Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun
2017-11-01
A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.
Parameters affecting mechanical and thermal responses in bone drilling: A review.
Lee, JuEun; Chavez, Craig L; Park, Joorok
2018-04-11
Surgical bone drilling is performed variously to correct bone fractures, install prosthetics, or for therapeutic treatment. The primary concern in bone drilling is to extract donor bone sections and create receiving holes without damaging the bone tissue either mechanically or thermally. We review current results from experimental and theoretical studies to investigate the parameters related to such effects. This leads to a comprehensive understanding of the mechanical and thermal aspects of bone drilling to reduce their unwanted complications. This review examines the important bone-drilling parameters of bone structure, drill-bit geometry, operating conditions, and material evacuation, and considers the current techniques used in bone drilling. We then analyze the associated mechanical and thermal effects and their contributions to bone-drilling performance. In this review, we identify a favorable range for each parameter to reduce unwanted complications due to mechanical or thermal effects. Copyright © 2018 Elsevier Ltd. All rights reserved.
Marinozzi, Franco; Marinozzi, Andrea; Bini, Fabiano; Zuppante, Francesca; Pecci, Raffaella; Bedini, Rossella
2012-01-01
Morphometric and architectural bone parameters change in diseases such as osteoarthritis and osteoporosis. The mechanical strength of bone is primarily influenced by bone quantity and quality. Bone quality is defined by parameters such as trabecular thickness, trabecular separation, trabecular density and degree of anisotropy that describe the micro-architectural structure of bone. Recently, many studies have validated microtomography as a valuable investigative technique to assess bone morphometry, thanks to micro-CT non-destructive, non-invasive and reliability features, in comparison to traditional techniques such as histology. The aim of this study is the analysis by micro-computed tomography of six specimens, extracted from patients affected by osteoarthritis and osteoporosis, in order to observe the tridimensional structure and calculate several morphometric parameters.
Rosa, B V; Blair, H T; Vickers, M H; Morel, P C; Cockrem, J F; Firth, E C
2012-12-01
The objectives of this study were to examine the effects of voluntary exercise during pregnancy on maternal post-lactation bone parameters and offspring growth. Pregnant Wistar rats were housed in conventional cages (control), or were housed in raised cages requiring them to rise to an erect, bipedal stance to obtain food/water, throughout pregnancy. Dual energy X-ray absorptiometry and peripheral quantitative computed tomography scans were performed pre-mating and post-weaning. Maternal stress was assessed by fecal corticosterone measurement. Offspring weights were assessed at postnatal days 1 and 25 (weaning). Changes in bone mineral over the pregnancy/lactation period were site-specific. Exercise did not affect loss of bone mineral from the lumbar spine, but did attenuate the loss of trabecular bone mineral from the tibial metaphysis and enhance the strength strain index and cross-sectional moment of inertia at the tibial diaphysis (P≤0.05) in dams in the exercised group. Fecal corticosterone did not differ between dam groups. There were no significant differences in offspring weight between the exercised and control group at either time point. Voluntary exercise in the pregnant rat can improve some post-lactation bone parameters and does not adversely affect early postnatal outcomes of the offspring.
Correlates of bone quality in older persons
Lauretani, F.; Bandinelli, S.; Russo, C.R.; Maggio, M.; Di Iorio, A.; Cherubini, A.; Maggio, D.; Ceda, G.P.; Valenti, G.; Guralnik, J.M.; Ferrucci, L.
2009-01-01
Purpose of the study In a population-based sample of older persons, we studied the relationship between tibial bone density and geometry and factors potentially affecting osteoporosis. Methods Of the 1260 participants aged 65 years or older eligible for the InCHIANTI study, 1155 received an interview and 915 (79.2%) had complete data on tibial QCTscans and other variables used in the analysis presented here. The final study population included 807 persons (372 men and 435 women, age range 65–96 years) after exclusion of participants affected by bone diseases or treated with drugs that interfere with bone metabolism. Results In both sexes, calf cross-sectional muscle area (CSMA) was significantly and independently associated with total bone cross-sectional area (tCSA) and cortical bone cross-sectional area (cCSA) but not with trabecular or cortical volumetric bone mineral density (vBMD). Bioavailable testosterone (Bio-T) was independently associated with both trabecular and cortical vBMD in both sexes. In women, independently of confounders, 25(OH)-vitamin D was positively associated with tCSA and cortical vBMD, while PTH was negatively associated with cortical vBMD. IL-1 beta was negatively correlated with cortical vBMD in women, while TNF-alpha was associated with enhanced bone geometrical adaptation in men. Conclusions Physiological parameters that are generically considered risk factors for osteoporosis were associated with specific bone parameters assessed by tibial QCT. Factors known to be associated with increased bone reabsorption, such as 25(OH)-vitamin D, PTH and Bio-T, affected mainly volumetric BMD, while factors associated with bone mechanical stimulation, such as CSMA, affected primarily bone geometry. Our results also suggested that pro-inflammatory cytokines might be considered as markers of bone resorption. PMID:16709469
Exploring thermal anisotropy of cortical bone using temperature measurements in drilling.
Alam, Khurshid
2016-05-12
Bone drilling is widely used in orthopaedics for fracture treatment, reconstructive surgery and bone biopsy. Heat generation in bone drilling can cause rise in bone temperature resulting in prolonged healing time or loosening of fixation. The purpose of this study was to investigate thermal anisotropy of bone by measuring the level of temperature in bone drilling with and without cooling conditions in two anatomical directions. Drilling tests were performed on bovine cortical bone. A total of fifteen specimens were used to obtain data for statistical analysis. Temperature near the cutting zone was measured in two anatomical directions. i.e. along the longitudinal and circumferential direction. Temperature distribution was also found in the two prescribed directions. Analysis of variance (ANOVA) was used to identify significant drilling parameter affecting bone temperature. Drilling speed, feed rate and drill size were found influential parameters affecting bone temperature. Higher drilling speed, feed rate, and large drill size were found to cause elevated temperature in bone. Much lower temperature was measured in bone when cooling fluid was supplied to the drilling region. Experimental results revealed lower temperatures in the circumferential direction compared to the longitudinal direction. Thermal anisotropy for heat transport was found in the bone. This study recommends lower drilling speed and feed rate and cooling for controlling rise in bone temperature.
Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun
2016-11-01
This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate the effects of dietary Aspergillus meal (AM), a prebiotic on performance and bone parameters of neonatal turkey poults. Prebiotics are nondigestible food ingredients that beneficially affect the host and have been shown to stimulate calcium and magnesium a...
Hunt, Janet R; Hunt, Curtiss D; Zito, Carol Ann; Idso, Joseph P; Johnson, LuAnn K
2008-08-01
Although calcium (Ca) supplementation increases bone density, the increase is small and the effect on bone strength and fracture risk is uncertain. To investigate if bone mass, morphology, and biomechanical properties are affected by deficient to copious dietary Ca concentrations, the long bones (tibia and femur) of growing female Sprague-Dawley rats (8/group) were assessed after 13 wk of consuming 1, 2, 3, 4, 5, 6, or 7 g Ca/kg of a modified AIN-93G diet. Dietary phosphorous (P) and vitamin D remained constant at recommended concentrations. The assessment included mineralization, density, biomechanical properties of breaking by a 3-point flexure test, and morphological properties by microcomputed topography scanning of trabecular bone of the proximal tibia metaphysis. Dietary treatment did not affect food intake, weight gain, renal and muscle Ca concentrations, and bone hydroxyproline. All bone parameters measured were significantly impaired by Ca deficiency in rats fed the diet containing 1 g Ca/kg. Modest impairments occurred with some parameters (bone density, biomechanical bending moment, modulus of elasticity, and stress) in rats fed 2 g Ca/kg, but all parameters stabilized between 2 and 3 g/kg diet, with no differences between 3 and 7 g/kg. The results suggest that a threshold response in bone Ca retention or bone mass at approximately 2.5 g Ca/kg diet is associated with similar threshold responses in bone breaking strength and related biomechanics as well as trabecular structural properties. There was no evidence of a relative P deficiency or of improved or impaired bone strength and structure as Ca intakes increased beyond those needed to maximize bone density.
Cruel, M; Granke, M; Bosser, C; Audran, M; Hoc, T
2017-06-01
Alcohol-induced secondary osteoporosis in men has been characterized by higher fracture prevalence and a modification of bone microarchitecture. Chronic alcohol consumption impairs bone cell activity and results in an increased fragility. A few studies highlighted effects of heavy alcohol consumption on some microarchitectural parameters of trabecular bone. But to date and to our knowledge, micro- and macro-mechanical properties of bone of alcoholic subjects have not been investigated. In the present study, mechanical properties and microarchitecture of trabecular bone samples from the iliac crest of alcoholic male patients (n=15) were analyzed and compared to a control group (n=8). Nanoindentation tests were performed to determine the tissue's micromechanical properties, micro-computed tomography was used to measure microarchitectural parameters, and numerical simulations provided the apparent mechanical properties of the samples. Compared to controls, bone tissue from alcoholic patients exhibited an increase of micromechanical properties at tissue scale, a significant decrease of apparent mechanical properties at sample scale, and significant changes in several microarchitectural parameters. In particular, a crucial role of structure model index (SMI) on mechanical properties was identified. 3D microarchitectural parameters are at least as important as bone volume fraction to predict bone fracture risk in the case of alcoholic patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Stratmann, A; Fröhlich, E K F; Gebhardt-Henrich, S G; Harlander-Matauschek, A; Würbel, H; Toscano, M J
2016-05-01
The prevalence of keel bone damage as well as external egg parameters of 2 pure lines divergently selected for high (H) and low (L) bone strength were investigated in 2 aviary systems under commercial conditions. A standard LSL hybrid was used as a reference group. Birds were kept mixed per genetic line (77 hens of the H and L line and 201 or 206 hens of the LSL line, respectively, per pen) in 8 pens of 2 aviary systems differing in design. Keel bone status and body mass of 20 focal hens per line and pen were assessed at 17, 18, 23, 30, 36, 43, 52, and 63 wk of age. External egg parameters (i.e., egg mass, eggshell breaking strength, thickness, and mass) were measured using 10 eggs per line at both 38 and 57 wk of age. Body parameters (i.e. tarsus and third primary wing feather length to calculate index of wing loading) were recorded at 38 wk of age and mortality per genetic line throughout the laying cycle. Bone mineral density (BMD) of 15 keel bones per genetic line was measured after slaughter to confirm assignment of the experimental lines. We found a greater BMD in the H compared with the L and LSL lines. Fewer keel bone fractures and deviations, a poorer external egg quality, as well as a lower index of wing loading were found in the H compared with the L line. Mortality was lower and production parameters (e.g., laying performance) were higher in the LSL line compared with the 2 experimental lines. Aviary design affected prevalence of keel bone damage, body mass, and mortality. We conclude that selection of specific bone traits associated with bone strength as well as the related differences in body morphology (i.e., lower index of wing loading) have potential to reduce keel bone damage in commercial settings. Also, the housing environment (i.e., aviary design) may have additive effects. © 2016 Poultry Science Association Inc.
High-fat diets affect energy and bone metabolism in growing rats.
Macri, Elisa V; Gonzales Chaves, Macarena M; Rodriguez, Patricia N; Mandalunis, Patricia; Zeni, Susana; Lifshitz, Fima; Friedman, Silvia M
2012-06-01
High-fat diets are usually associated with greater weight (W) gain and body fat (BF). However, it is still unclear whether the type and amount of fat consumed influence BF. Additionally, dietary fat intake may also have consequences on skeletal health. To evaluate in healthy growing rats the effects of high-fat diets and type of dietary fat intake (saturated or vegetable oils) on energy and bone metabolism. At weaning, male Wistar rats (n = 50) were fed either a control diet (C; fat = 7% w/w) or a high-fat diet (20% w/w) containing either: soybean oil, corn oil (CO), linseed oil (LO), or beef tallow (BT) for 8 weeks. Zoometric parameters, BF, food intake and digestibility, and total and bone alkaline phosphatase (b-AP) were assessed. Total skeleton bone mineral density (BMD) and content (BMC), BMC/W, spine BMD, and bone volume (static-histomorphometry) were measured. Animals fed BT diet achieved lower W versus C. Rats fed high-fat vegetable oil diets showed similar effects on the zoometric parameters but differed in BF. BT showed the lowest lipid digestibility and BMC. In contrast, high vegetable oil diets produced no significant differences in BMC, BMC/W, BMD, spine BMD, and bone volume. Marked differences were observed for LO and BT groups in b-AP and CO and BT groups in bone volume. BT diet rich in saturated fatty acids had decreased digestibility and adversely affected energy and bone metabolisms, in growing healthy male rats. There were no changes in zoometric and bone parameters among rats fed high vegetable oil diets.
An approximate model for cancellous bone screw fixation.
Brown, C J; Sinclair, R A; Day, A; Hess, B; Procter, P
2013-04-01
This paper presents a finite element (FE) model to identify parameters that affect the performance of an improved cancellous bone screw fixation technique, and hence potentially improve fracture treatment. In cancellous bone of low apparent density, it can be difficult to achieve adequate screw fixation and hence provide stable fracture fixation that enables bone healing. Data from predictive FE models indicate that cements can have a significant potential to improve screw holding power in cancellous bone. These FE models are used to demonstrate the key parameters that determine pull-out strength in a variety of screw, bone and cement set-ups, and to compare the effectiveness of different configurations. The paper concludes that significant advantages, up to an order of magnitude, in screw pull-out strength in cancellous bone might be gained by the appropriate use of a currently approved calcium phosphate cement.
Vandewalle, Sara; Van Caenegem, Eva; Craen, Margarita; Taes, Youri; Kaufman, Jean-Marc; T'Sjoen, Guy
2018-03-28
Sex steroids are essential for sexual maturation, linear growth and bone development. However, there is no consensus on the optimal timing, dosage and dosage interval of testosterone therapy to induce pubertal development and achieve a normal adult height and bone mass in children with hypogonadism. A monozygotic monochorial male twin pair, of which one boy was diagnosed with anorchia at birth due to testicular regression syndrome was followed from the age of 3 until the age of 18 years. Low dose testosterone substitution (testosterone esters 25 mg/2 weeks) was initiated in the affected twin based on the start of pubertal development in the healthy twin and then gradually increased accordingly. Both boys were followed until age 18 and were compared as regards to linear growth, sexual maturation, bone maturation and bone development. Before puberty induction both boys had a similar weight and height. During puberty, a slightly faster weight and height gain was observed in the affected twin. Both boys ended up however, with a similar and normal (near) adult height and weight and experienced a normal development of secondary sex characteristics. At the age of 17 and 18 years, bone mineral density, body composition and volumetric bone parameters at the forearm and calf were evaluated in both boys. The affected boy had a higher lean mass and muscle cross-sectional area. The bone mineral density at the lumbar spine and whole body was similar. Trabecular and cortical volumetric bone parameters were comparable. At one cortical site (proximal radius), however, the affected twin had a smaller periosteal and endosteal circumference with a thicker cortex. In conclusion, a low dose testosterone substitution in bilateral anorchia led to a normal onset of pubertal development and (near) adult height. Furthermore, there was no difference in bone mineral density at the age of 17 and 18 years.
Noninvasive evaluation system of fractured bone based on speckle interferometry
NASA Astrophysics Data System (ADS)
Yamanada, Shinya; Murata, Shigeru; Tanaka, Yohsuke
2010-11-01
This paper presents a noninvasive evaluation system of fractured bone based on speckle interferometry using a modified evaluation index for higher performance, and the experiments are carried out to examine the feasibility in evaluating bone fracture healing and the influence of some system parameters on the performance. From experimental results, it is shown that the presence of fractured part of bone and the state of bone fracture healing are successfully estimated by observing fine speckle fringes on the object surface. The proposed evaluation index also can successfully express the difference between the cases with cut and without it. Since most system parameters are found not to affect the performance of the present technique, the present technique is expected to be applied to various patients that have considerable individual variability.
Study on the influence of parameters of medical drill on bone drilling temperature
NASA Astrophysics Data System (ADS)
XU, Xianchun; Hu, Yahui; Han, Jingwang; Yue, Lin; Jiang, Wangbiao
2018-03-01
During surgical interventions, the temperature generated during cortical bone drilling can affect the activity of bone material, which may lead to necrosis. In this paper, with the purpose of reducing the temperature during cortical bone drilling, the influence of the parameters of medical drill were analyzed. The finite element model of the drilling process was established based on the parametric design of the dril. The relationship between the drill bit diameter, the point angle, and the helix angle to the drilling temperature was studied by the center composite experiment. The results showed that the drilling temperature is increased with the increase of drill diameter, vertex angle and helix angle in the range of certain research.
Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass
NASA Technical Reports Server (NTRS)
Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard
2003-01-01
Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.
Bijelić, Nikola; Belovari, Tatjana; Stolnik, Dunja; Lovrić, Ivana; Baus Lončar, Mirela
2017-08-01
Trefoil factor family 3 (Tff3) peptide is present during intrauterine endochondral ossification in mice, and its deficiency affects cancellous bone quality in secondary ossification centers of mouse tibiae. The aim of this study was to quantitatively analyze parameters describing the growth plate and primary ossification centers in tibiae of 1-month-old wild-type and Tff3 knock-out mice (n=5 per genotype) by using free and open-source software. Digital photographs of the growth plates and trabecular bone were processed by open-source computer programs GIMP and FIJI. Histomorphometric parameters were calculated using measurements made with FIJI. Tff3 knock-out mice had significantly smaller trabecular number and significantly larger trabecular separation. Trabecular bone volume, trabecular bone surface, and trabecular thickness showed no significant difference between the two groups. Although such histomorphological differences were found in the cancellous bone structure, no significant differences were found in the epiphyseal plate histomorphology. Tff3 peptide probably has an effect on the formation and quality of the cancellous bone in the primary ossification centers, but not through disrupting the epiphyseal plate morphology. This work emphasizes the benefits of using free and open-source programs for morphological studies in life sciences.
Charif, N; Li, Y Y; Targa, L; Zhang, L; Ye, J S; Li, Y P; Stoltz, J F; Han, H Z; de Isla, N
2017-01-01
With their proliferation, differentiation into specific cell types, and secretion properties, mesenchymal stromal/stem cells (MSC) are very interesting tools to be used in regenerative medicine. Bone marrow (BM) was the first MSC source characterized. In the frame of autologous MSC therapy, it is important to detect donor's parameters affecting MSC potency. Age of the donors appears as one parameter that could greatly affect MSC properties. Moreover, in vitro cell expansion is needed to obtain the number of cells necessary for clinical developments. It will lead to in vitro cell aging that could modify cell properties. This review recapitulates several studies evaluating the effect of in vitro and in vivo MSC aging on cell properties.
USDA-ARS?s Scientific Manuscript database
Studies have demonstrated that obesity and osteoporosis are two linked disorders in humans. This study examined if excessive lipid consumption affects bone metabolism in laying hens. One hundred 63-week-old laying hens were randomly divided into two treatments, i.e., fed with a regular diet (control...
Surface microtopography modulates sealing zone development in osteoclasts cultured on bone
Addadi, Lia; Geiger, Benjamin
2017-01-01
Bone homeostasis is continuously regulated by the coordinated action of bone-resorbing osteoclasts and bone-forming osteoblasts. Imbalance between these two cell populations leads to pathological bone diseases such as osteoporosis and osteopetrosis. Osteoclast functionality relies on the formation of sealing zone (SZ) rings that define the resorption lacuna. It is commonly assumed that the structure and dynamic properties of the SZ depend on the physical and chemical properties of the substrate. Considering the unique complex structure of native bone, elucidation of the relevant parameters affecting SZ formation and stability is challenging. In this study, we examined in detail the dynamic response of the SZ to the microtopography of devitalized bone surfaces, taken from the same area in cattle femur. We show that there is a significant enrichment in large and stable SZs (diameter larger than 14 µm; lifespan of hours) in cells cultured on rough bone surfaces, compared with small and fast turning over SZ rings (diameter below 7 µm; lifespan approx. 7 min) formed on smooth bone surfaces. Based on these results, we propose that the surface roughness of the physiologically relevant substrate of osteoclasts, namely bone, affects primarily the local stability of growing SZs. PMID:28202594
de Oliveira, Guilherme José Pimentel Lopes; Basso, Túlio Luiz Durigan; Fontanari, Lucas Amaral; Faloni, Ana Paula de Souza; Marcantonio, Élcio; Orrico, Silvana Regina Perez
2017-08-01
To determine which features of the bone microarchitecture are affected by established diabetes mellitus (DM) and the effectiveness of glycemic control in the protection of bone tissue. Sixty juvenile Wistar male rats were divided into three groups of 20 animals: a control group (C) that included healthy animals, a diabetic group (D) that included animals with induced diabetes, and a controlled diabetic group (CD) that included animals with induced diabetes that were treated with insulin. The animals were euthanized at the periods of 6 and 8 weeks after the induction of diabetes (10 animals per group/period). Vertebral L4 specimens were submitted to μCT analysis to assess the following parameters of the bone microarchitecture: bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular spacing (Tb.Sp). The D group exhibited lower values of BV/TV (%) and numbers of trabeculae compared with the C group at 6 and 8 weeks and compared with the CD group at 8 weeks. The CD group exhibited higher trabecular thickness values compared with the D group at 8 weeks. There were no differences between the groups regarding the spaces between the trabeculae. Induced diabetes affected the microarchitecture of the trabecular bone of the vertebrae by reducing the values of the majority of the parameters in relation to those of the control group. Glycemic control with insulin appears to protect bones from the effects of the hyperglycemia.
Biomaterials and bone mechanotransduction
NASA Technical Reports Server (NTRS)
Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)
2001-01-01
Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.
Sex differences in parameters of bone strength in new recruits: beyond bone density.
Evans, Rachel K; Negus, Charles; Antczak, Amanda J; Yanovich, Ran; Israeli, Eran; Moran, Daniel S
2008-11-01
Stress fracture (SF) injuries in new recruits have long been attributed to low bone mineral density (BMD). Low areal BMD assessed using two-dimensional dual-energy x-ray absorptiometry imaging, however, reflects structural density and is affected by smaller measures of bone geometry. Recent studies support a relationship between bone size and SF and indicate that slender bones are more susceptible to damage under identical loading conditions. Peripheral quantitative computed tomography (pQCT) is a three-dimensional imaging tool that provides measures of tissue density and geometry parameters of the tibia, a common site of SF. To evaluate sex differences in parameters of volumetric BMD (vBMD), geometry, and strength of the tibia in new recruits using a novel pQCT image analysis procedure. pQCT images were obtained from 128 healthy men and women (20 male, 108 female, aged 18-21 yr) entering a 4-month gender-integrated combat training program in the Israeli Defense Forces. Tibial scans taken at sites 4% (trabecular bone), 38%, and 66% (cortical bone) from the distal end plate were analyzed using MATLAB to assess whole-bone and regional parameters. Measures included vBMD, geometry (diameter, area, cortical thickness, and canal radius), and strength (moments of inertia and bone strength and slenderness indices). With the exception of normalized canal radius, which did not differ between sexes, all measures of bone geometry (P < 0.0001) and strength (P < 0.0001 to P = 0.07) were greater in men. Women exhibited 2.7% to 3.0% greater cortical vBMD than men, whereas trabecular vBMD was 8.4% lower in women (P < 0.001). These differences remained significant after adjusting for body size. Sex differences in bone geometry and mineralization of the tibia may contribute to a decreased ability to withstand the demands imposed by novel, repetitive exercise in untrained individuals entering recruit training.
Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan
2016-01-01
Osteogenesis Imperfecta (OI) is characterized by low bone mass, poor bone quality and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1 and 6 week old Crtap−/− mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of “pediatric” and “young adult” recessive OI. Vehicle treated Crtap−/− and wildtype (WT) mice served as controls. Compared with control Crtap−/− mice, microCT analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab treated Crtap−/− mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole bone strength in Crtap−/− mice, with more robust effects in the week 6–12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6–12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen post-translational modification. PMID:26716893
Misof, B M; Roschger, P; Jorgetti, V; Klaushofer, K; Borba, V Z C; Boguszewski, C L; Cohen, A; Shane, E; Zhou, H; Dempster, D W; Moreira, C A
2015-10-01
Chronic obstructive pulmonary disease (COPD) is associated with low aBMD as measured by DXA and altered microstructure as assessed by bone histomorphometry and microcomputed tomography. Knowledge of bone matrix mineralization is lacking in COPD. Using quantitative backscatter electron imaging (qBEI), we assessed cancellous (Cn.) and cortical (Ct.) bone mineralization density distribution (BMDD) in 19 postmenopausal women (62.1 ± 7.3 years of age) with COPD. Eight had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. The BMDD outcomes from the patients were compared with healthy reference data and were correlated with previous clinical and histomorphometric findings. In general, the BMDD outcomes for the patients were not significantly different from the reference data. Neither the subgroups of with or without fragility fractures or of who did or did not receive inhaled glucocorticoid treatment, showed differences in BMDD. However, subgroup comparison according to severity revealed 10% decreased cancellous mineralization heterogeneity (Cn.CaWidth) for the most severely affected compared with less affected patients (p=0.042) and compared with healthy premenopausal controls (p=0.021). BMDD parameters were highly correlated with histomorphometric cancellous bone volume (BV/TV) and formation indices: mean degree of mineralization (Cn.CaMean) versus BV/TV (r=0.58, p=0.009), and Cn.CaMean and Ct.CaMean versus bone formation rate (BFR/BS) (r=-0.71, p<0.001). In particular, those with lower BV/TV (<50th percentile) had significantly lower Cn.CaMean (p=0.037) and higher Cn.CaLow (p=0.020) compared with those with higher (>50th percentile) BV/TV. The normality in most of the BMDD parameters and bone formation rates as well as the significant correlations between them suggests unaffected mineralization processes in COPD. Our findings also indicate no significant negative effect of treatment with inhaled glucocorticoids on the bone mineralization pattern. However, the observed concomitant occurrence of relatively lower bone volumes with lower bone matrix mineralization will both contribute to the reduced aBMD in some patients with COPD. Copyright © 2015 Elsevier Inc. All rights reserved.
Micro-CT characterization of human trabecular bone in osteogenesis imperfecta
NASA Astrophysics Data System (ADS)
Jameson, John; Albert, Carolyne; Smith, Peter; Molthen, Robert; Harris, Gerald
2011-03-01
Osteogenesis imperfecta (OI) is a genetic syndrome affecting collagen synthesis and assembly. Its symptoms vary widely but commonly include bone fragility, reduced stature, and bone deformity. Because of the small size and paucity of human specimens, there is a lack of biomechanical data for OI bone. Most literature has focused on histomorphometric analyses, which rely on assumptions to extrapolate 3-D properties. In this study, a micro-computed tomography (μCT) system was used to directly measure structural and mineral properties in pediatric OI bone collected during routine surgical procedures. Surface renderings suggested a poorly organized, plate-like orientation. Patients with a history of bone-augmenting drugs exhibited increased bone volume fraction (BV/TV), trabecular number (Tb.N), and connectivity density (Eu.Conn.D). The latter two parameters appeared to be related to OI severity. Structural results were consistently higher than those reported in a previous histomorphometric study, but these differences can be attributed to factors such as specimen collection site, drug therapy, and assumptions associated with histomorphometry. Mineral testing revealed strong correlations with several structural parameters, highlighting the importance of a dual approach in trabecular bone testing. This study reports some of the first quantitative μCT data of human OI bone, and it suggests compelling possibilities for the future of OI bone assessment.
Does methamphetamine affect bone metabolism?
Tomita, Masafumi; Katsuyama, Hironobu; Watanabe, Yoko; Okuyama, Toshiko; Fushimi, Shigeko; Ishikawa, Takaki; Nata, Masayuki; Miyamoto, Osamu
2014-05-07
There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10mg/kg METH groups (n=6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5mg/kg METH showed an increased locomotor activity, whereas those receiving 10mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5mg/kg METH group, but not in the 10mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that METH might induce adverse effects, leading to osteoporosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Mechanisms Inducing Low Bone Density in Duchenne Muscular Dystrophy in Mice and Humans
Rufo, Anna; Del Fattore, Andrea; Capulli, Mattia; Carvello, Francesco; De Pasquale, Loredana; Ferrari, Serge; Pierroz, Dominique; Morandi, Lucia; De Simone, Michele; Rucci, Nadia; Bertini, Enrico; Bianchi, Maria Luisa; De Benedetti, Fabrizio; Teti, Anna
2011-01-01
Patients affected by Duchenne muscular dystrophy (DMD) and dystrophic MDX mice were investigated in this study for their bone phenotype and systemic regulators of bone turnover. Micro–computed tomographic (µCT) and histomorphometric analyses showed reduced bone mass and higher osteoclast and bone resorption parameters in MDX mice compared with wild-type mice, whereas osteoblast parameters and mineral apposition rate were lower. In a panel of circulating pro-osteoclastogenic cytokines evaluated in the MDX sera, interleukin 6 (IL-6) was increased compared with wild-type mice. Likewise, DMD patients showed low bone mineral density (BMD) Z-scores and high bone-resorption marker and serum IL-6. Human primary osteoblasts from healthy donors incubated with 10% sera from DMD patients showed decreased nodule mineralization. Many osteogenic genes were downregulated in these cultures, including osterix and osteocalcin, by a mechanism blunted by an IL-6-neutralizing antibody. In contrast, the mRNAs of osteoclastogenic cytokines IL6, IL11, inhibin-βA, and TGFβ2 were increased, although only IL-6 was found to be high in the circulation. Consistently, enhancement of osteoclastogenesis was noted in cultures of circulating mononuclear precursors from DMD patients or from healthy donors cultured in the presence of DMD sera or IL-6. Circulating IL-6 also played a dominant role in osteoclast formation because ex vivo wild-type calvarial bones cultured with 10% sera of MDX mice showed increase osteoclast and bone-resorption parameters that were dampen by treatment with an IL-6 antibody. These results point to IL-6 as an important mediator of bone loss in DMD and suggest that targeted anti-IL-6 therapy may have a positive impact on the bone phenotype in these patients. © 2011 American Society for Bone and Mineral Research PMID:21509823
Matsushita, Hiroshi; Minami, Akira; Kanazawa, Hiroaki; Suzuki, Takashi; Subhadhirasakul, Sanan; Watanabe, Kazushi; Wakatsuki, Akihiko
2017-05-01
Young coconut ( Cocos nucifera Linn.) juice (YCJ) has traditionally been consumed to alleviate symptoms associated with the menopause. Recently, the authors demonstrated that short-term (6-week) YCJ supplementation to ovariectomized rats resulted in increased bone mass and bone formation parameter, suggesting that YCJ consumption has a positive effect on bone metabolism and may represent an intervention to help slow the bone loss during menopause transition. The present study sought to determine how long-term (12-week) YCJ supplementation affects bone metabolism in ovariectomized rats, to investigate whether such supplementation may be helpful to in osteoporosis treatment. Ten-week-old female Wistar rats were subjected to either a sham operation (Sham) or bilateral ovariectomy (Ovx). The Ovx+YCJ group received 5X-concentrated YCJ at a dose of 15 ml/kg/day for 12 weeks. Rats in the Ovx group had significantly lower femur bone mineral density than those in the Sham group. YCJ supplementation did not significantly affect this difference. However, YCJ prevented the increase in bone area of the mid third of the femur, a site high in cortical bone, and body weight gain observed following Ovx. Our findings indicate that long-term YCJ intake does not alter bone loss, but rather alleviates body weight gain following menopause.
Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan
2016-05-01
Osteogenesis imperfecta (OI) is characterized by low bone mass, poor bone quality, and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin-neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage-associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1-week-old and 6-week-old Crtap(-/-) mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of "pediatric" and "young adult" recessive OI. Vehicle-treated Crtap(-/-) and wild-type (WT) mice served as controls. Compared with control Crtap(-/-) mice, micro-computed tomography (μCT) analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab-treated Crtap(-/-) mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole-bone strength in Crtap(-/-) mice, with more robust effects in the week 6 to 12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6 to 12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen posttranslational modification. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.
Elevated Levels of Peripheral Kynurenine Decrease Bone Strength in Rats with Chronic Kidney Disease
Kalaska, Bartlomiej; Pawlak, Krystyna; Domaniewski, Tomasz; Oksztulska-Kolanek, Ewa; Znorko, Beata; Roszczenko, Alicja; Rogalska, Joanna; Brzoska, Malgorzata M.; Lipowicz, Pawel; Doroszko, Michal; Pryczynicz, Anna; Pawlak, Dariusz
2017-01-01
The diagnosis and treatment of bone disorders in patients with chronic kidney disease (CKD) represent a clinical challenge. CKD leads to mineral and bone complications starting early in the course of renal failure. Recently, we have observed the positive relationship between intensified central kynurenine turnover and bone strength in rats with subtotal 5/6 nephrectomy (5/6 Nx)-induced CKD. The aim of the present study was to determine the association between peripheral kynurenine pathway metabolites and bone strength in rats with 5/6 Nx-induced CKD. The animals were sacrificed 1 and 3 months after 5/6 Nx or sham operation. Nephrectomized rats presented higher concentrations of serum creatinine, urea nitrogen, and parathyroid hormone both 1 and 3 months after nephrectomy. These animals revealed higher concentrations of kynurenine and 3-hydroxykynurenine in the serum and higher gene expression of aryl hydrocarbon receptor (AhR) as a physiological receptor for kynurenine and AhR-dependent cytochrome in the bone tissue. Furthermore, nephrectomy significantly increased the number of osteoclasts in the bone without affecting their resorptive activity measured in serum. These changes were particularly evident in rats 1 month after 5/6 Nx. The main bone biomechanical parameters of the tibia were unchanged between nephrectomized and sham-operated rats but were significantly increased in older compared to younger animals. A similar trend was observed for geometrical parameters measured with calipers, bone mineral density based on Archimedes' method and image of bone microarchitecture obtained from micro-computed tomography analyses of tibial cortical bone. In nephrectomized animals, peripheral kynurenine levels correlated negatively with the main parameters of bone biomechanics, bone geometry, and bone mineral density values. In conclusion, our data suggest that CKD-induced elevated levels of peripheral kynurenine cause pathological changes in bone structure via AhR pathway. This finding opens new opportunities for the treatment/prevention of osteoporosis in CKD. PMID:29163188
Is Bone Tissue Really Affected by Swimming? A Systematic Review
Gómez-Bruton, Alejandro; Gónzalez-Agüero, Alejandro; Gómez-Cabello, Alba; Casajús, José A.; Vicente-Rodríguez, Germán
2013-01-01
Background Swimming, a sport practiced in hypogravity, has sometimes been associated with decreased bone mass. Aim This systematic review aims to summarize and update present knowledge about the effects of swimming on bone mass, structure and metabolism in order to ascertain the effects of this sport on bone tissue. Methods A literature search was conducted up to April 2013. A total of 64 studies focusing on swimmers bone mass, structure and metabolism met the inclusion criteria and were included in the review. Results It has been generally observed that swimmers present lower bone mineral density than athletes who practise high impact sports and similar values when compared to sedentary controls. However, swimmers have a higher bone turnover than controls resulting in a different structure which in turn results in higher resistance to fracture indexes. Nevertheless, swimming may become highly beneficial regarding bone mass in later stages of life. Conclusion Swimming does not seem to negatively affect bone mass, although it may not be one of the best sports to be practised in order to increase this parameter, due to the hypogravity and lack of impact characteristic of this sport. Most of the studies included in this review showed similar bone mineral density values in swimmers and sedentary controls. However, swimmers present a higher bone turnover than sedentary controls that may result in a stronger structure and consequently in a stronger bone. PMID:23950908
Ting, Miriam; Tenaglia, Matthew S; Jones, Gary H; Suzuki, Jon B
2017-04-01
The objective of this systematic review was to perform a comprehensive overview of systematic reviews and meta-analyses of surgical and patient factors affecting marginal bone loss around osseointegrated dental implants in humans. Electronic databases were searched for systematic reviews and meta-analyses published up to November 2015. Of the 41 articles selected, 11 evaluated implant factors, 10 evaluated patient factors, 19 evaluated surgical protocol-related factors, and one evaluated all three factors. The chosen studies were AMSTAR rated for quality. The following parameters have statistically significant effect on marginal bone loss: (1) marginal bone loss was significantly more in patients with periodontitis than in periodontally healthy patients; (2) significantly greater in generalized aggressive periodontitis patients compared with chronic periodontitis patients; (3) significantly less in alveolar socket preservation techniques; (4) significantly more in alveolar ridge augmentation sites; (5) significantly more in men than in women; (6) significantly more in smokers than in nonsmokers; and (7) smokers also have significantly more marginal bone loss in the maxilla than in the mandible. Knowledge of the surgical and patient factors that affect marginal bone loss can aid the clinician in making informed choices in selecting implant treatment options that will enhance the longevity and long-term success of their implant-supported cases.
Kivell, Tracy L; Skinner, Matthew M; Lazenby, Richard; Hublin, Jean-Jacques
2011-02-01
Micro-computed tomographic analyses of trabecular bone architecture have been used to clarify the link between positional behavior and skeletal anatomy in primates. However, there are methodological decisions associated with quantifying and comparing trabecular anatomy across taxa that vary greatly in body size and morphology that can affect characterizations of trabecular architecture, such as choice of the volume of interest (VOI) size and location. The potential effects of these decisions may be amplified in small, irregular-shaped bones of the hands and feet that have more complex external morphology and more heterogeneous trabecular structure compared to, for example, the spherical epiphysis of the femoral head. In this study we investigate the effects of changes in VOI size and location on standard trabecular parameters in two bones of the hand, the capitate and third metacarpal, in a diverse sample of nonhuman primates that vary greatly in morphology, body mass and positional behavior. Results demonstrate that changes in VOI location and, to a lesser extent, changes in VOI size had a dramatic affect on many trabecular parameters, especially trabecular connectivity and structure (rods vs. plates), degree of anisotropy, and the primary orientation of the trabeculae. Although previous research has shown that some trabecular parameters are susceptible to slight variations in methodology (e.g. VOI location, scan resolution), this study provides a quantification of these effects in hand bones of a diverse sample of primates. An a priori understanding of the inherent biases created by the choice of VOI size and particularly location is critical to robust trabecular analysis and functional interpretation, especially in small bones with complex arthroses. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.
Drilling of bone: A comprehensive review
Pandey, Rupesh Kumar; Panda, S.S.
2013-01-01
Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771
Folwarczna, Joanna; Janas, Aleksandra; Cegieła, Urszula; Pytlik, Maria; Śliwiński, Leszek; Matejczyk, Magdalena; Nowacka, Anna; Rudy, Karolina; Krivošíková, Zora; Štefíková, Kornélia; Gajdoš, Martin
2017-10-30
Diabetes may lead to the development of osteoporosis. Coffee drinking, apart from its health benefits, is taken into consideration as an osteoporosis risk factor. Data from human and animal studies on coffee and caffeine bone effects are inconsistent. The aim of the study was to investigate effects of caffeine at a moderate dose on the skeletal system of rats in two models of experimental diabetes induced by streptozotocin. Effects of caffeine administered orally (20 mg/kg aily for four weeks) were investigated in three-month-old female Wistar rats, which, two weeks before the start of caffeine administration, received streptozotocin (60 mg/kg, intraperitoneally) alone or streptozotocin after nicotinamide (230 mg/kg, intraperitoneally). Bone turnover markers, mass, mineral density, histomorphometric parameters, and mechanical properties were examined. Streptozotocin induced diabetes, with profound changes in the skeletal system due to increased bone resorption and decreased bone formation. Although streptozotocin administered after nicotinamide induced slight increases in glucose levels at the beginning of the experiment only, slight, but significant unfavorable changes in the skeletal system were demonstrated. Administration of caffeine did not affect the investigated skeletal parameters of rats with streptozotocin-induced disorders. In conclusion, caffeine at a moderate dose did not exert a damaging effect on the skeletal system of diabetic rats.
Achiou, Zahra; Toumi, Hechmi; Touvier, Jérome; Boudenot, Arnaud; Uzbekov, Rustem; Ominsky, Michael S; Pallu, Stéphane; Lespessailles, Eric
2015-12-01
Glucocorticoids have a beneficial anti-inflammatory and immunosuppressive effect, but their use is associated with decreased bone formation, bone mass and bone quality, resulting in an elevated fracture risk. Exercise and sclerostin antibody (Scl-Ab) administration have both been shown to increase bone formation and bone mass, therefore the ability of these treatments to inhibit glucocorticoid-induced osteopenia alone or in combination were assessed in a rodent model. Adult (4 months-old) male Wistar rats were allocated to a control group (C) or one of 4 groups injected subcutaneously with methylprednisolone (5mg/kg/day, 5 days/week). Methylprednisolone treated rats were injected subcutaneously 2 days/week with vehicle (M) or Scl-Ab-VI (M+S: 25mg/kg/day) and were submitted or not to treadmill interval training exercise (1h/day, 5 days/week) for 9 weeks (M+E, M+E+S). Methylprednisolone treatment increased % fat mass and % apoptotic osteocytes, reduced whole body and femoral bone mineral content (BMC), reduced femoral bone mineral density (BMD) and osteocyte lacunae occupancy. This effect was associated with lower trabecular bone volume (BV/TV) at the distal femur. Exercise increased BV/TV, osteocyte lacunae occupancy, while reducing fat mass, the bone resorption marker NTx, and osteocyte apoptosis. Exercise did not affect BMC or cortical microarchitectural parameters. Scl-Ab increased the bone formation marker osteocalcin and prevented the deleterious effects of M on bone mass, further increasing BMC, BMD and BV/TV to levels above the C group. Scl-Ab increased femoral cortical bone parameters at distal part and midshaft. Scl-Ab prevented the decrease in osteocyte lacunae occupancy and the increase in osteocyte apoptosis induced by M. The addition of exercise to Scl-Ab treatment did not result in additional improvements in bone mass or bone strength parameters. These data suggest that although our exercise regimen did prevent some of the bone deleterious effects of glucocorticoid treatment, particularly in trabecular bone volume and osteocyte apoptosis, Scl-Ab treatment resulted in marked improvements in bone mass across the skeleton and in osteocyte viability, resulting in decreased bone fragility. Copyright © 2015 Elsevier Inc. All rights reserved.
