Maria L; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, José M; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R; Wyckoff, Peter H; Zafirov, Nikolay; Martínez-Vilalta, Jordi

    2017-04-01

    Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or

  9. A synthesis of radial growth patterns preceding tree mortality

    USGS Publications Warehouse

    Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M.R.; Desoto, Lucia; Aakala, Tuomas; Antos, Joseph A.; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Cada, Vojtech; Camarero, Jesus J.; Cherubini, Paolo; Cochard, Herve; Coyea, Marie R.; Cufar, Katarina; Das, Adrian J.; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Hartmann, Henrik; Heres, Ana-Maria; Hultine, Kevin R.; Janda, Pavel; Kane, Jeffrey M.; Kharuk, Vyacheslav I.; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Calderon, Juan C. Linares; Lloret, Francisco; Lobo-Do-Vale, Raquel; Lombardi, Fabio; Lopez Rodriguez, Rosana; Makinen, Harri; Mayr, Stefan; Meszaros, IIona; Metsaranta, Juha M.; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M.; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M.; Stan, Amanda B.; Sterck, Frank; Stojanovic, Dejan B.; Suarez, Maria L.; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, Jose M.; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R.; Wyckoff, Peter H.; Zafirov, Nikolay; Martinez-Vilalta, Jordi

    2017-01-01

    Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1–100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or

  10. Diverging shrub and tree growth from the Polar to the Mediterranean biomes across the European continent.

    PubMed

    Pellizzari, Elena; Camarero, Jesus Julio; Gazol, Antonio; Granda, Elena; Shetti, Rohan; Wilmking, Martin; Moiseev, Pavel; Pividori, Mario; Carrer, Marco

    2016-11-25

    Climate warming is expected to enhance productivity and growth of woody plants, particularly in temperature-limited environments at the northernmost or uppermost limits of their distribution. However, this warming is spatially uneven and temporally variable, and the rise in temperatures differently affects biomes and growth forms. Here, applying a dendroecological approach with generalized additive mixed models, we analysed how the growth of shrubby junipers and coexisting trees (larch and pine species) responds to rising temperatures along a 5000-km latitudinal range including sites from the Polar, Alpine to the Mediterranean biomes. We hypothesize that, being more coupled to ground microclimate, junipers will be less influenced by atmospheric conditions and will less respond to the post-1950 climate warming than coexisting standing trees. Unexpectedly, shrub and tree growth forms revealed divergent growth trends in all the three biomes, with juniper performing better than trees at Mediterranean than at Polar and Alpine sites. The post-1980s decline of tree growth in Mediterranean sites might be induced by drought stress amplified by climate warming and did not affect junipers. We conclude that different but coexisting long-living growth forms can respond differently to the same climate factor and that, even in temperature-limited area, other drivers like the duration of snow cover might locally play a fundamental role on woody plants growth across Europe.

  11. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    PubMed

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.

  12. Growth cessation uncouples isotopic signals in leaves and tree rings of drought-exposed oak trees.

    PubMed

    Pflug, Ellen E; Siegwolf, R; Buchmann, N; Dobbertin, M; Kuster, T M; Günthardt-Goerg, M S; Arend, M

    2015-10-01

    An increase in temperature along with a decrease in summer precipitation in Central Europe will result in an increased frequency of drought events and gradually lead to a change in species composition in forest ecosystems. In the present study, young oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) were transplanted into large mesocosms and exposed for 3 years to experimental warming and a drought treatment with yearly increasing intensities. Carbon and oxygen isotopic (δ(13)C and δ(18)O) patterns were analysed in leaf tissue and tree-ring cellulose and linked to leaf physiological measures and tree-ring growth. Warming had no effect on the isotopic patterns in leaves and tree rings, while drought increased δ(18)O and δ(13)C. Under severe drought, an unexpected isotopic pattern, with a decrease in δ(18)O, was observed in tree rings but not in leaves. This decrease in δ(18)O could not be explained by concurrent physiological analyses and is not supported by current physiological knowledge. Analysis of intra-annual tree-ring growth revealed a drought-induced growth cessation that interfered with the record of isotopic signals imprinted on recently formed leaf carbohydrates. This missing record indicates isotopic uncoupling of leaves and tree rings, which may have serious implications for the interpretation of tree-ring isotopes, particularly from trees that experienced growth-limiting stresses.

  13. Effects of acidity on tree pollen germination and tube growth

    SciTech Connect

    Jacobson, J.S.; Van Rye, D.M.; Lassoie, J.P.

    1985-01-01

    Several studies have indicated that pollen germination and tube growth are adversely affected by air pollutants. Pollutants may inhibit the function of pollen by reducing the number of pollen grains which germinate, by reducing the maximum length to which the pollen tubes grow, or by interfering with the formation of the generative cell. The paper reports on studies that are attempting to determine the effects acid rain may have on these crucial stages in the life histories of northeastern tree species. The first stage of this work assessed the effects of acidity in the growth medium on in vitro pollen germination for four deciduous forest species common to central New York State, Betula lutea (yellow birch), B. lenta (black birch), Acer saccharum (sugar maple), and Cornus florida (flowering dogwood). Measurements were taken at the end of the growth period to determine the percentage of grains which had germinated, and to estimate the average tube length. To determine the effects of pollen on the growth medium, the pH of the germination drop was measured at the end of the growth period.

  14. Reconfiguration of tree architecture under the effect of wind, competition for light, and annual growth

    NASA Astrophysics Data System (ADS)

    Eloy, Christophe

    2015-11-01

    In general, trees have self-similar architectures with longer and thicker branches near the roots. Yet, branch segments grown each year always have approximately the same length. This hierarchy of branch lengths and the whole self-similar characteristics results in fact from a continuous process of growth of new branches and shedding of old ones. To assess how such a process affects tree architecture, a functional-structural mechanically-based model of virtual trees is developed. In this model, trees grow into fractal structures to promote efficient photosynthesis in a competing environment. In addition, branch diameters increase in response to wind-induced loads. The results of this model suggest that most self-similar characteristics of trees can be explained by considering that tree are growing structure able to resist mechanical loads due to wind efficiently.

  15. Complementarity effects on tree growth are contingent on tree size and climatic conditions across Europe.

    PubMed

    Madrigal-González, Jaime; Ruiz-Benito, Paloma; Ratcliffe, Sophia; Calatayud, Joaquín; Kändler, Gerald; Lehtonen, Aleksi; Dahlgren, Jonas; Wirth, Christian; Zavala, Miguel A

    2016-08-30

    Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes. Niche complementarity is expected to result in significant growth increments of trees surrounded by a larger proportion of functionally dissimilar neighbours. Functional dissimilarity at the tree level was assessed using four functional types: i.e. broad-leaved deciduous, broad-leaved evergreen, needle-leaved deciduous and needle-leaved evergreen. Using Linear Mixed Models we show that, complementarity effects depend on tree size along an energy availability gradient across Europe. Specifically: (i) complementarity effects at low and intermediate positions of the gradient (coldest-temperate areas) were stronger for small than for large trees; (ii) in contrast, at the upper end of the gradient (warmer regions), complementarity is more widespread in larger than smaller trees, which in turn showed negative growth responses to increased functional dissimilarity. Our findings suggest that the outcome of species mixing on stand productivity might critically depend on individual size distribution structure along gradients of environmental variation.

  16. Complementarity effects on tree growth are contingent on tree size and climatic conditions across Europe

    PubMed Central

    Madrigal-González, Jaime; Ruiz-Benito, Paloma; Ratcliffe, Sophia; Calatayud, Joaquín; Kändler, Gerald; Lehtonen, Aleksi; Dahlgren, Jonas; Wirth, Christian; Zavala, Miguel A.

    2016-01-01

    Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes. Niche complementarity is expected to result in significant growth increments of trees surrounded by a larger proportion of functionally dissimilar neighbours. Functional dissimilarity at the tree level was assessed using four functional types: i.e. broad-leaved deciduous, broad-leaved evergreen, needle-leaved deciduous and needle-leaved evergreen. Using Linear Mixed Models we show that, complementarity effects depend on tree size along an energy availability gradient across Europe. Specifically: (i) complementarity effects at low and intermediate positions of the gradient (coldest-temperate areas) were stronger for small than for large trees; (ii) in contrast, at the upper end of the gradient (warmer regions), complementarity is more widespread in larger than smaller trees, which in turn showed negative growth responses to increased functional dissimilarity. Our findings suggest that the outcome of species mixing on stand productivity might critically depend on individual size distribution structure along gradients of environmental variation. PMID:27571971

  17. Complementarity effects on tree growth are contingent on tree size and climatic conditions across Europe

    NASA Astrophysics Data System (ADS)

    Madrigal-González, Jaime; Ruiz-Benito, Paloma; Ratcliffe, Sophia; Calatayud, Joaquín; Kändler, Gerald; Lehtonen, Aleksi; Dahlgren, Jonas; Wirth, Christian; Zavala, Miguel A.

    2016-08-01

    Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes. Niche complementarity is expected to result in significant growth increments of trees surrounded by a larger proportion of functionally dissimilar neighbours. Functional dissimilarity at the tree level was assessed using four functional types: i.e. broad-leaved deciduous, broad-leaved evergreen, needle-leaved deciduous and needle-leaved evergreen. Using Linear Mixed Models we show that, complementarity effects depend on tree size along an energy availability gradient across Europe. Specifically: (i) complementarity effects at low and intermediate positions of the gradient (coldest-temperate areas) were stronger for small than for large trees; (ii) in contrast, at the upper end of the gradient (warmer regions), complementarity is more widespread in larger than smaller trees, which in turn showed negative growth responses to increased functional dissimilarity. Our findings suggest that the outcome of species mixing on stand productivity might critically depend on individual size distribution structure along gradients of environmental variation.

  18. Climate Response of Tree Radial Growth at Different Timescales in the Qinling Mountains.

    PubMed

    Sun, Changfeng; Liu, Yu

    2016-01-01

    The analysis of the tree radial growth response to climate is crucial for dendroclimatological research. However, the response relationships between tree-ring indices and climatic factors at different timescales are not yet clear. In this study, the tree-ring width of Huashan pine (Pinus armandii) from Huashan in the Qinling Mountains, north-central China, was used to explore the response differences of tree growth to climatic factors at daily, pentad (5 days), dekad (10 days) and monthly timescales. Correlation function and linear regression analysis were applied in this paper. The tree-ring width showed a more sensitive response to daily and pentad climatic factors. With the timescale decreasing, the absolute value of the maximum correlation coefficient between the tree-ring data and precipitation increases as well as temperature (mean, minimum and maximum temperature). Compared to the other three timescales, pentad was more suitable for analysing the response of tree growth to climate. Relative to the monthly climate data, the association between the tree-ring data and the pentad climate data was more remarkable and accurate, and the reconstruction function based on the pentad climate was also more reliable and stable. We found that the major climatic factor limiting Huashan pine growth was the precipitation of pentads 20-35 (from April 6 to June 24) rather than the well-known April-June precipitation. The pentad was also proved to be a better timescale for analysing the climate and tree growth in the western and eastern Qinling Mountains. The formation of the earlywood density of Chinese pine (Pinus tabulaeformis) from Shimenshan in western Qinling was mainly affected by the maximum temperature of pentads 28-32 (from May 16 to June 9). The maximum temperature of pentads 28-33 (from May 16 to June 14) was the major factor affecting the ring width of Chinese pine from Shirenshan in eastern Qinling.

  19. Climate Response of Tree Radial Growth at Different Timescales in the Qinling Mountains

    PubMed Central

    Sun, Changfeng; Liu, Yu

    2016-01-01

    The analysis of the tree radial growth response to climate is crucial for dendroclimatological research. However, the response relationships between tree-ring indices and climatic factors at different timescales are not yet clear. In this study, the tree-ring width of Huashan pine (Pinus armandii) from Huashan in the Qinling Mountains, north-central China, was used to explore the response differences of tree growth to climatic factors at daily, pentad (5 days), dekad (10 days) and monthly timescales. Correlation function and linear regression analysis were applied in this paper. The tree-ring width showed a more sensitive response to daily and pentad climatic factors. With the timescale decreasing, the absolute value of the maximum correlation coefficient between the tree-ring data and precipitation increases as well as temperature (mean, minimum and maximum temperature). Compared to the other three timescales, pentad was more suitable for analysing the response of tree growth to climate. Relative to the monthly climate data, the association between the tree-ring data and the pentad climate data was more remarkable and accurate, and the reconstruction function based on the pentad climate was also more reliable and stable. We found that the major climatic factor limiting Huashan pine growth was the precipitation of pentads 20–35 (from April 6 to June 24) rather than the well-known April–June precipitation. The pentad was also proved to be a better timescale for analysing the climate and tree growth in the western and eastern Qinling Mountains. The formation of the earlywood density of Chinese pine (Pinus tabulaeformis) from Shimenshan in western Qinling was mainly affected by the maximum temperature of pentads 28–32 (from May 16 to June 9). The maximum temperature of pentads 28–33 (from May 16 to June 14) was the major factor affecting the ring width of Chinese pine from Shirenshan in eastern Qinling. PMID:27508933

  20. Tree height growth indicating drought and nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Gulyás, Krisztina; Berki, Imre

    2016-04-01

    Several studies have been reported the increasing trends of forest growth in Europe in the last decades. Sites, where the water is not limiting factor, the increasing carbon dioxide (CO2) concentration and high nitrogen deposition influenced accelerated tree height growth. However few researches show that the drying climate conditions and water deficit cause slow/not definite trend of tree height growth in forests. The aim of our study presents the effects of drying climate and surplus nitrogen on height growth of sessile oak (Quercus petraea). Almost 50 sessile oak stands (with zonal site condition) have been measured along a humid-arid climatic transect in Hungary. Top heights of the trees are the best dendrometric parameter for indicating the changing site conditions. Observed top heights dates were compared with 50-years climate condition along the humid-arid climatic transect. Tree height growth in the dry and mesic section of climatic gradient slowed at the last 4 decades, because of the increasing frequency of dry periods. Accelerated height growth were measured in the mesic and humid section of transect, where the nitrogen deposition due to local air pollution were higher than the background deposition. These results draw attention to the importance of the drying climate and surplus nitrogen in the global changes. Keywords: climate change impacts, drought periods, surplus deposition, tree height growth Acknowledgements: Research is supported by the "Agroclimate.2" (VKSZ_12-1-2013-0034) EU-national joint funded research project.

  1. Climate response among growth increments of fish and trees

    USGS Publications Warehouse

    Guyette, R.P.; Rabeni, C.F.

    1995-01-01

    Significant correlations were found among the annual growth increments of stream fish, trees, and climate variables in the Ozark region of the United States. The variation in annual growth increments of rock bass (Ambloplites rupestris) from the Jacks Fork River was significantly correlated over 22 years with the ring width of four tree species: white oak (Quercus alba), post oak (Quercus stellata), shortleaf pine (Pinus echinata) and eastern red cedar (Juniperus virginiana). Rock bass growth and tree growth were both significantly correlated with July rainfall and stream discharge. Variations in annual growth of smallmouth bass (Micropterus dolomieu) from four streams were significantly correlated over 29 years (1939-1968) with mean May maximum air temperature but not with tree growth. The magnitude and significance of correlations among growth increments from fish and trees imply that conditions such as topography, stream gradient, organism age, and the distribution of a population relative to its geographic range can influence the climatic response of an organism. The timing and intensity of climatic variables may produce different responses among closely related species.

  2. Modeling Dynamic Height and Crown Growth in Trees

    NASA Astrophysics Data System (ADS)

    Franklin, O.; Fransson, P.; Brännström, Å.

    2015-12-01

    Previously we have shown how principles based on productivity maximization (e.g. maximization of net primary production, net growth maximization, or functional balance) can explain allocation responses to resources, such as nutrients and light (Franklin et al., 2012). However, the success of these approaches depend on how well they align with the ultimate driver of plant behavior, fitness, or life time reproductive success. Consequently, they may not fully explain how allocation changes during the life cycle of trees where not only growth but also survival and reproduction are important. In addition, maximizing instantaneous productivity does not account for path dependence of tree growth. For example, maximizing productivity during early growth in shade may delay emergence in the forest canopy and reduce lifetime fitness compared to a more height oriented strategy. Here we present an approach to model how growth of stem diameter and leaf area in relation to stem height dynamically responds to light conditions in a way that maximizes life-time fitness (rather than instantaneous growth). The model is able to predict growth of trees growing in different types of forests, including trees emerging under a closed canopy and seedlings planted in a clear-cut area. It can also predict the response to sudden changes in the light environment, due to disturbances or harvesting. We envisage two main applications of the model, (i) Modeling effects of forest management, including thinning and planting (ii) Elucidating height growth strategies in trees and how they can be represented in vegetation models. ReferenceFranklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brännström Å, Dybzinski R. 2012. Modeling carbon allocation in trees: a search for principles. Tree Physiology 32(6): 648-666.

  3. Effects of different CO2 concentration on growth and photosynthetic of rain tree plants (Albizia saman jacq.Merr)

    NASA Astrophysics Data System (ADS)

    Fathurrahman, F.; Nizam, M. S.; Wan Juliana, W. A.; Doni, Febri; NorLailatul, W. M.; Che Radziah, C. M. Z.

    2016-11-01

    A preliminary study was conducted to determine the effect of elevated carbon dioxide (CO2) in rain tree growth under controllable growth chamber. The tolerance towards CO2 absorption in the photosynthesis process for the growth of tree rain is still unknown. In this study, rain tree seedlings were incubated for three months in a growth chamber with three different CO2 concentration treatment: GC1 (300 ppm), GC2 (600 ppm) and GC3 (900 ppm) at similar condition of temperature (28°C), humidity (60%) and lighting (1200 lux). The results showed that increased CO2 significantly increase the growth rate and chlorophyll content in rain tree. The results of this study add to the further understanding of how the improvement of the growth and physiological characteristics of rain tree was affected by CO2 enrichment treatment. This research can for used for global warming mitigation in the future.

  4. The influence of sampling design on tree-ring-based quantification of forest growth.

    PubMed

    Nehrbass-Ahles, Christoph; Babst, Flurin; Klesse, Stefan; Nötzli, Magdalena; Bouriaud, Olivier; Neukom, Raphael; Dobbertin, Matthias; Frank, David

    2014-09-01

    Tree-rings offer one of the few possibilities to empirically quantify and reconstruct forest growth dynamics over years to millennia. Contemporaneously with the growing scientific community employing tree-ring parameters, recent research has suggested that commonly applied sampling designs (i.e. how and which trees are selected for dendrochronological sampling) may introduce considerable biases in quantifications of forest responses to environmental change. To date, a systematic assessment of the consequences of sampling design on dendroecological and-climatological conclusions has not yet been performed. Here, we investigate potential biases by sampling a large population of trees and replicating diverse sampling designs. This is achieved by retroactively subsetting the population and specifically testing for biases emerging for climate reconstruction, growth response to climate variability, long-term growth trends, and quantification of forest productivity. We find that commonly applied sampling designs can impart systematic biases of varying magnitude to any type of tree-ring-based investigations, independent of the total number of samples considered. Quantifications of forest growth and productivity are particularly susceptible to biases, whereas growth responses to short-term climate variability are less affected by the choice of sampling design. The world's most frequently applied sampling design, focusing on dominant trees only, can bias absolute growth rates by up to 459% and trends in excess of 200%. Our findings challenge paradigms, where a subset of samples is typically considered to be representative for the entire population. The only two sampling strategies meeting the requirements for all types of investigations are the (i) sampling of all individuals within a fixed area; and (ii) fully randomized selection of trees. This result advertises the consistent implementation of a widely applicable sampling design to simultaneously reduce uncertainties in

  5. GM trees with increased resistance to herbivores: trait efficiency and their potential to promote tree growth.

    PubMed

    Hjältén, Joakim; Axelsson, E Petter

    2015-01-01

    Climate change, as well as a more intensive forestry, is expected to increase the risk of damage by pests and pathogens on trees, which can already be a severe problem in tree plantations. Recent development of biotechnology theoretically allows for resistance enhancement that could help reduce these risks but we still lack a comprehensive understanding of benefits and tradeoffs with pest resistant GM (genetically modified) trees. We synthesized the current knowledge on the effectiveness of GM forest trees with increased resistance to herbivores. There is ample evidence that induction of exogenous Bacillus thuringiensis genes reduce performance of target pests whereas upregulation of endogenous resistance traits e.g., phenolics, generates variable results. Our review identified very few studies estimating the realized benefits in tree growth of GM trees in the field. This is concerning as the realized benefit with insect resistant GM plants seems to be context-dependent and likely manifested only if herbivore pressure is sufficiently high. Future studies of secondary pest species and resistance evolution in pest to GM trees should be prioritized. But most importantly we need more long-term field tests to evaluate the benefits and risks with pest resistant GM trees.

  6. GM trees with increased resistance to herbivores: trait efficiency and their potential to promote tree growth

    PubMed Central

    Hjältén, Joakim; Axelsson, E. Petter

    2015-01-01

    Climate change, as well as a more intensive forestry, is expected to increase the risk of damage by pests and pathogens on trees, which can already be a severe problem in tree plantations. Recent development of biotechnology theoretically allows for resistance enhancement that could help reduce these risks but we still lack a comprehensive understanding of benefits and tradeoffs with pest resistant GM (genetically modified) trees. We synthesized the current knowledge on the effectiveness of GM forest trees with increased resistance to herbivores. There is ample evidence that induction of exogenous Bacillus thuringiensis genes reduce performance of target pests whereas upregulation of endogenous resistance traits e.g., phenolics, generates variable results. Our review identified very few studies estimating the realized benefits in tree growth of GM trees in the field. This is concerning as the realized benefit with insect resistant GM plants seems to be context-dependent and likely manifested only if herbivore pressure is sufficiently high. Future studies of secondary pest species and resistance evolution in pest to GM trees should be prioritized. But most importantly we need more long-term field tests to evaluate the benefits and risks with pest resistant GM trees. PMID:25983736

  7. Carbon utilization by fruit limits shoot growth in alternate-bearing citrus trees.

    PubMed

    Martínez-Alcántara, Belén; Iglesias, Domingo J; Reig, Carmina; Mesejo, Carlos; Agustí, Manuel; Primo-Millo, Eduardo

    2015-03-15

    Fruit load in alternate-bearing citrus trees is reported to alter shoot number and growth during spring, summer, and autumn flushes, and the source-sink balance, which affects the storage and mobilization of reserve nutrients. The aim of this work was to assess the extent of shoot growth inhibition resulting from the presence of fruits in 'Moncada' mandarin trees loaded with fruit (ON) or with very light fruit load (OFF), and to identify the role of carbohydrates and nitrogenous compounds in the competition between fruits and shoots. Growth of reproductive and vegetative organs was measured on a monthly basis. (13)C- and (15)N-labeled compounds were supplied to trace the allocation of reserve nutrients and subsequent translocation from source to sink. At the end of the year, OFF trees produced more abundant flushes (2.4- and 4.9-fold higher in number and biomass, respectively) than ON trees. Fruits from ON trees accumulated higher C amounts at the expense of developing flushes, whereas OFF trees exhibited the opposite pattern. An inverse relationship was identified between the amount of C utilized by fruits and vegetative flush growth. (13)C-labeling revealed an important role for mature leaves of fruit-bearing branches in supporting shoot/fruit growth, and the elevated sink strength of growing fruits on shoots. N availability for vegetative shoots was not affected by the presence or absence of fruits, which accumulated important amounts of (15)N. In conclusion, our results show that shoot growth is resource-limited as a consequence of fruit development, and vegetative-growth inhibition is caused by photoassimilate limitation. The competence for N is not a decisive factor in limiting vegetative growth under the experimental conditions of this study.

  8. Potassium nutrition and water availability affect phloem transport of photosynthetic carbon in eucalypt trees

    NASA Astrophysics Data System (ADS)

    Epron, Daniel; Cabral, Osvaldo; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo; Trivelin, Paulo; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2015-04-01

    Potassium fertilisation strongly affects growth and carbon partitioning of eucalypt on tropical soil that are strongly weathered. In addition, potassium fertilization could be of great interest in mitigating the adverse consequences of drought in planted forests, as foliar K concentrations influence osmotic adjustment, stomatal regulation and phloem loading. Phloem is the main pathway for transferring photosynthate from source leaves to sink organs, thus controlling growth partitioning among the different tree compartments. But little is known about the effect of potassium nutrition on phloem transport of photosynthetic carbon and on the interaction between K nutrition and water availability. In situ 13C pulse labelling was conducted on tropical eucalypt trees (Eucalyptus grandis L.) grown in a trial plantation with plots in which 37% of throughfall were excluded (about 500 mm/yr) using home-made transparent gutters (-W) or not (+W) and plots that received 0.45 mol K m-2 applied as KCl three months after planting (+K) or not (-K). Three trees were labelled in each of the four treatments (+K+W, +K-W, -K+W and -K-W). Trees were labelled for one hour by injecting pure 13CO2 in a 27 m3 whole crown chamber. We estimated the velocity of carbon transfer in the trunk by comparing time lags between the uptake of 13CO2 and its recovery in trunk CO2 efflux recorded by off axis integrated cavity output spectroscopy (Los Gatos Research) in two chambers per tree, one just under the crown and one at the base of the trunk. We analyzed the dynamics of the label recovered in the foliage and in the phloem sap by analysing carbon isotope composition of bulk leaf organic matter and phloem extracts using an isotope ratio mass spectrometer. The velocity of carbon transfer in the trunk and the initial rate 13C disappearance from the foliage were much higher in +K trees than in -K trees with no significant effect of rainfall. The volumetric flow of phloem, roughly estimated by multiplying

  9. Mistletoe effects on Scots pine decline following drought events: insights from within-tree spatial patterns, growth and carbohydrates.

    PubMed

    Sangüesa-Barreda, Gabriel; Linares, Juan Carlos; Camarero, J Julio

    2012-05-01

    Forest decline has been attributed to the interaction of several stressors including biotic factors such as mistletoes and climate-induced drought stress. However, few data exist on how mistletoes are spatially arranged within trees and how this spatial pattern is related to changes in radial growth, responses to drought stress and carbon use. We used dendrochronology to quantify how mistletoe (Viscum album L.) infestation and drought stress affected long-term growth patterns in Pinus sylvestris L. at different heights. Basal area increment (BAI) trends and comparisons between trees of three different infestation degrees (without mistletoe, ID1; moderately infested trees, ID2; and severely infested trees, ID3) were performed using linear mixed-effects models. To identify the main climatic drivers of tree growth tree-ring widths were converted into indexed chronologies and related to climate data using correlation functions. We performed spatial analyses of the 3D distribution of mistletoe individuals and their ages within the crowns of three severely infested pines to describe their patterns. Lastly, we quantified carbohydrate and nitrogen concentrations in needles and sapwood of branches from severely infested trees and from trees without mistletoe. Mistletoe individuals formed strongly clustered groups of similar age within tree crowns and their age increased towards the crown apex. Mistletoe infestation negatively impacted growth but this effect was stronger near the tree apex than in the rest of sampled heights, causing an average loss of 64% in BAI (loss of BAI was ∼51% at 1.3 m or near the tree base). We found that BAI of severely infested trees and moderately or non-infested trees diverged since 2001 and such divergence was magnified by drought. Infested trees had lower concentrations of soluble sugars in their needles than non-infested ones. We conclude that mistletoe infestation causes growth decline and increases the sensitivity of trees to drought

  10. The relationship between tree growth patterns and likelihood of mortality: A study of two tree species in the Sierra Nevada

    USGS Publications Warehouse

    Das, A.J.; Battles, J.J.; Stephenson, N.L.; van Mantgem, P.J.

    2007-01-01

    We examined mortality of Abies concolor (Gord. & Glend.) Lindl. (white fir) and Pinus lambertiana Dougl. (sugar pine) by developing logistic models using three growth indices obtained from tree rings: average growth, growth trend, and count of abrupt growth declines. For P. lambertiana, models with average growth, growth trend, and count of abrupt declines improved overall prediction (78.6% dead trees correctly classified, 83.7% live trees correctly classified) compared with a model with average recent growth alone (69.6% dead trees correctly classified, 67.3% live trees correctly classified). For A. concolor, counts of abrupt declines and longer time intervals improved overall classification (trees with DBH ???20 cm: 78.9% dead trees correctly classified and 76.7% live trees correctly classified vs. 64.9% dead trees correctly classified and 77.9% live trees correctly classified; trees with DBH <20 cm: 71.6% dead trees correctly classified and 71.0% live trees correctly classified vs. 67.2% dead trees correctly classified and 66.7% live trees correctly classified). In general, count of abrupt declines improved live-tree classification. External validation of A. concolor models showed that they functioned well at stands not used in model development, and the development of size-specific models demonstrated important differences in mortality risk between understory and canopy trees. Population-level mortality-risk models were developed for A. concolor and generated realistic mortality rates at two sites. Our results support the contention that a more comprehensive use of the growth record yields a more robust assessment of mortality risk. ?? 2007 NRC.

  11. The contribution of competition to tree mortality in old-growth coniferous forests

    USGS Publications Warehouse

    Das, A.; Battles, J.; Stephenson, N.L.; van Mantgem, P.J.

    2011-01-01

    Competition is a well-documented contributor to tree mortality in temperate forests, with numerous studies documenting a relationship between tree death and the competitive environment. Models frequently rely on competition as the only non-random mechanism affecting tree mortality. However, for mature forests, competition may cease to be the primary driver of mortality.We use a large, long-term dataset to study the importance of competition in determining tree mortality in old-growth forests on the western slope of the Sierra Nevada of California, U.S.A. We make use of the comparative spatial configuration of dead and live trees, changes in tree spatial pattern through time, and field assessments of contributors to an individual tree's death to quantify competitive effects.Competition was apparently a significant contributor to tree mortality in these forests. Trees that died tended to be in more competitive environments than trees that survived, and suppression frequently appeared as a factor contributing to mortality. On the other hand, based on spatial pattern analyses, only three of 14 plots demonstrated compelling evidence that competition was dominating mortality. Most of the rest of the plots fell within the expectation for random mortality, and three fit neither the random nor the competition model. These results suggest that while competition is often playing a significant role in tree mortality processes in these forests it only infrequently governs those processes. In addition, the field assessments indicated a substantial presence of biotic mortality agents in trees that died.While competition is almost certainly important, demographics in these forests cannot accurately be characterized without a better grasp of other mortality processes. In particular, we likely need a better understanding of biotic agents and their interactions with one another and with competition. ?? 2011.

  12. Does deciduous tree species identity affect carbon storage in temperate soils?

    NASA Astrophysics Data System (ADS)

    Jungkunst, Hermann; Schleuß, Per; Heitkamp, Felix

    2015-04-01

    Forest soils contribute roughly 70 % to the global terrestrial soil organic carbon (SOC) pool and thus play a vital role in the global carbon cycle. It is less clear, however, whether temperate tree species identity affects SOC storage beyond the coarse differentiation between coniferous and deciduous trees. The most important driver for soil SOC storage definitely is the fine mineral fraction (clay and fine silt) because of its high sorption ability. It is difficult to disentangle any additional biotic effects since clay and silt vary considerably in nature. For experimental approaches, the process of soil carbon accumulation is too slow and, therefore, sound results cannot be expected for decades. Here we will present our success to distinguish between the effects of fine particle content (abiotic) and tree species composition (biotic) on the SOC pool in an old-growth broad-leaved forest plots along a tree diversity gradient , i.e., 1- (beech), 3- (plus ash and lime tree)- and 5-(plus maple and hornbeam) species. The particle size fractions were separated first and then the carbon concentrations of each fraction was measured. Hence, the carbon content per unit clay was not calculated, as usually done, but directly measured. As expected, the variation in SOC content was mainly explained by the variations in clay content but not entirely. We found that the carbon concentration per unit clay and fine silt in the subsoil was by 30-35% higher in mixed than in monospecific stands indicating a significant species identity or species diversity effect on C stabilization. In contrast to the subsoil, no tree species effects was identified for the topsoil. Indications are given that the mineral phase was already carbon saturated and thus left no more room for a possible biotic effect. Underlying processes must remain speculative, but we will additionally present our latest microcosm results, including isotopic signatures, to underpin the proposed deciduous tree species

  13. Uav-Based Automatic Tree Growth Measurement for Biomass Estimation

    NASA Astrophysics Data System (ADS)

    Karpina, M.; Jarząbek-Rychard, M.; Tymków, P.; Borkowski, A.

    2016-06-01

    Manual in-situ measurements of geometric tree parameters for the biomass volume estimation are time-consuming and economically non-effective. Photogrammetric techniques can be deployed in order to automate the measurement procedure. The purpose of the presented work is an automatic tree growth estimation based on Unmanned Aircraft Vehicle (UAV) imagery. The experiment was conducted in an agriculture test field with scots pine canopies. The data was collected using a Leica Aibotix X6V2 platform equipped with a Nikon D800 camera. Reference geometric parameters of selected sample plants were measured manually each week. In situ measurements were correlated with the UAV data acquisition. The correlation aimed at the investigation of optimal conditions for a flight and parameter settings for image acquisition. The collected images are processed in a state of the art tool resulting in a generation of dense 3D point clouds. The algorithm is developed in order to estimate geometric tree parameters from 3D points. Stem positions and tree tops are identified automatically in a cross section, followed by the calculation of tree heights. The automatically derived height values are compared to the reference measurements performed manually. The comparison allows for the evaluation of automatic growth estimation process. The accuracy achieved using UAV photogrammetry for tree heights estimation is about 5cm.

  14. Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees

    PubMed Central

    Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans

    2007-01-01

    Background and Aims Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Methods Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25 % of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. Key Results The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (Aarea) and similar photosynthetic rates per unit mass (Amass) than the trees. Across species, RGR was positively related to SLA, but not to LAR and Aarea. Conclusions It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species. PMID:17720978

  15. Ra isotopes in trees: Their application to the estimation of heartwood growth rates and tree ages

    NASA Astrophysics Data System (ADS)

    Hancock, Gary J.; Murray, Andrew S.; Brunskill, Gregg J.; Argent, Robert M.

    2006-12-01

    The difficulty in estimating growth rates and ages of tropical and warm-temperate tree species is well known. However, this information has many important environmental applications, including the proper management of native forests and calculating uptake and release of atmospheric carbon. We report the activities of Ra isotopes in the heartwood, sapwood and leaves of six tree species, and use the radial distribution of the 228Ra/226Ra activity ratio in the stem of the tree to estimate the rate of accretion of heartwood. A model is presented in which dissolved Ra in groundwater is taken up by tree roots, translocated to sapwood in a chemically mobile (ion-exchangeable) form, and rendered immobile as it is transferred to heartwood. Uptake of 232Th and 230Th (the parents of 228Ra and 226Ra) is negligible. The rate of heartwood accretion is determined from the radioactive decay of 228Ra (half-life 5.8 years) relative to long-lived 226Ra (half-life 1600 years), and is relevant to growth periods of up to 50 years. By extrapolating the heartwood accretion rate to the entire tree ring record the method also appears to provide realistic estimates of tree age. Eight trees were studied (three of known age, 72, 66 and 35 years), including three Australian hardwood eucalypt species, two mangrove species, and a softwood pine (P. radiata). The method indicates that the rate of growth ring formation is species and climate dependent, varying from 0.7 rings yr-1 for a river red gum (E. camaldulensis) to around 3 rings yr-1 for a tropical mangrove (X. mekongensis).

  16. Tree growth and recruitment in a leveed floodplain forest in the Mississippi River Alluvial Valley, USA

    USGS Publications Warehouse

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.

    2014-01-01

    Flooding is a defining disturbance in floodplain forests affecting seed germination, seedling establishment, and tree growth. Globally, flood control, including artificial levees, dams, and channelization has altered flood regimes in floodplains. However, a paucity of data are available in regards to the long-term effects of levees on stand establishment and tree growth in floodplain forests. In this study, we used dendrochronological techniques to reconstruct tree recruitment and tree growth over a 90-year period at three stands within a ring levee in the Mississippi River Alluvial Valley (MAV) and to evaluate whether recruitment patterns and tree growth changed following levee construction. We hypothesized that: (1) sugarberry is increasing in dominance and overcup oak (Quercus lyrata) is becoming less dominant since the levee, and that changes in hydrology are playing a greater role than canopy disturbance in these changes in species dominance; and (2) that overcup oak growth has declined following construction of the levee and cessation of overbank flooding whereas that of sugarberry has increased. Recruitment patterns shifted from flood-tolerant overcup oak to flood-intolerant sugarberry (Celtis laevigata) after levee construction. None of the 122 sugarberry trees cored in this study established prior to the levee, but it was the most common species established after the levee. The mechanisms behind the compositional change are unknown, however, the cosmopolitan distribution of overcup oak during the pre-levee period and sugarberry during the post-levee period, the lack of sugarberry establishment in the pre-levee period, and the confinement of overcup oak regeneration to the lowest areas in each stand after harvest in the post-levee period indicate that species-specific responses to flooding and light availability are forcing recruitment patterns. Overcup oak growth was also affected by levee construction, but in contrast to our hypothesis, growth actually

  17. Different tree species affect soil respiration spatial distribution in a subtropical forest of southern Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, Po-Neng; Yu, Jui-Chu; Wang, Ya-nan; Lai, Yen-Jen

    2014-05-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Soil carbon cycling processes are paid much attention by ecological scientists and policy makers because of the possibility of carbon being stored in soil via land use management. Soil respiration contributed large part of terrestrial carbon flux, but the relationship of soil respiration and climate change was still obscurity. Most of soil respiration researches focus on template and tropical area, little was known that in subtropical area. Afforestation is one of solutions to mitigate CO2 increase and to sequestrate CO2 in tree and soil. Therefore, the objective of this study is to clarify the relationship of tree species and soil respiration distribution in subtropical broad-leaves plantation in southern Taiwan. The research site located on southern Taiwan was sugarcane farm before 2002. The sugarcane was removed and fourteen broadleaved tree species were planted in 2002-2005. Sixteen plots (250m*250m) were set on 1 km2 area, each plot contained 4 subplots (170m2). The forest biomass (i.e. tree height, DBH) understory biomass, litter, and soil C were measured and analyzed at 2011 to 2012. Soil respiration measurement was sampled in each subplot in each month. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Soil carbon storage showed significantly negative relationship with soil bulk density (p<0.001) in research site. The differences of distribution of live tree C pool among 16 plots were affected by growth characteristic of tree species. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Different tree species planted in 16 plots, resulting in high spatial variation of litterfall amount. It also affected total amount of litterfall

  18. Ideas and perspectives: use of tree-ring width as an indicator of tree growth

    NASA Astrophysics Data System (ADS)

    Hember, R. A.; Kurz, W. A.; Metsaranta, J. M.

    2015-06-01

    By taking core samples, dendroecological studies can reconstruct radial growth over the lifespan of a tree, providing a valuable way to estimate the sensitivity of tree productivity to environmental change. With increasing prevalence of such studies in global change science, it is worth cautioning that the incremental growth rate of a sub-dimension of a tree organ, such as annual ring width (w), does not respond to extrinsic perturbations with the same relative magnitude as the primary production of that organ. For example, if an extrinsic force causes a two-fold increase in the absolute growth rate of stemwood biomass (AGR), it should only theoretically translate into a 1.3-fold increase in w, or a 1.7-fold increase in basal area increment (BAI), when a 2:1 ratio in resource allocation to lateral and apical meristems is assumed. Expressing the magnitude of a response in relative terms does not, therefore, provide a valid means of comparing estimates of relative growth derived from measurement of different dimensional traits of the tree. From our perspective, enough conformity to facilitate comparison of environmental sensitivity across studies of tree growth is warranted so we emphasize the benefit of dimension analysis to transform measurements of w and BAI into the AGR. Although conversion to AGR introduces an error from the use of allometric equations, the approach is widely accepted in mainstream ecology and global change science at least partially because it avoids discrepancies in response magnitude owing to differences in dimension. Studies of organ elongation have historically provided invaluable information, yet it must be recognized that they systematically underestimate the response magnitude of primary production, and confound comparisons of growth sensitivity between many dendroecological studies that focus on w and studies of primary production.

  19. Improving estimates of tree mortality probability using potential growth rate

    USGS Publications Warehouse

    Das, Adrian J.; Stephenson, Nathan L.

    2015-01-01

    Tree growth rate is frequently used to estimate mortality probability. Yet, growth metrics can vary in form, and the justification for using one over another is rarely clear. We tested whether a growth index (GI) that scales the realized diameter growth rate against the potential diameter growth rate (PDGR) would give better estimates of mortality probability than other measures. We also tested whether PDGR, being a function of tree size, might better correlate with the baseline mortality probability than direct measurements of size such as diameter or basal area. Using a long-term dataset from the Sierra Nevada, California, U.S.A., as well as existing species-specific estimates of PDGR, we developed growth–mortality models for four common species. For three of the four species, models that included GI, PDGR, or a combination of GI and PDGR were substantially better than models without them. For the fourth species, the models including GI and PDGR performed roughly as well as a model that included only the diameter growth rate. Our results suggest that using PDGR can improve our ability to estimate tree survival probability. However, in the absence of PDGR estimates, the diameter growth rate was the best empirical predictor of mortality, in contrast to assumptions often made in the literature.

  20. The influence of recent climate change on tree height growth differs with species and spatial environment.

    PubMed

    Messaoud, Yassine; Chen, Han Y H

    2011-02-16

    Tree growth has been reported to increase in response to recent global climate change in controlled and semi-controlled experiments, but few studies have reported response of tree growth to increased temperature and atmospheric carbon dioxide (CO₂) concentration in natural environments. This study addresses how recent global climate change has affected height growth of trembling aspen (Populus tremuloides Michx) and black spruce (Picea mariana Mill B.S.) in their natural environments. We sampled 145 stands dominated by aspen and 82 dominated by spruce over the entire range of their distributions in British Columbia, Canada. These stands were established naturally after fire between the 19th and 20th centuries. Height growth was quantified as total heights of sampled dominant and co-dominant trees at breast-height age of 50 years. We assessed the relationships between 50-year height growth and environmental factors at both spatial and temporal scales. We also tested whether the tree growth associated with global climate change differed with spatial environment (latitude, longitude and elevation). As expected, height growth of both species was positively related to temperature variables at the regional scale and with soil moisture and nutrient availability at the local scale. While height growth of trembling aspen was not significantly related to any of the temporal variables we examined, that of black spruce increased significantly with stand establishment date, the anomaly of the average maximum summer temperature between May-August, and atmospheric CO₂ concentration, but not with the Palmer Drought Severity Index. Furthermore, the increase of spruce height growth associated with recent climate change was higher in the western than in eastern part of British Columbia. This study demonstrates that the response of height growth to recent climate change, i.e., increasing temperature and atmospheric CO₂ concentration, did not only differ with tree species, but

  1. Liana infestation impacts tree growth in a lowland tropical moist forest

    NASA Astrophysics Data System (ADS)

    van der Heijden, G. M. F.; Phillips, O. L.

    2009-10-01

    Ecosystem-level estimates of the effect of lianas on tree growth in mature tropical forests are needed to evaluate the functional impact of lianas and their potential to affect the ability of tropical forests to sequester carbon, but these are currently lacking. Using data collected on tree growth rates, local growing conditions and liana competition in five permanent sampling plots in Amazonian Peru, we present the first ecosystem-level estimates of the effect of lianas on above-ground productivity of trees. By first constructing a multi-level linear mixed effect model to predict individual-tree diameter growth model using individual-tree growth conditions, we were able to then estimate stand-level above-ground biomass (AGB) increment in the absence of lianas. We show that lianas, mainly by competing above-ground with trees, reduce tree annual above-ground stand-level biomass increment by ~10%, equivalent to 0.51 Mg dry weight ha-1 yr-1 or 0.25 Mg C ha-1 yr-1. AGB increment of lianas themselves was estimated to be 0.15 Mg dry weight ha-1 yr-1 or 0.07 Mg C ha-1 yr-1, thus only compensating ~29% of the liana-induced reduction in ecosystem AGB increment. Increasing liana pressure on tropical forests will therefore not only tend to reduce their carbon storage capacity, by indirectly promoting tree species with low-density wood, but also their rate of carbon uptake, with potential consequences for the rate of increase in atmospheric carbon dioxide.

  2. Liana infestation impacts tree growth in a lowland tropical moist forest

    NASA Astrophysics Data System (ADS)

    van der Heijden, G. M. F.; Phillips, O. L.

    2009-03-01

    Stand-level estimates of the effect of lianas on tree growth in mature tropical forests are needed to evaluate the functional impact of lianas and their potential to affect the ability of tropical forests to sequester carbon, but these are currently lacking. Using data collected on tree growth rates, local growing conditions and liana competition in five permanent sampling plots in Amazonian Peru, we present the first such estimates of the effect of lianas on above-ground productivity of trees. By constructing a multi-level linear mixed effect model to predict individual tree diameter growth model using individual tree growth conditions, we were able to estimate stand-level above-ground biomass (AGB) increment in the absence of lianas. We show that lianas, mainly by competing above-ground with trees, reduce tree annual above-ground stand-level biomass by ~10%, equivalent to 0.51 Mg dry weight ha-1 yr-1 or 0.25 Mg C ha-1 yr-1. AGB increment of lianas themselves was estimated to be 0.15 Mg dry weight ha-1 yr-1 or 0.07 Mg C ha-1 yr-1, thus only compensating ~29% of the liana-induced reduction in stand-level AGB increment. Increasing liana pressure on tropical forests may therefore not only reduce their carbon storage capacity, by indirectly promoting tree species with low-density wood, but also their rate of carbon uptake, with potential consequences for the rate of increase in atmospheric carbon dioxide.

  3. Growth, ageing and scaling laws of coronary arterial trees.

    PubMed

    Chen, Xi; Niu, Pei; Niu, Xiaolong; Shen, Wenzeng; Duan, Fei; Ding, Liang; Wei, Xiliang; Gong, Yanjun; Huo, Yong; Kassab, Ghassan S; Tan, Wenchang; Huo, Yunlong

    2015-12-06

    Despite the well-known design principles of vascular systems, it is unclear whether the vascular arterial tree obeys some scaling constraints during normal growth and ageing in a given species. Based on the micro-computed tomography measurements of coronary arterial trees in mice at different ages (one week to more than eight months), we show a constant exponent of 3/4, but age-dependent scaling coefficients in a length-volume scaling law (Lc=K(length-volume) · Vc³/⁴; Lc is the crown length, Vc is the crown volume, K(length-volume) is the age-dependent scaling coefficient) during normal growth and ageing. The constant 3/4 exponent represents the self-similar fractal-like branching pattern (i.e. basic mechanism to regulate the development of vascular trees within a species), whereas the age-dependent scaling coefficients characterize the structural growth or resorption of vascular trees during normal growth or ageing, respectively. This study enhances the understanding of age-associated changes in vascular structure and function.

  4. Evaluation of forest trees growth after sewage sludge application

    NASA Astrophysics Data System (ADS)

    Vaitkutä--, Dovilé; Balträ--Naitä--, Edita; Booth, Colin A.; Fullen, Michael A.; Pereira, Paulo

    2010-05-01

    Sewage sludge is extensively used in forest to improve soil properties. It is expected that sewage sludge rich in phosphorus, nitrogen and organic material enhance the germination of tree seedlings in poor soils. In Lithuania, the deforested soils are highly acid, and have a lack of nutrients, especially in exploited peat areas. Sewage sludge from industry contains beneficial components for the soils (such as organic matter, phosphorus, nitrogen, calcium, magnesium, etc.). However, it is also rich in heavy metals, especially Cd, Pb, Cu and Zn. High heavy metals concentrations in soil can be phytotoxic and cause reduced plant growth or plant death. The main objectives of this research was to determine the influence of industrial sewage sludge in the forestry and to highlight the idea that industrial sewage sludge containing metals does not favour development of birch and pine trees. The study was performed in Taruskos experimental plot in Panevezys region (Lithuania), amended with industrial sewage sludge ten years ago was afforestated with birch and pine seedlings. In order to observe the effects of the amendment in accumulation the mentioned metals and tree growth we collected data from trees in amended plot and control plot. The results showed that soil parameters were improved in the amended plot, in comparing with control site (higher pH, organic matter and cation exchange capacity). However, the growth of investigated trees was slower (e.g. birch roots, shoot, stem and leaves biomass was 40, 7.4, 18.6, 22% smaller than in control site. In pine case: 30, 1.2, 17, 36%, respectively; the stem height of birch was 16% and pine - 12% smaller than in control site). This reduced growth can be related with heavy metals concentration load on soil and accumulation in trees. Cu and Cd concentrations were higher in soil amended with sewage sludge comparing with control site (60 and 36%, respectively). Also, in contaminated trees Cu and Cd concentrations were higher (Cu

  5. Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees.

    PubMed

    Domec, Jean-Christophe; Pruyn, Michele L

    2008-10-01

    Effects of trunk girdling on seasonal patterns of xylem water status, water transport and woody tissue metabolic properties were investigated in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) trees. At the onset of summer, there was a sharp decrease in stomatal conductance (g(s)) in girdled trees followed by a full recovery after the first major rainfall in September. Eliminating the root as a carbohydrate sink by girdling induced a rapid reversible reduction in g(s). Respiratory potential (a laboratory measure of tissue-level respiration) increased above the girdle (branches and upper trunk) and decreased below the girdle (lower trunk and roots) relative to control trees during the growing season, but the effect was reversed after the first major rainfall. The increase in branch respiratory potential induced by girdling suggests that the decrease in g(s) was caused by the accumulation of carbohydrates above the girdle, which is consistent with an observed increase in leaf mass per area in the girdled trees. Trunk girdling did not affect native xylem embolism or xylem conductivity. Both treated and control trunks experienced loss of xylem conductivity ranging from 10% in spring to 30% in summer. Girdling reduced xylem growth and sapwood to leaf area ratio, which in turn reduced branch leaf specific conductivity (LSC). The girdling-induced reductions in g(s) and transpiration were associated with a decrease in leaf hydraulic conductance. Two years after girdling, when root-to-shoot phloem continuity had been restored, girdled trees had a reduced density of new wood, which increased xylem conductivity and whole-tree LSC, but also vulnerability to embolism.

  6. Drivers of Tree Growth, Mortality and Harvest Preferences in Species-Rich Plantations for Smallholders and Communities in the Tropics.

    PubMed

    Nguyen, Huong; Vanclay, Jerome; Herbohn, John; Firn, Jennifer

    2016-01-01

    There is growing interest in multi-species tropical plantations but little information exists to guide their design and silviculture. The Rainforestation Farming system is the oldest tropical polyculture planting system in the Philippines and provides a unique opportunity to understand the underlying processes affecting tree performance within diverse plantings. Data collected from 85 plots distributed across the 18 mixed-species plantations in the Philippines was used to identify the factors influencing growth, probability of harvest, and death of trees in these complex plantings. The 18 sites (aged from 6 to 11 years at time of first measurement) were measured on three occasions over a 6-year period. We used data from the first period of data collection to develop models predicting harvesting probability and growth of trees in the second period. We found little evidence that tree species diversity had an effect on tree growth and tree loss at the community level, although a negative effect was found on tree growth of specific species such as Parashorea plicata and Swietenia macrophylla. While tree density of stands at age 10+ years (more than 1000 trees/ha with diameter > 5cm) did not have an impact on growth, growth rates were decreasing in stands with a high basal area. Tree size in the first period of measure was a good predictor for both tree growth and tree status in the next period, with larger trees tending to grow faster and having a greater chance of being harvested, and a lower possibility of mortality than smaller trees. Shade-intolerant trees were both more likely to be harvested, and had a higher probability of death, than shade-tolerant individuals. Native species and exotic species were equally likely to have been lost from the plots between measurement periods. However, shade-tolerant native trees were likely to grow faster than the others at age 10+ years. Our findings suggest that species traits (e.g. shade tolerance) could play an important

  7. Drivers of Tree Growth, Mortality and Harvest Preferences in Species-Rich Plantations for Smallholders and Communities in the Tropics

    PubMed Central

    Nguyen, Huong; Vanclay, Jerome; Herbohn, John; Firn, Jennifer

    2016-01-01

    There is growing interest in multi-species tropical plantations but little information exists to guide their design and silviculture. The Rainforestation Farming system is the oldest tropical polyculture planting system in the Philippines and provides a unique opportunity to understand the underlying processes affecting tree performance within diverse plantings. Data collected from 85 plots distributed across the 18 mixed-species plantations in the Philippines was used to identify the factors influencing growth, probability of harvest, and death of trees in these complex plantings. The 18 sites (aged from 6 to 11 years at time of first measurement) were measured on three occasions over a 6-year period. We used data from the first period of data collection to develop models predicting harvesting probability and growth of trees in the second period. We found little evidence that tree species diversity had an effect on tree growth and tree loss at the community level, although a negative effect was found on tree growth of specific species such as Parashorea plicata and Swietenia macrophylla. While tree density of stands at age 10+ years (more than 1000 trees/ha with diameter > 5cm) did not have an impact on growth, growth rates were decreasing in stands with a high basal area. Tree size in the first period of measure was a good predictor for both tree growth and tree status in the next period, with larger trees tending to grow faster and having a greater chance of being harvested, and a lower possibility of mortality than smaller trees. Shade-intolerant trees were both more likely to be harvested, and had a higher probability of death, than shade-tolerant individuals. Native species and exotic species were equally likely to have been lost from the plots between measurement periods. However, shade-tolerant native trees were likely to grow faster than the others at age 10+ years. Our findings suggest that species traits (e.g. shade tolerance) could play an important

  8. Effects of selective logging on tropical forest tree growth

    NASA Astrophysics Data System (ADS)

    Figueira, Adelaine Michela E. S.; Miller, Scott D.; de Sousa, Cleilim Albert D.; Menton, Mary C.; Maia, Augusto R.; Da Rocha, Humberto R.; Goulden, Michael L.

    2008-03-01

    We combined measurements of tree growth and carbon dioxide exchange to investigate the effects of selective logging on the Aboveground Live Biomass (AGLB) of a tropical rain forest in the Amazon. Most of the measurements began at least 10 months before logging and continued at least 36 months after logging. The logging removed ˜15% of the trees with Diameter at Breast Height (DBH) greater than 35 cm, which resulted in an instantaneous 10% reduction in AGLB. Both wood production and mortality increased following logging, while Gross Primary Production (GPP) was unchanged. The ratio of wood production to GPP (the wood Carbon Use Efficiency or wood CUE) more than doubled following logging. Small trees (10 cm < DBH < 35 cm) accounted for most of the enhanced wood production. Medium trees (35 cm < DBH < 55 cm) that were within 30 m of canopy gaps created by the logging also showed increased growth. The patterns of enhanced growth are most consistent with logging-induced increases in light availability. The AGLB continued to decline over the study, as mortality outpaced wood production. Wood CUE and mortality remained elevated throughout the 3 years of postlogging measurements. The future trajectory of AGLB and the forest's carbon balance are uncertain, and will depend on how long it takes for heterotrophic respiration, mortality, and CUE to return to prelogging levels.

  9. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    NASA Astrophysics Data System (ADS)

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  10. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest

    PubMed Central

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-01-01

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198

  11. Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest.

    PubMed

    Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye

    2016-11-18

    Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.

  12. Factors affecting early seedling development in whole pine tree substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wood-based materials derived from pine trees, such as processed whole pine tree (WPT), can be a viable option for producers looking to offset pine bark or peatmoss usage in container substrates. Reduced root development of stem cuttings rooted in WPT compared with pine bark (PB) has been observed, b...

  13. Early Stages Of Biome Shift in Boreal Alaska: Climate Sensitivity of Tree Growth and Accelerated Tree Mortality

    NASA Astrophysics Data System (ADS)

    Juday, G. P.; Grant, T.; Alix, C. M.; Spencer, D. L.; Beck, P. S.

    2012-12-01

    rapidly in alder shrubs, so nearly all woody species face health challenges. Temperatures and precipitation on many Interior sites are now at or beyond tolerance limits for white spruce, aspen, and Alaska birch. Two episodes of acute drought injury were widespread in birch during the last decade. Deficits in climate predicted tree growth are synchronous with the major insect outbreaks as recorded in insect trapping records and aerial surveys of area affected. Over the past 25 years tree mortality of 50% or more occurred in nearly all long-term monitoring plots in mature stands on productive sites in the Interior, but to date trees have successfully regenerated on most disturbed sites. These environmental changes and tree responses, including opposite responses, are coherent, and consistent with early stages of a biome shift eliminating boreal forest on dry Interior sites, and emergence of a new climate optimum zone in western Alaska currently only sparsely populated with forest.

  14. Climate, Tree Growth, Forest Drought Stress, and Tree Mortality in Forests of Western North America: Long-Term Patterns and Recent Trends

    NASA Astrophysics Data System (ADS)

    Allen, C. D.; Williams, P.

    2012-12-01

    Ongoing climate changes are increasingly affecting the world's forests, particularly including high latitude and high elevation coniferous forests. Although forest growth has improved in some regions due to greater growing season length and warmth (perhaps along with increased atmospheric CO2 or N), large growth declines or increased mortality from droughts or hotter temperatures also are being observed. We present and interpret information on regional variation in climate-tree growth relationships and trends, and on patterns and trends of climate-related forest disturbances, from western North America. From 235 tree-ring chronologies in the Southwest US we show that tree-ring growth records from warmer southwestern sites are more sensitive to temperature than tree-ring growth records from cooler southwestern sites. Assessment of 59 tree-ring records from 11 species in the Cascade Mountains of the Pacific Northwest shows that trees growing in cool places respond positively to increased temperature and trees in warm places respond negatively, implying that trees historically not sensitive to temperature may become sensitive as mean temperatures warm. An analysis of 59 white spruce populations in Alaska supports the hypothesis that warming has caused tree growth to lose sensitivity to cold temperatures. Comparing ring widths to temperature during just the coldest 50% of years during the 20th century, tree growth was sensitive to cold temperatures, and this effect was strongest at the coldest sites; whereas during the warmest 50% of years, trees were not at all sensitive to cold temperatures, even at the cold sites. Drought and vapor pressure deficit are among the variables that emerge as being increasingly important to these Alaska boreal forests as mean temperatures rise. Most recently, from 346 tree-ring chronologies in the Southwest US we establish a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis

  15. [Effects of crop tree release on stand growth and stand structure of Cunninghamia lanceolata plantation].

    PubMed

    Wu, Jian-qiang; Wang, Yi-xiang; Yang, Yi; Zhu, Ting-ting; Zhu, Xu-dan

    2015-02-01

    Crop trees were selected in a 26-year-old even-aged Cunninghamia lanceolata plantation in Lin' an, and compared in plots that were released and unreleased to examine growth and structure responses for 3 years after thinning. Crop tree release significantly increased the mean increments of diameter and volume of individual tree by 1.30 and 1.25 times relative to trees in control stands, respectively. The increments of diameter and volume of crop trees were significantly higher than those of general trees in thinning plots, crop trees and general trees in control plots, which suggested that the responses from different tree types to crop tree release treatment were different. Crop tree release increased the average distances of crop trees to the nearest neighboring trees, reducing competition among crop trees by about 68.2%. 3-year stand volume increment for thinning stands had no significant difference with that of control stands although the number of trees was only 81.5% of the control. Crop trees in thinned plots with diameters over than 14 cm reached 18.0% over 3 years, compared with 12.0% for trees without thinning, suggesting that crop tree release benefited the larger individual trees. The pattern of tree locations in thinning plots tended to be random, complying with the rule that tree distribution pattern changes with growth. Crop tree release in C. lanceolata plantation not only promoted the stand growth, but also optimized the stand structure, benefiting crop trees sustained rapid growth and larger diameter trees production.

  16. Clarifying the Effects of Dwarfing Rootstock on Vegetative and Reproductive Growth during Tree Development: A Study on Apple Trees

    PubMed Central

    Costes, E.; García-Villanueva, E.

    2007-01-01

    Background and Aims Despite the widespread use of dwarfing rootstocks in the fruit-tree industry, their impact on tree architectural development and possible role in the within-tree balance between growth and flowering are still poorly understood, in particular during the early years of growth. The present study addressed this question in apple trees, through a detailed analysis of shoot populations, i.e. both vegetative and flowering shoots, during tree development. Methods Architectural databases were constructed for trees of two cultivars that were either own-rooted or grafted on dwarfing rootstock. Within-tree shoot demographics and annual shoot characteristics, i.e. their dimensions, number of laterals and flowering, were observed from the first to the fifth year of growth and compared among scion/root system combinations. Key Results Differences in axis demographics appeared among scion/root system combinations after the second year of growth. Differences were found (a) in the number of long axes and (b) the number of medium axes. Dwarfing rootstock reduced the total number of axes developed in a tree, and this reduction resulted from proportionally more medium axes and spurs than long axes. The life span of spurs was also shortened. These phenomena appeared after an increase in flowering that started in the second year of growth and involved both axillary and terminal positions. Flowering regularity was also increased in grafted trees. Conclusions These results confirm that the number of long shoots and flowering potential depend on the cultivar. They indicate that tree architectural plasticity in response to its root system mainly derives from the number of medium shoots developed and follows priorities within the whole tree axis population. There was also evidence for dwarfing rootstock involvement in adjusting the flowering abundance and that differences in flowering occurrence take precedence over those regarding vegetative growth during tree development

  17. Variable gene dispersal conditions and spatial deforestation patterns can interact to affect tropical tree conservation outcomes.

    PubMed

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal

  18. Variable Gene Dispersal Conditions and Spatial Deforestation Patterns Can Interact to Affect Tropical Tree Conservation Outcomes

    PubMed Central

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal

  19. Integrated Analysis of Tropical Trees Growth: A Multivariate Approach

    PubMed Central

    YÁÑEZ-ESPINOSA, LAURA; TERRAZAS, TERESA; LÓPEZ-MATA, LAURO

    2006-01-01

    • Background and Aims One of the problems analysing cause–effect relationships of growth and environmental factors is that a single factor could be correlated with other ones directly influencing growth. One attempt to understand tropical trees' growth cause–effect relationships is integrating research about anatomical, physiological and environmental factors that influence growth in order to develop mathematical models. The relevance is to understand the nature of the process of growth and to model this as a function of the environment. • Methods The relationships of Aphananthe monoica, Pleuranthodendron lindenii and Psychotria costivenia radial growth and phenology with environmental factors (local climate, vertical strata microclimate and physical and chemical soil variables) were evaluated from April 2000 to September 2001. The association among these groups of variables was determined by generalized canonical correlation analysis (GCCA), which considers the probable associations of three or more data groups and the selection of the most important variables for each data group. • Key Results The GCCA allowed determination of a general model of relationships among tree phenology and radial growth with climate, microclimate and soil factors. A strong influence of climate in phenology and radial growth existed. Leaf initiation and cambial activity periods were associated with maximum temperature and day length, and vascular tissue differentiation with soil moisture and rainfall. The analyses of individual species detected different relationships for the three species. • Conclusions The analyses of the individual species suggest that each one takes advantage in a different way of the environment in which they are growing, allowing them to coexist. PMID:16822807

  20. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest

    SciTech Connect

    Bond-Lamberty, Benjamin; Rocha, Adrian; Calvin, Katherine V.; Holmes, Bruce; Wang, Chuankuan; Goulden, Michael L.

    2014-01-01

    How will regional growth and mortality change with even relatively small climate shifts, even independent of catastrophic disturbances? This question is particularly acute for the North American boreal forest, which is carbon-dense and subject The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean DBH increased even as stand density and basal area declined significantly from 41.3 to 37.5 m2 ha-1. Tree mortality averaged 1.4±0.6% yr-1, with most mortality occurring in medium-sized trees. A combined tree ring chronology constructed from 2001, 2004, and 2012 sampling showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. There have been at least one, and probably two, significant recruitment episodes since stand initiation, and we infer that past climate extremes led to significant NOBS mortality still visible in the current forest structure. These results imply that a combination of successional and demographic processes, along with mortality driven by abiotic factors, continue to affect the stand, with significant implications for our understanding of previous work at NOBS and the sustainable management of regional forests.

  1. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    PubMed

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland.

  2. iTREE: Long-term variability of tree growth in a changing environment - identifying physiological mechanisms using stable C and O isotopes in tree rings.

    NASA Astrophysics Data System (ADS)

    Siegwolf, R. T. W.; Buchmann, N.; Frank, D.; Joos, F.; Kahmen, A.; Treydte, K.; Leuenberger, M.; Saurer, M.

    2012-04-01

    Trees play are a critical role in the carbon cycle - their photosynthetic assimilation is one of the largest terrestrial carbon fluxes and their standing biomass represents the largest carbon pool of the terrestrial biosphere. Understanding how tree physiology and growth respond to long-term environmental change is pivotal to predict the magnitude and direction of the terrestrial carbon sink. iTREE is an interdisciplinary research framework to capitalize on synergies among leading dendroclimatologists, plant physiologists, isotope specialists, and global carbon cycle modelers with the objectives of reducing uncertainties related to tree/forest growth in the context of changing natural environments. Cross-cutting themes in our project are tree rings, stable isotopes, and mechanistic modelling. We will (i) establish a European network of tree-ring based isotope time-series to retrodict interannual to long-term tree physiological changes, (ii) conduct laboratory and field experiments to adapt a mechanistic isotope model to derive plant physiological variables from tree-ring isotopes, (iii) implement this model into a dynamic global vegetation model, and perform subsequent model-data validation exercises to refine model representation of plant physiological processes and (iv) attribute long-term variation in tree growth to plant physiological and environmental drivers, and identify how our refined knowledge revises predictions of the coupled carbon-cycle climate system. We will contribute to i) advanced quantifications of long-term variation in tree growth across Central Europe, ii) novel long-term information on key physiological processes that underlie variations in tree growth, and iii) improved carbon cycle models that can be employed to revise predictions of the coupled carbon-cycle climate system. Hence iTREE will significantly contribute towards a seamless understanding of the responses of terrestrial ecosystems to long-term environmental change, and ultimately

  3. Intra- and interspecific tree growth across a long altitudinal gradient in the Peruvian Andes.

    PubMed

    Rapp, Joshua M; Silman, Miles R; Clark, James S; Girardin, Cecile A J; Galiano, Darcy; Tito, Richard

    2012-09-01

    Tree growth response across environmental gradients is fundamental to understanding species distributional ecology and forest ecosystem ecology and to predict future ecosystem services. Cross-sectional patterns of ecosystem properties with respect to climatic gradients are often used to predict ecosystem responses to global change. Across sites in the tropics, primary productivity increases with temperature, suggesting that forest ecosystems will become more productive as temperature rises. However, this trend is confounded with a shift in species composition and so may not reflect the response of in situ forests to warming. In this study, we simultaneously studied tree diameter growth across the altitudinal ranges of species within a single genus across a geographically compact temperature gradient, to separate the direct effect of temperature on tree growth from that of species compositional turnover. Using a Bayesian state space modeling framework we combined data from repeated diameter censuses and dendrometer measurements from across a 1700-m altitudinal gradient collected over six years on over 2400 trees in Weinmannia, a dominant and widespread genus of cloud forest trees in the Andes. Within species, growth showed no consistent trend with altitude, but higher-elevation species had lower growth rates than lower-elevation species, suggesting that species turnover is largely responsible for the positive correlation between productivity and temperature in tropical forests. Our results may indicate a significant difference in how low- and high-latitude forests will respond to climate change, since temperate and boreal tree species are consistently observed to have a positive relationship between growth and temperature. If our results hold for other tropical species, a positive response in ecosystem productivity to increasing temperatures in the Andes will depend on the altitudinal migration of tree species. The rapid pace of climate change, and slow observed

  4. Plant defense, herbivory, and the growth of Cordia alliodora trees and their symbiotic Azteca ant colonies.

    PubMed

    Pringle, Elizabeth G; Dirzo, Rodolfo; Gordon, Deborah M

    2012-11-01

    The effects of herbivory on plant fitness are integrated over a plant's lifetime, mediated by ontogenetic changes in plant defense, tolerance, and herbivore pressure. In symbiotic ant-plant mutualisms, plants provide nesting space and food for ants, and ants defend plants against herbivores. The benefit to the plant of sustaining the growth of symbiotic ant colonies depends on whether defense by the growing ant colony outpaces the plant's growth in defendable area and associated herbivore pressure. These relationships were investigated in the symbiotic mutualism between Cordia alliodora trees and Azteca pittieri ants in a Mexican tropical dry forest. As ant colonies grew, worker production remained constant relative to ant-colony size. As trees grew, leaf production increased relative to tree size. Moreover, larger trees hosted lower densities of ants, suggesting that ant-colony growth did not keep pace with tree growth. On leaves with ants experimentally excluded, herbivory per unit leaf area increased exponentially with tree size, indicating that larger trees experienced higher herbivore pressure per leaf area than smaller trees. Even with ant defense, herbivory increased with tree size. Therefore, although larger trees had larger ant colonies, ant density was lower in larger trees, and the ant colonies did not provide sufficient defense to compensate for the higher herbivore pressure in larger trees. These results suggest that in this system the tree can decrease herbivory by promoting ant-colony growth, i.e., sustaining space and food investment in ants, as long as the tree continues to grow.

  5. Age class, longevity and growth rate relationships: protracted growth increases in old trees in the eastern United States.

    PubMed

    Johnson, Sarah E; Abrams, Marc D

    2009-11-01

    This study uses data from the International Tree-Ring Data Bank website and tree cores collected in the field to explore growth rate (basal area increment, BAI) relationships across age classes (from young to old) for eight tree species in the eastern US. These species represent a variety of ecological traits and include those in the genera Populus, Quercus, Pinus, Tsuga and Nyssa. We found that most trees in all age classes and species exhibit an increasing BAI throughout their lives. This is particularly unusual for trees in the older age classes that we expected to have declining growth in the later years, as predicted by physiological growth models. There exists an inverse relationship between growth rate and increasing age class. The oldest trees within each species have consistently slow growth throughout their lives, implying an inverse relationship between growth rate and longevity. Younger trees (< 60 years of age) within each species are consistently growing faster than the older trees when they are of the same age resulting from a higher proportion of fast-growing trees in these young age classes. Slow, but increasing, BAI in the oldest trees in recent decades is a continuation of their growth pattern established in previous centuries. The fact that they have not shown a decreasing growth rate in their old age contradicts physiological growth models and may be related to the stimulatory effects of global change phenomenon (climate and land-use history).

  6. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis.

    PubMed

    Groenendijk, Peter; van der Sleen, Peter; Vlam, Mart; Bunyavejchewin, Sarayudh; Bongers, Frans; Zuidema, Pieter A

    2015-10-01

    The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous

  7. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?

    PubMed

    Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto

    2016-06-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses

  8. Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition or climate response most important?

    USGS Publications Warehouse

    Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto

    2016-01-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth

  9. Variations in Environmental Signals in Tree-Ring Indices in Trees with Different Growth Potential

    PubMed Central

    Hafner, Polona; Gričar, Jožica; Skudnik, Mitja; Levanič, Tom

    2015-01-01

    We analysed two groups of Quercus robur trees, growing at nearby plots with different micro-location condition (W-wet and D-dry) in the floodplain Krakovo forest, Slovenia. In the study we compared the growth response of two different tree groups to environmental variables, the potential signal stored in earlywood (EW) structure and the potential difference of the information stored in carbon isotope discrimination of EW and latewood (LW). For that purpose EW and LW widths and carbon isotope discrimination for the period 1970–2008 AD were measured. EW and LW widths were measured on stained microscopic slides and chronologies were standardised using the ARSTAN program. α-cellulose was extracted from pooled EW and LW samples and homogenized samples were further analysed using an elemental analyser and IRMS. We discovered that W oaks grew significantly better over the whole analysed period. The difference between D and W oaks was significant in all analysed variables with the exception of stable carbon isotope discrimination in latewood. In W oaks, latewood widths correlated with summer (June to August) climatic variables, while carbon isotope discrimination was more connected to River Krka flow during the summer. EW discrimination correlated with summer and autumn River Krka flow of the previous year, while latewood discrimination correlated with flow during the current year. In the case of D oaks, the environmental signal appears to be vague, probably due to less favourable growth conditions resulting in markedly reduced increments. Our study revealed important differences in responses to environmental factors between the two oak groups of different physiological conditions that are preconditioned by environmental stress. Environmental information stored in tree-ring features may vary, even within the same forest stand, and largely depends on the micro-environment. Our analysis confirmed our assumptions that separate EW and LW analysis of widths and carbon

  10. Effects of soil fertility and topography on tree growth in subtropical forest ecosystems

    NASA Astrophysics Data System (ADS)

    Seitz, Steffen; Goebes, Philipp; Kühn, Peter; Schmidt, Karsten; Song, Zhengshan; Scholten, Thomas

    2016-04-01

    This study investigates the effects of soil fertility and topography on tree growth in a forest biodiversity and ecosystem functioning experiment. The main objective was to examine whether topography controls small-scale differences of soil fertility expressed in soil texture, soil pH, soil organic carbon (SOC), N, cation exchange capacity (CEC), base saturation, Na, K, Mg, Ca, Fe and Mn in a hilly forest area in subtropical China. Geomorphometric terrain analyses were carried out at a spatial resolution of 5 m × 5 m. Soil samples of different depth increments and data on tree growth were collected from a total of 566 plots (667 m2 each). All plots were classified into geomorphological units. Analyses of variance and linear regressions were applied to all terrain, soil fertility and tree growth attributes. In general, limited soil formation and relatively small differences in stable soil properties suggest that soil erosion has truncated the soils to a large extent over the whole area of the experiment. This explains the concurrently increasing CEC and SOC stocks downslope, in hollows and in valleys. However, colluvial carbon-rich sediments are missing widely due to the convexity of the footslopes caused by uplift and removal of eroded sediments by adjacent waterways. The results showed that soil fertility is mainly influenced by topography. Monte-Carlo flow accumulation (MCCA), curvature, slope and aspect significantly affected soil fertility. Furthermore, soil fertility attributes were affected by the different geomorphological positions of the experimental sites with ridge and spur positions showing lower exchangeable base cation contents due to leaching. This geomorphological effect of soil fertility is most pronounced in the topsoil and decreases when considering the subsoil down to 50 cm depth. Few soil fertility attributes affect tree height after 1-2 years of growth, among which C stocks proved to be most important while pHKCl and CEC only played minor

  11. Drought stress, growth and nonstructural carbohydrate dynamics of pine trees in a semi-arid forest.

    PubMed

    Klein, Tamir; Hoch, Günter; Yakir, Dan; Körner, Christian

    2014-09-01

    In trees exposed to prolonged drought, both carbon uptake (C source) and growth (C sink) typically decrease. This correlation raises two important questions: (i) to what degree is tree growth limited by C availability; and (ii) is growth limited by concurrent C storage (e.g., as nonstructural carbohydrates, NSC)? To test the relationships between drought, growth and C reserves, we monitored the changes in NSC levels and constructed stem growth chronologies of mature Pinus halepensis Miller trees of three drought stress levels growing in Yatir forest, Israel, at the dry distribution limit of forests. Moderately stressed and stressed trees showed 34 and 14% of the stem growth, 71 and 31% of the sap flux density, and 79 and 66% of the final needle length of healthy trees in 2012. In spite of these large reductions in growth and sap flow, both starch and soluble sugar concentrations in the branches of these trees were similar in all trees throughout the dry season (2-4% dry mass). At the same time, the root starch concentrations of moderately stressed and stressed trees were 47 and 58% of those of healthy trees, but never <2% dry mass. Our results show that all the studied trees maintain a fairly good coordination between C supply and demand, and even during prolonged drought there is more than one way for a tree to maintain a positive C balance.

  12. [Difference in responses of major tree species growth to climate in the Miyaluo Mountains, western Sichuan, China].

    PubMed

    Guo, Ming-ming; Zhang, Yuan-dong; Wang, Xiao-chun; Liu, Shi-rong

    2015-08-01

    To explore the responses of different tree species growth to climate change in the semi-humid region of the eastern Tibetan Plateau, we investigated climate-growth relationships of Tsuga chinensis, Abies faxoniana, Picea purpurea at an altitude of 3000 m (low altitude) and A. faxoniana and Larix mastersiana at an altitude of 4000 m (high altitude) using tree ring-width chronologies (total of 182 cores) developed from Miyaluo, western Sichuan, China. Five residual chronologies were developed from the cross-dated ring width series using the program ARSTAN, and the relationships between monthly climate variables and tree-ring index were analyzed. Results showed that the chronologies of trees at low altitudes were negatively correlated with air temperature but positively with precipitation in April and May. This indicated that drought stress limited tree growth at low altitude, but different tree species showed significant variations. T. chinensis was most severely affected by drought stress, followed by A. faxoniana and P. purpurea. Trees at high altitude were mainly affected by growing season temperature. Tree-ring index of A. faxoniana was positively correlated with monthly minimum temperature in February and July of the current year and monthly maximum temperature in October of the previous year. Radial growth of L. mastersiana was positively correlated with monthly maximum temperature in May, and negatively with monthly mean temperature in February and monthly minimum temperature in March. In recent decadal years, the climate in northeast Tibetan Plateau had a warming and drying trend. If this trend continues, we could deduce that P. purpurea should grow faster than T. chinensis and A. faxoniana at low altitudes, while A. faxoniana would benefit more from global warming at high altitudes.

  13. Response of a boreal forest to canopy opening: assessing vertical and lateral tree growth with multi-temporal lidar data.

    PubMed

    Vepakomma, Udayalakshmi; St-Onge, Benoit; Kneeshaw, Daniel

    2011-01-01

    Fine-scale height-growth response of boreal trees to canopy openings is difficult to measure from the ground, and there are important limitations in using stereophotogrammetry in defining gaps and determining individual crowns and height. However, precise knowledge on height growth response to different openings is critical for refining partial harvesting techniques. In this study, we question whether conifers and hardwoods respond equally in terms of sapling growth or lateral growth to openings. We also ask to what distance gaps affect tree growth into the forest. We use multi-temporal lidar to characterize tree/sapling height and lateral growth responses over five years to canopy openings and high resolution images to identify conifers and hardwoods. Species-class-wise height-growth patterns of trees/saplings in various neighborhood contexts were determined across a 6-km matrix of Canadian boreal mixed deciduous coniferous forests. We then use statistical techniques to probe how these growth responses vary by spatial location with respect to the gap edge. Results confirm that both mechanisms of gap closure contribute to the closing of canopies at a rate of 1.2% per annum. Evidence also shows that both hardwood and conifer gap edge trees have a similar lateral growth (average of 22 cm/yr) and similar rates of height growth irrespective of their location and initial height. Height growth of all saplings, however, was strongly dependent on their position within the gap and the size of the gap. Results suggest that hardwood and softwood saplings in gaps have greatest growth rates at distances of 0.5-2 m and 1.5-4 m from the gap edge and in openings smaller than 800 m2 and 250 m2, respectively. Gap effects on the height growth of trees in the intact forest were evident up to 30 m and 20 m from gap edges for hardwood and softwood overstory trees, respectively. Our results thus suggest that foresters should consider silvicultural techniques that create many small

  14. Are the High Latitudes Greening or Browning? Evidence for Nonlinear Responses in Tree Growth and the Satellite Record

    NASA Astrophysics Data System (ADS)

    Bunn, A. G.; Goetz, S. J.; Lloyd, A. H.

    2005-12-01

    There have been substantial temperature increases in the northern high latitudes in recent decades. Changes in climate have affected the productivity and physiology of plants and been associated with changes in the global carbon cycle. Crucial studies over the past decade have indicated "greening" of the high latitudes - plants growing earlier in the growing season and more intensely during the summer. Analyses based on the most recent AVHRR-NDVI time series data in boreal North America suggest, however, that: (1) widespread greening is not ubiquitous, but varies with land cover and disturbance history, (2) an interplay between temperature and precipitation affects the NDVI signal according to plant type. These findings are in conjunction with recent tree-ring research that has documented "browning" in some boreal locales in response to physiological temperature thresholds and temperature-induced drought stress. Documenting and interpreting trends in plant growth at high latitudes is critical for understanding the associations and feedbacks between temperature, precipitation, land cover, and atmospheric CO2. We discuss recent analysis from remote sensing and dendroclimatology and present new analysis that integrates the satellite and tree-ring based measures of growth across the high latitudes, and investigate drivers of the observed trends. First, we analyze AVHRR-NDVI time series in a circumpolar study, refined through incorporation of MODIS products, in order to better understand how NDVI has changed over the last two decades. Second, we merge hundreds of tree-ring chronologies from the high latitudes with the AVHRR-NDVI record to understand the associations between tree-growth and NDVI by cover type, latitude, forest density, and landscape setting. These models illuminate the relationship between the satellite NDVI and an integrative measure of tree growth. When merged with climate data, this provides a circumpolar assessment of how tree growth in the high

  15. Climate Controls on Tree Growth in the Western Mediterranean

    NASA Technical Reports Server (NTRS)

    Touchan, Ramzi; Anchukaitis, Kevin J.; Meko, David M.; Kerchouche, Dalila; Slimani, Said; Ilmen, Rachid; Hasnaoui, Fouad; Guibal, Frederic; Canarerim Hesys Hykui; Sanchez-Salguero, Raul; Piermattei, Alma; Sesbou, Abdessadek; Cook, Benjamin I.; Sabir, Mohamed; Touchane, Hayat

    2017-01-01

    The first large-scale network of tree-ring chronologies from the western Mediterranean (WM; 32 deg N-43 deg N, 10 deg W-17 deg E) is described and analyzed to identify the seasonal climatic signal in indices of annual ring width. Correlation and rotated empirical orthogonal function analyses are applied to 85 tree-ring series and corresponding gridded climate data to assess the climate signal embedded in the network. Chronologies range in length from 80 to 1129 years. Monthly correlations and partial correlations show overall positive associations for Pinus halepensis (PIHA) and Cedrus atlantica (CDAT) with winter (December-February) and spring (March-May) precipitation across this network. In both seasons, the precipitation correlation with PIHA is stronger, while CDAT chronologies tend to be longer. A combination of positive correlations between growth and winter-summer precipitation and negative partial correlations with growing season temperatures suggests that chronologies in at least part of the network reflect soil moisture and the integrated effects of precipitation and evapotranspiration signal. The range of climate response observed across this network reflects a combination of both species and geographic influences. Western Moroccan chronologies have the strongest association with the North Atlantic Oscillation.

  16. Pan-Tropical Analysis of Climate Effects on Seasonal Tree Growth

    PubMed Central

    Wagner, Fabien; Rossi, Vivien; Aubry-Kientz, Mélaine; Bonal, Damien; Dalitz, Helmut; Gliniars, Robert; Stahl, Clément; Trabucco, Antonio; Hérault, Bruno

    2014-01-01

    Climate models predict a range of changes in tropical forest regions, including increased average temperatures, decreased total precipitation, reduced soil moisture and alterations in seasonal climate variations. These changes are directly related to the increase in anthropogenic greenhouse gas concentrations, primarily CO2. Assessing seasonal forest growth responses to climate is of utmost importance because woody tissues, produced by photosynthesis from atmospheric CO2, water and light, constitute the main component of carbon sequestration in the forest ecosystem. In this paper, we combine intra-annual tree growth measurements from published tree growth data and the corresponding monthly climate data for 25 pan-tropical forest sites. This meta-analysis is designed to find the shared climate drivers of tree growth and their relative importance across pan-tropical forests in order to improve carbon uptake models in a global change context. Tree growth reveals significant intra-annual seasonality at seasonally dry sites or in wet tropical forests. Of the overall variation in tree growth, 28.7% was explained by the site effect, i.e. the tree growth average per site. The best predictive model included four climate variables: precipitation, solar radiation (estimated with extrasolar radiation reaching the atmosphere), temperature amplitude and relative soil water content. This model explained more than 50% of the tree growth variations across tropical forests. Precipitation and solar radiation are the main seasonal drivers of tree growth, causing 19.8% and 16.3% of the tree growth variations. Both have a significant positive association with tree growth. These findings suggest that forest productivity due to tropical tree growth will be reduced in the future if climate extremes, such as droughts, become more frequent. PMID:24670981

  17. Pan-tropical analysis of climate effects on seasonal tree growth.

    PubMed

    Wagner, Fabien; Rossi, Vivien; Aubry-Kientz, Mélaine; Bonal, Damien; Dalitz, Helmut; Gliniars, Robert; Stahl, Clément; Trabucco, Antonio; Hérault, Bruno

    2014-01-01

    Climate models predict a range of changes in tropical forest regions, including increased average temperatures, decreased total precipitation, reduced soil moisture and alterations in seasonal climate variations. These changes are directly related to the increase in anthropogenic greenhouse gas concentrations, primarily CO2. Assessing seasonal forest growth responses to climate is of utmost importance because woody tissues, produced by photosynthesis from atmospheric CO2, water and light, constitute the main component of carbon sequestration in the forest ecosystem. In this paper, we combine intra-annual tree growth measurements from published tree growth data and the corresponding monthly climate data for 25 pan-tropical forest sites. This meta-analysis is designed to find the shared climate drivers of tree growth and their relative importance across pan-tropical forests in order to improve carbon uptake models in a global change context. Tree growth reveals significant intra-annual seasonality at seasonally dry sites or in wet tropical forests. Of the overall variation in tree growth, 28.7% was explained by the site effect, i.e. the tree growth average per site. The best predictive model included four climate variables: precipitation, solar radiation (estimated with extrasolar radiation reaching the atmosphere), temperature amplitude and relative soil water content. This model explained more than 50% of the tree growth variations across tropical forests. Precipitation and solar radiation are the main seasonal drivers of tree growth, causing 19.8% and 16.3% of the tree growth variations. Both have a significant positive association with tree growth. These findings suggest that forest productivity due to tropical tree growth will be reduced in the future if climate extremes, such as droughts, become more frequent.

  18. Lianas suppress seedling growth and survival of 14 tree species in a Panamanian tropical forest.

    PubMed

    Martínez-Izquierdo, Laura; García, María M; Powers, Jennifer S; Schnitzer, Stefan A

    2016-01-01

    Lianas are a common plant growth form in tropical forests, where they compete intensely with trees, decreasing tree recruitment, growth, and survival. If the detrimental effects of lianas vary significantly with tree species identity, as is often assumed, then lianas may influence tree species diversity and community composition. Furthermore, recent studies have shown that liana abundance and biomass are increasing relative to trees in neotropical forests, which will likely magnify the detrimental effects of lianas and may ultimately alter tree species diversity, relative abundances, and community composition. Few studies, however, have tested the responses of multiple tree species to the presence of lianas in robust, well-replicated experiments. We tested the hypotheses that lianas reduce tree seedling growth and survival, and that the effect of lianas varies with tree species identity. We used a large-scale liana removal experiment in Central Panama in which we planted 14 replicate seedlings of 14 different tree species that varied in shade tolerance in each of 16 80 x 80 m plots (eight liana-removal and eight unmanipulated controls; 3136 total seedlings). Over a nearly two-yr period, we found that tree seedlings survived 75% more, grew 300% taller, and had twice the aboveground biomass in liana-removal plots than seedlings in control plots, consistent with strong competition between lianas and tree seedlings. There were no significant differences in the response of tree species to liana competition (i.e., there was no species by treatment interaction), indicating that lianas had a similar negative effect on all 14 tree species. Furthermore, the effect of lianas did not vary with tree species shade tolerance classification, suggesting that the liana effect was not solely based on light. Based on these findings, recently observed increases in liana abundance in neotropical forests will substantially reduce tree regeneration, but will not significantly alter

  19. Epicormic Branches: a Growth Indicator for the Tropical Forest Tree, Dicorynia guianensis Amshoff (Caesalpiniaceae)

    PubMed Central

    NICOLINI, ERIC; CARAGLIO, YVES; PÉLISSIER, RAPHAËL; LEROY, CELINE; ROGGY, JEAN‐CHRISTOPHE

    2003-01-01

    Architectural analyses of temperate tree species using a chronological approach suggest that the expression of epicormic branches is closely related to low growth rates in the axes that make up the branching system. Therefore, sole consideration of epicormic criteria may be sufficient to identify trees with low secondary growth levels or with both low primary and secondary growth levels. In a tropical tree such as Dicorynia guianensis (basralocus), where chronological studies are difficult, this relationship could be very useful as an easily accessible indicator of growth potentials. A simple method of architectural tree description was used to characterize the global structure of more than 1650 basralocus trees and to evaluate their growth level. Measurements of simple growth characters [height, basal diameter, internode length of submittal part (top of the main axis of the tree)] and the observation of four structural binary descriptors on the main stem (presence of sequential branches and young epicormic branches, state of the submittal part, global orientation), indicated that epicormic branch formation is clearly related to a decrease in length of the successive growth units of the main stem. Analysis of height vs. diameter ratios among different tree subgroups, with and without epicormic branching, suggested that trees with epicormic branches generally have a low level of secondary growth compared with primary growth. PMID:12824071

  20. Spatial aspects of tree mortality strongly differ between young and old-growth forests.

    PubMed

    Larson, Andrew J; Lutz, James A; Donato, Daniel C; Freund, James A; Swanson, Mark E; HilleRisLambers, Janneke; Sprugel, Douglas G; Franklin, Jerry F

    2015-11-01

    Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (< 60-year-old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.

  1. Increased water use efficiency but contrasting tree growth patterns in Fitzroya cupressoides forests of southern Chile during recent decades

    NASA Astrophysics Data System (ADS)

    Urrutia-Jalabert, Rocío.; Malhi, Yadvinder; Barichivich, Jonathan; Lara, Antonio; Delgado-Huertas, Antonio; Rodríguez, Carmen Gloria; Cuq, Emilio

    2015-12-01

    Little is known about how old-growth and massive forests are responding to environmental change. We investigated tree-ring growth and carbon isotopes of the long-lived and high biomass Fitzroya cupressoides in two stands growing in contrasting environmental conditions in the Coastal Range (~300 years old) and Andean Cordilleras (>1500 years old) of southern Chile. The interannual variability in δ13C was assessed for the period 1800-2010, and changes in discrimination and intrinsic water use efficiency (iWUE) were evaluated in relation to changes in climate and tree-ring growth during the last century. 13C discrimination has significantly decreased, and iWUE has increased since the 1900s in both sites. However, these trends in isotopic composition have been accompanied by different growth patterns: decreasing growth rates in the Coastal Range since the 1970s and increasing growth rates in the Andes since the 1900s. Trees growing in the Coastal Range have become more efficient in their use of water, probably due to reduced stomatal conductance caused by increases in CO2 and warming. Trees growing in the Andes have also become more water use efficient, but this has been likely due to increased photosynthetic rates. Fitzroya forests, including particularly old-growth stands, are responding to recent environmental changes, and their response has been site dependent. The growth of forests under a more Mediterranean climate influence and restrictive soil conditions in the Coastal Range has been more negatively affected by current warming and drying; while the growth of old stands in the wet Andes has been positively affected by changes in climate (decreasing cloudiness) and increasing CO2. Permanent monitoring of these endangered forests under ongoing environmental changes is needed in order to reassure the long-term preservation of this millennial-aged species.

  2. Forest tree growth response to hydroclimate variability in the southern Appalachians.

    PubMed

    Elliott, Katherine J; Miniat, Chelcy F; Pederson, Neil; Laseter, Stephanie H

    2015-12-01

    Climate change will affect tree species growth and distribution; however, under the same climatic conditions species may differ in their response according to site conditions. We evaluated the climate-driven patterns of growth for six dominant deciduous tree species in the southern Appalachians. We categorized species into two functional groups based on their stomatal regulation and xylem architecture: isohydric, diffuse porous and anisohydric, ring porous. We hypothesized that within the same climatic regime: (i) species-specific differences in growth will be conditional on topographically mediated soil moisture availability; (ii) in extreme drought years, functional groups will have markedly different growth responses; and (iii) multiple hydroclimate variables will have direct and indirect effects on growth for each functional group. We used standardized tree-ring chronologies to examine growth of diffuse-porous (Acer, Liriodendron, and Betula) and ring-porous (Quercus) species vs. on-site climatic data from 1935 to 2003. Quercus species growing on upslope sites had higher basal area increment (BAI) than Quercus species growing on mesic, cove sites; whereas, Acer and Liriodendron had lower BAI on upslope compared to cove sites. Diffuse-porous species were more sensitive to climate than ring porous, especially during extreme drought years. Across functional groups, radial growth was more sensitive to precipitation distribution, such as small storms and dry spell length (DSL), rather than the total amount of precipitation. Based on structural equation modeling, diffuse-porous species on upslope sites were the most sensitive to multiple hydroclimate variables (r(2)  = 0.46), while ring-porous species on upslope sites were the least sensitive (r(2)  = 0.32). Spring precipitation, vapor pressure deficit, and summer storms had direct effects on summer AET/P, and summer AET/P, growing season small storms and DSL partially explained growth. Decreasing numbers of

  3. The effects of water-level fluctuations on weekly tree growth in a southeastern USA swamp

    SciTech Connect

    Keeland, B.D.; Sharitz, R.R.

    1997-01-01

    Annual growth of wetland trees has been shown to be related to variations in hydrologic regimes, however the relationship between water level fluctuations and tree growth season has not been documented. In a study of weekly growth patterns of three wetland tree species in a southeastern forested wetland, transfer function modeling was used to examine relationships between tree growth and the weekly changes in water levels and weekly changes in the atmospheric water balance (precipitation minus potential evapotranspiration). An autoregressive-moving average model was fit to each time series of water-level changes (input series), and the selected model was then used to filter the tree-growth (output) time series. Cross-correlations between each input and output time series were examined and significant relationships between weekly changes in water levels and tree diameter were found for Nyssa sylvatica and Taxodium distichum trees growing at sites with periodic shallow flooding. There were no significant relationships between changing water levels and tree growth in areas with permanent flooding or soil saturation. Further, changes in growth of N. sylvatica, N. aquatica, and T. distichum were significantly cross-correlated with weekly changes in the atmospheric water balance at sites with either periodic or permanent flooding. 59 refs., 9 figs., 5 tabs.

  4. Topsoil, ripping, and herbicides influence tree survival and growth on coal minesoil after nine years

    SciTech Connect

    Kost, D.A.; Brown, J.H.; Vimmerstedt, J.P. |

    1998-12-31

    On reclaimed coal surface mines trees are stressed by soil compaction, herbaceous competition, and animal damage. The authors tested treatments to modify soils and herbaceous competition in a split-split-plot experiment on calcareous minesoils in southeastern Ohio. They measured tree survival and growth as affected by minesoil surface (standard graded topsoil, ripped topsoil, graded overburden) and herbicide applications (type, rate, and frequency). Green ash, silver maple, European alder, black pine, eastern white pine, and Virginia pine were planted into a grass/legume ground cover seeded 18 months earlier. Herbicides were applied over the trees at two rates and two frequencies (first year only, two consecutive years) for all species except Virginia pine. After nine years, only green ash (95%) and black pine (48%) had adequate survival. Silver maple (16%), alder (7%), Virginia pine (6%) and white pine (<1%) had low survival by the fifth year. Black pine survived better on standard topsoil (60%) than on graded overburden (37%) and was 43% taller on both topsoils (165 or 168 cm total height) than on graded overburden (116 cm). Green ash height varied significantly on all soil surfaces (172 cm on ripped topsoil, 136 cm on standard topsoil, 102 cm on graded overburden). Survival on herbicide treated plots was greater than on untreated controls only for Virginia pine sprayed with Princep or Oust and for silver maple sprayed with Stomp, but both species had less than 25% survival even when treated by these herbicides. Green ash survival decreased with both rates of Oust and with increasing frequency of Oust. Green ash height was increased on average of 19% by either rate of Dowpon or Surflan. Longer term tree growth was benefited more by topsoil replacement and ripping than by herbicide treatments.

  5. Relationships Between Shallow Groundwater and Tree Growth in a Northern Wisconsin Forest

    NASA Astrophysics Data System (ADS)

    Ciruzzi, D. M.; Steven, L. I.

    2015-12-01

    As drought variability increases across forests in the United States, it is critical to evaluate ecosystem attributes that reduce drought vulnerability. Groundwater has been shown to sustain tree growth and transpiration in arid and semi-arid ecosystems during drought, yet this relationship has yet to be extensively explored in mesic environments. This research aims to investigate groundwater-tree interactions in a north temperate forest in northern Wisconsin with attention to drought stress. We question if trees in areas of shallow groundwater with lower inter-annual variability will have higher and more consistent tree growth rates during drought conditions. Historic water table measurements monitored in the Trout Lake watershed include a decline in groundwater levels by ~1 m caused by a prolonged drought from 2006-2013. Within the watershed, we examined tree growth response between wet and dry years across sites covering a 1-9 m depth to groundwater gradient over the past 30 years. Combined with remotely sensed vegetation indices and tree core chronologies, we show regions and individual trees influenced by groundwater depth variability, respectively. Generally, vegetation indices and tree growth rates were higher during years of shallower spring and summer groundwater. By exploring the influences of shallow groundwater on tree growth in temperate forests, groundwater conferred drought resistance may be mapped for sustainable management.

  6. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees.

    PubMed

    Böhlenius, Henrik; Huang, Tao; Charbonnel-Campaa, Laurence; Brunner, Amy M; Jansson, Stefan; Strauss, Steven H; Nilsson, Ove

    2006-05-19

    Forest trees display a perennial growth behavior characterized by a multiple-year delay in flowering and, in temperate regions, an annual cycling between growth and dormancy. We show here that the CO/FT regulatory module, which controls flowering time in response to variations in daylength in annual plants, controls flowering in aspen trees. Unexpectedly, however, it also controls the short-day-induced growth cessation and bud set occurring in the fall. This regulatory mechanism can explain the ecogenetic variation in a highly adaptive trait: the critical daylength for growth cessation displayed by aspen trees sampled across a latitudinal gradient spanning northern Europe.

  7. Patterns of Woody Growth for Brazilian Savanna (Cerrado) Trees in the Cuiaba Basin and Pantanal of Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Zappia, A. J.; Vourlitis, G. L.; Pinto-Jr, O. B.

    2015-12-01

    The Brazilian savanna, locally known as cerrado, is a major ecosystem that covers a vast majority of central Brazil. Little is known about how woody growth within the cerrado is affected by soil properties such as texture and/or nutrient availability. Thus, in this study we assessed the relationship between woody growth and soil properties in the Cuiaba Basin and Pantanal of Mato Grosso, Brazil. We sampled 4-5 vegetation stands in each site that varied in hydrology, soil type, and vegetation composition and structure, and measured diameter at breast height, wood density, and soil nutrient concentration and physical properties every 5-10 m along a 100 m long transect. We hypothesized that as tree diameter at breast height increases, annual tree growth rate will decrease and that woody carbon (C) storage will increase as a function of soil nutrient availability. Our preliminary data support our hypotheses. Tree growth rates declined with tree size in both the Cuiaba Basin and the Pantanal. Rates of woody C storage, both on a per tree basis (kgC tree-1 year-1) and on a per unit ground area basis (kgC m-2 year-1) were significantly positively correlated with soil extractable phosphorus (P), calcium (Ca), and clay content, while only woody C storage on a per tree basis was positively correlated with potassium (K), magnesium (Mg), and cation exchange capacity (CEC). These data suggest that rates of woody C storage in cerrado are nutrient limited, while correspondence between C storage and soil physical properties could indicate both nutrient and water limitations to C storage.

  8. Long-term growth trajectories in a changing climate: disentangling age from size effects in old Fagus trees from contrasting bioclimates

    NASA Astrophysics Data System (ADS)

    Di Filippo, Alfredo; Piovesan, Gianluca

    2016-04-01

    Understanding the drivers promoting exceptional longevity in trees and how their growth performances vary approaching maximum lifespan still represent intriguing challenges not only for tree biology, but also for modelling the long-term forest ecosystem functioning under a changing environment. Tree growth rate is expected to increase with increasing stem size, but higher risk of hydraulic failure and mortality can affect larger trees under increasingly dry conditions. In turn, very old trees are characterized by slow growth and smaller size, factors able to confer advantages against biotic and abiotic disturbances. Rising evidences that very old trees are negligibly affected by the progressive deterioration of physiological functions associated with age support the idea that size, not age, is the main constrain to tree lifespan, so that negative senescence has been proposed as a frequent phenomenon in trees. Additional empirical knowledge is needed to thoroughly assess how complex, uneven-aged old-growth forests cope under climate change in order to define their role in terrestrial carbon cycle. We used a tree-ring network of 8 European beech (Fagus sylvatica L.) old-growth forests containing several of the oldest crossdated broadleaf trees of the Northern Hemisphere (400-600 years old) to analyse how their growth rates vary along age/size development. We sampled advanced old-growth stands, where canopy tree mortality is naturally occurring, divided among contrasting bioclimatic conditions: eastern Alps and central Apennines (rainy vs. dry summer). To disentangle the long-term effects of size and age on long-term tree growth history, we reconstructed Basal Area Increment (BAI) along size (DBH) development, grouping growth trajectories in different age classes. On average, BAI increased continuously as stem size increased, regardless of bioclimatic region and age class. Old trees grew the slowest and kept increasing BAI trends. In turn, especially on the drier

  9. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    PubMed

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  10. Climate-Driven Synchronized Growth of Alpine Trees in the Southeast Tibetan Plateau.

    PubMed

    Zhou, Feifei; Fang, Keyan; Zhang, Fen; Dong, Zhipeng; Chen, Dan

    2016-01-01

    Knowledge about the spatiotemporal tree growth variability and its associations with climate provides key insights into forest dynamics under future scenarios of climate change. We synthesized 17 tree-ring width chronologies from four tree species at the high-elevation sites in the southeast Tibetan Plateau (SETP) to study the regional tree growth variability and climate-growth relationships. Despite of diverse habitats and different physiological characteristics of these species, these tree-ring chronologies shared a significant common variance in SETP. An unprecedented increase in the shared variance is found along the latter half of the 20th century, coinciding with the enhancement of the frequency of extreme rings among chronologies. It is found that minimum winter temperature tends to be the dominant climate for trees in this region. The site-specific responses in cold (1965-1980) and warm (1990-2005) intervals by means of Fuzzy Cmeans (FCM) clustering reveal that the remarkable enhancement of growth synchrony among trees mainly occur in warm conditions. This is different from previous findings indicating that increased consistence among temperature sensitive tree rings in cold periods. This may be related to the reduced temperature sensitivity of regional tree growth as winter minimum temperature is lower than a certain threshold, which is in agreement with the "principle of ecological amplitude". In addition, it is worth noting that precipitation in June have started to restrain the tree growth since the beginning of the 1980s, which is possibly an important contributor for synchronized growth among trees in SETP.