Relationship between women's occupational work and bone health: a study from India.
Shatrugna, Veena; Kulkarni, Bharati; Kumar, P Ajay; Balakrishna, N; Rani, K Usha; Reddy, G Chennakrishna; Rao, G V Narasimha
2008-06-01
Physical activity is known to influence the bone mass of an individual. Few studies have examined the effect of occupational activities on bone health. The present study investigated the relationship between occupational activities and the bone parameters measured by dual-energy X-ray absorptiometry in 158 women from a low-income group in India. Women involved in three occupations with different bone-loading patterns (beedi (cigarette) makers, sweepers and construction workers) were included in the study. Anthropometric parameters, parity and percentage of menopausal women did not differ significantly between the three groups and dietary intake of Ca was low in all the groups. Bone mineral density (BMD) values of the overall group at all the sites were much lower than those reported from developed countries, possibly due to different body sizes in these regions. Femoral neck and hip BMD were not different in the three groups in spite of marked differences in activity patterns. However, bone area in the femoral neck was higher in the beedi makers compared with sweepers probably due to the squatting position adopted by beedi makers. Lumbar spine BMD was significantly lower among the sweepers when compared with the beedi makers and the groups performing walking and weight-bearing activities (sweepers and construction workers) had a higher prevalence of osteoporosis in the lumbar spine. However, weight-bearing effects of the upper body due to a squatting position were associated with better lumbar spine BMD in the beedi makers. The present study thus indicates that undernutrition might affect the relationship between occupational activities and bone parameters.
Contributions of Severe Burn and Disuse to Bone Structure and Strength in Rats
Baer, L.A.; Wu, X.; Tou, J. C.; Johnson, E.; Wolf, S.E.; Wade, C.E.
2012-01-01
Burn and disuse results in metabolic and bone changes associated with substantial and sustained bone loss. Such loss can lead to an increased fracture incidence and osteopenia. We studied the independent effects of burn and disuse on bone morphology, composition and strength, and microstructure of the bone alterations 14 days after injury. Sprague-Dawley rats were randomized into four groups: Sham/Ambulatory (SA), Burn/Ambulatory (BA), Sham/Hindlimb Unloaded (SH) and Burn/Hindlimb Unloaded (BH). Burn groups received a 40% total body surface area full-thickness scald burn. Disuse by hindlimb unloading was initiated immediately following injury. Bone turnover was determined in plasma and urine. Femur biomechanical parameters were measured by three-point bending tests and bone microarchitecture was determined by microcomputed tomography (uCT). On day 14, a significant reduction in body mass was observed as a result of burn, disuse and a combination of both. In terms of bone health, disuse alone and in combination affected femur weight, length and bone mineral content. Bending failure energy, an index of femur strength, was significantly reduced in all groups and maximum bending stress was lower when burn and disuse were combined. Osteocalcin was reduced in BA compared to the other groups, indicating influence of burn. The reductions observed in femur weight, BMC, biomechanical parameters and indices of bone formation are primarily responses to the combination of burn and disuse. These results offer insight into bone degradation following severe injury and disuse. PMID:23142361
Favorable effect of moderate dose caffeine on the skeletal system in ovariectomized rats.
Folwarczna, Joanna; Pytlik, Maria; Zych, Maria; Cegieła, Urszula; Kaczmarczyk-Sedlak, Ilona; Nowińska, Barbara; Sliwiński, Leszek
2013-10-01
Caffeine, a methylxanthine present in coffee, has been postulated to be responsible for an increased risk of osteoporosis in coffee drinkers; however, the data are inconsistent. The aim of the present study was to investigate the effects of a moderate dose of caffeine on the skeletal system of rats with normal and decreased estrogen level (developing osteoporosis due to estrogen deficiency). The experiments were carried out on mature nonovariectomized and ovariectomized Wistar rats, divided into control rats and rats receiving caffeine once daily, 20 mg/kg p.o., for 4 wk. Serum bone turnover markers, bone mass, mass of bone mineral, calcium and phosphorus content, histomorphometric parameters, and bone mechanical properties were examined. Caffeine favorably affected the skeletal system of ovariectomized rats, slightly inhibiting the development of bone changes induced by estrogen deficiency (increasing bone mineralization, and improving the strength and structure of cancellous bone). Moreover, it favorably affected mechanical properties of compact bone. There were no significant effects of caffeine in rats with normal estrogen levels. In conclusion, results of the present study indicate that low-to-moderate caffeine intake may exert some beneficial effects on the skeletal system of mature organisms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cotter, Meghan M.; Whyms, Brian J.; Kelly, Michael P.; Doherty, Benjamin M.; Gentry, Lindell R.; Bersu, Edward T.; Vorperian, Houri K.
2015-01-01
The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared to corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. PMID:25810349
Cotter, Meghan M; Whyms, Brian J; Kelly, Michael P; Doherty, Benjamin M; Gentry, Lindell R; Bersu, Edward T; Vorperian, Houri K
2015-08-01
The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared with corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. © 2015 Wiley Periodicals, Inc.
Solav, Dana; Rubin, M B; Cereatti, Andrea; Camomilla, Valentina; Wolf, Alon
2016-04-01
Accurate estimation of the position and orientation (pose) of a bone from a cluster of skin markers is limited mostly by the relative motion between the bone and the markers, which is known as the soft tissue artifact (STA). This work presents a method, based on continuum mechanics, to describe the kinematics of a cluster affected by STA. The cluster is characterized by triangular cosserat point elements (TCPEs) defined by all combinations of three markers. The effects of the STA on the TCPEs are quantified using three parameters describing the strain in each TCPE and the relative rotation and translation between TCPEs. The method was evaluated using previously collected ex vivo kinematic data. Femur pose was estimated from 12 skin markers on the thigh, while its reference pose was measured using bone pins. Analysis revealed that instantaneous subsets of TCPEs exist which estimate bone position and orientation more accurately than the Procrustes Superimposition applied to the cluster of all markers. It has been shown that some of these parameters correlate well with femur pose errors, which suggests that they can be used to select, at each instant, subsets of TCPEs leading an improved estimation of the underlying bone pose.
The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts
Huang, Su; Eleniste, Pierre P.; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A.; Mains, Richard E.; Allen, Matthew R.; Bruzzaniti, Angela
2014-01-01
Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36 week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14 week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass. PMID:24380811
NASA Astrophysics Data System (ADS)
Maher, Jason R.; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.
2011-08-01
Although glucocorticoids are frequently prescribed for the symptomatic management of inflammatory disorders such as rheumatoid arthritis, extended glucocorticoid exposure is the leading cause of physician-induced osteoporosis and leaves patients at a high risk of fracture. To study the biochemical effects of glucocorticoid exposure and how they might affect biomechanical properties of the bone, Raman spectra were acquired from ex vivo tibiae of glucocorticoid- and placebo-treated wild-type mice and a transgenic mouse model of rheumatoid arthritis. Statistically significant spectral differences were observed due to both treatment regimen and mouse genotype. These differences are attributed to changes in the overall bone mineral composition, as well as the degree of phosphate mineralization in tibial cortical bone. In addition, partial least squares regression was used to generate a Raman-based prediction of each tibia's biomechanical strength as quantified by a torsion test. The Raman-based predictions were as accurate as those produced by microcomputed tomography derived parameters, and more accurate than the clinically-used parameter of bone mineral density. These results suggest that Raman spectroscopy could be a valuable tool for monitoring bone biochemistry in studies of bone diseases such as osteoporosis, including tests of drugs being developed to combat these diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balatsoukas, Ioannis; Kourkoumelis, Nikolaos; Tzaphlidou, Margaret
The Ca/P ratio of normal cortical and trabecular rat bone was measured by Auger electron spectroscopy (AES). Semiquantitative analysis was carried out using ratio techniques to draw conclusions on how age, sex and bone site affect the relative composition of calcium and phosphorus. Results show that Ca/P ratio is not sex dependent; quite the opposite, bone sites exhibit variations in elemental stoichiometry where femoral sections demonstrate higher Ca/P ratio than rear and front tibias. Age-related changes are more distinct for cortical bone in comparison with the trabecular bone. The latter's Ca/P ratio remains unaffected from all the parameters under study.more » This study confirms that AES is able to successfully quantify bone mineral main elements when certain critical points, related to the experimental conditions, are addressed effectively.« less
Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J
2003-05-01
To investigate the influence of decreased mechanical loading on the density and mechanical properties of the cancellous bone of the human mandibular condyle. Destructive compressive mechanical tests were performed on cancellous bone specimens.Background. Reduced masticatory function in edentate people leads to a reduction of forces acting on the mandible. As bone reacts to its mechanical environment a change in its material properties can be expected. Cylindrical bone specimens were obtained from dentate and edentate embalmed cadavers. Mechanical parameters were determined in the axial and in the transverse directions. Subsequently, density parameters were determined according to a method based on Archimedes' principle. The apparent density and volume fraction of the bone were about 18% lower in the edentate group; no age-related effect on density was found. The decrease of bone in the edentate group was associated with a lower stiffness and strength (about 22% and 28%, respectively). The ultimate strain, however, did not differ between the two groups. Both groups had similar mechanical anisotropy; in axial loading the bone was stiffer and stronger than in transverse loading. Reduced mechanical load had affected the density and herewith the mechanical properties of condylar cancellous bone, but not its anisotropy. The change in material properties of the cancellous bone after loss of teeth indicate that the mandibular condyle is sensitive for changes in its mechanical environment. Therefore, changes in mechanical loading of the condyle have to be accounted for in surgical procedures of the mandible.
Quantitative trait locus on chromosome X affects bone loss after maturation in mice.
Okudaira, Shuzo; Shimizu, Motoyuki; Otsuki, Bungo; Nakanishi, Rika; Ohta, Akira; Higuchi, Keiichi; Hosokawa, Masanori; Tsuboyama, Tadao; Nakamura, Takashi
2010-09-01
Genetic programming is known to affect the peak bone mass and bone loss after maturation. However, little is known about how polymorphic genes on chromosome X (Chr X) modulate bone loss after maturation. We previously reported a quantitative trait locus (QTL) on Chr X, designated Pbd3, which had a suggestive linkage to bone mass, in male SAMP2 and SAMP6 mice. In this study, we aimed to clarify the effects of Pbd3 on the skeletal phenotype. We generated a congenic strain, P2.P6-X, carrying a 45.6-cM SAMP6-derived Chr X interval on a SAMP2 genetic background. The effects of Pbd3 on the bone phenotype were determined by microcomputed tomography (microCT), whole-body dual-energy X-ray absorptiometry (DXA), serum bone turnover markers, and histomorphometric parameters. Both the bone area fraction (BA/TA) on microCT and whole-body DXA revealed reduced bone loss in P2.P6-X compared with that in SAMP2. The serum concentrations of bone turnover markers at 4 months of age were significantly lower in P2.P6-X than in SAMP2, but did not differ at 8 months of age. These results were observed in female mice, but not in male mice. In conclusion, a QTL within a segregated 45.6-cM interval on Chr X is sex-specifically related to the rate of bone loss after maturation.
Conley, Melissa N; Roberts, Cooper; Sharpton, Thomas J; Iwaniec, Urszula T; Hord, Norman G
2017-05-01
Studies suggest diets rich in fruit and vegetables reduce bone loss, although the specific compounds responsible are unknown. Substrates for endogenous nitric oxide (NO) production, including organic nitrates and dietary nitrate, may support NO production in age-related conditions, including osteoporosis. We investigated the capability of dietary nitrate to improve NO bioavailability, reduce bone turnover and loss. Six-month-old Sprague Dawley rats [30 ovariectomized (OVX) and 10 sham-operated (sham)] were randomized into three groups: (i) vehicle (water) control, (ii) low-dose nitrate (LDN, 0.1 mmol nitrate/kg bw/day), or (iii) high-dose nitrate (HDN, 1.0 mmol nitrate/kg bw/day) for three weeks. The sham received vehicle. Serum bone turnover markers; bone mass, mineral density, and quality; histomorphometric parameters; and fecal microbiome were examined. Three weeks of LDN or HDN improved NO bioavailability in a dose-dependent manner. OVX resulted in cancellous bone loss, increased bone turnover, and fecal microbiome changes. OVX increased relative abundances of Firmicutes and decreased Bacteroideceae and Alcaligenaceae. Nitrate did not affect the skeleton or fecal microbiome. These data indicate that OVX affects the fecal microbiome and that the gut microbiome is associated with bone mass. Three weeks of nitrate supplementation does not slow bone loss or alter the fecal microbiome in OVX. © 2017 The Authors. Molecular Nutrition & Food Research published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conley, Melissa N.; Roberts, Cooper; Sharpton, Thomas J.; Iwaniec, Urszula T.
2017-01-01
Scope Studies suggest diets rich in fruit and vegetables reduce bone loss, although the specific compounds responsible are unknown. Substrates for endogenous nitric oxide (NO) production, including organic nitrates and dietary nitrate, may support NO production in age‐related conditions, including osteoporosis. We investigated the capability of dietary nitrate to improve NO bioavailability, reduce bone turnover and loss. Methods and results Six‐month‐old Sprague Dawley rats [30 ovariectomized (OVX) and 10 sham‐operated (sham)] were randomized into three groups: (i) vehicle (water) control, (ii) low‐dose nitrate (LDN, 0.1 mmol nitrate/kg bw/day), or (iii) high‐dose nitrate (HDN, 1.0 mmol nitrate/kg bw/day) for three weeks. The sham received vehicle. Serum bone turnover markers; bone mass, mineral density, and quality; histomorphometric parameters; and fecal microbiome were examined. Three weeks of LDN or HDN improved NO bioavailability in a dose‐dependent manner. OVX resulted in cancellous bone loss, increased bone turnover, and fecal microbiome changes. OVX increased relative abundances of Firmicutes and decreased Bacteroideceae and Alcaligenaceae. Nitrate did not affect the skeleton or fecal microbiome. Conclusion These data indicate that OVX affects the fecal microbiome and that the gut microbiome is associated with bone mass. Three weeks of nitrate supplementation does not slow bone loss or alter the fecal microbiome in OVX. PMID:28087899
Maïmoun, L; Guillaume, S; Lefebvre, P; Philibert, P; Bertet, H; Picot, M-C; Gaspari, L; Paris, F; Seneque, M; Dupuys, A-M; Courtet, P; Thomas, E; Mariano-Goulart, D; Bringer, J; Renard, E; Sultan, C
2016-01-01
Low bone mass is a consequence of anorexia nervosa (AN). This study assessed the effects of energy deficiency on various bone and hormonal parameters. The interrelationships between energy deficiency and bone remodelling, glucose homeostasis and adipokines underscore the importance of preventing energy deficiency to limit demineralisation and hormonal alterations in AN patients. Low areal bone mineral density (aBMD) is a well-known consequence of AN. However, the impact of reduced energy expenditure on bone metabolism is unknown. This study assessed the effects of energy deficiency on bone remodelling and its potential interactions with glucose homeostasis and adipose tissue-derived hormones in AN, a clinical model for reduced energy expenditure. Fifty women with AN and 50 age-matched controls (mean age 18.1 ± 2.7 and 18.0 ± 2.1 years, respectively) were enrolled. aBMD was determined with DXA. Resting energy expenditure (REEm), a marker of energy status, was indirectly assessed by calorimetry. Bone turnover markers, undercarboxylated osteocalcin (ucOC), parameters of glucose homeostasis, adipokines and growth factors were concomitantly evaluated. AN patients presented low aBMD at all bone sites. REEm, bone formation markers, ucOC, glucose, insulin, HOMA-IR, leptin and IGF-1 were significantly reduced, whereas the bone resorption marker, leptin receptor (sOB-R) and adiponectin were elevated in AN compared with CON. In AN patients, REEm was positively correlated with weight, BMI, whole body (WB) fat mass, WB fat-free soft tissue, markers of bone formation, glucose, insulin, HOMA-IR, leptin and IGF-1 and negatively correlated with the bone resorption marker and sOB-R. Biological parameters, aBMD excepted, appeared more affected by the weight variation in the last 6 months than by the disease duration. The strong interrelationships between REEm and bone remodelling, glucose homeostasis and adipokines underscore the importance of preventing energy deficiency to limit short- and long-term bone demineralisation and hormonal alterations in AN patients.
NASA Technical Reports Server (NTRS)
Zerwekh, J. E.; Antich, P. P.; Sakhaee, K.; Prior, J.; Gonzales, J.; Gottschalk, F.; Pak, C. Y.
1992-01-01
We evaluated the effects of intermittent slow-release sodium fluoride (SRNaF) and continuous calcium citrate therapy on cortical bone histology, reflection ultrasound velocity (material strength) and back-scattered electron image analysis (BEI) in 26 osteoporotic patients before and following therapy. All measurements were made on transiliac crest bone biopsies obtained before and following 2 years of therapy in each patient. For all 26 patients there were no significant changes in cortical bone histomorphometric parameters. In 15 patients in whom bone material quality was assessed by reflection ultrasound, there was no change in velocity (4000 +/- 227 SD to 4013 +/- 240 m/s). BEI disclosed no mineralization defects or the presence of woven bone. Mean atomic number (density) of bone increased slightly, but significantly (9.261 +/- 0.311 to 9.457 +/- 0.223, P = 0.031). While these changes are less marked than those observed for cancellous bone, they indicate that this form of therapy does not adversely affect cortical bone remodelling.
Modulating Wnt Signaling Pathway to Enhance Allograft Integration in Orthopedic Trauma Treatment
2013-10-01
presented below. Quantitative output provides an extensive set of data but we have chosen to present the most relevant parameters that are reflected in...multiple parameters . Most samples have been mechanically tested and data extracted for multiple parameters . Histological evaluation of subset of...Sumner, D. R. Saline Irrigation Does Not Affect Bone Formation or Fixation Strength of Hydroxyapatite /Tricalcium Phosphate-Coated Implants in a Rat Model
Normative Standards for HRpQCT Parameters in Chinese Men and Women.
Zhu, Tracy Y; Yip, Benjamin Hk; Hung, Vivian Wy; Choy, Carol Wy; Cheng, Ka-Lo; Kwok, Timothy Cy; Cheng, Jack Cy; Qin, Ling
2018-06-12
Assessing bone architecture using high resolution peripheral quantitative computed tomography (HRpQCT) has the potential to improve fracture risk assessment. The Normal Reference Study aimed to establish sex-specific reference centile curves for HRpQCT parameters. This was an age-stratified cross-sectional study and 1,072 ambulatory Chinese men (n = 544) and women (n = 528) aged 20-79yrs, who were free from conditions and medications that could affect bone metabolism and had no history of fragility fracture, were recruited from local communities of Hong Kong. Reference centile curves for each HRpQCT parameter were constructed using Generalized Additive Models for Location, Scale and Shape with age as the only explanatory variable. Patterns of reference centile curves reflected age-related changes of bone density, microarchitecture, and estimated bone strength. In both sexes, loss of cortical bone was only evident in mid-adulthood, particularly in women with a more rapid fashion probably concurrent with the onset of menopause. In contrast, loss of trabecular bone was subtle or gradual or occurred at an earlier age. Expected values of HRpQCT parameters for a defined sex and age, and a defined percentile or z-score were obtained from these curves. T-scores were calculated using the population with the peak values as the reference and reflected age- or menopause-related bone loss in an older individual or the room to reach the peak potential in a younger individual. These reference centile curves produced a standard describing a norm or desirable target that enables value clinical judgements. Percentiles, z-scores and T-scores would be helpful in detecting abnormalities in bone density and microarchitecture arising from various conditions and establishing entry criteria for clinical trials. They also hold the potential to refine the diagnosis of osteoporosis and assessment of fracture risk. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Kuroshima, Shinichiro; Nakano, Takayoshi; Ishimoto, Takuya; Sasaki, Muneteru; Inoue, Maaya; Yasutake, Munenori; Sawase, Takashi
2017-01-15
The aim was to investigate the effect of groove designs on bone quality under controlled-repetitive load conditions for optimizing dental implant design. Anodized Ti-6Al-4V alloy implants with -60° and +60° grooves around the neck were placed in the proximal tibial metaphysis of rabbits. The application of a repetitive mechanical load was initiated via the implants (50N, 3Hz, 1800 cycles, 2days/week) at 12weeks after surgery for 8weeks. Bone quality, defined as osteocyte density and degree of biological apatite (BAp) c-axis/collagen fibers, was then evaluated. Groove designs did not affect bone quality without mechanical loading; however, repetitive mechanical loading significantly increased bone-to-implant contact, bone mass, and bone mineral density (BMD). In +60° grooves, the BAp c-axis/collagen fibers preferentially aligned along the groove direction with mechanical loading. Moreover, osteocyte density was significantly higher both inside and in the adjacent region of the +60° grooves, but not -60° grooves. These results suggest that the +60° grooves successfully transmitted the load to the bone tissues surrounding implants through the grooves. An optimally oriented groove structure on the implant surface was shown to be a promising way for achieving bone tissue with appropriate bone quality. This is the first report to propose the optimal design of grooves on the necks of dental implants for improving bone quality parameters as well as BMD. The findings suggest that not only BMD, but also bone quality, could be a useful clinical parameter in implant dentistry. Although the paradigm of bone quality has shifted from density-based assessments to structural evaluations of bone, clarifying bone quality based on structural bone evaluations remains challenging in implant dentistry. In this study, we firstly demonstrated that the optimal design of dental implant necks improved bone quality defined as osteocytes and the preferential alignment degree of biological apatite c-axis/collagen fibers using light microscopy, polarized light microscopy, and a microbeam X-ray diffractometer system, after application of controlled mechanical load. Our new findings suggest that bone quality around dental implants could become a new clinical parameter as well as bone mineral density in order to completely account for bone strength in implant dentistry. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Poggi, M; Pascucci, C; Monti, S; Pugliese, P; Lauri, C; Amodeo, G; Girelli, G; Toscano, V
2010-09-01
Dysfunction of GH-IGF-I axis has been described in many patients affected by β-thalassemia major (TM), especially in children and in adolescents. Recent studies have demonstrated the necessity to evaluate adult patients affected by TM to establish the presence of this alteration which could be relevant in the pathogenesis of cardiac and bone disease, frequently present in this hematological condition. The pathogenesis of this alteration, correlated in the past with iron overload, is not yet completely understood. The aim of this paper is to evaluate GH-IGF-I axis in a group of adult polytransfused β-thalassemic patients (TM) and to correlate the results with transfusional and chelation parameters. We performed an arginine plus GHRH stimulation test in 28 adult TM patients. Ferritin, IGF-I, liver enzymes, and liver iron concentration, assessed by a superconducting quantum interference device (SQUID) susceptometer were also determined. Moreover, in each patient we evaluated the bone status by a dual-energy X-ray absorptiometry study. We found the presence of GH deficit in 9 patients (32.1%). There were no significant differences between the two groups regarding the value of ferritin, liver enzymes, and liver iron concentration, assessed by SQUID. The group affected by GH deficit showed a worse bone profile. This study confirms the necessity to screen the status of GH/IGF-I axis in this group of patients, even in adult age. The presence of GH deficiency does not seem to be correlated with the efficacy parameters of transfusional and chelation therapy. Other mechanisms, additional to iron overload, could therefore play a role in the pathogenesis of this clinical condition. The presence of GH deficit seems to be very important on clinical aspects, like bone disease, that are crucial for quality of life in these patients.
NASA Astrophysics Data System (ADS)
Faryadi, Samira; Sheikhahmadi, Ardashir
2017-11-01
This experiment was conducted to evaluate the effects of different levels of nanosilicon dioxide (nSiO2) on performance, egg quality, liver histopathology and concentration of calcium (Ca), phosphorus and silicon (Si) in egg, liver and bone in laying quails. The experiment was administered using 60 laying quails at 16-26 weeks of age with five treatments [0 (control), 500, 1000, 2000 and 4000 mg nSiO2 per kg of diet] and four replicates in a completely randomized design. During the experiment, the amount of feed intake was recorded weekly and performance parameters were measured. During the last 3 days of the experiment, all of the eggs in each replicate were collected and egg quality parameters were measured. At the end of 26 weeks of age, the birds were sacrificed and blood samples were collected. Liver samples from each treatment were fixed in 10% buffered formalin for histopathological assessment. The right thigh bone and a portion of liver were inserted in plastic bags and stored at - 20. The results showed that nSiO2 supplementation significantly affected egg weight and egg mass ( P < 0.05). Also, dietary nSiO2 supplementation decreased the yolk weight and increased the shell weight ( P < 0.05). Moreover, nSiO2 increased bone ash content, Ca and Si concentration in the bone ( P < 0.05). The liver enzymes in plasma and the liver tissue histopathology were not significantly affected ( P > 0.05) by dietary treatments. In conclusion, the results indicated that dietary supplementation of nSiO2 could improve bone density and performance without any adverse effect on the health of laying quails.
The application of micro-CT in monitoring bone alterations in tail-suspended rats in vivo
NASA Astrophysics Data System (ADS)
Luan, Hui-Qin; Sun, Lian-Wen; Huang, Yun-Fei; Wang, Ying; McClean, Colin J.; Fan, Yu-Bo
2014-06-01
Osteopenia is a pathological process that affects human skeletal health not only on earth but also in long-time spaceflight. Micro-computed tomography (micro-CT) is a nondestructive method for assessing both bone quantity and bone quality. To investigate the characteristics of micro-CT on evaluating the microgravity-induced osteopenia (e.g. early detection time and the sensitive parameters), the bone loss process of tail-suspended rats was monitored by micro-CT in this study. 8-Week-old female Sprague Dawley rats were divided into two groups: tail suspension (TS) and control (CON). Volumetric bone mineral density (vBMD) and microstructure of the femur and tibia were evaluated in vivo by micro-CT at 0, 7, 14, 22 days. Biomechanical properties of the femur and tibia were determined by three-point bending test. The ash weight of bone was also investigated. The results showed that (1) bone loss in the proximal tibia appeared earlier than in the distal femur. (2) On day 7, the percent bone volume (BV/TV) of the tibia 15.44% decreased significantly, and the trabecular separation (Tb.Sp) 30.29% increased significantly in TS group, both of which were detected earlier than other parameters. (3) Biomechanical properties (e.g. femur, -22.4% maximum load and -23.75% Young’s modulus vs. CON) and ash weight of the femur and tibia decreased significantly in the TS group in comparison to CON group. (4) vBMD of the femur and tibia were clearly related to bone ash and dry weight (r = 0.75-0.87, p < 0.05). (5) BV/TV of both femur and tibia were clearly related to maximum load and Young’s modulus (r = 0.66-0.87, p < 0.05). Similarly, trabecular vBMD and BV/TV of the femur and tibia were clearly related to Young’s modulus (r = 0.73-0.89, p < 0.05). These indicated that BV/TV and Tb.Sp were more sensitive than other parameters for evaluating bone loss induced by tail suspension, moreover, trabecular vBMD and other parameters might be used to evaluate bone strength. Therefore, micro-CT is a reliable and sensitive method for predicting unloading-induced bone loss in small animals.
Al Mukaddam, Mona; Rajapakse, Chamith S.; Bhagat, Yusuf A.; Wehrli, Felix W.; Guo, Wensheng; Peachey, Helen; LeBeau, Shane O.; Zemel, Babette S.; Wang, Christina; Swerdloff, Ronald S.; Kapoor, Shiv C.
2014-01-01
Context: Severe deficiencies of testosterone (T) and GH are associated with low bone mineral density (BMD) and increased fracture risk. Replacement of T in hypogonadal men improves several bone parameters. Replacement of GH in GH-deficient men improves BMD. Objective: Our objective was to determine whether T and GH treatment together improves the structural and mechanical parameters of bone more than T alone in men with hypopituitarism. Design and Subjects: This randomized, prospective, 2-year study included 32 men with severe deficiencies of T and GH due to panhypopituitarism. Intervention: Subjects were randomized to receive T alone (n = 15) or T and GH (n = 17) for 2 years. Main Outcome Measures: We evaluated magnetic resonance microimaging-derived structural (bone volume fraction [BVF] and trabecular thickness) and mechanical (axial stiffness [AS], a measure of bone strength) properties of the distal tibia at baseline and after 1 and 2 years of treatment. Results: Treatment with T and GH did not affect BVF, thickness, or AS differently from T alone. T treatment in all subjects for 2 years increased trabecular BVF by 9.6% (P < .0001), trabecular thickness by 2.6% (P < .001), and trabecular AS by 9.8% (P < .001). In contrast, testosterone treatment in all subjects significantly increased cortical thickness by 2.4% (P < .01) but decreased cortical BVF by −4.7% (P < .01) and cortical AS by −6.9% (P < .01). Conclusion: Combined T and GH treatment of men with hypopituitarism for 2 years did not improve the measured structural or mechanical parameters of the distal tibia more than T alone. However, testosterone significantly increased the structural and mechanical properties of trabecular bone but decreased most of these properties of cortical bone, illustrating the potential importance of assessing trabecular and cortical bone separately in future studies of the effect of testosterone on bone. PMID:24423356
A 14-day ground-based hypokinesia study in nonhuman primates: A compilation of results
NASA Technical Reports Server (NTRS)
Kazarian, L.; Cann, C. E.; Parfitt, M.; Simmons, D.; Morey-Holton, E.
1981-01-01
A 14 day ground based hypokinesia study with rhesus monkeys was conducted to determine if a spaceflight of similar duration might affect bone remodeling and calcium homeostatis. The monkeys were placed in total body casts and sacrificed either immediately upon decasting or 14 days after decasting. Changes in vertebral strength were noted and further deterioration of bone strength continued during the recovery phase. Resorption in the vertebrae increased dramatically while formation decreased. Cortical bone formation was impaired in the long bones. The immobilized animals showed a progressive decrease in total serum calcium which rebounded upon remobilization. Most mandibular parameters remained unchanged during casting except for retardation of osteon birth or maturation rate and density distribution of matrix and mineral moieties.
Alam, K; Silberschmidt, Vadim V
2014-01-01
Bone drilling is widely used in orthopaedics, dental and neurosurgeries for repair and fixation purposes. One of the major concerns in drilling of bone is thermal necrosis that may seriously affect healing at interfaces with fixtures and implants. Ultrasonically-assisted drilling (UAD) is recently introduced as alternative to conventional drilling (CD) to minimize invasiveness of the procedure. This paper studies temperature rise in bovine cortical bone drilled with CD and UAD techniques and their comparison using infrared thermography. A parametric investigation was carried out to evaluate effects of drilling conditions (drilling speed and feed rate) and parameters of ultrasonic vibration (frequency and amplitude) on the temperature elevation in bone. Higher levels of the drilling speed and feed rate were found responsible for generating temperatures above a thermal threshold level in both types of drilling. UAD with frequency below 20 kHz resulted in lower temperature compared to CD with the same drilling parameters. The temperatures generated in cases with vibration frequency exceeding 20 kHz were significantly higher than those in CD for the range of drilling speeds and feed rates. The amplitude of vibration was found to have no significant effect on bone temperature. UAD may be investigated further to explore its benefits over the existing CD techniques.
Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.
Kurhekar, Manish; Deshpande, Umesh
2016-01-01
Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website.
Second hand tobacco smoke adversely affects the bone of immature rats.
Rosa, Rodrigo César; Pereira, Sângela Cunha; Cardoso, Fabrizio Antônio Gomide; Caetano, Abadio Gonçalves; Santiago, Hildemberg Agostinho Rocha de; Volpon, José Batista
2017-12-01
To evaluate the influence of secondhand cigarette smoke exposure on longitudinal growth of the tibia of growing rats and some parameters of bone quality. Forty female rats were randomly divided into four groups: control: rats were sham exposed; 30 days: rats were exposed to tobacco smoke for 30 days; 45 days: rats were exposed to tobacco smoke for 45 days; and 60 days: rats were exposed to tobacco smoke for 60 days. Blood samples were collected to evaluate the levels of cotinine and alkaline phosphatase. Both tibias were dissected and weighed; the lengths were measured, and the bones were then stored in a freezer for analysis of bone mineral content and mechanical resistance (maximal load and stiffness). Exposure of rats to tobacco smoke significantly compromised bone health, suggesting that the harmful effects may be time dependent. Harmful effects on bone growth were detected and were more pronounced at 60-day follow-ups with a 41.8% reduction in alkaline phosphatase levels (p<0.01) and a decrease of 11.25% in tibia length (p<0.001). Furthermore, a 41.5% decrease in bone mineral density was observed (p<0.001), leading to a 42.8% reduction in maximum strength (p<0.001) and a 56.7% reduction in stiffness (p<0.001). Second hand cigarette smoke exposure in rats affected bones that were weaker, deforming them and making them osteopenic. Additionally, the long bone was shorter, suggesting interference with growth. Such events seem to be related to time of exposure.
Garcia, Ana Flávia Quiles Marques; Murakami, Alice Eiko; Duarte, Cristiane Regina do Amaral; Rojas, Iván Camilo Ospina; Picoli, Karla Paola; Puzotti, Maíra Mangili
2013-01-01
The objective of this experiment was to assess the use of different vitamin D metabolites in the feed of broiler chickens and the effects of the metabolites on performance, bone parameters and meat quality. A total of 952 one-day-old male broiler chicks were distributed in a completely randomised design, with four treatments, seven replicates and 34 birds per experimental unit. The treatments consisted of four different sources of vitamin D included in the diet, D3, 25(OH)D3, 1,25(OH)2D3, and 1α(OH)D3, providing 2000 and 1600 IU of vitamin D in the starter (1 to 21 d) and growth phases (22 to 42 d), respectively. Mean weight, feed:gain and weight gain throughout the rearing period were less in animals fed 1α(OH)D3 when compared with the other treatments (p<0.05). No significant differences were noted among the treatments (p>0.05) for various bone parameters. Meat colour differed among the treatments (p>0.05). All of the metabolites used in the diets, with the exception of 1α(OH)D3, can be used for broiler chickens without problems for performance and bone quality, however, some aspects of meat quality were affected. PMID:25049804
Armaiz-Flores, Sara A; Kelly, Nichole R; Galescu, Ovidiu A; Demidowich, Andrew P; Altschul, Anne M; Brady, Sheila M; Hubbard, Van S; Pickworth, Courtney K; Tanofsky-Kraff, Marian; Shomaker, Lauren B; Reynolds, James C; Yanovski, Jack A
2017-01-01
Animal studies suggest that leptin may adversely affect bone mineral density (BMD). Clinical studies have yielded conflicting results. We therefore investigated associations between leptin and bone parameters in children. 830 healthy children (age = 11.4 ± 3.1 years; 75% female; BMI standard deviation score [BMIz] = 1.5 ± 1.1) had fasting serum leptin measured with ELISA and body composition by dual-energy X-ray absorptiometry. The main effects for leptin and BMIz plus leptin's interactions with sex and BMIz were examined using hierarchical linear regressions for appendicular, pelvis, and lumbar spine BMD as well as bone mineral content (BMC), and bone area (BA). Accounting for demographic, pubertal development, and anthropometric variables, leptin was negatively and independently associated with lumbar spine BMC and BA, pelvis BA, and leg BA (p < 0.05 for all). Sex, but not BMIz, moderated the associations of leptin with bone parameters. In boys, leptin was negatively correlated with leg and arm BMD, BMC at all bone sites, and BA at the subtotal and lumbar spine (p < 0.01 for all). In girls, leptin was positively correlated with leg and arm BMD (p < 0.05 for both). Independent of body size, leptin is negatively associated with bone measures; however, these associations are moderated by sex: boys, but not girls, have a negative independent association between leptin and BMD. . © 2017 S. Karger AG, Basel.
The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts.
Huang, Su; Eleniste, Pierre P; Wayakanon, Kornchanok; Mandela, Prashant; Eipper, Betty A; Mains, Richard E; Allen, Matthew R; Bruzzaniti, Angela
2014-03-01
Bone homeostasis is maintained by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Dysregulation in the activity of the bone cells can lead to osteoporosis, a disease characterized by low bone mass and an increase in bone fragility and risk of fracture. Kalirin is a novel GTP-exchange factor protein that has been shown to play a role in cytoskeletal remodeling and dendritic spine formation in neurons. We examined Kalirin expression in skeletal tissue and found that it was expressed in osteoclasts and osteoblasts. Furthermore, micro-CT analyses of the distal femur of global Kalirin knockout (Kal-KO) mice revealed significantly reduced trabecular and cortical bone parameters in Kal-KO mice, compared to WT mice, with significantly reduced bone mass in 8, 14 and 36week-old female Kal-KO mice. Male mice also exhibited a decrease in bone parameters but not to the level seen in female mice. Histomorphometric analyses also revealed decreased bone formation rate in 14week-old female Kal-KO mice, as well as decreased osteoblast number/bone surface and increased osteoclast surface/bone surface. Consistent with our in vivo findings, the bone resorbing activity and differentiation of Kal-KO osteoclasts was increased in vitro. Although alkaline phosphatase activity by Kal-KO osteoblasts was increased in vitro, Kal-KO osteoblasts showed decreased mineralizing activity, as well as decreased secretion of OPG, which was inversely correlated with ERK activity. Taken together, our findings suggest that deletion of Kalirin directly affects osteoclast and osteoblast activity, leading to decreased OPG secretion by osteoblasts which is likely to alter the RANKL/OPG ratio and promote osteoclastogenesis. Therefore, Kalirin may play a role in paracrine and/or endocrine signaling events that control skeletal bone remodeling and the maintenance of bone mass. Copyright © 2013 Elsevier Inc. All rights reserved.
Hake fish bone as a calcium source for efficient bone mineralization.
Flammini, Lisa; Martuzzi, Francesca; Vivo, Valentina; Ghirri, Alessia; Salomi, Enrico; Bignetti, Enrico; Barocelli, Elisabetta
2016-01-01
Calcium is recognized as an essential nutritional factor for bone health. An adequate intake is important to achieve or maintain optimal bone mass in particular during growth and old age. The aim of the present study was to evaluate the efficiency of hake fish bone (HBF) as a calcium source for bone mineralization: in vitro on osteosarcoma SaOS-2 cells, cultured in Ca-free osteogenic medium (OM) and in vivo on young growing rats fed a low-calcium diet. Lithotame (L), a Ca supplement derived from Lithothamnium calcareum, was used as control. In vitro experiments showed that HBF supplementation provided bone mineralization similar to standard OM, whereas L supplementation showed lower activity. In vivo low-Ca HBF-added and L-added diet similarly affected bone deposition. Physico-chemical parameters concerning bone mineralization, such as femur breaking force, tibia density and calcium/phosphorus mineral content, had beneficial effects from both Ca supplementations, in the absence of any evident adverse effect. We conclude HBF derived from by-product from the fish industry is a good calcium supplier with comparable efficacy to L.
Cseke, Akos; Heinemann, Robert
2018-01-01
The research presented in this paper investigated the effects of spindle speed and feed rate on the resultant cutting forces (thrust force and torque) and temperatures while drilling SawBones ® biomechanical test materials and cadaveric cortical bone (bovine and porcine femur) specimens. It also investigated cortical bone anisotropy on the cutting forces, when drilling in axial and radial directions. The cutting forces are only affected by the feed rate, whereas the cutting temperature in contrast is affected by both spindle speed and feed rate. The temperature distribution indicates friction as the primary heat source, which is caused by the rubbing of the tool margins and the already cut chips over the borehole wall. Cutting forces were considerably higher when drilling animal cortical bone, in comparison to cortical test material. Drilling direction, and therewith anisotropy, appears to have a negligible effect on the cutting forces. The results suggest that this can be attributed to the osteons being cut at an angle rather than in purely axial or radial direction, as a result of a twist drill's point angle. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Olgun, Osman; Altay, Y; Yildiz, Alp O
2018-04-01
1. This study was conducted to determine the effects of enzyme supplementation of maize/wheat-based diets on the performance, egg quality, and serum and bone parameters of laying hens. 2. During the 12-week experimental period, a total of 72 laying hens aged 52 weeks were randomly distributed among 6 experimental groups. Each experimental group contained 4 replicates, each with three birds. The experiment was a randomised design consisting of a 3 × 2 factorial arrangement, with three levels of wheat substitution and two levels of enzyme (xylanase: 1500.00 U/kg, β-glucanase: 100 000 U/kg, cellulase: 1 000 000 U/kg, α-amylase: 160 000 U/kg) inclusion in the diet. Wheat replaced 0, 50, or 100% of maize with or without 1.0 g/kg enzyme supplementation in iso-nitrogenous and iso-caloric experimental diets. 3. Body weight, egg production, egg weight, egg mass, eggshell thickness, and the feed conversion ratio were adversely affected by the wheat-based diet. The eggshell quality parameters decreased with enzyme supplementation to the diet. 4. Wheat-based diets adversely affected calcium and phosphorus concentrations in the tibia, but the addition of the enzymes to the wheat-based diet prevented the negative effects of wheat-based diets on tibia mineralisation in laying hens. The wheat-based diets tended to reduce plasma mineral contents, and the addition of enzymes tended to affect plasma minerals and biomechanical properties of the tibia positively in laying hens. 5. These results indicate that wheat-based diets in aged laying hens adversely affected the mineral metabolism compared with maize-based diets, and the negative effects of wheat on bone mineralisation can be prevented by enzyme supplementation to the diets in laying hens.