  11. Climate-Driven Synchronized Growth of Alpine Trees in the Southeast Tibetan Plateau

    PubMed Central

    Zhou, Feifei; Fang, Keyan; Zhang, Fen; Dong, Zhipeng; Chen, Dan

    2016-01-01

    Knowledge about the spatiotemporal tree growth variability and its associations with climate provides key insights into forest dynamics under future scenarios of climate change. We synthesized 17 tree-ring width chronologies from four tree species at the high-elevation sites in the southeast Tibetan Plateau (SETP) to study the regional tree growth variability and climate-growth relationships. Despite of diverse habitats and different physiological characteristics of these species, these tree-ring chronologies shared a significant common variance in SETP. An unprecedented increase in the shared variance is found along the latter half of the 20th century, coinciding with the enhancement of the frequency of extreme rings among chronologies. It is found that minimum winter temperature tends to be the dominant climate for trees in this region. The site-specific responses in cold (1965–1980) and warm (1990–2005) intervals by means of Fuzzy Cmeans (FCM) clustering reveal that the remarkable enhancement of growth synchrony among trees mainly occur in warm conditions. This is different from previous findings indicating that increased consistence among temperature sensitive tree rings in cold periods. This may be related to the reduced temperature sensitivity of regional tree growth as winter minimum temperature is lower than a certain threshold, which is in agreement with the “principle of ecological amplitude”. In addition, it is worth noting that precipitation in June have started to restrain the tree growth since the beginning of the 1980s, which is possibly an important contributor for synchronized growth among trees in SETP. PMID:27257971

  12. Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses.

    PubMed

    February, Edmund C; Higgins, Steven I; Bond, William J; Swemmer, Louise

    2013-05-01

    In this study, we explored how rainfall manipulation influenced competitive interactions between grasses and juvenile trees (small nonreproductive trees capable of resprouting) in savanna. To do this, we manipulated rainfall amount in the field using an incomplete factorial experiment that determined the effects of rainfall reduction, no manipulation, rainfall addition, and competition between grasses and trees on grass and tree growth. As response variables, we focused on several measures of tree growth and Disc Pasture Meter settling height as an estimate of grass aboveground biomass. We conducted the study over four years, at two sites in the Kruger National Park, South Africa. Our results show that rainfall manipulation did not have substantial effects on any of the measures of tree growth we considered. However, trees at plots where grasses had been removed grew on average 15 cm more in height and 1.3-1.7 times more in basal area per year than those in plots with grasses. Grass biomass was not influenced by the presence of trees but was significantly and positively influenced by rainfall addition. These findings were not fundamentally influenced by soil type or by prevailing precipitation, suggesting applicability of our results to a wide range of savannas. Our results suggest that, in savannas, increasing rainfall serves to increase the competitive pressure exerted by grasses on trees. The implication is that recruitment into the adult tree stage from the juvenile stage is most likely in drought years when there is little competition from grass for resources and grass fuel loads are low.

  13. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability.

    PubMed

    Herrmann, S; Recht, S; Boenn, M; Feldhahn, L; Angay, O; Fleischmann, F; Tarkka, M T; Grams, T E E; Buscot, F

    2015-12-01

    Common oak trees display endogenous rhythmic growth with alternating shoot and root flushes. To explore the mechanisms involved, microcuttings of the Quercus robur L. clone DF159 were used for (13)C/(15)N labelling in combination with RNA sequencing (RNASeq) transcript profiling of shoots and roots. The effect of plant internal resource availability on the rhythmic growth of the cuttings was tested through inoculation with the ectomycorrhizal fungus Piloderma croceum. Shoot and root flushes were related to parallel shifts in above- and below-ground C and, to a lesser extent, N allocation. Increased plant internal resource availability by P. croceum inoculation with enhanced plant growth affected neither the rhythmic growth nor the associated resource allocation patterns. Two shifts in transcript abundance were identified during root and shoot growth cessation, and most concerned genes were down-regulated. Inoculation with P. croceum suppressed these transcript shifts in roots, but not in shoots. To identify core processes governing the rhythmic growth, functions [Gene Ontology (GO) terms] of the genes differentially expressed during the growth cessation in both leaves and roots of non-inoculated plants and leaves of P. croceum-inoculated plants were examined. Besides genes related to resource acquisition and cell development, which might reflect rather than trigger rhythmic growth, genes involved in signalling and/or regulated by the circadian clock were identified. The results indicate that rhythmic growth involves dramatic oscillations in plant metabolism and gene regulation between below- and above-ground parts. Ectomycorrhizal symbiosis may play a previously unsuspected role in smoothing these oscillations without modifying the rhythmic growth pattern.

  14. Tree growth rates in an Amazonian evergreen forest: seasonal patterns and correlations with leaf phenology

    NASA Astrophysics Data System (ADS)

    Wu, J.; Silva Campos, K.; Prohaska, N.; Ferreira, M. L.; Nelson, B. W.; Saleska, S. R.; da Silva, R.

    2014-12-01

    Metabolism and phenology of tropical forests significantly influence global dynamics of climate, carbon and water. However, there is still lack of mechanistic understanding of the controls on tropical forest metabolism, particularly at individual tree level. In this study, we are interested in investigating (1) what is the seasonal pattern of woody growth for tropical trees and (2) what is the mechanistic controls onwoody growth at individual level?To explore the above questions,we use two data sources from an evergreen tropical forest KM67 site (near Santarem, Brazil). They are: (1) image time series from a tower mounted RGB imaging system, with images recordedin10 minutes interval since October 2013.Images near local noon homogeneous diffuse lighting were selectedfor leaf phenologymonitoring; (2) ground based bi-weekly biometry survey (via dendrometry band technique) for 25 trees from random sampling since September 2013. 12 among 25 trees are within the tower mounted camera image view. Our preliminary resultsdemonstrate that 20 trees among 25 trees surveyed significantly increase woody growth (or "green up") in dry season. Our results also find thatamong those 20 trees, 12 trees reaches the maximum woody increment rate in late dry season with a mean DBH (Diameter at Breast Height) around 30 cm,while 8 trees reaching the maximum in the middle of wet season, with a mean DBH around 90 cm. This study,though limited in the sample size, mightprovide another line of evidence that Amazon rainforests "green up" in dry season. As for mechanistic controls on tropical tree woody control, we hypothesize both climate and leaf phenology control individual woody growth. We would like to link both camera based leaf phenology and climate data in the next to explorethe reason as to the pattern found in this study that bigger trees might have different seasonal growth pattern as smaller trees.

  15. Impact of solar activity on growth of pine trees (Pinus cembra: 1610 - 1970; Pinus pinaster: 1910 -1989)

    NASA Astrophysics Data System (ADS)

    Surový, P.; Dorotovič, I.; Karlovský, V.; Rodrigues, J. C.; Rybanský, M.; Fleischer, P.

    2010-12-01

    In this work we have focused on the analysis of the data on the annual growth of cembra pine (Pinus cembra) grown in the Kôprová dolina Valley in the High Tatra Mountains. The database covers the period of 1406 - 1970, however, the sunspot data (minima and maxima) at the NGDC web site are only available since 1610. Moreover, reliable sunspot data are only available since 1749. The results of this analysis agree with the observation made in our previous work, i.e. there is a negative impact of high SA on the pine tree growth. However, it should be noted that statistical significance of the results is low. We also applied wavelet analysis to the data on the tree growth evolution, with the results indicating growth variations' period of about 20 years (duration of approximately two solar cycles or one magnetic cycle, respectively). A negative impact of the SA was also observed in growth of a 90 year-old maritime pine tree (Pinus pinaster) grown in northern Portugal. The width of the annual rings was smaller in the years of maximum SA; furthermore, it was found that it is the latewood growth that it is affected while the earlywood growth is not, and consequently the latewood additions also show a significative negative correlation with SA.

  16. Stem radial growth of different tree species in an unmanaged southern taiga stand

    NASA Astrophysics Data System (ADS)

    Tatarinov, F.; Nadezhdina, N.; Bochkarev, Yu.; Cermak, J.

    2003-04-01

    Radial growth of stems was measured in altogether 32 sample trees of 5 species (Picea abies (L.)Karst., Populus tremula L., Betula alba L., Sorbus aucuparia L. and Alnus incana (L.) Moench) during the growing season 2000 in a mixed uneven-aged stand dominated by spruce and aspen in the region of upper Volga within the framework of international project “Volgaforest”. Measurement was done by band dendrometers read every two weeks from May to late October 2000. In addition, two readings were done in 2001 (the last one in November, i.e. only the total seasonal growth for this year was obtained). Subsequently the woody cores were taken from all sample spruce and aspen trees in October 2002 in order to evaluate the stem growth over a longer period of time. The growing season 2000 was characterized by late spring frost (approximately until May 20) and very wet summer. In contrast the season 2001 was hot and dry. Radial growth of stems in majority of sample trees of all species started during early May and continued until mid August. However the smallest spruce trees and some deciduous trees (especially birches) started growing later (in late May or even in mid June) and the relatively small aspen trees (although reaching DBH up to 33 cm) did not grew at all during the whole season. As an exception, growth of 2 sample trees (spruce and aspen) continued during the whole season up to mid October. The most interesting seems that aspen showed significantly lower growth of basal area in absolute and relative terms when compared to spruce. This difference was observed in both years under consideration, but was more pronounced in 2000, when the relative growth of basal area reached 1 to 6% in spruce, and was increasing with tree DBH, whereas for aspens the same parameter ranged from 0% for smaller trees to 0.8% for the largest ones. Such difference was not so pronounced and occurred only in small and medium DBH trees in the more favorable growing season of 2001. However

  17. Did the late spring frost in 2007 and 2011 affect tree-ring width and earlywood vessel size in Pedunculate oak (Quercus robur) in northern Poland?

    PubMed

    Puchałka, Radosław; Koprowski, Marcin; Przybylak, Julia; Przybylak, Rajmund; Dąbrowski, Henryk P

    2016-08-01

    Trees are sensitive to extreme weather and environmental conditions. This sensitivity is visible in tree-ring widths and cell structure. In our study, we hypothesized that the sudden frost noted at the beginning of May in both 2007 and 2011 affected cambial activity and, consequently, the number and size of vessels in the tree rings. It was decided to test this hypothesis after damage to leaves was observed. The applied response function model did not show any significant relationships between spring temperature and growth. However, this method uses average values for long periods and sometimes misses the short-term effects. This is why we decided to study each ring separately, comparing them with rings unaffected by the late frost. Our study showed that the short-term effect of sudden frost in late spring did not affect tree rings and selected cell parameters. The most likely reasons for this are (i) cambial activity producing the earlywood vessels before the occurrence of the observed leaf damage, (ii) the forest micro-climate protecting the trees from the harsh frost and (iii) the temperature decline being too short-lived an event to affect the oaks. On the other hand, the visible damage may be occasional and not affect cambium activity and tree vitality at all. We conclude that oak is well-adapted to this phenomenon.

  18. Did the late spring frost in 2007 and 2011 affect tree-ring width and earlywood vessel size in Pedunculate oak ( Quercus robur) in northern Poland?

    NASA Astrophysics Data System (ADS)

    Puchałka, Radosław; Koprowski, Marcin; Przybylak, Julia; Przybylak, Rajmund; Dąbrowski, Henryk P.

    2016-08-01

    Trees are sensitive to extreme weather and environmental conditions. This sensitivity is visible in tree-ring widths and cell structure. In our study, we hypothesized that the sudden frost noted at the beginning of May in both 2007 and 2011 affected cambial activity and, consequently, the number and size of vessels in the tree rings. It was decided to test this hypothesis after damage to leaves was observed. The applied response function model did not show any significant relationships between spring temperature and growth. However, this method uses average values for long periods and sometimes misses the short-term effects. This is why we decided to study each ring separately, comparing them with rings unaffected by the late frost. Our study showed that the short-term effect of sudden frost in late spring did not affect tree rings and selected cell parameters. The most likely reasons for this are (i) cambial activity producing the earlywood vessels before the occurrence of the observed leaf damage, (ii) the forest micro-climate protecting the trees from the harsh frost and (iii) the temperature decline being too short-lived an event to affect the oaks. On the other hand, the visible damage may be occasional and not affect cambium activity and tree vitality at all. We conclude that oak is well-adapted to this phenomenon.

  19. Shade periodicity affects growth of container grown dogwoods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Container-grown dogwoods rank third in the US in nursery sales of ornamental trees. However, Dogwoods are a challenging crop to produce in container culture, especially when bare root liners are used as the initial transplant into containers due unacceptable levels of mortality and poor growth. This...

  20. Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight.

    PubMed

    Krause, G Heinrich; Winter, Klaus; Matsubara, Shizue; Krause, Barbara; Jahns, Peter; Virgo, Aurelio; Aranda, Jorge; García, Milton

    2012-09-01

    High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40 % ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.

  1. Fundamental tree growth processes severely suffer from water stress. The example of Pinus halepensis Mill. in South-eastern France

    NASA Astrophysics Data System (ADS)

    Girard, Francois; Vennetier, Michel; Ouarmim, Samira; Caraglio, Yves; Misson, Laurent

    2010-05-01

    Plant architecture processes are commonly neglected in the studies about climate change impact. In terms of biomass, primary growth (i.e. lateral and principal twig growth) and leaf production are far more important than secondary growth (i.e. radial growth). Polycyclism, or the ability for a plant to produce several flushes in the same growth season, is a key process of plant development. Aleppo pine is a good model to study polycyclism: it is known to produce up to four annual flushes in one growth season: one to three in spring and sometimes one after summer drought. Architectural development i.e. ranching rate, annual branch length growth and number of needles and fruiting are positively correlated with the production of multiple flushes per year. These tree growth processes are likely to be impacted by the anticipated climate trend over the next century, particularly repeated and more severe water stresses, However, Aleppo pine architecture is not well-described in the literature and an important lack of knowledge prevents any possible prediction for the 21st century. Thus, the objectives of this study were (i) to describe architectural processes on Aleppo pine in the Mediterranean region for the last 15 years, (ii) to untangle interrelationship between climate and twig status in the evolution of tree architecture and (iii) to look for a possible impact of climate change. Since 1998, climate was far hotter and drier than normal in South-eastern France: each process of tree architecture was significantly affected, particularly after 2003 heat-wave, which delayed effect remains till 2008, exacerbated by repeated droughts. Morphologically, polycyclism is primarily influenced by twig vigour, hierarchy and position (low, middle or top crown). Climatically, tree architectural development for a given year depends mainly on water availability in preceding growth season and to a less extent on rainfall during winter and summer temperatures of current and preceding year

  2. Growth of young apple trees in relation to reserve nitrogen and carbohydrates.

    PubMed

    Cheng, Lailiang; Fuchigami, Leslie H

    2002-12-01

    Bench-grafted Fuji/M.26 apple (Malus domestica Borkh.) trees were fertilized with a nutrient solution (fertigation) containing 0, 2.5, 5, 7.5, 10, 15 or 20 mM nitrogen (N) in a modified Hoagland's solution from June 30 to September 1. In mid-October, half of the trees in each N treatment were sprayed twice with 3% urea, 1 week apart. The remaining trees served as controls. All trees were harvested after leaf fall and stored at 2 degrees C over winter. One group of trees from each treatment was destructively sampled before bud break to determine amounts of reserve N and total nonstructural carbohydrates (TNC); the remaining trees were transplanted to N-free medium in the spring. These trees were supplied with Hoagland's solution with or without 10 mM N (from 15N-depleted NH4NO3) for 60 days, starting from bud break. With increasing N supply from fertigation, tree N concentration increased, whereas TNC concentration decreased. Foliar urea applications increased tree N concentration and decreased TNC concentration in each N fertigation treatment. There was a negative linear relationship between tree N concentration and TNC concentration. Irrespective of whether N was provided the following spring, trees with high N reserves but low carbohydrate reserves produced a larger total leaf area at the end of the regrowth period than trees with low N reserves but high carbohydrate reserves. The pooled data on reserve N used for new growth showed that, regardless of the spring N supply, there was a linear relationship between total N accumulated in the tree during the previous season and the amount of reserve N remobilized for new shoot and leaf growth. About 50% of tree N content was remobilized to support new shoot and leaf growth over the range of tree N status examined. We conclude that the initial growth of young apple trees in the spring is determined mainly by reserve N, not reserve carbohydrates. The amount of reserve N remobilized for new growth in spring was

  3. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests.

    PubMed

    Joly, François-Xavier; Milcu, Alexandru; Scherer-Lorenzen, Michael; Jean, Loreline-Katia; Bussotti, Filippo; Dawud, Seid Muhie; Müller, Sandra; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Vesterdal, Lars; Hättenschwiler, Stephan

    2017-02-09

    Different tree species influence litter decomposition directly through species-specific litter traits, and indirectly through distinct modifications of the local decomposition environment. Whether these indirect effects on decomposition are influenced by tree species diversity is presently not clear. We addressed this question by studying the decomposition of two common substrates, cellulose paper and wood sticks, in a total of 209 forest stands of varying tree species diversity across six major forest types at the scale of Europe. Tree species richness showed a weak but positive correlation with the decomposition of cellulose but not with that of wood. Surprisingly, macroclimate had only a minor effect on cellulose decomposition and no effect on wood decomposition despite the wide range in climatic conditions among sites from Mediterranean to boreal forests. Instead, forest canopy density and stand-specific litter traits affected the decomposition of both substrates, with a particularly clear negative effect of the proportion of evergreen tree litter. Our study suggests that species richness and composition of tree canopies modify decomposition indirectly through changes in microenvironmental conditions. These canopy-induced differences in the local decomposition environment control decomposition to a greater extent than continental-scale differences in macroclimatic conditions.

  4. [Morphological-ecological characters and growth patterns of main tree species leaves in urban forest of Shenyang].

    PubMed

    Xu, Wenduo; He, Xingyuan; Chen, Wei; Wen, Hua

    2006-11-01

    The study with statistic and multivariate analyses showed that the main meteorological factors affecting the growth and development rhythms of main tree species leaves in urban forest of Shenyang were > or = 5 degrees C accumulated temperature, accumulated sunshine hours, and mean temperature in the middle ten days of each phenological period. The meteorological factors needed by the tree species varied with their phenological period. Necessary low temperature and CI were required in germination period, and suitable WI and HI were needed in the growth period. The major quantitative morphological characters of 10 tree species in Shenyang urban forest were displayed in their leaf morphology and size, which decreased in the sequence of Lespedeza cyrtobotrya > Syringa oblata > Sophora japonica > Populus alba > Cornus alba > Lonicera maackii > Ligustrum obtusifolium > Fraxinus mandshurica > Prunus padus > Phellodondron amurense. As for the leaf area, it was decreased in the order of S. oblata > P. alba > P. amurense > P. padus > F. mandshurica > C. alba > L. cyrtobotrya > L. maackii > S. japonica > L. obtusifolium. The relationships of leaf length with leaf width, perimeter and area accorded with the model of y = ax(k), and the growth trend belonged to allometic type. The k value between leaf length and width of all test tree species except P. alba was lower than 1, and that between leaf length and perimeter was > 1 for P. amuresne, approximately 1 for P. alba, and < 1 for other tree species. As for the k value between leaf length and area, it was > 1 for all the tree species, with that of P. alba being 2. 1028. The increasing rate of leaf area was about 2 times higher than that of leaf length. An optimum regression assessment model of the 10 tree species leaf area was built and tested.

  5. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews.

    PubMed

    Xiong, Liu-Lin; Chen, Zhi-Wei; Wang, Ting-Hua

    2016-04-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  6. Net Assimilation Rate Determines the Growth Rates of 14 Species of Subtropical Forest Trees.

    PubMed

    Li, Xuefei; Schmid, Bernhard; Wang, Fei; Paine, C E Timothy

    2016-01-01

    Growth rates are of fundamental importance for plants, as individual size affects myriad ecological processes. We determined the factors that generate variation in RGR among 14 species of trees and shrubs that are abundant in subtropical Chinese forests. We grew seedlings for two years at four light levels in a shade-house experiment. We monitored the growth of every juvenile plant every two weeks. After one and two years, we destructively harvested individuals and measured their functional traits and gas-exchange rates. After calculating individual biomass trajectories, we estimated relative growth rates using nonlinear growth functions. We decomposed the variance in log(RGR) to evaluate the relationships of RGR with its components: specific leaf area (SLA), net assimilation rate (NAR) and leaf mass ratio (LMR). We found that variation in NAR was the primary determinant of variation in RGR at all light levels, whereas SLA and LMR made smaller contributions. Furthermore, NAR was strongly and positively associated with area-based photosynthetic rate and leaf nitrogen content. Photosynthetic rate and leaf nitrogen concentration can, therefore, be good predictors of growth in woody species.

  7. Water Availability Is the Main Climate Driver of Neotropical Tree Growth

    PubMed Central

    Wagner, Fabien; Rossi, Vivien; Stahl, Clément; Bonal, Damien; Hérault, Bruno

    2012-01-01

    • Climate models for the coming century predict rainfall reduction in the Amazonian region, including change in water availability for tropical rainforests. Here, we test the extent to which climate variables related to water regime, temperature and irradiance shape the growth trajectories of neotropical trees. • We developed a diameter growth model explicitly designed to work with asynchronous climate and growth data. Growth trajectories of 205 individual trees from 54 neotropical species censused every 2 months over a 4-year period were used to rank 9 climate variables and find the best predictive model. • About 9% of the individual variation in tree growth was imputable to the seasonal variation of climate. Relative extractable water was the main predictor and alone explained more than 60% of the climate effect on tree growth, i.e. 5.4% of the individual variation in tree growth. Furthermore, the global annual tree growth was more dependent on the diameter increment at the onset of the rain season than on the duration of dry season. • The best predictive model included 3 climate variables: relative extractable water, minimum temperature and irradiance. The root mean squared error of prediction (0.035 mm.d–1) was slightly above the mean value of the growth (0.026 mm.d–1). • Amongst climate variables, we highlight the predominant role of water availability in determining seasonal variation in tree growth of neotropical forest trees and the need to include these relationships in forest simulators to test, in silico, the impact of different climate scenarios on the future dynamics of the rainforest. PMID:22506012

  8. A Study of Characteristics of Water Tree Growth by Electric Field Analysis

    NASA Astrophysics Data System (ADS)

    Nakade, Masahiko; Inoue, Daisuke

    Three-dimensional electric fields analysis was applied to the tip of water trees in XLPE cable. First, pre-breakdown detection was curried out on “needle-shaped” water trees. The results were analyzed by the three-dimensional electric field F.E.M. The water tree was simplified by a spheroid in the analysis. The position of the trees, length, tip radius were read from the microphotographs. The analysis was done on all 11 examples. The test results could be explained well when the conductivity of the water tree region was assumed to be 5×10-7S/m. Next, the electric fields of tip of three kinds of water tree (“blue”, “needle-shaped” and “white” water tree) were analyzed. Three kinds of water tree were expressed by changing the conductivity of water tree region. And, a distance from water trees to inside half conductor was made to change in three kinds. These were analyzed about the cable (insulation thickness: 3, 6, 9 mm) of 6.6, 22, 66 kV respectively. It was found out that “blue” and needle-shaped tree in the 66 kV cable and “blue” tree in the 22 kV cable may cause a breakdown under the operation voltage. As for other cases, the tree may propagate without making breakdown until it bridges the insulation. And, the possibility that the growth of “white” water tree declined rapidly in 66, the 22 kV cable when it touches inner semi-conducting layer so that the tip electric fields of the tree are the same as the average electric fields of the cable was suggested.

  9. Understanding the Scalability of Bayesian Network Inference Using Clique Tree Growth Curves

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.

    2010-01-01

    One of the main approaches to performing computation in Bayesian networks (BNs) is clique tree clustering and propagation. The clique tree approach consists of propagation in a clique tree compiled from a Bayesian network, and while it was introduced in the 1980s, there is still a lack of understanding of how clique tree computation time depends on variations in BN size and structure. In this article, we improve this understanding by developing an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN s non-root nodes to the number of root nodes, and (ii) the expected number of moral edges in their moral graphs. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for the total size of each set. For the special case of bipartite BNs, there are two sets and two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, where random bipartite BNs generated using the BPART algorithm are studied, we systematically increase the out-degree of the root nodes in bipartite Bayesian networks, by increasing the number of leaf nodes. Surprisingly, root clique growth is well-approximated by Gompertz growth curves, an S-shaped family of curves that has previously been used to describe growth processes in biology, medicine, and neuroscience. We believe that this research improves the understanding of the scaling behavior of clique tree clustering for a certain class of Bayesian networks; presents an aid for trade-off studies of clique tree clustering using growth curves; and ultimately provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms.

  10. Polychlorinated biphenyl accumulation in tree bark and wood growth rings

    SciTech Connect

    Meredith, M.L.; Hites, R.A.

    1987-07-01

    Polychlorinated biphenyls (PCBs) were found in the bark of black walnut and tulip poplar trees growing near a PCB-contaminated landfill. PCBs were also found in the bark of white oak trees growing 14 km away from the landfill. The concentration of individual congeners in the bark averaged 18 ppb at the landfill and 0.5 ppb at the other site. The PCB congeners were accumulated into the bark in proportion to their lipophilicity (as measured by octanol-water partition coefficients). The authors findings suggest that tree bark could be used for biomonitoring of lipophilic organic pollutants in the atmosphere. There is little evidence that PCBs are present in the wood of trees. The signal to blank ratios are always less than 3, and the relative concentrations between 20-year time intervals do not show trends that correlate with the known inputs of PCBs in Bloomington, IN. 2 tables.

  11. Impact of the 2013-2015 weather variability on seasonal growth dynamics and daily stem-size changes of three coexisting broadleaved tree species

    NASA Astrophysics Data System (ADS)

    van der Maaten, Ernst; Pape, Jonas; van der Maaten Theunissen, Marieke; Scharnweber, Tobias; Smiljanic, Marko; Wilmking, Martin

    2016-04-01

    Dendrometers are measurement devices that continuously monitor stem-size changes of trees without invasive sampling of the cambium. Dendrometers record both irreversible tree growth as well as reversible signals of stem water storage and depletion, making them important tools for studying tree water status, tree physiology and short-term growth responses of trees to weather fluctuations. In this study, a three-year dendrometer dataset (2013-2015) is used to study seasonal growth dynamics and daily stem-size changes of three coexisting broadleaved tree species (common hornbeam (Carpinus betulus L.), European beech (Fagus sylvatica L.), and pedunculate oak (Quercus robur L.)), growing in an unmanaged forest in northeastern Germany. Seasonal growth patterns (i.e. growth onset, cessation and duration) are analyzed in relation to environmental conditions, and forest meteorological factors driving daily stem-size changes are identified. Following dry conditions in 2014, especially the growth of beech was reduced. Oak was less affected, and displayed a distinct early growth onset for all study years.

  12. A hyperspectral image can predict tropical tree growth rates in single-species stands.

    PubMed

    Caughlin, T Trevor; Graves, Sarah J; Asner, Gregory P; van Breugel, Michiel; Hall, Jefferson S; Martin, Roberta E; Ashton, Mark S; Bohlman, Stephanie A

    2016-12-01

    Remote sensing is increasingly needed to meet the critical demand for estimates of forest structure and composition at landscape to continental scales. Hyperspectral images can detect tree canopy properties, including species identity, leaf chemistry and disease. Tree growth rates are related to these measurable canopy properties but whether growth can be directly predicted from hyperspectral data remains unknown. We used a single hyperspectral image and light detection and ranging-derived elevation to predict growth rates for 20 tropical tree species planted in experimental plots. We asked whether a consistent relationship between spectral data and growth rates exists across all species and which spectral regions, associated with different canopy chemical and structural properties, are important for predicting growth rates. We found that a linear combination of narrowband indices and elevation is correlated with standardized growth rates across all 20 tree species (R(2)  = 53.70%). Although wavelengths from the entire visible-to-shortwave infrared spectrum were involved in our analysis, results point to relatively greater importance of visible and near-infrared regions for relating canopy reflectance to tree growth data. Overall, we demonstrate the potential for hyperspectral data to quantify tree demography over a much larger area than possible with field-based methods in forest inventory plots.

  13. Maximum Growth Potential and Periods of Resource Limitation in Apple Tree.

    PubMed

    Reyes, Francesco; DeJong, Theodore; Franceschi, Pietro; Tagliavini, Massimo; Gianelle, Damiano

    2016-01-01

    Knowledge of seasonal maximum potential growth rates are important for assessing periods of resource limitations in fruit tree species. In this study we assessed the periods of resource limitation for vegetative (current year stems, and woody biomass) and reproductive (fruit) organs of a major agricultural crop: the apple tree. This was done by comparing relative growth rates (RGRs) of individual organs in trees with reduced competition for resources to trees grown under standard field conditions. Special attention was dedicated to disentangling patterns and values of maximum potential growth for each organ type. The period of resource limitation for vegetative growth was much longer than in another fruit tree species (peach): from late May until harvest. Two periods of resource limitation were highlighted for fruit: from the beginning of the season until mid-June, and about 1 month prior to harvest. By investigating the variability in individual organs growth we identified substantial differences in RGRs among different shoot categories (proleptic and epicormic) and within each group of monitored organs. Qualitatively different and more accurate values of growth rates for vegetative organs, compared to the use of the simple compartmental means, were estimated. Detailed, source-sink based tree growth models, commonly in need of fine parameter tuning, are expected to benefit from the results produced by these analyses.

  14. Maximum Growth Potential and Periods of Resource Limitation in Apple Tree

    PubMed Central

    Reyes, Francesco; DeJong, Theodore; Franceschi, Pietro; Tagliavini, Massimo; Gianelle, Damiano

    2016-01-01

    Knowledge of seasonal maximum potential growth rates are important for assessing periods of resource limitations in fruit tree species. In this study we assessed the periods of resource limitation for vegetative (current year stems, and woody biomass) and reproductive (fruit) organs of a major agricultural crop: the apple tree. This was done by comparing relative growth rates (RGRs) of individual organs in trees with reduced competition for resources to trees grown under standard field conditions. Special attention was dedicated to disentangling patterns and values of maximum potential growth for each organ type. The period of resource limitation for vegetative growth was much longer than in another fruit tree species (peach): from late May until harvest. Two periods of resource limitation were highlighted for fruit: from the beginning of the season until mid-June, and about 1 month prior to harvest. By investigating the variability in individual organs growth we identified substantial differences in RGRs among different shoot categories (proleptic and epicormic) and within each group of monitored organs. Qualitatively different and more accurate values of growth rates for vegetative organs, compared to the use of the simple compartmental means, were estimated. Detailed, source-sink based tree growth models, commonly in need of fine parameter tuning, are expected to benefit from the results produced by these analyses. PMID:26973676

  15. Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada.

    PubMed

    Subedi, Nirmal; Sharma, Mahadev

    2013-02-01

    To predict the long-term effects of climate change - global warming and changes in precipitation - on the diameter (radial) growth of jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) trees in boreal Ontario, we modified an existing diameter growth model to include climate variables. Diameter chronologies of 927 jack pine and 1173 black spruce trees, growing in the area from 47°N to 50°N and 80°W to 92°W, were used to develop diameter growth models in a nonlinear mixed-effects approach. Our results showed that the variables long-term average of mean growing season temperature, precipitation during wettest quarter, and total precipitation during growing season were significant (alpha = 0.05) in explaining variation in diameter growth of the sample trees. Model results indicated that higher temperatures during the growing season would increase the diameter growth of jack pine trees, but decrease that of black spruce trees. More precipitation during the wettest quarter would favor the diameter growth of both species. On the other hand, a wetter growing season, which may decrease radiation inputs, increase nutrient leaching, and reduce the decomposition rate, would reduce the diameter growth of both species. Moreover, our results indicated that future (2041-2070) diameter growth rate may differ from current (1971-2000) growth rates for both species, with conditions being more favorable for jack pine than black spruce trees. Expected future changes in the growth rate of boreal trees need to be considered in forest management decisions. We recommend that knowledge of climate-growth relationships, as represented by models, be combined with learning from adaptive management to reduce the risks and uncertainties associated with forest management decisions.

  16. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests.

    PubMed

    Brzostek, Edward R; Dragoni, Danilo; Schmid, Hans Peter; Rahman, Abdullah F; Sims, Daniel; Wayson, Craig A; Johnson, Daniel J; Phillips, Richard P

    2014-08-01

    Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2 , and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13-year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan-Monroe State Forest (MMSF) in Indiana, and a regional 11-year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water-demanding 'mesophytic' tree species. Given the current replacement of water-stress adapted 'xerophytic' tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr(-1) ) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1-3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth-enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming.

  17. Individualistic and Time-Varying Tree-Ring Growth to Climate Sensitivity

    PubMed Central

    Carrer, Marco

    2011-01-01

    The development of dendrochronological time series in order to analyze climate-growth relationships usually involves first a rigorous selection of trees and then the computation of the mean tree-growth measurement series. This study suggests a change in the perspective, passing from an analysis of climate-growth relationships that typically focuses on the mean response of a species to investigating the whole range of individual responses among sample trees. Results highlight that this new approach, tested on a larch and stone pine tree-ring dataset, outperforms, in terms of information obtained, the classical one, with significant improvements regarding the strength, distribution and time-variability of the individual tree-ring growth response to climate. Moreover, a significant change over time of the tree sensitivity to climatic variability has been detected. Accordingly, the best-responder trees at any one time may not always have been the best-responders and may not continue to be so. With minor adjustments to current dendroecological protocol and adopting an individualistic approach, we can improve the quality and reliability of the ecological inferences derived from the climate-growth relationships. PMID:21829523

  18. Minesoil grading and ripping affect black walnut growth and survival

    SciTech Connect

    Josiah, S.J.

    1986-07-01

    In 1980 and 1981, the Botany Department of Southern Illinois University and Sahara Coal Company, Inc. of Harrisburg, Illinois established a series of experimental tree plantings, including black walnut, on a variety of minesoils to explore the effects of different intensities of grading on tree growth. Subsequent walnut stem and root growth were examined during 1985 on five different mine sites: unmined former agricultural land, graded minespoil, replaced (with pan scrapers) topsoil over graded spoil, ripped-graded spoil, and ungraded spoil. Soil bulk density, resistance to penetration, and spoil/soil fertility levels were also measured. The most vigorous trees were found on sites having the lowest soil bulk density and soil strength and lacking horizontal barriers to root growth - the ungraded and ripped sites. Topsoiled sites had the poorest growth and survival, and the greatest stem dieback of any site measured, probably attributable to the confinement of root growth to the upper 15 cm of friable soil above the severely compacted zone. The overall results indicate that most of the minesoil construction techniques examined in this study, which are representative of techniques commonly used in the midwestern US, cause severe minesoil compaction and do not create the proper soil conditions necessary for the survival and vigorous growth of black walnut. Ripping compacted spoil in this and other studies proved to be very effective in alleviating the negative impacts of minesoil compaction. When planning surface mine reclamation activities, ripping should be considered as a possible ameliorative technique when compaction of mined lands is unavoidable and trees are the desired vegetative cover. 4 figures.

  19. Climate change has affected the breeding date of tree swallows throughout North America

    PubMed

    Dunn; Winkler

    1999-12-22

    Increasing evidence suggests that climate change has affected the breeding and distribution of wildlife. If such changes are due to global warming, then we should expect to see large-scale effects. To explore for such effects on avian reproduction, we examined 3450 nest records of tree swallows from across North America. The egg-laying date in tree swallows advanced by up to nine days during 1959-1991. This advance in phenology was associated with increasing surface air temperatures at the time of breeding. Our analysis controlled for several potentially confounding variables such as latitude, longitude, breeding density and elevation. We conclude that tree swallows across North America are breeding earlier and that the most likely cause is a long-term increase in spring temperature.

  20. Recognizing Non-Stationary Climate Response in Tree Growth for Southern Coastal Alaska, USA

    NASA Astrophysics Data System (ADS)

    Wiles, G. C.; Jarvis, S. K.; D'Arrigo, R.; Vargo, L. J.; Appleton, S. N.

    2012-12-01

    Stationarity in growth response of trees to climate over time is assumed in dendroclimatic studies. Recent studies of Alaskan yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) have identified warming-induced early loss of insulating snowpack and frost damage as a mechanism that can lead to decline in tree growth, which for this species is documented over the last century. A similar stress may be put on temperature-sensitive mountain hemlock (Tsuga mertensiana (Bong.) Carrière) trees at low elevations, which in some cases show a decline in tree growth with warming temperatures. One of the challenges of using tree-ring based SAT, SST, PDO and PNA-related reconstructions for southern coastal Alaska has been understanding the response of tree-ring chronologies to the warming temperatures over the past 50 years. Comparisons of tree growth with long meteorological records from Sitka Alaska that extend back to 1830 suggest many mountain hemlock sites at low elevations are showing decreasing ring-widths, at mid elevations most sites show a steady increasing growth tracking warming, and at treeline a release is documented. The recognition of this recent divergence or decoupling of tree-ring and temperature trends allows for divergence-free temperature reconstructions using trees from moderate elevations. These reconstructions now provide a better perspective for comparing recent warming to Medieval warming and a better understanding of forest dynamics as biomes shift in response to the transition from the Little Ice Age to contemporary warming. Reconstructed temperatures are consistent with well-established, entirely independent tree-ring dated ice advances of land-terminating glaciers along the Gulf of Alaska providing an additional check for stationarity in the reconstructed interval.

  1. Trees

    ERIC Educational Resources Information Center

    Al-Khaja, Nawal

    2007-01-01

    This is a thematic lesson plan for young learners about palm trees and the importance of taking care of them. The two part lesson teaches listening, reading and speaking skills. The lesson includes parts of a tree; the modal auxiliary, can; dialogues and a role play activity.

  2. Tree growth variation in the tropical forest: understanding effects of temperature, rainfall and CO2.

    PubMed

    Schippers, Peter; Sterck, Frank; Vlam, Mart; Zuidema, Pieter A

    2015-01-28

    Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the climate effects on different physiological pathways and in turn on stem growth variation. We parameterized the model for canopy trees of Toona ciliata (Meliaceae) from a Thai monsoon forest and compared predicted and measured variation from a tree-ring study over a 30-year period. We used historical climatic variation of minimum and maximum day temperature, precipitation and carbon dioxide (CO2 ) in different combinations to estimate the contribution of each climate factor in explaining the inter-annual variation in stem growth. Running the model with only variation in maximum temperature and rainfall yielded stem growth patterns that explained almost 70% of the observed inter-annual variation in stem growth. Our results show that maximum temperature had a strong negative effect on the stem growth by increasing respiration, reducing stomatal conductance and thus mitigating a higher transpiration demand, and - to a lesser extent - by directly reducing photosynthesis. Although stem growth was rather weakly sensitive to rain, stem growth variation responded strongly and positively to rainfall variation owing to the strong inter-annual fluctuations in rainfall. Minimum temperature and atmospheric CO2 concentration did not significantly contribute to explaining the inter-annual variation in stem growth. Our innovative approach - combining a simulation model with historical data on tree-ring growth and climate - allowed disentangling the effects of strongly correlated climate variables on growth through different physiological pathways. Similar studies on different species and in different forest types are needed to further improve our understanding of the sensitivity of

  3. Pattern and dynamics of biomass stock in old growth forests: The role of habitat and tree size

    NASA Astrophysics Data System (ADS)

    Yuan, Zuoqiang; Gazol, Antonio; Wang, Xugao; Lin, Fei; Ye, Ji; Zhang, Zhaochen; Suo, YanYan; Kuang, Xu; Wang, Yunyun; Jia, Shihong; Hao, Zhanqing

    2016-08-01

    Forest ecosystems play a fundamental role in the global carbon cycle. However, how stand-level changes in tree age and structure influence biomass stock and dynamics in old-growth forests is a question that remains unclear. In this study, we quantified the aboveground biomass (AGB) standing stock, the coarse woody productivity (CWP), and the change in biomass over ten years (2004-2014) in a 25 ha unmanaged broad-leaved Korean pine mixed forest in northeastern China. In addition, we quantified how AGB stock and change (tree growth, recruitment and mortality) estimations are influenced by the variation in habitat heterogeneity, tree size structure and subplot size. Our analysis indicated that Changbai forest had AGB of 265.4 Mg ha-1 in 2004, and gained1.36 Mg ha-1 y-1 between 2004 and 2014. Despite recruitment having better performance in nutrient rich habitat, we found that there is a directional tree growth trend independent of habitat heterogeneity for available nutrients in this old growth forest. The observed increases in AGB stock (∼70%) are mainly attributed to the growth of intermediate size trees (30-70 cm DBH), indicating that this forest is still reaching its mature stage. Meanwhile, we indicated that biomass loss due to mortality reduces living biomass, not increment, may be the primary factor to affect forest biomass dynamics in this area. Also, spatial variation in forest dynamics is large for small sizes (i.e. coefficient of variation in 20 × 20 m subplots is 53.2%), and more than 90 percent of the inherent variability of these coefficients was predicted by a simple model including plot size. Our result provides a mean by which to estimate within-plot variability at a local scale before inferring any directional change in forest dynamics at a regional scale, and information about the variability of forest structure and dynamics are fundamental to design effective sampling strategies in future study.

  4. Remote Sensing Protocols for Parameterizing an Individual, Tree-Based, Forest Growth and Yield Model

    DTIC Science & Technology

    2014-09-01

    Leaf-Off Tree Crowns in Small Footprint, High Sampling Density LIDAR Data from Eastern Deciduous Forests in North America.” Remote Sensing of... Forest Growth and Yield Model Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry Scott A. Tweddale, Patrick J. Guertin, and...Parameterizing an Individual, Tree-Based, Forest Growth and Yield Model Scott A. Tweddale and Patrick J. Guertin Construction Engineering Research

  5. Flavor of oranges as impacted by abscission zone formation for trees affected by huanglongbing disease and Lasiodiploida infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trees affected by Huanglongbing (HLB) exhibit excessive fruit drop, which is exacerbated by secondary infection of the abscission zone by the fungus Lasiodiplodia. ‘Hamlin’ orange trees, both healthy and affected by HLB, Candidatus Liberibacter asiaticus (CLas, determined by Polymerase chain reactio...

  6. Hydrologic linkages between a climate oscillation, river flows, growth, and wood Δ13C of male and female cottonwood trees.

    PubMed

    Rood, Stewart B; Ball, Deborah J; Gill, Karen M; Kaluthota, Sobadini; Letts, Matthew G; Pearce, David W

    2013-05-01

    To investigate climatic influence on floodplain trees, we analysed interannual correspondences between the Pacific Decadal Oscillation (PDO), river and groundwater hydrology, and growth and wood (13)C discrimination (Δ(13)C) of narrowleaf cottonwoods (Populus angustifolia) in a semi-arid prairie region. From the Rocky Mountain headwaters, river discharge (Q) was coordinated with the PDO (1910-2008: r(2) = 0.46); this pattern extended to the prairie and was amplified by water withdrawal for irrigation. Floodplain groundwater depth was correlated with river stage (r(2) = 0.96), and the cottonwood trunk basal area growth was coordinated with current- and prior-year Q (1992-2008: r(2) = 0.51), increasing in the mid-1990s, and decreasing in 2000 and 2001. Annual Δ(13)C decreased during low-flow years, especially in trees that were higher or further from the river, suggesting drought stress and stomatal closure, and male trees were more responsive than females (-0.86 versus -0.43‰). With subsequently increased flows, Δ(13)C increased and growth recovered. This demonstrated the linkages between hydroclimatic variation and cottonwood ecophysiology, and we conclude that cottonwoods will be vulnerable to drought from declining river flows due to water withdrawal and climate change. Trees further from the river could be especially affected, leading to narrowing of floodplain forests along some rivers.

  7. Explaining the dependence of climatic response of tree radial growth on permafrost

    NASA Astrophysics Data System (ADS)

    Bryukhanova, Marina; Benkova, Anna; von Arx, Georg; Fonti, Patrick; Simanko, Valentina; Kirdyanov, Alexander; Shashkin, Alexander

    2015-04-01

    In northern regions of Siberia it is infrequent to have long-term observations of the variability of soil features, phenological data, duration of the growing season, which can be used to infer the influence of the environment on tree growth and productivity. The best way to understand tree-growth and tree responses to environmental changes is to make use of mechanistic models, allowing to combine already available experiment/field data with other parameters based on biological principles of tree growth. The goal of our study is to estimate which tree species (deciduous, conifer deciduous or conifer evergreen) is more plastic under possible climate changes in permafrost zone. The studied object is located in the northern part of central Siberia, Russia (64°N, 100°E). The study plot was selected within a post-fire succession and representatives for 100 years old even aged mixed forest of Larix gmelinii (Rupr.) Rupr. and Betula pubescens Ehrh. with few exemplars of Spruce (Picea obovata Ledeb.). To understand physiological response of larch, birch and spruce trees to climatic changes the ecological-physiological process-based model of tree photosynthesis (Benkova and Shashkin 2003) was applied. Multiparametric tree-ring chronologies were analyzed and correlated with climatic parameters over the last 77 years. This work is supported by the Ministry of Education and Science of the Russian Federation (Grant from the President of RF for Young Scientists MK-1589.2014.4).

  8. Climatic influences on the growth of subalpine trees in the Colorado front range

    SciTech Connect

    Villalba, R.; Veblen, T.T. ); Ogden, J. )

    1994-07-01

    We examined variations in tree growth responses to climatic variations among different tree species and habitat types in the subalpine zone of the Colorado Front Range. We constructed 25 tree ring site chronologies (11 of Picea engelmannii, 9 of Abies lasiocarpa, 4 of Pinus contorta var. latifolia, and 1 of Pinusflexilis) from a series of subalpine habitats ranging from xeric to wet. To establish tree growth responses to climatic variation, we used correlation and response function analyses to compare variations in ring widths with monthly temperature and precipitation records. At the driest sites, growth of Picea and Abies tracked climatic variation similarly. At mesic and wet sites, however, these species differed in their responses to climatic variation. The responses of Pinus contorta, sampled over a narrower range of habitat types, differed from those of Picea and Abies but did not differ among sites. Steep environmental gradients in the subalpine zone of the Front Range accounted for most of the observed differences in growth responses to climatic variation. Even at adjacent sites that differ only slightly in topographic position, tree growth responses to climatic variation were distinct. Interspecific differences in response to climatic variations generally were less important than site differences. Intersite differences in tree growth responses to climatic variation can be used as indicators of environmental differences among subalpine habitats. 39 refs., 9 figs., 3 tabs.

  9. Climatic influences on the growth of subalpine trees in the Colorado Front Range

    USGS Publications Warehouse

    Villalba, Ricardo; Veblen, Thomas T.; Ogden, John

    1994-01-01

    We examined variations in tree growth responses to climatic variations among different tree species and habitat types in the subalpine zone of the Colorado Front Range. We constructed 25 tree ring site chronologies (11 of Picea engelmannii, 9 of Abies lasiocarpa, 4 of Pinus contorta var. latifolia, and 1 of Pinus flexilis) from a series of subalpine habitats ranging from xeric to wet. To establish tree growth responses to climatic variation, we used correlation and response function analyses to compare variations in ring widths with monthly temperature and precipitation records. At the driest sites, growth of Picea and Abies tracked climatic variation similarly. At mesic and wet sites, however, these species differed in their responses to climatic variation. The responses of Pinus contorta, sampled over a narrower range of habitat types, differed from those of Picea and Abies but did not differ among sites. Steep environmental gradients in the subalpine zone of the Front Range accounted for most of the observed differences in growth responses to climatic variation. Even at adjacent sites that differ only slightly in topographic position, tree growth responses to climatic variation were distinct. Interspecific differences in response to climatic variations generally were less important than site differences. Intersite differences in tree growth responses to climatic variation can be used as indicators of environmental differences among subalpine habitats.

  10. The small RNA profile in latex from Hevea brasiliensis trees is affected by tapping panel dryness.

    PubMed

    Gébelin, Virginie; Leclercq, Julie; Kuswanhadi; Argout, Xavier; Chaidamsari, Tetty; Hu, Songnian; Tang, Chaorong; Sarah, Gautier; Yang, Meng; Montoro, Pascal

    2013-10-01

    Natural rubber is harvested by tapping Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg. Harvesting stress can lead to tapping panel dryness (TPD). MicroRNAs (miRNAs) are induced by abiotic stress and regulate gene expression by targeting the cleavage or translational inhibition of target messenger RNAs. This study set out to sequence miRNAs expressed in latex cells and to identify TPD-related putative targets. Deep sequencing of small RNAs was carried out on latex from trees affected by TPD using Solexa technology. The most abundant small RNA class size was 21 nucleotides for TPD trees compared with 24 nucleotides in healthy trees. By combining the LeARN pipeline, data from the Plant MicroRNA database and Hevea EST sequences, we identified 19 additional conserved and four putative species-specific miRNA families not found in previous studies on rubber. The relative transcript abundance of the Hbpre-MIR159b gene increased with TPD. This study revealed a small RNA-specific signature of TPD-affected trees. Both RNA degradation and a shift in miRNA biogenesis are suggested to explain the general decline in small RNAs and, particularly, in miRNAs.