Effects of hypergravity on immunologic function
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.; Koebel, D. A.; Davis, S.
1995-01-01
The purpose of this study was to compare the effects of hypergravity exposure (2g) with those of exposure to space flight in the Cosmos 2044 flight. To do so, rats were centrifuged continuously for 14 days. Two different experiments were carried out on tissue obtained from the centrifuged rats. In the first experiment, rat bone marrow cells were examined for their response to recombinant murine colony stimulating factor-granulocyte/monocyte (GM-CSF). In the second experiment, rat spleen and bone marrow cells were stained in with a variety of antibodies directed against cell surface antigenic markers. These cells were preserved and analyzed on a flow cytometer. The results of the studies indicated that bone marrow cells from centrifuged rats showed no significant change in response to GM-CSF as compared to bone marrow cells from control rats. Spleen cells from flown rats showed some statistically significant changes in leukocytes subset distribution, but no differences that appeared to be of biological significance. These results indicate that hypergravity did not greatly affect the same immunological parameters affected by space flight in the Cosmos 2044 mission.
Effects of hypergravity on immunologic function
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.; Koebel, D. A.; Davis, S.
1994-01-01
The purpose of this study was to compare the effects of hypergravity exposure (2g) with those of exposure to space flight in the Cosmos 2044 flight. To do so, rats were centrifuged continuously for 14 days. Two different experiments were carried out on tissue obtained from the centrifuged rats. In the first experiment, rat bone marrow cells were examined for their response to recombinant murine colony stimulating factor-granulocyte/monocyte (GM-CSF). In the second experiment, rate spleen and bone marrow cells were stained in with a variety of antibodies directed against cell surface antigenic markers. These cells were preserved and analyzed on a flow cytometer. The results of the studies indicated that bone marrow cells from centrifuged rats showed no significant change in response to GM-CSF as compared to bone marrow cells from control rats. Spleen cells from flown rats showed some statistically significant changes in leukocytes subset distribution, but no differences that appeared to be of biological significance. These results indicate that hypergravity did not greatly affect the same immunological parameters affected by space flight in the Cosmos 2044 mission.
Alippi, Rosa M; Picasso, Emilio; Huygens, Patricia; Bozzini, Carlos E; Bozzini, Clarisa
2012-01-01
This study compares the effects of feeding growing rats with increasing concentrations of casein (C) and wheat gluten (G), proteins that show different biological qualities, on the morphometrical and biomechanical properties of the femoral diaphysis. Female rats were fed with one of ten diets containing different concentrations (5-30%) of C and G between the 30th and 90th days of life (Control=C-20%). Biomechanical structural properties of the right femur middiaphysis were estimated using a 3-point bending mechanical test with calculation of some indicators of bone material properties. Body weight and length were affected by treatments, values being highest in rats fed the C-20% diet. G diets affected negatively both parameters. Changes in cross-sectional geometry (mid-diaphyseal cross-sectional and cortical areas, femoral volume, and rectangular moment of inertia) were positively related to the C content of the diet, while they were severely and negatively affected by G diets. Similar behaviors were observed in the bone structural properties (fracture load, yielding load, diaphyseal stiffness and elastic energy absorption). When values of strength and stiffness were normalized for body weight, the differences disappeared. The bone material quality indicators (elastic modulus, yielding stress, elastic energy absorption/volume) did not differ significantly among all studied groups. Femoral calcium concentration in ashes was not significantly different among groups. The clear differences in strength and stiffness of bone beams induced by dietary protein concentration and quality seemed to be the result of an induced subnormal gain in bone structural properties as a consequence of a correlative subnormal gain in bone growth and mass, yet not in bone material properties. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.
Second hand tobacco smoke adversely affects the bone of immature rats
Rosa, Rodrigo César; Pereira, Sângela Cunha; Cardoso, Fabrizio Antônio Gomide; Caetano, Abadio Gonçalves; de Santiago, Hildemberg Agostinho Rocha; Volpon, José Batista
2017-01-01
OBJECTIVES: To evaluate the influence of secondhand cigarette smoke exposure on longitudinal growth of the tibia of growing rats and some parameters of bone quality. METHODS: Forty female rats were randomly divided into four groups: control: rats were sham exposed; 30 days: rats were exposed to tobacco smoke for 30 days; 45 days: rats were exposed to tobacco smoke for 45 days; and 60 days: rats were exposed to tobacco smoke for 60 days. Blood samples were collected to evaluate the levels of cotinine and alkaline phosphatase. Both tibias were dissected and weighed; the lengths were measured, and the bones were then stored in a freezer for analysis of bone mineral content and mechanical resistance (maximal load and stiffness). RESULTS: Exposure of rats to tobacco smoke significantly compromised bone health, suggesting that the harmful effects may be time dependent. Harmful effects on bone growth were detected and were more pronounced at 60-day follow-ups with a 41.8% reduction in alkaline phosphatase levels (p<0.01) and a decrease of 11.25% in tibia length (p<0.001). Furthermore, a 41.5% decrease in bone mineral density was observed (p<0.001), leading to a 42.8% reduction in maximum strength (p<0.001) and a 56.7% reduction in stiffness (p<0.001). CONCLUSION: Second hand cigarette smoke exposure in rats affected bones that were weaker, deforming them and making them osteopenic. Additionally, the long bone was shorter, suggesting interference with growth. Such events seem to be related to time of exposure. PMID:29319726
Montalvany-Antonucci, C C; Zicker, M C; Macari, S; Pereira, T S F; Diniz, I M A; Andrade, I; Ferreira, A V M; Silva, T A
2018-02-01
The impact of high-refined carbohydrate (HC) diet on fat accumulation, adipokines secretion and systemic inflammation is well described. However, it remains unclear whether these processes affect bone remodeling. To investigate the effects of HC diet in the alveolar bone and femur parameters. BalbC mice were fed with conventional chow or HC diet for 12 weeks. After experimental time maxillae, femur, blood and white adipose tissue samples were collected. The animals feed with HC diet exhibited considerable increase of adiposity index and adipose tissue levels of TNF-α, IL-6, IL-10, IL-1β, TGF-β and leptin. Microtomography analysis of maxillary bone revealed horizontal alveolar bone loss and disruption of trabecular bone in mice feed with HC diet. These deleterious effects were correlated with a disturbance in bone cells and an augmented expression of Rankl/Opg ratio. Consistently, similar effects were observed in femurs, which also exhibited a reduction in bone maximum load and stiffness. Our data indicates that HC diet consumption disrupts bone remodeling process, favoring bone loss. Underlying mechanisms relies on fat tissue accumulation and also in systemic and local inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Skeletal Response of Male Mice to Anabolic Hormone Therapy in the Absence of the Igfals Gene
Kennedy, Oran D.; Sun, Hui; Wu, YingJie; Courtland, Hayden-William; Williams, Garry A.; Cardoso, Luis; Basta-Pljakic, Jelena; Schaffler, Mitchell B.
2014-01-01
IGF-I is a critical regulator of skeletal acquisition, which acts in endocrine and autocrine/paracrine modes. In serum, IGF-I is carried by the IGF-binding proteins in binary complexes. Further stabilization of these complexes is achieved by binding to the acid labile subunit (ALS) in a ternary complex (of IGF-I-IGF-binding protein 3/5-ALS). Ablation of the Igfals gene in humans (ALS deficiency) and mice (ALS knockout [ALSKO]) leads to markedly decreased serum IGF-I levels, growth retardation, and impaired skeletal acquisition. To investigate whether hormonal replacement therapy would improve the skeletal phenotype in cases of Igfals gene ablation, we treated male ALSKO mice with GH, IGF-I, or a combination of both. Treatments were administered to animals between 4 and 16 weeks of age or from 8 to 16 weeks of age. Although all treatment groups showed an increase (20%) in serum IGF-I levels, there was no increase in body weight, weight gain, or bone length in either age group. Despite the blunted linear growth in response to hormone therapy, ALSKO mice treated with GH showed radial bone growth, which contributed to bone strength tested by 4-point bending. We found that ALSKO mice treated with GH showed increased total cross-sectional area, cortical bone area, and cortical thickness by microtomography. Dynamic histomorphometry showed that although GH and double treatment groups resulted in trends towards increased bone formation parameters, these did not reach significance. However, bone resorption parameters were significantly increased in all treatment groups. ALSKO mice treated between 4 and 16 weeks of age showed minor differences in bone traits compared with vehicle-treated mice. In conclusion, treatment with GH and IGF-I do not work synergistically to rescue the stunted growth found in mice lacking the Igfals gene. Although GH alone appears to increase bone parameters slightly, it does not affect body weight or linear growth. PMID:24424061
Skeletal response of male mice to anabolic hormone therapy in the absence of the Igfals gene.
Kennedy, Oran D; Sun, Hui; Wu, Yingjie; Courtland, Hayden-William; Williams, Garry A; Cardoso, Luis; Basta-Pljakic, Jelena; Schaffler, Mitchell B; Yakar, Shoshana
2014-03-01
IGF-I is a critical regulator of skeletal acquisition, which acts in endocrine and autocrine/paracrine modes. In serum, IGF-I is carried by the IGF-binding proteins in binary complexes. Further stabilization of these complexes is achieved by binding to the acid labile subunit (ALS) in a ternary complex (of IGF-I-IGF-binding protein 3/5-ALS). Ablation of the Igfals gene in humans (ALS deficiency) and mice (ALS knockout [ALSKO]) leads to markedly decreased serum IGF-I levels, growth retardation, and impaired skeletal acquisition. To investigate whether hormonal replacement therapy would improve the skeletal phenotype in cases of Igfals gene ablation, we treated male ALSKO mice with GH, IGF-I, or a combination of both. Treatments were administered to animals between 4 and 16 weeks of age or from 8 to 16 weeks of age. Although all treatment groups showed an increase (20%) in serum IGF-I levels, there was no increase in body weight, weight gain, or bone length in either age group. Despite the blunted linear growth in response to hormone therapy, ALSKO mice treated with GH showed radial bone growth, which contributed to bone strength tested by 4-point bending. We found that ALSKO mice treated with GH showed increased total cross-sectional area, cortical bone area, and cortical thickness by microtomography. Dynamic histomorphometry showed that although GH and double treatment groups resulted in trends towards increased bone formation parameters, these did not reach significance. However, bone resorption parameters were significantly increased in all treatment groups. ALSKO mice treated between 4 and 16 weeks of age showed minor differences in bone traits compared with vehicle-treated mice. In conclusion, treatment with GH and IGF-I do not work synergistically to rescue the stunted growth found in mice lacking the Igfals gene. Although GH alone appears to increase bone parameters slightly, it does not affect body weight or linear growth.
Ulivieri, Fabio M; Piodi, Luca P; Grossi, Enzo; Rinaudo, Luca; Messina, Carmelo; Tassi, Anna P; Filopanti, Marcello; Tirelli, Anna; Sardanelli, Francesco
2018-01-01
The consolidated way of diagnosing and treating osteoporosis in order to prevent fragility fractures has recently been questioned by some papers, which complained of overdiagnosis and consequent overtreatment of this pathology with underestimating other causes of the fragility fractures, like falls. A new clinical approach is proposed for identifying the subgroup of patients prone to fragility fractures. This retrospective observational study was conducted from January to June 2015 at the Nuclear Medicine-Bone Metabolic Unit of the of the Fondazione IRCCS Ca' Granda, Milan, Italy. An Italian population of 125 consecutive postmenopausal women was investigated for bone quantity and bone quality. Patients with neurological diseases regarding balance and vestibular dysfunction, sarcopenia, past or current history of diseases and use of drugs known to affect bone metabolism were excluded. Dual X-ray absorptiometry was used to assess bone quantity (bone mineral density) and bone quality (trabecular bone score and bone strain). Biochemical markers of bone turnover (type I collagen carboxy-terminal telopeptide, alkaline phosphatase, vitamin D) have been measured. Morphometric fractures have been searched by spine radiography. Balance was evaluated by the Romberg test. The data were evaluated with the neural network analysis using the Auto Contractive Map algorithm. The resulting semantic map shows the Minimal Spanning Tree and the Maximally Regular Graph of the interrelations between bone status parameters, balance conditions and fractures of the studied population. A low fracture risk seems to be related to a low carboxy-terminal cross-linking telopeptide of type I collagen level, whereas a positive Romberg test, together with compromised bone trabecular microarchitecture DXA parameters, appears to be strictly connected with fragility fractures. A simple assessment of the risk of fragility fracture is proposed in order to identify those frail patients at risk for osteoporotic fractures, who may have the best benefit from a pharmacological and physiotherapeutic approach.
Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis
Karunaratne, A.; Xi, L.; Bentley, L.; Sykes, D.; Boyde, A.; Esapa, C.T.; Terrill, N.J.; Brown, S.D.M.; Cox, R.D.; Thakker, R.V.; Gupta, H.S.
2016-01-01
A serious adverse clinical effect of glucocorticoid steroid treatment is secondary osteoporosis, enhancing fracture risk in bone. This rapid increase in bone fracture risk is largely independent of bone loss (quantity), and must therefore arise from degradation of the quality of the bone matrix at the micro- and nanoscale. However, we lack an understanding of both the specific alterations in bone quality n steroid-induced osteoporosis as well as the mechanistic effects of these changes. Here we demonstrate alterations in the nanostructural parameters of the mineralized fibrillar collagen matrix, which affect bone quality, and develop a model linking these to increased fracture risk in glucocorticoid induced osteoporosis. Using a mouse model with an N-ethyl-N-nitrosourea (ENU)-induced corticotrophin releasing hormone promoter mutation (Crh− 120/+) that developed hypercorticosteronaemia and osteoporosis, we utilized in situ mechanical testing with small angle X-ray diffraction, synchrotron micro-computed tomography and quantitative backscattered electron imaging to link altered nano- and microscale deformation mechanisms in the bone matrix to abnormal macroscopic mechanics. We measure the deformation of the mineralized collagen fibrils, and the nano-mechanical parameters including effective fibril modulus and fibril to tissue strain ratio. A significant reduction (51%) of fibril modulus was found in Crh− 120/+ mice. We also find a much larger fibril strain/tissue strain ratio in Crh− 120/+ mice (~ 1.5) compared to the wild-type mice (~ 0.5), indicative of a lowered mechanical competence at the nanoscale. Synchrotron microCT show a disruption of intracortical architecture, possibly linked to osteocytic osteolysis. These findings provide a clear quantitative demonstration of how bone quality changes increase macroscopic fragility in secondary osteoporosis. PMID:26657825
Factors affecting bone mineral mass loss after lower-limb fractures in a pediatric population.
Ceroni, Dimitri; Martin, Xavier; Kherad, Omar; Salvo, Davide; Dubois-Ferrière, Victor
2015-06-01
The purpose of this study was to assess the effects of the durations of cast immobilization and non-weight-bearing periods, and decreases in vigorous physical activity (VPA) on bone mineral parameters in a pediatric population treated for a lower-limb fracture. Fifty children and teenagers who had undergone a cast-mediated immobilization for a leg or ankle fracture were prospectively recruited. The durations of cast immobilization and non-weight-bearing periods were recorded for each participant. Dual-energy x-ray absorptiometry scans were performed at the time of fracture treatment (baseline) and at cast removal. Physical activity during cast immobilization was assessed using accelerometers. A strong negative correlation was found between the total duration of cast immobilization and decreases in both calcaneal bone mineral density (BMD) (r=-0.497) and total lower-limb bone mineral content (BMC) (r=-0.405). A strong negative correlation was also noted between the durations of the non-weight-bearing periods and alterations in calcaneal BMD (r=-0.420). No apparent correlations were found between lower BMD and BMC and decreased VPA. Bone mineral loss was correlated to the total duration of cast immobilization for all measurement sites on the affected leg, whereas it was only correlated to the durations of non-weight-bearing periods for calcaneal BMD and total lower-limb BMC. However, no correlations were noted between bone mineral loss and decreased VPA.
Gold, P W; Pavlatou, M G; Michelson, D; Mouro, C M; Kling, M A; Wong, M-L; Licinio, J; Goldstein, S A
2015-06-02
Major depression and bipolar disorder are associated with decreased bone mineral density (BMD). Antidepressants such as imipramine (IMIP) and specific serotonin reuptake inhibitors (SSRIs) have been implicated in reduced BMD and/or fracture in older depressed patients. Moreover, anticonvulsants such as valproate (VAL) and carbamazepine (CBZ) are also known to increase fracture rates. Although BMD is a predictor of susceptibility to fracture, bone strength is a more sensitive predictor. We measured mechanical and geometrical properties of bone in 68 male Sprague Dawley rats on IMIP, fluoxetine (FLX), VAL, CBZ, CBZ vehicle and saline (SAL), given intraperitoneally daily for 8 weeks. Distinct regions were tested to failure by four-point bending, whereas load displacement was used to determine stiffness. The left femurs were scanned in a MicroCT system to calculate mid-diaphyseal moments of inertia. None of these parameters were affected by antidepressants. However, VAL resulted in a significant decrease in stiffness and a reduction in yield, and CBZ induced a decrease in stiffness. Only CBZ induced alterations in mechanical properties that were accompanied by significant geometrical changes. These data reveal that chronic antidepressant treatment does not reduce bone strength, in contrast to chronic anticonvulsant treatment. Thus, decreased BMD and increased fracture rates in older patients on antidepressants are more likely to represent factors intrinsic to depression that weaken bone rather than antidepressants per se. Patients with affective illness on anticonvulsants may be at particularly high risk for fracture, especially as they grow older, as bone strength falls progressively with age.
Konermann, A; Appel, T; Wenghoefer, M; Sirokay, S; Dirk, C; Jäger, A; Götz, W
2015-05-01
Stability of orthodontic miniscrew implants is prerequisite to their success and durability in orthodontic treatment. As investigations revealed a positive correlation of miniscrew stability to periimplant bone quality, it has been the aim of this study to analyze the bone structure of resection preparations of human mandibles histologically by investigating the samples according to age, gender and exposure to radiotherapy. Inflammation- and tumor-free alveolar bone sections from human mandibles (n = 31) with previously diagnosed carcinoma, chronic osteomyelitis or cysts were analyzed histomorphologically and histomorphometrically as to the dimension of trabeculae in cancellous areas. Group A investigated the impact of a history of radiation therapy, group B of gender and group C contrasted biopsies from individuals aging under 60 or over 60 years. Statistics were performed using the Kruskal-Wallis-test. Radiation, gender and age did not significantly influence bone density. The mean bone density averaged 40.7 ± 15.0% of spongiosa for the total collective with a median age of 58.4 years ± 14.7 years. Our findings provide new information on bone quality, thus contributing to a more precise evaluation of the parameters affecting and those not affecting miniscrew implant stability. On the basis of these results, the formulation of clinical guidelines for risk assessment of therapeutic approaches in patients prior to insertion of orthodontic skeletal anchorage devices seems to be conceivable. Copyright © 2014 Elsevier GmbH. All rights reserved.
Farr, Joshua N.; Chen, Zhao; Lisse, Jeffrey R.; Lohman, Timothy G.; Going, Scott B.
2010-01-01
Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8–13 years from the “Jump-In: Building Better Bones” study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2–2.3%). In contrast, MCSA was strongly related (p < 0.001) to all bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p < 0.001) greater in the lowest compared to the middle and highest tertiles of TBFM. Although TBFM is correlated with femur and tibia vBMD, periosteal circumference, and strength in young girls, this relationship is significantly attenuated after adjustment for MCSA. Nevertheless, girls with higher TBFM relative to body mass have markedly diminished vBMD, geometry, and bone strength at metaphyseal and diaphyseal sites of the femur and tibia. PMID:20060079
Shi, Lijie; Sánchez-Guijo, Alberto; Hartmann, Michaela F; Schönau, Eckhard; Esche, Jonas; Wudy, Stefan A; Remer, Thomas
2015-02-01
Whether higher production of glucocorticoids (GCs) within the physiological range may already be affecting bone status in healthy children is unknown. Because dietary protein intake affects both bone and GCs, we examined the association of urinary measures of glucocorticoid status and cortical bone in healthy non-obese children, after particularly controlling for protein intake. Proximal forearm bone parameters were measured by peripheral quantitative computed tomography (pQCT). Subjects studied (n = 175, 87 males, aged 6 to 18 years) had two 24-hour urine samples collected: the first sample at 1 year before bone measurement, and the second sample at the time of bone measurement. Major urinary GC metabolites were measured by mass spectrometry and summed to assess daily adrenal GC secretion (∑C21). Urinary free cortisol (UFF) and cortisone (UFE) were summed to assess potentially bioactive free GCs (UFF + UFE). After controlling for several covariates and especially urinary nitrogen (the biomarker of protein intake) cortisol secretion ∑C21 was inversely associated with all analyzed pQCT measures of bone quality. ∑C21 also predicted a higher endosteal and lower periosteal circumference, explaining both a smaller cortical area and (together with lower BMD) a lower strength-strain-index (SSI). UFF + UFE, UFE itself, and a urinary metabolite-estimate of 11beta-hydroxysteroid dehydrogenase type1 (11beta-HSD1) activity showed corresponding reciprocal associations (p < 0.05) with BMD and bone mineral content, but not with SSI and bone geometry variables. In conclusion, higher GC levels, even within the physiological range, appear to exert negative influences on bone modeling and remodeling already during growth. Our physiological data also suggest a relevant role of cortisone as the direct source for intracrine-generated cortisol by bone cell 11beta-HSD1. © 2014 American Society for Bone and Mineral Research.
Effect of bone-soft tissue friction on ultrasound axial shear strain elastography
NASA Astrophysics Data System (ADS)
Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J. N.; Righetti, Raffaella
2017-08-01
Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.
Koenen, Kathrin; Knepper, Isabell; Klodt, Madlen; Osterberg, Anja; Stratos, Ioannis; Mittlmeier, Thomas; Histing, Tina; Menger, Michael D.; Vollmar, Brigitte; Bruhn, Sven; Müller-Hilke, Brigitte
2017-01-01
Elevated peak bone mass in early adulthood reduces the risk for osteoporotic fractures at old age. As sports participation has been correlated with elevated peak bone masses, we aimed to establish a training program that would efficiently stimulate bone accrual in healthy young mice. We combined voluntary treadmill running with sprint interval training modalities that were tailored to the individual performance limits and were of either high or intermediate intensity. Adolescent male and female STR/ort mice underwent 8 weeks of training before the hind legs were analyzed for cortical and trabecular bone parameters and biomechanical strength. Sprint interval training led to increased running speeds, confirming an efficient training. However, males and females responded differently. The males improved their running speeds in response to intermediate intensities only and accrued cortical bone at the expense of mechanical strength. High training intensities induced a significant loss of trabecular bone. The female bones showed neither adverse nor beneficial effects in response to either training intensities. Speculations about the failure to improve geometric alongside mechanical bone properties include the possibility that our training lacked sufficient axial loading, that high cardio-vascular strains adversely affect bone growth and that there are physiological limits to bone accrual. PMID:28303909
Effect of bone-soft tissue friction on ultrasound axial shear strain elastography.
Tang, Songyuan; Chaudhry, Anuj; Kim, Namhee; Reddy, J N; Righetti, Raffaella
2017-07-12
Bone-soft tissue friction is an important factor affecting several musculoskeletal disorders, frictional syndromes and the ability of a bone fracture to heal. However, this parameter is difficult to determine using non-invasive imaging modalities, especially in clinical settings. Ultrasound axial shear strain elastography is a non-invasive imaging modality that has been used in the recent past to estimate the bonding between different tissue layers. As most elastography methods, axial shear strain elastography is primarily used in soft tissues. More recently, this technique has been proposed to assess the bone-soft tissue interface. In this paper, we investigate the effect of a variation in bone-soft tissue friction coefficient in the resulting axial shear strain elastograms. Finite element poroelastic models of bone specimens exhibiting different bone-soft tissue friction coefficients were created and mechanically analyzed. These models were then imported to an ultrasound elastography simulation module to assess the presence of axial shear strain patterns. In vitro experiments were performed to corroborate selected simulation results. The results of this study show that the normalized axial shear strain estimated at the bone-soft tissue interface is statistically correlated to the bone-soft tissue coefficient of friction. This information may prove useful to better interpret ultrasound elastography results obtained in bone-related applications and, possibly, monitor bone healing.
Stroud, Nicholas J; DiPaola, Matthew J; Martin, Brian L; Steiler, Cindy A; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Roche, Christopher P
2013-11-01
Numerous glenoid implant designs have been introduced into the global marketplace in recent years; however, little comparative biomechanical data exist to substantiate one design consideration over another. This study dynamically evaluated reverse shoulder glenoid baseplate fixation and compared the initial fixation associated with 2 reverse shoulder designs having an equivalent center of rotation in low-density and high-density bone substitute substrates. Significant differences in fixation were observed between implant designs, where the circular-porous reverse shoulder was associated with approximately twice the micromotion per equivalent test than the oblong-grit-blasted design. Additionally, 6 of the 7 circular-porous reverse shoulders failed catastrophically in the low-density bone model at an average of 2603 ± 981 cycles. None of the oblong-grit-blasted designs failed in the low-or high-density bone models and none of the circular-porous designs failed in the high-density bone models after 10,000 cycles of loading. These results demonstrate that significant differences in initial fixation exist between reverse shoulder implants having an equivalent center of rotation and suggest that design parameters, other than the position of the center of rotation, significantly affect fixation in low-density and high-density polyurethane bone substitutes. Subtle changes in glenoid baseplate design can dramatically affect fixation, particularly in low-density bone substitutes that are intended to simulate the bone quality of the recipient population for reverse shoulders. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Nutritional Status Assessment (SMO 016E)
NASA Technical Reports Server (NTRS)
Smith, S. M.; Zwart, S. R.; Heer, M.; Coburn, S. P.; Booth, S. A.; Jones, J. A.; Lupton, J.
2007-01-01
It has not been possible to assess nutritional status of crew members on the ISS during flight because blood and urine could not be collected during ISS missions. Postflight observations of alterations in nutritional status for several nutrients are troubling, and we require the ability to monitor the status of these nutrients during flight to determine if there is a specific impetus or timeframe for these changes. In addition to the monitoring of crew nutritional status during flight, in-flight sample collection would allow better assessment of countermeasure effectiveness. SMO 016E is also designed to expand the current medical requirement for nutritional assessment (MR016L) to include additional normative markers for assessing crew health and countermeasure effectiveness. Additional markers of bone metabolism will be measured to better monitor bone health and the effectiveness of countermeasures to prevent bone resorption. New markers of oxidative damage will be measured to better assess the type of oxidative insults that occur during space flight. The array of nutritional assessment parameters will be expanded to include parameters that will allow us to better understand changes in folate and vitamin B6 status, and related cardiovascular risk factors during and after flight. Additionally, stress hormones and hormones that affect bone and muscle metabolism will also be measured. This additional assessment will allow us to better monitor the health of crew members and make more accurate recommendations for their rehabilitation. Several nutritional assessment parameters are altered at landing, but it is not known how long these changes persist. We extended the current protocol to include an additional postflight blood and urine sample collection 30 days after landing. Data are being collected before, during, and after flight. These data will provide a complete survey of how nutritional status and related systems are affected by space flight. Analyzing the data will help us to define nutritional requirements for long-duration missions. This expanded set of measurements will also aid in the identification of nutritional countermeasures to counteract, for example, the deleterious effects of microgravity on bone and muscle and the effects of space radiation.
Spontaneous recovery of bone mass after cure of endogenous hypercortisolism.
Randazzo, Maria Elena; Grossrubatscher, Erika; Dalino Ciaramella, Paolo; Vanzulli, Angelo; Loli, Paola
2012-06-01
Patients with Cushing's syndrome (CS) develop osteopenia-osteoporosis. The present study evaluates the recovery of bone mass within 2 years after remission of hypercortisolism and in long term follow up, an issue rarely addressed. Twenty patients (6M, 14F, 3 post-menopausal, 15-64 years old), 15 with Cushing's disease, 2 with ectopic ACTH syndrome, 3 with ACTH-independent CS were studied. BMD, T and Z scores at lumbar spine and proximal femur were assessed by dual-energy X-ray absorptiometry before and 7-33 months after treatment of hypercortisolism. Five patients were treated with bisphosphonates. Four patients had hypogonadism and 4 GH-deficiency. At baseline all patients showed osteopenia/osteoporosis and the spine appeared more damaged than the femur; femur BMD was positively related with body mass index (BMI). No correlations were observed between spine and femur bone parameters and duration of disease or severity of hypercortisolism. Bone parameters did not differ in patients with or without GH or other pituitary deficiencies. After cure of hypercortisolism a significant improvement in spine BMD, Z and T scores and in femur Z and T scores was observed with normalization in 3 patients; there was no significant difference in percent improvement between femur and spine. The increase in bone parameters at spine and femur was independent from values at baseline. The percent increase in spine T and Z scores was positively related with time elapsed since cure. Bisphosphonates did not influence the recovery of bone mineralization. In long term follow up, after a median period of 7 years a further improvement in bone density was observed in 100% of patients at spine and in 9/11 at femur, although 8/11 patients still had femoral and/or vertebral T score in the range of osteopenia/osteoporosis. Spontaneous improvement of osteoporosis after cure of hypercortisolism occurs both at spine and femur, is independent from basal conditions and not affected by bisphosphonates. The improvement at spine depends on time since cure.
Chevalier, Yan; Santos, Inês; Müller, Peter E; Pietschmann, Matthias F
2016-06-14
Glenoid loosening is still a main complication for shoulder arthroplasty. We hypothesize that cement and bone stresses potentially leading to fixation failure are related not only to glenohumeral conformity, fixation design or eccentric loading, but also to bone volume fraction, cortical thickness and degree of anisotropy in the glenoid. In this study, periprosthetic bone and cement stresses were computed with micro finite element models of the replaced glenoid depicting realistic bone microstructure. These models were used to quantify potential effects of bone microstructural parameters under loading conditions simulating different levels of glenohumeral conformity and eccentric loading simulating glenohumeral instability. Results show that peak cement stresses were achieved near the cement-bone interface in all loading schemes. Higher stresses within trabecular bone tissue and cement mantle were obtained within specimens of lower bone volume fraction and in regions of low anisotropy, increasing with decreasing glenohumeral conformity and reaching their maxima below the keeled design when the load is shifted superiorly. Our analyses confirm the combined influences of eccentric load shifts with reduced bone volume fraction and anisotropy on increasing periprosthetic stresses. They finally suggest that improving fixation of glenoid replacements must reduce internal cement and bone tissue stresses, in particular in glenoids of low bone density and heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ben Kahla, Rabeb; Barkaoui, Abdelwahed; Merzouki, Tarek
2018-08-01
Bone tissue is a living composite material, providing mechanical and homeostatic functions, and able to constantly adapt its microstructure to changes in long term loading. This adaptation is conducted by a physiological process, known as "bone remodeling". This latter is manifested by interactions between osteoclasts and osteoblasts, and can be influenced by many local factors, via effects on bone cell differentiation and proliferation. In the current work, age and gender effects on damage rate evolution, throughout life, have been investigated using a mechanobiological finite element modeling. To achieve the aim, a mathematical model has been developed, coupling both cell activities and mechanical behavior of trabecular bone, under cyclic loadings. A series of computational simulations (ABAQUS/UMAT) has been performed on a 3D human proximal femur, allowing to investigate the effects of mechanical and biological parameters on mechanical strength of trabecular bone, in order to evaluate the fracture risk resulting from fatigue damage. The obtained results revealed that mechanical stimulus amplitude affects bone resorption and formation rates, and indicated that age and gender are major factors in bone response to the applied loadings. Copyright © 2018 Elsevier Ltd. All rights reserved.
Testosterone supplementation, glucocorticoid milieu and bone homeostasis in the ageing male.
Ajdžanović, Vladimir Z; Filipović, Branko R; Šošić Jurjević, Branka T; Milošević, Verica Lj
2017-08-01
Male ageing is entwined with a continuous fall in free testosterone levels, which contributes to the pathogenesis of bone loss. Glucocorticoid excess, either dependent on the ageing process or iatrogenically induced, was found to additionally impair the bone structure and metabolism. Cautious testosterone supplementation in this respect may positively affect the glucocorticoid milieu and bone homeostasis, while testosterone-induced changes in the glucocorticoid output could serve as a determinant of bone-related therapeutic outcome. Namely, bone mineral content/density, the parameters of trabecular bone structure as well as bone strength are enhanced, serum calcitonin levels tend to increase, while serum osteocalcin, serum parathyroid hormone and urinary calcium decrease, all upon testosterone administration to the ageing male. In parallel, testosterone application decreases glucocorticoid secretion in the animal models of male ageing, while clinical data in this field are still inconsistent. Importantly, a physiological link exists between testosterone-induced changes in glucocorticoid levels and the tendency of bone status improvement in the ageing male. We believe that the assessment of circulating adrenocorticotropic hormone concentrations together with glucocorticoid levels, reflecting the hypothalamic-pituitary-adrenal axis feedback loop operativeness during testosterone supplementation, represents a well-balanced bone-related therapeutic update. © 2017 Société Française de Pharmacologie et de Thérapeutique.
Caulkins, Carrie; Ebramzadeh, Edward; Winet, Howard
2009-05-01
The direct and indirect effects of muscle contraction on bone microcirculation and fluid flow are neither well documented nor explained. However, skeletal muscle contractions may affect the acquisition and maintenance of bone via stimulation of bone circulatory and interstitial fluid flow parameters. The purposes of this study were to assess the effects of transcutaneous electrical neuromuscular stimulation (TENS)-induced muscle contractions on cortical bone blood flow and bone mineral content, and to demonstrate that alterations in blood flow could occur independently of mechanical loading and systemic circulatory mechanisms. Bone chamber implants were used in a rabbit model to observe real-time blood flow rates and TENS-induced muscle contractions. Video recording of fluorescent microspheres injected into the blood circulation was used to calculate changes in cortical blood flow rates. TENS-induced repetitive muscle contractions uncoupled from mechanical loading instantaneously increased cortical microcirculatory flow, directly increased bone blood flow rates by 130%, and significantly increased bone mineral content over 7 weeks. Heart rates and blood pressure did not significantly increase due to TENS treatment. Our findings suggest that muscle contraction therapies have potential clinical applications for improving blood flow to cortical bone in the appendicular skeleton. Copyright 2008 Orthopaedic Research Society
2012-01-01
Background Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Methods Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Results Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. Conclusion The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption. PMID:22713117
Gao, Shu-guang; Cheng, Ling; Li, Kang-hua; Liu, Wen-He; Xu, Mai; Jiang, Wei; Wei, Li-Cheng; Zhang, Fang-jie; Xiao, Wen-feng; Xiong, Yi-lin; Tian, Jian; Zeng, Chao; Sun, Jin-peng; Xie, Qiang; Lei, Guang-hua
2012-06-19
Epimedii herba is one of the most frequently used herbs in formulas that are prescribed for the treatment of osteoporosis in China and its main constituent is Epimedium pubescen flavonoid (EPF). However, it is unclear whether EPF during chronic exposure to cigarette smoke may have a protective influence on the skeleton. The present study investigated the effect of EPF on bone mineral status and bone turnover in a rat model of human relatively high exposure to cigarette smoke. Fifty male Wistar rats were randomized into five groups: controls, passive smoking groups and passive smoking rats administered EPF at three dosage levels (75, 150 or 300 mg/kg/day) in drinking water for 4 months. A rat model of passive smoking was prepared by breeding male rats in a cigarette-smoking box. Bone mineral content (BMC), bone mineral density (BMD), bone turnover markers, bone histomorphometric parameters and biomechanical properties were examined. Smoke exposure decreased BMC and BMD, increased bone turnover (inhibited bone formation and stimulated its resorption), affected bone histomorphometry (increased trabecular separation and osteoclast surface per bone surface; decreased trabecular bone volume, trabecular thickness, trabecular number, cortical thickness, bone formation rate and osteoblast surface per bone surface), and reduced mechanical properties. EPF supplementation during cigarette smoke exposure prevented smoke-induced changes in bone mineral status and bone turnover. The results suggest that EPF can prevent the adverse effects of smoke exposure on bone by stimulating bone formation and inhibiting bone turnover and bone resorption.
Verrecchia, Luca; Westin, Magnus; Duan, Maoli; Brantberg, Krister
2016-04-01
To explore ocular vestibular evoked myogenic potentials (oVEMP) to low-frequency vertex vibration (125 Hz) as a diagnostic test for superior canal dehiscence (SCD) syndrome. The oVEMP using 125 Hz single cycle bone-conducted vertex vibration were tested in 15 patients with unilateral superior canal dehiscence (SCD) syndrome, 15 healthy controls and in 20 patients with unilateral vestibular loss due to vestibular neuritis. Amplitude, amplitude asymmetry ratio, latency and interaural latency difference were parameters of interest. The oVEMP amplitude was significantly larger in SCD patients when affected sides (53 μVolts) were compared to non-affected (17.2 μVolts) or compared to healthy controls (13.6 μVolts). Amplitude larger than 33.8 μVolts separates effectively the SCD ears from the healthy ones with sensitivity of 87% and specificity of 93%. The other three parameters showed an overlap between affected SCD ears and non-affected as well as between SCD ears and those in the two control groups. oVEMP amplitude distinguishes SCD ears from healthy ones using low-frequency vibration stimuli at vertex. Amplitude analysis of oVEMP evoked by low-frequency vertex bone vibration stimulation is an additional indicator of SCD syndrome and might serve for diagnosing SCD patients with coexistent conductive middle ear problems. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
McClure, S R; Miles, K; Vansickle, D; South, T
2010-08-01
The objective of this study was to evaluate the effects of variable waveform low-intensity ultrasound on the healing of a fracture gap of the fourth metacarpal bone in horses. A randomized, blinded, controlled trial was conducted in eight healthy adult horses. In each horse, a 1-cm osteotomy of the fourth metacarpal bone was created. One randomly selected metacarpal gap was treated daily with a 40-min session of ultrasound and the opposite gap was managed similarly with an inactive transducer. The fourth metacarpal bones were radiographed weekly. Fluorescent markers were administered at 14, 28, 56 and 70 d. At the completion of the study at day 84, the bones were harvested and evaluated with peripheral quantitative computed tomography (pQCT) and histology. There were no significant differences between treated and control bones for any of the radiographic, pQCT or histologic parameters evaluated. These findings suggested that low-intensity ultrasound did not affect bone formation in a fracture gap model in the horse. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Parent, Marianne; Baradari, Hiva; Champion, Eric; Damia, Chantal; Viana-Trecant, Marylène
2017-04-28
Effective treatment of critical-size defects is a key challenge in restorative surgery of bone. The strategy covers the implantation of biocompatible, osteoconductive, bioactive and biodegradable devices which (1) well interact with native tissue, mimic multi-dimensional and hierarchical structure of bone and (2) are able to enhance bone repair, treating post implantation pathologies or bone diseases by local delivery of therapeutic agents. Among different options, calcium phosphate biomaterials are found to be attractive choices, due to their excellent biocompatibility, customisable bioactivity and biodegradability. Several approaches have been established to enhance this material ability to be loaded with a therapeutic agent, in order to obtain an in situ controlled release that meets the clinical needs. This article reviews the most important factors influencing on both drug loading and release capacity of porous calcium phosphate bone substitutes. Characteristics of the carrier, drug/carrier interactions, experimental conditions of drug loading and evaluation of drug delivery are considered successively. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of Fenbendazole on Routine Immune Response Parameters of BALB/c Mice
Cray, Carolyn; Villar, David; Zaias, Julia; Altman, Norman H
2008-01-01
Fenbendazole (FBZ) is an anthelmintic drug widely used to treat and prevent pinworm outbreaks in laboratory rodents. Although data in nonrodent species indicate possible effects of fenbendazole on the bone marrow and lymphocyte proliferation and function, little has been reported regarding possible effects on the rodent immune system. The purpose of the current study was to determine the effects of a therapeutic regimen of FBZ on immune parameters in BALB/c mice. Both 9-wk on–off and 5-wk continuous medicated feed protocols were assessed. No significant differences between normal and FBZ diet treated mice were observed in the following parameters: complete blood count, blood chemistry, quantitation of major T and B cell markers in spleen, quantitation of T cell markers in the thymus, spleen cell proliferation to T and B cell mitogens, bone marrow colony-forming cell assays, skin graft rejection, and primary and secondary humoral immune responses. These data indicate that FBZ treatment does not affect many standard broad measures of immune function. PMID:19049250
Effects of fenbendazole on routine immune response parameters of BALB/c mice.
Cray, Carolyn; Villar, David; Zaias, Julia; Altman, Norman H
2008-11-01
Fenbendazole (FBZ) is an anthelmintic drug widely used to treat and prevent pinworm outbreaks in laboratory rodents. Although data in nonrodent species indicate possible effects of fenbendazole on the bone marrow and lymphocyte proliferation and function, little has been reported regarding possible effects on the rodent immune system. The purpose of the current study was to determine the effects of a therapeutic regimen of FBZ on immune parameters in BALB/c mice. Both 9-wk on-off and 5-wk continuous medicated feed protocols were assessed. No significant differences between normal and FBZ diet treated mice were observed in the following parameters: complete blood count, blood chemistry, quantitation of major T and B cell markers in spleen, quantitation of T cell markers in the thymus, spleen cell proliferation to T and B cell mitogens, bone marrow colony-forming cell assays, skin graft rejection, and primary and secondary humoral immune responses. These data indicate that FBZ treatment does not affect many standard broad measures of immune function.
Lampert, F M; Kütscher, C; Stark, G B; Finkenzeller, G
2016-03-01
Reconstruction of large bone defects still represents a major medical challenge. In recent years tissue engineering has developed techniques based on adult mesenchymal stem cells (MSCs) that could represent an attractive therapeutical option to treat large bone defects in the future. It has been demonstrated in various animal models that ex vivo expanded MSCs are capable of promoting the regeneration of skeletal defects after implantation. However, for the efficient regeneration of bone in tissue engineering applications, a rapid vascularization of implanted grafts is essential to ensure the survival of cells in the early post-implantational phase. A promising strategy to enhance vascularization of MSC-containing implants could consist of overexpression of the angiogenic master transcription factor Hypoxia-inducible factor 1 (Hif-1) in the MSCs in order to induce angiogenesis and support osteogenesis. In the present study, we overexpressed Hif-1α in MSCs by using recombinant adenoviruses and investigated cell-autonomous effects. Overexpression of Hif-1α enhanced proliferation, migration, cell survival and expression of pro-angiogenic genes. Other parameters such as expression of the osteogenic markers BMP-2 and RunX2 were decreased. Hif-1α overexpression had no effect on invasion, senescence and osteogenic differentiation of MSCs. Our experiments revealed multifarious effects of Hif-1α overexpression on cell-autonomous parameters. Therefore, Hif-1α overexpression may represent a therapeutic option to improve cellular functions of MSCs to treat critical sized bone defects. © 2015 Wiley Periodicals, Inc.
Sirolimus and tacrolimus rather than cyclosporine A cause bone loss in healthy adult male rats.
Rubert, Mercedes; Montero, Mercedes; Guede, David; Caeiro, Jose-Ramón; Martín-Fernández, Marta; Díaz-Curiel, Manuel; de la Piedra, Concepción
2015-06-01
The aim of this work was to study the effects of cyclosporine (CsA), tacrolimus (FK-506), and rapamycin (RAPA) on bone mass, femoral microstructure, femoral biomechanical properties, and bone remodeling in healthy adult male rats. Forty-eight 5-month-old male Wistar rats were used. CsA (2 mg/kg/day), FK-506 (3 mg/kg/day), RAPA (1.25 mg/kg/day), or water (0.5 ml/rat/day, control group) were administered orally for 3 months. After sacrifice, mean values of immunosuppressants in blood were: CsA (670.4 ng/ml), FK-506 (19.2 ng/ml), and RAPA (4.8 ng/ml). Levels of biochemical parameters were normal in all groups. Femoral BMD was decreased in FK-506 and RAPA groups and lumbar BMD in FK-506 group. Trabecular volume fraction (BV/TV) decreased only in FK-506 group. RAPA and CsA affected femoral cortical structure, but FK-506 did not. FK-506 produced an increase in bone remodeling, and CsA a decrease. FK-506 group showed a decrease in biomechanical parameters relative to all groups. RAPA group showed a decrease in ultimate stress vs control group, and CsA group presented an increase in biomechanical parameters versus control group. We found that administration of both RAPA and FK-506 as monotherapy for healthy rats produced osteopenia. CsA treatment only produces slight damages in the cortical zone of the femur.
Non-enzymatic glycation alters microdamage formation in human cancellous bone⋆
Tang, S.Y.; Vashishth, D.
2015-01-01
Introduction The accumulation of advanced glycation end-products (AGEs) in bone has been suggested to adversely affect the fracture resistance of bone with aging, diabetes, and pharmacological treatments. The formation of AGEs increases crosslinking in the organic matrix of bone but it is unknown how elevated levels of AGEs affect the mechanisms of fracture resistance such as microdamage formation. Methods Human tibial cancellous bone cores were subjected to non-enzymatic glycation (NEG) by in vitro ribosylation and were mechanically loaded to pre- (0.6%) and post- (1.1%) yield apparent level strains. Loaded specimens were stained with lead–uranyl acetate and subjected to microCT-based 3D quantification and characterization of microdamage as either diffuse damage and linear microcracks. Damaged volume per bone volume (DV/BV) and damaged surface per damaged volume (DS/DV) ratios were used to quantify the volume and morphology of the detected microdamage, respectively. Results In vitro ribosylation increased the microdamage morphology parameter (DS/DV) under both pre-(p<0.05; +51%) and post-yield loading (p<0.001; +38%), indicating that the alteration of bone matrix by NEG caused the formation of crack-like microdamage morphologies. Under post-yield loading, the NEG-mediated increase in DS/DV was coupled with the reductions in microdamage formation (DV/BV; p<0.001) and toughness (p<0.001). Discussion Using a novel microCT technique to characterize and quantify microdamage, this study shows that the accumulation of AGEs in the bone matrix significantly alters the quantity and morphology of microdamage production and results in reduced fracture resistance. PMID:19747573
Gold, P W; Pavlatou, M G; Michelson, D; Mouro, C M; Kling, M A; Wong, M-L; Licinio, J; Goldstein, S A
2015-01-01
Major depression and bipolar disorder are associated with decreased bone mineral density (BMD). Antidepressants such as imipramine (IMIP) and specific serotonin reuptake inhibitors (SSRIs) have been implicated in reduced BMD and/or fracture in older depressed patients. Moreover, anticonvulsants such as valproate (VAL) and carbamazepine (CBZ) are also known to increase fracture rates. Although BMD is a predictor of susceptibility to fracture, bone strength is a more sensitive predictor. We measured mechanical and geometrical properties of bone in 68 male Sprague Dawley rats on IMIP, fluoxetine (FLX), VAL, CBZ, CBZ vehicle and saline (SAL), given intraperitoneally daily for 8 weeks. Distinct regions were tested to failure by four-point bending, whereas load displacement was used to determine stiffness. The left femurs were scanned in a MicroCT system to calculate mid-diaphyseal moments of inertia. None of these parameters were affected by antidepressants. However, VAL resulted in a significant decrease in stiffness and a reduction in yield, and CBZ induced a decrease in stiffness. Only CBZ induced alterations in mechanical properties that were accompanied by significant geometrical changes. These data reveal that chronic antidepressant treatment does not reduce bone strength, in contrast to chronic anticonvulsant treatment. Thus, decreased BMD and increased fracture rates in older patients on antidepressants are more likely to represent factors intrinsic to depression that weaken bone rather than antidepressants per se. Patients with affective illness on anticonvulsants may be at particularly high risk for fracture, especially as they grow older, as bone strength falls progressively with age. PMID:26035060
Effects of drilling parameters in numerical simulation to the bone temperature elevation
NASA Astrophysics Data System (ADS)
Akhbar, Mohd Faizal Ali; Malik, Mukhtar; Yusoff, Ahmad Razlan
2018-04-01
Drilling into the bone can produce significant amount of heat which can cause bone necrosis. Understanding the drilling parameters influence to the heat generation is necessary to prevent thermal necrosis to the bone. The aim of this study is to investigate the influence of drilling parameters on bone temperature elevation. Drilling simulations of various combinations of drill bit diameter, rotational speed and feed rate were performed using finite element software DEFORM-3D. Full-factorial design of experiments (DOE) and two way analysis of variance (ANOVA) were utilised to examine the effect of drilling parameters and their interaction influence on the bone temperature. The maximum bone temperature elevation of 58% was demonstrated within the range in this study. Feed rate was found to be the main parameter to influence the bone temperature elevation during the drilling process followed by drill diameter and rotational speed. The interaction between drill bit diameter and feed rate was found to be significantly influence the bone temperature. It is discovered that the use of low rotational speed, small drill bit diameter and high feed rate are able to minimize the elevation of bone temperature for safer surgical operations.
Berberoglu, Zehra; Yazici, Ayse C; Demirag, Nilgun G
2010-09-01
To evaluate the effect of rosiglitazone on bone metabolism and bone density. An open-label, randomized, controlled trial of 24-month duration. Patients and measurements Obese, postmenopausal women with newly diagnosed diabetes were studied. Before and after the intervention, metabolic bone markers and bone density were assessed. Twenty-six patients received rosiglitazone (4 mg/day), and 23 remained on diet alone. Serum bone-specific alkaline phosphatase and osteocalcin levels decreased by 17% (P < 0.001 vs control group) and 26% (P < 0.01 vs control group), respectively, in the rosiglitazone group. There were no significant changes in the deoxypyridinoline levels between the two groups. Annual bone loss at the trochanter and at the lumbar spine associated with each year of rosiglitazone use was 2.56% (P = 0.01 vs control group) and 2.18% (P < 0.01 vs control group), respectively. Femoral neck and total hip bone density declined significantly in both groups (P < 0.01, and P = 0.01, respectively) but was not significantly different between the two groups. Rosiglitazone treatment adversely affects bone formation over a 2-year period. It increases bone loss at the lumbar spine and trochanter in postmenopausal, type 2 diabetic women. However, bone loss at the total hip did not differ with use of this agent.
Dursun, Erhan; Tulunoglu, Ibrahim; Canpınar, Pınar; Uysal, Serdar; Akalın, Ferda Alev; Tözüm, Tolga F
2012-10-01
The aim of this study was to evaluate short-term bone level and stability/mobility measurement alterations at platform switched (PS) and standard platform (SP) implants placed in mandibular premolar/molar regions using a single-stage protocol. Sixteen PS and 16 SP implants restorated with fixed prosthesis were included. Standard implant dimensions were used for both implant systems. After 3 months of osseointegration, implants were connected to abutments and final restorations were performed. Marginal bone loss was measured by standardized periapical radiographs. Implant stability/mobility was determined by resonance frequency analysis (RFA) and mobility measuring (MM) device values. Peri-implant parameters were evaluated with clinical periodontal indices and all parameters were assessed at baseline, 1, 3, and 6 months after the surgery. After 6 months, all implants showed uneventful healing. Radiographic evaluation showed a mean bone loss of 0.72 mm for PS and 0.56 mm for SP implants, and there were no significant differences between implant types. At 6 months, mean implant stability quotient (ISQ) values were 73.38 and 77 for PS and SP implants, respectively. Mean MM values were -4.75 for PS and -6.38 for SP implants. Mean MM values were lower for SP implants compared to PS implants at all time points. No significant differences were detected between implant types according to clinical peri-implant parameters. The micro-gap at crestal level which immediately exposed to the oral cavity in non-submerged two part implants seems to have adverse influence on the marginal bone level. © 2011 John Wiley & Sons A/S.
Hoyer-Kuhn, Heike; Stark, Christina; Franklin, Jeremy; Schoenau, Eckhard; Semler, Oliver
2017-11-01
Osteogenesis imperfecta (OI) is a rare hereditary skeletal disease leading to recurrent fractures, short stature and impaired mobility. The phenotype varies from mildly affected patients to perinatal lethal forms. In most cases an impaired collagen production due to mutations in COL1A1 or COL1A2 cause this hereditary bone fragility syndrome with an autosomal dominant inheritance. Currently an interdisciplinary therapeutic approach with antiresorptive drugs, physiotherapy and surgical procedures is the state of the art therapy. The effect of such a therapy is evaluated by measuring different surrogate parameters like areal bone mineral density or by using different mobility tests or questionnaires. Up till now the impact of these parameters on quality of life of the patients is not evaluated. Currently pharmacological strategies are based on antiresorptive treatment with bisphosphonates. In this trial we investigated the effect of an antiresorptive therapy with the monoclonal antibody denosumab decreasing the activity of osteoclasts. Denosumab was administered subcutaneously in a dose of 1mg/kg body weight in 10 children with OI (5-10 years of age) every 12 weeks for 48 weeks. Areal bone mineral density, mobility, pain scores and quality of life were measured. The results showed a good effect of the treatment on bone mineral density but this improvement showed no correlation to pain and quality of life. In conclusion further trials have to define parameters to assess interventions which influence activities of daily life of the patients. An interdisciplinary approach including physicians, basic researchers and patient organisation is needed to focus research on topics improving quality of life of patients with severe skeletal diseases. Copyright© of YS Medical Media ltd.
EFFECT OF DIETARY FLAVONOID NARINGENIN ON BONES IN RATS WITH OVARIECTOMY-INDUCED OSTEOPOROSIS.
Kaczmarczyk-Sedlak, Ilona; Wojnar, Weronika; Zych, Maria; Ozimina-Kamińska, Ewa; Bońka, Anna
2016-07-01
Naringenin is a dietary flavanone which can be found in many products such as citrus fruits. This substance reveals multiple pharmacological activities such as antiinflammatory and antioxidative. During the menopause, the estrogen deficiency occurs, thus naringenin, which is also considered as a phytoestrogen, may be useful in the treatment of menopause-associated osteoporosis. The aim of the presented study was to examine the effect of naringenin on the mechanical properties, chemical composition and the histomorphological parameters of bones in the rats with ovariectomy-induced osteoporosis. The female Wistar rats were divided into 4 groups: sham-operated, ovariectomized, ovariectoiized treated with estradiol (0.2 mg/kg p.o.) and ovariectomized treated with naringenin (50 mg/kg p.o.), and the tested substances were administered for 4 weeks. The obtained results show that ovariectomy caused the characteristic changes in the skeletal system of rats - there was deterioration in mechanics, chemistry and histomorphometry. The estradiol administered to the rats served as positive control for the experiment. Administration of naringenin to the ovariectomized rats affected neither the bone chemical content nor the mechanical properties, however, there was a slight improvement in the bone microarchitecture in the tissue affected by osteoporosis. It can be concluded that the intake of naringenin in dietary products is not harmful and may even bring beneficial effect on the bones histomorphometry during postmenopausal osteoporosis.
NASA Astrophysics Data System (ADS)
Amouriq, Yves; Guedon, Jeanpierre; Normand, Nicolas; Arlicot, Aurore; Benhdech, Yassine; Weiss, Pierre
2011-03-01
Bone microarchitecture is the predictor of bone quality or bone disease. It can only be measured on a bone biopsy, which is invasive and not available for all clinical situations. Texture analysis on radiographs is a common way to investigate bone microarchitecture. But relationship between three-dimension histomorphometric parameters and two-dimension texture parameters is not always well known, with poor results. The aim of this study is to performed angulated radiographs of the same region of interest and see if a better relationship between texture analysis on several radiographs and histomorphometric parameters can be developed. Computed radiography images of dog (Beagle) mandible section in molar regions were compared with high-resolution micro-CT (Computed-Tomograph) volumes. Four radiographs with 27° angle (up, down, left, right, using Rinn ring and customized arm positioning system) were performed from initial radiograph position. Bone texture parameters were calculated on all images. Texture parameters were also computed from new images obtained by difference between angulated images. Results of fractal values in different trabecular areas give some caracterisation of bone microarchitecture.
Osteoporosis: Peak Bone Mass in Women
... Osteoporosis: Peak Bone Mass in Women Osteoporosis: Peak Bone Mass in Women Bones are the framework for ... that affect peak bone mass. Factors Affecting Peak Bone Mass A variety of genetic and environmental factors ...
Wong, Andy K.O.; Beattie, Karen A.; Bhargava, Aakash; Cheung, Marco; Webber, Colin E.; Chettle, David R.; Papaioannou, Alexandra; Adachi, Jonathan D.
2016-01-01
Conflicting evidence suggests that bone lead or blood lead may reduce areal bone mineral density (BMD). Little is known about how lead at either compartment affects bone structure. This study examined postmenopausal women (N = 38, mean age 76 ± 8, body mass index (BMI): 26.74 ± 4.26 kg/m2) within the Hamilton cohort of the Canadian Multicentre Osteoporosis Study (CaMos), measuring bone lead at 66% of the non-dominant leg and at the calcaneus using 109Cadmium X-ray fluorescence. Volumetric BMD and structural parameters were obtained from peripheral quantitative computed tomography images (200 μm in-plane resolution, 2.3 ± 0.5 mm slice thickness) of the same 66% site and of the distal 4% site of the tibia length. Blood lead was measured using atomic absorption spectrometry and blood-to-bone lead partition coefficients (PBB, log ratio) were computed. Multivariable linear regression examined each of bone lead at the 66% tibia, calcaneus, blood lead and PBB as related to each of volumetric BMD and structural parameters, adjusting for age and BMI, diabetes or antiresorptive therapy. Regression coefficients were reported along with 95% confidence intervals. Higher amounts of bone lead at the tibia were associated with thinner distal tibia cortices (−0.972 (−1.882, −0.061) per 100 μg Pb/g of bone mineral) and integral volumetric BMD (−3.05 (−6.05, −0.05) per μg Pb/g of bone mineral). A higher PBB was associated with larger trabecular separation (0.115 (0.053, 0.178)), lower trabecular volumetric BMD (−26.83 (−50.37, −3.29)) and trabecular number (−0.08 (−0.14, −0.02)), per 100 μg Pb/g of bone mineral after adjusting for age and BMI, and remained significant while accounting for diabetes or use of antiresorptives. Total lead exposure activities related to bone lead at the calcaneus (8.29 (0.11, 16.48)) and remained significant after age and antiresorptives-adjustment. Lead accumulated in bone can have a mild insult on bone structure; but greater partitioning of lead in blood versus bone revealed more dramatic effects on both microstructure and volumetric BMD. PMID:25986335
Zhang, M; Shi, C Y; Zhou, Z L; Hou, J F
2017-06-01
Femoral head necrosis (FHN) is a common disorder in fast-growing broilers in the poultry industry, but the pathogenesis of FHN has not been clarified completely. In the present study, glucocorticoid (GC) administration was used to induce FHN in broilers. Compared with normal birds, histopathology showed that the length of the articular cartilage of GC-induced FHN broilers was thicker while the proliferative zone and prehypertrophic zone were obviously thinner. Moreover, hematoxylin and eosin (HE) staining showed the apoptotic chondrocyte in the growth plate of the femoral head in FHN-affected birds. Bone parameters also decreased significantly in GC-induced FHN broilers. In addition, as for the mRNA expression, GC-induced FHN broilers had an apparent reduction in Col-II, Col-X, and Bcl-2 but a significant promotion of Caspase-3, Caspase-9, ASK-1, and JNK-1 when compared with the normal birds. It showed glucocorticoid induced FHN in broilers by affecting the proliferation, differentiation, and apoptosis of chondrocytes accompanying the retarding of bone growth. © 2017 Poultry Science Association Inc.
LRP5 gene polymorphism and cortical bone.
Lauretani, Fulvio; Cepollaro, Chiara; Bandinelli, Stefania; Cherubini, Antonio; Gozzini, Alessia; Masi, Laura; Falchetti, Alberto; Del Monte, Francesca; Carbonell-Sala, Silvia; Marini, Francesca; Tanini, Annalisa; Corsi, Anna Maria; Ceda, Gian Paolo; Brandi, Maria Luisa; Ferrucci, Luigi
2010-08-01
There is evidence that distinct genetic polymorphisms of LRP5 are associated with low Bone Mineral Density (BMD) and the risk of fracture. However, relationships between LRP5 polymorphisms and micro- and macro architectural bone characteristics assessed by pQCT have not been studied. The aim of the present study was to investigate the association of Ala1330Val and Val667Met polymorphisms in LRP5 gene with volumetric BMD (vBMD) and macro-architectural bone parameters in a population-based sample of men and women. We studied 959 participants of the InCHIANTI study (451 men and 508 women, age range: 21-94 yrs). Trabecular vBMD (vBMDt, mg/cm3), cortical vBMD (vBMDc, mg/cm3), cortical bone area (CBA, mm2) and cortical thickness (Ct.Th, mm) at the level of the tibia were assessed by peripheral quantitative computed tomography (pQCT). Ala1330Val and Val667Met genotypes were determined on genomic DNA by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In age-adjusted analyses both LRP 1330-valine and LRP 667-metionin variants were associated with lower vBMDt in men (p<0.05), and lower vBMDt (p<0.05), Ct.Th (p<0.05) and CBA (p<0.05) in women. After adjusting for multiple confounders, only the association of LRP5 1330-valine and 667-metionin with CBA remained statistically significant (p=0.04 and p=0.01, respectively) in women. These findings suggest that both Ala1330Val and Val667Met LRP5 polymorphisms may affect the determination of geometric bone parameters in women.
Kim, Jo-Eun; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Huh, Kyung-Hoe
2015-12-01
To evaluate the potential feasibility of cone beam computed tomography (CBCT) in the assessment of trabecular bone microarchitecture. Sixty-eight specimens from four pairs of human jaw were scanned using both micro-computed tomography (micro-CT) of 19.37-μm voxel size and CBCT of 100-μm voxel size. The correlation of 3-dimensional parameters between CBCT and micro-CT was evaluated. All parameters, except bone-specific surface and trabecular thickness, showed linear correlations between the 2 imaging modalities (P < .05). Among the parameters, bone volume, percent bone volume, trabecular separation, and degree of anisotropy (DA) of CBCT images showed strong correlations with those of micro-CT images. DA showed the strongest correlation (r = 0.693). Most microarchitectural parameters from CBCT were correlated with those from micro-CT. Some microarchitectural parameters, especially DA, could be used as strong predictors of bone quality in the human jaw. Copyright © 2015 Elsevier Inc. All rights reserved.
2016-01-01
Purpose The objective of this study was to investigate the relationships between primary implant stability as measured by impact response frequency and the structural parameters of trabecular bone using cone-beam computed tomography(CBCT), excluding the effect of cortical bone thickness. Methods We measured the impact response of a dental implant placed into swine bone specimens composed of only trabecular bone without the cortical bone layer using an inductive sensor. The peak frequency of the impact response spectrum was determined as an implant stability criterion (SPF). The 3D microstructural parameters were calculated from CT images of the bone specimens obtained using both micro-CT and CBCT. Results SPF had significant positive correlations with trabecular bone structural parameters (BV/TV, BV, BS, BSD, Tb.Th, Tb.N, FD, and BS/BV) (P<0.01) while SPF demonstrated significant negative correlations with other microstructural parameters (Tb.Sp, Tb.Pf, and SMI) using micro-CT and CBCT (P<0.01). Conclusions There was an increase in implant stability prediction by combining BV/TV and SMI in the stepwise forward regression analysis. Bone with high volume density and low surface density shows high implant stability. Well-connected thick bone with small marrow spaces also shows high implant stability. The combination of bone density and architectural parameters measured using CBCT can predict the implant stability more accurately than the density alone in clinical diagnoses. PMID:27127692
Schiuma, D; Brianza, S; Tami, A E
2011-03-01
A method was developed to improve the design of locking implants by finding the optimal paths for the anchoring elements, based on a high resolution pQCT assessment of local bone mineral density (BMD) distribution and bone micro-architecture (BMA). The method consists of three steps: (1) partial fixation of the implant to the bone and creation of a reference system, (2) implant removal and pQCT scan of the bone, and (3) determination of BMD and BMA of all implant-anchoring locations along the actual and alternative directions. Using a PHILOS plate, the method uncertainty was tested on an artificial humerus bone model. A cadaveric humerus was used to quantify how the uncertainty of the method affects the assessment of bone parameters. BMD and BMA were determined along four possible alternative screw paths as possible criteria for implant optimization. The method is biased by a 0.87 ± 0.12 mm systematic uncertainty and by a 0.44 ± 0.09 mm random uncertainty in locating the virtual screw position. This study shows that this method can be used to find alternative directions for the anchoring elements, which may possess better bone properties. This modification will thus produce an optimized implant design. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
Newcomb, Anna G. U. S.; Baek, Seungwon; Kelly, Brian P.; Crawford, Neil R.
2016-01-01
Angled screw insertion has been advocated to enhance fixation strength during posterior spine fixation. Stresses on a pedicle screw and surrounding vertebral bone with different screw angles were studied by finite element analysis during simulated multidirectional loading. Correlations between screw-specific vertebral geometric parameters and stresses were studied. Angulations in both the sagittal and axial planes affected stresses on the cortical and cancellous bones and the screw. Pedicle screws pointing laterally (vs. straight or medially) in the axial plane during superior screw angulation may be advantageous in terms of reducing the risk of both screw loosening and screw breakage. PMID:27454197
Liu, X Sherry; Sajda, Paul; Saha, Punam K; Wehrli, Felix W; Bevill, Grant; Keaveny, Tony M; Guo, X Edward
2008-02-01
Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone. Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type-associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied. Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using muCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type-associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared. The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r(2) = 0.95 approximately 0.99) compared with BV/TV (r(2) = 0.93 approximately 0.94). The plate-associated morphological parameters generally showed higher correlations with the corresponding standard morphological parameters than the rod-associated parameters. Multiple linear regression models of six elastic moduli with individual trabeculae segmentation (ITS)-based morphological parameters (adjusted r(2) = 0.95 approximately 0.98) performed equally well as those with standard morphological parameters (adjusted r(2) = 0.94 approximately 0.97) but revealed specific contributions from individual trabecular plates or rods. The ITS-based morphological analyses provide a better characterization of the morphology and trabecular orientation of trabecular bone. The axial loading of trabecular bone is mainly sustained by the axially aligned trabecular bone volume. Results suggest that trabecular plates dominate the overall elastic properties of trabecular bone.
Three-Dimensional Geometric Analysis of Felid Limb Bone Allometry
Doube, Michael; Conroy, Alexis Wiktorowicz; Christiansen, Per; Hutchinson, John R.; Shefelbine, Sandra
2009-01-01
Background Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats) to investigate regional complexities in bone allometry. Method/Principal Findings Computed tomographic (CT) images (16435 slices in 116 stacks) were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus) to tiger (Panthera tigris). Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft. Conclusions/Significance Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals. PMID:19270749
NASA Technical Reports Server (NTRS)
Tou, Janet; Arnaud, Sara B.; Grindeland, Richard; Wade, Charles
2004-01-01
Spaceflight simulation studies use chow diets while spaceflight studies use a semi-purified &et. To determine whether the differences in these diets would affect the changes in unweighted bone, we compared the effects of purified vs chow diet on bone parameters, urinary calcium, plasma estradiol, and urinary corticosterone (CORT) in sexually mature female Sprague-Dawley rats. Rats fed purified AIN-93G or chow diet were kept ambulatory (AMB) or subjected to a spaceflight simulation model of unweighted hindlimbs (HLS) for 38 days. Body mass of treatment groups was similar although food intake and caloric density of the diets differed. Both HLS diet groups showed similar decreases in bone mineral content and mechanical strength in unweighted femurs compared to AMB (p<0.05). However, femur length was lower (p<0.05) in the chow-fed than AIN-93G fed groups. Urinary calcium excretion was greater in chow than AIN-93G fed rats, consistent with the higher level of calcium in the diet. Plasma estradiol was lower in HLS than in AMB fed AIN-93G, but similar in HLS and AMB chow fed groups. Femur mineral content was related to plasma estradiol (r(sup 2) =0.91, p<0.00l). Urinary CORT excretion was increased during initial HLS and elevated in HLS/chow-fed rats. Diets did not appear to affect the osteopenia induced by unweighting, but effects on bone growth, calcium excretion, plasma estradiol and urinary CORT do not support the view that these diets can by used interchangeably in bone studies.
Evenepoel, Pieter; Behets, Geert J; Viaene, Liesbeth; D'Haese, Patrick C
2017-02-01
Renal transplantation is believed to have a major impact on bone health. The present prospective observational bone biopsy study aimed to define the natural history of bone histomorphometry parameters in contemporaneous de novo renal transplant recipients. Paired bone biopsies were performed at the time of transplantation and at one-year posttransplantation in an unselected cohort of 36 patients referred for deceased kidney replacement. Parameters of mineral metabolism and circulating bone turnover markers were monitored as well. Static parameters of bone formation and especially bone resorption being already low-normal in the majority of patients at the time of renal transplantation, further declined during the first posttransplant year. However, interindividual variation was substantial, and significance was reached only for bone resorption parameters. Bone mineralization and trabecular bone volume were within the normal range at the time of transplantation (83.3% and 91.7% of graft recipients, respectively) and showed little change one-year posttransplantation. Changes in osteoclast number were paralleled by changes in circulating tartrate-resistant acid phosphatase 5b levels. Finally, cumulative glucocorticoid dose, but not the posttransplantation parathyroid hormone level, associated with trabecular bone loss. Thus, the impact of renal transplantation on bone histomorphometry is limited with only bone resorption, being already low at the time of transplantation, showing a further decline. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Multi-frequency Axial Transmission Bone Ultrasonometer
Tatarinov, Alexey; Egorov, Vladimir; Sarvazyan, Noune; Sarvazyan, Armen
2014-01-01
The last decade has seen a surge in the development of axial transmission QUS (Quantitative UltraSound) technologies for the assessment of long bones using various modes of acoustic waves. The condition of cortical bones and the development of osteoporosis are determined by numerous mechanical, micro-structural, and geometrical or macro-structural bone properties like hardness, porosity and cortical thickness. Such complex manifestations of osteoporosis require the evaluation of multiple parameters with different sensitivities to the various properties of bone that are affected by the disease. This objective may be achieved by using a multi-frequency ultrasonic examination The ratio of the acoustic wavelength to the cortical thickness can be changed by varying the frequency of the ultrasonic pulse propagating through the long bone that results in the change in composition of the induced wave comprised of a set of numerous modes of guided, longitudinal, and surface acoustic waves. The multi-frequency axial transmission QUS method developed at Artann Laboratories (Trenton, NJ) is implemented in the Bone Ultrasonic Scanner (BUSS). In the current version of the BUSS, a train of ultrasonic pulses with 60, 100, 400, 800, and 1200 kHz frequencies is used. The developed technology was tested on a variety of bone phantoms simulating normal, osteopenic, and osteoporotic bones. The results of this study confirm the feasibility of the multi-frequency approach for the assessment of the processes leading to osteoporosis. PMID:24206675
Yang, Haisheng; Embry, Rachel E.; Main, Russell P.
2017-01-01
The skeleton’s osteogenic response to mechanical loading can be affected by loading duration and rest insertion during a series of loading events. Prior animal loading studies have shown that the cortical bone response saturates quickly and short rest insertions between load cycles can enhance cortical bone formation. However, it remains unknown how loading duration and short rest insertion affect load-induced osteogenesis in the mouse tibial compressive loading model, and particularly in cancellous bone. To address this issue, we applied cyclic loading (-9 N peak load; 4 Hz) to the tibiae of three groups of 16 week-old female C57BL/6 mice for two weeks, with a different number of continuous load cycles applied daily to each group (36, 216 and 1200). A fourth group was loaded under 216 daily load cycles with a 10 s rest insertion after every fourth cycle. We found that as few as 36 load cycles per day were able to induce osteogenic responses in both cancellous and cortical bone. Furthermore, while cortical bone area and thickness continued to increase through 1200 cycles, the incremental increase in the osteogenic response decreased as load number increased, indicating a reduced benefit of the increasing number of load cycles. In the proximal metaphyseal cancellous bone, trabecular thickness increased with load up to 216 cycles. We also found that insertion of a 10 s rest between load cycles did not improve the osteogenic response of the cortical or cancellous tissues compared to continuous loading in this model given the age and sex of the mice and the loading parameters used here. These results suggest that relatively few load cycles (e.g. 36) are sufficient to induce osteogenic responses in both cortical and cancellous bone in the mouse tibial loading model. Mechanistic studies using the mouse tibial loading model to examine bone formation and skeletal mechanobiology could be accomplished with relatively few load cycles. PMID:28076363
Optimization of bone drilling parameters using Taguchi method based on finite element analysis
NASA Astrophysics Data System (ADS)
Rosidi, Ayip; Lenggo Ginta, Turnad; Rani, Ahmad Majdi Bin Abdul
2017-05-01
Thermal necrosis results fracture problems and implant failure if temperature exceeds 47 °C for one minute during bone drilling. To solve this problem, this work studied a new thermal model by using three drilling parameters: drill diameter, feed rate and spindle speed. Effects of those parameters to heat generation were studied. The drill diameters were 4 mm, 6 mm and 6 mm; the feed rates were 80 mm/min, 100 mm/min and 120 mm/min whereas the spindle speeds were 400 rpm, 500 rpm and 600 rpm then an optimization was done by Taguchi method to which combination parameter can be used to prevent thermal necrosis during bone drilling. The results showed that all the combination of parameters produce confidence results which were below 47 °C and finite element analysis combined with Taguchi method can be used for predicting temperature generation and optimizing bone drilling parameters prior to clinical bone drilling. All of the combination parameters can be used for surgeon to achieve sustainable orthopaedic surgery.
Xiang, Ruidong; Lee, Alice M C; Eindorf, Tanja; Javadmanesh, Ali; Ghanipoor-Samami, Mani; Gugger, Madeleine; Fitzsimmons, Carolyn J; Kruk, Zbigniew A; Pitchford, Wayne S; Leviton, Alison J; Thomsen, Dana A; Beckman, Ian; Anderson, Gail I; Burns, Brian M; Rutley, David L; Xian, Cory J; Hiendleder, Stefan
2014-11-01
Parent-of-origin-dependent (epi)genetic factors are important determinants of prenatal development that program adult phenotype. However, data on magnitude and specificity of maternal and paternal genome effects on fetal bone are lacking. We used an outbred bovine model to dissect and quantify effects of parental genomes, fetal sex, and nongenetic maternal effects on the fetal skeleton and analyzed phenotypic and molecular relationships between fetal muscle and bone. Analysis of 51 bone morphometric and weight parameters from 72 fetuses recovered at day 153 gestation (54% term) identified six principal components (PC1-6) that explained 80% of the variation in skeletal parameters. Parental genomes accounted for most of the variation in bone wet weight (PC1, 72.1%), limb ossification (PC2, 99.8%), flat bone size (PC4, 99.7%), and axial skeletal growth (PC5, 96.9%). Limb length showed lesser effects of parental genomes (PC3, 40.8%) and a significant nongenetic maternal effect (gestational weight gain, 29%). Fetal sex affected bone wet weight (PC1, p < 0.0001) and limb length (PC3, p < 0.05). Partitioning of variation explained by parental genomes revealed strong maternal genome effects on bone wet weight (74.1%, p < 0.0001) and axial skeletal growth (93.5%, p < 0.001), whereas paternal genome controlled limb ossification (95.1%, p < 0.0001). Histomorphometric data revealed strong maternal genome effects on growth plate height (98.6%, p < 0.0001) and trabecular thickness (85.5%, p < 0.0001) in distal femur. Parental genome effects on fetal bone were mirrored by maternal genome effects on fetal serum 25-hydroxyvitamin D (96.9%, p < 0.001) and paternal genome effects on alkaline phosphatase (90.0%, p < 0.001) and their correlations with maternally controlled bone wet weight and paternally controlled limb ossification, respectively. Bone wet weight and flat bone size correlated positively with muscle weight (r = 0.84 and 0.77, p < 0.0001) and negatively with muscle H19 expression (r = -0.34 and -0.31, p < 0.01). Because imprinted maternally expressed H19 regulates growth factors by miRNA interference, this suggests muscle-bone interaction via epigenetic factors. © 2014 American Society for Bone and Mineral Research.
Colombo, Antony; Hoogland, Menno; Coqueugniot, Hélène; Dutour, Olivier; Waters-Rist, Andrea
2018-03-01
A 66 year-old woman with a disproportionate dwarfism and who bore seven children was discovered at the Middenbeemster archaeological site (The Netherlands). Three are perinates and show no macroscopic or radiological evidence for a FGFR3 mutation causing hypo-or achondroplasia. This mutation induces dysfunction of the growth cartilage, leading to abnormalities in the development of trabecular bone. Because the mutation is autosomal dominant, these perinates have a 50% risk of having been affected. This study determines whether trabecular bone microarchitecture (TBMA) analysis is useful for detecting genetic dwarfism. Proximal metaphyses of humeri were μCT-scanned with a resolution of 7-12 μm. Three volumes of interest were segmented from each bone with TIVMI© software. The TBMA was quantified in BoneJ© using six parameters on which a multivariate analysis was then performed. Two of the Middenbeemster perinates show a quantitatively different TBMA organization. These results and the family's medical history suggest a diagnosis of genetic dwarfism for this two perinates. This study provides evidence to support the efficacy of μCT for diagnosing early-stage bone disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Zák, J; Kapitola, J; Povýsil, C
2003-01-01
Authors deal with question, if there is possibility to infer bone histological structure (described by histomorphometric parameters of trabecular bone volume and trabecular thickness) from bone density, ash weight or even from weight of animal (rat). Both tibias of each of 30 intact male rats, 90 days old, were processed. Left tibia was utilized to the determination of histomorphometric parameters of undecalcified bone tissue patterns by automatic image analysis. Right tibia was used to the determination of values of bone density, using Archimedes' principle. Values of bone density, ash weight, ash weight related to bone volume and animal weight were correlated with histomorphometric parameters (trabecular bone volume, trabecular thickness) by Pearson's correlation test. One could presume the existence of relation between data, describing bone mass at the histological level (trabecular bone of tibia) and other data, describing mass of whole bone or even animal mass (weight). But no statistically significant correlation was found. The reason of the present results could be in the deviations of trabecular density in marrow of tibia. Because of higher trabecular bone density in metaphyseal and epiphyseal regions, the histomorphometric analysis of trabecular bone is preferentially done in these areas. It is possible, that this irregularity of trabecular tibial density could be the source of the deviations, which could influence the results of correlations determined. The values of bone density, ash weight and animal weight do not influence trabecular bone volume and vice versa: static histomorphometric parameters of trabecular bone do not reflect bone density, ash weight and weight of animal.
Klijn, R J; van den Beucken, J J J P; Bronkhorst, E M; Berge, S J; Meijer, G J; Jansen, J A
2012-04-01
No studies are available that provide predictive parameters regarding the expected amount of resorption after maxillary sinus augmentation surgery using autologous bone grafts. Therefore, the aim of this study was to determine parameters influencing the outcome of the bone graft resorption process. In 20 patients, three-dimensional analysis of alveolar ridge dimensions and bone graft volume change in the atrophic posterior maxilla was performed by Cone-Beam Computerized Tomography imaging. Ridge dimensions were assessed before maxillary sinus augmentation surgery. Bone graft volumes were compared after maxillary sinus floor augmentation surgery and a graft healing interval of several months. To analyze the relation between bone volume changes with the independent variables, patients' gender, age, alveolar crest height and width, and graft healing time interval, a multi-level extension of linear regression was applied. A residual bone height of 6.0 mm (SD = 3.6 mm) and 6.2 mm (SD = 3.6 mm) was found at the left and right sides, respectively. Moreover, alveolar bone widths of 6.5 mm (SD = 2.2 mm) and 7.0 mm (SD = 2.3 mm) at the premolars, and 8.8 mm (SD = 2.2 mm) and 8.9 mm (SD = 2.5 mm) at the molars regions were found at the left and right site, respectively. Bone graft volume decreased by 25.0% (SD = 21.0%) after 4.7 months (SD = 2.7, median = 4.0 months) of healing time. The variables "age" (P = 0.009) and mean alveolar crest "bone height" (P = 0.043), showed a significant influence on bone graft resorption. A decrease of 1.0% (SE = 0.3%) of bone graft resorption was found for each year the patient grew older, and an increase in bone graft resorption of 1.8% (SE = 0.8%) was found for each mm of original bone height before sinus floor augmentation. Graft resorption occurs when using autologous bone grafts for maxillary sinus augmentation. Alveolar crest bone height and patient age have a significant effect on graft resorption, with increased resorption for higher alveolar crest bone height and decreased resorption for older patients. Consequently, patient characteristics that affect the process of bone graft resorption should be given full consideration, when performing sinus augmentation surgery. © 2011 John Wiley & Sons A/S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaikina, M. V., E-mail: chaikinam@solid.nsc.ru; Bulina, N. V., E-mail: bulina@solid.nsc.ru; Prosanov, I. Yu., E-mail: prosanov@mail.ru
The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La{sup 3+}) for calcium ions and silicate ((SiO{sub 4}){sup 4−}-group) for the phosphate group with the substituent concentrations in the range 0.2–2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La{sup 3+} in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It ismore » known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.« less
NASA Astrophysics Data System (ADS)
Chaikina, M. V.; Komarova, E. G.; Sharkeev, Yu. P.; Bulina, N. V.; Prosanov, I. Yu.
2016-08-01
The paper presents the results of mechanochemical synthesis of hydroxyapatite (HAP) with simultaneous substitutions of lanthanum (La3+) for calcium ions and silicate ((SiO4)4--group) for the phosphate group with the substituent concentrations in the range 0.2-2.0 mol per HAP mol. The use of Si-substituted HAP as a coating material promotes accelerated osteosynthesis and osteointegration of implants into the bone tissue. The replacement of calcium ions by La3+ in the HAP structure plays an antimicrobial role preventing inflammatory processes. Annealing-induced variations in the lattice parameters of synthesized samples indicate the substituent incorporation into the HAP structure. It is known that complex compounds with lanthanides are used for cancer chemotherapy. In particular, La plays a key role in the course of treatment of injured defects of bone tissue. In addition, La-substituted HAP can be used for filling bone defects and coating implants in postoperational areas affected by bone cancer.
Do Nonsteroidal Anti-Inflammatory Drugs Affect Bone Healing? A Critical Analysis
Pountos, Ippokratis; Georgouli, Theodora; Calori, Giorgio M.; Giannoudis, Peter V.