  11. Is growth reduction in defoliated trees a consequence of prioritized carbon allocation to reserves?

    NASA Astrophysics Data System (ADS)

    Hoch, Guenter; Schmid, Sandra; Palacio, Sara

    2015-04-01

    Tissue concentrations of carbon reserve compounds are frequently used as proxies for the carbon balance of trees, but the mechanisms regulating the formation of carbon reserves are still under debate. It is often assumed that carbon storage in trees is largely a consequence of surplus carbon supply (reserve accumulation). In contrast, carbon storage might also occur against prevailing carbon demand from other sink activities, like growth (reserve formation), in which case carbon reserve pools might increase even at carbon limitation, and thus, cannot be used as indicators for a tree's carbon supply status. Such a situation might be severe defoliation by herbivores. Especially in evergreen tree species, it has been shown that natural and experimental defoliation leads to a reduction of growth that is proportional to the lost leaf area. Compared to this strong effect on growth, carbon reserve pools (i.e. sugars, starch and storage lipids) of defoliated trees often exert only a temporary decrease immediately after defoliation, while tissue concentrations of carbon reserves return to those of undefoliated trees by the end of the growing season. Within a recent experiment, we investigated, if the growth decline in trees following early season defoliation is the consequence of prioritized carbon allocation to carbon reserves over growth. To test this hypothesis we grew seedlings of evergreen Quecus ilex and deciduous Quercus petraea trees under low (140 ppm), medium (280 ppm) and high (560 ppm) CO2 concentrations and completely defoliated half of the seedlings in each CO2 treatment at the beginning of the growing season. In undefoliated control trees, CO2 had a significant positive effect on the seasonal growth in both species. Defoliation had a strong negative impact on growth in the evergreen Q. illex, but less in the deciduous Q. petraea. In both species, the growth reduction after defoliation relative to undefoliated controls was very similar at all three CO2

  12. Nutrients and light limit biomass growth of N2-fixing but not non-fixing trees in tropical forests after 15 years of fertilization

    NASA Astrophysics Data System (ADS)

    Trierweiler, Annette; Wright, Joseph; Winter, Klaus; Hedin, Lars

    2015-04-01

    Tropical forests contribute a major fraction to the land C sink but the role of soil nutrients in limiting tree biomass growth in response to rising atmospheric CO2 is poorly known. Recent findings suggest that, following disturbance, successionally young forests may be deficient in nitrogen (N) and/or phosphorus (P), however nutrient manipulations of mature forests have revealed surprisingly weak effects of nutrients on the stem growth of mature individual trees. It is unclear how such weak experimental nutrient effects are reconciled with the existence of broad geographical correlations between soil nutrients and forest biomass growth. While tree growth is a complex function of nutrients, light, and canopy status, it is plausible that responses differ across different plant functional types. Here we use data from the longest running tropical fertilization experiment to ask first whether different functional groups have different nutrient needs, second, whether a differential nutrient limitation response will affect biomass accretion, and third, whether there is an interactive light-nutrient effect. Finally we examined how nutrient responses changed over time. We show that, in an intact and biodiverse mature tropical forest in Panama, N2-fixing trees more than double their basal area growth rate when exposed to increased soil P and N in the first 11 years of fertilization, for an overall 60% increase over 15 years. In contrast, there was no effect of nutrient treatment on the growth of non-fixing trees. We found a strong interactive effect of soil nutrients and light on fixer tree growth as the greatest growth response was in mature canopy-level trees with full access to light and potentially new nitrogen through fixation. In addition, the positive nutrient effect declined over the 15 years, rather than the expected increase. Our findings suggest that N2-fixing tree species may play a disproportionately important role in governing tropical forest response to

  13. Seabirds modify El Niño effects on tree growth in a southern Pacific island.

    PubMed

    Molina-Montenegro, Marco A; Torres-Díaz, Cristian; Gallardo-Cerda, Jorge; Leppe, Marcelo; Gianoli, Ernesto

    2013-11-01

    Oceanic island ecosystems are particularly sensitive to El Niño effects due to their dependence on energy and nutrient inputs from marine systems. Seabirds play a key role in transporting resources of marine origin to insular ecosystems. We report tree-growth patterns showing how the effects of El Niño rainy events on tree species in a southern Pacific island depend on the presence of local seabird colonies. We performed manipulative experiments in order to assess the mechanisms underlying these patterns. Tree ring data showed that, in normal years, the growth of all tree species (Aextoxicon punctatum, Cryptocarya alba, and Pinus radiata) was significantly lower in seabird sites compared to adjacent patches without seabirds (control sites). In contrast, in El Niño years, trees formerly hosting seabird colonies grew more than those in control sites. Experiments showed that (1) pine plants on soil from seabird sites grew more than those on soil from control sites, (2) pine individuals with seabird feces on their leaves grew less than those sprayed with an aqueous solution, and (3) soil moisture had little effect on plant growth. The stress produced by massive cormorant nesting on trees, which impairs tree growth and physiological performance, is relieved during El Niño events because of seabird migration due to decreased prey availability and pouring rains that flood nests. Soils enriched by the seabird guano, together with the increased water availability associated with El Niño, foster the growth of trees from seabird sites. We suggest that El Niño may be a key determinant of tree performance in forest communities from island and coastal ecosystems of the Pacific Ocean.

  14. Disparate effects of global-change drivers on mountain conifer forests: warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites.

    PubMed

    Camarero, J Julio; Gazol, Antonio; Galván, Juan Diego; Sangüesa-Barreda, Gabriel; Gutiérrez, Emilia

    2015-02-01

    Theory predicts that the postindustrial rise in the concentration of CO2 in the atmosphere (c(a)) should enhance tree growth either through a direct fertilization effect or indirectly by improving water use efficiency in dry areas. However, this hypothesis has received little support in cold-limited and subalpine forests where positive growth responses to either rising ca or warmer temperatures are still under debate. In this study, we address this issue by analyzing an extensive dendrochronological network of high-elevation Pinus uncinata forests in Spain (28 sites, 544 trees) encompassing the whole biogeographical extent of the species. We determine if the basal area increment (BAI) trends are linked to climate warming and increased c(a) by focusing on region- and age-dependent responses. The largest improvement in BAI over the past six centuries occurred during the last 150 years affecting young trees and being driven by recent warming. Indeed, most studied regions and age classes presented BAI patterns mainly controlled by temperature trends, while growing-season precipitation was only relevant in the driest sites. Growth enhancement was linked to rising ca in mature (151-300 year-old trees) and old-mature trees (301-450 year-old trees) from the wettest sites only. This finding implies that any potential fertilization effect of elevated c(a) on forest growth is contingent on tree features that vary with ontogeny and it depends on site conditions (for instance water availability). Furthermore, we found widespread growth decline in drought-prone sites probably indicating that the rise in ca did not compensate for the reduction in water availability. Thus, warming-triggered drought stress may become a more important direct driver of growth than rising ca in similar subalpine forests. We argue that broad approaches in biogeographical and temporal terms are required to adequately evaluate any effect of rising c(a) on forest growth.

  15. Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem

    NASA Astrophysics Data System (ADS)

    Keller, C. K.; White, T. M.; O'Brien, R.; Smith, J. L.

    2006-09-01

    Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground biomass was removed. Lack of physical disturbance, strict prevention of plant regrowth, and a comparison ecosystem without rooted plants facilitated isolation of the microclimatic and biochemical effects of instantaneous canopy removal and cessation of photosynthesis. Preharvest gas-phase CO2 levels fluctuated with growing-season soil temperature but reached their greatest levels (up to 10,000 ppmV) during late winter beneath snow and ice cover. This pattern, and the annual CO2 efflux of ˜500 g C m-2 yr-1, continued for 2 years following harvest; the efflux declined by half in the third year. The surprising continuity of preharvest and postharvest rates of soil CO2 production reflects the replacement of root respiration with microbial respiration of root and litter substrates of declining lability, but boosted by soil temperature increases. Mass balance is consistent with a bulk root+litter exponential decay time (-1/k) of 4-6 years, such that most of the subsurface biomass accumulated over 15 years of tree growth would be lost in a decade after the harvest. The preharvest bicarbonate C efflux, which was less than 0.1% of the gas-phase efflux, trebled after the harvest owing to elimination of evapotranspiration and consequent increases in drainage while soil CO2 levels remained high. A large fraction of this "hydrospheric" sink for atmospheric CO2 is attributed to weathering under high soil CO2 levels before spring snowmelt and soil-water flushing. These observations suggest that disturbance may enhance long-term chemical-weathering CO2 sinks.

  16. Dendrometer bands made easy: using modified cable ties to measure incremental growth of trees

    USGS Publications Warehouse

    Anemaet, Evelyn R.; Middleton, Beth A.

    2013-01-01

    Dendrometer bands are a useful way to make sequential repeated measurements of tree growth, but traditional dendrometer bands can be expensive, time consuming, and difficult to construct in the field. An alternative to the traditional method of band construction is to adapt commercially available materials. This paper describes how to construct and install dendrometer bands using smooth-edged, stainless steel, cable tie banding and attachable rollerball heads. As a performance comparison, both traditional and cable tie dendrometer bands were installed on baldcypress trees at the National Wetlands Research Center in Lafayette, Louisiana, by both an experienced and a novice worker. Band installation times were recorded, and growth of the trees as estimated by the two band types was measured after approximately one year, demonstrating equivalence of the two methods. This efficient approach to dendrometer band construction can help advance the knowledge of long-term tree growth in ecological studies.

  17. Effects of Invasive Winter Moth Defoliation on Tree Radial Growth in Eastern Massachusetts, USA

    PubMed Central

    Simmons, Michael J.; Lee, Thomas D.; Ducey, Mark J.; Elkinton, Joseph S.; Boettner, George H.; Dodds, Kevin J.

    2014-01-01

    Winter moth, Operophtera brumata L. (Lepidoptera: Geometridae), has been defoliating hardwood trees in eastern Massachusetts since the 1990s. Native to Europe, winter moth has also been detected in Rhode Island, Connecticut, eastern Long Island (NY), New Hampshire, and Maine. Individual tree impacts of winter moth defoliation in New England are currently unknown. Using dendroecological techniques, this study related annual radial growth of individual host (Quercus spp. and Acer spp.) trees to detailed defoliation estimates. Winter moth defoliation was associated with up to a 47% reduction in annual radial growth of Quercus trees. Latewood production of Quercus was reduced by up to 67% in the same year as defoliation, while earlywood production was reduced by up to 24% in the year following defoliation. Winter moth defoliation was not a strong predictor of radial growth in Acer species. This study is the first to document impacts of novel invasions of winter moth into New England. PMID:26462685

  18. Interactive effects of ambient ozone and climate measured on growth of mature loblolly pine trees

    SciTech Connect

    McLaughlin, S.B.; Downing, D.J.

    1995-02-01

    Analysis of the seasonal growth patterns of mature loblolly pine trees over the interval 1988-1993 has provided the first direct measurement of reductions of stem growth of large forest trees by ambient ozone. Patterns of stem expansion and contraction of 34 trees were examined in eastern Tennessee using serial measurements with sensitive dendrometer bind systems. Study sites varied in soil moisture, soil fertility, and stand density. Levels of ozone, rainfall, and temperature varied widely over the six year study interval. Regression analysis identified statistically and biologically significant influences of ozone on stem growth. Acting either individually or in interaction with high temperature and moisture stress, higher levels of ozone were associated with reduced stem expansion of individual trees within and across years. Observed responses to ozone were relatively rapid, differed widely among trees, and across years, and were significantly amplified by low soil moisture and high air temperatures. Both short term responses, clearly tied to changing stem water status, and longer term cumulative responses were identified. These data indicate that relatively low levels of ambient ozone can significantly reduce growth of mature forest trees and that interactions between ambient ozone and climate are likely to be important modifiers of future forest growth and function. Additional studies of mechanisms of short term response and inter species comparisons are clearly needed.

  19. Modeling Tree Growth Taking into Account Carbon Source and Sink Limitations

    PubMed Central

    Hayat, Amaury; Hacket-Pain, Andrew J.; Pretzsch, Hans; Rademacher, Tim T.; Friend, Andrew D.

    2017-01-01

    Increasing CO2 concentrations are strongly controlled by the behavior of established forests, which are believed to be a major current sink of atmospheric CO2. There are many models which predict forest responses to environmental changes but they are almost exclusively carbon source (i.e., photosynthesis) driven. Here we present a model for an individual tree that takes into account the intrinsic limits of meristems and cellular growth rates, as well as control mechanisms within the tree that influence its diameter and height growth over time. This new framework is built on process-based understanding combined with differential equations solved by numerical method. Our aim is to construct a model framework of tree growth for replacing current formulations in Dynamic Global Vegetation Models, and so address the issue of the terrestrial carbon sink. Our approach was successfully tested for stands of beech trees in two different sites representing part of a long-term forest yield experiment in Germany. This model provides new insights into tree growth and limits to tree height, and addresses limitations of previous models with respect to sink-limited growth. PMID:28377773

  20. Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees.

    PubMed

    Schüßler, Arthur; Krüger, Claudia; Urgiles, Narcisa

    2016-04-01

    In many deforested regions of the tropics, afforestation with native tree species could valorize a growing reservoir of degraded, previously overused and abandoned land. The inoculation of tropical tree seedlings with arbuscular mycorrhizal fungi (AM fungi) can improve tree growth and viability, but efficiency may depend on plant and AM fungal genotype. To study such effects, seven phylogenetically diverse AM fungi, native to Ecuador, from seven genera and a non-native AM fungus (Rhizophagus irregularis DAOM197198) were used to inoculate the tropical potential crop tree (PCT) species Handroanthus chrysanthus (synonym Tabebuia chrysantha), Cedrela montana, and Heliocarpus americanus. Twenty-four plant-fungus combinations were studied in five different fertilization and AMF inoculation treatments. Numerous plant growth parameters and mycorrhizal root colonization were assessed. The inoculation with any of the tested AM fungi improved seedling growth significantly and in most cases reduced plant mortality. Plants produced up to threefold higher biomass, when compared to the standard nursery practice. AM fungal inoculation alone or in combination with low fertilization both outperformed full fertilization in terms of plant growth promotion. Interestingly, root colonization levels for individual fungi strongly depended on the host tree species, but surprisingly the colonization strength did not correlate with plant growth promotion. The combination of AM fungal inoculation with a low dosage of slow release fertilizer improved PCT seedling performance strongest, but also AM fungal treatments without any fertilization were highly efficient. The AM fungi tested are promising candidates to improve management practices in tropical tree seedling production.

  1. Effects of season, rainfall, and hydrogeomorphic setting on mangrove tree growth in Micronesia

    USGS Publications Warehouse

    Krauss, K.W.; Keeland, B.D.; Allen, J.A.; Ewel, K.C.; Johnson, Daniel J.

    2007-01-01

    Seasonal patterns of tree growth are often related to rainfall, temperature, and relative moisture regimes. We asked whether diameter growth of mangrove trees in Micronesia, where seasonal changes are minimal, is continuous throughout a year or conforms to an annual cycle. We installed dendrometer bands on Sonneratia alba and Bruguiera gymnorrhiza trees growing naturally within mangrove swamps on the islands of Kosrae, Federated States of Micronesia (FSM), Pohnpei, FSM, and Butaritari, Republic of Kiribati, in the eastern Caroline Islands of the western Pacific Ocean. Trees were remeasured monthly or quarterly for as long as 6 yr. Annual mean individual tree basal area increments ranged from 7.0 to 79.6 cm2/yr for all S. alba trees and from 4.8 to 27.4 cm2/yr for all B. gymnorrhiza trees from Micronesian high islands. Diameter increment for S. alba on Butaritari Atoll was lower at 7.8 cm 2/yr for the one year measured. Growth rates differed significantly by hydrogeomorphic zone. Riverine and interior zones maintained up to seven times the annual diameter growth rate of fringe forests, though not on Pohnpei, where basal area increments for both S. alba and B. gymnorrhiza were approximately 1.5 times greater in the fringe zone than in the interior zone. Time-series modeling indicated that there were no consistent and statistically significant annual diameter growth patterns. Although rainfall has some seasonality in some years on Kosrae and Pohnpei and overall growth of mangroves was sometimes related positively to quarterly rainfall depths, seasonal diameter growth patterns were not distinctive. A reduced chance of moisture-related stress in high-rainfall, wetland environments may serve to buffer growth of Micronesian mangroves from climatic extremes. ?? 2007 The Author(s) Journal compilation ?? 2007 by The Association for Tropical Biology and Conservation.

  2. Is the growth of temperate forest trees enhanced along an ambient nitrogen deposition gradient?

    PubMed

    Bedison, James E; McNeil, Brenden E

    2009-07-01

    The extent to which atmospheric N deposition is enhancing primary production and CO2 sequestration along the ambient N deposition gradients found within many regional temperate forest ecosystems remains unknown. We used tree diameter measurements from 1984 and 2004, allometric equations, and estimates of wet N deposition from 32 permanent plots located along an ambient N deposition gradient in the Adirondack Park, New York, U.S.A., to determine the effects of N deposition on the basal area and woody biomass increments (BAI and WBI, respectively) of individual stems from all the major tree species. Nitrogen deposition had either a neutral or positive effect on BAI and WBI, with the positive effects especially apparent within the smaller size classes of several species. The nature of these growth responses suggests that other co-varying factors (e.g., temperature, tropospheric ozone, soil acidification) may be partially counteracting the species-dependent fertilization effect of N deposition that was suggested by recent foliar N data across this gradient. Nevertheless, in documenting a fertilization effect from chronic, low-level, ambient rates of N deposition, this study underscores the need for more research on how N deposition is affecting rates of primary production, CO2 sequestration, and even vegetation dynamics in many forests worldwide.

  3. A Hierarchical Analysis of Tree Growth and Environmental Drivers Across Eastern US Temperate Forests

    NASA Astrophysics Data System (ADS)

    Mantooth, J.; Dietze, M.

    2014-12-01

    Improving predictions of how forests in the eastern United States will respond to future global change requires a better understanding of the drivers of variability in tree growth rates. Current inventory data lack the temporal resolution to characterize interannual variability, while existing growth records lack the extent required to assess spatial scales of variability. Therefore, we established a network of forest inventory plots across ten sites across the eastern US, and measured growth in adult trees using increment cores. Sites were chosen to maximize climate space explored, while within sites, plots were spread across primary environmental gradients to explore landscape-level variability in growth. Using the annual growth record available from tree cores, we explored the responses of trees to multiple environmental covariates over multiple spatial and temporal scales. We hypothesized that within and across sites growth rates vary among species, and that intraspecific growth rates increase with temperature along a species' range. We also hypothesized that trees show synchrony in growth responses to landscape-scale climatic changes. Initial analyses of growth increments indicate that across sites, trees with intermediate shade tolerance, e.g. Red Oak (Quercus rubra), tend to have the highest growth rates. At the site level, there is evidence for synchrony in response to large-scale climatic events (e.g. prolonged drought and above average temperatures). However, growth responses to climate at the landscape scale have yet to be detected. Our current analysis utilizes hierarchical Bayesian state-space modeling to focus on growth responses of adult trees to environmental covariates at multiple spatial and temporal scales. This predictive model of tree growth currently incorporates observed effects at the individual, plot, site, and landscape scale. Current analysis using this model shows a potential slowing of growth in the past decade for two sites in the

  4. Morphological variability in tree root architecture indirectly affects coexistence among competitors in the understory.

    PubMed

    Aschehoug, Erik T; Callaway, Ragan M

    2014-07-01

    Interactions between plants can have strong effects on community structure and function. Variability in the morphological, developmental, physiological, and biochemical traits of plants can influence the outcome of plant interactions and thus have important ecological consequences. However, the ecological ramifications of trait variability in plants are poorly understood and have rarely been tested in the field. We experimentally tested the effects of morphological variation in root architecture of Quercus douglasii trees in the field on interactions between understory plants and community composition. Our results indicate that variability among Q. douglasii tree root systems initiates a striking reversal in the competitive effects of dominant understory grass species on a less common species. Trees with a deep-rooted morphology facilitated exotic annual grasses and these annual grasses, in turn, competitively excluded the native perennial bunchgrass, Stipapulchra. In contrast, Q. douglasii trees with shallow-rooted morphologies directly suppressed the growth of exotic annual grasses and indirectly released S. pulchra individuals from competition with these annual grasses. Morphological variation in the root architecture of Q. douglasii created substantial conditionality in the outcomes of competition among species which enhanced the potential for indirect interactions to sustain coexistence and increase community diversity.

  5. The impact of sewage sludge compost on tree peony growth and soil microbiological, and biochemical properties.

    PubMed

    Xue, Dong; Huang, Xiangdong

    2013-10-01

    In order to assess the suitability of sludge compost application for tree peony (Paeonia suffruticosa)-soil ecosystems, we determined soil microbial biomass C (Cmic), basal respiration (Rmic), enzyme activities, and tree peony growth parameters at 0-75% sludge compost amendment dosage. Soil Cmic, Rmic, Cmic as a percent of soil organic C, enzyme (invertase, urease, proteinase, phosphatase, polyphenoloxidase) activities, and plant height, flower diameter, and flower numbers per plant of tree peony significantly increased after sludge compost amendment; however, with the increasing sludge compost amendment dosage, a decreasing trend above 45% sludge compost amendment became apparent although soil organic C, total Kjeldahl N, and total P always increased with the sludge compost amendment. Soil metabolic quotient first showed a decreasing trend with the increasing sludge compost application in the range of 15-45%, and then an increasing trend from compost application of 45-75%, with the minimum found at compost application of 45%. As for the diseased plants, 50% of tree peony under the treatment without sludge compost amendment suffered from yellow leaf disease of tree peony, while no any disease was observed under the treatments with sludge compost application of 30-75%, which showed sludge compost application had significant suppressive effect on the yellow leaf disease of tree peony. This result convincingly demonstrated that ≤45% sludge compost application dosage can take advantage of beneficial effect on tree peony growth and tree peony-soil ecosystems.

  6. Chemical agents and peptides affect hair growth.

    PubMed

    Uno, H; Kurata, S

    1993-07-01

    During the past decade we have examined both the therapeutic and the prophylactic effects of several agents on the macaque model of androgenetic alopecia. Minoxidil and diazoxide, potent hypotensive agents acting as peripheral vasodilators, are known to have a hypertrichotic side effect. Topical use of both agents induced significant hair regrowth in the bald scalps of macaques. The application of a steroid 5 alpha-reductase inhibitor (4MA) in non-bald preadolescent macaques has prevented baldness, whereas controls developed it during 2 years of treatment. The effects of hair growth were determined by 1) phototrichogram, 2) folliculogram (micro-morphometric analysis), and 3) the rate of DNA synthesis in the follicular cells. These effects were essentially a stimulation of the follicular cell proliferation, resulting in an enlargement of the anagen follicles from vellus to terminal type (therapy) or a maintenance of the prebald terminal follicles (prevention). A copper binding peptide (PC1031) had the effect of follicular enlargement on the back skin of fuzzy rats, covering the vellus follicles; the effect was similar to that of topical minoxidil. Analyzing the quantitative sequences of follicular size and cyclic phases, we speculate on the effect of agents on follicular growth. We also discuss the triggering mechanism of androgen in the follicular epithelial-mesenchymal (dermal papilla) interaction.

  7. Effects of tea tree (Melaleuca alternifolia) oil on Staphylococcus aureus in biofilms and stationary growth phase.

    PubMed

    Kwieciński, Jakub; Eick, Sigrun; Wójcik, Kinga

    2009-04-01

    Tea tree oil (TTO) is known for its antimicrobial activity. In this study, we determined whether TTO is effective against Staphylococcus aureus in biofilms and how TTO activity is affected by the S. aureus growth phase. All clinical strains tested were killed by TTO both as planktonic cells and as biofilms. The minimum biofilm eradication concentration was usually two times higher than the minimum bactericidal concentration, yet it was never higher than 1% v/v. The fastest killing of biofilm occurred during the first 15min of contact with TTO and was not influenced by increasing TTO concentration above 1% v/v. Planktonic stationary phase cells exhibited decreased susceptibility to TTO compared with exponential phase cells. The killing rate for stationary phase cells was also less affected by increasing TTO concentration than that for exponential phase cells. These data show that TTO efficiently kills S. aureus in the stationary growth phase and within biofilms and is therefore a promising tool for S. aureus eradication.

  8. Impact of Site Disturbances from Harvesting and Logging on Soil Physical Properties and Pinus kesiya Tree Growth.

    PubMed

    Missanjo, Edward; Kamanga-Thole, Gift

    2014-01-01

    A study was conducted to determine the impacts of soil disturbance and compaction on soil physical properties and tree growth and the effectiveness of tillage in maintaining or enhancing site productivity for intensively managed Pinus kesiya Royle ex Gordon sites in Dedza, Malawi. The results indicate that about fifty-two percent of the area of compacted plots was affected by the vehicular traffic. Seventy percent of the trees were planted on microsites with some degree of soil disturbance. Soil bulk density at 0-20 cm depth increased from 0.45 to 0.66 Mg m(-3) in the most compacted portions of traffic lanes. Soil strength in traffic lanes increased at all 60 cm depth but never exceeded 1200 kPa. Volumetric soil water content in compacted traffic lanes was greater than that in noncompacted soil. Total soil porosity decreased 13.8% to 16.1% with compaction, while available water holding capacity increased. The study revealed no detrimental effects on tree height and diameter from soil disturbance or compaction throughout the three growing season. At the ages of two and three, a tree volume index was actually greater for trees planted on traffic lanes than those on nondisturbed soil.

  9. Impact of Site Disturbances from Harvesting and Logging on Soil Physical Properties and Pinus kesiya Tree Growth

    PubMed Central

    Missanjo, Edward

    2014-01-01

    A study was conducted to determine the impacts of soil disturbance and compaction on soil physical properties and tree growth and the effectiveness of tillage in maintaining or enhancing site productivity for intensively managed Pinus kesiya Royle ex Gordon sites in Dedza, Malawi. The results indicate that about fifty-two percent of the area of compacted plots was affected by the vehicular traffic. Seventy percent of the trees were planted on microsites with some degree of soil disturbance. Soil bulk density at 0–20 cm depth increased from 0.45 to 0.66 Mg m−3 in the most compacted portions of traffic lanes. Soil strength in traffic lanes increased at all 60 cm depth but never exceeded 1200 kPa. Volumetric soil water content in compacted traffic lanes was greater than that in noncompacted soil. Total soil porosity decreased 13.8% to 16.1% with compaction, while available water holding capacity increased. The study revealed no detrimental effects on tree height and diameter from soil disturbance or compaction throughout the three growing season. At the ages of two and three, a tree volume index was actually greater for trees planted on traffic lanes than those on nondisturbed soil. PMID:27355043

  10. Disrupted trophic interactions affect recruitment of boreal deciduous and coniferous trees in northern Europe.

    PubMed

    Angelstam, Per; Manton, Michael; Pedersen, Simen; Elbakidze, Marine

    2017-01-23

    Loss of large carnivore populations may lead to increased population densities of large herbivores, and subsequent cascading effects on the composition, structure, and function of ecosystems. Using a macroecological approach based on studies in multiple boreal forest landscapes in the Baltic Sea region and Russia, we tested the hypothesis that disrupted trophic interactions among large carnivores and large herbivores affect the recruitment of both ecologically and economically valuable tree species. We measured damage levels on young trees and large herbivore density in 10 local landscapes representing a gradient from extinct to extant populations of both large carnivores and large herbivores. We also tested the alternative hypothesis that forest management intensity is correlated to reduced recruitment of these tree species. At the macroecological scale there was an inverse relationship between the number of large carnivores and large herbivores. This coincided with a steep gradient in browsing damage on the ecologically important aspen, rowan and sallow as hosts for specialized species, as well as the economically important Scots pine. In one landscape hunting had replaced the presence of carnivores. Mean damage levels of these four tree species were correlated with large herbivore abundance, but not with forest management intensity. We discuss the pros and cons of this macroecological approach, as well as the challenge of governing and managing trophic interactions at multiple scales.

  11. Climate dependency of tree growth suppressed by acid deposition effects on soils in Northwest Russia

    USGS Publications Warehouse

    Lawrence, G.B.; Lapenis, A.G.; Berggren, D.; Aparin, B.F.; Smith, K.T.; Shortle, W.C.; Bailey, S.W.; Varlyguin, D.L.; Babikov, B.

    2005-01-01

    Increased tree growth in temperate and boreal forests has been proposed as a direct consequence of a warming climate. Acid deposition effects on nutrient availability may influence the climate dependency of tree growth, however. This study presents an analysis of archived soil samples that has enabled changes in soil chemistry to be tracked with patterns of tree growth through the 20th century. Soil samples collected in 1926, 1964, and 2001, near St. Petersburg, Russia, showed that acid deposition was likely to have decreased root-available concentrations of Ca (an essential element) and increased root-available concentrations of Al (an inhibitor of Ca uptake). These soil changes coincided with decreased diameter growth and a suppression of climate-tree growth relationships in Norway spruce. Expected increases in tree growth from climate warming may be limited by decreased soil fertility in regions of northern and eastern Europe, and eastern North America, where Ca availability has been reduced by acidic deposition. ?? 2005 American Chemical Society.

  12. Green revolution trees: semidwarfism transgenes modify gibberellins, promote root growth, enhance morphological diversity, and reduce competitiveness in hybrid poplar.

    PubMed

    Elias, Ani A; Busov, Victor B; Kosola, Kevin R; Ma, Cathleen; Etherington, Elizabeth; Shevchenko, Olga; Gandhi, Harish; Pearce, David W; Rood, Stewart B; Strauss, Steven H

    2012-10-01

    Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.

  13. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change

    PubMed Central

    Silva, Lucas C. R.; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R.

    2016-01-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems. PMID:27652334

  14. Exploring the 'divergence' problem using a simple process-based model of tree growth

    NASA Astrophysics Data System (ADS)

    Li, Guangqi; Harrison, Sandy P.; Prentice, I. Colin

    2016-04-01

    There has been an apparent change in the sensitivity of tree rings to temperature in northern extratropical regions since the 1980s - a phenomenon often referred to as the divergence problem. Several potential explanations have been suggested to explain the decoupling between ring width (or density) and temperature, including exceedance of limiting temperature thresholds with global warming, changes in light availability with global dimming, the increasing importance of soil or atmospheric drought as a limitation to tree growth, or the CO2 'fertilization effect'. Here we use a simple, process-based tree-growth and carbon allocation model to explore these hypotheses. While changes in light availability and drought contribute to explain the declining influence of temperature on tree growth, the most important factor is changes in carbon allocation to roots and mycorrhizae in response to increasing [CO2] and the demand for increased nutrients to support photosynthesis. The magnitude of the increase in below-ground allocation, and hence the relative importance of this mechanism versus climate in controlling tree radial growth, appears to be influenced by nutrient and water availability. The potential importance of changes in carbon allocation challenges the use of statistical models for climate reconstructions from tree rings during intervals when [CO2] was different from historical values.

  15. Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change.

    PubMed

    Silva, Lucas C R; Sun, Geng; Zhu-Barker, Xia; Liang, Qianlong; Wu, Ning; Horwath, William R

    2016-08-01

    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems.

  16. ABOVE- AND BELOWGROUND CONTROLS ON FOREST TREE GROWTH, MORTALITY AND SPATIAL PATTERN

    EPA Science Inventory

    We investigated the relative importance of above- and belowground competition in controlling growth, mortality and spatial patterns of trees in a nitrogen-limited, old-growth forest in western Oregon. To assess the effects of competition for light, we applied a spatially-explici...

  17. Detecting long-term growth trends using tree rings: a critical evaluation of methods.

    PubMed

    Peters, Richard L; Groenendijk, Peter; Vlam, Mart; Zuidema, Pieter A

    2015-05-01

    Tree-ring analysis is often used to assess long-term trends in tree growth. A variety of growth-trend detection methods (GDMs) exist to disentangle age/size trends in growth from long-term growth changes. However, these detrending methods strongly differ in approach, with possible implications for their output. Here, we critically evaluate the consistency, sensitivity, reliability and accuracy of four most widely used GDMs: conservative detrending (CD) applies mathematical functions to correct for decreasing ring widths with age; basal area correction (BAC) transforms diameter into basal area growth; regional curve standardization (RCS) detrends individual tree-ring series using average age/size trends; and size class isolation (SCI) calculates growth trends within separate size classes. First, we evaluated whether these GDMs produce consistent results applied to an empirical tree-ring data set of Melia azedarach, a tropical tree species from Thailand. Three GDMs yielded similar results - a growth decline over time - but the widely used CD method did not detect any change. Second, we assessed the sensitivity (probability of correct growth-trend detection), reliability (100% minus probability of detecting false trends) and accuracy (whether the strength of imposed trends is correctly detected) of these GDMs, by applying them to simulated growth trajectories with different imposed trends: no trend, strong trends (-6% and +6% change per decade) and weak trends (-2%, +2%). All methods except CD, showed high sensitivity, reliability and accuracy to detect strong imposed trends. However, these were considerably lower in the weak or no-trend scenarios. BAC showed good sensitivity and accuracy, but low reliability, indicating uncertainty of trend detection using this method. Our study reveals that the choice of GDM influences results of growth-trend studies. We recommend applying multiple methods when analysing trends and encourage performing sensitivity and reliability

  18. Anatomical, chemical, and ecological factors affecting tree species choice in dendrochemistry studies

    SciTech Connect

    Cutter, B.E.; Guyette, R.P.

    1993-07-01

    Recently, element concentrations in tree rings have been used to monitor metal contamination, fertilization, and the effects of acid precipitation on soils. This has stimulated interest in which tree species may be suitable for use in studies of long-term trends in environmental chemistry. Potential radial translocation of elements across living boundaries can be a confounding factor in assessing environmental change. The selection of species which minimizes radial translocation of elements can be critical to the success of dendrochemical research. Criteria for selection of species with characteristics favorable for dendrochemical analysis are categorized into (1) habitat-based factors, (2) xylem-based factors, and (3) element-based factors. A wide geographic range and ecological amplitude provide an advantage in calibration and better controls on the effects of soil chemistry. The most important xylem-based criteria are heartwood moisture content, permeability, and the nature of the sapwood-heartwood transition. The element of interest is important in determining suitable tree species because all elements are not equally mobile or detectable in the xylem. Ideally, the tree species selected for dendrochemical study will be long-lived, grow on a wide range of sites over a large geographic distribution, have a distinct heartwood with a low number of rings in the sapwood, a low heartwood moisture content, and have low radial permeability. Recommended temperate zone North American species include white oak (Quercus alba L.), post oak (Q. stellate Wangenh.), eastern redcedar (funiperus virginiana L.), old-growth Douglas-fir [Pseudoaugu menziesii (Mirb.) Franco] and big sagebrush (Artemisia tridentata Nutt.). In addition, species such as bristlecone pine (Pinus aristata Engelm. syn. longaeva), old-growth redwood [Sequoia sempervirens (D. Don) Endl.], and giant sequoia [S. gigantea (Lindl.) Deene] may be suitable for local purposes. 118 refs., 2 tabs.

  19. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2016-01-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.

  20. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest.

    PubMed

    Bond-Lamberty, Ben; Rocha, Adrian V; Calvin, Katherine; Holmes, Bruce; Wang, Chuankuan; Goulden, Michael L

    2014-01-01

    Most North American forests are at some stage of post-disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short-term studies in a longer term context, and particularly important for the carbon-dense, fire-prone boreal forest. The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean tree diameter increased even as stand density and basal area declined significantly. Tree mortality averaged 1.4 ± 0.6% yr-(1), with most mortality occurring in medium-sized trees; new recruitment was minimal. There have been at least two, and probably three, significant influxes of new trees since stand initiation, but none in recent decades. A combined tree ring chronology constructed from sampling in 2001, 2004, and 2012 showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Higher minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. We suggest that past climate extremes led to significant mortality still visible in the current forest structure, with decadal dynamics superimposed on slower patterns of fire and succession. These results have significant implications for our understanding of previous work at NOBS, the carbon sequestration capability of old-growth stands in a disturbance-prone landscape, and the sustainable management of

  1. Effect of plant growth regulators and genotype on the micropropagation of adult trees of Arbutus unedo L. (strawberry tree).

    PubMed

    Gomes, Filomena; Simões, Mafalda; Lopes, Maria L; Canhoto, Jorge M

    2010-12-31

    Arbutus unedo grows spontaneously around the Mediterranean basin. The species is tolerant to drought and has a strong regeneration capacity following fires making it interesting for Mediterranean forestation programs. Considering the sparse information about the potential of this fruit tree to be propagated in vitro, a project to clone selected trees based on their fruit production was initiated a few years ago. The role of several factors on A. unedo propagation was evaluated. The results showed that 8.9 μm kinetin gave the best results although not significantly different from those obtained with benzyladenine or zeatin. The inclusion of thidiazuron or 1-naphthaleneacetic acid promoted callus growth and had deleterious effects on the multiplication rate. The genotype of the donor plants is also a factor interfering with the multiplication. The results also indicated that the conditions used for multiplication influenced the behavior of shoots during the rooting phase.

  2. Stimulating seedling growth in early stages of secondary forest succession: a modeling approach to guide tree liberation.

    PubMed

    van Kuijk, Marijke; Anten, Niels P R; Oomen, Roelof J; Schieving, Feike

    2014-01-01

    Excessive growth of non-woody plants and shrubs on degraded lands can strongly hamper tree growth and thus secondary forest succession. A common method to accelerate succession, called liberation, involves opening up the vegetation canopy around young target trees. This can increase growth of target trees by reducing competition for light with neighboring plants. However, liberation has not always had the desired effect, likely due to differences in light requirement between tree species. Here we present a 3D-model, which calculates photosynthetic rate of individual trees in a vegetation stand. It enables us to examine how stature, crown structure, and physiological traits of target trees and characteristics of the surrounding vegetation together determine effects of light on tree growth. The model was applied to a liberation experiment conducted with three pioneer species in a young secondary forest in Vietnam. Species responded differently to the treatment depending on their height, crown structure and their shade-tolerance level. Model simulations revealed practical thresholds over which the tree growth response is heavily influenced by the height and density of surrounding vegetation and gap radius. There were strong correlations between calculated photosynthetic rates and observed growth: the model was well able to predict growth of trees in young forests and the effects of liberation there upon. Thus, our model serves as a useful tool to analyze light competition between young trees and surrounding vegetation and may help assess the potential effect of tree liberation.

  3. Stimulating seedling growth in early stages of secondary forest succession: a modeling approach to guide tree liberation

    PubMed Central

    van Kuijk, Marijke; Anten, Niels P. R.; Oomen, Roelof J.; Schieving, Feike

    2014-01-01

    Excessive growth of non-woody plants and shrubs on degraded lands can strongly hamper tree growth and thus secondary forest succession. A common method to accelerate succession, called liberation, involves opening up the vegetation canopy around young target trees. This can increase growth of target trees by reducing competition for light with neighboring plants. However, liberation has not always had the desired effect, likely due to differences in light requirement between tree species. Here we present a 3D-model, which calculates photosynthetic rate of individual trees in a vegetation stand. It enables us to examine how stature, crown structure, and physiological traits of target trees and characteristics of the surrounding vegetation together determine effects of light on tree growth. The model was applied to a liberation experiment conducted with three pioneer species in a young secondary forest in Vietnam. Species responded differently to the treatment depending on their height, crown structure and their shade-tolerance level. Model simulations revealed practical thresholds over which the tree growth response is heavily influenced by the height and density of surrounding vegetation and gap radius. There were strong correlations between calculated photosynthetic rates and observed growth: the model was well able to predict growth of trees in young forests and the effects of liberation there upon. Thus, our model serves as a useful tool to analyze light competition between young trees and surrounding vegetation and may help assess the potential effect of tree liberation. PMID:25101100

  4. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees.

    PubMed

    Liu, Lijun; Filkov, Vladimir; Groover, Andrew

    2014-06-01

    The complex interactions among the genes that underlie a biological process can be modeled and presented as a transcriptional network, in which genes (nodes) and their interactions (edges) are shown in a graphical form similar to a wiring diagram. A large number of genes have been identified that are expressed during the radial woody growth of tree stems (secondary growth), but a comprehensive understanding of how these genes interact to influence woody growth is currently lacking. Modeling transcriptional networks has recently been made tractable by next-generation sequencing-based technologies that can comprehensively catalog gene expression and transcription factor-binding genome-wide, but has not yet been extensively applied to undomesticated tree species or woody growth. Here we discuss basic features of transcriptional networks, approaches for modeling biological networks, and examples of biological network models developed for forest trees to date. We discuss how transcriptional network research is being developed in the model forest tree genus, Populus, and how this research area can be further developed and applied. Transcriptional network models for forest tree secondary growth and wood formation could ultimately provide new predictive models to accelerate hypothesis-driven research and develop new breeding applications.

  5. Growth and carbon allocation of tropical and temperate N-fixing trees grown in elevated CO{sub 2}

    SciTech Connect

    Tissue, D.T.; Megonigal, J.P.; Thomas, R.B.

    1995-09-01

    Seeds of two tree species, Gliricidia seplum (tropical) and Robinia pseudoacacia (temperate), were inoculated with N-fixing Rhizobium bacteria and grown in environmentally controlled glasshouses for 75 days to determine the effects of atmospheric CO{sub 2} on seedling growth and carbon allocation. Seedlings were grown in ambient CO{sub 2}(35 Pa) and elevated CO{sub 22}(70 Pa) and watered with a N-deficient nutrient solution such that bacterial N-fixation was the only source of N. Elevated CO{sub 2} increased leaf, stem, root and total biomass in Gliricidia, but did not affect nodule mass; Robinia biomass was unchanged by CO{sub 2}. Leaf photosynthetic rates at 70 Pa CO{sub 2} were increased 49% in Gliricidia, but were unchanged in Robinia, and there was no change in respiration rate in either species. A {sup 14}CO{sub 2} labelling experiment demonstrated that elevated CO{sub 2} did not affect the kinetics or allocation patterns of photosynthetically fixed carbon to nodules or other plant parts in either species. Our results demonstrate that Gliricidia, but not Robinia, will show an early, positive growth and photosynthetic response to elevated CO{sub 2} in N-poor soils, suggesting that tropical N-fixing trees may be more responsive than temperate N-fixing trees to future atmospheric CO{sub 2} conditions.

  6. Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest.

    PubMed

    Pollastrini, Martina; Nogales, Ana Garcia; Benavides, Raquel; Bonal, Damien; Finer, Leena; Fotelli, Mariangela; Gessler, Arthur; Grossiord, Charlotte; Radoglou, Kalliopi; Strasser, Reto J; Bussotti, Filippo

    2017-01-18

    An assemblage of tree species with different crown properties creates heterogeneous environments at the canopy level. Changes of functional leaf traits are expected, especially those related to light interception and photosynthesis. Chlorophyll a fluorescence (ChlF) properties in dark-adapted leaves, specific leaf area, leaf nitrogen content (N) and carbon isotope composition (δ(13)C) were measured on Picea abies (L.) H.Karst., Pinus sylvestris L. and Betula pendula Roth. in monospecific and mixed boreal forests in Europe, in order to test whether they were affected by stand species richness and composition. Photosynthetic efficiency, assessed by induced emission of leaf ChlF, was positively influenced in B. pendula by species richness, whereas P. abies showed higher photosynthetic efficiency in monospecific stands. Pinus sylvestris had different responses when it coexisted with P. abies or B. pendula The presence of B. pendula, but not of P. abies, in the forest had a positive effect on the efficiency of photosynthetic electron transport and N in P. sylvestris needles, and the photosynthetic responses were positively correlated with an increase of leaf δ(13)C. These effects on P. sylvestris may be related to high light availability at the canopy level due to the less dense canopy of B. pendula The different light requirements of coexisting species was the most important factor affecting the distribution of foliage in the canopy, driving the physiological responses of the mixed species. Future research directions claim to enhance the informative potential of the methods to analyse the responses of pure and mixed forests to environmental factors, including a broader set of plant species' functional traits and physiological responses.

  7. Understanding the Scalability of Bayesian Network Inference using Clique Tree Growth Curves

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole Jakob

    2009-01-01

    Bayesian networks (BNs) are used to represent and efficiently compute with multi-variate probability distributions in a wide range of disciplines. One of the main approaches to perform computation in BNs is clique tree clustering and propagation. In this approach, BN computation consists of propagation in a clique tree compiled from a Bayesian network. There is a lack of understanding of how clique tree computation time, and BN computation time in more general, depends on variations in BN size and structure. On the one hand, complexity results tell us that many interesting BN queries are NP-hard or worse to answer, and it is not hard to find application BNs where the clique tree approach in practice cannot be used. On the other hand, it is well-known that tree-structured BNs can be used to answer probabilistic queries in polynomial time. In this article, we develop an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN's non-root nodes to the number of root nodes, or (ii) the expected number of moral edges in their moral graphs. Our approach is based on combining analytical and experimental results. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for each set. For the special case of bipartite BNs, we consequently have two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, we systematically increase the degree of the root nodes in bipartite Bayesian networks, and find that root clique growth is well-approximated by Gompertz growth curves. It is believed that this research improves the understanding of the scaling behavior of clique tree clustering, provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms, and presents an aid for analytical trade-off studies of clique tree clustering using

  8. A general model of intra-annual tree growth using dendrometer bands

    PubMed Central

    McMahon, Sean M; Parker, Geoffrey G

    2015-01-01

    Tree growth is an important indicator of forest health, productivity, and demography. Knowing precisely how trees' grow within a year, instead of across years, can lead to a finer understanding of the mechanisms that drive these larger patterns. The growing use of dendrometer bands in research forests has only rarely been used to measure growth at resolutions finer than yearly, but intra-annual growth patterns can be observed from dendrometer bands using precision digital calipers and weekly measurements. Here we present a workflow to help forest ecologists fit growth models to intra-annual measurements using standard optimization functions provided by the R platform. We explain our protocol, test uncertainty in parameter estimates with respect to sample sizes, extend the optimization protocol to estimate robust lower and upper annual diameter bounds, and discuss potential challenges to optimal fits. We offer R code to implement this workflow. We found that starting values and initial optimization routines are critical to fitting the best functional forms. After using a bounded, broad search method, a more focused search algorithm obtained consistent results. To estimate starting and ending annual diameters, we combined the growth function with early and late estimates of beginning and ending growth. Once we fit the functions, we present extension algorithms that estimate periodic reductions in growth, total growth, and present a method of controlling for the shifting allocation to girth during the growth season. We demonstrate that with these extensions, an analysis of growth response to weather (e.g., the water available to a tree) can be derived in a way that is comparable across trees, years, and sites. Thus, this approach, when applied across broader data sets, offers a pathway to build inference about the effects of seasonal weather on growth, size- and light-dependent patterns of growth, species-specific patterns, and phenology. PMID:25691954

  9. Relationships of tree height and diameter at breast height revisited: analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand.

    PubMed

    Sumida, Akihiro; Miyaura, Tomiyasu; Torii, Hitoshi

    2013-01-01

    Stem diameter at breast height (DBH) and tree height (H) are commonly used measures of tree growth. We examined patterns of height growth and diameter growth along a stem using a 20-year record of an even-aged hinoki cypress (Chamaecyparis obtusa (Siebold & Zucc.) Endl.) stand. In the region of the stem below the crown (except for the butt swell), diameter growth rates (ΔD) at different heights tended to increase slightly from breast height upwards. This increasing trend was pronounced in suppressed trees, but not as much as the variation in ΔD among individual trees. Hence, ΔD below the crown can be regarded as generally being represented by the DBH growth rate (ΔDBH) of a tree. Accordingly, the growth rate of the stem cross-sectional area increased along the stem upwards in suppressed trees, but decreased in dominant trees. The stem diameter just below the crown base (D(CB)), the square of which is an index of the amount of leaves on a tree, was an important factor affecting ΔDBH. D(CB) also had a strong positive relationship with crown length. Hence, long-term changes in the D(CB) of a tree were associated with long-term changes in crown length, determined by the balance between the height growth rate (ΔH) and the rising rate of the crown base (ΔH(CB)). Within the crown, ΔD's were generally greater than the rates below the crown. Even dying trees (ΔD ≈ 0 below the crown) maintained ΔD > 0 within the crown and ΔH > 0 until about 5 years before death. This growth within the crown may be related to the need to produce new leaves to compensate for leaves lost owing to the longevity of the lower crown. These results explain the different time trajectories in DBH-H relationships among individual trees, and also the long-term changes in the DBH-H relationships. The view that a rise in the crown base is strongly related to leaf turnover helps to interpret DBH-H relationships.

  10. Traffic pollution affects tree-ring width and isotopic composition of Pinus pinea.

    PubMed

    Battipaglia, Giovanna; Marzaioli, Fabio; Lubritto, Carmine; Altieri, Simona; Strumia, Sandro; Cherubini, Paolo; Cotrufo, M Francesca

    2010-01-01

    This study presents new evidence that radiocarbon, combined with dendrochronological and stable isotopes analysis in tree rings and needles, can help to better understand the influence of pollution on trees. Pinus pinea individuals, adjacent to main roads in the urban area of Caserta (South Italy) and exposed to large amounts of traffic exhaust since 1980, were sampled and the time-related trend in the growth residuals was estimated. We found a consistent decrease in the ring width starting from 1980, with a slight increase in delta(13)C value, which was considered to be a consequence of environmental stress. No clear pattern was identified in delta(15)N, while an increasing effect of the fossil fuel dilution on the atmospheric bomb-enriched (14)C background was detected in tree rings, possibly as a consequence of the increase in traffic exhausts. Our findings suggested that radiocarbon is a very sensitive tool to investigate small-scale (i.e. traffic exhaust at the level crossing) and large-scale (urban area pollution) induced disturbances.

  11. Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models

    USGS Publications Warehouse

    Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel

    2016-01-01

    Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.

  12. Carbon Isotopes and the Diverging Growth Response of Treeline Trees to Changing Climate in Alaska

    NASA Astrophysics Data System (ADS)

    Barber, V. A.; Wilmking, M.; Juday, G. P.

    2007-12-01

    One of the underlying assumptions in dendroclimatology is that trees respond to climate today the same way they have responded in the past (uniformitarian principle). Recent studies at northern high latitudes treeline show this assumption may no longer be valid or may be flawed, as tree ring width based temperature reconstructions underestimate recent warming. This "divergence effect" might be due to false assumptions about 1) climate data (e.g. which climate parameter can be modeled most effectively), 2) tree ring data (e.g. shift in climate sensitivity of tree growth) or 3) a truly new and unprecedented phenomenon (e.g. rapid climate warming exceeding the adaptive capacity of trees). A recent survey of treeline trees in a longitudinal transect across the Alaska and Brooks Ranges in central and northern Alaska (maritime conditions in the west to more arid conditions in the east), has identified 3 responses of tree ring width to warming temperatures at discrete sites; positive (increased growth), negative (decreased growth) and no significant response. We hypothesize that the trees with decreased growth have shifted from temperature to moisture sensitivity as temperatures have increased without a concurrent increase in precipitation or change in snowpack. But there has been no definitive study confirming this. Contrasting this, white spruce growth on productive sites at low elevation sites in central Alaska is best modeled by mean May through August temperature. On such sites there is no threshold change in the prediction efficiency of radial growth across the range of temperatures (residuals are scale-independent) in the 104-yr Fairbanks record. This suggests that low elevation trees consistently have been limited by temperature-induced moisture stress, whereas treeline trees may have been high-temperature limited irregularly in the past, and are now increasingly so in recent decades. For this study, tree cores were collected from 12 white spruce (Picea glauca

  13. Tree species identity and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2015-06-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale runoff plots was conducted to investigate the influence of tree species richness and identity as well as tree functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 t ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion, but higher tree species richness did not mitigate soil losses in young forest stands. Thus, different tree morphologies have to be considered, when assessing erosion under forest. High crown cover and leaf area index reduced soil losses in initial forest ecosystems, whereas rising tree height increased them. Even if a leaf litter cover was not present, remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on soil loss. Long-term monitoring of soil erosion under closing tree canopies is necessary and a wide range of functional tree traits should be taken into consideration in future research.

  14. Tropical tree rings reveal preferential survival of fast-growing juveniles and increased juvenile growth rates over time.

    PubMed

    Rozendaal, Danaë M A; Brienen, Roel J W; Soliz-Gamboa, Claudia C; Zuidema, Pieter A

    2010-02-01

    Long-term juvenile growth patterns of tropical trees were studied to test two hypotheses: fast-growing juvenile trees have a higher chance of reaching the canopy ('juvenile selection effect'); and tree growth has increased over time ('historical growth increase'). Tree-ring analysis was applied to test these hypotheses for five tree species from three moist forest sites in Bolivia, using samples from 459 individuals. Basal area increment was calculated from ring widths, for trees < 30 cm in diameter. For three out of five species, a juvenile selection effect was found in rings formed by small juveniles. Thus, extant adult trees in these species have had higher juvenile growth rates than extant juvenile trees. By contrast, rings formed by somewhat larger juveniles in four species showed the opposite pattern: a historical growth increase. For most size classes of > 10 cm diameter none of the patterns was found. Fast juvenile growth may be essential to enable tropical trees to reach the forest canopy, especially for small juvenile trees in the dark forest understorey. The historical growth increase requires cautious interpretation, but may be partially attributable to CO(2) fertilization.