2012-01-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) play an essential part in our approach to control pain in the posttraumatic setting. Over the last decades, several studies suggested that NSAIDs interfere with bone healing while others contradict these findings. Although their analgesic potency is well proven, clinicians remain puzzled over the potential safety issues. We have systematically reviewed the available literature, analyzing and presenting the available in vitro animal and clinical studies on this field. Our comprehensive review reveals the great diversity of the presented data in all groups of studies. Animal and in vitro studies present so conflicting data that even studies with identical parameters have opposing results. Basic science research defining the exact mechanism with which NSAIDs could interfere with bone cells and also the conduction of well-randomized prospective clinical trials are warranted. In the absence of robust clinical or scientific evidence, clinicians should treat NSAIDs as a risk factor for bone healing impairment, and their administration should be avoided in high-risk patients. PMID:22272177
Van Wettere, Arnaud J; Redig, Patrick T; Wallace, Larry J; Bourgeault, Craig A; Bechtold, Joan E
2009-12-01
Use of external skeletal fixator-intramedullary pin (ESF-IM) tie-in fixators is an adjustable and effective method of fracture fixation in birds. The objective of this study was to determine the contribution of each of the following parameters to the compressive and torsional rigidity of an ESF-IM pin tie-in applied to avian bones with an osteotomy gap: (1) varying the fixation pin position in the proximal bone segment and (2) increasing the number of fixation pins in one or both bone segments. ESF-IM pin tie-in constructs were applied to humeri harvested from red-tailed hawks (Buteo jamaicensis) (n=24) that had been euthanatized for clinical reasons. Constructs with a variation in the placement of the proximal fixation pin and with 2, 3, or 4 fixation pins applied to avian bone with an osteotomy gap were loaded to a defined displacement in torque and axial compression. Response variables were determined from resulting load-displacement curves (construct stiffness, load at 1-mm displacement). Increasing the number of fixation pins from 1 to 2 per bone segment significantly increased the stiffness in torque (110%) and compression (60%), and the safe load in torque (107%) and compression (50%). Adding a fixation pin to the distal bone segment to form a 3-pin fixator significantly increased the stiffness (27%) and safe load (20%) in torque but not in axial compression. In the configuration with 2 fixation pins, placing the proximal pin distally in the proximal bone segment significantly increased the stiffness in torque (28%), and the safe load in torque (23%) and in axial compression (32%). Results quantified the relative importance of specific parameters affecting the rigidity of ESF-IM pin tie-in constructs as applied to unstable bone fracture models in birds.
Lezón, Christian E; Olivera, María I; Bozzini, Clarisa; Mandalunis, Patricia; Alippi, Rosa M; Boyer, Patricia M
2009-06-01
The aim of the present research was to study if the beta-blocker propranolol, which is known to increase bone mass, could reverse the adverse skeletal effects of mild chronic food restriction in weanling rats. Male Wistar rats were divided into four groups: control, control+propranolol (CP), nutritional growth retardation (NGR) and nutritional growth retardation+propranolol (NGRP). Control and CP rats were fed freely with the standard diet. NGR and NGRP rats received, for 4 weeks, 80 % of the amount of food consumed by the control and CP rats, respectively. Results were expressed as mean values and sem. Food restriction induced detrimental effects on body and femur weight and length (P < 0.05) and bone structural and geometrical properties (P < 0.001), confirming results previously shown in our laboratory. However, the beta-blocker overcame the deleterious effect of nutritional stress on load-bearing capacity, yielding load, bone stiffness, cross-sectional cortical bone area and second moment of inertia of the cross-section in relation to the horizontal axis without affecting anthropometric, histomorphometric and bone morphometric parameters. The results suggest that propranolol administration to mildly chronically undernourished rats markedly attenuates the impaired bone status in this animal model of growth retardation.
Macione, J; Depaula, C A; Guzelsu, N; Kotha, S P
2010-07-01
Previous studies indicate that changes in the longitudinal elastic properties of bone due to changes in mineral content are related to the longitudinal strength of bone tissue. Changes in mineral content are expected to affect bone tissue mechanical properties along all directions, albeit to different extents. However, changes in tissue mechanical properties along the different directions are expected to be correlated to one another. In this study, we investigate if radial, circumferential, and longitudinal moduli are related in bone tissue with varying mineral content. Plexiform bovine femoral bone samples were treated in fluoride ion solutions for a period of 3 and 12 days to obtain bones with 20% and 32% lower effective mineral contents. Transmission ultrasound velocities were obtained in the radial, circumferential, and longitudinal axes of bone and combined with measured densities to obtain corresponding tensorial moduli. Results indicate that moduli decreased with fluoride ion treatments and were significantly correlated to one another (r(2) radial vs. longitudinal = 0.80, r(2) circumferential vs. longitudinal = 0.90, r(2) radial vs. circumferential = 0.85). Densities calculated from using ultrasound parameters, acoustic impedance and transmission velocities, were moderately correlated to those measured by the Archimedes principle (r(2)=0.54, p<0.01). These results suggest that radial and circumferential ultrasound measurements could be used to determine the longitudinal properties of bone and that ultrasound may not be able to predict in vitro densities of bones containing unbonded mineral. Published by Elsevier Ltd.
High fat diet promotes achievement of peak bone mass in young rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna
Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fatmore » mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.« less
Matroskin, A G; Rakhmanova, I V; Dreval', A A; Kislyakov, A N; Vladimirov, A I
The objective of the present study was to elucidate the anatomical features of the structure of the middle ear and eustachian tube in the breast-fed infants of different gestational age that may be responsible for the formation of exudates (fluids). We have examined 150 temporal bones obtained from the children's cadavers that were allocated to three groups as follows: 50 temporal bones obtained at weeks 26-30 weeks of gestation (group 1), 44 bones 31-36 weeks of gestation (group 2), and 37-40 weeks of gestation (full-term babies, group 3),The analysis of the data obtained on an individual bases revealed either increase or decreases in the selected characteristics of the eustachian tube in comparison with the respective average values as well as the well apparent predominance of a single change or a combination of alteration of several parameters in one case in 26-30 weeks and 31-36 weeks groups. No significant changes were found in group 1. It is concluded that the presence of a single change or a combination of two or three abnormal changes in the parameters of the bone structures of the eustachian tube can affect the development of the secretory process in the middle ear especially in the children born after 36 weeks of pregnancy.
Olkowski, B; Charuta, A; Radzki, R; Bieńko, M; Toczko, R
2016-08-01
The study was conducted using 120 commercial broiler chicks (Ross 308) randomly allocated to two experimental groups. The experimental diets, differing only in protein source, either solvent-extracted soya bean meal (SBM) or traditional (non-genetically modified) full-fat soya bean seeds (FFS), were prepared using practical corn-based formulation designed to meet nutritional requirements of broilers. Performance parameters were monitored weekly. Also, the subjects were evaluated daily for overt changes in skeletal anatomy and gait physiology. Randomly selected chickens from each group (seven males and seven females) were euthanized at 2, 3, 4 and 6 weeks of age, and bone specimens were collected for further study. Bone mineral density (BMD) and bone mineral content (BMC) were determined in tibiotarsal bones. Broilers fed FFS diet showed retarded growth rate and decreased feed intake (both p < 0.001). Both BMD and BMC parameters were significantly lower (p < 0.05) in bones of chickens from the FFS group in comparison with the SBM group. The chickens fed the FFS diet showed higher incidence of skeletal pathology including angular deformities and torticollis (both p < 0.01). Of note, cases of torticollis were observed only in FFS group. In many cases, skeletal abnormalities resulted in considerable changes in gait pattern, and in some instances, the pathology of leg bones was so advanced that the affected individuals were unable to walk, but this deformity was not seen in SBM group. From this study, it can be inferred that raw soya beans contain factors that have some specific detrimental effects on skeletal system of chickens. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
LRP5 gene polymorphism and cortical bone
Lauretani, Fulvio; Cepollaro, Chiara; Bandinelli, Stefania; Cherubini, Antonio; Gozzini, Alessia; Masi, Laura; Falchetti, Alberto; Del Monte, Francesca; Carbonell-Sala, Silvia; Marini, Francesca; Tanini, Annalisa; Corsi, Anna Maria; Ceda, Gian Paolo; Brandi, Maria Luisa; Ferrucci, Luigi
2016-01-01
Background and aims There is evidence that distinct genetic polymorphisms of LRP5 are associated with low Bone Mineral Density (BMD) and the risk of fracture. However, relationships between LRP5 polymorphisms and micro- and macro-architectural bone characteristics assessed by pQCT have not been studied. The aim of the present study was to investigate the association of Ala1330Val and Val667Met polymorphisms in LRP5 gene with volumetric BMD (vBMD) and macro-architectural bone parameters in a population-based sample of men and women. Methods We studied 959 participants of the InCHIANTI study (451 men and 508 women, age range: 21–94 yrs). Trabecular vBMD (vBMDt, mg/cm3), cortical vBMD (vBMDc, mg/cm3), cortical bone area (CBA, mm2) and cortical thickness (Ct.Th, mm) at the level of the tibia were assessed by peripheral quantitative computed tomography (pQCT). Ala1330Val and Val667Met genotypes were determined on genomic DNA by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results In age-adjusted analyses both LRP 1330-valine and LRP 667-metionin variants were associated with lower vBMDt in men (p<0.05), and lower vBMDt (p<0.05), Ct.Th (p<0.05) and CBA (p<0.05) in women. After adjusting for multiple confounders, only the association of LRP5 1330-valine and 667-metionin with CBA remained statistically significant (p=0.04 and p=0.01, respectively) in women. Conclusion These findings suggest that both Ala1330Val and Val667Met LRP5 polymorphisms may affect the determination of geometric bone parameters in women. PMID:21116122
Mei, Kai; Kopp, Felix K; Bippus, Rolf; Köhler, Thomas; Schwaiger, Benedikt J; Gersing, Alexandra S; Fehringer, Andreas; Sauter, Andreas; Münzel, Daniela; Pfeiffer, Franz; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B; Baum, Thomas
2017-12-01
Osteoporosis diagnosis using multidetector CT (MDCT) is limited to relatively high radiation exposure. We investigated the effect of simulated ultra-low-dose protocols on in-vivo bone mineral density (BMD) and quantitative trabecular bone assessment. Institutional review board approval was obtained. Twelve subjects with osteoporotic vertebral fractures and 12 age- and gender-matched controls undergoing routine thoracic and abdominal MDCT were included (average effective dose: 10 mSv). Ultra-low radiation examinations were achieved by simulating lower tube currents and sparse samplings at 50%, 25% and 10% of the original dose. BMD and trabecular bone parameters were extracted in T10-L5. Except for BMD measurements in sparse sampling data, absolute values of all parameters derived from ultra-low-dose data were significantly different from those derived from original dose images (p<0.05). BMD, apparent bone fraction and trabecular thickness were still consistently lower in subjects with than in those without fractures (p<0.05). In ultra-low-dose scans, BMD and microstructure parameters were able to differentiate subjects with and without vertebral fractures, suggesting osteoporosis diagnosis is feasible. However, absolute values differed from original values. BMD from sparse sampling appeared to be more robust. This dose-dependency of parameters should be considered for future clinical use. • BMD and quantitative bone parameters are assessable in ultra-low-dose in vivo MDCT scans. • Bone mineral density does not change significantly when sparse sampling is applied. • Quantitative trabecular bone microstructure measurements are sensitive to dose reduction. • Osteoporosis subjects could be differentiated even at 10% of original dose. • Radiation exposure should be considered when comparing quantitative bone parameters.
Liu, X Sherry; Sajda, Paul; Saha, Punam K; Wehrli, Felix W; Bevill, Grant; Keaveny, Tony M; Guo, X Edward
2008-01-01
Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone. Introduction Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type–associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied. Materials and Methods Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using μCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type–associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared. Results The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r 2 = 0.95∼0.99) compared with BV/TV (r 2 = 0.93∼0.94). The plate-associated morphological parameters generally showed higher correlations with the corresponding standard morphological parameters than the rod-associated parameters. Multiple linear regression models of six elastic moduli with individual trabeculae segmentation (ITS)-based morphological parameters (adjusted r 2 = 0.95∼0.98) performed equally well as those with standard morphological parameters (adjusted r 2 = 0.94∼0.97) but revealed specific contributions from individual trabecular plates or rods. Conclusions The ITS-based morphological analyses provide a better characterization of the morphology and trabecular orientation of trabecular bone. The axial loading of trabecular bone is mainly sustained by the axially aligned trabecular bone volume. Results suggest that trabecular plates dominate the overall elastic properties of trabecular bone. PMID:17907921
Effects of dietary bread crust Maillard reaction products on calcium and bone metabolism in rats.
Roncero-Ramos, Irene; Delgado-Andrade, Cristina; Haro, Ana; Ruiz-Roca, Beatriz; Morales, Francisco J; Navarro, María Pilar
2013-06-01
Maillard reaction products (MRP) consumption has been related with the development of bone degenerative disorders, probably linked to changes in calcium metabolism. We aimed to investigate the effects of MRP intake from bread crust on calcium balance and its distribution, and bone metabolism. During 88 days, rats were fed control diet or diets containing bread crust as source of MRP, or its soluble high molecular weight, soluble low molecular weight or insoluble fractions (bread crust, HMW, LMW and insoluble diets, respectively). In the final week, a calcium balance was performed, then animals were sacrified and some organs removed to analyse calcium levels. A second balance was carried out throughout the experimental period to calculate global calcium retention. Biochemical parameters and bone metabolism markers were measured in serum or urine. Global calcium bioavailability was unmodified by consumption of bread crust or its isolate fractions, corroborating the previously described low affinity of MRP to bind calcium. Despite this, a higher calcium concentration was found in femur due to smaller bones having a lower relative density. The isolate consumption of the fractions altered some bone markers, reflecting a situation of increased bone resorption or higher turnover; this did not take place in the animals fed the bread crust diet. Thus, the bread crust intake does not affect negatively calcium bioavailability and bone metabolism.
Kim, Yoon Jeong; Henkin, Jeffrey
2015-04-01
Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p < .05. A wide range of bone density was observed. There was a significant difference between the maxilla and mandible. All micro architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.
Duong, Le T; Crawford, Randy; Scott, Kevin; Winkelmann, Christopher T; Wu, Gouxin; Szczerba, Pete; Gentile, Michael A
2016-12-01
Odanacatib (ODN) a selective and reversible cathepsin K inhibitor, inhibits bone resorption, increases bone mass and reduces fracture risk in women with osteoporosis. A 16-month (~7-remodeling cycles) study was carried out in treatment mode to assess the effects of ODN versus ALN on bone mass, remodeling status and biomechanical properties of lumbar vertebrae (LV) and femur in ovariectomized (OVX) rabbits. This study also evaluated the impact of discontinuing ODN on these parameters. Rabbits at 7.5months post-OVX were dosed for 16-months with ODN (7.5μM·h 0-24 , in food) or ALN (0.2mg/kg/wk, s.c.) and compared to vehicle-treated OVX- (OVX+Veh) or Sham-operated animals. After 8months, treatment was discontinued in half of the ODN group. ODN treatment increased in vivo LV aBMD and trabecular (Tb) vBMD until reaching plateau at month 12 by 16% and 23% vs. baseline, respectively, comparable levels to that in Sham and significantly above OVX+Veh. LV BMD was also higher in ALN that plateaued around month 8 to levels below that in ODN or Sham. ODN treatment resulted in higher BMD, structure and improved biomechanical strength of LV and central femur (CF) to levels similar to Sham. ALN generally showed less robust efficacy compared to ODN. Neither ODN nor ALN influenced material properties at these bone sites following ODN or ALN treatment for 7 remodeling cycles in rabbits. ODN and ALN persistently reduced the bone resorption marker urinary helical peptide over study duration. While ALN reduced the bone formation marker BSAP, ODN treatment did not affect this marker. ODN also preserved histomorphometry-based bone formation indices in LV trabecular, CF endocortical and intracortical surfaces, at the levels of OVX+Veh. Discontinuation of ODN returned bone mass, structure and strength parameters to the comparable respective levels in OVX+Veh. Together, these data demonstrate efficacy and bone safety profile of ODN and suggests the potential long-term benefits of this agent over ALN with respect to accrued bone mass without long-term effects on bone formation. Copyright © 2016 Elsevier Inc. All rights reserved.
Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba
2017-11-01
The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the aforementioned parameters. This optimization yielded a set of data that can considerably improve orthopedic osteosynthesis outcomes.
Bone Formation Rate in Experimental Disuse Osteoporosis in Monkeys
NASA Technical Reports Server (NTRS)
Cann, Christopher; Young, Donald R.
1976-01-01
Specific mechanisms underlying weightless and hypodynamic bone loss are obscure. A principal relationship which must be affected is the balance between bone formation and bone resorption rates. In order to better define the influence of those parameters on bone loss, and also to develop measurements in other species as a useful adjunct to human research, studies were undertaken with experimental monkeys. Tests were conducted with a total of 6 adult male monkeys, weighing 10-13 kg, and approximately 10-12 yrs. of age to evaluate specifically bone formation rate during the development of disuse osteoporosis and osteopenia. Three animals were restrained in a semi-recumbent position for six months; three animals served as normal caged controls. Food intake (Purina) was held relatively constant at 200g/day for each animal. Using a Norland Bone Mineral Analyzer, bone mineral losses of 3.5 to 6% were seen in the mid-shaft of the tibia and in the distal radius. Bone loss was confirmed radiographically, with observation of thinning of the proximal tibial cortex and trabeculae in the calcaneus. Bone formation rate was determined using standard Ca-47 kinetics under metabolic balance conditions. After six months of restraint, accretion was 7.2-13.2 mg Ca/kg/day, compared to 3.2-4.1 mg Ca/kg/day in caged controls and 3-8 mg Ca/kg/day in normal adult humans. Fecal and urine calcium was 25-40% higher in restrained animals than in controls. Dietary calcium absorption decreases during restraint, and calcium turnover increases, implying a rise in bone resorption rate concommitant with the observed rise in bone accretion rate. Further studies dealing specifically with bone resorption are underway to define this more fully.
Ground reaction forces and bone parameters in females with tibial stress fracture.
Bennell, Kim; Crossley, Kay; Jayarajan, Jyotsna; Walton, Elizabeth; Warden, Stuart; Kiss, Z Stephen; Wrigley, Tim
2004-03-01
Tibial stress fracture is a common overuse running injury that results from the interplay of repetitive mechanical loading and bone strength. This research project aimed to determine whether female runners with a history of tibial stress fracture (TSF) differ in ground reaction force (GRF) parameters during running, regional bone density, and tibial bone geometry from those who have never sustained a stress fracture (NSF). Thirty-six female running athletes (13 TSF; 23 NSF) ranging in age from 18 to 44 yr were recruited for this cross-sectional study. The groups were well matched for demographic, training, and menstrual parameters. A force platform measured selected GRF parameters (peak and time to peak for vertical impact and active forces, and horizontal braking and propulsive forces) during overground running at 4.0 m.s.(-1). Lumbar spine, proximal femur, and distal tibial bone mineral density were assessed by dual energy x-ray absorptiometry. Tibial bone geometry (cross-sectional dimensions and areas, and second moments of area) was calculated from a computerized tomography scan at the junction of the middle and distal thirds. There were no significant differences between the groups for any of the GRF, bone density, or tibial bone geometric parameters (P > 0.05). Both TSF and NSF subjects had bone density levels that were average or above average compared with a young adult reference range. Factor analysis followed by discriminant function analysis did not find any combinations of variables that differentiated between TSF and NSF groups. These findings do not support a role for GRF, bone density, or tibial bone geometry in the development of tibial stress fractures, suggesting that other risk factors were more important in this cohort of female runners.
Bone density in the obese child - clinical considerations and diagnostic challenges
Kelley, Jennifer; Crabtree, Nicola; Zemel, Babette S.
2017-01-01
The prevalence of obesity in children has reached epidemic proportions. Concern about bone health in obese children, in part, derives from the potentially increased fracture risk associated with obesity. Additional risk factors that affect bone mineral accretion, may also contribute to obesity, such as low physical activity and nutritional factors. Consequences of obesity, such as inflammation, insulin resistance and non-alcoholic fatty liver disease, may also affect bone mineral acquisition, especially during the adolescent years when rapid increases in bone contribute to attaining peak bone mass. Further, numerous pediatric health conditions are associated with excess adiposity, altered body composition or endocrine disturbances that can affect bone accretion. Thus, there is a multitude of reasons for considering clinical assessment of bone health in an obese child. Multiple diagnostic challenges affect the measurement of bone density and its interpretation. These include greater precision error, difficulty in positioning, and the effects of increased lean and fat tissue on bone health outcomes. Future research is required to address these issues to improve bone health assessment in obese children. PMID:28105511
Lu, Steven; Lam, Johnny; Trachtenberg, Jordan E; Lee, Esther J; Seyednejad, Hajar; van den Beucken, Jeroen J J P; Tabata, Yasuhiko; Kasper, F Kurtis; Scott, David W; Wong, Mark E; Jansen, John A; Mikos, Antonios G
2015-12-01
The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and bone repair, respectively, at 6 and 12 weeks. Correlation analysis revealed significant associations between specific cartilage indices and subchondral bone parameters that varied with location in the defect (cortical vs. trabecular region), time point (6 vs. 12 weeks), and experimental group (insulin-like growth factor-1 only, bone morphogenetic protein-2 only, or both growth factors). In particular, significant correlations consistently existed between cartilage surface regularity and bone quantity parameters. Overall, correlation analysis between cartilage and bone repair provided a fuller understanding of osteochondral repair and can help drive informed studies for future osteochondral regeneration strategies.
Microarchitecture of irradiated bone: comparison with healthy bone
NASA Astrophysics Data System (ADS)
Bléry, Pauline; Amouriq, Yves; Guédon, Jeanpierre; Pilet, Paul; Normand, Nicolas; Durand, Nicolas; Espitalier, Florent; Arlicot, Aurore; Malard, Olivier; Weiss, Pierre
2012-03-01
The squamous cell carcinomas of the upper aero-digestive tract represent about ten percent of cancers. External radiation therapy leads to esthetic and functional consequences, and to a decrease of the bone mechanical abilities. For these patients, the oral prosthetic rehabilitation, including possibilities of dental implant placement, is difficult. The effects of radiotherapy on bone microarchitecture parameters are not well known. Thus, the purpose of this study is to assess the effects of external radiation on bone micro architecture in an experimental model of 25 rats using micro CT. 15 rats were irradiated on the hind limbs by a single dose of 20 Grays, and 10 rats were non irradiated. Images of irradiated and healthy bone were compared. Bone microarchitecture parameters (including trabecular thickness, trabecular number, trabecular separation, connectivity density and tissue and bone volume) between irradiated and non-irradiated bones were calculated and compared using a Mann and Whitney test. After 7 and 12 weeks, images of irradiated and healthy bone are different. Differences on the irradiated and the healthy bone populations exhibit a statistical significance. Trabecular number, connectivity density and closed porosity are less important on irradiated bone. Trabecular thickness and separation increase for irradiated bone. These parameters indicate a decrease of irradiated bone properties. Finally, the external irradiation induces changes on the bone micro architecture. This knowledge is of prime importance for better oral prosthetic rehabilitation, including implant placement.
Lapmanee, Sarawut; Charoenphandhu, Narattaphol; Aeimlapa, Ratchaneevan; Suntornsaratoon, Panan; Wongdee, Kannikar; Tiyasatkulkovit, Wacharaporn; Kengkoom, Kanchana; Chaimongkolnukul, Khuanjit; Seriwatanachai, Dutmanee; Krishnamra, Nateetip
2014-10-01
Type 2 diabetes mellitus (T2DM) often occurs concurrently with high blood cholesterol or dyslipidemia. Although T2DM has been hypothesized to impair bone microstructure, several investigations showed that, when compared to age-matched healthy individuals, T2DM patients had normal or relatively high bone mineral density (BMD). Since cholesterol and lipids profoundly affect the function of osteoblasts and osteoclasts, it might be cholesterol that obscured the changes in BMD and bone microstructure in T2DM. The present study, therefore, aimed to determine bone elongation, epiphyseal histology, and bone microstructure in non-obese T2DM Goto-Kakizaki rats treated with normal (GK-ND) and high cholesterol diet. We found that volumetric BMD was lower in GK-ND rats than the age-matched wild-type controls. In histomorphometric study of tibial metaphysis, T2DM evidently suppressed osteoblast function as indicated by decreases in osteoblast surface, mineral apposition rate, and bone formation rate in GK-ND rats. Meanwhile, the osteoclast surface and eroded surface were increased in GK-ND rats, thus suggesting an activation of bone resorption. T2DM also impaired bone elongation, presumably by retaining the chondrogenic precursor cells in the epiphyseal resting zone. Interestingly, several bone changes in GK rats (e.g., increased osteoclast surface) disappeared after high cholesterol treatment as compared to wild-type rats fed high cholesterol diet. In conclusion, high cholesterol diet was capable of masking the T2DM-induced osteopenia and changes in several histomorphometric parameters that indicated bone microstructural defect. Cholesterol thus explained, in part, why a decrease in BMD was not observed in T2DM, and hence delayed diagnosis of the T2DM-associated bone disease.
Glorie, Lorenzo; Behets, Geert J; Baerts, Lesley; De Meester, Ingrid; D'Haese, Patrick C; Verhulst, Anja
2014-09-01
Dipeptidyl peptidase IV (DPP IV) modulates protein activity by removing dipeptides. DPP IV inhibitors are currently used to improve glucose tolerance in type 2 diabetes patients. DPP IV substrates not only increase insulin secretion but also affect bone metabolism. In this study, the effect of DPP IV inhibitor sitagliptin on bone was evaluated in normal and streptozotocin-induced diabetic rats. This study included 64 male Wistar rats divided into four groups (n = 16): two diabetic and two control groups. One diabetic and one control group received sitagliptin through drinking water. Tibiae were scanned every 3 wk using an in vivo μCT scanner. After 6 and 12 wk, rats were euthanized for histomorphometric analysis of bone parameters. The mechanical resistance of femora to fracture was assessed using a three-point bending test, and serum levels of bone metabolic markers were measured. Efficient DPP IV inhibition was achieved in sitagliptin-treated groups. Trabecular bone loss, the decrease in trabecular number, and the increase in trabecular spacing was attenuated through sitagliptin treatment in diabetic rats, as shown by in vivo μCT. Bone histomorphometry was in line with these results. μCT analysis furthermore showed that sitagliptin prevented cortical bone growth stagnation in diabetic rats, resulting in stronger femora during three-point bending. Finally, the serum levels of the resorption marker CTX-I were significantly lower in sitagliptin-treated diabetic animals compared with untreated diabetic animals. In conclusion, sitagliptin treatment attenuates bone loss and increases bone strength in diabetic rats probably through the reduction of bone resorption and independent of glycemic management. Copyright © 2014 the American Physiological Society.
Buie, Helen R; Bosma, Nick A; Downey, Charlene M; Jirik, Frank R; Boyd, Steven K
2013-11-01
Bone defects can occur in various forms and present challenges to performing a standard micro-CT evaluation of bone quality because most measures are suited to homogeneous structures rather than ones with spatially focal abnormalities. Such defects are commonly associated with pain and fragility. Research involving bone defects requires quantitative approaches to be developed if micro-CT is to be employed. In this study, we demonstrate that measures of inter-microarchitectural bone spacing are sensitive to the presence of focal defects in the proximal tibia of two distinctly different mouse models: a burr-hole model for fracture healing research, and a model of osteolytic bone metastases. In these models, the cortical and trabecular bone compartments were both affected by the defect and were, therefore, evaluated as a single unit to avoid splitting the defects into multiple analysis regions. The burr-hole defect increased mean spacing (Sp) by 27.6%, spacing standard deviation (SpSD) by 113%, and maximum spacing (Spmax) by 72.8%. Regression modeling revealed SpSD (β=0.974, p<0.0001) to be a significant predictor of the defect volume (R(2)=0.949) and Spmax (β=0.712, p<0.0001) and SpSD (β=0.271, p=0.022) to be significant predictors of the defect diameter (R(2)=0.954). In the mice with osteolytic bone metastases, spacing parameters followed similar patterns of change as reflected by other imaging technologies, specifically bioluminescence data which is indicative of tumor burden. These data highlight the sensitivity of spacing measurements to bone architectural abnormalities from 3D micro-CT data and provide a tool for quantitative evaluation of defects within a bone. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Burt, Lauren A; Gaudet, Sharon; Kan, Michelle; Rose, Marianne S; Billington, Emma O; Boyd, Steven K; Hanley, David A
2018-04-01
The optimum dose of vitamin D and corresponding serum 25-hydroxyvitamin D (25OHD) concentration for bone health is still debated and some health practitioners are recommending doses well above the Canada/USA recommended Dietary Reference Intake (DRI). We designed a three-year randomized double-blind clinical trial investigating whether there are dose-dependent effects of vitamin D supplementation above the Dietary Reference Intake (DRI) on bone health. The primary aims of this study are to assess, whether supplementation of vitamin D 3 increases 1) volumetric bone mineral density measured by high-resolution peripheral quantitative computed tomography (HR-pQCT); 2) bone strength assessed by finite element analysis, and 3) areal bone mineral density by dual X-ray absorptiometry (DXA). Secondary aims are to understand whether vitamin D 3 supplementation improves parameters of bone microarchitecture, balance, physical function and quality of life. Participants are men and women aged 55-70 years, with women at least 5-years post-menopause. The intervention is daily vitamin D 3 supplementation doses of 400, 4000 or 10,000 IU. Participants not achieving adequate dietary calcium intake are provided with calcium supplementation, up to a maximum supplemental dose of 600 mg elemental calcium per day. Results from this three-year study will provide evidence whether daily vitamin D 3 supplementation with adequate calcium intake can affect bone density, bone microarchitecture and bone strength in men and women. Furthermore, the safety of high dose daily vitamin D 3 supplementation will be explored. Copyright © 2018 Elsevier Inc. All rights reserved.
Cheung, T F; Cheuk, K Y; Yu, F W P; Hung, V W Y; Ho, C S; Zhu, T Y; Ng, B K W; Lee, K M; Qin, L; Ho, S S Y; Wong, G W K; Cheng, J C Y; Lam, T P
2016-08-01
Vitamin D deficiency and insufficiency are highly prevalent among adolescents in Hong Kong, which is a sub-tropical city with ample sunshine. Vitamin D level is significantly correlated with key bone density and bone quality parameters. Further interventional studies are warranted to define the role of vitamin D supplementation for improvement of bone health among adolescents. The relationship between bone quality parameters and vitamin D (Vit-D) status remains undefined among adolescents. The aims of this study were to evaluate Vit-D status and its association with both bone density and bone quality parameters among adolescents. Three hundred thirty-three girls and 230 boys (12-16 years old) with normal health were recruited in summer and winter separately from local schools. Serum 25(OH) Vit-D level, bone density and quality parameters by Dual Energy X-ray Absorptiometry (DXA) and High-Resolution peripheral Quantitative Computed Tomography (HR-pQCT), dietary calcium intake, and physical activity level were assessed. Sixty-four point seven percent and 11.4 % of subjects were insufficient [25 ≤ 25(OH)Vit-D ≤ 50 nmol/L] and deficient [25(OH)Vit-D < 25 nmol/L] in Vit-D, respectively. The mean level of serum 25(OH)Vit-D in summer was significantly higher than that in winter (44.7 ± 13.6 and 35.9 ± 12.6 nmol/L, respectively) without obvious gender difference. In girls, areal bone mineral density (aBMD) and bone mineral content (BMC) of bilateral femoral necks, cortical area, cortical thickness, total volumetric bone mineral density (vBMD), and trabecular thickness were significantly correlated with 25(OH)Vit-D levels. In boys, aBMD of bilateral femoral necks, BMC of the dominant femoral neck, cortical area, cortical thickness, total vBMD, trabecular vBMD, BV/TV, and trabecular separation were significantly correlated with 25(OH)Vit-D levels. Vit-D insufficiency was highly prevalent among adolescents in Hong Kong with significant correlation between Vit-D levels and key bone density and bone quality parameters being detected in this study. Given that this is a cross-sectional study and causality relationship cannot be inferred, further interventional studies investigating the role of Vit-D supplementation on improving bone health among adolescents are warranted.
Wang, Zhiwei; Chen, Huanxiong; Yu, Y. Eric; Zhang, Jiajun; Cheuk, Ka-Yee; Ng, Bobby K. W.; Qiu, Yong; Guo, X. Edward; Cheng, Jack C. Y.; Lee, Wayne Y. W.
2017-01-01
Adolescent idiopathic scoliosis is a complex disease with unclear etiopathogenesis. Systemic and persistent low bone mineral density is an independent prognostic factor for curve progression. The fundamental question of how bone quality is affected in AIS remains controversy because there is lack of site-matched control for detailed analysis on bone-related parameters. In this case-control study, trabecular bone biopsies from iliac crest were collected intra-operatively from 28 severe AIS patients and 10 matched controls with similar skeletal and sexual maturity, anthropometry and femoral neck BMD Z-score to control confounding effects. In addition to static histomorphometry, micro-computed tomography (μCT) and real time-PCR (qPCR) analyses, individual trabecula segmentation (ITS)-based analysis, finite element analysis (FEA), energy dispersive X-ray spectroscopy (EDX) were conducted to provide advanced analysis of structural, mechanical and mineralization features. μCT and histomorphometry showed consistently reduced trabecular number and connectivity. ITS revealed predominant change in trabecular rods, and EDX confirmed less mineralization. The structural and mineralization abnormality led to slight reduction in apparent modulus, which could be attributed to differential down-regulation of Runx2, and up-regulation of Spp1 and TRAP. In conclusion, this is the first comprehensive study providing direct evidence of undefined unique pathological changes at different bone hierarchical levels in AIS. PMID:28054655
Effect of Low-Dose MDCT and Iterative Reconstruction on Trabecular Bone Microstructure Assessment.
Kopp, Felix K; Holzapfel, Konstantin; Baum, Thomas; Nasirudin, Radin A; Mei, Kai; Garcia, Eduardo G; Burgkart, Rainer; Rummeny, Ernst J; Kirschke, Jan S; Noël, Peter B
2016-01-01
We investigated the effects of low-dose multi detector computed tomography (MDCT) in combination with statistical iterative reconstruction algorithms on trabecular bone microstructure parameters. Twelve donated vertebrae were scanned with the routine radiation exposure used in our department (standard-dose) and a low-dose protocol. Reconstructions were performed with filtered backprojection (FBP) and maximum-likelihood based statistical iterative reconstruction (SIR). Trabecular bone microstructure parameters were assessed and statistically compared for each reconstruction. Moreover, fracture loads of the vertebrae were biomechanically determined and correlated to the assessed microstructure parameters. Trabecular bone microstructure parameters based on low-dose MDCT and SIR significantly correlated with vertebral bone strength. There was no significant difference between microstructure parameters calculated on low-dose SIR and standard-dose FBP images. However, the results revealed a strong dependency on the regularization strength applied during SIR. It was observed that stronger regularization might corrupt the microstructure analysis, because the trabecular structure is a very small detail that might get lost during the regularization process. As a consequence, the introduction of SIR for trabecular bone microstructure analysis requires a specific optimization of the regularization parameters. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.
Carvalho, Catarina; Magalhães, Juliana; Pereira, Luciano; Simões-Silva, Liliana; Castro-Ferreira, Inês; Frazão, João Miguel
2016-01-01
Post-transplant bone disease results from multiple factors, including previous bone and mineral metabolism disturbances and effects from transplant-related medications. Bone biopsy remains the gold-standard diagnostic tool. We aimed to prospectively evaluate trabecular and cortical bone by histomorphometry after kidney transplantation. Seven patients, willing to perform follow-up bone biopsy, were included in the study. Dual-X-ray absorptiometry and trans-iliac bone biopsy were performed within the first 2 months after renal transplantation and repeated after 2-5 years of follow-up. Follow-up biopsy revealed a significant decrease in osteoblast surface/bone surface (0.91 ± 0.81 to 0.47 ± 0.12%, P = 0.036), osteoblasts number/bone surface (0.45 (0.23, 0.94) to 0.00/mm(2) , P = 0.018) and erosion surface/bone surface (3.75 ± 2.02 to 2.22 ± 1.38%, P = 0.044). A decrease in trabecular number (3.55 (1.81, 2.89) to 1.55/mm (1.24, 2.06), P = 0.018) and increase in trabecular separation (351.65 ± 135.04 to 541.79 ± 151.91 μm, P = 0.024) in follow-up biopsy suggest loss in bone quantity. We found no significant differences in cortical analysis, except a reduction in external cortical osteonal eroded surface (5.76 (2.94, 13.97) to 3.29% (0.00, 6.67), P = 0.043). Correlations between bone histomorphometric and dual-X-ray absorptiometry parameters gave inconsistent results. The results show a reduction in bone activity, suggesting increased risk of adynamic bone and loss of bone volume. Cortical bone seems less affected by post-transplant biological changes in the first years after kidney transplantation. © 2015 Asian Pacific Society of Nephrology.
Experimental aspect of solid-state nuclear magnetic resonance studies of biomaterials such as bones.
Singh, Chandan; Rai, Ratan Kumar; Sinha, Neeraj
2013-01-01
Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly becoming a popular technique to probe micro-structural details of biomaterial such as bone with pico-meter resolution. Due to high-resolution structural details probed by SSNMR methods, handling of bone samples and experimental protocol are very crucial aspects of study. We present here first report of the effect of various experimental protocols and handling methods of bone samples on measured SSNMR parameters. Various popular SSNMR experiments were performed on intact cortical bone sample collected from fresh animal, immediately after removal from animal systems, and results were compared with bone samples preserved in different conditions. We find that the best experimental conditions for SSNMR parameters of bones correspond to preservation at -20 °C and in 70% ethanol solution. Various other SSNMR parameters were compared corresponding to different experimental conditions. Our study has helped in finding best experimental protocol for SSNMR studies of bone. This study will be of further help in the application of SSNMR studies on large bone disease related animal model systems for statistically significant results. © 2013 Elsevier Inc. All rights reserved.
Sieroń-Stołtny, Karolina; Teister, Łukasz; Cieślar, Grzegorz; Sieroń, Dominik; Śliwinski, Zbigniew; Kucharzewski, Marek; Sieroń, Aleksander
2015-01-01
The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin) and bone resorption (NTX, pyridinoline) markers in blood serum. The study was carried out on male rats divided into two groups: experimental group subjected to 28-day cycle of exposures in electromagnetic field of 900 MHz frequency generated by mobile phone and a control, sham-exposed one. The mobile phone-generated electromagnetic field did not influence the macrometric parameters of long bones and L4 vertebra, it altered mechanical properties of bones (stress and energy at maximum bending force, stress at fracture), it decreased the content of calcium in long bones and L4 vertebra, and it altered the concentration of osteogenesis and bone resorption markers in rats. On the basis of obtained results, it was concluded that electromagnetic field generated by 900 MHz mobile phone does not have a direct impact on macrometric parameters of bones; however, it alters the processes of bone mineralization and the intensity of bone turnover processes and thus influences the mechanical strength of bones.
Sieroń-Stołtny, Karolina; Teister, Łukasz; Cieślar, Grzegorz; Sieroń, Dominik; Śliwinski, Zbigniew; Sieroń, Aleksander
2015-01-01
The study was focused on the influence of electromagnetic field generated by mobile phone on the skeletal system of rats, assessed by measuring the macrometric parameters of bones, mechanical properties of long bones, calcium and phosphorus content in bones, and the concentration of osteogenesis (osteocalcin) and bone resorption (NTX, pyridinoline) markers in blood serum. The study was carried out on male rats divided into two groups: experimental group subjected to 28-day cycle of exposures in electromagnetic field of 900 MHz frequency generated by mobile phone and a control, sham-exposed one. The mobile phone-generated electromagnetic field did not influence the macrometric parameters of long bones and L4 vertebra, it altered mechanical properties of bones (stress and energy at maximum bending force, stress at fracture), it decreased the content of calcium in long bones and L4 vertebra, and it altered the concentration of osteogenesis and bone resorption markers in rats. On the basis of obtained results, it was concluded that electromagnetic field generated by 900 MHz mobile phone does not have a direct impact on macrometric parameters of bones; however, it alters the processes of bone mineralization and the intensity of bone turnover processes and thus influences the mechanical strength of bones. PMID:25705697
Drilling force and temperature of bone under dry and physiological drilling conditions
NASA Astrophysics Data System (ADS)
Xu, Linlin; Wang, Chengyong; Jiang, Min; He, Huiyu; Song, Yuexian; Chen, Hanyuan; Shen, Jingnan; Zhang, Jiayong
2014-11-01
Many researches on drilling force and temperature have been done with the aim to reduce the labour intensiveness of surgery, avoid unnecessary damage and improve drilling quality. However, there has not been a systematic study of mid- and high-speed drilling under dry and physiological conditions(injection of saline). Furthermore, there is no consensus on optimal drilling parameters. To study these parameters under dry and physiological drilling conditions, pig humerus bones are drilled with medical twist drills operated using a wide range of drilling speeds and feed rates. Drilling force and temperature are measured using a YDZ-II01W dynamometer and a NEC TVS-500EX thermal infrared imager, respectively, to evaluate internal bone damage. To evaluate drilling quality, bone debris and hole morphology are observed by SEM(scanning electron microscopy). Changes in drilling force and temperature give similar results during drilling such that the value of each parameter peaks just before the drill penetrates through the osteon of the compact bone into the trabeculae of the spongy bone. Drilling temperatures under physiological conditions are much lower than those observed under dry conditions, while a larger drilling force occurs under physiological conditions than dry conditions. Drilling speed and feed rate have a significant influence on drilling force, temperature, bone debris and hole morphology. The investigation of the effect of drilling force and temperature on internal bone damage reveals that a drilling speed of 4500 r/min and a feed rate of 50 mm/min are recommended for bone drilling under physiological conditions. Drilling quality peaks under these optimal parameter conditions. This paper proposes the optimal drilling parameters under mid- and high-speed surgical drilling, considering internal bone damage and drilling quality, which can be looked as a reference for surgeons performing orthopedic operations.
Nagel, Katrin; Bishop, Nicholas E; Schlegel, Ulf J; Püschel, Klaus; Morlock, Michael M
2017-02-01
The strength of the cement-bone interface in tibial component fixation depends on the morphology of the cement mantle. The purpose of this study was to identify thresholds of cement morphology parameters to maximize fixation strength using a minimum amount of cement. Twenty-three cadaveric tibiae were analyzed that had been implanted with tibial trays in previous studies and for which the pull-out strength of the tray had been measured. Specimens were separated into a group failing at the cement-bone interface (INTERFACE) and one failing in the bulk bone (BULK). Maximum pull-out strength corresponds to the ultimate strength of the bulk bone if the cement-bone interface is sufficiently strong. 3D models of the cement mantle in situ were reconstructed from computed tomography scans. The influences of bone mineral density and 6 cement morphology parameters (reflecting cement penetration, bone-cement interface, cement volume) on pull-out strength of the BULK group were determined using multiple regression analysis. The threshold of each parameter for classification of the specimens into either group was determined using receiver operating characteristic analysis. Cement penetration exceeding a mean of 1.1 mm or with a maximum of 5.6 mm exclusively categorized all BULK bone failure specimens. Failure strength of BULK failure specimens increased with bone mineral density (R 2 = 0.67, P < .001) but was independent of the cement morphology parameters. To maximize fixation strength, a mean cement penetration depth of at least 1.1 mm should be achieved during tibial tray cementing. Copyright © 2016 Elsevier Inc. All rights reserved.
Fully automated segmentation of callus by micro-CT compared to biomechanics.
Bissinger, Oliver; Götz, Carolin; Wolff, Klaus-Dietrich; Hapfelmeier, Alexander; Prodinger, Peter Michael; Tischer, Thomas
2017-07-11
A high percentage of closed femur fractures have slight comminution. Using micro-CT (μCT), multiple fragment segmentation is much more difficult than segmentation of unfractured or osteotomied bone. Manual or semi-automated segmentation has been performed to date. However, such segmentation is extremely laborious, time-consuming and error-prone. Our aim was to therefore apply a fully automated segmentation algorithm to determine μCT parameters and examine their association with biomechanics. The femura of 64 rats taken after randomised inhibitory or neutral medication, in terms of the effect on fracture healing, and controls were closed fractured after a Kirschner wire was inserted. After 21 days, μCT and biomechanical parameters were determined by a fully automated method and correlated (Pearson's correlation). The fully automated segmentation algorithm automatically detected bone and simultaneously separated cortical bone from callus without requiring ROI selection for each single bony structure. We found an association of structural callus parameters obtained by μCT to the biomechanical properties. However, results were only explicable by additionally considering the callus location. A large number of slightly comminuted fractures in combination with therapies that influence the callus qualitatively and/or quantitatively considerably affects the association between μCT and biomechanics. In the future, contrast-enhanced μCT imaging of the callus cartilage might provide more information to improve the non-destructive and non-invasive prediction of callus mechanical properties. As studies evaluating such important drugs increase, fully automated segmentation appears to be clinically important.
Ahn, Nayoung; Cheun, Wookwang; Byun, Jayoung; Joo, Youngsik
2015-01-01
This study analyzed the differences in aerobic and anaerobic exercise ability and growth-related indicators, depending on the polymorphism of the ACE and the ACTN3 genes, to understand the genetic influence of exercise ability in the growth process of children. The subjects of the study consisted of elementary school students (n=856, age 10.32±0.07 yr). The anthropometric parameters, physical fitness and growth factors were compared among groups of the ACE I/D or the ACTN3 R577X polymorphisms. There were no significant differences between the anthropometric parameters, physical fitness and growth factors for the ACE gene ID or the ACTN3 gene R577X polymorphism. However, the DD type of ACE gene was highest in the side step test (p<0.05), and the DD type was significantly higher than the II+ID type (p<0.05) in the early bone age. The combined group of the ACE gene II+ID and the ACTN3 gene XX type significantly showed lower early bone age (p< 0.05). This study did not find any individual or compounding effects of the polymorphism in the ACE I/D or the ACTN3 R577X polymorphisms on the anthropometric parameters, physical fitness and growth factors of Korean children. However, the exercise experience and the DD type of the ACE gene may affect the early maturity of the bones. PMID:25729275
Sex Determination by Biometry of Anterior Features of Human Hip Bones in South Indian Population.
Rajasekhar, Sssn; Vasudha, T K; Aravindhan, K
2017-06-01
Sex determination is the first step in establishing the identity of skeletal remains. Many studies included biometry of posterior features of hip bone. Very few studies are reported involving the biometry of anterior features of the hip bone. Anterior features of hip bone are important especially, if there is damage to the posterior features of hip bone in cases involving deliberate disfigurement of the body to resist identification of the crime in medicolegal cases. The present study was done to evaluate the effectiveness of anterior border parameters of the hip bone for prediction of sex using discriminant function analysis in South Indian population. A total of 206 dry bones were used (121 male and 85 female) and parameters like the distance between pubic tubercle and anterior rim of acetabulum, vertical acetabular diameter, transverse acetabular diameter, and the distance between pubic tubercle to highest point on the iliopubic eminence were measured using Vernier calipers. Normally distributed variables were compared using Students t-test to analyse the significance. There was significant difference between the male and female hip bones of the observed variables with p-value less than 0.05. In parameters like the distance between pubic tubercle to anterior rim of acetabulum and distance between the highest points on iliopubic eminence to pubic tubercle; the values were more in female when compared to males. In parameters like vertical and transverse acetabular diameters; the values in males were more when compared to females. These parameters of hip bone can be utilised for sex determination in South Indian population.
Sensitivity Analysis of the Bone Fracture Risk Model
NASA Technical Reports Server (NTRS)
Lewandowski, Beth; Myers, Jerry; Sibonga, Jean Diane
2017-01-01
Introduction: The probability of bone fracture during and after spaceflight is quantified to aid in mission planning, to determine required astronaut fitness standards and training requirements and to inform countermeasure research and design. Probability is quantified with a probabilistic modeling approach where distributions of model parameter values, instead of single deterministic values, capture the parameter variability within the astronaut population and fracture predictions are probability distributions with a mean value and an associated uncertainty. Because of this uncertainty, the model in its current state cannot discern an effect of countermeasures on fracture probability, for example between use and non-use of bisphosphonates or between spaceflight exercise performed with the Advanced Resistive Exercise Device (ARED) or on devices prior to installation of ARED on the International Space Station. This is thought to be due to the inability to measure key contributors to bone strength, for example, geometry and volumetric distributions of bone mass, with areal bone mineral density (BMD) measurement techniques. To further the applicability of model, we performed a parameter sensitivity study aimed at identifying those parameter uncertainties that most effect the model forecasts in order to determine what areas of the model needed enhancements for reducing uncertainty. Methods: The bone fracture risk model (BFxRM), originally published in (Nelson et al) is a probabilistic model that can assess the risk of astronaut bone fracture. This is accomplished by utilizing biomechanical models to assess the applied loads; utilizing models of spaceflight BMD loss in at-risk skeletal locations; quantifying bone strength through a relationship between areal BMD and bone failure load; and relating fracture risk index (FRI), the ratio of applied load to bone strength, to fracture probability. There are many factors associated with these calculations including environmental factors, factors associated with the fall event, mass and anthropometric values of the astronaut, BMD characteristics, characteristics of the relationship between BMD and bone strength and bone fracture characteristics. The uncertainty in these factors is captured through the use of parameter distributions and the fracture predictions are probability distributions with a mean value and an associated uncertainty. To determine parameter sensitivity, a correlation coefficient is found between the sample set of each model parameter and the calculated fracture probabilities. Each parameters contribution to the variance is found by squaring the correlation coefficients, dividing by the sum of the squared correlation coefficients, and multiplying by 100. Results: Sensitivity analyses of BFxRM simulations of preflight, 0 days post-flight and 365 days post-flight falls onto the hip revealed a subset of the twelve factors within the model which cause the most variation in the fracture predictions. These factors include the spring constant used in the hip biomechanical model, the midpoint FRI parameter within the equation used to convert FRI to fracture probability and preflight BMD values. Future work: Plans are underway to update the BFxRM by incorporating bone strength information from finite element models (FEM) into the bone strength portion of the BFxRM. Also, FEM bone strength information along with fracture outcome data will be incorporated into the FRI to fracture probability.
Şener-Yamaner, Işil Damla; Yamaner, Gökhan; Sertgöz, Atilla; Çanakçi, Cenk Fatih; Özcan, Mutlu
2017-08-01
The aim of this study was to compare marginal bone loss around early-loaded SLA and SLActive tissue-level implants (Straumann Dental Implants; Institut Straumann AG, Basel, Switzerland) after a mean of 81-month follow-up period. One hundred seven SLA and 68 SLActive implants were placed in 55 patients and loaded with final restoration after 8 and 3 weeks of healing time, respectively. Marginal bone loss around implants was determined radiographically at initial and after a mean observation time ranging between 20 and 81 months. The effect of location (mandible vs maxilla), smoking habit, sex, implant length and diameter, and the type of prosthesis on the marginal bone loss was evaluated. The overall cumulative survival rate was 98.2% being 99% for SLA implants and 97% for SLActive implants. After 20-month follow-up period, mean marginal bone loss values for the SLA and SLActive implants were 0.24 and 0.17 mm, respectively. After 81 months, mean marginal bone loss for the SLA and SLActive implants reached 0.71 and 0.53 mm, respectively. Marginal bone loss was affected by the length and type of implant and patients' smoking habit after a mean observation time of 20 months. However, none of the parameters had any significant effect on the marginal bone loss after a follow-up period of 81 months. With both SLA and SLActive implants, successful clinical results could be achieved up to 6.5 years of follow-up period.
Chapurlat, R D; Laroche, M; Thomas, T; Rouanet, S; Delmas, P D; de Vernejoul, M-C
2013-01-01
We have examined the effect of oral monthly ibandronate on distal radius and tibia microarchitecture with high-resolution peripheral quantitative tomography compared with placebo, in women with osteopenia, and found that ibandronate did not significantly affect trabecular bone but improved cortical density and thickness at the tibia. We have examined the effect of ibandronate on bone microarchitecture with peripheral high-resolution quantitative computed tomography (HR-pQCT) in a randomized placebo-controlled trial among 148 women with osteopenia. Patients received either oral 150 mg monthly ibandronate or placebo over 24 months. Bone microarchitecture was assessed at baseline, 6, 12, and 24 months, using HR-pQCT at the distal radius and tibia; areal bone mineral density (aBMD) was measured with DXA at the spine, hip, and radius. At 12 months, there was no significant difference in trabecular bone volume at the radius (the primary end point) between women on ibandronate (10.8 ± 2.5%) and placebo (10.5 ± 2.9%), p = 0.25. There was no significant difference in other radius trabecular and cortical microarchitecture parameters at 12 and 24 months. In contrast, at the tibia, cortical vBMD in the ibandronate group was significantly greater than in the placebo group at 6, 12, and 24 months, with better cortical thickness at 6, 12, and 24 months. With ibandronate, aBMD was significantly increased at the hip and spine at 12 and 24 months but at the radius was significantly superior to placebo only at 24 months. Most of the adverse events related to ibandronate were expected with bisphosphonate use, and none of them were serious. We conclude that 12 months of treatment with ibandronate in women with osteopenia did not affect trabecular bone microarchitecture, but improved cortical vBMD at the tibia at 12 and 24 months, and preserved cortical thickness at the tibia.
Bouleftour, Wafa; Boudiffa, Maya; Wade-Gueye, Ndeye Marième; Bouët, Guénaëlle; Cardelli, Marco; Laroche, Norbert; Vanden-Bossche, Arnaud; Thomas, Mireille; Bonnelye, Edith; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie Hélène; Malaval, Luc
2014-01-01
Adult Ibsp-knockout mice (BSP-/-) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice, while impairing primary mineralization.
Mechanical loading, damping, and load-driven bone formation in mouse tibiae.
Dodge, Todd; Wanis, Mina; Ayoub, Ramez; Zhao, Liming; Watts, Nelson B; Bhattacharya, Amit; Akkus, Ozan; Robling, Alexander; Yokota, Hiroki
2012-10-01
Mechanical loads play a pivotal role in the growth and maintenance of bone and joints. Although loading can activate anabolic genes and induce bone remodeling, damping is essential for preventing traumatic bone injury and fracture. In this study we investigated the damping capacity of bone, joint tissue, muscle, and skin using a mouse hindlimb model of enhanced loading in conjunction with finite element modeling to model bone curvature. Our hypothesis was that loads were primarily absorbed by the joints and muscle tissue, but that bone also contributed to damping through its compression and natural bending. To test this hypothesis, fresh mouse distal lower limb segments were cyclically loaded in axial compression in sequential bouts, with each subsequent bout having less surrounding tissue. A finite element model was generated to model effects of bone curvature in silico. Two damping-related parameters (phase shift angle and energy loss) were determined from the output of the loading experiments. Interestingly, the experimental results revealed that the knee joint contributed to the largest portion of the damping capacity of the limb, and bone itself accounted for approximately 38% of the total phase shift angle. Computational results showed that normal bone curvature enhanced the damping capacity of the bone by approximately 40%, and the damping effect grew at an accelerated pace as curvature was increased. Although structural curvature reduces critical loads for buckling in beam theory, evolution apparently favors maintaining curvature in the tibia. Histomorphometric analysis of the tibia revealed that in response to axial loading, bone formation was significantly enhanced in the regions that were predicted to receive a curvature-induced bending moment. These results suggest that in addition to bone's compressive damping capacity, surrounding tissues, as well as naturally-occurring bone curvature, also contribute to mechanical damping, which may ultimately affect bone remodeling and bone quality. Copyright © 2012 Elsevier Inc. All rights reserved.
Weibull analysis of fracture test data on bovine cortical bone: influence of orientation.
Khandaker, Morshed; Ekwaro-Osire, Stephen
2013-01-01
The fracture toughness, K IC, of a cortical bone has been experimentally determined by several researchers. The variation of K IC values occurs from the variation of specimen orientation, shape, and size during the experiment. The fracture toughness of a cortical bone is governed by the severest flaw and, hence, may be analyzed using Weibull statistics. To the best of the authors' knowledge, however, no studies of this aspect have been published. The motivation of the study is the evaluation of Weibull parameters at the circumferential-longitudinal (CL) and longitudinal-circumferential (LC) directions. We hypothesized that Weibull parameters vary depending on the bone microstructure. In the present work, a two-parameter Weibull statistical model was applied to calculate the plane-strain fracture toughness of bovine femoral cortical bone obtained using specimens extracted from CL and LC directions of the bone. It was found that the Weibull modulus of fracture toughness was larger for CL specimens compared to LC specimens, but the opposite trend was seen for the characteristic fracture toughness. The reason for these trends is the microstructural and extrinsic toughening mechanism differences between CL and LC directions bone. The Weibull parameters found in this study can be applied to develop a damage-mechanics model for bone.
Determination of spatially dependent diffusion parameters in bovine bone using Kalman filter.
Shokry, Abdallah; Ståhle, Per; Svensson, Ingrid
2015-11-07
Although many studies have been made for homogenous constant diffusion, bone is an inhomogeneous material. It has been suggested that bone porosity decreases from the inner boundaries to the outer boundaries of the long bones. The diffusivity of substances in the bone matrix is believed to increase as the bone porosity increases. In this study, an experimental set up is used where bovine bone samples, saturated with potassium chloride (KCl), were put into distilled water and the conductivity of the water was followed. Chloride ions in the bone samples escaped out in the water through diffusion and the increase of the conductivity was measured. A one-dimensional, spatially dependent mathematical model describing the diffusion process is used. The diffusion parameters in the model are determined using a Kalman filter technique. The parameters for spatially dependent at endosteal and periosteal surfaces are found to be (12.8 ± 4.7) × 10(-11) and (5 ± 3.5) × 10(-11)m(2)/s respectively. The mathematical model function using the obtained diffusion parameters fits very well with the experimental data with mean square error varies from 0.06 × 10(-6) to 0.183 × 10(-6) (μS/m)(2). Copyright © 2015 Elsevier Ltd. All rights reserved.
Niziolek, Paul J; Bullock, Whitney; Warman, Matthew L; Robling, Alexander G
2015-01-01
The low density lipoprotein receptor-related protein-5 (LRP5), a co-receptor in the Wnt signaling pathway, modulates bone mass in humans and in mice. Lrp5 knock-out mice have severely impaired responsiveness to mechanical stimulation whereas Lrp5 gain-of-function knock-in and transgenic mice have enhanced responsiveness to mechanical stimulation. Those observations highlight the importance of Lrp5 protein in bone cell mechanotransduction. It is unclear if and how high bone mass-causing (HBM) point mutations in Lrp5 alter the bone-wasting effects of mechanical disuse. To address this issue we explored the skeletal effects of mechanical disuse using two models, tail suspension and Botulinum toxin-induced muscle paralysis, in two different Lrp5 HBM knock-in mouse models. A separate experiment employing estrogen withdrawal-induced bone loss by ovariectomy was also conducted as a control. Both disuse stimuli induced significant bone loss in WT mice, but Lrp5 A214V and G171V were partially or fully protected from the bone loss that normally results from disuse. Trabecular bone parameters among HBM mice were significantly affected by disuse in both models, but these data are consistent with DEXA data showing a failure to continue growing in HBM mice, rather than a loss of pre-existing bone. Ovariectomy in Lrp5 HBM mice resulted in similar protection from catabolism as was observed for the disuse experiments. In conclusion, the Lrp5 HBM alleles offer significant protection from the resorptive effects of disuse and from estrogen withdrawal, and consequently, present a potential mechanism to mimic with pharmaceutical intervention to protect against various bone-wasting stimuli.
Impaired rib bone mass and quality in end-stage cystic fibrosis patients.
Mailhot, Geneviève; Dion, Natalie; Farlay, Delphine; Rizzo, Sébastien; Bureau, Nathalie J; Jomphe, Valérie; Sankhe, Safiétou; Boivin, Georges; Lands, Larry C; Ferraro, Pasquale; Ste-Marie, Louis-Georges
2017-05-01
Advancements in research and clinical care have considerably extended the life expectancy of cystic fibrosis (CF) patients. However, with this extended survival come comorbidities. One of the leading co-morbidities is CF-related bone disease (CFBD), which progresses with disease severity and places patients at high risk for fractures, particularly of the ribs and vertebrae. Evidence that CF patients with vertebral fractures had higher bone mineral density (BMD) than the nonfracture group led us to postulate that bone quality is impaired in these patients. We therefore examined rib specimens resected at the time of lung transplant in CF patients to measure parameters of bone quantity and quality. In this exploratory study, we analysed 19 end-stage CF and 13 control rib specimens resected from otherwise healthy lung donors. BMD, bone microarchitecture, static parameters of bone formation and resorption and microcrack density of rib specimens were quantified by imaging, histomorphometric and histological methods. Variables reflecting the mineralization of ribs were assessed by digitized microradiography. The degree of bone mineralization (g/cm 3 ) and the heterogeneity index of the mineralization (g/cm 3 ) were calculated for trabecular and cortical bone. Compared to controls, CF ribs exhibited lower areal and trabecular volumetric BMD, decreased trabecular thickness and osteoid parameters, and increased microcrack density, that was particularly pronounced in specimens from patients with CF-related diabetes. Static parameters of bone resorption were similar in both groups. Degree of mineralization of total bone, but not heterogeneity index, was increased in CF specimens. The combination of reduced bone mass, altered microarchitecture, imbalanced bone remodeling (maintained bone resorption but decreased formation), increased microdamage and a small increase of the degree of mineralization, may lead to decreased bone strength, which, when coupled with chronic coughing and chest physical therapy, may provide an explanation for the increased incidence of rib fractures previously reported in this population. Copyright © 2017 Elsevier Inc. All rights reserved.
Sharma, Ashish K; Toussaint, Nigel D; Masterson, Rosemary; Holt, Stephen G; Rajapakse, Chamith S; Ebeling, Peter R; Mohanty, Sindhu T; Baldock, Paul; Elder, Grahame J
2018-05-23
Cortical bone is a significant determinant of bone strength and its deterioration contributes to bone fragility. Thin cortices and increased cortical porosity have been noted in patients with chronic kidney disease (CKD), but the "Turnover Mineralization Volume" classification of renal osteodystrophy does not emphasize cortical bone as a key parameter. We aimed to assess trabecular and cortical bone microarchitecture by histomorphometry and micro-CT in patients with CKD G5 and 5D (dialysis). Transiliac bone biopsies were performed in 14 patients undergoing kidney transplantation (n = 12) and parathyroidectomy (n = 2). Structural parameters were analysed by histomorphometry and micro-CT including trabecular bone volume, thickness (TbTh), number (TbN) and separation and cortical thickness (CtTh) and porosity (CtPo). Indices of bone remodelling and mineralisation were obtained and relationships to bone biomarkers examined. Associations were determined by Spearman's or Pearson's rank correlation coefficients. By micro-CT, trabecular parameters were within normal ranges in most patients, but all patients showed very low CtTh (127 ± 44 µm) and high CtPo (60.3 ± 22.5%). CtPo was inversely related to TbN (r = -0.56; p = 0.03) by micro-CT and to TbTh (r = -0.60; p = 0.024) by histomorphometry and correlated to parathyroid hormone values (r = 0.62; p = 0.021). By histomorphometry, bone turnover was high in 50%, low in 21% and normal in 29%, while 36% showed abnormal patterns of mineralization. Significant positive associations were observed between osteoblast surface, osteoclast surface, mineralization surface and bone turnover markers. Deterioration of cortical -microarchitecture despite predominantly normal trabecular parameters reinforces the importance of comprehensive cortical evaluation in patients with CKD. © 2018 S. Karger AG, Basel.
Tang, De-Zhi; Hou, Wei; Zhou, Quan; Zhang, Minjie; Holz, Jonathan; Sheu, Tzong-Jen; Li, Tian-Fang; Cheng, Shao-Dan; Shi, Qi; Harris, Stephen E; Chen, Di; Wang, Yong-Jun
2010-01-01
Osteoporosis is defined as reduced bone mineral density with a high risk of fragile fracture. Current available treatment regimens include antiresorptive drugs such as estrogen receptor analogues and bisphosphates and anabolic agents such as parathyroid hormone (PTH). However, neither option is completely satisfactory because of adverse effects. It is thus highly desirable to identify novel anabolic agents to improve future osteoporosis treatment. Osthole, a coumarin-like derivative extracted from Chinese herbs, has been shown to stimulate osteoblast proliferation and differentiation, but its effect on bone formation in vivo and underlying mechanism remain unknown. In this study, we found that local injection of Osthole significantly increased new bone formation on the surface of mouse calvaria. Ovariectomy caused evident bone loss in rats, whereas Osthole largely prevented such loss, as shown by improved bone microarchitecture, histomorphometric parameters, and biomechanical properties. In vitro studies demonstrated that Osthole activated Wnt/β-catenin signaling, increased Bmp2 expression, and stimulated osteoblast differentiation. Targeted deletion of the β-catenin and Bmp2 genes abolished the stimulatory effect of Osthole on osteoblast differentiation. Since deletion of the Bmp2 gene did not affect Osthole-induced β-catenin expression and the deletion of the β-catenin gene inhibited Osthole-regulated Bmp2 expression in osteoblasts, we propose that Osthole acts through β-catenin–BMP signaling to promote osteoblast differentiation. Our findings demonstrate that Osthole could be a potential anabolic agent to stimulate bone formation and prevent estrogen deficiency–induced bone loss. © 2010 American Society for Bone and Mineral Research. PMID:20200936
Pireau, Nathalie; De Gheldere, Antoine; Mainard-Simard, Laurence; Lascombes, Pierre; Docquier, Pierre-Louis
2011-04-01
The classical indication for treating a simple bone cyst is usually the risk of fracture, which can be predicted based on three parameters: the bone cyst index, the bone cyst diameter, and the minimal cortical thickness. A retrospective review was carried out based on imaging of 35 simple bone cysts (30 humeral and 5 femoral). The three parameters were measured on standard radiographs, and on T1-weighted and T2-weighted MRI. The measurements were performed by two independent reviewers, and twice by the same reviewer. Kappa values and binary logistic regression were used to assess the ability of the parameters to predict the fracture risk. Inter- and intra-observer agreement was measured. T1-weighted MRI was found to have the best inter- and intraobserver repeatability. The bone cyst index was found to be the best predictor for the risk of fracture.
Alomari, Ali Hamed; Wille, Marie-Luise; Langton, Christian M
2018-02-01
Conventional mechanical testing is the 'gold standard' for assessing the stiffness (N mm -1 ) and strength (MPa) of bone, although it is not applicable in-vivo since it is inherently invasive and destructive. The mechanical integrity of a bone is determined by its quantity and quality; being related primarily to bone density and structure respectively. Several non-destructive, non-invasive, in-vivo techniques have been developed and clinically implemented to estimate bone density, both areal (dual-energy X-ray absorptiometry (DXA)) and volumetric (quantitative computed tomography (QCT)). Quantitative ultrasound (QUS) parameters of velocity and attenuation are dependent upon both bone quantity and bone quality, although it has not been possible to date to transpose one particular QUS parameter into separate estimates of quantity and quality. It has recently been shown that ultrasound transit time spectroscopy (UTTS) may provide an accurate estimate of bone density and hence quantity. We hypothesised that UTTS also has the potential to provide an estimate of bone structure and hence quality. In this in-vitro study, 16 human femoral bone samples were tested utilising three techniques; UTTS, micro computed tomography (μCT), and mechanical testing. UTTS was utilised to estimate bone volume fraction (BV/TV) and two novel structural parameters, inter-quartile range of the derived transit time (UTTS-IQR) and the transit time of maximum proportion of sonic-rays (TTMP). μCT was utilised to derive BV/TV along with several bone structure parameters. A destructive mechanical test was utilised to measure the stiffness and strength (failure load) of the bone samples. BV/TV was calculated from the derived transit time spectrum (TTS); the correlation coefficient (R 2 ) with μCT-BV/TV was 0.885. For predicting mechanical stiffness and strength, BV/TV derived by both μCT and UTTS provided the strongest correlation with mechanical stiffness (R 2 =0.567 and 0.618 respectively) and mechanical strength (R 2 =0.747 and 0.736 respectively). When respective structural parameters were incorporated to BV/TV, multiple regression analysis indicated that none of the μCT histomorphometric parameters could improve the prediction of mechanical stiffness and strength, while for UTTS, adding TTMP to BV/TV increased the prediction of mechanical stiffness to R 2 =0.711 and strength to R 2 =0.827. It is therefore envisaged that UTTS may have the ability to estimate BV/TV along with providing an improved prediction of osteoporotic fracture risk, within routine clinical practice in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Primary Ewing's Sarcoma of the Temporal Bone: A Rare Case Report and Literature Review.
Gupta, Divya; Gulati, Achal; Purnima
2017-09-01
Ewing's sarcoma is a malignant, round cell tumor arising from the bones and primarily affecting children and adolescent, accounting for 3 % of all childhood malignancies. Although the long bones and the trunk are typically affected, rare cases of it involving isolated bones throughout the body have been reported. Involvement of the skull bones is rare, constituting 1-6 % of the total Ewing's sarcoma cases but those affecting the cranial bones are rarer still, constituting only 1 %. We describe an 8 months old infant having Ewing sarcoma, of the petrous and mastoid parts of temporal bone along with the occipital bone, whose clinical presentation mimicked mastoiditis with facial nerve palsy. We discuss the clinical and therapeutic course of an extensive primary Ewing sarcoma of the temporal bone, which was treated without performing surgery and review this entity's literature in detail.
Histomorphometric reference data of transiliac bone biopsy in children from 8 to 17 years old.
Velásquez-Forero, Francisco H; Jiménez-Brau, Daniel A; Esparza-García, Mariela
2018-01-01
Histomorphometric analysis of bone samples is a key tool for studying bone metabolism; however, only a few pediatric reference data exist. The aim of the present study is to report more reference data and to investigate if histomorphometric differences exist between age and gender. We obtained 19 transiliac bone samples previously marked with tetracycline, from children between 8 and 17 years (13 were male), with normal blood test results and urine biochemical bone markers. We evaluated bone histomorphometric parameters using a digitalizing table with osteomeasure to obtain normative data of means and standard deviations, as well as median and range. Due to the small sample, a Monte Carlo simulation was applied. Structural, static, dynamic, and resorptic histomorphometric parameters were evaluated by age and gender following the American Society for Bone and Mineral Research recommendations. Bone volume (in the older children) and mineral apposition rate (in the younger children), the eroded surface (in boys), and the new bone wall thickness (in girls) were significantly increased. On the trabecular area of mineralization front, the modeling and the remodeling bone formation were similar (16 and 18%). The rest of the histomorphometric bone parameters by age and gender showed no significant difference. In healthy children, these bone histomorphometric findings, with these techniques and for this ages could be used as reference values. Copyright: © 2018 Permanyer.
Atanasov, Nenad; Poposka, Anastasika; Samardziski, Milan; Kamnar, Viktor
2014-01-01
Radiographic examination of extremities in surgical lengthening and/or correction of deformities is of crucial importance for the assessment of new bone formation. The purpose of this study is to confirm the diagnostic value of radiography in precise detection of bone parameters in various lengthening or correction stages in patients treated by limb-lengthening and deformity correction. 50 patients were treated by the Ilizarov method of limb lengthening or deformity correction at the University Orthopaedic Surgery Clinic in Skopje, and analysed over the period from 2006 to 2012. The patients were divided into two groups. The first group consisted of 27 patients with limb-lengthening because of congenital shortening. The second group consisted of 23 patients treated for acquired limb deformities. The results in both groups were received in three stages of new bone formation and were based on the appearance of 3 radiographic parameters at the distraction/compression site. The differences between the presence of all radiographic bone parameters in different stages of new bone formation were statistically signficant in both groups, especially the presence of the cortical margin in the first group (Cochran Q=34.43, df=2, p=0.00000). The comparative analysis between the two groups showed a statistically significant difference in the presence of initial bone elements and cystic formations only in the first stage. Almost no statistical significance in the differences between both groups of patients with regard to 3 radiographic parameters in 3 stages of new bone formation, indicates a minor influence of the etiopathogenetic background on the new bone formation in patients treated by gradual lengthening or correction of limb deformities.
Baum, Thomas; Grande Garcia, Eduardo; Burgkart, Rainer; Gordijenko, Olga; Liebl, Hans; Jungmann, Pia M; Gruber, Michael; Zahel, Tina; Rummeny, Ernst J; Waldt, Simone; Bauer, Jan S
2015-06-26
Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength due to a reduction of bone mass and deterioration of bone microstructure predisposing an individual to an increased risk of fracture. Trabecular bone microstructure analysis and finite element models (FEM) have shown to improve the prediction of bone strength beyond bone mineral density (BMD) measurements. These computational methods have been developed and validated in specimens preserved in formalin solution or by freezing. However, little is known about the effects of preservation on trabecular bone microstructure and FEM. The purpose of this observational study was to investigate the effects of preservation on trabecular bone microstructure and FEM in human vertebrae. Four thoracic vertebrae were harvested from each of three fresh human cadavers (n=12). Multi-detector computed tomography (MDCT) images were obtained at baseline, 3 and 6 month follow-up. In the intervals between MDCT imaging, two vertebrae from each donor were formalin-fixed and frozen, respectively. BMD, trabecular bone microstructure parameters (histomorphometry and fractal dimension), and FEM-based apparent compressive modulus (ACM) were determined in the MDCT images and validated by mechanical testing to failure of the vertebrae after 6 months. Changes of BMD, trabecular bone microstructure parameters, and FEM-based ACM in formalin-fixed and frozen vertebrae over 6 months ranged between 1.0-5.6% and 1.3-6.1%, respectively, and were not statistically significant (p>0.05). BMD, trabecular bone microstructure parameters, and FEM-based ACM as assessed at baseline, 3 and 6 month follow-up correlated significantly with mechanically determined failure load (r=0.89-0.99; p<0.05). The correlation coefficients r were not significantly different for the two preservation methods (p>0.05). Formalin fixation and freezing up to six months showed no significant effects on trabecular bone microstructure and FEM-based ACM in human vertebrae and may both be used in corresponding in-vitro experiments in the context of osteoporosis.
Gaucher disease: the role of the specialist on metabolic bone diseases.
Masi, Laura; Brandi, Maria Luisa
2015-01-01
According to European legislation, a disease can be considered rare or "orphan" when it affects less than 1 subject of 2000 (1). Often these diseases affecting the pediatric age, are complex diseases and chronically debilitating and for this motive need the intervention of multidisciplinary skills specific. Among the rare disease as affecting the skeleton more than 400 are characterized by dysplastic changes of the skeleton (2). Alongside the disorders affecting the skeleton primitively, many systemic diseases can have a bone involvement. Among these, the Gaucher disease (GD), an heterogeneous lysosomal storage determined by hereditary enzyme deficiency of β-glucosidase. Patients with this disease have skeletal disorders of varying severity (Erlenmeyer flask deformity, lytic lesions and osteonecrosis, pathological fractures) that affects both the bone marrow, both mineralized bone with progressive damage of the tissue. The bone disease is the most debilitating of GD and can have a significant impact on the quality of life of patients. Thorough evaluations by monitoring biochemical markers of bone turnover and instrumental, with a quantitative and qualitative evaluation of the bone, are of fundamental importance to intervene early so they can prevent complications irreversible.
Christo, Karla; Prabhakaran, Rajani; Lamparello, Brooke; Cord, Jennalee; Miller, Karen K.; Goldstein, Mark A.; Gupta, Nupur; Herzog, David B.; Klibanski, Anne; Misra, Madhusmita
2011-01-01
OBJECTIVE We hypothesized that, despite increased activity, bone density would be low in athletes with amenorrhea, compared with athletes with eumenorrhea and control subjects, because of associated hypogonadism and would be associated with a decrease in bone formation and increases in bone-resorption markers. METHODS In a cross-sectional study, we examined bone-density measures (spine, hip, and whole body) and body composition by using dual-energy radiograph absorptiometry and assessed fasting levels of insulin-like growth factor I and bone-turnover markers (N-terminal propeptied of type 1 procollagen and N-telopeptide) in 21 athletes with amenorrhea, 18 athletes with eumenorrhea, and 18 control subjects. Subjects were 12 to 18 years of age and of comparable chronologic and bone age. RESULTS Athletes with amenorrhea had lower bone-density z scores at the spine and whole body, compared with athletes with eumenorrhea and control subjects, and lower hip z scores, compared with athletes with eumenorrhea. Lean mass did not differ between groups. However, athletes with amenorrhea had lower BMI z scores than did athletes with eumenorrhea and lower insulin-like growth factor I levels than did control subjects. Levels of both markers of bone turnover were lower in athletes with amenorrhea than in control subjects. BMI z scores, lean mass, insulin-like growth factor I levels, and diagnostic category were important independent predictors of bone mineral density z scores. CONCLUSIONS Although they showed no significant differences in lean mass, compared with athletes with eumenorrhea and control subjects, athletes with amenorrhea had lower bone density at the spine and whole body. Insulin-like growth factor I levels, body-composition parameters, and menstrual status were important predictors of bone density. Follow-up studies are necessary to determine whether amenorrhea in athletes adversely affects the rate of bone mass accrual and therefore peak bone mass. PMID:18519482
Shaping the micromechanical behavior of multi-phase composites for bone tissue engineering.
Ranganathan, Shivakumar I; Yoon, Diana M; Henslee, Allan M; Nair, Manitha B; Smid, Christine; Kasper, F Kurtis; Tasciotti, Ennio; Mikos, Antonios G; Decuzzi, Paolo; Ferrari, Mauro
2010-09-01
Mechanical stiffness is a fundamental parameter in the rational design of composites for bone tissue engineering in that it affects both the mechanical stability and the osteo-regeneration process at the fracture site. A mathematical model is presented for predicting the effective Young's modulus (E) and shear modulus (G) of a multi-phase biocomposite as a function of the geometry, material properties and volume concentration of each individual phase. It is demonstrated that the shape of the reinforcing particles may dramatically affect the mechanical stiffness: E and G can be maximized by employing particles with large geometrical anisotropy, such as thin platelet-like or long fibrillar-like particles. For a porous poly(propylene fumarate) (60% porosity) scaffold reinforced with silicon particles (10% volume concentration) the Young's (shear) modulus could be increased by more than 10 times by just using thin platelet-like as opposed to classical spherical particles, achieving an effective modulus E approximately 8 GPa (G approximately 3.5 GPa). The mathematical model proposed provides results in good agreement with several experimental test cases and could help in identifying the proper formulation of bone scaffolds, reducing the development time and guiding the experimental testing. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Cvijetić, Selma; Pipinić, Ivana Sabolić; Varnai, Veda Maria; Macan, Jelena
2017-03-01
Low bone mineral density has been reported in paediatric and adult patients with different lung diseases, but limited data are available on the association between lung function and bone density in a healthy young population. We explored the predictors of association between bone mass and pulmonary function in healthy first-year university students, focusing on body mass index (BMI). In this cross-sectional study we measured bone density with ultrasound and lung function with spirometry in 370 university students (271 girls and 99 boys). Information on lifestyle habits, such as physical activity, smoking, and alcohol consumption were obtained with a questionnaire. All lung function and bone parameters were significantly higher in boys than in girls (P<0.001). Underweight students had a significantly lower forced vital capacity (FVC%) (P=0.001 girls; P=0.012 boys), while overweight students had a significantly higher FVC% than normal weight students (P=0.024 girls; P=0.001 boys). BMI significantly correlated with FVC% (P=0.001) and forced expiratory volume in 1 second (FEV1 %) in both genders (P=0.001 girls; P=0.018 boys) and with broadband ultrasound attenuation (BUA) in boys. There were no significant associations between any of the bone and lung function parameters either in boys or girls. The most important determinant of lung function and ultrasound bone parameters in our study population was body mass index, with no direct association between bone density and lung function.
Exercise does not enhance aged bone's impaired response to artificial loading in C57Bl/6 mice.
Meakin, Lee B; Udeh, Chinedu; Galea, Gabriel L; Lanyon, Lance E; Price, Joanna S
2015-12-01
Bones adapt their structure to their loading environment and so ensure that they become, and are maintained, sufficiently strong to withstand the loads to which they are habituated. The effectiveness of this process declines with age and bones become fragile fracturing with less force. This effect in humans also occurs in mice which experience age-related bone loss and reduced adaptation to loading. Exercise engenders many systemic and local muscular physiological responses as well as engendering local bone strain. To investigate whether these physiological responses influence bones' adaptive responses to mechanical strain we examined whether a period of treadmill exercise influenced the adaptive response to an associated period of artificial loading in young adult (17-week) and old (19-month) mice. After treadmill acclimatization, mice were exercised for 30 min three times per week for two weeks. Three hours after each exercise period, right tibiae were subjected to 40 cycles of non-invasive axial loading engendering peak strain of 2250 με. In both young and aged mice exercise increased cross-sectional muscle area and serum sclerostin concentration. In young mice it also increased serum IGF1. Exercise did not affect bone's adaptation to loading in any measured parameter in young or aged bone. These data demonstrate that a level of exercise sufficient to cause systemic changes in serum, and adaptive changes in local musculature, has no effect on bone's response to loading 3h later. This study provides no support for the beneficial effects of exercise on bone in the elderly being mediated by systemic or local muscle-derived effects rather than local adaptation to altered mechanical strain. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Low-carbohydrate, high-fat diets have sex-specific effects on bone health in rats.
Zengin, Ayse; Kropp, Benedikt; Chevalier, Yan; Junnila, Riia; Sustarsic, Elahu; Herbach, Nadja; Fanelli, Flaminia; Mezzullo, Marco; Milz, Stefan; Bidlingmaier, Martin; Bielohuby, Maximilian
2016-10-01
Studies in humans suggest that consumption of low-carbohydrate, high-fat diets (LC-HF) could be detrimental for growth and bone health. In young male rats, LC-HF diets negatively affect bone health by impairing the growth hormone/insulin-like growth factor axis (GH/IGF axis), while the effects in female rats remain unknown. Therefore, we investigated whether sex-specific effects of LC-HF diets on bone health exist. Twelve-week-old male and female Wistar rats were isoenergetically pair-fed either a control diet (CD), "Atkins-style" protein-matched diet (LC-HF-1), or ketogenic low-protein diet (LC-HF-2) for 4 weeks. In females, microcomputed tomography and histomorphometry analyses were performed on the distal femur. Sex hormones were analysed with liquid chromatography-tandem mass spectrometry, and endocrine parameters including GH and IGF-I were measured by immunoassay. Trabecular bone volume, serum IGF-I and the bone formation marker P1NP were lower in male rats fed both LC-HF diets versus CD. LC-HF diets did not impair bone health in female rats, with no change in trabecular or cortical bone volume nor in serum markers of bone turnover between CD versus both LC-HF diet groups. Pituitary GH secretion was lower in female rats fed LC-HF diet, with no difference in circulating IGF-I. Circulating sex hormone concentrations remained unchanged in male and female rats fed LC-HF diets. A 4-week consumption of LC-HF diets has sex-specific effects on bone health-with no effects in adult female rats yet negative effects in adult male rats. This response seems to be driven by a sex-specific effect of LC-HF diets on the GH/IGF system.
Effect of micromorphology of cortical bone tissue on crack propagation under dynamic loading
NASA Astrophysics Data System (ADS)
Wang, Mayao; Gao, Xing; Abdel-Wahab, Adel; Li, Simin; Zimmermann, Elizabeth A.; Riedel, Christoph; Busse, Björn; Silberschmidt, Vadim V.