  15. Differences in proleptic and epicormic shoot structures in relation to water deficit and growth rate in almond trees (Prunus dulcis)

    PubMed Central

    Negrón, Claudia; Contador, Loreto; Lampinen, Bruce D.; Metcalf, Samuel G.; Guédon, Yann; Costes, Evelyne; DeJong, Theodore M.

    2014-01-01

    Background and Aims Shoot characteristics differ depending on the meristem tissue that they originate from and environmental conditions during their development. This study focused on the effects of plant water status on axillary meristem fate and flowering patterns along proleptic and epicormic shoots, as well as on shoot growth rates on ‘Nonpareil’ almond trees (Prunus dulcis). The aims were (1) to characterize the structural differences between proleptic and epicormic shoots, (2) to determine whether water deficits modify shoot structures differently depending on shoot type, and (3) to determine whether shoot structures are related to shoot growth rates. Methods A hidden semi-Markov model of the axillary meristem fate and number of flower buds per node was built for two shoot types growing on trees exposed to three plant water status treatments. The models segmented observed shoots into successive homogeneous zones, which were compared between treatments. Shoot growth rates were calculated from shoot extension measurements made during the growing season. Key Results Proleptic shoots had seven successive homogeneous zones while epicormic shoots had five zones. Shoot structures were associated with changes in growth rate over the season. Water deficit (1) affected the occurrence and lengths of the first zones of proleptic shoots, but only the occurrence of the third zone was reduced in epicormic shoots; (2) had a minor effect on zone flowering patterns and did not modify shoot or zone composition of axillary meristem fates; and (3) reduced growth rates, although patterns over the season were similar among treatments. Conclusions Two meristem types, with different latency durations, produced shoots with different growth rates and distinct structures. Differences between shoot type structure responses to water deficit appeared to reflect their ontogenetic characteristics and/or resource availability for their development. Tree water deficit appeared to stimulate

  16. Trees

    NASA Astrophysics Data System (ADS)

    Epstein, Henri

    2016-11-01

    An algebraic formalism, developed with V. Glaser and R. Stora for the study of the generalized retarded functions of quantum field theory, is used to prove a factorization theorem which provides a complete description of the generalized retarded functions associated with any tree graph. Integrating over the variables associated to internal vertices to obtain the perturbative generalized retarded functions for interacting fields arising from such graphs is shown to be possible for a large category of space-times.

  17. Forest Tree Growth as a Bioindicator of Pollution Abatement Systems at the Radford Army Ammunition Plant.

    DTIC Science & Technology

    1982-01-14

    U-0Al C 0LIGNAPLTCGICIS P TT IY BLCSUG-EC FS1/ FOREST TREE GROWTH AS A BIOINDICATOR OF POLLUTION ABATEMENT SYS--ETC(I 𔃾- oa2 JAN 62 J M SKELLY. L W...947! FOREST TREE GROWTH AS A BIOINDICATOR OF POLLUTION ABATEMENT SYSTEMS AT THE RADFORD ARMY AMMUNITION PLANT Accession For FINAL REPORT Dr. John M...test potential bioindicator systems. x The study objectives of this research were: i’l) To determine if the pollution levels alone were responsible

  18. Assessment of ecosystem services provided by urban trees: public lands within the Urban Growth Boundary of Corvallis, OR

    EPA Science Inventory

    Public lands within the Urban Growth Boundary of Corvallis, Oregon contain a diverse population of about 440,000 trees that include over 300 varieties and have an estimated tree cover of 31%. While often unrecognized, urban trees provide a variety of “ecosystem services” or dire...

  19. Moisture stress of a hydrological year on tree growth in the Tibetan Plateau and surroundings

    NASA Astrophysics Data System (ADS)

    Fang, Keyan; Frank, David; Zhao, Yan; Zhou, Feifei; Seppä, Heikki

    2015-03-01

    Investigations of climate-growth interactions can shed light on the response of forest growth to climate change and the dendroclimatic reconstructions. However, most existing studies in the climatically important Tibetan Plateau (TP) and surrouding regions focus on linear growth responses to environmental variation. Herein we investigated both the linear and the nonlinear climate-growth interactions for 152 tree-ring chronologies in the TP and vicinity. We introduced the boosted regression tree (BRT) technique to study the nonlinear climate-growth relationships by pooling several sites with similar climate-growth relationships to mitigate potential biases due to the shortness of the instrumental records. Across most of the TP and surroundings, tree growth is stressed by drought. The warming induced drought has been evidenced by the strong interactions between temperature and precipitation in the BRT analyses. The drought stress on forest growth is particularly conspicuous for a hydrological year over much of the Northern TP and surroundings. The BRT analyses indicate the compensation effect of moisture prior to the growing season for the moisture deficit in the early growing season in May to July, when most of the ring-width formation occurs.

  20. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    PubMed Central

    Xiong, Liu-lin; Chen, Zhi-wei; Wang, Ting-hua

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews. PMID:27212919

  1. Restoration of eroded soil in the Sonoran Desert with native leguminous trees using plant growth-promoting microorganisms and limited amounts of compost and water.

    PubMed

    Bashan, Yoav; Salazar, Bernardo G; Moreno, Manuel; Lopez, Blanca R; Linderman, Robert G

    2012-07-15

    Restoration of highly eroded desert land was attempted in the southern Sonoran Desert that had lost its natural capacity for self-revegetation. In six field experiments, the fields were planted with three native leguminous trees: mesquite amargo Prosopis articulata, and yellow and blue palo verde Parkinsonia microphylla and Parkinsonia florida. Restoration included inoculation with two of plant growth-promoting bacteria (PGPB; Azospirillum brasilense and Bacillus pumilus), native arbuscular mycorrhizal (AM) fungi, and small quantities of compost. Irrigation was applied, when necessary, to reach a rainy year (300 mm) of the area. The plots were maintained for 61 months. Survival of the trees was marginally affected by all supplements after 30 months, in the range of 60-90%. This variation depended on the plant species, where all young trees were established after 3 months. Plant density was a crucial variable and, in general, low plant density enhanced survival. High planting density was detrimental. Survival significantly declined in trees 61 months after planting. No general response of the trees to plant growth-promoting microorganisms and compost was found. Mesquite amargo and yellow palo verde responded well (height, number of branches, and diameter of the main stem) to inoculation with PGPB, AM fungi, and compost supplementation after three months of application. Fewer positive effects were recorded after 30 months. Blue palo verde did not respond to most treatments and had the lowest survival. Specific plant growth parameters were affected to varying degrees to inoculations or amendments, primarily depending on the tree species. Some combinations of tree/inoculant/amendment resulted in small negative effects or no response when measured after extended periods of time. Using native leguminous trees, this study demonstrated that restoration of severely eroded desert lands was possible.

  2. Linking Tree Growth Response to Measured Microclimate - A Field Based Approach

    NASA Astrophysics Data System (ADS)

    Martin, J. T.; Hoylman, Z. H.; Looker, N. T.; Jencso, K. G.; Hu, J.

    2015-12-01

    The general relationship between climate and tree growth is a well established and important tenet shaping both paleo and future perspectives of forest ecosystem growth dynamics. Across much of the American west, water limits growth via physiological mechanisms that tie regional and local climatic conditions to forest productivity in a relatively predictable way, and these growth responses are clearly evident in tree ring records. However, within the annual cycle of a forest landscape, water availability varies across both time and space, and interacts with other potentially growth limiting factors such as temperature, light, and nutrients. In addition, tree growth responses may lag climate drivers and may vary in terms of where in a tree carbon is allocated. As such, determining when and where water actually limits forest growth in real time can be a significant challenge. Despite these challenges, we present data suggestive of real-time growth limitation driven by soil moisture supply and atmospheric water demand reflected in high frequency field measurements of stem radii and cell structure across ecological gradients. The experiment was conducted at the Lubrecht Experimental Forest in western Montana where, over two years, we observed intra-annual growth rates of four dominant conifer species: Douglas fir, Ponderosa Pine, Engelmann Spruce and Western Larch using point dendrometers and microcores. In all four species studied, compensatory use of stored water (inferred from stem water deficit) appears to exhibit a threshold relationship with a critical balance point between water supply and demand. The occurrence of this point in time coincided with a decrease in stem growth rates, and the while the timing varied up to one month across topographic and elevational gradients, the onset date of growth limitation was a reliable predictor of overall annual growth. Our findings support previous model-based observations of nonlinearity in the relationship between

  3. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species.

    PubMed

    Köcher, Paul; Horna, Viviana; Leuschner, Christoph

    2012-08-01

    Tree ring analysis investigates growth processes at time horizons of several weeks to millennia, but lacks the detail of short-term fluctuation in cambial activity. This study used electronic high-precision dendrometry for analyzing the environmental factors controlling stem diameter variation and radial growth in daily resolution in five co-existing temperate broad-leaved tree species (genera Fraxinus, Acer, Carpinus, Tilia and Fagus) with different growth and survival strategies. Daily stem radius change (SRC(d)) was primarily influenced by the atmospheric demand for water vapor (expressed either as vapor pressure deficit (D) or relative air humidity (RH)) while rainfall, soil matrix potential, temperature and radiation were only secondary factors. SRC(d) increased linearly with increasing RH and decreasing D in all species. The positive effect of a low atmospheric water vapor demand on SRC(d) was largest in June during the period of maximal radial growth rate and persisted when observation windows of 7 or 21 days instead of 1 day were used. We found a high synchronicity in the day-to-day growth rate fluctuation among the species with increment peaks corresponding to air humidity maxima, even though the mean daily radial growth rate differed fivefold among the species. The five -species also differed in the positive slope of the growth/RH relationship with the steepest increase found in Fraxinus and the lowest in Fagus. We explain the strong positive effect of high RH and low D on radial stem increment by lowered transpiration which reduces negative pressure in the conducting system and increases turgor in the stem cambium cells, thereby favoring cell division and expansion. The results suggest that mechanistic models of tree growth need to consider the atmospheric water status in addition to the known controlling environmental factors: temperature, soil moisture and precipitation. The results further have implications for sensitivity analyses of tree growth to

  4. [Effects of waterlogging on the growth and energy-metabolic enzyme activities of different tree species].

    PubMed

    Wang, Gui-Bin; Cao, Fu-Liang; Zhang, Xiao-Yan; Zhang, Wang-Xiang

    2010-03-01

    Aimed to understand the waterlogging tolerance and adaptation mechanisms of different tree species, a simulated field experiment was conducted to study the growth and energy-metabolic enzyme activities of one-year-old seedlings of Taxodium distichum, Carya illinoensis, and Sapium sebiferum. Three treatments were installed, i. e., CK, waterlogging, and flooding, with the treatment duration being 60 days. Under waterlogging and flooding, the relative growth of test tree species was in the order of T. distichum > C. illinoensis > S. sebiferum, indicating that T. distichum had the strongest tolerance against waterlogging and flooding, while S. sebiferum had the weakest one. Also under waterlogging and flooding, the root/crown ratio of the three tree species increased significantly, suggesting that more photosynthates were allocated in roots, and the lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) activities of the tree species also had a significant increase. Among the test tree species, T. distichum had the lowest increment of LDH and ADH activities under waterlogging and flooding, but the increment could maintain at a higher level in the treatment duration, while for C. illinoensis and S. sebiferum, the increment was larger during the initial and medium period, but declined rapidly during the later period of treatment. The malate dehydrogenase (MDH), phosphohexose (HPI), and glucose-6-phosphate dehydrogenase (G6PDH) -6-phosphogluconate dehydrogenase (6PGDH) activities of the tree species under waterlogging and flooding had a significant decrease, and the decrement was the largest for T. distichum, being 35.6% for MDH, 21.0% for HPI, and 22.7% for G6PDH - 6PGDH under flooding. It was suggested that under waterlogging and flooding, the tree species with strong waterlogging tolerance had a higher ability to maintain energy-metabolic balance, and thus, its growth could be maintained at a certain level.

  5. Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa

    PubMed Central

    Healey, Adam L.; Lee, David J.; Lupoi, Jason S.; Papa, Gabriella; Guenther, Joel M.; Corno, Luca; Adani, Fabrizio; Singh, Seema; Simmons, Blake A.; Henry, Robert J.

    2016-01-01

    In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific F1 hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegata and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7–21.3%) among parental and hybrid populations, whereas glucan content was clearly distinguished within C. citriodora subspecies variegata (52%) and HF148 (60%) as compared to other populations (28–38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase), and glucan and xylan typically decreasing per DBH cm increase (-0.7 and -0.3%, respectively). Polysaccharide content within C. citriodora subspecies variegata and HF-148 were not significantly affected by tree size. High-throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (~180 mg/g biomass, respectively), with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production

  6. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    PubMed

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  7. Radial growth rate increases in naturally occurring ponderosa pine trees: a late-20th century CO2 fertilization effect?

    PubMed

    Soulé, Peter T; Knapp, Paul A

    2006-01-01

    The primary objective of this study was to determine if gradually increasing levels of atmospheric CO2, as opposed to 'step' increases commonly employed in controlled studies, have a positive impact on radial growth rates of ponderosa pine (Pinus ponderosa) in natural environments, and to determine the spatial extent and variability of this growth enhancement. We developed a series of tree-ring chronologies from minimally disturbed sites across a spectrum of environmental conditions. A series of difference of means tests were used to compare radial growth post-1950, when the impacts of rising atmospheric CO2 are best expressed, with that pre-1950. Spearman's correlation was used to relate site stress to growth-rate changes. Significant increases in radial growth rates occurred post-1950, especially during drought years, with the greatest increases generally found at the most water-limited sites. Site harshness is positively related to enhanced radial growth rates. Atmospheric CO2 fertilization is probably operative, having a positive effect on radial growth rates of ponderosa pine through increasing water-use efficiency. A CO2-driven growth enhancement may affect ponderosa pine growing under both natural and controlled conditions.

  8. Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees.

    PubMed

    Jin, Yan-Li; Tang, Ren-Jie; Wang, Hai-Hai; Jiang, Chun-Mei; Bao, Yan; Yang, Yang; Liang, Mei-Xia; Kong, Fanjing; Li, Bei; Zhang, Hong-Xia

    2017-03-04

    Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyze the conversion of castasterone (CS) to brassinolide (BL), a final rate-limiting step in the BR biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded-growth phenotype of the Arabidopsis cyp85a2-2 and tomato d(x) mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type (WT), plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggest that PtCYP85A3 could be used as a potential candidate gene for engineering fast growing trees with improved wood production. This article is protected by copyright. All rights reserved.

  9. Plant growth regulatory effect and insecticidal activity of the extracts of the Tree of Heaven (Ailanthus altissima L.)

    PubMed Central

    Tsao, Rong; Romanchuk, Frieda E; Peterson, Chris J; Coats, Joel R

    2002-01-01

    Background There is an urgent need to explore and utilize naturally occurring products for combating harmful agricultural and public health pests. Secondary metabolites in the leaves of the Tree of Heaven, Ailanthus altissima L. have been reported to be herbicidal and insecticidal. The mode of action, however, of the active compounds in A. altissima are not understood. In this paper, we report the chemical characteristics of the herbicidal and insecticidal components in this tree, and will discuss the effect of light on the bioactivity of the active components. Results Extracts from the fresh leaves of A. altissima showed a strong plant germination/growth inhibitory effect in laboratory bioassays against alfalfa (Medicago sativa). The effect was dose-dependent. The growth inhibitory components were in the methylene chloride soluble fraction of the extract. The effect was greater in the light than in the dark. Other fractions had plant growth enhancing effect at lower concentrations. The extract was slightly insecticidal against yellow fever mosquito larvae (Aedes aegypti). Conclusions The extract or its semi-purified fractions of A. altissima were strong plant growth inhibitors, therefore good candidates as potential environmentally safe and effective agricultural pest management agents. The finding that light affects the activity will be useful in the application of such natural products. PMID:11860616

  10. Shoot growth orientation in trees is influenced by gravitropic control via a signaling pathway that includes TAC1 and LAZY1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the molecular basis behind tree architecture could have significant impacts in tree crop agriculture and forestry. The ability to manipulate tree branch growth and patterning could lead to significant productivity improvements through reduced pesticide use, reduced labor for harvestin...

  11. The growth forecasting model for apple tree based on ground-based remote sensing

    NASA Astrophysics Data System (ADS)

    Ji, Ronghua; Zheng, Lihua; Deng, Xiaolei; Zhang, Yao; Sun, Hong; Li, Minzan

    2012-11-01

    In order to monitor the growth statues of apple tree non-destructively and effectively, the field experiments were conducted at five different stages of apple tree annual growth season. The spectral reflectance of apple leaves was collected and the nutrient parameters of leaf (chlorophyll content (LCC) and moisture content (LMC)) were measured in the lab. The relationship between the apple tree leaf spectral reflectance and the apple growth parameters was analyzed. In order to select optimal spectral bands, the transformation forms of spectra were calculated including first derivative, second derivative, reciprocal, logarithm, the logarithm of reciprocal and the first derivative of logarithm. The sensitive detecting wavelengths were selected based on the correlation between the apple tree leaf spectra (original spectra and its transformation forms) and the apple tree growing parameters (LCC and LMC). The result showed that the original spectrum was most correlated with LCC from 511nm to 590nm and 688nm to 718nm; the correlation coefficients of September were the highest and the maximum value was 0.6. Three apple tree growth models were built using Multiple Linear Regression Analysis (MLRA), Principal Component Analysis (PCA) and Artificial Neural Network (ANN) respectively. The result showed that the forecasting model based on PCA was the optimal model to predict the apple leaves chlorophyll, and its calibration R2 was 0.851 and validation R2 was 0.8289. The apple leaves moisture content forecasting model based on ANN was optimal, and its calibration R2 was 0.8561 and validation R2 was 0.8375.

  12. Young Children Learn to Restructure Personal Ideas about Growth in Trees.

    ERIC Educational Resources Information Center

    Sunal, Dennis W.; Sunal, Cynthia S.

    1991-01-01

    Three activities in which students identify and demonstrate similarities and differences in plants and in plant growth are presented. The activities include background information, objectives for the tree ring activities, a list of needed materials, procedures, evaluation procedures, and a glossary. (KR)

  13. Aboveground Tree Growth Varies with Belowground Carbon Allocation in a Tropical Rainforest Environment

    PubMed Central

    Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351

  14. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment.

    PubMed

    Raich, James W; Clark, Deborah A; Schwendenmann, Luitgard; Wood, Tana E

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15-20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide.

  15. Acid rain, air pollution, and tree growth in southeastern New York

    USGS Publications Warehouse

    Puckett, L.J.

    1982-01-01

    Whether dendroecological analyses could be used to detect changes in the relationship of tree growth to climate that might have resulted from chronic exposure to components of the acid rain-air pollution complex was determined. Tree-ring indices of white pine (Pinus strobus L.), eastern hemlock (Tsuga canadensis (L.) Cart.), pitch pine (Pinus rigida Mill.), and chestnut oak (Quercus prinus L.) were regressed against orthogonally transformed values of temperature and precipitation in order to derive a response-function relationship. Results of the regression analyses for three time periods, 1901–1920, 1926–1945, and 1954–1973 suggest that the relationship of tree growth to climate has been altered. Statistical tests of the temperature and precipitation data suggest that this change was nonclimatic. Temporally, the shift in growth response appears to correspond with the suspected increase in acid rain and air pollution in the Shawangunk Mountain area of southeastern New York in the early 1950's. This change could be the result of physiological stress induced by components of the acid rain-air pollution complex, causing climatic conditions to be more limiting to tree growth.

  16. Comparison of irrigation, leachate and tree growth between soilless and coal ash based media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In nursery production, knowledge of water quality and quantity is needed to improve irrigation and fertilizer application efficiency as it relates to potential for soil and groundwater contamination. Water and fertilizer use and loss as well as tree growth were investigated for Red Sunset maple (Ace...

  17. Acid rain, air pollution, and tree growth in southeastern New York

    SciTech Connect

    Puckett, L.J.

    1982-07-01

    Whether dendroecological analyses could be used to detect changes in the relationship of tree growth to climate that might have resulted from chronic exposure to components of the acid rain-air pollution complex was determined. Tree-ring indices of white pine (Pinus strobus L.), eastern hemlock (Tsuga canadensis (L.) Carr.), pitch pine (Pinus rigida Mill.), and chestnut oak (Quercus prinus L.) were regressed against orthogonally transformed values of temperature and precipitation in order to derive a response-function relationship. Results of the regression analyses for three time periods, 1901-1920, 1926-1945, and 1954-1973 suggest that the relationship of tree growth to climate has been altered. Statistical tests of the temperature and precipitation data suggest that this change was nonclimatic. Temporally, the shift in growth response appears to correspond with the suspected increase in acid rain and air pollution in the Shawangunk Mountain area of southeastern New York in the early 1950's. This change could be the result of physiological stress induced by components of the acid rain-air pollution complex, causing climatic conditions to be more limiting to tree growth.

  18. Correlation analysis of tree growth, climate, and acid deposition in the Lake States. Forest Service research paper

    SciTech Connect

    Holdaway, M.R.

    1990-01-01

    The report describes research designed to detect subtle regional tree growth trends related to sulfate (SO{sub 4}) deposition in the Lake States. Correlation methods were used to analyze climatic and SO{sub 4} deposition. Effects of SO{sub 4} deposition are greater on climatically stressed trees, especially pine species on dry sites, than on unstressed trees. Jack pine growth shows the strongest correlation to both climate and acid deposition.

  19. A New Model for Size-Dependent Tree Growth in Forests.

    PubMed

    Ishihara, Masae Iwamoto; Konno, Yasuo; Umeki, Kiyoshi; Ohno, Yasuyuki; Kikuzawa, Kihachiro

    2016-01-01

    Tree growth, especially diameter growth of tree stems, is an important issue for understanding the productivity and dynamics of forest stands. Metabolic scaling theory predicted that the 2/3 power of stem diameter at a certain time is a linear function of the 2/3 power of the initial diameter and that the diameter growth rate scales to the 1/3 power of the initial diameter. We tested these predictions of the metabolic scaling theory for 11 Japanese secondary forests at various growth stages. The predictions were not supported by the data, especially in younger stands. Alternatively, we proposed a new theoretical model for stem diameter growth on the basis of six assumptions. All these assumptions were supported by the data. The model produced a nearly linear to curvilinear relationship between the 2/3 power of stem diameters at two different times. It also fitted well to the curvilinear relationship between diameter growth rate and the initial diameter. Our model fitted better than the metabolic scaling theory, suggesting the importance of asymmetric competition among trees, which has not been incorporated in the metabolic scaling theory.

  20. In the footsteps of Robert Marshall: Proposed research of white spruce growth and movement at the tree limit, central Brooks Range, Alaska

    SciTech Connect

    Droessler, T.D.

    1992-03-01

    The proposed research will quantify white spruce growth and document its latitudinal stability at the tree limit in the central Brooks Range over the life span of the living trees. The goal is to link tree growth and tree position to summer temperature and precipitation. Historical records from 1929 to 1938 from work by Robert Marshall have been used to identify tree limit sites and provide information to interpret the present location of the tree limit.

  1. Differential Growth Responses to Water Balance of Coexisting Deciduous Tree Species Are Linked to Wood Density in a Bolivian Tropical Dry Forest

    PubMed Central

    Mendivelso, Hooz A.; Camarero, J. Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability. PMID:24116001

  2. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    PubMed

    Mendivelso, Hooz A; Camarero, J Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  3. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape.

    PubMed

    Shi, Pei-Jian; Huang, Jian-Guo; Hui, Cang; Grissino-Mayer, Henri D; Tardif, Jacques C; Zhai, Li-Hong; Wang, Fu-Sheng; Li, Bai-Lian

    2015-01-01

    Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modeled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems.

  4. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape

    PubMed Central

    Shi, Pei-Jian; Huang, Jian-Guo; Hui, Cang; Grissino-Mayer, Henri D.; Tardif, Jacques C.; Zhai, Li-Hong; Wang, Fu-Sheng; Li, Bai-Lian

    2015-01-01

    Tree-rings are often assumed to approximate a circular shape when estimating forest productivity and carbon dynamics. However, tree rings are rarely, if ever, circular, thereby possibly resulting in under- or over-estimation in forest productivity and carbon sequestration. Given the crucial role played by tree ring data in assessing forest productivity and carbon storage within a context of global change, it is particularly important that mathematical models adequately render cross-sectional area increment derived from tree rings. We modeled the geometric shape of tree rings using the superellipse equation and checked its validation based on the theoretical simulation and six actual cross sections collected from three conifers. We found that the superellipse better describes the geometric shape of tree rings than the circle commonly used. We showed that a spiral growth trend exists on the radial section over time, which might be closely related to spiral grain along the longitudinal axis. The superellipse generally had higher accuracy than the circle in predicting the basal area increment, resulting in an improved estimate for the basal area. The superellipse may allow better assessing forest productivity and carbon storage in terrestrial forest ecosystems. PMID:26528316

  5. Ripping Improves Tree Survival and Growth on Unused Reclaimed Mined Lands

    NASA Astrophysics Data System (ADS)

    Fields-Johnson, Christopher W.; Burger, James A.; Evans, Daniel M.; Zipper, Carl E.

    2014-06-01

    There is renewed interest in re-establishing trees on 0.6 million ha of mining-disturbed lands in the Appalachian mountains of Eastern United States. Many coal-mined lands reclaimed to meet requirements of US federal law have thick herbaceous vegetation and compacted soils which impede tree establishment. Mitigation practices were applied on three mine sites and evaluated for success in enabling planted trees to become established. Eastern white pine ( Pinus strobus), hybrid poplar ( Populus deltoids × Populus trichocarpa), and mixed Appalachian hardwoods were established using weed control only and weed control with subsoil ripping. Trees were measured in October of 2008 after 5 years of growth. Subsoil ripping increased mixed hardwood survival from 43 to 71 %, hybrid poplar biomass index from 1.51 to 8.97 Mg ha-1, and Eastern white pine biomass index from 0.10 to 0.32 Mg ha-1. When restoring trees to unused mined sites, subsoil ripping can aid survival and growth to an extent that will result in a valuable forest.

  6. Tree Species Composition and Harvest Intensity Affect Herbivore Density and Leaf Damage on Beech, Fagus sylvatica, in Different Landscape Contexts.

    PubMed

    Mangels, Jule; Blüthgen, Nico; Frank, Kevin; Grassein, Fabrice; Hilpert, Andrea; Mody, Karsten

    2015-01-01

    Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that - despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees - suggesting the action of associational resistance processes - and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.

  7. Tree Species Composition and Harvest Intensity Affect Herbivore Density and Leaf Damage on Beech, Fagus sylvatica, in Different Landscape Contexts

    PubMed Central

    Mangels, Jule; Blüthgen, Nico; Frank, Kevin; Grassein, Fabrice; Hilpert, Andrea; Mody, Karsten

    2015-01-01

    Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores. PMID:25938417

  8. Tadpoles of Early Breeding Amphibians are Negatively Affected by Leaf Litter From Invasive Chinese Tallow Trees

    NASA Astrophysics Data System (ADS)

    Leonard, N. E.

    2005-05-01

    As wetlands are invaded by Chinese tallow trees (Triadica sebifera), native trees are displaced and detrital inputs to amphibian breeding ponds are altered. I used a mesocosm experiment to examine the effect of Chinese tallow leaf litter on the survival to, size at, and time to metamorphosis of amphibian larvae. Fifty 1000-L cattle watering tanks were treated with 1500 g dry weight of one of five leaf litter treatments: Chinese tallow, laurel oak (Quercus laurifolia), water tupelo (Nyssa aquatica), slash pine (Pinus elliottii), or a 3:1:1:1 mixture. Each tank received 45 tadpoles of Pseudacris feriarum, Bufo terrestris, and Hyla cinerea in sequence according to their natural breeding phonologies. Every Pseudacris feriarum and Bufo terrestris tadpole exposed to Chinese tallow died prior to metamorphosis. Hyla cinerea survival in tanks with tallow-only was significantly lower than that observed for all other leaf treatments. Hyla cinerea tadpoles from tallow-only and mixed-leaf treatments were larger at metamorphosis and transformed faster than those in tanks with native leaves only. These results suggest that Chinese tallow leaf litter may negatively affect tadpoles of early breeding frogs and that Chinese tallow invasion may change the structure of amphibian communities in temporary ponds.

  9. Trade-Offs between Growth Rate, Tree Size and Lifespan of Mountain Pine (Pinus montana) in the Swiss National Park.

    PubMed

    Bigler, Christof

    2016-01-01

    A within-species trade-off between growth rates and lifespan has been observed across different taxa of trees, however, there is some uncertainty whether this trade-off also applies to shade-intolerant tree species. The main objective of this study was to investigate the relationships between radial growth, tree size and lifespan of shade-intolerant mountain pines. For 200 dead standing mountain pines (Pinus montana) located along gradients of aspect, slope steepness and elevation in the Swiss National Park, radial annual growth rates and lifespan were reconstructed. While early growth (i.e. mean tree-ring width over the first 50 years) correlated positively with diameter at the time of tree death, a negative correlation resulted with lifespan, i.e. rapidly growing mountain pines face a trade-off between reaching a large diameter at the cost of early tree death. Slowly growing mountain pines may reach a large diameter and a long lifespan, but risk to die young at a small size. Early growth was not correlated with temperature or precipitation over the growing period. Variability in lifespan was further contingent on aspect, slope steepness and elevation. The shade-intolerant mountain pines follow diverging growth trajectories that are imposed by extrinsic environmental influences. The resulting trade-offs between growth rate, tree size and lifespan advance our understanding of tree population dynamics, which may ultimately improve projections of forest dynamics under changing environmental conditions.

  10. Trade-Offs between Growth Rate, Tree Size and Lifespan of Mountain Pine (Pinus montana) in the Swiss National Park

    PubMed Central

    Bigler, Christof

    2016-01-01

    A within-species trade-off between growth rates and lifespan has been observed across different taxa of trees, however, there is some uncertainty whether this trade-off also applies to shade-intolerant tree species. The main objective of this study was to investigate the relationships between radial growth, tree size and lifespan of shade-intolerant mountain pines. For 200 dead standing mountain pines (Pinus montana) located along gradients of aspect, slope steepness and elevation in the Swiss National Park, radial annual growth rates and lifespan were reconstructed. While early growth (i.e. mean tree-ring width over the first 50 years) correlated positively with diameter at the time of tree death, a negative correlation resulted with lifespan, i.e. rapidly growing mountain pines face a trade-off between reaching a large diameter at the cost of early tree death. Slowly growing mountain pines may reach a large diameter and a long lifespan, but risk to die young at a small size. Early growth was not correlated with temperature or precipitation over the growing period. Variability in lifespan was further contingent on aspect, slope steepness and elevation. The shade-intolerant mountain pines follow diverging growth trajectories that are imposed by extrinsic environmental influences. The resulting trade-offs between growth rate, tree size and lifespan advance our understanding of tree population dynamics, which may ultimately improve projections of forest dynamics under changing environmental conditions. PMID:26930294

  11. Comparative study on growth performance of two shade trees in tea agroforestry system.

    PubMed

    Kalita, Rinku Moni; Das, Ashesh Kumar; Nath, Arun Jyoti

    2014-07-01

    An attempt was made to study the stem growth of two native dominant shade tree species in terms of annual girth increment in three dominant girth size categories for two years in tea agroforestry system of Barak Valley, Assam. Fifty two sampling plots of 0.1 ha size were established and all trees exceeding 10 cm girth over bark at breast height (1.37 m) were uniquely identified, tagged, and annually measured for girth increment, using metal tape during December 2010-12. Albizia lebbeck and A. odoratissima were dominant shade tree species registering 82% of appearance of the individuals studied. The girth class was categorized into six different categories where 30-50 cm, 50-70 cm and 70-90 cm were dominating girth classes and selected for increment study. Mean annual girth increment ranged from 1.41 cm in Albizia odoratissima (50-70 cm girth class) to 2.97 cm in Albizia lebbeck (70-90 cm girth class) for the first year and 1.70 cm in Albizia odoratissima (50-70 cm girth class) to 3.09 cm in Albizia lebbeck (70-90 cm girth class) for the second year. Albizia lebbeck exhibited better growth in all prominent girth classes as compared to Albizia odoratissima during the observation period. The two shade tree species showed similar trend of growth in both the years of observation and significant difference in girth increment.

  12. Watershed Watch Undergraduate Research Projects: Monitoring Environmental Impacts on Tree Growth - Urban Development and Hurricanes

    NASA Astrophysics Data System (ADS)

    Rock, B. N.; Hale, S.

    2009-12-01

    Watershed Watch (NSF 0525433) is designed to engage early undergraduate students from two-year and four-year colleges in student-driven full inquiry-based instruction in the biogeosciences. Program goals for Watershed Watch are to test if inquiry-rich student-driven projects sufficiently engage undeclared students (or noncommittal STEM majors) to declare a STEM major (or remain with their STEM major). The program is a partnership between two four-year campuses - the University of New Hampshire (UNH), and Elizabeth City State University (ECSU, in North Carolina); and two two-year campuses - Great Bay Community College (GBCC, in New Hampshire) and the College of the Albemarle (COA, in North Carolina). Two Watershed Watch students from the 2009 Summer Research Institute (SRI), held on the ECSU campus, August 3-14, 2009 investigated the use of wood cores collected from loblolly pine (Pinus taeda) and bald cypress (Taxodium distichum). One student team studied the possible impacts of urban development on tree growth, focusing on the use of dendrochronology to assess the effect of environmental factors on the trees. Tree cores and foliar samples were collected at the ECSU Outdoor Classroom and compared with the same species from the Great Dismal Swamp (GDS) in Virginia. The main targets of this experiment were one aquatic tree, the bald cypress, and a land based tree, the loblolly pine. This allowed us to compare an urbanized area (ECSU) with a more natural setting (GDS) to evaluate factors impacting tree growth. This experiment suggests that there may be potentially harmful impacts of an urban environment with the data that at ECSU. The growth rings of the ECSU campus tree cores are noticeably narrow, especially in the loblolly pine from the ECSU outdoor classroom, and multiple fluctuations in more recent tree rings of the bald cypress in the ECSU campus. Growth ring compression, beginning approximately in 1956 in 100-year old loblolly pines, corresponds in timing with

  13. How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth?

    PubMed

    Buckley, Thomas N; Roberts, David W

    2006-02-01

    Conventional wisdom holds that the ratio of leaf area to sapwood area (L/S) should decline during height (H) growth to maintain hydraulic homeostasis and prevent stomatal conductance (g(s)) from declining. We contend that L/S should increase with H based on a numerical simulation, a mathematical analysis and a conceptual argument: (1) numerical simulation--a tree growth model, DESPOT (Deducing Emergent Structure and Physiology Of Trees), in which carbon (C) allocation is regulated to maximize C gain, predicts L/S should increase during most of H growth; (2) mathematical analysis--the formal criterion for optimal C allocation, applied to a simplified analytical model of whole tree carbon-water balance, predicts L/S should increase with H if leaf-level gas exchange parameters including g(s) are conserved; and (3) conceptual argument--photosynthesis is limited by several substitutable resources (chiefly nitrogen (N), water and light) and H growth increases the C cost of water transport but not necessarily of N and light capture, so if the goal is to maximize C gain or growth, allocation should shift in favor of increasing photosynthetic capacity and irradiance, rather than sustaining g(s). Although many data are consistent with the prediction that L/S should decline with H, many others are not, and we discuss possible reasons for these discrepancies.

  14. A high-resolution monitoring network investigating stem growth of tropical forest trees

    NASA Astrophysics Data System (ADS)

    Hofhansl, F.; De Araujo, A. C.; DeLucia, E. H.

    2015-12-01

    The proportion of carbon (C) allocated to tree stems is an important determinant of the C sink-strength of global forest ecosystems. Understanding the mechanisms controlling stem growth is essential for parameterization of global vegetation models and to accurately predict C sequestration of forest ecosystems. However, we still lack a thorough understanding of intra-annual variations in stem growth of tropical forest ecosystems, which could be especially prone to projected climatic changes. We here present high-resolution data (≤ 6 µm; ≥ 1 min) from a novel monitoring network of wireless devices for automated measurement of expansion and contraction in tree diameter using a membrane potentiometer, as well as point dendrometers on phloem and xylem to analyze diurnal changes in stem growth. Our results indicate that diurnal changes in stem diameter were associated with sap flow and related to seasonal variations in daytime temperature and water availability, such that daily maximum stem growth was positively related to temperature during the wet season but showed the opposite trend during the onset of the dry season. We show that high-resolution monitoring of stem growth of tropical trees is crucial to determine the response to intra-annual climate variation and therefore will be key to accurately predict future responses of tropical aboveground C storage, and should be of special interest for tropical ecosystem research and earth system science.

  15. Plant traits affecting herbivory on tree recruits in highly diverse subtropical forests.

    PubMed

    Schuldt, Andreas; Bruelheide, Helge; Durka, Walter; Eichenberg, David; Fischer, Markus; Kröber, Wenzel; Härdtle, Werner; Ma, Keping; Michalski, Stefan G; Palm, Wolf-Ulrich; Schmid, Bernhard; Welk, Erik; Zhou, Hongzhang; Assmann, Thorsten

    2012-07-01

    Differences in herbivory among woody species can greatly affect the functioning of forest ecosystems, particularly in species-rich (sub)tropical regions. However, the relative importance of the different plant traits which determine herbivore damage remains unclear. Defence traits can have strong effects on herbivory, but rarely studied geographical range characteristics could complement these effects through evolutionary associations with herbivores. Herein, we use a large number of morphological, chemical, phylogenetic and biogeographical characteristics to analyse interspecific differences in herbivory on tree saplings in subtropical China. Unexpectedly, we found no significant effects of chemical defence traits. Rather, herbivory was related to the plants' leaf morphology, local abundance and climatic niche characteristics, which together explained 70% of the interspecific variation in herbivory in phylogenetic regression. Our study indicates that besides defence traits and apparency to herbivores, previously neglected measures of large-scale geographical host distribution are important factors influencing local herbivory patterns among plant species.

  16. The Impact of Nitrogen Limitation and Mycorrhizal Symbiosis on Aspen Tree Growth and Development

    SciTech Connect

    Tran, Bich Thi Ngoc

    2014-08-18

    Nitrogen deficiency is the most common and widespread nutritional deficiency affecting plants worldwide. Ectromycorrhizal symbiosis involves the beneficial interaction of plants with soil fungi and plays a critical role in nutrient cycling, including the uptake of nitrogen from the environment. The main goal of this study is to understand how limiting nitrogen in the presence or absence of an ectomycorrhizal fungi, Laccaria bicolor, affects the health of aspen trees, Populus temuloides.

  17. Interpretation of tree-ring data with a model for primary production, carbon allocation and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Wang, H.; Harrison, S. P.; Prentice, I. C.

    2013-12-01

    We present a simple, generic model of annual tree growth, called ';T'. This model accepts input from a generic light-use efficiency model which is known to provide good simulations of terrestrial carbon exchange. The light-use efficiency model provides values for Gross Primary Production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport-tissue, and fine-root production and respiration, in such a way as to satisfy well-understood dimensional relationships. The result is a model that can represent both ontogenetic effects and the effects of environmental variations and trends on growth. The model has been applied to simulate ring-width series from multiple individual trees in temperature- and drought-limited contexts. Each tree is initialized at its actual diameter at the time when local climate records started. These records are used to drive the trees' subsequent growth. Realistic simulations of the pattern of interannual variability of ring-width are generated, and shown to relate statistically to climate. An upward trend in ring-width during 1958-2007 is shown to be present in the primary observations, and in the simulations; but not in the standard, detrended ring-width series. This approach combines two modelling approaches previously developed in the global carbon cycle and forest science literature respectively. Neither has been widely applied in the context of tree-ring based climate reconstruction. This combination of methods offers promise, however, because it could provide a way to sidestep several known problems. These include: reliance on correlations for the interpretation of ring-width variations in terms of climate; the necessity of detrending using empirical functions (which can remove trends caused by variations in the environment as well as those that are ontogenetic); and the difficulty of assessing effects of extrinsic, non

  18. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    PubMed

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables

  19. Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees.

    PubMed

    Taghavi, Safiyh; Garafola, Craig; Monchy, Sébastien; Newman, Lee; Hoffman, Adam; Weyens, Nele; Barac, Tanja; Vangronsveld, Jaco; van der Lelie, Daniel

    2009-02-01

    The association of endophytic bacteria with their plant hosts has a beneficial effect for many different plant species. Our goal is to identify endophytic bacteria that improve the biomass production and the carbon sequestration potential of poplar trees (Populus spp.) when grown in marginal soil and to gain an insight in the mechanisms underlying plant growth promotion. Members of the Gammaproteobacteria dominated a collection of 78 bacterial endophytes isolated from poplar and willow trees. As representatives for the dominant genera of endophytic gammaproteobacteria, we selected Enterobacter sp. strain 638, Stenotrophomonas maltophilia R551-3, Pseudomonas putida W619, and Serratia proteamaculans 568 for genome sequencing and analysis of their plant growth-promoting effects, including root development. Derivatives of these endophytes, labeled with gfp, were also used to study the colonization of their poplar hosts. In greenhouse studies, poplar cuttings (Populus deltoides x Populus nigra DN-34) inoculated with Enterobacter sp. strain 638 repeatedly showed the highest increase in biomass production compared to cuttings of noninoculated control plants. Sequence data combined with the analysis of their metabolic properties resulted in the identification of many putative mechanisms, including carbon source utilization, that help these endophytes to thrive within a plant environment and to potentially affect the growth and development of their plant hosts. Understanding the interactions between endophytic bacteria and their host plants should ultimately result in the design of strategies for improved poplar biomass production on marginal soils as a feedstock for biofuels.

  20. Perch compliance and experience affect destination choice of brown tree snakes (Boiga irregularis).

    PubMed

    Mauro, A Alexander; Jayne, C Bruce

    2016-04-01

    Arboreal animals often encounter branches with variable diameters that are highly correlated with stiffness, but how surface compliance affects the perch choice of animals is poorly understood. We used artificial branches to test the effects of different diameters and compliance on the choice between two destinations for twenty brown tree snakes as they bridged gaps. When both destinations were rigid, the diameters of the surfaces did not affect perch choice. However, with increased experience snakes developed a preference for a rigid, large-diameter perch compared to a compliant, small-diameter perch that collapsed under loads that were a small fraction of the weight of the snake. In hundreds of trials, with only one exception, the snakes proceeded to crawl entirely onto all rigid perches after first touching them, whereas the snakes commonly withdrew from the compliant perch even after touching it so lightly that it did not collapse. Hence, both tactile and visual cues appear to influence how these animals select a destination while crossing a gap. The preference for the rigid, large-diameter perch compared to the compliant, small-diameter perch developed mainly from short-term learning during three successive trials per testing session per individual. Furthermore, a preference for large diameters did not persist in the final treatment which used a rigid, large-diameter perch and a rigid, small-diameter perch. Hence, brown tree snakes appeared to be able to form short-term associations between the perch appearance and stiffness, the latter of which may have been determined via tactile sensory input.

  1. Organic matter loading affects lodgepole pine seedling growth.

    PubMed

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M J; Armleder, H M

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  2. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  3. Foliar injury, tree growth and mortality, and lichen studies in Mammoth Cave National Park. Final report, 1985-1986

    SciTech Connect

    McCune, B.; Cloonan, C.L.; Armentano, T.V.

    1987-03-01

    Foliar condition, tree growth, tree mortality, and lichen communities were studied in Mammoth Cave National Park, Kentucky, to document the present forest condition and to provide a basis for detecting future changes. Foliar injury by ozone was common on many plant species in 1985. Species showing the most injury were white ash, green ash, redbud, sycamore, tulip poplar, milkweed, and wild grape. Injury apparently depended on canopy position and vigor. Tree growth was equivocally related to visible symptoms in 1986, probably because of the low ozone levels in that year. Tree mortality rates from 1966-1985 in two natural stands were somewhat lower than mortality rates known for other midwestern woods.

  4. Hydroperiod affects nutrient accumulation in tree islands of the Florida Everglades: a stable isotope study

    NASA Astrophysics Data System (ADS)

    Wang, X.; Sternberg, L. O.; Engel, V.; Ross, M. S.

    2009-12-01

    Tree islands are important and unique components of wetland ecosystems. In many cases they are the end product of self organizing vegetation systems, which are often characterized by uneven soil nutrient distributions. Tree islands in the Everglades are phosphorus rich in contrast to the phosphorus-poor surrounding vegetation matrix. Everglades tree islands occur in the ridge-slough habitat of Shark River Slough, which is characterized by deep organic soils, multi-year hydroperiods, and maximum water depths of ~ 1 m. Tree islands are also found in the drier marl prairie habitat of the Everglades, characterized by marl soils, shallow water (< 0.5 m) and short (< 180 day) hydroperiods. In this study we used stable isotopes to investigate dry season water limitation and soil and foliar nutrient status in upland hammock communities of 18 different tree islands located in the Shark River Slough and adjacent prairie landscapes. We observed that prairie tree islands suffer greater drought stress during the dry season than slough tree islands by examining shifts in foliar δ13C values. We also found that slough tree islands have higher soil total phosphorus concentration and lower foliar N/P ratio than prairie tree islands. Foliar δ15N values, which often increase with greater P availability, was also found to be higher in slough tree islands than in prairie tree islands. Both the elemental N and P and foliar δ15N results indicate that the upland hammock plant communities in slough tree islands have higher amount of P available than those in prairie tree islands. Our findings are consistent with the transpiration driven nutrient harvesting chemohydrodynamic model. Tree islands without drought stress hypothetically transpire more and harvest more P than tree islands that have drought stress during the dry season. These findings suggest that hydroperiod is important to nutrient accumulation of tree island habitats and to the self-organization of the Everglades landscape.

  5. Biotic mortality factors affecting emerald ash borer (Agrilus planipennis) are highly dependent on life stage and host tree crown condition.

    PubMed

    Jennings, D E; Duan, J J; Shrewsbury, P M

    2015-10-01

    Emerald ash borer (EAB), Agrilus planipennis, is a serious invasive forest pest in North America responsible for killing tens to hundreds of millions of ash trees since it was accidentally introduced in the 1990 s. Although host-plant resistance and natural enemies are known to be important sources of mortality for EAB in Asia, less is known about the importance of different sources of mortality at recently colonized sites in the invaded range of EAB, and how these relate to host tree crown condition. To further our understanding of EAB population dynamics, we used a large-scale field experiment and life-table analyses to quantify the fates of EAB larvae and the relative importance of different biotic mortality factors at 12 recently colonized sites in Maryland. We found that the fates of larvae were highly dependent on EAB life stage and host tree crown condition. In relatively healthy trees (i.e., with a low EAB infestation) and for early instars, host tree resistance was the most important mortality factor. Conversely, in more unhealthy trees (i.e., with a moderate to high EAB infestation) and for later instars, parasitism and predation were the major sources of mortality. Life-table analyses also indicated how the lack of sufficient levels of host tree resistance and natural enemies contribute to rapid population growth of EAB at recently colonized sites. Our findings provide further evidence of the mechanisms by which EAB has been able to successfully establish and spread in North America.

  6. How does tree density affect water loss of peatlands? A mesocosm experiment.

    PubMed

    Limpens, Juul; Holmgren, Milena; Jacobs, Cor M J; Van der Zee, Sjoerd E A T M; Karofeld, Edgar; Berendse, Frank

    2014-01-01

    Raised bogs have accumulated more atmospheric carbon than any other terrestrial ecosystem on Earth. Climate-induced expansion of trees and shrubs may turn these ecosystems from net carbon sinks into sources when associated with reduced water tables. Increasing water loss through tree evapotranspiration could potentially deepen water tables, thus stimulating peat decomposition and carbon release. Bridging the gap between modelling and field studies, we conducted a three-year mesocosm experiment subjecting natural bog vegetation to three birch tree densities, and studied the changes in subsurface temperature, water balance components, leaf area index and vegetation composition. We found the deepest water table in mesocosms with low tree density. Mesocosms with high tree density remained wettest (i.e. highest water tables) whereas the control treatment without trees had intermediate water tables. These differences are attributed mostly to differences in evapotranspiration. Although our mesocosm results cannot be directly scaled up to ecosystem level, the systematic effect of tree density suggests that as bogs become colonized by trees, the effect of trees on ecosystem water loss changes with time, with tree transpiration effects of drying becoming increasingly offset by shading effects during the later phases of tree encroachment. These density-dependent effects of trees on water loss have important implications for the structure and functioning of peatbogs.

  7. How Does Tree Density Affect Water Loss of Peatlands? A Mesocosm Experiment

    PubMed Central

    Limpens, Juul; Holmgren, Milena; Jacobs, Cor M. J.; Van der Zee, Sjoerd E. A. T. M.; Karofeld, Edgar; Berendse, Frank

    2014-01-01

    Raised bogs have accumulated more atmospheric carbon than any other terrestrial ecosystem on Earth. Climate-induced expansion of trees and shrubs may turn these ecosystems from net carbon sinks into sources when associated with reduced water tables. Increasing water loss through tree evapotranspiration could potentially deepen water tables, thus stimulating peat decomposition and carbon release. Bridging the gap between modelling and field studies, we conducted a three-year mesocosm experiment subjecting natural bog vegetation to three birch tree densities, and studied the changes in subsurface temperature, water balance components, leaf area index and vegetation composition. We found the deepest water table in mesocosms with low tree density. Mesocosms with high tree density remained wettest (i.e. highest water tables) whereas the control treatment without trees had intermediate water tables. These differences are attributed mostly to differences in evapotranspiration. Although our mesocosm results cannot be directly scaled up to ecosystem level, the systematic effect of tree density suggests that as bogs become colonized by trees, the effect of trees on ecosystem water loss changes with time, with tree transpiration effects of drying becoming increasingly offset by shading effects during the later phases of tree encroachment. These density-dependent effects of trees on water loss have important implications for the structure and functioning of peatbogs. PMID:24632565

  8. Biomass allocation and long-term growth patterns of temperate lianas in comparison with trees.

    PubMed

    Ichihashi, Ryuji; Tateno, Masaki

    2015-08-01

    The host-dependent support habit of lianas is generally interpreted as a strategy designed to reduce resource investment in mechanical tissues; this allows preferential allocation to leaf and stem extension, thereby enhancing productivity and competitive abilities. However, this hypothesis has not been rigorously tested. We examined the aboveground allometries regarding biomass allocation (leaf mass and current-year stem mass (approximated as biomass allocated to extension growth) vs total aboveground mass) and long-term apparent growth patterns (height and aboveground mass vs age, i.e. numbers of growth rings) for nine deciduous liana species in Japan. Lianas had, on average, three- and five-fold greater leaf and current-year stem mass, respectively, than trees for a given aboveground mass, whereas the time course to reach the forest canopy was comparable and biomass accumulation during that period was only one-tenth that of co-occurring canopy trees. The balance between the lengths of yearly stem extension and existing older stems indicated that lianas lost c. 75% of stem length during growth to the canopy, which is probably a consequence of the host-dependent growth. Our observations suggest that, although lianas rely on hosts mechanically, allowing for short-term vigorous growth, this habit requires a large cost and could limit plant growth over protracted periods.