2015-09-01
Structural integrity of bone tissue plays an important role in daily activities of humans. However, traumatic incidents such as sports injuries, collisions and falls can cause bone fracture, servere pain and mobility loss. In addition, ageing and degenerative bone diseases such as osteoporosis can increase the risk of fracture [1]. As a composite-like material, a cortical bone tissue is capable of tolerating moderate fracture/cracks without complete failure. The key to this is its heterogeneously distributed microstructural constituents providing both intrinsic and extrinsic toughening mechanisms. At micro-scale level, cortical bone can be considered as a four-phase composite material consisting of osteons, Haversian canals, cement lines and interstitial matrix. These microstructural constituents can directly affect local distributions of stresses and strains, and, hence, crack initiation and propagation. Therefore, understanding the effect of micromorphology of cortical bone on crack initiation and propagation, especially under dynamic loading regimes is of great importance for fracture risk evaluation. In this study, random microstructures of a cortical bone tissue were modelled with finite elements for four groups: healthy (control), young age, osteoporosis and bisphosphonate-treated, based on osteonal morphometric parameters measured from microscopic images for these groups. The developed models were loaded under the same dynamic loading conditions, representing a direct impact incident, resulting in progressive crack propagation. An extended finite-element method (X-FEM) was implemented to realize solution-dependent crack propagation within the microstructured cortical bone tissues. The obtained simulation results demonstrate significant differences due to micromorphology of cortical bone, in terms of crack propagation characteristics for different groups, with the young group showing highest fracture resistance and the senior group the lowest.
Genetics Home Reference: Buschke-Ollendorff syndrome
... example, a small percentage of affected individuals have melorheostosis , which is characterized by excess bone growth on ... bones in a pattern resembling dripping candle wax. Melorheostosis usually affects the bones in one arm or ...
Farr, Joshua N; Tomás, Rita; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B
2011-01-01
Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump-In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual-energy X-ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1–1.9) and 1.3 (1.0–1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. © 2011 American Society for Bone and Mineral Research. PMID:20721933
Farr, Joshua N; Tomás, Rita; Chen, Zhao; Lisse, Jeffrey R; Lohman, Timothy G; Going, Scott B
2011-02-01
Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump-In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual-energy X-ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1-1.9) and 1.3 (1.0-1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. Copyright © 2011 American Society for Bone and Mineral Research.
Oktay, Fügen; Cömert, Didem; Gökkaya, Nilüfer Kutay Ordu; Ozbudak, Sibel Demir; Uysal, Hilmi
2014-02-01
The purpose of this retrospective study was to analyze the effect of peripheral nerve injury on the skeletal maturation process. The bone ages of the affected and unaffected hand-wrists of 42 children with obstetrical brachial palsy were determined according to the Greulich and Pyle atlas. In 23 patients, the bone ages of the both sides were identical (bone-age-symmetrical group), in 19 patients the bone age of the affected side was delayed (bone-age-delayed group). The mean bone age of the affected side was delayed 0.48 ± 0.25 years that of the unaffected side (P = .000), and the delay of bone age was inversely correlated with chronological age (R (2) = .45, P < .02) in the bone-age-delayed group. Skeletal retardation can be recognized after appearance of ossification centers by plain radiography, dating from the third month of life, in early infancy. Thus, bone age determination method might be helpful for predicting potential future limb shortness.
Baum, Thomas; Karampinos, Dimitrios C; Brockow, Knut; Seifert-Klauss, Vanadin; Jungmann, Pia M; Biedermann, Tilo; Rummeny, Ernst J; Bauer, Jan S; Müller, Dirk
2015-01-01
Subjects with indolent systemic mastocytosis (ISM) have an increased risk for osteoporosis. It has been demonstrated that trabecular bone microstructure analysis improves the prediction of bone strength beyond dual-energy X-ray absorptiometry-based bone mineral density. The purpose of this study was to obtain Magnetic Resonance (MR)-based trabecular bone microstructure parameters as advanced imaging biomarkers in subjects with ISM (n=18) and compare them with those of normal controls (n=18). Trabecular bone microstructure parameters were not significantly (P>.05) different between subjects with ISM and controls. These findings revealed important pathophysiological information about ISM-associated osteoporosis and may limit the use of trabecular bone microstructure analysis in this clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.
Saito, Mitsuru; Grynpas, Marc D; Burr, David B; Allen, Matthew R; Smith, Susan Y; Doyle, Nancy; Amizuka, Norio; Hasegawa, Tomoka; Kida, Yoshikuni; Marumo, Keishi; Saito, Hitoshi
2015-04-01
Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (<2.0 mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage, and non-enzymatic collagen crosslinks all increase. Bone anabolic agents such as parathyroid hormone decrease bone mineralization and bone microdamage by stimulating bone remodeling. ELD did not fit into either category. Histological analysis indicated that the ELD treatment strongly suppressed bone resorption by reducing the number of osteoclasts, while also stimulating focal bone formation without prior bone resorption (bone minimodeling). These bidirectional activities of ELD may account for its unique effects on bone quality. Copyright © 2014. Published by Elsevier Inc.
Bringing computational models of bone regeneration to the clinic.
Carlier, Aurélie; Geris, Liesbet; Lammens, Johan; Van Oosterwyck, Hans
2015-01-01
Although the field of bone regeneration has experienced great advancements in the last decades, integrating all the relevant, patient-specific information into a personalized diagnosis and optimal treatment remains a challenging task due to the large number of variables that affect bone regeneration. Computational models have the potential to cope with this complexity and to improve the fundamental understanding of the bone regeneration processes as well as to predict and optimize the patient-specific treatment strategies. However, the current use of computational models in daily orthopedic practice is very limited or inexistent. We have identified three key hurdles that limit the translation of computational models of bone regeneration from bench to bed side. First, there exists a clear mismatch between the scope of the existing and the clinically required models. Second, most computational models are confronted with limited quantitative information of insufficient quality thereby hampering the determination of patient-specific parameter values. Third, current computational models are only corroborated with animal models, whereas a thorough (retrospective and prospective) assessment of the computational model will be crucial to convince the health care providers of the capabilities thereof. These challenges must be addressed so that computational models of bone regeneration can reach their true potential, resulting in the advancement of individualized care and reduction of the associated health care costs. © 2015 Wiley Periodicals, Inc.
Bi, Xiaohong; Grafe, Ingo; Ding, Hao; Flores, Rene; Munivez, Elda; Jiang, Ming Ming; Dawson, Brian; Lee, Brendan; Ambrose, Catherine G
2017-02-01
Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap -/- ) and dominant (Col1a2 +/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2 +/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in models of OI, identifies key bone compositional parameters that correlate with the impaired mechanical integrity of OI bone, and explores the effects of anti-TGF-β treatment on bone-quality parameters in these models. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
Synhaeve, Nicholas; Wade-Gueye, Ndéye Marième; Musilli, Stefania; Stefani, Johanna; Grandcolas, Line; Gruel, Gaëtan; Souidi, Maâmar; Dublineau, Isabelle; Bertho, Jean-Marc
2014-01-01
The aim of this work was to delineate the effects of chronic ingestion of strontium 90 ((90) Sr) at low concentrations on the hematopoiesis and the bone physiology. A mouse model was used for that purpose. Parent animals ingested water containing 20 kBq l(-1) of (90) Sr two weeks before mating. Offspring were then continuously contaminated with (90) Sr through placental transfer during fetal life, through lactation after birth and through drinking water after weaning. At various ages between birth and 20 weeks, animals were tested for hematopoietic parameters such as blood cell counts, colony forming cells in spleen and bone marrow and cytokine concentrations in the plasma. However, we did not find any modification in (90) Sr ingesting animals as compared with control animals. By contrast, the analysis of bone physiology showed a modification of gene expression towards bone resorption. This was confirmed by an increase in C-telopeptide of collagen in the plasma of (90) Sr ingesting animals as compared with control animals. This modification in bone metabolism was not linked to a modification of the phosphocalcic homeostasis, as measured by calcium, phosphorus, vitamin D and parathyroid hormone in the blood. Overall these results suggest that the chronic ingestion of (90) Sr at low concentration in the long term may induce modifications in bone metabolism but not in hematopoiesis. Copyright © 2012 John Wiley & Sons, Ltd.
Directing bone marrow-derived stromal cell function with mechanics.
Potier, E; Noailly, J; Ito, K
2010-03-22
Because bone marrow-derived stromal cells (BMSCs) are able to generate many cell types, they are envisioned as source of regenerative cells to repair numerous tissues, including bone, cartilage, and ligaments. Success of BMSC-based therapies, however, relies on a number of methodological improvements, among which better understanding and control of the BMSC differentiation pathways. Since many years, the biochemical environment is known to govern BMSC differentiation, but more recent evidences show that the biomechanical environment is also directing cell functions. Using in vitro systems that aim to reproduce selected components of the in vivo mechanical environment, it was demonstrated that mechanical loadings can affect BMSC proliferation and improve the osteogenic, chondrogenic, or myogenic phenotype of BMSCs. These effects, however, seem to be modulated by parameters other than mechanics, such as substrate nature or soluble biochemical environment. This paper reviews and discusses recent experimental data showing that despite some knowledge limitation, mechanical stimulation already constitutes an additional and efficient tool to drive BMSC differentiation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Zhou, Bin; Zhang, Zhendong; Wang, Ji; Yu, Y Eric; Liu, Xiaowei Sherry; Nishiyama, Kyle K; Rubin, Mishaela R; Shane, Elizabeth; Bilezikian, John P; Guo, X Edward
2016-06-01
Trabecular plate and rod microstructure plays a dominant role in the apparent mechanical properties of trabecular bone. With high-resolution computed tomography (CT) images, digital topological analysis (DTA) including skeletonization and topological classification was applied to transform the trabecular three-dimensional (3D) network into surface and curve skeletons. Using the DTA-based topological analysis and a new reconstruction/recovery scheme, individual trabecula segmentation (ITS) was developed to segment individual trabecular plates and rods and quantify the trabecular plate- and rod-related morphological parameters. High-resolution peripheral quantitative computed tomography (HR-pQCT) is an emerging in vivo imaging technique to visualize 3D bone microstructure. Based on HR-pQCT images, ITS was applied to various HR-pQCT datasets to examine trabecular plate- and rod-related microstructure and has demonstrated great potential in cross-sectional and longitudinal clinical applications. However, the reproducibility of ITS has not been fully determined. The aim of the current study is to quantify the precision errors of ITS plate-rod microstructural parameters. In addition, we utilized three different frequently used contour techniques to separate trabecular and cortical bone and to evaluate their effect on ITS measurements. Overall, good reproducibility was found for the standard HR-pQCT parameters with precision errors for volumetric BMD and bone size between 0.2%-2.0%, and trabecular bone microstructure between 4.9%-6.7% at the radius and tibia. High reproducibility was also achieved for ITS measurements using all three different contour techniques. For example, using automatic contour technology, low precision errors were found for plate and rod trabecular number (pTb.N, rTb.N, 0.9% and 3.6%), plate and rod trabecular thickness (pTb.Th, rTb.Th, 0.6% and 1.7%), plate trabecular surface (pTb.S, 3.4%), rod trabecular length (rTb.ℓ, 0.8%), and plate-plate junction density (P-P Junc.D, 2.3%) at the tibia. The precision errors at the radius were similar to those at the tibia. In addition, precision errors were affected by the contour technique. At the tibia, precision error by the manual contour method was significantly different from automatic and standard contour methods for pTb.N, rTb.N and rTb.Th. Precision error using the manual contour method was also significantly different from the standard contour method for rod trabecular number (rTb.N), rod trabecular thickness (rTb.Th), rod-rod and plate-rod junction densities (R-R Junc.D and P-R Junc.D) at the tibia. At the radius, the precision error was similar between the three different contour methods. Image quality was also found to significantly affect the ITS reproducibility. We concluded that ITS parameters are highly reproducible, giving assurance that future cross-sectional and longitudinal clinical HR-pQCT studies are feasible in the context of limited sample sizes.
Kagami, Hideaki; Agata, Hideki; Inoue, Minoru; Asahina, Izumi; Tojo, Arinobu; Yamashita, Naohide; Imai, Kohzoh
2014-06-01
Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. Human bone marrow stromal cells (BMSCs) are the most commonly used cell source for bone tissue engineering. Although it is known that cell culture and induction protocols significantly affect the in vivo bone forming ability of BMSCs, the responsible factors of clinical outcome are poorly understood. The results from recent studies using human BMSCs have shown that factors such as passage number and length of osteogenic induction significantly affect ectopic bone formation, although such differences hardly affected the alkaline phosphatase activity or gene expression of osteogenic markers. Application of basic fibroblast growth factor helped to maintain the in vivo osteogenic ability of BMSCs. Importantly, responsiveness of those factors should be tested under clinical circumstances to improve the bone tissue engineering further. In this review, clinical application of bone tissue engineering was reviewed with putative underlying mechanisms.
NASA Astrophysics Data System (ADS)
Dakroury, G.; Labib, Sh.; Abou El-Nour, F. H.
2012-09-01
Pure bone material obtained from cow meat, as apatite-rich material, and TiO2-bone composite materials are prepared and studied to be used for heavy metal ions separation from waste water solutions. Meat wastes are chemically and thermally treated to control their microstructure in order to prepare the composite materials that fulfill all the requirements to be used as selective membranes with high performance, stability and mechanical strength. The prepared materials are analyzed using Hg-porosimetry for surface characterization, energy dispersive X-ray spectroscopy (EDAX) for elemental analysis and Fourier transform infrared spectroscopy (FTIR) for chemical composition investigation. Structural studies are performed using X-ray diffraction (XRD). Microstructural properties are studied using scanning electron microscopy (SEM) and specific surface area studies are performed using Brunauer-Emmet-Teller (BET) method. XRD studies show that multiphase structures are obtained as a result of 1h sintering at 700-1200 °C for both pure bone and TiO2-bone composite materials. The factors affecting the transport of different heavy metal ions through the selected membranes are determined from permeation flux measurements. It is found that membrane pore size, membrane surface roughness and membrane surface charge are the key parameters that control the transport or rejection of heavy metal ions through the selected membranes.
Kraemer, Bernhard; Schneider, Silke; Rothmund, Ralf; Fehm, Tanja; Wallwiener, Diethelm; Solomayer, Erich-Franz
2012-04-01
There are conflicting opinions in the literature about whether pregnancy influences maternal bone density or osteoporosis development. The study aim was to investigate whether there is a significant alteration in maternal bone density during normal pregnancy. Bone mass of 200 pregnant women aged 22-42 years was measured twice with quantitative ultrasonometry (QUS) of the heel (Os calcaneum). The first measurement was performed between the 10th and 22nd week of pregnancy, follow-up of 149 women took place 0-9 days postpartum. A questionnaire focusing on data affecting bone metabolism and bone turnover was handed out at the first visit. Median reduction in speed of sound (SOS) was 11 m/s at follow-up indicating a decline of the stiffness during pregnancy. No significant correlation was found between lactation period and the obtained values for stiffness, SOS, T score and Z score. For broadband ultrasonographic attenuation, there was a statistically significant difference (p < 0.05) between women who had and had not breastfed. Parameters from patients with a family history of osteoporosis (n = 30) compared to patients without did not reveal statistical significance during pregnancy. Glucocorticoid therapy, nicotine consumption, physical exercise and nutrition was not statistically significant (p > 0.05). SOS value of women with a twin pregnancy was different over the study period (p < 0.05). A reduction in bone mass is possible during pregnancy. Routine evaluation of the bone density in all pregnant women does not seem to be justified; however, it is reasonable in women who present with risk factors. These women could be screened with QUS.
Ding, Aidong Adam; Hsieh, Jin-Jian; Wang, Weijing
2015-01-01
Bivariate survival analysis has wide applications. In the presence of covariates, most literature focuses on studying their effects on the marginal distributions. However covariates can also affect the association between the two variables. In this article we consider the latter issue by proposing a nonstandard local linear estimator for the concordance probability as a function of covariates. Under the Clayton copula, the conditional concordance probability has a simple one-to-one correspondence with the copula parameter for different data structures including those subject to independent or dependent censoring and dependent truncation. The proposed method can be used to study how covariates affect the Clayton association parameter without specifying marginal regression models. Asymptotic properties of the proposed estimators are derived and their finite-sample performances are examined via simulations. Finally, for illustration, we apply the proposed method to analyze a bone marrow transplant data set.
de Kuijper, Gerda; Mulder, Hans; Evenhuis, Heleen; Scholte, Frans; Visser, Frank; Hoekstra, Pieter J
2013-09-01
Individuals with intellectual disability frequently use antipsychotics for many years. This may have detrimental health effects, including neurological symptoms and metabolic and hormonal dysregulation, the latter possibly affecting bone metabolism. There is large variability in the degree in which antipsychotic agents lead to these health problems. In the current study we investigated potential determinants of physical symptoms and biological parameters known to be associated with use of antipsychotics in a convenience sample of 99 individuals with intellectual disability who had used antipsychotics for more than one year for behavioural symptoms. We focused on extrapyramidal symptoms; on overweight and presence of components of the metabolic syndrome; and on elevated plasma prolactin and bone turnover parameters. As predictor variables, we used patient (sex, age, genetic polymorphisms, and severity of intellectual disability) and medication use (type and dosage) characteristics. We found extrapyramidal symptoms to be present in 53%, overweight or obesity in 46%, and the metabolic syndrome in 11% of participants. Hyperprolactineaemia and one or more elevated bone turnover markers were present in 17% and 25%, respectively. Higher age and more severe intellectual disability were associated with dyskinesia and a higher dosage of the antipsychotic drug was associated with parkinsonism. Less severe intellectual disability was related to higher Body Mass Index. Use of atypical antipsychotics was associated with higher diastolic blood pressure and elevated fasting glucose. Clinicians who prescribe antipsychotics in individuals with intellectual disability should carefully balance the potential benefits of prolonged treatment against the risk of health hazards associated with the use of antipsychotics. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yang, Peng-Fei; Huang, Ling-Wei; Nie, Xiao-Tong; Yang, Yue; Wang, Zhe; Ren, Li; Xu, Hui-Yun; Shang, Peng
2018-06-01
The purpose of the present study was to characterize the dynamic alterations of bone composition parameters and mechanical properties to disuse and mechanical intervention. A tail suspension hindlimb unloading model and an in vivo axial tibia loading model in rats were used. A moderate mechanical loading that was capable of engendering 800 µε tibia strain was applied to the right tibia of rats in both control and hindlimb unloading group across 28 days of the experimental period. The contralateral tibia served as control. Hindlimb unloading led to bone loss in tibia from day 14. Bone mineral density, mineral content and mechanical properties responded differently with microstructure to disuse in timing course. Mechanical loading of 800 µε tibia strain failed to alter the bone of the control group, but minimized the detrimental effects of unloading by completely prohibiting the decrease of bone mineral content and main mechanical properties after 28 days. Less obvious influence of mechanical loading on bone microstructure was found. The moderate mechanical loading is not able to stimulate the mechanical response of healthy tibia, but indeed lead to discordant recovery of bone composition parameters and mechanical properties.
Prediction of bone strength at the distal tibia by HR-pQCT and DXA.
Popp, Albrecht W; Windolf, Markus; Senn, Christoph; Tami, Andrea; Richards, R Geoff; Brianza, Stefano; Schiuma, Damiano
2012-01-01
Areal bone mineral density (aBMD) at the distal tibia, measured at the epiphysis (T-EPI) and diaphysis (T-DIA), is predictive for fracture risk. Structural bone parameters evaluated at the distal tibia by high resolution peripheral quantitative computed tomography (HR-pQCT) displayed differences between healthy and fracture patients. With its simple geometry, T-DIA may allow investigating the correlation between bone structural parameter and bone strength. Anatomical tibiae were examined ex vivo by DXA (aBMD) and HR-pQCT (volumetric BMD (vBMD) and bone microstructural parameters). Cortical thickness (CTh) and polar moment of inertia (pMOI) were derived from DXA measurements. Finally, an index combining material (BMD) and mechanical property (polar moment of inertia, pMOI) was defined and analyzed for correlation with torque at failure and stiffness values obtained by biomechanical testing. Areal BMD predicted the vBMD at T-EPI and T-DIA. A high correlation was found between aBMD and microstructural parameters at T-EPIas well as between aBMD and CTh at T-DIA. Finally, at T-DIA both indexes combining BMD and pMOI were strongly and comparably correlated with torque at failure and bone stiffness. Ex vivo, at the distal tibial diaphysis, a novel index combining BMD and pMOI, which can be calculated directly from a single DXA measurement, predicted bone strength and stiffness better than either parameter alone and with an order of magnitude comparable to that of HR-pQCT. Whether this index is suitable for better prediction of fracture risk in vivo deserves further investigation. Copyright © 2011 Elsevier Inc. All rights reserved.
Kouda, Katsuyasu; Ohara, Kumiko; Fujita, Yuki; Nakamura, Harunobu; Tachiki, Takahiro; Iki, Masayuki
2018-02-02
Leptin regulates bone cell differentiation and functions via direct and indirect actions in experimental settings. Epidemiologically, however, the impact of leptin on the regulation of bone metabolism remains unclear. While some studies have reported a positive relationship between leptin and bone mineral parameters, other studies found an inverse or no association. We analyzed data from a population-based follow-up survey of community-dwelling children in Hamamatsu, Japan, to investigate relationships between leptin levels and bone mineral parameters. Multiple regression analysis was performed. Multicollinearity was quantified using the variance infiltration factor (VIF). Among 408 children who participated in the baseline survey (at age 11.2 years), 254 (121 boys and 133 girls) completed the follow-up survey (at age 14.2 years). Leptin levels were strongly related to fat mass (r = 0.87 in boys, r = 0.80 in girls). Leptin levels at baseline were significantly (P < 0.05) positively related to total body less head (TBLH) areal bone mineral density (aBMD) at follow-up in girls (standardized partial regression coefficient: β = 0.302, VIF = 2.246), after adjusting for body fat percentage (%). On the other hand, leptin levels were inversely related to TBLH aBMD in boys (β = - 0.395, VIF = 4.116), after adjusting for body fat mass (kg). Positive relationships between leptin levels and bone mineral parameters were observed with VIF values < 4.0, whereas inverse relationships were observed with VIF values ≥ 4.0. These findings suggest that positive relationships between leptin levels and bone mineral parameters are weak, or not always observed, due to statistical problems (i.e., multicollinearity) and other factors derived from adipose tissue.
Langlois, C; Simon, L; Lécuyer, Ch
2003-12-01
A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions.
Gaucher disease: the role of the specialist on metabolic bone diseases
Masi, Laura; Brandi, Maria Luisa
2015-01-01
Summary According to European legislation, a disease can be considered rare or “orphan” when it affects less than 1 subject of 2000 (1). Often these diseases affecting the pediatric age, are complex diseases and chronically debilitating and for this motive need the intervention of multidisciplinary skills specific. Among the rare disease as affecting the skeleton more than 400 are characterized by dysplastic changes of the skeleton (2). Alongside the disorders affecting the skeleton primitively, many systemic diseases can have a bone involvement. Among these, the Gaucher disease (GD), an heterogeneous lysosomal storage determined by hereditary enzyme deficiency of β-glucosidase. Patients with this disease have skeletal disorders of varying severity (Erlenmeyer flask deformity, lytic lesions and osteonecrosis, pathological fractures) that affects both the bone marrow, both mineralized bone with progressive damage of the tissue. The bone disease is the most debilitating of GD and can have a significant impact on the quality of life of patients. Thorough evaluations by monitoring biochemical markers of bone turnover and instrumental, with a quantitative and qualitative evaluation of the bone, are of fundamental importance to intervene early so they can prevent complications irreversible. PMID:26604943
Weisinger, J R; Alonzo, E; Machado, C; Carlini, R; Martinis, R; Paz-Martínez, V; Bellorín-Font, E
1997-01-01
Previous studies from our laboratory demonstrated that bone mineral content is affected in patients with idiopathic hypercalciuria and that there is a correlation between bone mineral loss and in-vitro cytokine production. At the same time we found that short term treatment with alendronate decreased urinary calcium in these subjects. In the present study we have examined the long-term effects of alendronate treatment (10 mg/day for one year) on urinary calcium, urinary hydroxyproline and bone mineral content in 18 idiopathic hypercalciuric and 8 normocalciuric stone formers. Clinical characteristics, as well as gender and age distribution were similar in both groups. Urinary calcium and hydroxyproline, were measured monthly. Calcium excretion decreased significantly at the end of the first month, and remained lower thereafter (277 +/- 28, before vs. 202 +/- 26 mg/g creatinine, after 12 months on alendronate, p < 0.01). Urinary hydroxyproline decreased significantly during the study (125.5 +/- 32.1 vs. 39.66 +/- 17.5 mg/g creatinine, p < 0.05). Serum calcium, glomerular filtration rate, and urinary sodium, did not change during the study. Lumbar spine bone density (trabecular bone) obtained with X ray absorptiometry revealed a significant increase from 1.162 +/- 0.231 to 1.197 +/- 0.248 g/cm2 (p < 0.01). These changes were associated with a significant decrease in IL-1 alpha mRNA transcription by unstimulated and lipopolysaccharide stimulated blood mononuclear cells, as tested by the reverse transcriptase polymerase chain reaction. No changes were observed in bone cortical sites (femoral neck). Normocalciuric subjects showed no significant changes in urinary calcium. In summary, the changes observed in urinary calcium excretion and different bone metabolic parameters, suggest a role of bone in the pathophysiology of idiopathic hypercalciuria.
Tu, Shu-Ju; Wang, Shun-Ping; Cheng, Fu-Chou; Weng, Chia-En; Huang, Wei-Tzu; Chang, Wei-Jeng; Chen, Ying-Ju
2017-01-01
The literature shows that bone mineral density (BMD) and the geometric architecture of trabecular bone in the femur may be affected by inadequate dietary intake of Mg. In this study, we used microcomputed tomography (micro-CT) to characterize and quantify the impact of a low-Mg diet on femoral trabecular bones in mice. Four-week-old C57BL/6J male mice were randomly assigned to 2 groups and supplied either a normal or low-Mg diet for 8weeks. Samples of plasma and urine were collected for biochemical analysis, and femur tissues were removed for micro-CT imaging. In addition to considering standard parameters, we regarded trabecular bone as a cylindrical rod and used computational algorithms for a technical assessment of the morphological characteristics of the bones. BMD (mg-HA/cm3) was obtained using a standard phantom. We observed a decline in the total tissue volume, bone volume, percent bone volume, fractal dimension, number of trabecular segments, number of connecting nodes, bone mineral content (mg-HA), and BMD, as well as an increase in the structural model index and surface-area-to-volume ratio in low-Mg mice. Subsequently, we examined the distributions of the trabecular segment length and radius, and a series of specific local maximums were identified. The biochemical analysis revealed a 43% (96%) decrease in Mg and a 40% (71%) decrease in Ca in plasma (urine excretion). This technical assessment performed using micro-CT revealed a lower population of femoral trabecular bones and a decrease in BMD at the distal metaphysis in the low-Mg mice. Examining the distributions of the length and radius of trabecular segments showed that the average length and radius of the trabecular segments in low-Mg mice are similar to those in normal mice.
Neven, Ellen; De Schutter, Tineke M; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Büchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Behets, Geert J
2014-01-01
The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.
Cao, Jay J; Gregoire, Brian R
2016-04-01
Bone health is influenced by body mass and estrogen. The objective of the study was to determine whether high-fat diet-induced obesity affects bone structure and alters markers of bone turnover in ovariectomized (OVX) mice. We hypothesized that a high-fat diet would increase body weight gain and serum estradiol levels in OVX mice but would not improve bone structural parameter in OVX mice. Thirty-five C57BL/6 mice were either sham operated or OVX at the age of 4 months and then fed either a normal-fat diet (10% energy as fat) or a high-fat diet (45% energy as fat with extra fat from lard) ad libitum for 11 weeks. Ovariectomy increased body weight, serum tartrate-resistant acid phosphatase concentration, and expression of cathepsin K in bone; decreased serum estradiol concentration; and induced significant bone loss manifested by decreased bone volume/total volume (BV/TV), connectivity density (Conn.D), trabecular number, and trabecular thickness with increased trabecular separation and structural model index (P < .01). The high-fat diet increased body weight (P < .01) in OVX mice and nonsignificantly decreased BV/TV (P = .08) and Conn.D (P = .10). Despite having similar serum estradiol concentrations and higher body weight, OVX mice consuming the high-fat diet had lower BV/TV, Conn.D, trabecular number, trabecular thickness, and higher structural model index and trabecular separation than did sham mice fed the normal-fat diet. These findings indicate that increased body weight and elevated serum estradiol concentration induced by a high-fat diet do not mitigate ovariectomy-induced bone loss in mice. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Faustino, C. N.; Ana, A. P.; Bachman, L.
2018-02-01
Peri-implantitis is a destructive inflammatory process that affects the tissues that provide support to the dental implant, the bone and gingiva, and can lead to the loss of the implant. Among the treatments of this disease, the irradiation of the contaminated surface with high intensity lasers is considered a promising alternative; Thus, irradiation parameters must be correctly adjusted in order to promote an efficient and safe treatment. This study investigated the temperature changes at the implant-bone interface during simulated implant surface decontamination using an 808nm diode laser. Dental implants were inserted in bovine bone, in which an artificial periimplant bone defect was made. Access holes of 0.5mm diameter were drilled to allow the positioning of four Ktype thermocouples in different regions: T0 Implant-bone interface, T1 inside the implant, T2 In the bone defect, T3 In the apex of the implant. For laser irradiation, an optical fiber was used at a distance of 0.5mm from the implant surface, and the mean output power varied between 0.5 to 3.0W on both pulsed (PW) and continuous (CW) wave modes. Irradiations were performed by 60s, and the temperature rises were registered for a period of 180s. It was observed that the critical threshold of 47ºC was exceeded at T0, T1 e T2 thermocouples when irradiations were performed at 1.0W; for T3 thermocouple, the threshold was exceeded at 3.0W CW mode. For PW mode, the thermocouples T0, T1, T2 had the threshold exceeded at the power of 1,0W and for T3 the threshold was exceeded at 3.0W. Decontamination of implant surfaces using the diode laser did not excessively heat the implant-bone interface within the mean output power ranging from 0.5 to 1.0W; however, the temperature rise is critical when using the mean power of 0.5W CW and 1.0W PW. Thus, using the PW mode up to the power of 1W seems to be a promising parameter for a safe clinical application.
Lohse, N; Moser, N; Backhaus, S; Annen, T; Epple, M; Schliephake, H
2015-12-28
The aim of the present study was to test the hypothesis that different amounts of vascular endothelial growth factor and bone morphogenic protein differentially affect bone formation when applied for repair of non-healing defects in the rat mandible. Porous composite PDLLA/CaCO3 carriers were fabricated as slow release carriers and loaded with rhBMP2 and rhVEGF165 in 10 different dosage combinations using gas foaming with supercritical carbon dioxide. They were implanted in non-healing defects of the mandibles of 132 adult Wistar rats with additional lateral augmentation. Bone formation was assessed both radiographically (bone volume) and by histomorphometry (bone density). The use of carriers with a ratio of delivery of VEGF/BMP between 0.7 and 1.2 was significantly related to the occurrence of significant increases in radiographic bone volume and/or histologic bone density compared to the use of carriers with a ratio of delivery of ≤ 0.5 when all intervals and all outcome parameters were considered. Moreover, simultaneous delivery at this ratio helped to "save" rhBMP2 as both bone volume and bone density after 13 weeks were reached/surpassed using half the dosage required for rhBMP2 alone. It is concluded, that the combined delivery of rhVEGF165 and rhBMP2 for repair of critical size mandibular defects can significantly enhance volume and density of bone formation over delivery of rhBMP2 alone. It appears from the present results that continuous simultaneous delivery of rhVEGF165 and rhBMP2 at a ratio of approximately 1 is favourable for the enhancement of bone formation. Copyright © 2015. Published by Elsevier B.V.
Effect of thermodisinfection on mechanic parameters of cancellous bone.
Fölsch, Christian; Kellotat, Andreas; Rickert, Markus; Ishaque, Bernd; Ahmed, Gafar; Pruss, Axel; Jahnke, Alexander
2016-09-01
Revision surgery of joint replacements is increasing and raises the demand for allograft bone since restoration of bone stock is crucial for longevity of implants. Proceedings of bone grafts influence the biological and mechanic properties differently. This study examines the effect of thermodisinfection on mechanic properties of cancellous bone. Bone cylinders from both femoral heads with length 45 mm were taken from twenty-three 6-8 months-old piglets, thermodisinfected at 82.5 °C according to bone bank guidelines and control remained native. The specimens were stored at -20 °C immediately and were put into 21 °C Ringer's solution for 3 h before testing. Shear and pressure modulus were tested since three point bending force was examined until destruction. Statistical analysis was done with non-parametric Wilcoxon, t test and SPSS since p < 0.05 was significant. Shear modulus was significantly reduced by thermodisinfection to 1.02 ± 0.31 GPa from 1.28 ± 0.68 GPa for unprocessed cancellous bone (p = 0.029) since thermodisinfection reduced pressure modulus not significantly from 6.30 ± 4.72 GPa for native specimens to 4.97 ± 2.23 GPa and maximum bending force was 270.03 ± 116.68 N for native and 228.80 ± 70.49 N for thermodisinfected cancellous bone. Shear and pressure modulus were reduced by thermodisinfection around 20 % and maximum bending force was impaired by about 15 % compared with native cancellous bone since only the reduction of shear modulus reached significance. The results suggest that thermodisinfection similarly affects different mechanic properties of cancellous bone and the reduction of mechanic properties should not relevantly impair clinical use of thermodisinfected cancellous bone.
Collins, Fraser L.; Irwin, Regina; Bierhalter, Hayley; Schepper, Jonathan; Britton, Robert A.
2016-01-01
Background & Aims We previously demonstrated that short-term oral administration of the probiotic Lactobacillus reuteri 6475 enhanced bone density in male but not female mice. We also established that L. reuteri 6475 enhanced bone health and prevented bone loss in estrogen-deficient female mice. In this study, we tested whether a mild inflammatory state and/or a long-term treatment with the probiotic was required to promote a positive bone effect in estrogen-sufficient female mice. Methods A mild inflammatory state was induced in female mice by dorsal surgical incision (DSI). Following DSI animals were orally supplemented with L. reuteri or vehicle control for a period of 8 weeks. Gene expression was measured in the intestine and bone marrow by qPCR. Distal femoral bone density and architecture was analyzed by micro-CT. Results We report that 8 weeks after DSI there is a significant increase in the weight of spleen, thymus and visceral (retroperitoneal) fat pads. Expression of intestinal cytokines and tight junction proteins are also altered 8 weeks post-DSI. Interestingly, L. reuteri treatment was found to display both intestinal region- and inflammation-dependent effects. Unexpectedly we identified that 1) L. reuteri treatment increased bone density in females but only in those that underwent DSI and 2) DSI benefited cortical bone parameters. In the bone marrow, dorsal surgery induced CD4+ T cell numbers, a response that was unaffected by L. reuteri treatment, whereas expression of RANKL, OPG and IL-10 were significantly affected by L. reuteri treatment. Conclusion Our data reveals a previously unappreciated effect of a mild surgical procedure causing a long-lasting effect on inflammatory gene expression in the gut and the bone. Additionally, we demonstrate that in intact female mice, the beneficial effect of L. reuteri on bone requires an elevated inflammatory status. PMID:27058036
Okazaki, Narihiro; Burghardt, Andrew J; Chiba, Ko; Schafer, Anne L; Majumdar, Sharmila
2016-12-01
The primary objective of this study was to analyze the relationships between bone microstructure and strength, and male osteoporosis risk factors including age, body mass index, serum 25-hydroxyvitamin D level, and testosterone level. A secondary objective was to compare microstructural and strength parameters between men with normal, low, and osteoporosis-range areal bone mineral density (aBMD). Seventy-eight healthy male volunteers (mean age 62.4 ± 7.8 years, range 50-84 years) were recruited. The participants underwent dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT) of the ultra-distal radius and tibia. From the HR-pQCT images, volumetric bone mineral density (BMD) and cortical and trabecular bone microstructure were evaluated, and bone strength and cortical load fraction (Ct.LF) were estimated using micro-finite element analysis (μFEA). Age was more strongly correlated with bone microstructure than other risk factors. Age had significant positive correlations with cortical porosity at both ultra-distal radius and tibia ( r = 0.36, p = 0.001, and r = 0.47, p < 0.001, respectively). At the tibia, age was negatively correlated with cortical BMD, whereas it was positively correlated with trabecular BMD. In μFEA, age was negatively correlated with Ct.LF, although not with bone strength. Compared with men with normal aBMD, men with low or osteoporosis-range aBMD had significantly poor trabecular bone microstructure and lower bone strength at the both sites, while there was no significant difference in cortical bone. Cortical bone microstructure was negatively affected by aging, and there was a suggestion that the influence of aging may be particularly important at the weight-bearing sites.
Vico, Laurence; van Rietbergen, Bert; Vilayphiou, Nicolas; Linossier, Marie-Thérèse; Locrelle, Hervé; Normand, Myriam; Zouch, Mohamed; Gerbaix, Maude; Bonnet, Nicolas; Novikov, Valery; Thomas, Thierry; Vassilieva, Galina
2017-10-01
Risk for premature osteoporosis is a major health concern in astronauts and cosmonauts; the reversibility of the bone lost at the weight-bearing bone sites is not established, although it is suspected to take longer than the mission length. The bone three-dimensional structure and strength that could be uniquely affected by weightlessness is currently unknown. Our objective is to evaluate bone mass, microarchitecture, and strength of weight-bearing and non-weight-bearing bone in 13 cosmonauts before and for 12 months after a 4-month to 6-month sojourn in the International Space Station (ISS). Standard and advanced evaluations of trabecular and cortical parameters were performed using high-resolution peripheral quantitative computed tomography. In particular, cortical analyses involved determination of the largest common volume of each successive individual scan to improve the precision of cortical porosity and density measurements. Bone resorption and formation serum markers, and markers reflecting osteocyte activity or periosteal metabolism (sclerostin, periostin) were evaluated. At the tibia, in addition to decreased bone mineral densities at cortical and trabecular compartments, a 4% decrease in cortical thickness and a 15% increase in cortical porosity were observed at landing. Cortical size and density subsequently recovered and serum periostin changes were associated with cortical recovery during the year after landing. However, tibial cortical porosity or trabecular bone failed to recover, resulting in compromised strength. The radius, preserved at landing, unexpectedly developed postflight fragility, from 3 months post-landing onward, particularly in its cortical structure. Remodeling markers, uncoupled in favor of bone resorption at landing, returned to preflight values within 6 months, then declined farther to lower than preflight values. Our findings highlight the need for specific protective measures not only during, but also after spaceflight, because of continuing uncertainties regarding skeletal recovery long after landing. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Yeh, J. K.; Cao, J. J.; Tatum, O. L.; Dagda, R. Y.; Wang, J.-S.
2010-01-01
Summary Studies suggest that green tea polyphenols (GTP) or alphacalcidol is promising agent for preventing bone loss. Findings that GTP supplementation plus alphacalcidol administration increased bone mass via a decrease of oxidative stress and inflammation suggest a significant role of GTP plus alphacalcidol in bone health of patients with chronic inflammation. Introduction Studies have suggested that green tea polyphenols (GTP) or alphacalcidol are promising dietary supplements for preventing bone loss in women. However, the mechanism(s) related to the possible osteo-protective role of GTP plus D3 in chronic inflammation-induced bone loss is not well understood. Methods This study evaluated bioavailability, efficacy, and related mechanisms of GTP in combination with alphacalcidol in conserving bone loss in rats with chronic inflammation. A 12-week study of 2 (no GTP vs. 0.5% GTP in drinking water) × 2 (no alphacalcidol vs. 0.05 μg/kg alphacalcidol, 5×/week) factorial design in lipopolysaccharide-administered female rats was performed. In addition, a group receiving placebo administration was used to compare with a group receiving lipopolysaccharide administration only to evaluate the effect of lipopolysaccharide. Results Lipopolysaccharide administration resulted in lower values for bone mass, but higher values for serum tartrate-resistant acid phosphatase (TRAP), urinary 8-hydroxy-2′-deoxyguanosine, and mRNA expression of tumor necrosis factor-α and cyclooxygenase-2 in spleen. GTP supplementation increased urinary epigallocatechin and epicatechin concentrations. Both GTP supplementation and alphacalcidol administration resulted in a significant increase in bone mass, but a significant decrease in serum TRAP levels, urinary 8-hydroxydeoxyguanosine levels, and mRNA expression of tumor necrosis factor-α and cyclooxygenase-2 in spleen. A synergistic effect of GTP and alphacalcidol was observed in these parameters. Neither GTP nor alphacalcidol affected femoral bone area or serum osteocalcin. Conclusion We conclude that a bone-protective role of GTP plus alphacalcidol during chronic inflammation bone loss may be due to a reduction of oxidative stress damage and inflammation. PMID:20069278
De Felice, Francesca; Thomas, Christopher; Patel, Vinod; Connor, Steve; Michaelidou, Andriana; Sproat, Chris; Kwok, Jerry; Burke, Mary; Reilly, Damien; McGurk, Mark; Simo, Ricard; Lyons, Andrew; Oakley, Richard; Jeannon, Jean-Pierre; Lei, Mary; Urbano, Teresa Guerrero
2016-07-01
To analyze clinical features, dosimetric parameters, and outcomes of osteoradionecrosis (ORN). Thirty-six patients with ORN who had been previously treated with radiotherapy (RT) were retrospectively identified between January 2009 and April 2014. ORN volumes were contoured on planning computed tomography (CT) scans. Near maximum dose (D2%), minimum dose (Dmin), mean dose (Dmean), and percentage of bone volume receiving 50 Gy (V50) were examined. Clinical and dosimetric variables were considered to compare ORN resolution versus ORN persistence. Median interval time from end of RT to development of ORN was 6 months. Of the ORN cases, 61% were located in the mandible. Dmean to affected bone was 57.6 Gy, and 44% had a D2% 65 Gy or greater. Smoking was associated with ORN persistence on univariate analysis, but no factors were found to impact ORN resolution or progression on logistic regression. Prevention strategies for ORN development should be prioritized. Dose-volume parameters could have a role in preventing ORN. Copyright © 2016 Elsevier Inc. All rights reserved.