  9. Increasing water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow.

    PubMed

    Morandi, Brunella; Losciale, Pasquale; Manfrini, Luigi; Zibordi, Marco; Anconelli, Stefano; Galli, Fabio; Pierpaoli, Emanuele; Corelli Grappadelli, Luca

    2014-10-15

    Drought stress negatively affects many physiological parameters and determines lower yields and fruit size. This paper investigates on the effects of prolonged water restriction on leaf gas exchanges, water relations and fruit growth on a 24-h time-scale in order to understand how different physiological processes interact to each other to face increasing drought stress and affect pear productive performances during the season. The diurnal patterns of tree water relations, leaf gas exchanges, fruit growth, fruit vascular and transpiration flows were monitored at about 50, 95 and 145 days after full bloom (DAFB) on pear trees of the cv. Abbé Fétel, subjected to two irrigation regimes, corresponding to a water restitution of 100% and 25% of the estimated Etc, respectively. Drought stress progressively increased during the season due to lower soil tensions and higher daily vapour pressure deficits (VPDs). Stem water potential was the first parameter to be negatively affected by stress and determined the simultaneous reduction of fruit xylem flow, which at 95 DAFB was reflected by a decrease in fruit daily growth. Leaf photosynthesis was reduced only from 95 DAFB on, but was not immediately reflected by a decrease in fruit phloem flow, which instead was reduced only at 145 DAFB. This work shows how water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow. This determines a progressive increase in the phloem relative contribution to growth, which lead to the typical higher dry matter percentages of stressed fruit.

  10. Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species.

    PubMed

    Guada, Guillermo; Camarero, J Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M Navarro

    2016-01-01

    Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die.

  11. Limited Growth Recovery after Drought-Induced Forest Dieback in Very Defoliated Trees of Two Pine Species

    PubMed Central

    Guada, Guillermo; Camarero, J. Julio; Sánchez-Salguero, Raúl; Cerrillo, Rafael M. Navarro

    2016-01-01

    Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine) located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width) and intra-annual (xylogenesis) scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized 3 years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die. PMID:27066053

  12. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum.

    PubMed

    Flores, F C; de Lima, J A; Ribeiro, R F; Alves, S H; Rolim, C M B; Beck, R C R; da Silva, Cristiane Bona

    2013-04-01

    The aim of this study was to evaluate, for the first time, the antifungal efficacy of nanocapsules and nanoemulsions containing Melaleuca alternifolia essential oil (tea tree oil) in an onychomycosis model. The antifungal activity of nanostructured formulations was evaluated against Trichophyton rubrum in two different in vitro models of dermatophyte nail infection. First, nail powder was infected with T. rubrum in a 96-well plate and then treated with the formulations. After 7 and 14 days, cell viability was verified. The plate counts for the samples were 2.37, 1.45 and 1.0 log CFU mL(-1) (emulsion, nanoemulsion containing tea tree oil and nanocapsules containing tea tree oil, respectively). A second model employed nails fragments which were infected with the microorganism and treated with the formulations. The diameter of fungal colony was measured. The areas obtained were 2.88 ± 2.08 mm(2), 14.59 ± 2.01 mm(2), 40.98 ± 2.76 mm(2) and 38.72 ± 1.22 mm(2) for the nanocapsules containing tea tree oil, nanoemulsion containing tea tree oil, emulsion and untreated nail, respectively. Nail infection models demonstrated the ability of the formulations to reduce T. rubrum growth, with the inclusion of oil in nanocapsules being most efficient.

  13. The suitability of LiDAR-derived forest attributes for use in individual-tree distance-dependent growth-and-yield modeling

    NASA Astrophysics Data System (ADS)

    Londo, Hilary Alexis

    Studies have not been conducted examining the influence of the spatial distribution of LiDAR-derived tree measuresments and their affects the predictive ability of LiDAR-derived forest metrics as input for growth-and-yield analysis on individual trees. This study addresses both of these voids in current knowledge and determines the suitability, concerns and application of LiDAR for time-series analysis, specifically forest growth-and-yield. LiDAR datasets of the same site acquired in 1999, 2000, 2002, and 2006 by different vendors using different specifications were utilized in this study. Directional differences of Lidar-identified tree top locations were examined. Minimal location differences were noted, but no bias occurred. Differences in locations appeared to be from environmental effects such as wind. Improvements on individual-tree identification using a time-series analysis approach were implemented. The tree-finding model was improved with a Boolean decision rule yielding significant differences in stand density calculations in 1.4 m spacing plots and for overall calculations of the 2000 and 2002 LiDAR datasets. Individual tree measurements derived from the 1999 LiDAR data were used to estimate growth to the 2006 data. These growth-and-yield values were compared with field-derived and field-measured values. Significant differences were found between the LiDAR- and field-derived measures of growth-and-yield. These increased over time and were believe to be compounded error from the LiDAR-estimated tree diameters. LiDAR datasets can be correlated to previous LiDAR datasets of the same area with very little effort. LiDAR tree identification can be improved using decision criteria based on subsequent LiDAR datasets of the same area. The ability to track individual trees by location over time using LiDAR could yield large datasets to potentially improve growth-and-yield modeling efforts and other stand characterization procedures.

  14. Dietary phosphorus affects the growth of larval Manduca sexta.

    PubMed

    Perkins, Marc C; Woods, H Arthur; Harrison, Jon F; Elser, James J

    2004-03-01

    Although phosphorus has long been considered an important factor in the growth of diverse biota such as bacteria, algae, and zooplankton, insect nutrition has classically focused on dietary protein and energy content. However, research in elemental stoichiometry has suggested that primary producer biomass has similar N:P ratios in aquatic and terrestrial systems, and phosphorus-rich herbivores in freshwater systems frequently face phosphorus-limited nutritional conditions. Therefore, herbivorous insects should also be prone to phosphorus limitation. We tested this prediction by rearing Manduca sexta larvae on artificial and natural (Datura wrightii leaves) diets containing varying levels of phosphorus (approximately 0.20, 0.55, or 1.2% phosphorus by dry weight). For both artificial and natural diets, increased dietary phosphorus significantly increased growth rates and body phosphorus contents, and shortened the time to the final instar molt. Caterpillars did not consistently exhibit compensatory feeding for phosphorus on either type of diet. The growth and body phosphorus responses were not explicable by changes in amounts of potassium or calcium, which co-varied with phosphorus in the diets. Concentrations of phosphorus in D. wrightii leaves collected in the field varied over a range in which leaf phosphorus is predicted to affect M. sexta's growth rates. These results suggest that natural variation in dietary phosphorus is likely to affect the growth rate and population dynamics of M. sexta, and perhaps larval insects more generally.

  15. Fast growth involves high dependence on stored resources in seedlings of Mediterranean evergreen trees

    PubMed Central

    Uscola, Mercedes; Villar-Salvador, Pedro; Gross, Patrick; Maillard, Pascale

    2015-01-01

    Background and Aims The carbon (C) and nitrogen (N) needed for plant growth can come either from soil N and current photosynthesis or through remobilization of stored resources. The contribution of remobilization to new organ growth on a whole-plant basis is quite well known in deciduous woody plants and evergreen conifers, but this information is very limited in broadleaf evergreen trees. This study compares the contribution of remobilized C and N to the construction of new organs in spring, and assesses the importance of different organs as C and N sources in 1-year-old potted seedlings of four ecologically distinct evergreen Mediterranean trees, namely Quercus ilex, Q. coccifera, Olea europaea and Pinus hapelensis. Methods Dual 13C and 15N isotope labelling was used to unravel the contribution of currently taken up and stored C and N to new growth. Stored C was labelled under simulated winter conditions. Soil N was labelled with the fertilization during the spring growth. Key results Oaks allocated most C assimilated under simulated winter conditions to coarse roots, while O. europaea and P. halepensis allocated it to the leaves. Remobilization was the main N source (>74 %) for new fine-root growth in early spring, but by mid-spring soil supplied most of the N required for new growth (>64 %). Current photosynthesis supplied >60 % of the C in new fine roots by mid-spring in most species. Across species, the proportion of remobilized C and N in new shoots increased with the relative growth rate. Quercus species, the slowest growing trees, primarily used currently acquired resources, while P. halepensis, the fastest growing species, mainly used reserves. Increases in the amount of stored N increased N remobilization, which fostered absolute growth both within and across species. Old leaves were major sources of remobilized C and N, but stems and roots also supplied considerable amounts of both in all species except in P. halepensis, which mainly relied on foliage

  16. Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: Dendrochronological, demographic, and experimental perspectives

    USGS Publications Warehouse

    McGuire, Anthony; Ruess, Roger W.; Lloyd, A.; Yarie, J.; Clein, J.S.; Juday, G.P.

    2010-01-01

    This paper integrates dendrochronological, demographic, and experimental perspectives to improve understanding of the response of white spruce (Picea glauca (Moench) Voss) tree growth to climatic variability in interior Alaska. The dendrochronological analyses indicate that climate warming has led to widespread declines in white spruce growth throughout interior Alaska that have become more prevalent during the 20th century. Similarly, demographic studies show that white spruce tree growth is substantially limited by soil moisture availability in both mid- and late-successional stands. Interannual variability in tree growth among stands within a landscape exhibits greater synchrony than does growth of trees that occupy different landscapes, which agrees with dendrochronological findings that the responses depend on landscape position and prevailing climate. In contrast, the results from 18 years of a summer moisture limitation experiment showed that growth in midsuccessional upland stands was unaffected by moisture limitation and that moisture limitation decreased white spruce growth in floodplain stands where it was expected that growth would be less vulnerable because of tree access to river water. Taken together, the evidence from the different perspectives analyzed in this study clearly indicates that white spruce tree growth in interior Alaska is vulnerable to the effects of warming on plant water balance.

  17. Long-term Patterns of Climate, Tree Growth, and Tree Mortality in Permanent Forest Plots of Hawaii Island

    NASA Astrophysics Data System (ADS)

    Ostertag, R.; Buckley, W.; Cordell, S.; Giambelluca, T. W.; Giardina, C. P.; Inman-Narahari, F.; Litton, C. M.; Nullet, M.; Sack, L.; Sibley, A.; VanDeMark, J.

    2014-12-01

    Long-term permanent vegetation plots provide opportunities for in-depth examinations of forest dynamics and climate. We used Center for Tropical Forest Science (CTFS) methodology to establish 4-ha forest dynamics plots in two contrasting climates on Hawaii Island. We established a montane wet forest dynamics plot in a site with 1150 m elevation, mean annual temperature (MAT) of 16.0 C, and mean annual precipitation (MAP) of 3440 mm. A second plot was established in a lowland dry forest site at 240 m elevation, 20.0 C MAT, and 835 mm MAP. The lowland wet forest site averaged only one month per year with < 100 mm rainfall (considered a dry season month), while the lowland dry forest had 12 dry season months. All trees greater or equal to 1 cm diameter were tagged, mapped, and followed from 2008/2009 to 2013/2014 as part of a 5-year census, and a subset of trees were measured annually. Climate variables measured were shortwave and longwave radiation, air temperature, photosynthetically active radiation, relative humidity, windspeed, soil moisture, and rainfall. At both sites, rainfall was the best predictor of annual growth rates. Rainfall and soil moisture were the two variables that demonstrated the greatest interannual variation; coefficients of variation were 36.7% and 61.6% for rainfall at the montane wet forest and lowland dry forest sites, respectively, and 13.4% and 66.1% for soil moisture at the two sites. Preliminary results from the five-year resurvey demonstrate that Hawaiian trees grow slowly, averaging 0.05 cm/y among 19 species in the montane wet forest, at much slower rates for the 15 species in the lowland dry forest plot. Preliminary mortality rates are 11.8% in the montane wet forest and 14.5% in the lowland dry forest. Forest dynamics appear highly related to water availability, even in wet forests, and are likely to be sensitive to climate change, under which reduced rainfall is predicted for much of the Hawaiian Islands.

  18. [Polyvalence of bacteriophages isolated from fruit trees, affected by bacterial fire blight].

    PubMed

    Tovkach, F I; Moroz, S N; Korol', N A; Faĭdiuk, Iu V; Kushkina, A I

    2013-01-01

    Phage populations appearing as a result of a pathogenic process caused by Erwinia amylovora have been discovered and described. They accompany bacterial fire blight development in the process of quince, pear and apple trees vegetation in Zakarpattya region of Ukraine. Phage isolates of the affected pear and quince include polyvalent virulent phages able to develop on bacterial strains associated with plants--E. amylovora. E. "horticola" and Pantoea agglomerans. E. amylovora isolated from the plant tissues affected by the fire blight and detected at the same time as phages proved to be resistant to the viral infection. It is hard to explain now this characteristic however it was noticed that resistance to phages can change drastically in case of dissociation, lysogenization and mutagenesis of erwinia in laboratory conditions. Phage population study shows that they are heterogeneous and can obviously include not only polyvalent but also specific viruses. Further studies of biology and molecular genetics of pure lines of isolated phages will help to get closer to understanding the place and role of bacteriophages in the complicated network of relations between bacterial pathogens and plants.

  19. Mercury and growth of tree swallows at Acadia National Park, and at Orono, Maine, USA.

    PubMed

    Longcore, Jerry R; Dineli, Reza; Haines, Terry A

    2007-03-01

    In 1997 and 1998 we weighed nestling tree swallows (Tachycineta bicolor) and measured selected body components at two colonies: Acadia National Park on Mt. Desert Island, and at Orono, ME. We used differences in mean growth variables among individual nestlings to evaluate differences between colonies, years, and amount of total mercury (THg) in carcasses and methyl mercury (MeHg) in feathers. We marked nestlings on the day hatched and measured body components every day in 1997 and every other day in 1998 until nestlings fledged. We calculated linear growth rates and asymptotic means as appropriate. In 1998, linear growth rate of weight was higher at Acadia than at Orono, but not different in 1997. We detected no mean differences in asymptotic mean weight of nestlings between colonies or years. In 1997, mean linear growth rates of the wing (chord), tail, tarsus, and mandible were higher at Acadia than at Orono. The amount of MeHg in feathers was associated with a lower linear growth rate of weight during early age (2-10 days), but asymptotic mean weight during days 11-16 was not different. No effect on linear growth of tail feathers or wing was associated with the amount of MeHg in feathers or THg in carcasses. Fledgling tree swallows that survive to migrate, however, will leave Maine with substantial concentrations of Hg in their tissues.

  20. Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings.

    PubMed

    Cheesman, Alexander W; Winter, Klaus

    2013-09-01

    Predictions of how tropical forests will respond to future climate change are constrained by the paucity of data on the performance of tropical species under elevated growth temperatures. In particular, little is known about the potential of tropical species to acclimate physiologically to future increases in temperature. Seedlings of 10 neo-tropical tree species from different functional groups were cultivated in controlled-environment chambers under four day/night temperature regimes between 30/22 °C and 39/31 °C. Under well-watered conditions, all species showed optimal growth at temperatures above those currently found in their native range. While non-pioneer species experienced catastrophic failure or a substantially reduced growth rate under the highest temperature regime employed (i.e. daily average of 35 °C), growth in three lowland pioneers showed only a marginal reduction. In a subsequent experiment, three species (Ficus insipida, Ormosia macrocalyx, and Ochroma pyramidale) were cultivated at two temperatures determined as sub- and superoptimal for growth, but which resulted in similar biomass accumulation despite a 6°C difference in growth temperature. Through reciprocal transfer and temperature adjustment, the role of thermal acclimation in photosynthesis and respiration was investigated. Acclimation potential varied among species, with two distinct patterns of respiration acclimation identified. The study highlights the role of both inherent temperature tolerance and thermal acclimation in determining the ability of tropical tree species to cope with enhanced temperatures.

  1. Spaceflight and age affect tibial epiphyseal growth plate histomorphometry

    NASA Technical Reports Server (NTRS)

    Montufar-Solis, Dina; Duke, Pauline J.; Durnova, G.

    1992-01-01

    Growth plate histomorphometry of rats flown aboard the Soviet biosatellite Cosmos 2044, a 14-day spaceflight, was compared with that of control groups. In growth plates of flight animals, there was a significant increase in cell number per column and height of the proliferative zone and a reduction in height and cell number in the hypertrophy/calcification zone. No significant differences were found in matrix organization at the ultrastructural level of flight animals, indicating that although spacefligfht continues to affect bone growth of 15-wk-old rats, extracellular matrix is not altered in the same manner as seen previously in younger animals. All groups showed growth plate characteristics attributed to aging: lack of calcification zone, reduced hypertrophy zone, and unraveling of collagen fibrils. Tail-suspended controls did not differ from other controls in any of the parameters measured. The results suggest that growth plates of older rats are less responsive to unloading by spaceflight or suspension than those of younger rats and provide new evidence about the modifying effect of spaceflight on the growth plate.

  2. Can rising CO2 concentrations in the atmosphere mitigate the impact of drought years on tree growth?

    NASA Astrophysics Data System (ADS)

    Achim, Alexis; Plumpton, Heather; Auty, David; Ogee, Jerome; MacCarthy, Heather; Bert, Didier; Domec, Jean-Christophe; Oren, Ram; Wingate, Lisa

    2015-04-01

    Atmospheric CO2 concentrations and nitrogen deposition rates have increased substantially over the last century and are expected to continue unabated. As a result, terrestrial ecosystems will experience warmer temperatures and some may even experience droughts of a more intense and frequent nature that could lead to widespread forest mortality. Thus there is mounting pressure to understand and predict how forest growth will be affected by such environmental interactions in the future. In this study we used annual tree growth data from the Duke Free Air CO2 Enrichment (FACE) experiment to determine the effects of elevated atmospheric CO2 concentration (+200 ppm) and Nitrogen fertilisation (11.2 g of N m-2 yr-1) on the stem biomass increments of mature loblolly pine (Pinus taeda L.) trees from 1996 to 2010. A non-linear mixed-effects model was developed to provide estimates of annual ring specific gravity in all trees using cambial age and annual ring width as explanatory variables. Elevated CO2 did not have a significant effect on annual ring specific gravity, but N fertilisation caused a slight decrease of approximately 2% compared to the non-fertilised in both the ambient and CO2-elevated plots. When basal area increments were multiplied by wood specific gravity predictions to provide estimates of stem biomass, there was a 40% increase in the CO2-elevated plots compared to those in ambient conditions. This difference remained relatively stable until the application of the fertilisation treatment, which caused a further increase in biomass increments that peaked after three years. Unexpectedly the magnitude of this second response was similar in the CO2-elevated and ambient plots (about 25% in each after 3 years), suggesting that there was no interaction between the concentration of CO2 and the availability of soil N on biomass increments. Importantly, during drier years when annual precipitation was less than 1000 mm we observed a significant decrease in annual

  3. The influence of volcanic eruptions on growth of central European lowland trees in NE-Germany during the last Millennium

    NASA Astrophysics Data System (ADS)

    Pieper, Hagen; Heinrich, Ingo; Heußner, Karl-Uwe; Helle, Gerd

    2013-04-01

    Large and mainly tropical volcanic eruptions can have significant effects on the Earth's climate system, likely resulting in decreased summer and increased winter temperature means, as well as enhanced fractions of diffuse light lasting for one to several years after the eruptive outbreak. It has been argued that due to scattering by volcanic sulfur aerosol the more diffuse light fraction can be particularly beneficial for tree growth and more generally for ecosystems biomass productivity. However, other observations suggest decreasing tree-ring width because of the cooler conditions following large eruptions, with overall stronger fingerprints expected towards higher altitudes and higher latitudes where tree growth is mainly temperature-limited. Since tree growth in lowland temperate climate zones is dominated by various climate quantities rather than temperature alone. Thus it has been hypothesized that tree growth within the temperate zones of the mid-latitudes may not suffer from lower temperatures per se, but rather profits from increased rates of diffuse light, in tandem with reduced evapotranspiration and subsequently enhanced soil moisture availability. Most studies so far have concentrated on the impact of volcanic eruptions on trees growing outside the temperate climate zones. This study aims at trees in temperate zones where tree growth is less temperature limited. Therefore, a comprehensive database with 1128 samples of millennium-long tree-ring chronologies of Quercus robur L. and Pinus sylvestris L. based on heterogenous archaeological material originating from three different lowland sites (Greifswald, Eberswalde and Saxony) in eastern Germany was used to test whether tree growth suffered or profited from the globally changed conditions after large volcanic eruptions. The growth relationships were tested against 49 individual large volcanic eruptions from the last Millennium. High-resolution ice core records of sulfate measurements calibrated against

  4. Tree species and soil nutrient profiles in old-growth forests of the Oregon Coast Range

    USGS Publications Warehouse

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Old-growth forests of the Pacific Northwest provide a unique opportunity to examine tree species – soil relationships in ecosystems that have developed without significant human disturbance. We characterized foliage, forest floor, and mineral soil nutrients associated with four canopy tree species (Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), western redcedar (Thuja plicata Donn ex D. Don), and bigleaf maple (Acer macrophyllum Pursh)) in eight old-growth forests of the Oregon Coast Range. The greatest forest floor accumulations of C, N, P, Ca, Mg, and K occurred under Douglas-fir, primarily due to greater forest floor mass. In mineral soil, western hemlock exhibited significantly lower Ca concentration and sum of cations (Ca + Mg + K) than bigleaf maple, with intermediate values for Douglas-fir and western redcedar. Bigleaf maple explained most species-based differences in foliar nutrients, displaying high concentrations of N, P, Ca, Mg, and K. Foliar P and N:P variations largely reflected soil P variation across sites. The four tree species that we examined exhibited a number of individualistic effects on soil nutrient levels that contribute to biogeochemical heterogeneity in these ecosystems. Where fire suppression and long-term succession favor dominance by highly shade-tolerant western hemlock, our results suggest a potential for declines in both soil Ca availability and soil biogeochemical heterogeneity in old-growth forests.

  5. DESPOT, a process-based tree growth model that allocates carbon to maximize carbon gain.

    PubMed

    Buckley, Thomas N; Roberts, David W

    2006-02-01

    We present a new model of tree growth, DESPOT (Deducing Emergent Structure and Physiology Of Trees), in which carbon (C) allocation is adjusted in each time step to maximize whole-tree net C gain in the next time step. Carbon gain, respiration and the acquisition and transport of substitutable photosynthetic resources (nitrogen, water and light) are modeled on a process basis. The current form of DESPOT simulates a uniform, monospecific, self-thinning stand. This paper describes DESPOT and its general behavior in comparison to published data, and presents an evaluation of the sensitivity of its qualitative predictions by Monte Carlo parameter sensitivity analysis. DESPOT predicts determinate height growth and steady stand-level net primary productivity (NPP), but slow declines in aboveground NPP and leaf area index. Monte Carlo analysis, wherein the model was run repeatedly with randomly different parameter sets, revealed that many parameter sets do not lead to sustainable NPP. Of those that do lead to sustainable growth, the ratios at maturity of net to gross primary productivity and of leaf area to sapwood area are highly conserved.

  6. Preliminary terrestrial based experiments on gravity-affected crystal growth

    NASA Technical Reports Server (NTRS)

    Johnston, M. H.

    1970-01-01

    Tin was melted in a heating assembly secured to the arm of a centrifuge. The furnace was allowed to pivot and reach its equilibrium angle of swing for the gravity force being experienced. The crucible was cooled during rotation to allow the growth of single crystals. The crystals were etched for the purpose of observing the growth striations. Slices were removed from some of the crystals to permit observation of the striations in the interior. Visual analyses were made with a scanning electron microscope. Preliminary conclusions relating the appearance of the striations to gravity forces and the affected growth mechanisms are presented. Further experiments that will verify these conclusions and determine other gravity effects are proposed.

  7. Spatially nonrandom tree mortality and ingrowth maintain equilibrium pattern in an old-growth Pseudotsuga-Tsuga forest.

    PubMed

    Lutz, James A; Larson, Andrew J; Furniss, Tucker J; Donato, Daniel C; Freund, James A; Swanson, Mark E; Bible, Kenneth J; Chen, Jiquan; Franklin, Jerry F

    2014-08-01

    Mortality processes in old-growth forests are generally assumed to be driven by gap-scale disturbance, with only a limited role ascribed to density-dependent mortality, but these assumptions are rarely tested with data sets incorporating repeated measurements. Using a 12-ha spatially explicit plot censused 13 years apart in an approximately 500-year-old Pseudotsuga-Tsuga forest, we demonstrate significant density-dependent mortality and spatially aggregated tree recruitment. However, the combined effect of these strongly nonrandom demographic processes was to maintain tree patterns in a state of dynamic equilibrium. Density-dependent mortality was most pronounced for the dominant late-successional species, Tsuga heterophylla. The long-lived, early-seral Pseudotsuga menziesii experienced an annual stem mortality rate of 0.84% and no new recruitment. Late-seral species Tsuga and Abies amabilis had nearly balanced demographic rates of ingrowth and mortality. The 2.34% mortality rate for Taxus brevifolia was higher than expected, notably less than ingrowth, and strongly affected by proximity to Tsuga. Large-diameter Tsuga structured both the regenerating conspecific and heterospecific cohorts with recruitment of Tsuga and Abies unlikely in neighborhoods crowded with large-diameter competitors (P < 0.001). Density-dependent competitive interactions strongly shape forest communities even five centuries after stand initiation, underscoring the dynamic nature of even equilibrial old-growth forests.

  8. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  9. Relationships between winter atmospheric circulation patterns and extreme tree growth anomalies in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Garfin, Gregg M.

    1998-06-01

    Tree-ring data from mid-elevation (2000 m) giant sequoia (Sequoiadendron giganteum) and high elevation (3500 m) pines (Pinus balfouriana, Pinus albicaulis) were used to select extreme growth years from which temperature, precipitation and large-scale winter (November-March, NM) 500 mb circulation patterns associated with the extreme tree growth anomalies were examined.Winters preceding extreme high growth in both giant sequoia and pines are warm and wet and are characterized by anomalous low pressure in the northeastern Pacific Ocean and a tendency for southwesterly flow and advection of warm maritime air into California. For the pines, such winters exhibit a pattern of anomalous low pressure in the northern Pacific, anomalous high pressure over northwestern Canada and anomalous low pressure across the southern US. NM 500 mb heights suggest more meridional circulation during the warm and dry winters preceding extreme low growth in giant sequoia. Atmospheric circulation during these winters exhibits a persistent trough/ridge pattern between the central Pacific and the western US. Storms are deflected away from California during these winters. NM atmospheric circulation patterns associated with extreme low growth in the pines exhibit maximum westerlies north of their mean position and the tendency for enhanced ridging in the northeast Pacific, which advects cool dry air into the Sierra Nevada. As dendroclimatic reconstructions are more frequently employed in order to better understand past variability of temperature and precipitation, synoptic dendroclimatological studies such as this one provide useful insights about atmospheric circulation.

  10. Drought-induced increase in water-use efficiency reduces secondary tree growth and tracheid wall thickness in a Mediterranean conifer.

    PubMed

    Olano, José Miguel; Linares, Juan Carlos; García-Cervigón, Ana I; Arzac, Alberto; Delgado, Antonio; Rozas, Vicente

    2014-09-01

    In order to understand the impact of drought and intrinsic water-use efficiency (iWUE) on tree growth, we evaluated the relative importance of direct and indirect effects of water availability on secondary growth and xylem anatomy of Juniperus thurifera, a Mediterranean anisohydric conifer. Dendrochronological techniques, quantitative xylem anatomy, and (13)C/(12)C isotopic ratio were combined to develop standardized chronologies for iWUE, BAI (basal area increment), and anatomical variables on a 40-year-long annually resolved series for 20 trees. We tested the relationship between iWUE and secondary growth at short-term (annual) and long-term (decadal) temporal scales to evaluate whether gains in iWUE may lead to increases in secondary growth. We obtained a positive long-term correlation between iWUE and BAI, simultaneously with a negative short-term correlation between them. Furthermore, BAI and iWUE were correlated with anatomical traits related to carbon sink or storage (tracheid wall thickness and ray parenchyma amount), but no significant correlation with conductive traits (tracheid lumen) was found. Water availability during the growing season significantly modulated tree growth at the xylem level, where growth rates and wood anatomical traits were affected by June precipitation. Our results are consistent with a drought-induced limitation of tree growth response to rising CO2, despite the trend of rising iWUE being maintained. We also remark the usefulness of exploring this relationship at different temporal scales to fully understand the actual links between iWUE and secondary growth dynamics.

  11. Defoliation negatively affects plant growth and the ectomycorrhizal community of Pinus pinaster in Spain.

    PubMed

    Pestaña, Montserrat; Santolamazza-Carbone, Serena

    2011-03-01

    In this work, by artificially reproducing severe (75%) and moderate (25%) defoliation on maritime pines Pinus pinaster in NW Spain, we investigated, under natural conditions, the consequences of foliage loss on reproduction, abundance, diversity and richness of the fungal symbionts growing belowground and aboveground. The effect of defoliation on tree growth was also assessed. Mature needles were clipped during April 2007 and 2008. Root samples were collected in June-July 2007 and 2008. Collection of sporocarps was performed weekly from April 2007 to April 2009. Taxonomic identity of ectomycorrhizal fungi was assessed by using the internal transcribed spacer (ITS) regions of rDNA through the polymerase chain reaction (PCR) method, subsequent direct sequencing and BLAST search. Ectomycorrhizal colonization was significantly reduced (from 54 to 42%) in 2008 by 75% defoliation, accompanied with a decline in species richness and diversity. On the other hand, sporocarp abundance, richness and diversity were not affected by foliage loss. Some ECM fungal symbionts, which are assumed to have a higher carbon cost according to the morphotypes structure, were reduced due to severe (75%) defoliation. Furthermore, 75% foliage loss consistently depressed tree growth, which in turn affected the ectomycorrhizal growth pattern. Defoliation impact on ECM symbionts largely depends on the percentage of foliage removal and on the number of defoliation bouts. Severe defoliation (75%) in the short term (2 years) changed the composition of the ECM community likely because root biomass would be adjusted to lower levels in parallel with the depletion of the aboveground plant biomass, which probably promoted the competition among mycorrhizal types for host resources. The persistence of fungal biomass in mycorrhizal roots would be crucial for nutrient up-take and recovery from defoliation stress of the host plants.

  12. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    NASA Astrophysics Data System (ADS)

    Bright, B. C.; Hicke, J. A.; Hudak, A. T.

    2012-12-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40-50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75-89% of the study area had >25% AGC in killed trees and 3-6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale.

  13. Factors affecting growth of foodborne pathogens on minimally processed apples.

    PubMed

    Alegre, Isabel; Abadias, Maribel; Anguera, Marina; Oliveira, Marcia; Viñas, Inmaculada

    2010-02-01

    Escherichia coli O157:H7, Salmonella and Listeria innocua increased by more than 2 log(10) units over a 24 h period on fresh-cut 'Golden Delicious' apple plugs stored at 25 and 20 degrees C. L. innocua reached the same final population level at 10 degrees C meanwhile E. coli and Salmonella only increased 1.3 log(10) units after 6 days. Only L. innocua was able to grow at 5 degrees C. No significant differences were observed between the growth of foodborne pathogens on fresh-cut 'Golden Delicious', 'Granny Smith' and 'Shampion' apples stored at 25 and 5 degrees C. The treatment of 'Golden Delicious' and 'Granny Smith' apple plugs with the antioxidants, ascorbic acid (2%) and NatureSeal (6%), did not affect pathogen growth. The effect of passive modified atmosphere packaging (MAP) on the growth of E. coli, Salmonella and L. innocua on 'Golden Delicious' apple slices was also tested. There were no significant differences in growth of pathogens in MAP conditions compared with air packaging of 'Golden Delicious' apple plugs, but the growth of mesophilic and psychrotrophic microorganisms was inhibited. These results highlight the importance of avoiding contamination of fresh-cut fruit with foodborne pathogens and the maintenance of the cold chain during storage until consumption.

  14. Whole genome sequence of “Candidatus Liberibacter asiaticus” from a huanglongbing-affected citrus tree in Central Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The draft genome sequence of “Candidatus Liberibacter asiaticus” strain FL17, isolated from an HLB-affected citrus tree in central Florida, was determined. The FL17 genome comprised 1,227,253 bp with a G+C content of 36.5%, 1,175 predicted open reading frames, and 53 RNA genes....

  15. Coordination between water transport capacity, biomass growth, metabolic scaling and species stature in co-occurring shrub and tree species.

    PubMed

    Smith, Duncan D; Sperry, John S

    2014-12-01

    The significance of xylem function and metabolic scaling theory begins from the idea that water transport is strongly coupled to growth rate. At the same time, coordination of water transport and growth seemingly should differ between plant functional types. We evaluated the relationships between water transport, growth and species stature in six species of co-occurring trees and shrubs. Within species, a strong proportionality between plant hydraulic conductance (K), sap flow (Q) and shoot biomass growth (G) was generally supported. Across species, however, trees grew more for a given K or Q than shrubs, indicating greater growth-based water-use efficiency (WUE) in trees. Trees also showed slower decline in relative growth rate (RGR) than shrubs, equivalent to a steeper G by mass (M) scaling exponent in trees (0.77-0.98). The K and Q by M scaling exponents were common across all species (0.80, 0.82), suggesting that the steeper G scaling in trees reflects a size-dependent increase in their growth-based WUE. The common K and Q by M exponents were statistically consistent with the 0.75 of ideal scaling theory. A model based upon xylem anatomy and branching architecture consistently predicted the observed K by M scaling exponents but only when deviations from ideal symmetric branching were incorporated.

  16. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    USGS Publications Warehouse

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  17. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality.

    PubMed

    Foster, Jane R; D'Amato, Anthony W; Bradford, John B

    2014-05-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20-30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25-30% higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  18. Complementary models of tree species-soil relationships in old-growth temperate forests

    USGS Publications Warehouse

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Ecosystem level studies identify plant soil feed backs as important controls on soil nutrient availability,particularly for nitrogen and phosphorus. Although site and species specific studies of tree species soil relationships are relatively common,comparatively fewer studies consider multiple coexisting speciesin old-growth forests across a range of sites that vary underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common tree species across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess tree species soil relationships. Plant soil feedbacks that could reinforce sitelevel differences in nutrient availability were assessed using the context dependent relationships model, where by relative species based differences in each soil nutrient divergedorconvergedas nutrient status changed across sites. Tree species soil relationships that did not reflect strong feedbacks were evaluated using a site independent relationships model, where by forest floor and surface mineral soil nutrient tools differed consistently by tree species across sites,without variation in deeper mineral soils. We found that theorganically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among species in both forest floor and mineral soil, and most of ten followed adivergence model,where by species differences were greatest at high-nutrient sites. These patterns are consistent with the oryemphasizing biotic control of these elements through plant soil feedback mechanisms. Site independent species differences were strongest for pool so if the weather able cations calcium, magnesium, potassium,as well as phosphorus, in mineral soils. Site independent species differences in forest floor nutrients we reattributable too nespecies that displayed significant greater forest floor mass accumulation. Our finding confirmed that site-independent and

  19. Long-term patterns of diameter and basal area growth of old-growth Douglas-fir trees in western Oregon

    USGS Publications Warehouse

    Poage, Nathan; Tappeiner, J. C.

    2002-01-01

    Diameter growth and age data collected from stumps of 505 recently cut old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees at 28 sample locations in western Oregon (U.S.A.) indicated that rapid early and sustained growth of old Douglas-fir trees were extremely important in terms of attaining large diameters at ages 100a??300 years. The diameters of the trees at ages 100a??300 years (D100a??D300) were strongly, positively, and linearly related to their diameters and basal area growth rates at age 50 years. Average periodic basal area increments (PAIBA) of all trees increased for the first 30a??40 years and then plateaued, remaining relatively high and constant from age 50 to 300 years. Average PAIBA of the largest trees at ages 100a??300 years were significantly greater by age 20 years than were those of smaller trees at ages 100a??300 years. The site factors province, site class, slope, aspect, elevation, and establishment year accounted for little of the variation observed in basal area growth at age 50 years and D100a??D300. The mean age range for old-growth Douglas-fir at the sample locations was wide (174 years). The hypothesis that large-diameter old-growth Douglas-fir developed at low stand densities was supported by these observations.

  20. Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth.

    PubMed

    Andrade, Leandro Fernandes; de Souza, Gleika Larisse Oliveira Dorasio; Nietsche, Silvia; Xavier, Adelica Aparecida; Costa, Marcia Regina; Cardoso, Acleide Maria Santos; Pereira, Marlon Cristian Toledo; Pereira, Débora Francine Gomes Silva

    2014-01-01

    A total of 40 endophytic bacterial isolates obtained from banana tree roots were characterized for their biotechnological potential for promoting banana tree growth. All isolates had at least one positive feature. Twenty isolates were likely diazotrophs and formed pellicles in nitrogen-free culture medium, and 67% of these isolates belonged to the genus Bacillus sp. The isolates EB-04, EB-169, EB-64, and EB-144 had N fixation abilities as measured by the Kjeldahl method and by an acetylene reduction activity assay. Among the 40 isolates, 37.5% were capable of solubilizing inorganic phosphate and the isolates EB-47 and EB-64 showed the highest solubilization capacity. The isolate EB-53 (Lysinibacillus sp.) had a high solubilization index, whereas 73% of the isolates had low solubilization indices. The synthesis of indole-3-acetic acid (IAA) in the presence of L-tryptophan was detected in 40% of the isolates. The isolate EB-40 (Bacillus sp.) produced the highest amount of IAA (47.88 μg/ml) in medium supplemented with L-tryptophan and was able to synthesize IAA in the absence of L-tryptophan. The isolates EB-126 (Bacillus subtilis) and EB-47 (Bacillus sp.) were able to simultaneously fix nitrogen, solubilize phosphate and produce IAA in vitro. The results of this study demonstrated that the isolates analyzed here had diverse abilities and all have the potential to be used as growth-promoting microbial inoculants for banana trees.

  1. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased

    NASA Astrophysics Data System (ADS)

    van der Sleen, Peter; Groenendijk, Peter; Vlam, Mart; Anten, Niels P. R.; Boom, Arnoud; Bongers, Frans; Pons, Thijs L.; Terburg, Gideon; Zuidema, Pieter A.

    2015-01-01

    The biomass of undisturbed tropical forests has likely increased in the past few decades, probably as a result of accelerated tree growth. Higher CO2 levels are expected to raise plant photosynthetic rates and enhance water-use efficiency, that is, the ratio of carbon assimilation through photosynthesis to water loss through transpiration. However, there is no evidence that these physiological responses do indeed stimulate tree growth in tropical forests. Here we present measurements of stable carbon isotopes and growth rings in the wood of 1,100 trees from Bolivia, Cameroon and Thailand. Measurements of carbon isotope fractions in the wood indicate that intrinsic water-use efficiency in both understorey and canopy trees increased by 30-35% over the past 150 years as atmospheric CO2 concentrations increased. However, we found no evidence for the suggested concurrent acceleration of individual tree growth when analysing the width of growth rings. We conclude that the widespread assumption of a CO2-induced stimulation of tropical tree growth may not be valid.

  2. Plasticity in Vegetative Growth over Contrasted Growing Sites of an F1 Olive Tree Progeny during Its Juvenile Phase

    PubMed Central

    Ben Sadok, Inès; Martinez, Sebastien; Moutier, Nathalie; Garcia, Gilbert; Leon, Lorenzo; Belaj, Angelina; De La Rosa, Raúl; Khadari, Bouchaib; Costes, Evelyne

    2015-01-01

    Climatic changes impact fruit tree growth and severely limit their production. Investigating the tree ability to cope with environmental variations is thus necessary to adapt breeding and management strategies in order to ensure sustainable production. In this study, we assessed the genetic parameters and genotype by environment interaction (GxE) during the early tree growth. One hundred and twenty olive seedlings derived from the cross ‘Olivière’ x ‘Arbequina’ were examined across two sites with contrasted environments, accounting for ontogenetic trends over three years. Models including the year of growth, branching order, environment, genotype effects, and their interactions were built with variance function and covariance structure of residuals when necessary. After selection of a model, broad sense heritabilities were estimated. Despite strong environmental effect on most traits, no GxE was found. Moreover, the internal structure of traits co-variation was similar in both sites. Ontogenetic growth variation, related to (i) the overall tree form and (ii) the growth and branching habit at growth unit scale, was not altered by the environment. Finally, a moderate to strong genetic control was identified for traits at the whole tree scale and at internode scale. Among all studied traits, the maximal internode length exhibited the highest heritability (H2 = 0.74). Considering the determinant role of this trait in tree architecture and its stability across environments, this study consolidates its relevance for breeding. PMID:26062090

  3. A Markovian Growth Dynamics on Rooted Binary Trees Evolving According to the Gompertz Curve

    NASA Astrophysics Data System (ADS)

    Landim, C.; Portugal, R. D.; Svaiter, B. F.

    2012-08-01

    Inspired by biological dynamics, we consider a growth Markov process taking values on the space of rooted binary trees, similar to the Aldous-Shields (Probab. Theory Relat. Fields 79(4):509-542, 1988) model. Fix n≥1 and β>0. We start at time 0 with the tree composed of a root only. At any time, each node with no descendants, independently from the other nodes, produces two successors at rate β( n- k)/ n, where k is the distance from the node to the root. Denote by Z n ( t) the number of nodes with no descendants at time t and let T n = β -1 nln( n/ln4)+(ln2)/(2 β). We prove that 2- n Z n ( T n + nτ), τ∈ℝ, converges to the Gompertz curve exp(-(ln2) e - βτ ). We also prove a central limit theorem for the martingale associated to Z n ( t).

  4. Allometry and growth of eight tree taxa in United Kingdom woodlands

    PubMed Central

    Evans, Matthew R; Moustakas, Aristides; Carey, Gregory; Malhi, Yadvinder; Butt, Nathalie; Benham, Sue; Pallett, Denise; Schäfer, Stefanie

    2015-01-01

    As part of a project to develop predictive ecosystem models of United Kingdom woodlands we have collated data from two United Kingdom woodlands - Wytham Woods and Alice Holt. Here we present data from 582 individual trees of eight taxa in the form of summary variables relating to the allometric relationships between trunk diameter, height, crown height, crown radius and trunk radial growth rate to the tree’s light environment and diameter at breast height. In addition the raw data files containing the variables from which the summary data were obtained. Large sample sizes with longitudinal data spanning 22 years make these datasets useful for future studies concerned with the way trees change in size and shape over their life-span. PMID:25977813

  5. Domination of hillslope denudation by tree uprooting in an old-growth forest

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.; Šamonil, Pavel; Pawlik, Łukasz; Trochta, Jan; Daněk, Pavel

    2017-01-01

    Razula forest preserve in the Carpathian Mountains of the Czech Republic is an unmanaged forest that has not been logged or otherwise anthropically disturbed for at least 83 years, preceded by only infrequent selective logging. We examined this 25 ha area to determine the dominant geomorphological processes on the hillslope. Tree uprooting displaces about 2.9 m3 of soil and regolith per year, representing about 1.5 uprooted trees ha- 1 yr- 1, based on forest inventory records dating back to 1972, and contemporary measurements of displaced soil and pit-mound topography resulting from uprooting. Pits and mounds occupy > 14% of the ground surface. Despite typical slope gradients of 0.05 mm- 1, and up to 0.41, little evidence of mass wasting (e.g., slump or flow scars or deposits, colluvial deposits) was noted in the field, except in association with pit-mound pairs. Small avalanche and ravel features are common on the upslope side of uproot pits. Surface runoff features were rare and poorly connected, but do include stemwash erosion associated with stemflow. No rills or channels were found above the valley bottom area, and only small, localized areas of erosion and forest litter debris indicating overland flow. Where these features occurred, they either disappeared a short distance downslope (indicating infiltration), or indicate flow into tree throw pits. Surface erosion is also inhibited by surface armoring of coarse rock fragments associated with uprooting, as well as by the nearly complete vegetation and litter cover. These results show that the combination of direct and indirect impacts of tree uprooting can dominate slope processes in old-growth, unmanaged forests. The greater observed expression of different hillslope processes in adjacent managed forests (where tree uprooting dynamics are blocked by management activities) suggests that human interventions can change the slope process regime in forest ecosystems.

  6. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula).

    PubMed

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees' resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem-wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (K R) to increase, while K R (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation.

  7. Simulation of tree-ring widths with a model for primary production, carbon allocation, and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C.; Falster, D.

    2014-12-01

    We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the "P" model). The P model provides values for gross primary production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport tissue, and fine-root production and respiration in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (the impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during the period 1958-2006 for multiple trees of Pinus koraiensis from the Changbai Mountains in northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, and old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilisation over the past 50 years is too small to be distinguished in the ring-width data, given ontogenetic trends and interannual variability in climate.

  8. Simulation of tree ring-widths with a model for primary production, carbon allocation and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C.; Falster, D.

    2014-07-01

    We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the P model). The P model provides values for Gross Primary Production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport-tissue, and fine root production and respiration, in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during 1958-2006 for multiple trees of Pinus koraiensis from the Changbai Mountain, northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilization over the past 50 years is too small to be distinguished in the ring-width data given ontogenetic trends and interannual variability in climate.

  9. How managed care growth affects where physicians locate their practices.

    PubMed

    Polsky, D; Escarce, J J

    2000-11-01

    Managed care has had a profound effect on physician practice. It has altered patterns in the use of physician services, and consequently, the practice and employment options available to physicians. But managed care growth has not been uniform across the United States, and has spawned wide geographic disparities in earning opportunities for generalists and specialists. This Issue Brief summarizes new information on how managed care has affected physicians' labor market decisions and the impact of managed care on the number and distribution of physicians across the country.

  10. [Effects of aboveground and belowground competition between grass and tree on elm seedlings growth in Horqin Sandy Land].

    PubMed

    Tang, Yi; Jiang, De-ming; Chen, Zhuo; Toshio, Oshida

    2011-08-01

    Elm sparse woodland steppe plays an important role in vegetation restoration and landscape protection in Horqin Sandy Land. In this paper, a two-factor and two-level field experiment was conducted to explore the effects of aboveground and belowground competition between grass and tree on the growth of elm seedlings in the Sandy Land. Five aspects were considered, i.e., seedling biomass, belowground biomass/aboveground biomass, stem height, ratio of root to stem, and leaf number. For the one-year-old elm seedlings, their biomass showed a trend of no competition > aboveground competition > full competition > belowground competition, belowground biomass / aboveground biomass showed a trend of belowground competition > full competition > no competition > aboveground competition, stem height showed a trend of aboveground competition > no competition > full competition > belowground competition, root/stem ratio showed a trend of belowground competition > full competition > no competition > aboveground competition, and leaf number showed a trend of aboveground competition > no competition > belowground competition > full competition. Belowground competition had significant effects on the growth of one-year-old elm seedlings, while aboveground competition did not have. Neither belowground competition nor aboveground competition had significant effects on the growth of two-year-old elm seedlings. It was suggested that in Horqin Sandy Land, grass affected the growth of elm seedlings mainly via below-ground competition, but the belowground competition didn' t affect the resource allocation of elm seedlings. With the age increase of elm seedlings, the effects of grass competition on the growth of elm seedlings became weaker.

  11. Responses of a tropical tree species to ozone: visible leaf injury, growth, and lipid peroxidation.

    PubMed

    Cassimiro, Jéssica C; Moraes, Regina M

    2016-04-01

    The Brazilian native tree species Astronium graveolens was indicated as sensitive to ozone in a fumigation experiment. Thus, the objective of this study was to evaluate how sensitive A. graveolens is to ozone under realistic conditions in the field. Eighteen saplings were exposed to ozone in a contaminated area and in a greenhouse with filtered air during two exposure periods of approximately 63 days each (March-May 2012 and September-October 2012). Leaf injury was analyzed by means of its incidence and severity, the leaf injury index (LII) and the progression of leaf abscission. These variables were monitored weekly, whereas growth and lipid peroxidation were monitored monthly. Plants exposed to ozone showed significant growth decrease and visible leaf injury increase, but lipid peroxidation and leaf abscission remained unchanged. These results indicated that plants subjected to ozone possibly diverted energy from growth to the production of antioxidants necessary to cope with ozone-induced oxidative stress.

  12. Spatial heterogeneity of soil biochar content affects soil quality and wheat growth and yield.

    PubMed

    Olmo, Manuel; Lozano, Ana María; Barrón, Vidal; Villar, Rafael

    2016-08-15

    Biochar (BC) is a carbonaceous material obtained by pyrolysis of organic waste materials and has been proposed as a soil management strategy to mitigate global warming and to improve crop productivity. Once BC has been applied to the soil, its imperfect and incomplete mixing with soil during the first few years and the standard agronomic practices (i.e. tillage, sowing) may generate spatial heterogeneity of the BC content in the soil, which may have implications for soil properties and their effects on plant growth. We investigated how, after two agronomic seasons, the spatial heterogeneity of olive-tree prunings BC applied to a vertisol affected soil characteristics and wheat growth and yield. During the second agronomic season and just before wheat germination, we determined the BC content in the soil by an in-situ visual categorization based on the soil darkening, which was strongly correlated to the BC content of the soil and the soil brightness. We found a high spatial heterogeneity in the BC plots, which affected soil characteristics and wheat growth and yield. Patches with high BC content showed reduced soil compaction and increased soil moisture, pH, electrical conductivity, and nutrient availability (P, Ca, K, Mn, Fe, and Zn); consequently, wheat had greater tillering and higher relative growth rate and grain yield. However, if the spatial heterogeneity of the soil BC content had not been taken into account in the data analysis, most of the effects of BC on wheat growth would not have been detected. Our study reveals the importance of taking into account the spatial heterogeneity of the BC content.

  13. Ecophysiological traits sustaining tree growth and survival under drying climate in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Yakir, D.; Klein, T.; Cohen, S.

    2011-12-01

    The rate of evolutionary adaptation in long-lived organisms such as forest trees cannot compete with the current and predicted rate of climate change. Tree growth and survival under warming and drying climate, such as predicted for the Mediterranean and other regions, will depend therefore on the existing plasticity of physiological and phenological traits. We examined seven physiological and phenological parameters in Pinus halepensis, a drought resistant Mediterranean tree species, using five ecotypes growing under meso-Mediterranean (MM), thermo-Mediterranean (TM), and semi-arid (SA) climates. The results revealed that both phenotypic plasticity and locally adapted ecotypes contributed, differentially, to the success of this species across a wide range of climatic conditions. While some ecotypes had an inherent xylem resistance to embolism (percent loss of conductivity < 5% even under SA climate), others demonstrated increasing water use efficiency (from 80, to 95, to 110 μmol CO2 mol-1 H2O under MM, TM, and SA climates respectively) or shortening of the growth season length (from 165 to 100 days) to match a shorter rainy season. The ability of some traits to compensate for lower compatibility with the drying and warming climate in other traits allowed sustained growth in all ecotypes. Published data on the survival of these ecotypes under harsher conditions than used here indicated that ultimately xylem resistance to embolism was a key to survival. Addressing specifically the issue of tree hydraulic conductance system in greenhouse and field studies indicated that although P. halepensis performs well under drought conditions it has a sensitive hydraulic system. This was reflected in 50% loss of hydraulic conductivity at relatively high leaf water potential of -3.1 MPa. This, however, was compensated for by a narrow safety margin allowing leaf gas exchange up to leaf water potential of -2.8 MPa. The hydraulic sensitivity also requires fast cavitation reversal

  14. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice

    PubMed Central

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-01-01

    Background: Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. Objective: The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Materials and Methods: Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. Results: The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. Conclusion: These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria. PMID

  15. Effects of calcium on seed germination, seedling growth and photosynthesis of six forest tree species under simulated acid rain.

    PubMed

    Liu, Ting-Wu; Wu, Fei-Hua; Wang, Wen-Hua; Chen, Juan; Li, Zhen-Ji; Dong, Xue-Jun; Patton, Janet; Pei, Zhen-Ming; Zheng, Hai-Lei

    2011-04-01

    We selected six tree species, Pinus massoniana Lamb., Cryptomeria fortunei Hooibr. ex Otto et Dietr., Cunninghamia lanceolata (Lamb.) Hook., Liquidambar formosana Hance, Pinus armandii Franch. and Castanopsis chinensis Hance, which are widely distributed as dominant species in the forest of southern China where acid deposition is becoming more and more serious in recent years. We investigated the effects and potential interactions between simulated acid rain (SiAR) and three calcium (Ca) levels on seed germination, radicle length, seedling growth, chlorophyll content, photosynthesis and Ca content in leaves of these six species. We found that the six species showed different responses to SiAR and different Ca levels. Pinus armandii and C. chinensis were very tolerant to SiAR, whereas the others were more sensitive. The results of significant SiAR × Ca interactions on different physiological parameters of the six species demonstrate that additional Ca had a dramatic rescue effect on the seed germination and seedling growth for the sensitive species under SiAR. Altogether, we conclude that the negative effects of SiAR on seed germination, seedling growth and photosynthesis of the four sensitive species could be ameliorated by Ca addition. In contrast, the physiological processes of the two tolerant species were much less affected by both SiAR and Ca treatments. This conclusion implies that the degree of forest decline caused by long-term acid deposition may be attributed not only to the sensitivity of tree species to acid deposition, but also to the Ca level in the soil.

  16. Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes.

    PubMed

    Krause, Kim; Cherubini, Paolo; Bugmann, Harald; Schleppi, Patrick

    2012-12-01

    Human activities have drastically increased nitrogen (N) inputs into natural and near-natural terrestrial ecosystems such that critical loads are now being exceeded in many regions of the world. This implies that these ecosystems are shifting from natural N limitation to eutrophication or even N saturation. This process is expected to modify the growth of forests and thus, along with management, to affect their carbon (C) sequestration. However, knowledge of the physiological mechanisms underlying tree response to N inputs, especially in the long term, is still lacking. In this study, we used tree-ring patterns and a dual stable isotope approach (δ(13)C and δ(18)O) to investigate tree growth responses and the underlying physiological reactions in a long-term, low-dose N addition experiment (+23 kg N ha(-1) a(-1)). This experiment has been conducted for 14 years in a mountain Picea abies (L.) Karst. forest in Alptal, Switzerland, using a paired-catchment design. Tree stem C sequestration increased by ∼22%, with an N use efficiency (NUE) of ca. 8 kg additional C in tree stems per kg of N added. Neither earlywood nor latewood δ(13)C values changed significantly compared with the control, indicating that the intrinsic water use efficiency (WUE(i)) (A/g(s)) did not change due to N addition. Further, the isotopic signal of δ(18)O in early- and latewood showed no significant response to the treatment, indicating that neither stomatal conductance nor leaf-level photosynthesis changed significantly. Foliar analyses showed that needle N concentration significantly increased in the fourth to seventh treatment year, accompanied by increased dry mass and area per needle, and by increased tree height growth. Later, N concentration and height growth returned to nearly background values, while dry mass and area per needle remained high. Our results support the hypothesis that enhanced stem growth caused by N addition is mainly due to an increased leaf area index (LAI

  17. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.

    PubMed

    Xu, Liangzheng; Niu, Junfang; Li, Chunjian; Zhang, Fusuo

    2009-07-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  18. Simulation of dendritic growth reveals necessary and sufficient parameters to describe the shapes of dendritic trees

    NASA Astrophysics Data System (ADS)

    Trottier, Olivier; Ganguly, Sujoy; Bowne-Anderson, Hugo; Liang, Xin; Howard, Jonathon

    For the last 120 years, the development of neuronal shapes has been of great interest to the scientific community. Over the last 30 years, significant work has been done on the molecular processes responsible for dendritic development. In our ongoing research, we use the class IV sensory neurons of the Drosophila melanogaster larva as a model system to understand the growth of dendritic arbors. Our main goal is to elucidate the mechanisms that the neuron uses to determine the shape of its dendritic tree. We have observed the development of the class IV neuron's dendritic tree in the larval stage and have concluded that morphogenesis is defined by 3 distinct processes: 1) branch growth, 2) branching and 3) branch retraction. As the first step towards understanding dendritic growth, we have implemented these three processes in a computational model. Our simulations are able to reproduce the branch length distribution, number of branches and fractal dimension of the class IV neurons for a small range of parameters.

  19. Do individual-tree growth models correctly represent height:diameter ratios of Norway spruce and Scots pine?

    PubMed Central

    Vospernik, Sonja; Monserud, Robert A.; Sterba, Hubert

    2010-01-01

    Height:diameter ratios are an important measure of stand stability. Because of the importance of height:diameter ratios for forest management, individual-tree growth models should correctly depict height:diameter ratios. In particular, (i) height:diameter ratios should not exceed that of very dense stands, (ii) height:diameter ratios should not fall below that of open-grown trees, (iii) height:diameter ratios should decrease with increasing spacing, (iv) height:diameter ratios for suppressed trees should be higher than ratios for dominant trees. We evaluated the prediction of height:diameter ratios by running four commonly used individual-tree growth models in central Europe: BWIN, Moses, Silva and Prognaus. They represent different subtypes of individual-tree growth models, namely models with and without an explicit growth potential and models that are either distance-dependent (spatial) or distance-independent (non-spatial). Note that none of these simulators predict height:diameter ratios directly. We began by building a generic simulator that contained the relevant equations for diameter increment, height increment, and crown size for each of the four simulators. The relevant measures of competition, site characteristics, and stand statistics were also coded. The advantage of this simulator was that it ensured that no additional constraint was being imposed on the growth equations, and that initial conditions were identical. We then simulated growth for a 15- and 30-year period for Austrian permanent research plots in Arnoldstein and in Litschau, which represent stands at different age-classes and densities. We also simulated growth of open-grown trees and compared the results to the literature. We found that the general pattern of height:diameter ratios was correctly predicted by all four individual-tree growth models, with height:diameter ratios above that of open-grown trees and below that of very dense stands. All models showed a decrease of height

  20. Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy.

    PubMed

    Goga, Michal; Antreich, Sebastian J; Bačkor, Martin; Weckwerth, Wolfram; Lang, Ingeborg

    2016-09-19

    Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens, but there is still little information on the interactions between lichens and bryophytes.In the present study, we used extracts from six lichen thalli containing secondary metabolites like usnic acid, protocetraric acid, atranorin, lecanoric acid, nortistic acid, and thamnolic acid. To observe the influence of these metabolites on bryophytes, the moss Physcomitrella patens was cultivated for 5 weeks under laboratory conditions and treated with lichen extracts. Toxicity of natural mixtures of secondary metabolites was tested at three selected doses (0.001, 0.01, and 0.1 %). When the mixture contained substantial amounts of usnic acid, we observed growth inhibition of protonemata and reduced development of gametophores. Significant differences in cell lengths and widths were also noticed. Furthermore, usnic acid had a strong effect on cell division in protonemata suggesting a strong impact on the early stages of bryophyte development by allelochemicals contained in the lichen secondary metabolites.Biological activities of lichen secondary metabolites were confirmed in several studies such as antiviral, antibacterial, antitumor, antiherbivore, antioxidant, antipyretic, and analgetic action or photoprotection. This work aimed to expand the knowledge on allelopathic effects on bryophyte growth.

  1. Human impacts affect tree community features of 20 forest fragments of a vanishing neotropical hotspot.

    PubMed

    Pereira, José Aldo Alves; de Oliveira-Filho, Ary Teixeira; Eisenlohr, Pedro V; Miranda, Pedro L S; de Lemos Filho, José Pires

    2015-02-01

    The loss in forest area due to human occupancy is not the only threat to the remaining biodiversity: forest fragments are susceptible to additional human impact. Our aim was to investigate the effect of human impact on tree community features (species composition and abundance, and structural descriptors) and check if there was a decrease in the number of slender trees, an increase in the amount of large trees, and also a reduction in the number of tree species that occur in 20 fragments of Atlantic montane semideciduous forest in southeastern Brazil. We produced digital maps of each forest fragment using Landsat 7 satellite images and processed the maps to obtain morphometric variables. We used investigative questionnaires and field observations to survey the history of human impact. We then converted the information into scores given to the extent, severity, and duration of each impact, including proportional border area, fire, trails, coppicing, logging, and cattle, and converted these scores into categorical levels. We used linear models to assess the effect of impacts on tree species abundance distribution and stand structural descriptors. Part of the variation in floristic patterns was significantly correlated to the impacts of fire, logging, and proportional border area. Structural descriptors were influenced by cattle and outer roads. Our results provided, for the first time, strong evidence that tree species occurrence and abundance, and forest structure of Atlantic seasonal forest fragments respond differently to various modes of disturbance by humans.

  2. Does canopy position affect wood specific gravity in temperate forest trees?

    PubMed

    Woodcock, D W; Shier, A D

    2003-04-01

    The radial increases in wood specific gravity known in many tree species have been interpreted as providing mechanical support in response to the stresses associated with wind loading. This interpretation leads to the hypothesis that individuals reaching the canopy should (1) be more likely to have radial increases in specific gravity and (2) exhibit greater increases than individuals in the subcanopy. Wood specific gravity was determined for three species of forest trees (Acer rubrum, Fagus grandifolia and Tsuga canadensis) growing in central Massachusetts, USA. Acer rubrum shows radial increases in specific gravity, but these increases are not more pronounced in canopy trees; the other two species show a pattern of radial decreases. The degree of radial increase or decrease is influenced by tree height and diameter. Of the dominant tree species for which we have data, A. rubrum, Betula papyrifera and Pinus strobus show radial increases in specific gravity, whereas F. grandifolia, T. canadensis and Quercus rubra show decreases. The occurrence of radial increases in B. papyrifera and P. strobus, which are often canopy emergents, suggests that it is overall adaptive strategy that is important rather than position (canopy vs. subcanopy) of any individual tree. It is suggested that radial increases in specific gravity are associated with early-successional status or characteristics and decreases with late-successional status or persistence in mature forest.

  3. Does Canopy Position Affect Wood Specific Gravity in Temperate Forest Trees?

    PubMed Central

    WOODCOCK, D. W.; SHIER, A. D.

    2003-01-01

    The radial increases in wood specific gravity known in many tree species have been interpreted as providing mechanical support in response to the stresses associated with wind loading. This interpretation leads to the hypothesis that individuals reaching the canopy should (1) be more likely to have radial increases in specific gravity and (2) exhibit greater increases than individuals in the subcanopy. Wood specific gravity was determined for three species of forest trees (Acer rubrum, Fagus grandifolia and Tsuga canadensis) growing in central Massachusetts, USA. Acer rubrum shows radial increases in specific gravity, but these increases are not more pronounced in canopy trees; the other two species show a pattern of radial decreases. The degree of radial increase or decrease is influenced by tree height and diameter. Of the dominant tree species for which we have data, A. rubrum, Betula papyrifera and Pinus strobus show radial increases in specific gravity, whereas F. grandifolia, T. canadensis and Quercus rubra show decreases. The occurrence of radial increases in B. papyrifera and P. strobus, which are often canopy emergents, suggests that it is overall adaptive strategy that is important rather than position (canopy vs. subcanopy) of any individual tree. It is suggested that radial increases in specific gravity are associated with early‐successional status or characteristics and decreases with late‐successional status or persistence in mature forest. PMID:12646497

  4. Human Impacts Affect Tree Community Features of 20 Forest Fragments of a Vanishing Neotropical Hotspot

    NASA Astrophysics Data System (ADS)

    Pereira, José Aldo Alves; de Oliveira-Filho, Ary Teixeira; Eisenlohr, Pedro V.; Miranda, Pedro L. S.; de Lemos Filho, José Pires

    2015-02-01

    The loss in forest area due to human occupancy is not the only threat to the remaining biodiversity: forest fragments are susceptible to additional human impact. Our aim was to investigate the effect of human impact on tree community features (species composition and abundance, and structural descriptors) and check if there was a decrease in the number of slender trees, an increase in the amount of large trees, and also a reduction in the number of tree species that occur in 20 fragments of Atlantic montane semideciduous forest in southeastern Brazil. We produced digital maps of each forest fragment using Landsat 7 satellite images and processed the maps to obtain morphometric variables. We used investigative questionnaires and field observations to survey the history of human impact. We then converted the information into scores given to the extent, severity, and duration of each impact, including proportional border area, fire, trails, coppicing, logging, and cattle, and converted these scores into categorical levels. We used linear models to assess the effect of impacts on tree species abundance distribution and stand structural descriptors. Part of the variation in floristic patterns was significantly correlated to the impacts of fire, logging, and proportional border area. Structural descriptors were influenced by cattle and outer roads. Our results provided, for the first time, strong evidence that tree species occurrence and abundance, and forest structure of Atlantic seasonal forest fragments respond differently to various modes of disturbance by humans.

  5. Invasive Plant Suppresses the Growth of Native Tree Seedlings by Disrupting Belowground Mutualisms

    PubMed Central

    Stinson, Kristina A; Campbell, Stuart A; Powell, Jeff R; Wolfe, Benjamin E; Callaway, Ragan M; Thelen, Giles C; Hallett, Steven G; Prati, Daniel

    2006-01-01

    The impact of exotic species on native organisms is widely acknowledged, but poorly understood. Very few studies have empirically investigated how invading plants may alter delicate ecological interactions among resident species in the invaded range. We present novel evidence that antifungal phytochemistry of the invasive plant, Alliaria petiolata, a European invader of North American forests, suppresses native plant growth by disrupting mutualistic associations between native canopy tree seedlings and belowground arbuscular mycorrhizal fungi. Our results elucidate an indirect mechanism by which invasive plants can impact native flora, and may help explain how this plant successfully invades relatively undisturbed forest habitat. PMID:16623597

  6. Growth of ponderosa pine seedlings as affected by air pollution

    NASA Astrophysics Data System (ADS)

    Momen, B.; Anderson, P. D.; Houpis, J. L. J.; Helms, J. A.

    The effect of air pollution on seedling survival and competitive ability is important to natural and artificial regeneration of forest trees. Although biochemical and physiological processes are sensitive indicators of pollution stress, the cumulative effects of air pollutants on seedling vigor and competitive ability may be assessed directly from whole-plant growth characteristics such as diameter, height, and photosynthetic area. A few studies that have examined intraspecific variation in seedling response to air pollution indicate that genotypic differences are important in assessing potential effects of air pollution on forest regeneration. Here, we studied the effects of acid rain (no-rain, pH 5.1 rain, pH 3.0 rain) and ozone (filtered, ambient, twice-ambient) in the field on height, diameter, volume, the height:diameter ratio, maximum needle length, and time to reach maximum needle length in seedlings of three families of ponderosa pine ( Pinus ponderosa Dougl. ex Laws). Seedling diameter, height, volume, and height:diameter ratio related significantly to their pre-treatment values. Twice-ambient ozone decreased seedling diameter compared with ozone-filtered air. A significant family-by-ozone interaction was detected for seedling height, as the height of only one of the three families was decreased by twice-ambient ozone compared with the ambient level. Seedling diameter was larger and the height:diameter ratio was smaller under pH 3.0 rain compared to either the no-rain or the pH 5.1-rain treatment. This suggests greater seedling vigor, perhaps due to a foliar fertilization effect of the pH 3.0 rain.

  7. Responses of tree-ring growth and crop yield to drought indices in the Shanxi province, North China.

    PubMed

    Sun, Junyan; Liu, Yu

    2014-09-01

    In this paper, we analyze the relationships among the tree-ring chronology, meteorological drought (precipitation), agricultural drought (Palmer Drought Severity Index PDSI), hydrological drought (runoff), and agricultural data in the Shanxi province of North China. Correlation analyses indicate that the tree-ring chronology is significantly correlated with all of the drought indices during the main growing season from March to July. Sign test analyses further indicate that the tree-ring chronology shows variation similar to that of the drought indices in both high and low frequencies. Comparisons of the years with narrow tree rings to the severe droughts reflected in all three indices from 1957 to 2008 reveal that the radial growth of the trees in the study region can accurately record the severe drought for which all three indices were in agreement (1972, 1999, 2000, and 2001). Comparisons with the dryness/wetness index indicate that tree-ring growth can properly record the severe droughts in the history. Correlation analyses among agricultural data, tree-ring chronology, and drought indices indicate that the per-unit yield of summer crops is relatively well correlated with the agricultural drought, as indicated by the PDSI. The PDSI is the climatic factor that significantly influences both tree growth and per-unit yield of summer crops in the study region. These results indicate that the PDSI and tree-ring chronology have the potential to be used to monitor and predict the yield of summer crops. Tree-ring chronology is an important tool for drought research and for wider applications in agricultural and hydrological research.

  8. Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation.

    PubMed

    Li, Mai-He; Xiao, Wen-Fa; Wang, San-Gen; Cheng, Gen-Wei; Cherubini, Paolo; Cai, Xaio-Hu; Liu, Xing-Liang; Wang, Xiao-Dan; Zhu, Wan-Ze

    2008-08-01

    To test whether the altitudinal distribution of trees is determined by a carbon shortage or an insufficient sugar fraction (sugar:starch ratio) in treeline trees, we studied the status of nonstructural carbohydrates (NSC) and their components (total soluble sugars and starch) in Abies fabri (Mast.) Craib and Picea balfouriana var. hirtella Rehd. et Wils. trees along three elevational gradients, ranging from lower elevations to the alpine treeline, on the eastern edge of the Tibetan Plateau. For comparison, we investigated a low-altitude species (Tsuga yunnanensis (Franch.) Pritz.) which served as a warm-climate reference because it is distributed in closed montane forests below 3100 m a.s.l. in the study area. The carbon status of T. yunnanensis responded to altitude differently from that of the treeline species. At the species level, total NSC was not consistently more abundant in treeline trees than in trees of the same species growing at lower elevations. Thus there was no consistent evidence for carbon limitation of growth in treeline trees. For the three treeline species studied (P. balfouriana and A. fabri in the Kang-Ding Valley and A. fabri in the Mo-Xi Valley), winter NSC concentrations in treeline trees were significantly lower than in lower-elevation trees of the same species, suggesting that, in winter, carbon is limited in treeline trees. However, in no case was there total overwinter depletion of NSC or its components in treeline trees. Treeline and low-altitude species had similar sugar:starch ratios of about three at their upper-elevational limits in April. We conclude that survival and growth of trees at the elevational or latitudinal climate limit depend not only on NSC concentration in perennial tissues, but also on the maintenance of an overwintering sugar:starch ratio greater than three.

  9. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula)

    PubMed Central

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees’ resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem–wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (KR) to increase, while KR (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation. PMID:26528318

  10. A New Method to Compare Statistical Tree Growth Curves: The PL-GMANOVA Model and Its Application with Dendrochronological Data

    PubMed Central

    Ricker, Martin; Peña Ramírez, Víctor M.; von Rosen, Dietrich

    2014-01-01

    Growth curves are monotonically increasing functions that measure repeatedly the same subjects over time. The classical growth curve model in the statistical literature is the Generalized Multivariate Analysis of Variance (GMANOVA) model. In order to model the tree trunk radius (r) over time (t) of trees on different sites, GMANOVA is combined here with the adapted PL regression model Q = A·T+E, where for and for , A =  initial relative growth to be estimated, , and E is an error term for each tree and time point. Furthermore, Ei[–b·r]  = , , with TPR being the turning point radius in a sigmoid curve, and at is an estimated calibrating time-radius point. Advantages of the approach are that growth rates can be compared among growth curves with different turning point radiuses and different starting points, hidden outliers are easily detectable, the method is statistically robust, and heteroscedasticity of the residuals among time points is allowed. The model was implemented with dendrochronological data of 235 Pinus montezumae trees on ten Mexican volcano sites to calculate comparison intervals for the estimated initial relative growth . One site (at the Popocatépetl volcano) stood out, with being 3.9 times the value of the site with the slowest-growing trees. Calculating variance components for the initial relative growth, 34% of the growth variation was found among sites, 31% among trees, and 35% over time. Without the Popocatépetl site, the numbers changed to 7%, 42%, and 51%. Further explanation of differences in growth would need to focus on factors that vary within sites and over time. PMID:25402427

  11. Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.).

    PubMed

    Trouvé, Raphaël; Bontemps, Jean-Daniel; Seynave, Ingrid; Collet, Catherine; Lebourgeois, François

    2015-10-01

    Even-aged forest stands are competitive communities where competition for light gives advantages to tall individuals, thereby inducing a race for height. These same individuals must however balance this competitive advantage with height-related mechanical and hydraulic risks. These phenomena may induce variations in height-diameter growth relationships, with primary dependences on stand density and tree social status as proxies for competition pressure and access to light, and on availability of local environmental resources, including water. We aimed to investigate the effects of stand density, tree social status and water stress on the individual height-circumference growth allocation (Δh-Δc), in even-aged stands of Quercus petraea Liebl. (sessile oak). Within-stand Δc was used as surrogate for tree social status. We used an original long-term experimental plot network, set up in the species production area in France, and designed to explore stand dynamics on a maximum density gradient. Growth allocation was modelled statistically by relating the shape of the Δh-Δc relationship to stand density, stand age and water deficit. The shape of the Δh-Δc relationship shifted from linear with a moderate slope in open-grown stands to concave saturating with an initial steep slope in closed stands. Maximum height growth was found to follow a typical mono-modal response to stand age. In open-grown stands, increasing summer soil water deficit was found to decrease height growth relative to radial growth, suggesting hydraulic constraints on height growth. A similar pattern was found in closed stands, the magnitude of the effect however lowering from suppressed to dominant trees. We highlight the high phenotypic plasticity of growth in sessile oak trees that further adapt their allocation scheme to their environment. Stand density and tree social status were major drivers of growth allocation variations, while water stress had a detrimental effect on height in the

  12. Flood Plain Aggradation Rates Based on Tree-Ring Growth-Suppression Dates

    NASA Astrophysics Data System (ADS)

    Friedman, J. M.

    2003-12-01

    When woody riparian plants are partially buried subsequent tree rings of the buried stems resemble those of roots. Annual rings in a buried stem are narrower and have larger vessels then those in unburied sections of the same stem. We have used this phenomenon to date flood plain sediments exposed in trenches, along two ephemeral streams in New Mexico (Rio Puerco and Chaco Wash) where the sediments are predominantly silt and very fine sand and the plants are predominantly tamarisk and willow. Cross dating down the stem allows dating of the first growth-season following burial by thick beds, and constrains the age of all stratigraphic units deposited since germination of the tree. We observed that the anatomical reaction to burial increases with bed thickness and cumulative deposition. Beds that are thicker than 30 cm can be dated to the year of the deposition event. Beds 10 to 30 cm thick can usually be dated to within several years. The period of deposition of multiple very thin beds can be constrained to the decade. Results can be improved by analyzing multiple stems from one tree and multiple trees linked together by the stratigraphy. Along our study streams, sites far from the channel tend to have moderate and relatively steady point-aggradation rates. Levees next to the channel tend to have the thickest deposits per flood and variable long-term rates, which can differ from the whole flood plain aggradation rates by several fold. Cross-sectionally averaged flood plain aggradation has been as large as a meter per decade along our study streams.

  13. The dynamic of the annual carbon allocation to wood in European tree species is consistent with a combined source-sink limitation of growth: implications for modelling

    NASA Astrophysics Data System (ADS)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrene, E.; Francois, C.; Soudani, K.; Ourcival, J. M.; Delpierre, N.

    2015-05-01

    The extent to which wood growth is limited by carbon (C) supply (i.e. source control) or by cambial activity (i.e. sink control) will strongly determine the responses of trees to global changes. Nevertheless, the physiological processes that are responsible for limiting forest growth are still a matter of debate. The aim of this study was to evaluate the key determinants of the annual C allocation to wood along large soil and climate regional gradients over France. The study was conducted for five tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex, Quercus robur and Picea abies). The drivers of stand biomass growth were assessed on both inter-site and inter-annual scales. Our data set comprised field measurements performed at 49 sites (931 site-years) that included biometric measurements and a variety of stand characteristics (e.g. soil water holding capacity, leaf area index). It was complemented with process-based simulations when possible explanatory variables could not be directly measured (e.g. annual and seasonal tree C balance, bioclimatic water stress indices). Specifically, the relative influences of tree C balance (source control), direct environmental control (water and temperature controls of sink activity) and allocation adjustments related to age, past climate conditions, competition intensity and soil nutrient availability on growth were quantified. The inter-site variability in the stand C allocation to wood was predominantly driven by age-related decline. The direct effects of temperature and water stress on sink activity (i.e. effects independent from their effects on the C supply) exerted a strong influence on the annual stand wood growth in all of the species considered, including deciduous temperate species. The lagged effect of the past environmental conditions (e.g. the previous year's water stress and low C uptake) significantly affected the annual C allocation to wood. The C supply

  14. How much does horizontal gene transfer affect the phylogenetic tree of bacteria?

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Boisvert, Philippe; Higgs, Paul

    2004-03-01

    Ribosomal RNA sequences are frequently used in bacterial phylogenetics. We have developed RNA-specific phylogenetic methods that take account of the conserved secondary structure of these sequences. Our method uses Monte Carlo simulations to generate a representative sample of evolutionary trees (analogous to an equilibrium ensemble in physics). It is known that horizontal transfer of genes can occur between bacterial species, although the frequency and implications of this are not fully understood. If horizontal transfer were frequent, there would be no consistent evolutionary tree for bacteria. We compared trees for 16S rRNA, 23S rRNA and tRNA genes from Proteobacteria (a diverse group for which many complete genome sequences are available). The gene trees are consistent with one another in most respects. Minor differences can almost all be attributed to uncertainties and unreliabilities in the phylogenetic method. We therefore conclude that these genes all give a coherent picture of the phylogeny of the organisms, and that horizontal transfer of these genes is too rare to obscure the signal of the organismal tree.

  15. Effects of acidity on tree Pollen germination and tube growth. Final report

    SciTech Connect

    Van Ryn, D.M.; Jacobson, J.S.

    1984-08-01

    Most of the northeastern hardwood forests in North America are exposed repeatedly to acidic rainfall at pH values below 5.0. Pollen germination, tube growth and fertilization, important parts of the reproductive process, are sensitive to changes in their chemical environment. Accordingly, the authors investigated the effects of acidity on pollen germination and tube elongation of four northeastern tree species: flowering dogwood, black birch, yellow birch, and sugar maple. Pollen was collected and germinated in a growth medium acidified to pH values ranging from 5.0 to 2.6. Pollen was found to be sensitive to acidification of the germination medium to below pH 4.2. These results suggest that acidic rain that now occurs in eastern North America may influence reproductive processes that are necessary for seed set and regeneration in northern hardwood forests.

  16. Growth and physiological responses of tree seedlings to experimental manipulation of light and water

    SciTech Connect

    Huston, M.A.; Holmgren, M.

    1995-06-01

    Seedlings of two tree species with similar tolerance to soil water and nutrient levels, but contrasting tolerance to shade (Acer saccharum and Liriodendron tulipifera) were grown in shade houses under 5 light levels (27%, 17%, 12%, 5%, and 1%) and three soil water regimes (5-9%, 11-15%, and >20%). Soil, light, and water conditions were representative of those in the Walker Branch Throughfall Displacement Experiment, where the same species are being monitored under field conditions. Treatments were maintained from mid-June through October, when all plants were harvested for determination of biomass allocation patterns. The only mortality occurred among the tulip poplars, but there was a significant interaction effect of the treatments on leaf area, total biomass, and allocation patterns. Highest growth rates in both species occurred at 17% light in the highest water treatment, with the 27% treatment showing reduced growth, perhaps due to photoinhibition. Gas exchange measurements indicated that the light compensation point increased under dry conditions.

  17. Lignocellulolytic enzymes profile during growth and fruiting of Pleurotus ostreatus on wheat straw and tree leaves.

    PubMed

    Elisashvili, Vladimir; Kachlishvili, Eva; Penninckx, Michel J

    2008-06-01

    Cultivation of two commercial Pleurotus ostreatus (oyster mushroom) strains was performed in plastic bags. Tree leaves appeared to be an excellent growth substrate for the conversion into fruiting bodies with biological efficiency of 108-118%. The level of enzyme activity was strongly regulated during the life cycle of mushrooms. However, despite the quantitative variations, each strain had a similar pattern of enzyme accumulation in fermentation of both substrates. Laccase and MnP activities were high during substrate colonization and declined rapidly during fruiting body development. On the contrary, in substrate colonization P. ostreatus expressed comparatively low activity of hydrolases. When primordia appeared, the activity of these enzymes sharply increased. Both cellulase and xylanase activity peaked at the mature fruiting body stage. When mushrooms shifted to the vegetative growth, the activity of ligninolytic enzymes again gradually increased, whereas the activity of hydrolases decreased.

  18. Do variations in leaf phenology affect radial growth variations in Fagus sylvatica?

    NASA Astrophysics Data System (ADS)

    Čufar, Katarina; De Luis, Martin; Prislan, Peter; Gričar, Jožica; Črepinšek, Zalika; Merela, Maks; Kajfež-Bogataj, Lučka

    2015-08-01

    We used a dendrochronological and leaf phenology network of European beech ( Fagus sylvatica) in Slovenia, a transitional area between Mediterranean, Alpine and continental climatic regimes, for the period 1955-2007 to test whether year to year variations in leaf unfolding and canopy duration (i.e. time between leaf unfolding and colouring) influence radial growth (annual xylem production and tree ring widths) and if such influences are more pronounced at higher altitudes. We showed that variability in leaf phenology has no significant effect on variations in radial growth. The results are consistent in the entire region, irrespective of the climatic regime or altitude, although previous studies have shown that leaf phenology and tree ring variation depend on altitude. The lack of relationship between year to year variability in leaf phenology and radial growth may suggest that earlier leaf unfolding—as observed in a previous study—probably does not cause increased tree growth rates in beech in Slovenia.

  19. Do variations in leaf phenology affect radial growth variations in Fagus sylvatica?

    PubMed

    Čufar, Katarina; De Luis, Martin; Prislan, Peter; Gričar, Jožica; Črepinšek, Zalika; Merela, Maks; Kajfež-Bogataj, Lučka

    2015-08-01

    We used a dendrochronological and leaf phenology network of European beech (Fagus sylvatica) in Slovenia, a transitional area between Mediterranean, Alpine and continental climatic regimes, for the period 1955-2007 to test whether year to year variations in leaf unfolding and canopy duration (i.e. time between leaf unfolding and colouring) influence radial growth (annual xylem production and tree ring widths) and if such influences are more pronounced at higher altitudes. We showed that variability in leaf phenology has no significant effect on variations in radial growth. The results are consistent in the entire region, irrespective of the climatic regime or altitude, although previous studies have shown that leaf phenology and tree ring variation depend on altitude. The lack of relationship between year to year variability in leaf phenology and radial growth may suggest that earlier leaf unfolding--as observed in a previous study--probably does not cause increased tree growth rates in beech in Slovenia.

  20. Long-term habitat selection and chronic root herbivory: explaining the relationship between periodical cicada density and tree growth.

    PubMed

    Yang, Louie H; Karban, Richard

    2009-01-01

    Periodical cicadas (Magicicada spp.) are insect herbivores that feed on host tree roots, but their distribution among hosts is determined largely by the oviposition of female cicadas in the previous generation. A pattern of decreasing tree growth rates with increasing cicada densities is predicted when considering the costs of chronic root herbivory, but the opposite pattern is expected when considering adaptive habitat selection. Here, we report observations indicating that the relationship between periodical cicada densities and host tree growth rates is hump shaped. We suggest that both herbivory and habitat selection are likely to be key processes explaining this pattern, resulting in regions of positive and negative correlation. These results suggest that the effects of cicada herbivory are most apparent at relatively high cicada densities, while habitat selection tends to distribute cicada herbivory on host trees that are able to compensate for cicada root herbivory up to threshold cicada densities.

  1. Do plastic particles affect microalgal photosynthesis and growth?

    PubMed

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size.

  2. Family poverty affects the rate of human infant brain growth.

    PubMed

    Hanson, Jamie L; Hair, Nicole; Shen, Dinggang G; Shi, Feng; Gilmore, John H; Wolfe, Barbara L; Pollak, Seth D

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems.

  3. Family Poverty Affects the Rate of Human Infant Brain Growth

    PubMed Central

    Hanson, Jamie L.; Hair, Nicole; Shen, Dinggang G.; Shi, Feng; Gilmore, John H.; Wolfe, Barbara L.; Pollak, Seth D.

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems. PMID:24349025

  4. Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests.

    PubMed

    Dong, Shirley Xiaobi; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Supardi, M N Nur; Kassim, Abd Rahman; Tan, Sylvester; Moorcroft, Paul R

    2012-10-07

    The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.

  5. Intra-annual response of tree growth to climate in temperate forests: larger implications of fine-scale responses

    NASA Astrophysics Data System (ADS)

    McMahon, S.; Parker, G. G.

    2013-12-01

    Tree growth is a key component in the movement of carbon through terrestrial ecosystems. Although correlating annual growth rates to temperature an precipitation averages is the most common approach to extrapolating climate sensitivities, individual trees respond to weather at a much finer temporal scale. This response, further, is sensitive to many environmental factors and that sensitivity can depend on species, individual location in the species range, or size of the individual among other factors. Using weekly and bi-weekly measurements of dendrometer bands on 100 trees in three sites in the eastern US (Massachusetts, Virginia, and Maryland) over four years, we fit functional forms to intra-annual growth and compared patterns in productivity response to daily temperature and water balance information. We also determined phenological patterns in growth initiation, cessation, and maximum rate. We found that across size classes and species, trees respond to high temperatures and minor droughts by pausing in diameter increase. Although water retention may contribute some to this pattern, large differences in end-of-year biomass gain demonstrate a clear relationship between these pauses and overall annual carbon gain. Species did show some distinct patterns in this sensitivity and the overall phenology of growth. Further, the growing season as defined by when the majority of biomass increase actually occurred was much smaller than the leaf-out season indicating that droughts and heat-waves in a key subset of the green season can have a disproportionate effect on tree carbon uptake and forest carbon balance.

  6. Variation in tree mortality and regeneration affect forest carbon recovery following fuel treatments and wildfire in the Lake Tahoe Basin, California, USA

    PubMed Central

    2012-01-01

    Background Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A. Although fuel treatments such as thinning and burning are known to immediately reduce forest carbon stocks, there are suggestions that these losses may be paid back over the long-term if treatments sufficiently reduce future wildfire severity, or prevent deforestation. Although fire severity and post-fire tree regeneration have been indicated as important influences on long-term carbon dynamics, it remains unclear how natural variability in these processes might affect the ability of fuel treatments to protect forest carbon resources. We surveyed a wildfire where fuel treatments were put in place before fire and estimated the short-term impact of treatment and wildfire on aboveground carbon stocks at our study site. We then used a common vegetation growth simulator in conjunction with sensitivity analysis techniques to assess how predicted timescales of carbon recovery after fire are sensitive to variation in rates of fire-related tree mortality, and post-fire tree regeneration. Results We found that fuel reduction treatments were successful at ameliorating fire severity at our study site by removing an estimated 36% of aboveground biomass. Treated and untreated stands stored similar amounts of carbon three years after wildfire, but differences in fire severity were such that untreated stands maintained only 7% of aboveground carbon as live trees, versus 51% in treated stands. Over the long-term, our simulations suggest that treated stands in our study area will recover baseline carbon storage 10–35 years more quickly than untreated stands. Our sensitivity analysis found that rates of fire-related tree mortality strongly influence estimates of post-fire carbon recovery. Rates of regeneration were less influential on recovery timing, except when fire severity was high. Conclusions Our ability to predict the response of forest

  7. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome

    PubMed Central

    Beckers, Bram; Op De Beeck, Michiel; Weyens, Nele; Van Acker, Rebecca; Van Montagu, Marc; Boerjan, Wout; Vangronsveld, Jaco

    2016-01-01

    Cinnamoyl-CoA reductase (CCR), an enzyme central to the lignin biosynthetic pathway, represents a promising biotechnological target to reduce lignin levels and to improve the commercial viability of lignocellulosic biomass. However, silencing of the CCR gene results in considerable flux changes of the general and monolignol-specific lignin pathways, ultimately leading to the accumulation of various extractable phenolic compounds in the xylem. Here, we evaluated host genotype-dependent effects of field-grown, CCR-down-regulated poplar trees (Populus tremula × Populus alba) on the bacterial rhizosphere microbiome and the endosphere microbiome, namely the microbiota present in roots, stems, and leaves. Plant-associated bacteria were isolated from all plant compartments by selective isolation and enrichment techniques with specific phenolic carbon sources (such as ferulic acid) that are up-regulated in CCR-deficient poplar trees. The bacterial microbiomes present in the endosphere were highly responsive to the CCR-deficient poplar genotype with remarkably different metabolic capacities and associated community structures compared with the WT trees. In contrast, the rhizosphere microbiome of CCR-deficient and WT poplar trees featured highly overlapping bacterial community structures and metabolic capacities. We demonstrate the host genotype modulation of the plant microbiome by minute genetic variations in the plant genome. Hence, these interactions need to be taken into consideration to understand the full consequences of plant metabolic pathway engineering and its relation with the environment and the intended genetic improvement. PMID:26755604

  8. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome.

    PubMed

    Beckers, Bram; Op De Beeck, Michiel; Weyens, Nele; Van Acker, Rebecca; Van Montagu, Marc; Boerjan, Wout; Vangronsveld, Jaco

    2016-02-23

    Cinnamoyl-CoA reductase (CCR), an enzyme central to the lignin biosynthetic pathway, represents a promising biotechnological target to reduce lignin levels and to improve the commercial viability of lignocellulosic biomass. However, silencing of the CCR gene results in considerable flux changes of the general and monolignol-specific lignin pathways, ultimately leading to the accumulation of various extractable phenolic compounds in the xylem. Here, we evaluated host genotype-dependent effects of field-grown, CCR-down-regulated poplar trees (Populus tremula × Populus alba) on the bacterial rhizosphere microbiome and the endosphere microbiome, namely the microbiota present in roots, stems, and leaves. Plant-associated bacteria were isolated from all plant compartments by selective isolation and enrichment techniques with specific phenolic carbon sources (such as ferulic acid) that are up-regulated in CCR-deficient poplar trees. The bacterial microbiomes present in the endosphere were highly responsive to the CCR-deficient poplar genotype with remarkably different metabolic capacities and associated community structures compared with the WT trees. In contrast, the rhizosphere microbiome of CCR-deficient and WT poplar trees featured highly overlapping bacterial community structures and metabolic capacities. We demonstrate the host genotype modulation of the plant microbiome by minute genetic variations in the plant genome. Hence, these interactions need to be taken into consideration to understand the full consequences of plant metabolic pathway engineering and its relation with the environment and the intended genetic improvement.

  9. Tree-ring δ13C and δ18O, leaf δ13C and wood and leaf N status demonstrate tree growth strategies and predict susceptibility to disturbance.

    PubMed

    Billings, S A; Boone, A S; Stephen, F M

    2016-05-01

    Understanding how tree growth strategies may influence tree susceptibility to disturbance is an important goal, especially given projected increases in diverse ecological disturbances this century. We use growth responses of tree rings to climate, relationships between tree-ring stable isotopic signatures of carbon (δ(13)C) and oxygen (δ(18)O), wood nitrogen concentration [N], and contemporary leaf [N] and δ(13)C values to assess potential historic drivers of tree photosynthesis in dying and apparently healthy co-occurring northern red oak (Quercus rubra L. (Fagaceae)) during a region-wide oak decline event in Arkansas, USA. Bole growth of both healthy and dying trees responded negatively to drought severity (Palmer Drought Severity Index) and temperature; healthy trees exhibited a positive, but small, response to growing season precipitation. Contrary to expectations, tree-ring δ(13)C did not increase with drought severity. A significantly positive relationship between tree-ring δ(13)C and δ(18)O was evident in dying trees (P < 0.05) but not in healthy trees. Healthy trees' wood exhibited lower [N] than that of dying trees throughout most of their lives (P < 0.05), and we observed a significant, positive relationship (P < 0.05) in healthy trees between contemporary leaf δ(13)C and leaf N (by mass), but not in dying trees. Our work provides evidence that for plants in which strong relationships between δ(13)C and δ(18)O are not evident, δ(13)C may be governed by plant N status. The data further imply that historic photosynthesis in healthy trees was linked to N status and, perhaps, C sink strength to a greater extent than in dying trees, in which tree-ring stable isotopes suggest that historic photosynthesis was governed primarily by stomatal regulation. This, in turn, suggests that assessing the relative dominance of photosynthetic capacity vs stomatal regulation as drivers of trees' C accrual may be a feasible means of predicting tree

  10. Cambial Growth Season of Brevi-Deciduous Brachystegia spiciformis Trees from South Central Africa Restricted to Less than Four Months

    PubMed Central

    Trouet, Valérie; Mukelabai, Mukufute; Verheyden, Anouk; Beeckman, Hans

    2012-01-01

    We investigate cambial growth periodicity in Brachystegia spiciformis, a dominant tree species in the seasonally dry miombo woodland of southern Africa. To better understand how the brevi-deciduous (experiencing a short, drought-induced leaf fall period) leaf phenology of this species can be linked to a distinct period of cambial activity, we applied a bi-weekly pinning to six trees in western Zambia over the course of one year. Our results show that the onset and end of cambial growth was synchronous between trees, but was not concurrent with the onset and end of the rainy season. The relatively short (three to four months maximum) cambial growth season corresponded to the core of the rainy season, when 75% of the annual precipitation fell, and to the period when the trees were at full photosynthetic capacity. Tree-ring studies of this species have found a significant relationship between annual tree growth and precipitation, but we did not observe such a correlation at intra-annual resolution in this study. Furthermore, a substantial rainfall event occurring after the end of the cambial growth season did not induce xylem initiation or false ring formation. Low sample replication should be taken into account when interpreting the results of this study, but our findings can be used to refine the carbon allocation component of process-based terrestrial ecosystem models and can thus contribute to a more detailed estimation of the role of the miombo woodland in the terrestrial carbon cycle. Furthermore, we provide a physiological foundation for the use of Brachystegia spiciformis tree-ring records in paleoclimate research. PMID:23071794

  11. Cambial growth season of brevi-deciduous Brachystegia spiciformis trees from south central Africa restricted to less than four months.

    PubMed

    Trouet, Valérie; Mukelabai, Mukufute; Verheyden, Anouk; Beeckman, Hans

    2012-01-01

    We investigate cambial growth periodicity in Brachystegia spiciformis, a dominant tree species in the seasonally dry miombo woodland of southern Africa. To better understand how the brevi-deciduous (experiencing a short, drought-induced leaf fall period) leaf phenology of this species can be linked to a distinct period of cambial activity, we applied a bi-weekly pinning to six trees in western Zambia over the course of one year. Our results show that the onset and end of cambial growth was synchronous between trees, but was not concurrent with the onset and end of the rainy season. The relatively short (three to four months maximum) cambial growth season corresponded to the core of the rainy season, when 75% of the annual precipitation fell, and to the period when the trees were at full photosynthetic capacity. Tree-ring studies of this species have found a significant relationship between annual tree growth and precipitation, but we did not observe such a correlation at intra-annual resolution in this study. Furthermore, a substantial rainfall event occurring after the end of the cambial growth season did not induce xylem initiation or false ring formation. Low sample replication should be taken into account when interpreting the results of this study, but our findings can be used to refine the carbon allocation component of process-based terrestrial ecosystem models and can thus contribute to a more detailed estimation of the role of the miombo woodland in the terrestrial carbon cycle. Furthermore, we provide a physiological foundation for the use of Brachystegia spiciformis tree-ring records in paleoclimate research.

  12. Allocation changes buffer CO2 effect on tree growth since the last ice age

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C. C.; Gerhart, L. M.; Ward, J. K.

    2015-12-01

    Isotopic measurements on junipers growing in southern California during the last glacial, when the ambient atmospheric [CO2] (ca) was ~180 ppm, show the leaf- internal [CO2] (ci) was close to the modern CO2 compensation point for C3 plants. Despite this, stem growth rates were similar to today. Using a coupled light-use efficiency and tree growth model, we show that the ci/ca ratio was stable because both vapor pressure deficit and temperature were decreased with compensating effects. Reduced photorespiration at lower temperatures partly mitigated the effect of low ci on gross primary production, but maintenance of present-day radial growth also required changes in carbon allocation, including a ~25% reduction in below-ground carbon allocation and a ~7% in allocation to leaves. Such a shift was possible due to reduced drought stress. Our findings are consistent with the observed increase in below-ground allocation in FACE experiments and the apparent homoeostasis of measured radial growth as ca increases today; results which our model can also reproduce.

  13. Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation

    PubMed Central

    Li, Guangqi; Gerhart, Laci M.; Harrison, Sandy P.; Ward, Joy K.; Harris, John M.; Prentice, I. Colin

    2017-01-01

    Isotopic measurements on junipers growing in southern California during the last glacial, when the ambient atmospheric [CO2] (ca) was ~180 ppm, show the leaf-internal [CO2] (ci) was approaching the modern CO2 compensation point for C3 plants. Despite this, stem growth rates were similar to today. Using a coupled light-use efficiency and tree growth model, we show that it is possible to maintain a stable ci/ca ratio because both vapour pressure deficit and temperature were decreased under glacial conditions at La Brea, and these have compensating effects on the ci/ca ratio. Reduced photorespiration at lower temperatures would partly mitigate the effect of low ci on gross primary production, but maintenance of present-day radial growth also requires a ~27% reduction in the ratio of fine root mass to leaf area. Such a shift was possible due to reduced drought stress under glacial conditions at La Brea. The necessity for changes in allocation in response to changes in [CO2] is consistent with increased below-ground allocation, and the apparent homoeostasis of radial growth, as ca increases today. PMID:28233772

  14. Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation.

    PubMed

    Li, Guangqi; Gerhart, Laci M; Harrison, Sandy P; Ward, Joy K; Harris, John M; Prentice, I Colin

    2017-02-24

    Isotopic measurements on junipers growing in southern California during the last glacial, when the ambient atmospheric [CO2] (ca) was ~180 ppm, show the leaf-internal [CO2] (ci) was approaching the modern CO2 compensation point for C3 plants. Despite this, stem growth rates were similar to today. Using a coupled light-use efficiency and tree growth model, we show that it is possible to maintain a stable ci/ca ratio because both vapour pressure deficit and temperature were decreased under glacial conditions at La Brea, and these have compensating effects on the ci/ca ratio. Reduced photorespiration at lower temperatures would partly mitigate the effect of low ci on gross primary production, but maintenance of present-day radial growth also requires a ~27% reduction in the ratio of fine root mass to leaf area. Such a shift was possible due to reduced drought stress under glacial conditions at La Brea. The necessity for changes in allocation in response to changes in [CO2] is consistent with increased below-ground allocation, and the apparent homoeostasis of radial growth, as ca increases today.

  15. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species.

    PubMed

    Schenker, Gabriela; Lenz, Armando; Körner, Christian; Hoch, Günter

    2014-03-01

    Temperature is the most important factor driving the cold edge distribution limit of temperate trees. Here, we identified the minimum temperatures for root growth in seven broad-leaved tree species, compared them with the species' natural elevational limits and identified morphological changes in roots produced near their physiological cold limit. Seedlings were exposed to a vertical soil-temperature gradient from 20 to 2 °C along the rooting zone for 18 weeks. In all species, the bulk of roots was produced at temperatures above 5 °C. However, the absolute minimum temperatures for root growth differed among species between 2.3 and 4.2 °C, with those species that reach their natural distribution limits at higher elevations also tending to have lower thermal limits for root tissue formation. In all investigated species, the roots produced at temperatures close to the thermal limit were pale, thick, unbranched and of reduced mechanical strength. Across species, the specific root length (m g(-1) root) was reduced by, on average, 60% at temperatures below 7 °C. A significant correlation of minimum temperatures for root growth with the natural high elevation limits of the investigated species indicates species-specific thermal requirements for basic physiological processes. Although these limits are not necessarily directly causative for the upper distribution limit of a species, they seem to belong to a syndrome of adaptive processes for life at low temperatures. The anatomical changes at the cold limit likely hint at the mechanisms impeding meristematic activity at low temperatures.

  16. Tree-ring stable isotope and growth impacts of climate variability: future implications for prairie-forest ecotones

    NASA Astrophysics Data System (ADS)

    Reed, Alexis S.; Billings, Sharon A.

    2010-05-01

    Shifts in prairie-forest ecotones are expected with forecasted global climate change. Understanding how co-occurring tree species respond to environmental variability may help in understanding species responses and potential retraction of tree species under future climate conditions. Contrasting growth-climate relationships derived from tree-rings among co-occurring Quercus macrocarpa, a predominant tree species along the North American prairie-forest ecotone, and Q. rubra, a species generally found in more mesic conditions, suggests a constant growth-climate relationship throughout the life of the tree. For example, no significant difference (P> 0.05) was found between residuals from regression of tree-ring basal area increments and Palmer Drought Severity Index (PDSI) in early or later years of either species, as derived from increment cores. These findings contrast with recent evidence of declines in drought sensitivity in Q. macrocarpa as this species ages, which may be linked to increased atmospheric carbon dioxide levels, and emphasize the need for further understanding of prairie-forest ecotone dynamics. Utilization of δ13C data from α-cellulose will provide further insight into the changing water-use and carbon dynamics in response to climate variability. Used in conjunction with growth-climate relationships, δ13C data may also assist in predicting future drought sensitivity and forest retraction in trees in prairie-forest ecotones. Continued sensitivity to drought regardless of the age of a tree remains an important concern in predicting future species ranges and prairie-forest species composition in the future.

  17. Reconstruction of Pacific salmon abundance from riparian tree-ring growth.

    PubMed

    Drake, D C; Naiman, Robert J

    2007-07-01

    We use relationships between modern Pacific salmon (Oncorhynchus spp.) escapement (migrating adults counted at weirs or dams) and riparian tree-ring growth to reconstruct the abundance of stream-spawning salmon over 150-350 years. After examining nine sites, we produced reconstructions for five mid-order rivers and four salmon species over a large geographic range in the Pacific Northwest: chinook (O. tschwatcha) in the Umpqua River, Oregon, USA; sockeye (O. nerka) in Drinkwater Creek, British Columbia, Canada; pink (O. gorbuscha) in Sashin Creek, southeastern Alaska, USA; chum (O. keta) in Disappearance Creek, southeastern Alaska, USA; and pink and chum in the Kadashan River, southeastern Alaska, USA. We first derived stand-level, non-climatic growth chronologies from riparian trees using standard dendroecology methods and differencing. When the chronologies were compared to 18-55 years of adult salmon escapement we detected positive, significant correlations at five of the nine sites. Regression models relating escapement to tree-ring growth at the five sites were applied to the differenced chronologies to reconstruct salmon abundance. Each reconstruction contains unique patterns characteristic of the site and salmon species. Reconstructions were validated by comparison to local histories (e.g., construction of dams and salmon canneries) and regional fisheries data such as salmon landings and aerial surveys and the Pacific Decadal Oscillation climate index. The reconstructions capture lower-frequency cycles better than extremes and are most useful for determination and comparison of relative abundance, cycles, and the effects of interventions. Reconstructions show lower population cycle maxima in both Umpqua River chinook and Sashin Creek pink salmon in recent decades. The Drinkwater Creek reconstruction suggests that sockeye abundance since the mid-1990s has been 15-25% higher than at any time since 1850, while no long-term deviations from natural cycles are

  18. Extreme defoliation reduces tree growth but not C and N storage in a winter-deciduous species

    PubMed Central

    Piper, Frida I.; Gundale, Michael J.; Fajardo, Alex

    2015-01-01

    Background and Aims There is a growing concern about how forests will respond to increased herbivory associated with climate change. Carbon (C) and nitrogen (N) limitation are hypothesized to cause decreasing growth after defoliation, and eventually mortality. This study examines the effects of a natural and massive defoliation by an insect on mature trees’ C and N storage, which have rarely been studied together, particularly in winter-deciduous species. Methods Survival, growth rate, carbon [C, as non-structural carbohydrate (NSC) concentration] and nitrogen (N) storage, defences (tannins and total polyphenols), and re-foliation traits were examined in naturally defoliated and non-defoliated adult trees of the winter-deciduous temperate species Nothofagus pumilio 1 and 2 years after a massive and complete defoliation caused by the caterpillar of Ormiscodes amphimone (Saturniidae) during summer 2009 in Patagonia. Key Results Defoliated trees did not die but grew significantly less than non-defoliated trees for at least 2 years after defoliation. One year after defoliation, defoliated trees had similar NSC and N concentrations in woody tissues, higher polyphenol concentrations and lower re-foliation than non-defoliated trees. In the second year, however, NSC concentrations in branches were significantly higher in defoliated trees while differences in polyphenols and re-foliation disappeared and decreased, respectively. Conclusions The significant reduction in growth following defoliation was not caused by insufficient C or N availability, as frequently assumed; instead, it was probably due to growth limitations due to factors other than C or N, or to preventative C allocation to storage. This study shows an integrative approach to evaluating plant growth limitations in response to disturbance, by examining major resources other than C (e.g. N), and other C sinks besides storage and growth (e.g. defences and re-foliation). PMID:25851136

  19. Assessment of urban tree growth from structure, nutrients and composition data derived from airborne lidar and imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Gu, H.; Townsend, P. A.; Singh, A.

    2014-12-01

    Urban forests provide important ecosystem services related to climate, nutrients, runoff and aesthetics. Assessment of variations in urban forest growth is critical to urban management and planning, as well as to identify responses to climate and other environmental changes. We estimated annual relative basal area increment by tree rings from 37 plots in Madison, Wisconsin and neighboring municipalities. We related relative basal area growth to variables of vegetation traits derived from remote sensing, including structure (aboveground biomass, diameter, height, basal area, crown width and crown length) from discrete-return airborne lidar, and biochemical variables (foliar nitrogen, carbon, lignin, cellulose, fiber and LMA), spectral indices (NDVI, NDWI, PRI, NDII etc.) and species composition from AVIRIS hyperspectral imagery. Variations in tree growth was mainly correlated with tree species composition (R2 = 0.29, RMSE = 0.004) with coniferous stands having a faster growth rate than broadleaf plots. Inclusion of stand basal area improved model prediction from R2 = 0.29 to 0.35, with RMSE = 0.003. Then, we assessed the growth by functional type, we found that foliar lignin concentration and the proportion of live coniferous trees explained 57% variance in the growth of conifer stands. In contrast, broadleaf forest growth was more strongly correlated with species composition and foliar carbon (R2 = 0.59, RMSE = 0.003). Finally, we compared the relative basal area growth by species. In our study area, red pine and white pine exhibited higher growth rates than other species, while white oak plots grew slowest. There is a significant negative relationship between tree height and the relative growth in red pine stands (r = -0.95), as well as a strong negative relationship between crown width and the relative growth in white pine stands (r = -0.87). Growth declines as trees grow taller and wider may partly be the result of reduced photosynthesis and water availability

  20. Reproductive traits affect the rescue of valuable and endangered multipurpose tropical trees.

    PubMed

    Sinébou, Viviane; Quinet, Muriel; Ahohuendo, Bonaventure C; Jacquemart, Anne-Laure

    2016-01-01

    Conservation strategies are urgently needed in Tropical areas for widely used tree species. Increasing numbers of species are threatened by overexploitation and their recovery might be poor due to low reproductive success and poor regeneration rates. One of the first steps in developing any conservation policy should be an assessment of the reproductive biology of species that are threatened by overexploitation. This work aimed to study the flowering biology, pollination and breeding system of V. doniana, a multipurpose threatened African tree, as one step in assessing the development of successful conservation strategies. To this end, we studied (1) traits directly involved in pollinator attraction like flowering phenology, flower numbers and morphology, and floral rewards; (2) abundance, diversity and efficiency of flower visitors; (3) breeding system, through controlled hand-pollination experiments involving exclusion of pollinators and pollen from different sources; and (4) optimal conditions for seed germination. The flowering phenology was asynchronous among inflorescences, trees and sites. The flowers produced a large quantity of pollen and nectar with high sugar content. Flowers attracted diverse and abundant visitors, counting both insects and birds, and efficient pollinators included several Hymenoptera species. We detected no spontaneous self-pollination, indicating a total dependence on pollen vectors. Vitex doniana is self-compatible and no inbreeding depression occurred in the first developmental stages. After extraction of the seed from the fruit, seed germination did not require any particular conditions or pre-treatments and the seeds showed high germination rates. These pollination and breeding characteristics as well as germination potential offer the required conditions to develop successful conservation strategies. Protection, cultivation and integration in agroforestry systems are required to improve the regeneration of the tree.

  1. Reproductive traits affect the rescue of valuable and endangered multipurpose tropical trees

    PubMed Central

    Sinébou, Viviane; Quinet, Muriel; Ahohuendo, Bonaventure C.; Jacquemart, Anne-Laure

    2016-01-01

    Conservation strategies are urgently needed in Tropical areas for widely used tree species. Increasing numbers of species are threatened by overexploitation and their recovery might be poor due to low reproductive success and poor regeneration rates. One of the first steps in developing any conservation policy should be an assessment of the reproductive biology of species that are threatened by overexploitation. This work aimed to study the flowering biology, pollination and breeding system of V. doniana, a multipurpose threatened African tree, as one step in assessing the development of successful conservation strategies. To this end, we studied (1) traits directly involved in pollinator attraction like flowering phenology, flower numbers and morphology, and floral rewards; (2) abundance, diversity and efficiency of flower visitors; (3) breeding system, through controlled hand-pollination experiments involving exclusion of pollinators and pollen from different sources; and (4) optimal conditions for seed germination. The flowering phenology was asynchronous among inflorescences, trees and sites. The flowers produced a large quantity of pollen and nectar with high sugar content. Flowers attracted diverse and abundant visitors, counting both insects and birds, and efficient pollinators included several Hymenoptera species. We detected no spontaneous self-pollination, indicating a total dependence on pollen vectors. Vitex doniana is self-compatible and no inbreeding depression occurred in the first developmental stages. After extraction of the seed from the fruit, seed germination did not require any particular conditions or pre-treatments and the seeds showed high germination rates. These pollination and breeding characteristics as well as germination potential offer the required conditions to develop successful conservation strategies. Protection, cultivation and integration in agroforestry systems are required to improve the regeneration of the tree. PMID:27354660

  2. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.

    PubMed

    Hubert, Nathaniel A; Gehring, Catherine A

    2008-09-01

    Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

  3. How environmental conditions affect canopy leaf-level photosynthesis in four deciduous tree species

    SciTech Connect

    Bassow, S.L.; Bazzaz, F.A.

    1998-12-01

    Species composition of temperate forests vary with successional age and seems likely to change in response to significant global climate change. Because photosynthesis rates in co-occurring tree species can differ in their sensitivity to environmental conditions, these changes in species composition are likely to alter the carbon dynamics of temperate forests. To help improve their understanding of such atmosphere-biosphere interactions, the authors explored changes in leaf-level photosynthesis in a 60--70 yr old temperate mixed-deciduous forest in Petersham, Massachusetts (USA). Diurnally and seasonally varying environmental conditions differentially influenced in situ leaf-level photosynthesis rates in the canopies of four mature temperate deciduous tree species: red oak (Quercus rubra), red maple (Acer rubrum), white birch (Betula papyrifera), and yellow birch (Betula alleghaniensis). The authors measured in situ photosynthesis at two heights within the canopies through a diurnal time course on 7 d over two growing seasons. They simultaneously measured a suite of environmental conditions surrounding the leaf at the time of each measurement. The authors used path analysis to examine the influence of environmental factors on in situ photosynthesis in the tree canopies.

  4. Growth decline and divergent tree ring isotopic composition (δ(13) C and δ(18) O) contradict predictions of CO2 stimulation in high altitudinal forests.

    PubMed

    Gómez-Guerrero, Armando; Silva, Lucas C R; Barrera-Reyes, Miguel; Kishchuk, Barbara; Velázquez-Martínez, Alejandro; Martínez-Trinidad, Tomás; Plascencia-Escalante, Francisca Ofelia; Horwath, William R

    2013-06-01

    Human-induced changes in atmospheric composition are expected to affect primary productivity across terrestrial biomes. Recent changes in productivity have been observed in many forest ecosystems, but low-latitude upper tree line forests remain to be investigated. Here, we use dendrochronological methods and isotopic analysis to examine changes in productivity, and their physiological basis, in Abies religiosa (Ar) and Pinus hartwegii (Ph) trees growing in high-elevation forests of central Mexico. Six sites were selected across a longitudinal transect (Transverse Volcanic Axis), from the Pacific Ocean toward the Gulf of Mexico, where mature dominant trees were sampled at altitudes ranging from 3200 to 4000 m asl. A total of 60 Ar and 84 Ph trees were analyzed to describe changes in growth (annual-resolution) and isotopic composition (decadal-resolution) since the early 1900s. Our results show an initial widespread increase in basal area increment (BAI) during the first half of the past century. However, BAI has decreased significantly since the 1950s with accentuated decline after the 1980s in both species and across sites. We found a consistent reduction in atmosphere to wood (13) C discrimination, resulting from increasing water use efficiency (20-60%), coinciding with rising atmospheric CO2 . Changes in (13) C discrimination were not followed, however, by shifts in tree ring δ(18) O, indicating site- and species-specific differences in water source or uptake strategy. Our results indicate that CO2 stimulation has not been enough to counteract warming-induced drought stress, but other stressors, such as progressive nutrient limitation, could also have contributed to growth decline. Future studies should explore the distinct role of resource limitation (water vs. nutrients) in modulating the response of high-elevation ecosystems to atmospheric change.

  5. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska.

    PubMed

    Sullivan, Patrick F; Ellison, Sarah B Z; McNown, Robert W; Brownlee, Annalis H; Sveinbjörnsson, Bjartmar

    2015-03-01

    The position of the Arctic treeline, which is a key regulator of surface energy exchange and carbon cycling, is widely thought to be controlled by temperature. Here, we present evidence that soil nutrient availability, rather than temperature, may be the proximate control on growth of treeline trees at our study site in northwest Alaska. We examined constraints on growth and allocation of white spruce in three contrasting habitats. The habitats had similar aboveground climates, but soil temperature declined from the riverside terrace to the forest to the treeline. We identified six lines of evidence that conflict with the hypothesis of direct temperature control and/or point to the importance of soil nutrient availability. First, the magnitude of aboveground growth declined from the terrace to the forest to the treeline, along gradients of diminishing soil nitrogen (N) availability and needle N concentration. Second, peak rates of branch extension, main stem radial and fine-root growth were generally not coincident with seasonal air and soil temperature maxima. At the treeline, in particular, rates of aboveground and fine-root growth declined well before air and soil temperatures reached their seasonal peaks. Third, in contrast with the hypothesis of temperature-limited growth, growing season average net photosynthesis was positively related to the sum of normalized branch extension, main stem radial and fine-root growth across trees and sites. Fourth, needle nonstructural carbohydrate concentration was significantly higher on the terrace, where growth was greatest. Fifth, annual branch extension growth was positively related to snow depth, consistent with the hypothesis that deeper snow promotes microbial activity and greater soil nutrient availability. Finally, the tree ring record revealed a large growth increase during late 20th-century climate warming on the terrace, where soil N availability is relatively high. Meanwhile, trees in the forest and at the

  6. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid

    PubMed Central

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H′ 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi’s potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  7. Habitat management for red tree voles in douglas-fir forests. Biology and management of old-growth forests. Forest Service general technical report

    SciTech Connect

    Huff, M.H.; Holthausen, R.S.; Aubry, K.B.

    1992-09-01

    The relations between arboreal rodents and trees causes the animals to be particularly sensitive to the effects of timber harvesting. Among arboreal rodents, the authors consider the red tree vole to be the most vulnerable to local extinctions resulting from the loss or fragmentation of old-growth Douglas-fir forests. Red tree voles are nocturnal, canopy dwelling, and difficult to study. The following habitat characteristics are potentially important for the species: tree species, stand development, tree size, moisture conditions, topographic positions, elevation, and stand size. Based on these characteristics, the authors developed interim management strategies to help sustain or expand existing populations of red tree voles.

  8. Effects of amelioration measures concerning water availability, soil physical properties and growth of trees

    NASA Astrophysics Data System (ADS)

    Hümann, M.; Schneider, R.

    2009-04-01

    In many countries, surplus agricultural production and ecological problems due to intensive cultivation have increased the interest in afforestation of arable soils. These areas, which are designated for afforestation arrangements, often possess bad basic requirements for an effective growth of plants (marginal earning sites). The available soils are often poor in nutrients, extremely dry or very wet as well as compacted and skeletal. For preparing these territories in terms of an ecological and economic forest growth, as well as changing environmental conditions due to the climatic change (expected dryer summers and wetter winters), amelioration methods are appropriate i.e. increase of water availability, water storage capacity and soil physical properties. Therefore, deep loosening measures were applied in 1993 and 1994 on prospective afforestation sites in the German low mountain range (Eifel and Hunsrück). The plots have been subdivided and arranged by different loosening machines. 14 years after the experimental setup (2008) the areas became reinvestigated concerning the prevailing soil properties including different aspects of the water balance and the resulting plant development. The current deliverables thereby indicate that an afforestation on so called marginal earning sites develop much better through a previous soil physical improvement as on neighbouring plots without a treatment. Bulk densities have been decreased sustainably and water absorption as well as water storage capacity were increased effectively. Hence, positive effects regarding the landscape, the ecology and the economy can be reached by a successful operated deep loosening of the soil and due to that the enhanced fouling of the trees. Additionally the results of the accomplished researches have shown, that against the background of the climate change an adaption to modified environmental conditions could be much more easier for the adolescent trees on plots with improved basic

  9. Establishing a cause and effect relationship for ambient ozone exposure and tree growth in the forest: progress and an experimental approach.

    PubMed

    Manning, William J

    2005-10-01

    Much has been written about the effects of ambient ozone on tree growth. Cause and effect has been established with seedlings in chambers. Results from multi-year studies with older tree seedlings, in open-top chambers, have been inconclusive, due to chamber effects. Extrapolation of results from chambers to trees in the forest is not possible. Predictive models for forest tree growth reductions caused by ozone have been developed, but not verified. Dendrochronological methods have been used to establish correlations between radial growth reductions in forest trees and ambient ozone exposure. The protective chemical ethylenediurea (EDU) has been used to protect tree seedlings from ozone injury. An experimental approach is advocated here that utilizes forest trees selected for sensitivity and non-sensitivity to ozone, dendrochronological methods, the protective chemical EDU, and monitoring data for ambient ozone, stomatal conductance, soil moisture potential, air temperature, PAR, etc. in long-term investigations to establish cause and effect relationships.

  10. Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition

    PubMed Central

    Levesque, Mathieu; Andreu-Hayles, Laia; Pederson, Neil

    2017-01-01

    Dynamic global vegetation models (DGVM) exhibit high uncertainty about how climate change, elevated atmospheric CO2 (atm. CO2) concentration, and atmospheric pollutants will impact carbon sequestration in forested ecosystems. Although the individual roles of these environmental factors on tree growth are understood, analyses examining their simultaneous effects are lacking. We used tree-ring isotopic data and structural equation modeling to examine the concurrent and interacting effects of water availability, atm. CO2 concentration, and SO4 and nitrogen deposition on two broadleaf tree species in a temperate mesic forest in the northeastern US. Water availability was the strongest driver of gas exchange and tree growth. Wetter conditions since the 1980s have enhanced stomatal conductance, photosynthetic assimilation rates and, to a lesser extent, tree radial growth. Increased water availability seemingly overrides responses to reduced acid deposition, CO2 fertilization, and nitrogen deposition. Our results indicate that water availability as a driver of ecosystem productivity in mesic temperate forests is not adequately represented in DGVMs, while CO2 fertilization is likely overrepresented. This study emphasizes the importance to simultaneously consider interacting climatic and biogeochemical drivers when assessing forest responses to global environmental changes. PMID:28393872

  11. Does Training Affect Growth? Answers to Common Questions.

    ERIC Educational Resources Information Center

    Daly, Robin M.; Bass, Shona; Caine, Dennis; Howe, Warren

    2002-01-01

    Adolescent athletes may be at risk of restricted growth and delayed maturation when combining intense training with insufficient energy intake. Because catch-up growth commonly occurs with reduced training, final adult stature is generally not compromised. However, in athletes with long-term, clinically delayed maturation, catch-up growth may be…

  12. The Needs of Trees

    ERIC Educational Resources Information Center

    Boyd, Amy E.; Cooper, Jim

    2004-01-01

    Tree rings can be used not only to look at plant growth, but also to make connections between plant growth and resource availability. In this lesson, students in 2nd-4th grades use role-play to become familiar with basic requirements of trees and how availability of those resources is related to tree ring sizes and tree growth. These concepts can…

  13. Evidence that higher [CO2] increases tree growth sensitivity to temperature: a comparison of modern and paleo oaks.

    PubMed

    Voelker, Steven L; Stambaugh, Michael C; Renée Brooks, J; Meinzer, Frederick C; Lachenbruch, Barbara; Guyette, Richard P

    2017-02-20

    To test tree growth sensitivity to temperature under different ambient CO2 concentrations, we determined stem radial growth rates as they relate to variation in temperature during the last deglacial period, and compare these to modern tree growth rates as they relate to spatial variation in temperature across the modern species distributional range. Paleo oaks were sampled from Northern Missouri, USA and compared to a pollen-based, high-resolution paleo temperature reconstruction from Northern Illinois, USA. Growth data were from 53 paleo bur oak log cross sections collected in Missouri. These oaks were preserved in river and stream sediments and were radiocarbon-dated to a period of rapid climate change during the last deglaciation (10.5 and 13.3 cal kyr BP). Growth data from modern bur oaks were obtained from increment core collections paired with USDA Forest Service Forest Inventory and Analysis data collected across the Great Plains, Midwest, and Upper Great Lakes regions. For modern oaks growing at an average [CO2] of 330 ppm, growth sensitivity to temperature (i.e., the slope of growth rate versus temperature) was about twice that of paleo oaks growing at an average [CO2] of 230 ppm. These data help to confirm that leaf-level predictions that photosynthesis and thus growth will be more sensitive to temperature at higher [CO2] in mature trees-suggesting that tree growth forest productivity will be increasingly sensitive to temperature under projected global warming and high-[CO2] conditions.

  14. Growth and defense in deciduous trees and shrubs under UV-B.

    PubMed

    Julkunen-Tiitto, Riitta; Häggman, Hely; Aphalo, Pedro J; Lavola, Anu; Tegelberg, Riitta; Veteli, Timo

    2005-10-01

    Reflection by waxy or resinous surface structures and hairs, repair reactions of biomolecules and induction of different sheltering components provide the means of plant protection from harmful solar UV-B radiation. Secondary products, especially flavonoids and phenolic acids as defense components are also important in plant tolerance to UV-B, fulfilling the dual role as screens that reduce UV-B penetration in plant tissues, and as antioxidants protecting from damage by reactive oxidant species. Plants are sensitive to UV-B radiation, and this sensitivity can be even more clone-specific than species-specific. The results available in the literature for deciduous trees and shrubs indicate that UV-B radiation may affect several directions in the interaction of woody species with biotic (herbivores) and abiotic (CO2 and nutrition) factors depending on the specific interaction in question. These multilevel interactions should have moderate ecological significance via the overall changed performance of woody species and shrubs.

  15. Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions.

    PubMed

    Lévesque, Mathieu; Siegwolf, Rolf; Saurer, Matthias; Eilmann, Britta; Rigling, Andreas

    2014-07-01

    Higher atmospheric CO2 concentrations (c(a)) can under certain conditions increase tree growth by enhancing photosynthesis, resulting in an increase of intrinsic water-use efficiency (i WUE) in trees. However, the magnitude of these effects and their interactions with changing climatic conditions are still poorly understood under xeric and mesic conditions. We combined radial growth analysis with intra- and interannual δ(13)C and δ(18)O measurements to investigate growth and physiological responses of Larix decidua, Picea abies, Pinus sylvestris, Pinus nigra and Pseudotsuga menziesii in relation to rising c(a) and changing climate at a xeric site in the dry inner Alps and at a mesic site in the Swiss lowlands. (i)WUE increased significantly over the last 50 yr by 8-29% and varied depending on species, site water availability, and seasons. Regardless of species and increased (i)WUE, radial growth has significantly declined under xeric conditions, whereas growth has not increased as expected under mesic conditions. Overall, drought-induced stomatal closure has reduced transpiration at the cost of reduced carbon uptake and growth. Our results indicate that, even under mesic conditions, the temperature-induced drought stress has overridden the potential CO2 'fertilization' on tree growth, hence challenging today's predictions of improved forest productivity of temperate forests.

  16. An empirical method that separates irreversible stem radial growth from bark water content changes in trees: theory and case studies.

    PubMed

    Mencuccini, Maurizio; Salmon, Yann; Mitchell, Patrick; Hölttä, Teemu; Choat, Brendan; Meir, Patrick; O'Grady, Anthony; Tissue, David; Zweifel, Roman; Sevanto, Sanna; Pfautsch, Sebastian

    2017-02-01

    Substantial uncertainty surrounds our knowledge of tree stem growth, with some of the most basic questions, such as when stem radial growth occurs through the daily cycle, still unanswered. We employed high-resolution point dendrometers, sap flow sensors, and developed theory and statistical approaches, to devise a novel method separating irreversible radial growth from elastic tension-driven and elastic osmotically driven changes in bark water content. We tested this method using data from five case study species. Experimental manipulations, namely a field irrigation experiment on Scots pine and a stem girdling experiment on red forest gum trees, were used to validate the theory. Time courses of stem radial growth following irrigation and stem girdling were consistent with a-priori predictions. Patterns of stem radial growth varied across case studies, with growth occurring during the day and/or night, consistent with the available literature. Importantly, our approach provides a valuable alternative to existing methods, as it can be approximated by a simple empirical interpolation routine that derives irreversible radial growth using standard regression techniques. Our novel method provides an improved understanding of the relative source-sink carbon dynamics of tree stems at a sub-daily time scale.

  17. Element concentrations in growth rings of trees near an abandoned wood-preserving plant site at Jackson, Tennessee

    USGS Publications Warehouse

    Yanosky, T.M.; Carmichael, J.K.

    1993-01-01

    Multielement analysis was performed on individual annual rings of trees growing at and near an abandoned wood-preserving plant site in Jackson, Tennessee, that operated from the early 1930's until 1981. Numerous organic compounds associated with the wood-preserving process have been detected in soils, ground water, and surface water within much of the site. Tree-ring investigations were conducted prior to investigations of ground water downgradient from the site to determine if trees preserved an areal and temporal record of contaminant movement into offsite areas. Increment cores were collected from trees on the abandoned plant site, in downgradient areas west and south of the site, and at two locations presumably unaffected by contamination from the site. Multielement analysis by proton-induced X-ray emission was performed on 5 to 15 individual growth rings from each of 34 trees that ranged in age from about 5 to 50 years. Concentrations of 16 elements were evaluated by analyzing average concentrations within the 1987, 1989, and 1990 rings of all trees; analyzing element-concentration trends along entire core radii; and analyzing element correlations between and among trees. Concentrations of some nutrients and trace metals were elevated in the outermost sapwood rings of some trees that grow south and southwest of the most contaminated part of the site; small trees on the main part of the site and larger trees to the west generally contained fewer rings with elevated concentrations, particularly of trace metals. Concentrations of several elements elevated in tree rings also were elevated in water samples collected from the reach of a stream that flows near the southwestern part of the site. Multielement analysis of each ring of a willow growing along the southern boundary of the site detected extremely large concentrations of chromium, nickel, and iron in rings that formed in 1986 and thereafter. Relative increases in the concentrations of these elements also

  18. Tree Growth and Competition in a Betula platyphylla–Larix cajanderi Post-fire Forest in Central Kamchatka

    PubMed Central

    DOLEŽAL, JIŘÍ; ISHII, HIROAKI; VETROVA, VALENTINA P.; SUMIDA, AKIHIRO; HARA, TOSHIHIKO

    2004-01-01

    • Background and Aims Fire is the dominant disturbance in central Kamchatka boreal forests, yet patterns and mechanisms of stand recovery have not been investigated. • Methods Measurements were made of 1433 stems ≥1·3 m height and annual radial increments of 225 randomly selected trees in a 0·4-ha plot of a 53-year-old fire-origin mixed-species stand to examine the spatio-temporal variation in establishment, growth, size inequality and the mode of competition among individual trees. Growth variations were related to tree size, age and local interference with neighbours. • Key Results Betula platyphylla formed the main canopy following a fire in 1947, with Larix cajanderi and Pinus pumila progressively reinvading the lower tree and shrub stratum. Most B. platyphylla originated from sprouts in small patches (polycormons) during the first 15 post-fire years. Betula platyphylla had normal distributions of diameter and age classes, but negatively skewed height distribution, as expected from shade-intolerant, pioneer species. Larix cajanderi had fewer tall and many short individuals. The smaller and younger B. platyphylla grew disproportionately more in diameter than larger trees from 1950 to 1975, and hence stem size inequalities decreased. The reverse trend was observed from 1995 to 2000: larger trees grew more, indicating an increasing asymmetry of competition for light. Betula platyphylla had steady diameter growth in the first 25 post-fire years, after which the growth declined in smaller trees. Neighbourhood analysis showed that the decline resulted from increased competition from taller neighbours. • Conclusions The observed growth patterns suggest that mode of interactions altered during stand development from early stages of weak competition for soil resources released by fire to later stages of asymmetric competition for light. Asymmetric crown competition started later than reported in other studies, which can be attributed to the lower stem

  19. Characterization of polypeptides accumulated in the latex cytosol of rubber trees affected by the tapping panel dryness syndrome.

    PubMed

    Sookmark, Unchera; Pujade-Renaud, Valérie; Chrestin, Hervé; Lacote, Régis; Naiyanetr, Chinda; Seguin, Marc; Romruensukharom, Phayao; Narangajavana, Jarunya

    2002-11-01

    The tapping panel dryness (TPD) syndrome of rubber is characterized by the reduction or ultimately total cessation of latex flow upon tapping, due to physiological disorders in the bark tissue. The protein pattern in the cytoplasm from healthy and TPD tree latex cells was compared by electrophoresis. Two polypeptides (P15 and P22) of 15 and 22 kDa, respectively, were found to accumulate in the cytosol of the TPD-affected trees, whereas a 29 kDa polypeptide (P29) appeared de novo. P15 and P22 were identified as REF (Hev b1) and SRPP (Hev b3), respectively, two proteins proposed to be involved in rubber biosynthesis. P29 appeared to be a new member of the patatin-like protein family. Specific molecular probes were designed for a detailed characterization of REF and SRPP gene expression and RFLP mapping. This allowed the demonstration that REF and SRPP display very similar expression profiles. They are highly over-expressed by the tapping-induced metabolic activation, although not by wounding per se, or ethylene or ABA. In addition to this similarity in gene expression, they were found to share one common locus in the genome. No significant difference in REF and SRPP gene expression was observed between healthy and TPD trees, indicating that their TPD-related accumulation in the cytosol was not transcriptionally regulated. Western blot analysis demonstrated that osmotic lysis of the sedimentable organelles (lutoids) in vitro caused the release of REF and SRPP from the rubber particle membrane into the cytosol. A mechanism of cellular delocalization as a consequence of the lutoids instability is proposed to explain REF and SRPP accumulation in the cytosol of TPD trees.

  20. Plant genetic identity of foundation tree species and their hybrids affects a litter-dwelling generalist predator.

    PubMed

    Wojtowicz, Todd; Compson, Zacchaeus G; Lamit, Louis J; Whitham, Thomas G; Gehring, Catherine A

    2014-11-01

    The effects of plant genetics on predators, especially those not living on the plant itself, are rarely studied and poorly understood. Therefore, we investigated the effect of plant hybridization and genotype on litter-dwelling spiders. Using an 18-year-old cottonwood common garden, we recorded agelenid sheet-web density associated with the litter layers of replicated genotypes of three tree cross types: Populus fremontii, Populus angustifolia, and their F1 hybrids. We surveyed 118 trees for agelenid litter webs at two distances from the trees (0-100 and 100-200 cm from trunk) and measured litter depth as a potential mechanism of web density patterns. Five major results emerged: web density within a 1-m radius of P. angustifolia was approximately three times higher than within a 1-m radius of P. fremontii, with F1 hybrids having intermediate densities; web density responded to P. angustifolia and F1 hybrid genotypes as indicated by a significant genotype × distance interaction, with some genotypes exhibiting a strong decline in web density with distance, while others did not; P. angustifolia litter layers were deeper than those of P. fremontii at both distance classes, and litter depth among P. angustifolia genotypes differed up to 300%; cross type and genotype influenced web density via their effects on litter depth, and these effects were influenced by distance; web density was more sensitive to the effects of tree cross type than genotype. By influencing generalist predators, plant hybridization and genotype may indirectly impact trophic interactions such as intraguild predation, possibly affecting trophic cascades and ecosystem processes.

  1. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data.

    PubMed

    Way, Danielle A; Oren, Ram

    2010-06-01

    The response of tree growth to a change in temperature may differ in predictable ways. Trees with conservative growth strategies may have little ability to respond to a changing climate. In addition, high latitude and altitude tree growth may be temperature-limited and thus benefit from some degree of warming, as opposed to warm-adapted species. Using data from 63 studies, we examined whether trees from different functional groups and thermal niches differed in their growth response to a change in growth temperature. We also investigated whether responses predicted for a change in growth temperature (both reduced and elevated) were similar for increased temperatures by repeating the analysis on the subset of raised temperature data to confirm the validity of our results for use in a climate-warming scenario. Using both the temperature-change response and the warming response, we found that elevated temperatures enhanced growth (measured as shoot height, stem diameter and biomass) in deciduous species more than in evergreen trees. Tropical species were indeed more susceptible to warming-induced growth declines than temperate or boreal trees in both analyses. More carbon may be available to allocate to growth at high temperatures because respiration acclimated more strongly than photosynthesis, increasing carbon assimilation but moderating carbon losses. Trees that developed at elevated temperatures did not simply accelerate growth but followed different developmental trajectories than unwarmed trees, allocating more biomass to leaves and less to roots and growing taller for a given stem diameter. While there were insufficient data to analyze trends for particular species, we generated equations to describe general trends in tree growth to temperature changes and to warming for use at large spatial scales or where data are lacking. We discuss the implications of these results in the context of a changing climate and highlight the areas of greatest uncertainty

  2. Impact of root growth and root hydraulic conductance on water availability of young walnut trees

    NASA Astrophysics Data System (ADS)

    Jerszurki, Daniela; Couvreur, Valentin; Hopmans, Jan W.; Silva, Lucas C. R.; Shackel, Kenneth A.; de Souza, Jorge L. M.

    2015-04-01

    Walnut (Juglans regia L.) is a tree species of high economic importance in the Central Valley of California. This crop has particularly high water requirements, which makes it highly dependent on irrigation. The context of decreasing water availability in the state calls for efficient water management practices, which requires improving our understanding of the relationship between water application and walnut water availability. In addition to the soil's hydraulic conductivity, two plant properties are thought to control the supply of water from the bulk soil to the canopy: (i) root distribution and (ii) plant hydraulic conductance. Even though these properties are clearly linked to crop water requirements, their quantitative relation remains unclear. The aim of this study is to quantitatively explain walnut water requirements under water deficit from continuous measurements of its water consumption, soil and stem water potential, root growth and root system hydraulic conductance. For that purpose, a greenhouse experiment was conducted for a two month period. Young walnut trees were planted in transparent cylindrical pots, equipped with: (i) rhizotron tubes, which allowed for non-invasive monitoring of root growth, (ii) pressure transducer tensiometers for soil water potential, (iii) psychrometers attached to non-transpiring leaves for stem water potential, and (iv) weighing scales for plant transpiration. Treatments consisted of different irrigation rates: 100%, 75% and 50% of potential crop evapotranspiration. Plant responses were compared to predictions from three simple process-based soil-plant-atmosphere models of water flow: (i) a hydraulic model of stomatal regulation based on stem water potential and vapor pressure deficit, (ii) a model of plant hydraulics predicting stem water potential from soil-root interfaces water potential, and (iii) a model of soil water depletion predicting the water potential drop between the bulk soil and soil-root interfaces

  3. Seasonal carbohydrate dynamics and growth in Douglas-fir trees experiencing chronic, fungal-mediated reduction in functional leaf area.

    PubMed

    Saffell, Brandy J; Meinzer, Frederick C; Woodruff, David R; Shaw, David C; Voelker, Steven L; Lachenbruch, Barbara; Falk, Kristen

    2014-03-01

    Stored non-structural carbohydrates (NSCs) could play an important role in tree survival in the face of a changing climate and associated stress-related mortality. We explored the effects of the stomata-blocking and defoliating fungal disease called Swiss needle cast on Douglas-fir carbohydrate reserves and growth to evaluate the extent to which NSCs can be mobilized under natural conditions of low water stress and restricted carbon supply in relation to potential demands for growth. We analyzed the concentrations of starch, sucrose, glucose and fructose in foliage, twig wood and trunk sapwood of 15 co-occurring Douglas-fir trees expressing a gradient of Swiss needle cast symptom severity quantified as previous-year functional foliage mass. Growth (mean basal area increment, BAI) decreased by ∼80% and trunk NSC concentration decreased by 60% with decreasing functional foliage mass. The ratio of relative changes in NSC concentration and BAI, an index of the relative priority of storage versus growth, more than doubled with increasing disease severity. In contrast, twig and foliage NSC concentrations remained nearly constant with decreasing functional foliage mass. These results suggest that under disease-induced reductions in carbon supply, Douglas-fir trees retain NSCs (either actively or due to sequestration) at the expense of trunk radial growth. The crown retains the highest concentrations of NSC, presumably to maintain foliage growth and shoot extension in the spring, partially compensating for rapid foliage loss in the summer and fall.

  4. Identification of the key weather factors affecting overwintering success of Apolygus lucorum eggs in dead host tree branches.

    PubMed

    Pan, Hongsheng; Liu, Bing; Lu, Yanhui; Desneux, Nicolas

    2014-01-01

    Understanding the effects of weather on insect population dynamics is crucial to simulate and forecast pest outbreaks, which is becoming increasingly important with the effects of climate change. The mirid bug Apolygus lucorum is an important pest on cotton, fruit trees and other crops in China, and primarily lays its eggs on dead parts of tree branches in the fall for subsequent overwintering. As such, the eggs that hatch the following spring are most strongly affected by ambient weather factors, rather than by host plant biology. In this study, we investigated the effects of three major weather factors: temperature, relative humidity and rainfall, on the hatching rate of A. lucorum eggs overwintering on dead branches of Chinese date tree (Ziziphus jujuba). Under laboratory conditions, rainfall (simulated via soaking) was necessary for the hatching of overwintering A. lucorum eggs. In the absence of rainfall (unsoaked branches), very few nymphs successfully emerged under any of the tested combinations of temperature and relative humidity. In contrast, following simulated rainfall, the hatching rate of the overwintering eggs increased dramatically. Hatching rate and developmental rate were positively correlated with relative humidity and temperature, respectively. Under field conditions, the abundance of nymphs derived from overwintering eggs was positively correlated with rainfall amount during the spring seasons of 2009-2013, while the same was not true for temperature and relative humidity. Overall, our findings indicate that rainfall is the most important factor affecting the hatching rate of overwintering A. lucorum eggs on dead plant parts and nymph population levels during the spring season. It provides the basic information for precisely forecasting the emergence of A. lucorum and subsequently timely managing its population in spring, which will make it possible to regional control of this insect pest widely occurring in multiple crops in summer.

  5. Identification of the Key Weather Factors Affecting Overwintering Success of Apolygus lucorum Eggs in Dead Host Tree Branches

    PubMed Central

    Pan, Hongsheng; Liu, Bing; Lu, Yanhui; Desneux, Nicolas

    2014-01-01

    Understanding the effects of weather on insect population dynamics is crucial to simulate and forecast pest outbreaks, which is becoming increasingly important with the effects of climate change. The mirid bug Apolygus lucorum is an important pest on cotton, fruit trees and other crops in China, and primarily lays its eggs on dead parts of tree branches in the fall for subsequent overwintering. As such, the eggs that hatch the following spring are most strongly affected by ambient weather factors, rather than by host plant biology. In this study, we investigated the effects of three major weather factors: temperature, relative humidity and rainfall, on the hatching rate of A. lucorum eggs overwintering on dead branches of Chinese date tree (Ziziphus jujuba). Under laboratory conditions, rainfall (simulated via soaking) was necessary for the hatching of overwintering A. lucorum eggs. In the absence of rainfall (unsoaked branches), very few nymphs successfully emerged under any of the tested combinations of temperature and relative humidity. In contrast, following simulated rainfall, the hatching rate of the overwintering eggs increased dramatically. Hatching rate and developmental rate were positively correlated with relative humidity and temperature, respectively. Under field conditions, the abundance of nymphs derived from overwintering eggs was positively correlated with rainfall amount during the spring seasons of 2009–2013, while the same was not true for temperature and relative humidity. Overall, our findings indicate that rainfall is the most important factor affecting the hatching rate of overwintering A. lucorum eggs on dead plant parts and nymph population levels during the spring season. It provides the basic information for precisely forecasting the emergence of A. lucorum and subsequently timely managing its population in spring, which will make it possible to regional control of this insect pest widely occurring in multiple crops in summer. PMID

  6. The growth of the UniTree mass storage system at the NASA Center for Computational Sciences: Some lessons learned

    NASA Technical Reports Server (NTRS)

    Tarshish, Adina; Salmon, Ellen

    1994-01-01

    In October 1992, the NASA Center for Computational Sciences made its Convex-based UniTree system generally available to users. The ensuing months saw growth in every area. Within 26 months, data under UniTree control grew from nil to over 12 terabytes, nearly all of it stored on robotically mounted tape. HiPPI/UltraNet was added to enhance connectivity, and later HiPPI/TCP was added as well. Disks and robotic tape silos were added to those already under UniTree's control, and 18-track tapes were upgraded to 36-track. The primary data source for UniTree, the facility's Cray Y-MP/4-128, first doubled its processing power and then was replaced altogether by a C98/6-256 with nearly two-and-a-half times the Y-MP's combined peak gigaflops. The Convex/UniTree software was upgraded from version 1.5 to 1.7.5, and then to 1.7.6. Finally, the server itself, a Convex C3240, was upgraded to a C3830 with a second I/O bay, doubling the C3240's memory and capacity for I/O. This paper describes insights gained and reinforced with the burgeoning demands on the UniTree storage system and the significant increases in performance gained from the many upgrades.

  7. Parameters affecting the early seedling development of four neotropical trees under oxygen deprivation stress.

    PubMed

    Kolb, Rosana Marta; Rawyler, André; Braendle, Roland

    2002-05-01

    Some of the parameters that determine flooding resistance-and consequently habitat zonation-were investigated in four neotropical trees (Schizolobium parahyba, Sebastiania commersoniana, Erythrina speciosa and Sesbania virgata). The constitutive parameters of seeds (size, nature and amount of reserves) only partly influenced resistance to flooding, mainly through a high carbohydrate : size ratio. Parameters describing metabolic efficiency under stress conditions were more important. Among them, fermentation capacity and levels of ATP and of total adenylates played a key role. The highest resistance to anoxia was associated with increased availability of free sugars, elevated alcohol dehydrogenase activity and corresponding mRNA levels, more efficient removal of ethanol and lactate, and higher adenylate levels. Finally, as a lethal consequence of energy shortage, free fatty acids were released on a massive scale in the flooding-sensitive species Schizolobium parahyba, whereas lipid hydrolysis did not occur in the most resistant species Sesbania virgata.

  8. Organizational Career Growth, Affective Occupational Commitment and Turnover Intentions

    ERIC Educational Resources Information Center

    Weng, Qingxiong; McElroy, James C.

    2012-01-01

    Survey data, collected from the People's Republic of China, were used to test Weng's (2010) four facet model of career growth and to examine its effect on occupational commitment and turnover intentions. Weng conceptualized career growth as consisting of four factors: career goal progress, professional ability development, promotion speed, and…

  9. Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits

    PubMed Central

    Tomlinson, Kyle W.; Poorter, Lourens; Bongers, Frans; Borghetti, Fabian; Jacobs, Loes; van Langevelde, Frank

    2014-01-01

    Background and Aims Plant relative growth rate (RGR) depends on biomass allocation to leaves (leaf mass fraction, LMF), efficient construction of leaf surface area (specific leaf area, SLA) and biomass growth per unit leaf area (net assimilation rate, NAR). Functional groups of species may differ in any of these traits, potentially resulting in (1) differences in mean RGR of groups, and (2) differences in the traits driving RGR variation within each group. We tested these predictions by comparing deciduous and evergreen savanna trees. Methods RGR, changes to biomass allocation and leaf morphology, and root non-structural carbohydrate reserves were evaluated for juveniles of 51 savanna species (34 deciduous, 17 evergreen) grown in a common garden experiment. It was anticipated that drivers of RGR would differ between leaf habit groups because deciduous species have to allocate carbohydrates to storage in roots to be able to flush leaves again, which directly compromises their LMF, whereas evergreen species are not subject to this constraint. Key Results Evergreen species had greater LMF and RGR than deciduous species. Among deciduous species LMF explained 27 % of RGR variation (SLA 34 % and NAR 29 %), whereas among evergreen species LMF explained between 2 and 17 % of RGR variation (SLA 32–35 % and NAR 38–62 %). RGR and LMF were (negatively) related to carbohydrate storage only among deciduous species. Conclusions Trade-offs between investment in carbohydrate reserves and growth occurred only among deciduous species, leading to differences in relative contribution made by the underlying components of RGR between the leaf habit groups. The results suggest that differences in drivers of RGR occur among savanna species because these have different selected strategies for coping with fire disturbance in savannas. It is expected that variation in the drivers of RGR will be found in other functional types that respond differently to particular disturbances. PMID

  10. Linking leaf veins to growth and mortality rates: an example from a subtropical tree community.

    PubMed

    Iida, Yoshiko; Sun, I-Fang; Price, Charles A; Chen, Chien-Teh; Chen, Zueng-Sang; Chiang, Jyh-Min; Huang, Chun-Lin; Swenson, Nathan G

    2016-09-01

    A fundamental goal in ecology is to link variation in species function to performance, but functional trait-performance investigations have had mixed success. This indicates that less commonly measured functional traits may more clearly elucidate trait-performance relationships. Despite the potential importance of leaf vein traits, which are expected to be related to resource delivery rates and photosynthetic capacity, there are few studies, which examine associations between these traits and demographic performance in communities. Here, we examined the associations between species traits including leaf venation traits and demographic rates (Relative Growth Rate, RGR and mortality) as well as the spatial distributions of traits along soil environment for 54 co-occurring species in a subtropical forest. Size-related changes in demographic rates were estimated using a hierarchical Bayesian approach. Next, Kendall's rank correlations were quantified between traits and estimated demographic rates at a given size and between traits and species-average soil environment. Species with denser venation, smaller areoles, less succulent, or thinner leaves showed higher RGR for a wide range of size classes. Species with leaves of denser veins, larger area, cheaper construction costs or thinner, or low-density wood were associated with high mortality rates only in small size classes. Lastly, contrary to our expectations, acquisitive traits were not related to resource-rich edaphic conditions. This study shows that leaf vein traits are weakly, but significantly related to tree demographic performance together with other species traits. Because leaf traits associated with an acquisitive strategy such as denser venation, less succulence, and thinner leaves showed higher growth rate, but similar leaf traits were not associated with mortality, different pathways may shape species growth and survival. This study suggests that we are still not measuring some of key traits related to

  11. Multi-stemmed trees of Nothofagus pumilio second-growth forest in Patagonia are formed by highly related individuals

    PubMed Central

    Till-Bottraud, Irène; Fajardo, Alex; Rioux, Delphine

    2012-01-01

    Background and Aims Multi-stemmed trees (tree clusters) in Nothofagus pumilio, a dominant tree species in Patagonia, are very uncommon and are restricted to the edge of second-growth forests following human-provoked fires. No vegetative reproduction has been reported so far. The genetic structure of multi-stemmed trees of this species was investigated and it was hypothesized that genets within a cluster were more closely related than average in the population. Methods Fifteen clusters (composed of at least three purported stems) and 15 single trees were sampled at the edge of a second-growth forest and genotyped using two amplified fragment length polymorphism (AFLP) primer pairs. We obtained 119 polymorphic markers that allowed clonality to be determined, together with sibship structure and relatedness among samples. Key Results Clonality was detected in seven clusters but all clusters had at least two different genotypes. Full sibs were found exclusively within clusters and in all clusters. Within a cluster, stems that were not identified as full sibs were often half sibs. Relatedness values for the full sibs and half sibs were higher than the theoretical values of 0·5 and 0·25 but the relatedness between clusters was very low. Conclusions Tree clusters that are merged at the edge of the second-growth forest of N. pumilio are composed of stems of the same genotype and of other genotypes that are highly related (but not always). It is suggested that this peculiar genetic structure results from a combination of several causes, including selection for merging of related individuals. PMID:22782238

  12. Peatland pines as a proxy for water table fluctuations: disentangling tree growth, hydrology and possible human influence.

    PubMed

    Smiljanić, Marko; Seo, Jeong-Wook; Läänelaid, Alar; van der Maaten-Theunissen, Marieke; Stajić, Branko; Wilmking, Martin

    2014-12-01

    Dendrochronological investigations of Scots pine (Pinus sylvestris L.) growing on Männikjärve peatland in central Estonia showed that annual tree growth of peatland pines can be used as a proxy for past variations of water table levels. Reconstruction of past water table levels can help us to better understand the dynamics of various ecological processes in peatlands, e.g. the formation of vegetation patterns or carbon and nitrogen cycling. Männikjärve bog has one of the longest water table records in the boreal zone, continuously monitored since 1956. Common uncertainties encountered while working with peatland trees (e.g. narrow, missing and wedging rings) were in our case exacerbated with difficulties related to the instability of the relationship between tree growth and peatland environment. We hypothesized that the instable relationship was mainly due to a significant change of the limiting factor, i.e. the rise of the water table level due to human activity. To test our hypothesis we had to use several novel methods of tree-ring chronology analysis as well as to test explicitly whether undetected missing rings biased our results. Since the hypothesis that the instable relationship between tree growth and environment was caused by a change in limiting factor could not be rejected, we proceeded to find possible significant changes of past water table levels using structural analysis of the tree-ring chronologies. Our main conclusions were that peatland pines can be proxies to water table levels and that there were several shifting periods of high and low water table levels in the past 200 years.

  13. Climate, intrinsic water-use efficiency and tree growth over the past 150 years in humid subtropical China

    PubMed Central

    Li, Dawen; Fang, Keyan; Li, Yingjun; Chen, Deliang; Liu, Xiaohong; Dong, Zhipeng; Zhou, Feifei; Guo, Guoyang; Shi, Feng; Xu, Chenxi; Li, Yanping

    2017-01-01

    Influence of long-term changes in climate and CO2 concentration on intrinsic water-use efficiency (iWUE), defined as the ratio between net photosynthesis (A) and leaf conductance (g), and tree growth remain not fully revealed in humid subtropical China, which is distinct from other arid subtropical areas with dense coverage of broadleaf forests. This study presented the first tree-ring stable carbon isotope (δ13C) and iWUE series of Pinus massoniana from 1865 to 2013 in Fujian province, humid subtropical China, and the first tree-ring width standard chronology during the period of 1836–2013 for the Niumulin Nature Reserve (NML). Tree-ring width growth was limited by precipitation in July-August (r = 0.40, p < 0.01). The tree-ring carbon isotope discrimination (Δ13C) was mainly controlled by the sunshine hours (r = -0.66, p < 0.001) and relative humidity (r = 0.58, p < 0.001) in September-October, a season with rapid latewood formation in this area. The iWUE increased by 42.6% and the atmospheric CO2 concentration (ca) explained 92.6% of the iWUE variance over the last 150 years. The steady increase in iWUE suggests an active response with a proportional increase in intercellular CO2 concentration (ci) in response to increase in ca. The contribution of iWUE to tree growth in the study region is not conspicuous, which points to influences of other factors such as climate. PMID:28182751

  14. A joint individual-based model coupling growth and mortality reveals that tree vigor is a key component of tropical forest dynamics

    PubMed Central

    Aubry-Kientz, Mélaine; Rossi, Vivien; Boreux, Jean-Jacques; Hérault, Bruno

    2015-01-01

    Tree vigor is often used as a covariate when tree mortality is predicted from tree growth in tropical forest dynamic models, but it is rarely explicitly accounted for in a coherent modeling framework. We quantify tree vigor at the individual tree level, based on the difference between expected and observed growth. The available methods to join nonlinear tree growth and mortality processes are not commonly used by forest ecologists so that we develop an inference methodology based on an MCMC approach, allowing us to sample the parameters of the growth and mortality model according to their posterior distribution using the joint model likelihood. We apply our framework to a set of data on the 20-year dynamics of a forest in Paracou, French Guiana, taking advantage of functional trait-based growth and mortality models already developed independently. Our results showed that growth and mortality are intimately linked and that the vigor estimator is an essential predictor of mortality, highlighting that trees growing more than expected have a far lower probability of dying. Our joint model methodology is sufficiently generic to be used to join two longitudinal and punctual linked processes and thus may be applied to a wide range of growth and mortality models. In the context of global changes, such joint models are urgently needed in tropical forests to analyze, and then predict, the effects of the ongoing changes on the tree dynamics in hyperdiverse tropical forests. PMID:26120434