Kaya, Y; Yalim, M; Bahçecitapar, M; Baloş, K
2009-07-01
To date, there have been many studies clinically evaluating periodontal regenerative procedures by the help of routinely used hard and soft tissue parameters; however, these parameters are not capable of assessing interdental soft tissue located above the regenerative periodontal surgery area. The purpose of this study was to assess interproximal soft tissue changes following application of (i) particulate form demineralized bone matrix (DBM), (ii) putty form DBM and (ii) open flap debridement (OFD, control), using modified curtain technique in the treatment of interproximal suprabony (horizontal) defects located in anterior maxillary region, as previously reported. Twenty-five chronic periodontitis patients with 125 interproximal surgery sites (radiologically >or=4 mm horizontal bone defect) were also participate in this second stage of the triple-blind, split mouth, randomized, controlled clinical trial. Surgery sites were assessed by (i) plaque index (PI), (ii) gingival index (GI), (iii) the presence of interdental soft tissue clefts or craters and (iv) the loss of interdental papilla height by using papilla presence index (PPI), during the healing period. At the baseline and 3, 6, 9 and 12 months after the operations, these measurements were repeated. In all groups, there is a significant increase in the prevalence of soft tissue cleft and crater formation (P < 0.01), with increase in PI and GI scores at interdental soft tissue defect areas (P < 0.001), 3 months after the operations. There was also an increase in PPI scores after the operations in all treatment groups (P < 0.01). Three procedures affected the interproximal soft tissues similarly. There was no significant difference among groups in terms of all parameters (P > 0.05). Particulate DBM, putty DBM and OFD demostrated similar interproximal soft tissue changes especially increasing interproximal PI and GI scores in 3 months follow-up.
Belavý, Daniel L; Armbrecht, Gabriele; Blenk, Tilo; Bock, Oliver; Börst, Hendrikje; Kocakaya, Emine; Luhn, Franziska; Rantalainen, Timo; Rawer, Rainer; Tomasius, Frederike; Willnecker, Johannes; Felsenberg, Dieter
2016-02-01
We evaluated which aspects of neuromuscular performance are associated with bone mass, density, strength and geometry. 417 women aged 60-94years were examined. Countermovement jump, sit-to-stand test, grip strength, forearm and calf muscle cross-sectional area, areal bone mineral content and density (aBMC and aBMD) at the hip and lumbar spine via dual X-ray absorptiometry, and measures of volumetric vBMC and vBMD, bone geometry and section modulus at 4% and 66% of radius length and 4%, 38% and 66% of tibia length via peripheral quantitative computed tomography were performed. The first principal component of the neuromuscular variables was calculated to generate a summary neuromuscular variable. Percentage of total variance in bone parameters explained by the neuromuscular parameters was calculated. Step-wise regression was also performed. At all pQCT bone sites (radius, ulna, tibia, fibula), a greater percentage of total variance in measures of bone mass, cortical geometry and/or bone strength was explained by peak neuromuscular performance than for vBMD. Sit-to-stand performance did not relate strongly to bone parameters. No obvious differential in the explanatory power of neuromuscular performance was seen for DXA aBMC versus aBMD. In step-wise regression, bone mass, cortical morphology, and/or strength remained significant in relation to the first principal component of the neuromuscular variables. In no case was vBMD positively related to neuromuscular performance in the final step-wise regression models. Peak neuromuscular performance has a stronger relationship with leg and forearm bone mass and cortical geometry as well as proximal forearm section modulus than with vBMD. Copyright © 2015 Elsevier Inc. All rights reserved.
A link between central kynurenine metabolism and bone strength in rats with chronic kidney disease
Pawlak, Krystyna; Oksztulska-Kolanek, Ewa; Domaniewski, Tomasz; Znorko, Beata; Karbowska, Malgorzata; Citkowska, Aleksandra; Rogalska, Joanna; Roszczenko, Alicja; Brzoska, Malgorzata M.; Pawlak, Dariusz
2017-01-01
Background Disturbances in mineral and bone metabolism represent one of the most complex complications of chronic kidney disease (CKD). Serotonin, a monoamine synthesized from tryptophan, may play a potential role in bone metabolism. Brain-derived serotonin exerts a positive effect on the bone structure by limiting bone resorption and enhancing bone formation. Tryptophan is the precursor not only to the serotonin but also and primarily to kynurenine metabolites. The ultimate aim of the present study was to determine the association between central kynurenine metabolism and biomechanical as well as geometrical properties of bone in the experimental model of the early stage of CKD. Methods Thirty-three Wistar rats were randomly divided into two groups (sham-operated and subtotal nephrectomized animals). Three months after surgery, serum samples were obtained for the determination of biochemical parameters, bone turnover biomarkers, and kynurenine pathway metabolites; tibias were collected for bone biomechanical, bone geometrical, and bone mass density analysis; brains were removed and divided into five regions for the determination of kynurenine pathway metabolites. Results Subtotal nephrectomized rats presented higher serum concentrations of creatinine, urea nitrogen, and parathyroid hormone, and developed hypocalcemia. Several biomechanical and geometrical parameters were significantly elevated in rats with experimentally induced CKD. Subtotal nephrectomized rats presented significantly higher kynurenine concentrations and kynurenine/tryptophan ratio and significantly lower tryptophan levels in all studied parts of the brain. Kynurenine in the frontal cortex and tryptophan in the hypothalamus and striatum correlated positively with the main parameters of bone biomechanics and bone geometry. Discussion In addition to the complex mineral, hormone, and metabolite changes, intensified central kynurenine turnover may play an important role in the development of bone changes in the course of CKD. PMID:28439468
NASA Astrophysics Data System (ADS)
Anderson, Christian Carl
This Dissertation explores the physics underlying the propagation of ultrasonic waves in bone and in heart tissue through the use of Bayesian probability theory. Quantitative ultrasound is a noninvasive modality used for clinical detection, characterization, and evaluation of bone quality and cardiovascular disease. Approaches that extend the state of knowledge of the physics underpinning the interaction of ultrasound with inherently inhomogeneous and isotropic tissue have the potential to enhance its clinical utility. Simulations of fast and slow compressional wave propagation in cancellous bone were carried out to demonstrate the plausibility of a proposed explanation for the widely reported anomalous negative dispersion in cancellous bone. The results showed that negative dispersion could arise from analysis that proceeded under the assumption that the data consist of only a single ultrasonic wave, when in fact two overlapping and interfering waves are present. The confounding effect of overlapping fast and slow waves was addressed by applying Bayesian parameter estimation to simulated data, to experimental data acquired on bone-mimicking phantoms, and to data acquired in vitro on cancellous bone. The Bayesian approach successfully estimated the properties of the individual fast and slow waves even when they strongly overlapped in the acquired data. The Bayesian parameter estimation technique was further applied to an investigation of the anisotropy of ultrasonic properties in cancellous bone. The degree to which fast and slow waves overlap is partially determined by the angle of insonation of ultrasound relative to the predominant direction of trabecular orientation. In the past, studies of anisotropy have been limited by interference between fast and slow waves over a portion of the range of insonation angles. Bayesian analysis estimated attenuation, velocity, and amplitude parameters over the entire range of insonation angles, allowing a more complete characterization of anisotropy. A novel piecewise linear model for the cyclic variation of ultrasonic backscatter from myocardium was proposed. Models of cyclic variation for 100 type 2 diabetes patients and 43 normal control subjects were constructed using Bayesian parameter estimation. Parameters determined from the model, specifically rise time and slew rate, were found to be more reliable in differentiating between subject groups than the previously employed magnitude parameter.
A cybernetic approach to osteoporosis in anorexia nervosa.
Fricke, O; Tutlewski, B; Stabrey, A; Lehmkuhl, G; Schöenau, E
2005-06-01
A group of 25 female individuals, who had been admitted to the University Hospital with the diagnosis of anorexia nervosa (AN) 3 to 10 years before, was seen for a follow-up visit in the hospital. These women got a psychiatric exploration to detect a present eating disorder. Moreover, parameters of the muskuloskeletal interaction were determined on the non-dominant forearm. Bone mineral content (BMC) of the radius was measured by pQCT and maximal grip force was evaluated by the use of a dynamometer. Eating disorders were present in 12 females. The mean of BMC standard deviation (SD) score was significantly reduced in comparison with reference values. Furthermore, the mean of BMC SD score was also significantly lower than the mean of grip force in SD score. These results gave the suggestion that the adaptation of bone mass to biomechanical forces is disturbed in AN. The linear regression analyses between the parameters grip force and BMC were compared between the study and the reference group. The comparison delivered a significantly lower constant in the regression equation of the study group. This result can be interpreted on the background of the mechanostat theory. The affection with an eating disorder decreases the set point in the feedback loop of bone modeling. The results offer for the first time the possibility to analyse osteoporosis in anorexic females under the paradigm of muskuloskeletal interaction.
Stieglitz, Jonathan; Madimenos, Felicia; Kaplan, Hillard; Gurven, Michael
2016-03-01
Sedentary lifestyle contributes to osteoporosis and fragility fracture risks among modern humans, but whether such risks are prevalent in physically active preindustrial societies with lower life expectancies is unclear. Osteoporosis should be readily observable in preindustrial societies if it was regularly experienced over human history. In this study of 142 older adult Tsimane forager-horticulturalists (mean age ± SD, 62.1 ± 8.6 years; range, 50 to 85 years; 51% female) we used calcaneal quantitative ultrasonography (qUS) to assess bone status, document prevalence of adults with reduced bone status, and identify factors (demographic, anthropometric, immunological, kinesthetic) associated with reduced bone status. Men (23%) are as likely as women (25%) to have reduced bone status, although age-related decline in qUS parameters is attenuated for men. Adiposity and fat-free mass positively co-vary with qUS parameters for women but not men. Leukocyte count is inversely associated with qUS parameters controlling for potential confounders; leukocyte count is positively correlated within adults over time, and adults with persistently low counts have higher adjusted qUS parameters (6% to 8%) than adults with a high count. Reduced bone status characteristic of osteoporosis is common among active Tsimane with minimal exposure to osteoporosis risk factors found in industrialized societies, but with energetic constraints and high pathogen burden. © 2015 American Society for Bone and Mineral Research.
Somatic activating mutations in MAP2K1 cause melorheostosis.
Kang, Heeseog; Jha, Smita; Deng, Zuoming; Fratzl-Zelman, Nadja; Cabral, Wayne A; Ivovic, Aleksandra; Meylan, Françoise; Hanson, Eric P; Lange, Eileen; Katz, James; Roschger, Paul; Klaushofer, Klaus; Cowen, Edward W; Siegel, Richard M; Marini, Joan C; Bhattacharyya, Timothy
2018-04-11
Melorheostosis is a sporadic disease of uncertain etiology characterized by asymmetric bone overgrowth and functional impairment. Using whole exome sequencing, we identify somatic mosaic MAP2K1 mutations in affected, but not unaffected, bone of eight unrelated patients with melorheostosis. The activating mutations (Q56P, K57E and K57N) cluster tightly in the MEK1 negative regulatory domain. Affected bone displays a mosaic pattern of increased p-ERK1/2 in osteoblast immunohistochemistry. Osteoblasts cultured from affected bone comprise two populations with distinct p-ERK1/2 levels by flow cytometry, enhanced ERK1/2 activation, and increased cell proliferation. However, these MAP2K1 mutations inhibit BMP2-mediated osteoblast mineralization and differentiation in vitro, underlying the markedly increased osteoid detected in affected bone histology. Mosaicism is also detected in the skin overlying bone lesions in four of five patients tested. Our data show that the MAP2K1 oncogene is important in human bone formation and implicate MEK1 inhibition as a potential treatment avenue for melorheostosis.
A pilot study of laser energy transmission through bone and gingiva.
Ng, Doreen Y; Chan, Ambrose K; Dalci, Oyku; Petocz, Peter; Papadopoulou, Alexandra K; Darendeliler, M Ali
2018-06-20
The use of low-level laser therapy is growing in the field of dentistry especially in orthodontics to speed up tooth movement and in implantology to aid osseointegration. In these dental applications, the laser energy needs to penetrate through the periodontium to the target site to stimulate photobiomodulation. The percentage of energy loss when laser is transmitted through the periodontium has not been previously studied. With the use of an 808-nanometer diode laser, the aim was to investigate the percentage loss of laser energy when transmitted through the periodontium to the extraction socket. The percentage energy loss of an 808-nm diode laser through the periodontium was measured in 27 tooth sockets by using a specifically designed photodiode ammeter. For each millimeter of increased bone thickness there was 6.81% reduction in laser energy (95% confidence interval, 5.02% to 8.60%). The gingival thickness had no statistically significant effect on energy penetration. Energy penetration depends markedly on bone thickness and is independent of gingival thickness. To the best of the authors' knowledge, this study is one of the first to investigate laser penetration through the periodontium. Evidence from this study showed that laser energy penetration through the periodontium is markedly affected by bone thickness but less so by gingival thickness. Clinicians need to be aware of the biological factors that could affect laser energy penetration to the target site and adjust their laser dosages accordingly. These findings may guide dental practitioners in selecting the appropriate laser dosage parameters for low-level laser therapy. Copyright © 2018 American Dental Association. Published by Elsevier Inc. All rights reserved.
Olson, Erik J.; Lindgren, Bruce R.; Carlson, Cathy S.
2008-01-01
The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but that site differences in static and dynamic bone histomorphometry parameters exist, particularly between EMC and osteophyte bone. PMID:18291743
Olson, Erik J; Lindgren, Bruce R; Carlson, Cathy S
2008-05-01
The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight-matched treatment groups for a 36-month treatment period. Group 1 (OVX control) received no treatment, Group 2 (SPE) received soy phytoestrogens, and Group 3 (ERT) received conjugated equine estrogens in the diet; all monkeys were labeled with calcein before necropsy. A midcoronal, plastic-embedded section of the right proximal tibia from 20 randomly selected animals per treatment group was examined histologically. Forty-nine of the sections (OVX control, n=16; SPE, n=16; ERT, n=17) contained lateral abaxial osteophytes, and static and dynamic histomorphometry measurements were taken from osteophyte bone, SCB from the lateral tibial plateau, and EMC bone. Data were analyzed using the ANOVA and Kruskal-Wallis test, correlation and regression methods, and the Friedman and Wilcoxon signed rank test. There was no significant effect of long-term ERT on osteophyte area or on any static or dynamic histomorphometry parameters. The bone volume, trabecular number, and trabecular thickness in osteophyte bone were considerably higher than in EMC bone; whereas, trabecular separation was considerably lower in osteophyte bone. In all three treatment groups, BS/BV was significantly lower in osteophyte bone vs. EMC bone and significantly higher in osteophyte bone vs. lateral SCB. We conclude that osteophyte area and static and dynamic histomorphometry parameters within periarticular tibial osteophytes in ovariectomized cynomolgus monkeys are not significantly influenced by long-term ERT, but that site differences in static and dynamic bone histomorphometry parameters exist, particularly between EMC and osteophyte bone.
Skrajnowska, Dorota; Korczak, Barbara Bobrowska-; Tokarz, Andrzej; Kazimierczuk, Agata; Klepacz, Marta; Makowska, Justyna; Gadzinski, Blazej
2015-10-01
The aim of this study was to assess skeletal effects of zinc or zinc with phytoestrogen (resveratrol or genistein) supplementation in an animal model of rats with DMBA-induced mammary carcinogenesis. The changes in bone parameters such as the length and mass were examined, as well as the changes in concentrations of selected minerals: calcium, magnesium, zinc, iron and phosphorus. Moreover, the investigations focused on finding the differences between the levels of iron and zinc in other tissues: the liver, spleen and serum of the examined rats. Fifty-six female Sprague-Dawley rats, 40 days old, were divided into four groups, regardless of the diets: standard (77mg Zn kg/food), zinc (4.6mg/mL via gavage), zinc (4.6mg/mL) plus resveratrol (0.2mg/kgbw), and zinc (4.6mg/mL) plus genistein (0.2mg/kgbw) for a period from 40 days until 20 weeks of age. The study rats were also treated with 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) to induce mammary carcinogenesis. The applied diet and the advanced mammary cancer did not affect macrometric parameters of the rats' bones, but they strongly affected their mineral content. It was found that mammary cancer, irrespectively of the applied diet, significantly modified the iron level in the femur, liver, spleen and serum of the examined rats. In addition, zinc supplementation significantly lowered the levels of calcium, magnesium and phosphorus in the femur of rats with mammary cancer as compared with respective levels in the control group. So, it was found that additional supplementation with zinc, which is generally considered to be an antioxidant, with the co-existing mammary carcinoma, increased the unfavorable changes as concerns the stability of bone tissue. The appropriate combination of zinc and phytoestrogens (resveratrol or genistein) could help prevent or slow bone loss associated with a range of skeletal disorders in breast cancer. Copyright © 2015 Elsevier GmbH. All rights reserved.
Jameson, John; Smith, Peter; Harris, Gerald
2015-01-01
Osteogenesis Imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64–68% lower in the transverse vs. longitudinal beams (P<0.001, linear mixed model). Vascular porosity ranged between 3–42% of total bone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (p≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight towards understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta. PMID:24928496
Marchand-Libouban, Hélène; Guillaume, Bernard; Bellaiche, Norbert; Chappard, Daniel
2013-05-01
Bone implants are now widely used to replace missing teeth. Bone grafting (sinus lift) is a very useful way to increase the bone volume of the maxilla in patients with bone atrophy. There is a 6- to 9-month delay for the receiver grafted site to heal before the implants can be placed. Computed tomography is a useful method to measure the amount of remaining bone before implantation and to evaluate the quality of the receiver bone at the end of the healing period. Texture analysis is a non-invasive method useful to characterize bone microarchitecture on X-ray images. Ten patients in which a sinus lift surgery was necessary before implantation were analyzed in the present study. All had a bone reconstruction with a combination of a biomaterial (beta tricalcium phosphate) and autograft bone harvested at the chin. Computed tomographic images were obtained before grafting (t0), at mid-interval (t1, 4.2 ± 0.7 months) and before implant placement (t2, 9.2 ± 0.6 months). Texture analysis was done with the run-length method. A significant increase of texture parameters at t1 reflected a gain of homogeneity due to the graft and the beginning of bone remodeling. At t2, some parameters remained high and corresponded to the persistence of bone trabeculae while the resorption of biomaterials was identified by other parameters which tended to return to pregraft values. Texture analysis identified changes during the healing of the receiver site. The method is known to correlate with microarchitectural changes in bone and could be a useful approach to characterized osseointegrated grafts.
Albert, Carolyne; Jameson, John; Smith, Peter; Harris, Gerald
2014-09-01
Osteogenesis imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64-68% lower in the transverse vs. longitudinal beams (P<0.001, linear mixed model). Vascular porosity ranged between 3 and 42% of total bone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (P≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight toward understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta. Copyright © 2014 Elsevier Inc. All rights reserved.
Paschalis, Eleftherios P; Fratzl, Peter; Gamsjaeger, Sonja; Hassler, Norbert; Brozek, Wolfgang; Eriksen, Erik F; Rauch, Frank; Glorieux, Francis H; Shane, Elizabeth; Dempster, David; Cohen, Adi; Recker, Robert; Klaushofer, Klaus
2016-02-01
Bone strength depends on the amount of bone, typically expressed as bone mineral density (BMD), determined by dual-energy X-ray absorptiometry (DXA), and on bone quality. Bone quality is a multifactorial entity including bone structural and material compositional properties. The purpose of the present study was to examine whether bone material composition properties at actively-forming trabecular bone surfaces in health are dependent on subject age, and to contrast them with postmenopausal osteoporosis patients. To achieve this, we analyzed by Raman microspectroscopy iliac crest biopsy samples from healthy subjects aged 1.5 to 45.7 years, paired biopsy samples from females before and immediately after menopause aged 46.7 to 53.6 years, and biopsy samples from placebo-treated postmenopausal osteoporotic patients aged 66 to 84 years. The monitored parameters were as follows: the mineral/matrix ratio; the mineral maturity/crystallinity (MMC); nanoporosity; the glycosaminoglycan (GAG) content; the lipid content; and the pyridinoline (Pyd) content. The results indicate that these bone quality parameters in healthy, actively-forming trabecular bone surfaces are dependent on subject age at constant tissue age, suggesting that with advancing age the kinetics of maturation (either accumulation, or posttranslational modifications, or both) change. For most parameters, the extrapolation of models fitted to the individual age dependence of bone in healthy individuals was in rough agreement with their values in postmenopausal osteoporotic patients, except for MMC, lipid, and Pyd content. Among these three, Pyd content showed the greatest deviation between healthy aging and disease, highlighting its potential to be used as a discriminating factor. © 2015 American Society for Bone and Mineral Research.
Bozzini, Carlos E; Champin, Graciela M; Alippi, Rosa M; Bozzini, Clarisa
2013-04-01
The present study describes the effects of feeding growing rats with diets containing increasing concentrations of wheat gluten (a low quality protein, G) on both the morphometrical and the biomechanical properties of the mandible. Female rats were fed one of six diets containing different concentrations (5-30%) of G between the 30th and 90th days of life. Control rats were fed a diet containing 20% casein (C), which allows a normal growth and development of the bone. Mandibular growth was estimated directly on excised and cleaned bones by taking measurements between anatomical points. Mechanical properties of the right hemimandibles were determined by using a three-point bending mechanical test to obtain a load/deformation curve and estimate the structural properties of the bone. Bone material properties were calculated from structural and geometric properties. The left hemimandibles were ashed and the ash weight obtained. Calcium content was determined by atomic energy absorption. Results were summarised as means±SEM. Comparisons between parameters were performed by ANOVA and post-test. None of the G-fed groups could achieve a normal growth performance as compared to the C-fed control group. Like body size, age-related increments in mandibular weight, length, height and area (index of mandibular size) were negatively affected by the G diets, as was the posterior part of the bone (posterior to molar III). The cross-sectional geometry of the mandible (cross-sectional area and rectangular moment of inertia) as well as its structural properties (yielding load, fracture load, and stiffness) were also severely affected by the G diets. However, material properties (Young's modulus and maximum elastic stress) and calcium concentration in ashes and the degree of mineralisation were unaffected. The differences in strength and stiffness between treated and control rats seemed to be the result of an induced loss of gain in bone growth and mass, in the absence of changes in the quality of the bone mineralised material. Copyright © 2012 Elsevier Ltd. All rights reserved.
Microarchitecture and Bone Quality in the Human Calcaneus; Local Variations of Fabric Anisotropy
Souzanchi, M F; Palacio-Mancheno, P E; Borisov, Y; Cardoso, L; Cowin, SC
2012-01-01
The local variability of microarchitecture of human trabecular calcaneus bone is investigated using high resolution microCT scanning. The fabric tensor is employed as the measure of the microarchitecture of the pore structure of a porous medium. It is hypothesized that a fabric tensor-dependent poroelastic ultrasound approach will more effectively predict the data variance than will porosity alone. The specific aims of the present study are i) to quantify the morphology and local anisotropy of the calcaneus microarchitecture with respect to anatomical directions, ii) to determine the interdependence, or lack thereof, of microarchitecture parameters, fabric, and volumetric bone mineral density (vBMD), and iii) to determine the relative ability of vBMD and fabric measurements in evaluating the variance in ultrasound wave velocity measurements along orthogonal directions in the human calcaneus. Our results show that the microarchitecture in the analyzed regions of human calcanei is anisotropic, with a preferred alignment along the posterior-anterior direction. Strong correlation was found between most scalar architectural parameters and vBMD. However, no statistical correlation was found between vBMD and the fabric components, the measures of the pore microstructure orientation. Therefore, among the parameters usually considered for cancellous bone (i.e., classic histomorphometric parameters such as porosity, trabecular thickness, number and separation), only fabric components explain the data variance that cannot be explained by vBMD, a global mass measurement, which lacks the sensitivity and selectivity to distinguish osteoporotic from healthy subjects because it is insensitive to directional changes in bone architecture. This study demonstrates that a multi-directional, fabric-dependent poroelastic ultrasound approach has the capability of characterizing anisotropic bone properties (bone quality) beyond bone mass, and could help to better understand anisotropic changes in bone architecture using ultrasound. PMID:22807141
Yuan, Wei; Zhang, Haiping; Zhou, Xiaoshu; Wu, Weidong; Zhu, Yue
2018-05-01
Artificial cervical disc replacement is expected to maintain normal cervical biomechanics. At present, the effect of the Prestige LP prosthesis height on cervical biomechanics has not been thoroughly studied. This finite element study of the cervical biomechanics aims to predict how the parameters, like range of motion (ROM), adjacent intradiscal pressure, facet joint force, and bone-implant interface stress, are affected by different heights of Prestige LP prostheses. The finite element model of intact cervical spine (C3-C7) was obtained from our previous study, and the model was altered to implant Prestige LP prostheses at the C5-C6 level. The effects of the height of 5, 6, and 7 mm prosthesis replacement on ROM, adjacent intradiscal pressure, facet joint force, as well as the distribution of bone-implant interface stress were examined. ROM, adjacent intradiscal pressure, and facet joint force increased with the prosthesis height, whereas ROM and facet joint force decreased at C5-C6. The maximal stress on the inferior surface of the prostheses was greater than that on the superior surface, and the stresses increased with the prosthesis height. The biomechanical changes were slightly affected by the height of 5 and 6 mm prostheses, but were strongly affected by the 7-mm prosthesis. An appropriate height of the Prestige LP prosthesis can preserve normal ROM, adjacent intradiscal pressure, and facet joint force. Prostheses with a height of ≥2 mm than normal can lead to marked changes in the cervical biomechanics and bone-implant interface stress. Copyright © 2018 Elsevier Inc. All rights reserved.
Effects of suspension-induced osteopenia on the mechanical behaviour of mouse long bones
NASA Technical Reports Server (NTRS)
Simske, S. J.; Greenberg, A. R.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)
1991-01-01
Whereas most studies of tail-suspension induced osteopenia have utilized rat femora, the present study investigated the effects of a 14 day tail-suspension on the mechanical behaviour of mice femora, tibiae and humeri. Force-deflection properties were obtained via three-point bending for long bones from suspended and control mice. Whole bone behaviour was characterized by converting the force-deflection values to stiffness, strength, ductility and energy parameters which were not normalized for specimen geometry. The effects of a systematic variation in the deflection rate over the range 0.1-10 mm min-1 were also evaluated. Statistical analysis indicated that the primary effect of the tail-suspension period was lowered bone mass which was manifested mechanically through lower values of the bone strength parameters. These effects were similar in the bones of both the fore and hind limbs. The results also demonstrated that the stiffness, ductility and energy characteristics were much less influenced by the tail-suspension. Whereas a significant dependence of the bone strength values upon deflection rate was observed for the femora and humeri, the other mechanical parameters were less sensitive. Based upon the nature of the physical and mechanical changes observed in the long bones following tail-suspension, the mouse appears to be a suitable animal model for the study of osteopenia.
Wnt and the Wnt signaling pathway in bone development and disease
Wang, Yiping; Li, Yi-Ping; Paulson, Christie; Shao, Jian-Zhong; Zhang, Xiaoling; Wu, Mengrui; Chen, Wei
2014-01-01
Wnt signaling affects both bone modeling, which occurs during development, and bone remodeling, which is a lifelong process involving tissue renewal. Wnt signals are especially known to affect the differentiation of osteoblasts. In this review, we summarize recent advances in understanding the mechanisms of Wnt signaling, which is divided into two major branches: the canonical pathway and the noncanonical pathway. The canonical pathway is also called the Wnt/β-catenin pathway. There are two major noncanonical pathways: the Wnt-planar cell polarity pathway (Wnt-PCP pathway) and the Wnt-calcium pathway (Wnt-Ca2+ pathway). This review also discusses how Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists affect both the bone modeling and bone remodeling processes. We also review the role of Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists in bone as demonstrated in mouse models. Disrupted Wnt signaling is linked to several bone diseases, including osteoporosis, van Buchem disease, and sclerosteosis. Studying the mechanism of Wnt signaling and its interactions with other signaling pathways in bone will provide potential therapeutic targets to treat these bone diseases. PMID:24389191
Kobayashi, M; Hara, K; Akiyama, Y
2004-11-01
In this study, we examined changes in bone parameters and bone strength in rats fed low-Mg diets (experiment 1) and the effects of vitamin K2 (MK-4, experiment 3) and alendronate (ALN, experiment 2) in this model. In experiment 1, 5-week-old male Wistar rats were fed three low-Mg diets (Mg 9, 6, 3 mg/100 g diet) for 4 weeks. Although the cortical bone mineral content (CtBMC) and cortical thickness (CtTh) of the femoral diaphysis in all low-Mg-diet groups were the same as or greater than those in the intact group (Mg: 90 mg/100 g diet), the maximum load and elastic modulus were significantly reduced in the 3-mg-Mg group. In experiment 2, 4-week-old Wistar rats were fed a 6-mg-Mg diet for 8 weeks, and the effect of ALN (2, 20, and 200 microg/kg twice a week) was evaluated. The administration of ALN at 200 microg/kg increased the cortical bone mineral content (CtBMC), CtTh, and maximum load, but had no effect on the elastic modulus, as compared with the low-Mg-control group. In experiment 3, the effect of MK-4 was evaluated under the same conditions as in experiment 2. The administration of MK-4 had no effect on CtBMC, CtTh, or bone components of the femoral diaphysis. However, MK-4 inhibited the decreases in maximum load and elastic modulus due to the low-Mg diet. Since there is no other experimental model in which there is a decrease in bone mechanical properties without a decrease in bone mineral content, the low-Mg diet model is considered to be an excellent model for examining bone quality. Our results from this model suggest that MK-4 and ALN affect bone mechanical properties by different mechanisms.
DeHart, Caroline J.; Schweitzer, Mary H.; Thomas, Paul M.; Kelleher, Neil L.
2016-01-01
Proteomic studies of bone require specialized extraction protocols to demineralize and solubilize proteins from within the bone matrix. Although various protocols exist for bone protein recovery, little is known about how discrete steps in each protocol affect the subset of the bone proteome recovered by mass spectrometry (MS) analyses. Characterizing these different “extractomes” will provide critical data for development of novel and more efficient protein extraction methodologies for fossils. Here, we analyze 22 unique sub-extractions of chicken bone and directly compare individual extraction components for their total protein yield and diversity and coverage of bone proteins identified by MS. We extracted proteins using different combinations and ratios of demineralizing reagents, protein-solubilizing reagents, and post-extraction buffer removal methods, then evaluated tryptic digests from 20 µg aliquots of each fraction by tandem MS/MS on a 12T FT-ICR mass spectrometer. We compared total numbers of peptide spectral matches, peptides, and proteins identified from each fraction, the redundancy of protein identifications between discrete steps of extraction methods, and the sequence coverage obtained for select, abundant proteins. Although both alpha chains of collagen I (the most abundant protein in bone) were found in all fractions, other collagenous and non-collagenous proteins (e.g., apolipoprotein, osteonectin, hemoglobin) were differentially identified. We found that when a standardized amount of extracted proteins was analyzed, extraction steps that yielded the most protein (by weight) from bone were often not the ones that produced the greatest diversity of bone proteins, or the highest degree of protein coverage. Generally, the highest degrees of diversity and coverage were obtained from demineralization fractions, and the proteins found in the subsequent solubilization fractions were highly redundant with those in the previous fraction. Based on these data, we identify future directions and parameters to consider (e.g., proteins targeted, amount of sample required) when applying discrete parts of these protocols to fossils. PMID:27812413
USDA-ARS?s Scientific Manuscript database
High protein diets may attenuate bone loss during energy restriction (ER). The objective of the current study was to determine whether high protein diets suppress bone turnover and improve bone quality in rats during ER and whether dietary protein source affects this relationship. Eighty 12-week o...
Evaluating bone quality in patients with chronic kidney disease
Malluche, Hartmut H.; Porter, Daniel S.; Pienkowski, David
2013-01-01
Bone of normal quality and quantity can successfully endure physiologically imposed mechanical loads. Chronic kidney disease–mineral and bone disorder (CKD–MBD) adversely affects bone quality through alterations in bone turnover and mineralization, whereas bone quantity is affected through changes in bone volume. Changes in bone quality can be associated with altered bone material, structure, or microdamage, which can result in an elevated rate of fracture in patients with CKD–MBD. Fractures cannot always be explained by reduced bone quantity and, therefore, bone quality should be assessed with a variety of techniques from the macro-organ level to the nanoscale level. In this Review, we demonstrate the importance of evaluating bone from multiple perspectives and hierarchical levels to understand CKD–MBD-related abnormalities in bone quality. Understanding the relationships between variations in material, structure, microdamage, and mechanical properties of bone in patients with CKD–MBD should aid in the development of new modalities to prevent, or treat, these abnormalities. PMID:24100399
NASA Astrophysics Data System (ADS)
Indriyani, N.; Tridjaja, B.; Medise, B. E.; Kurniati, N.
2017-08-01
Systemic lupus erythematosus (SLE) is an autoimmune disease affecting children; its morbidity and mortality rates are significant. One risk factor for morbidity is chronic corticosteroid use. The aim of this study is to determine the occurrence rate of low bone mineral density; discuss the characteristics, including cumulative and daily doses of corticosteroid, body mass index, Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), calcium, and vitamin D intake; and assess bone metabolism laboratory parameters, including serum calcium, vitamin D, alkaline phosphatase (ALP), phosphorus, and cortisol among children with SLE receiving corticosteroids. This was a descriptive, cross-sectional study involving 16 children with SLE attending the child and adolescent outpatient clinic at Cipto Mangunkusumo Hospital in November-December 2016. Low bone mineral density occurred among 7/16 patients. The mean total bone mineral density was 0.885 ± 0.09 g/cm2. Children with SLE receiving corticosteroid had low calcium (8.69 ± 0.50 mg/dl), vitamin D (19.3 ± 5.4 mg/dl), ALP (79.50 [43.00-164.00] U/l), and morning cortisol level (1.20 [0.0-10.21] ug/dl), as well as calcium (587.58 ± 213.29 mg/d) and vitamin D (2.9 [0-31.8] mcg/d) intake. The occurrence of low bone mineral density was observed among children with SLE receiving corticosteroid treatment. Low bone mineral density tends to occur among patients with higher cumulative doses and longer duration of corticosteroid treatments.
Study of temperature rises and forces on drilling bone
NASA Astrophysics Data System (ADS)
Srikanth Venkataraman, Ananya
Many different approaches have been used to prepare, store and test bone samples in order to determine its physical properties. The need to establish a standard method of specimen preparation and storage prior to experimental testing, contributed greatly to the primary part of this study. When mechanized cutting tools such as saws and drills are used, heat is produced and this raises the temperature of both the tool and the material being cut. In orthopedic and dental practices, high-speed tools are often applied to bones and teeth, and heat from these operations may result in thermal necrosis [1]. Since this can have a negative impact on the outcome of an orthopedic procedure, temperatures must be kept below the threshold that results in bone necrosis. The initial set of experiments was performed to determine the conditions under which the mechanical properties of the bone changed so as to establish the most suitable testing conditions. The hardness variation of the bone samples, under different annealing treatment conditions was used as the indicating parameter for evaluation of the change in the mechanical properties. Establishing the most appropriate section of the metacarpal sample for testing, by studying the anisotropy of the bone was another determining parameter. The second step was to examine the effects of conventional drilling as well as modulation assisted drilling on the temperature rise generated in the bone during these machining processes. In addition to this, a set of experiments were performed to ascertain how lubrication affected the temperature rise during drilling. The dynamic portions of the torque and thrust traces as well as the specific energies were compared for the different drilling conditions. Modulation showed no significant effect on the mean torque, thrust, specific energies of cutting, or temperature rise. Lubrication (flooding and misting) in both the modulation and no modulation cases drastically reduced the temperature rise during cutting, as expected. In addition to this the characteristics of the chips produced by both the methods of drilling were compared. The modulation process produced more consistent chips at the lower speed (360 rpm) and as the speed was increased to 3000 rpm the chip formation was similar to the no modulation drilling condition at the same feed rates. A brief study on the histological changes due to drilling was also performed.
Impact of cannabis sativa (marijuana) smoke on alveolar bone loss: a histometric study in rats.
Nogueira-Filho, Getulio R; Todescan, Sylvia; Shah, Adnan; Rosa, Bruno T; Tunes, Urbino da R; Cesar Neto, Joao B
2011-11-01
Cannabis sativa (marijuana) can interfere with bone physiopathology because of its effect on osteoblast and osteoclast activity. However, its impact on periodontal tissues is still controversial. The present study evaluates whether marijuana smoke affects bone loss (BL) on ligature-induced periodontitis in rats. Thirty male Wistar rats were used in the study. A ligature was placed around one of the mandible first molars (ligated teeth) of each animal, and they were then randomly assigned to one of two groups: control (n = 15) or marijuana smoke inhalation ([MSI] for 8 minutes per day; n = 15). Urine samples were obtained to detect the presence of tetrahydrocannabinol. After 30 days, the animals were sacrificed and decalcified sections of the furcation area were obtained and evaluated according to the following histometric parameters: bone area (BA), bone density (BD), and BL. Tetrahydrocannabinol was positive in urine samples only for the rats of the MSI group. Non-significant differences were observed for unligated teeth from both groups regarding BL, BA, and BD (P >0.05). However, intragroup analysis showed that all ligated teeth presented BL and a lower BA and BD compared to unligated teeth (P <0.05). The intergroup evaluation of the ligated teeth showed that the MSI group presented higher BL and lower BD (P <0.05) compared to ligated teeth from the control group. Considering the limitations of this animal study, cannabis smoke may impact alveolar bone by increasing BL resulting from ligature-induced periodontitis.
Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar
2014-11-01
Drilling of bone is a common procedure in orthopedic surgery to produce hole for screw insertion to fixate the fracture devices and implants. The increase in temperature during such a procedure increases the chances of thermal invasion of bone which can cause thermal osteonecrosis resulting in the increase of healing time or reduction in the stability and strength of the fixation. Therefore, drilling of bone with minimum temperature is a major challenge for orthopedic fracture treatment. This investigation discusses the use of fuzzy logic and Taguchi methodology for predicting and minimizing the temperature produced during bone drilling. The drilling experiments have been conducted on bovine bone using Taguchi's L25 experimental design. A fuzzy model is developed for predicting the temperature during orthopedic drilling as a function of the drilling process parameters (point angle, helix angle, feed rate and cutting speed). Optimum bone drilling process parameters for minimizing the temperature are determined using Taguchi method. The effect of individual cutting parameters on the temperature produced is evaluated using analysis of variance. The fuzzy model using triangular and trapezoidal membership predicts the temperature within a maximum error of ±7%. Taguchi analysis of the obtained results determined the optimal drilling conditions for minimizing the temperature as A3B5C1.The developed system will simplify the tedious task of modeling and determination of the optimal process parameters to minimize the bone drilling temperature. It will reduce the risk of thermal osteonecrosis and can be very effective for the online condition monitoring of the process. © IMechE 2014.
Moaty, Maha I. A.; Fouad, Suzanne; Shebini, Salwa M. El; Kazem, Yusr I.; Tapozada, Salwa T.
2015-01-01
AIM: To investigate the relation between bone parameters and the metabolic syndrome criteria, before and after the administration of two different natural dietary supplements in middle aged working obese Egyptian women suffering from metabolic syndrome (MetS). SUBJECTS AND METHODS: Fifty eight middle aged obese female volunteers suffering from metabolic syndrome were divided into two groups. During the first period, group (A) consumed a low caloric diet and nutritional supplement consisting of doum flour biscuits, while group (B) consumed whole meal wheat flour biscuit with the same instructions. During the second period, both supplements were omitted. Assessment of blood pressure, relevant anthropometric parameters, lipid accumulation product, fasting blood glucose, uric acid, 25 hydroxy vitamin D (25 (OH) D), parathyroid hormone (PTH) and bone-specific alkaline phosphatase were performed. RESULTS: Data showed that although both supplements improved the MetS criteria and the bone health parameters, the supplement containing the doum flour proved to be more effective. CONCLUSION: These results confirm the benefit of doum in improving bone health parameter [25 (OH) D/PTH axis] in the MetS patients, beside the MetS criteria. So, we can conclude that natural effective supplements lead towards the optimization of biochemical parameters in favor of a healthy outcome. PMID:27275291
Influence of Exercise and Training on Critical Stages of Bone Growth and Development.
Klentrou, Panagiota
2016-05-01
Although osteoporosis is considered a geriatric disease, factors affecting bone strength are most influential during child growth and development. This article reviews what is known and still unclear in terms of bone growth, development and adaptation relative to physical activity before and during puberty. Bone is responsive to certain exercise protocols early in puberty and less so in postpubertal years, where bone strength, rather than bone mass, being the outcome of interest. Mechanical loading and high impact exercise promote bone strength. Intense training before and during puberty, however, may negatively affect bone development. Future research should focus on increasing our mechanistic understanding of the manner by which diverse physical stressors alter the integrity of bone. Longitudinal studies that examine the extent to which muscle and bone are comodulated by growth in children are also recommended.
Interaction Between Bone and Muscle in Older Persons with Mobility Limitations
Ferrucci, L.; Baroni, M.; Ranchelli, A.; Lauretani, F.; Maggio, M.; Mecocci, P.; Ruggiero, C.
2015-01-01
Aging is associated with a progressive loss of bone-muscle mass and strength. When the decline in mass and strength reaches critical thresholds associated with adverse health outcomes, they are operationally considered geriatric conditions and named, respectively, osteoporosis and sarcopenia. Osteoporosis and sarcopenia share many of the same risk factors and both directly or indirectly cause higher risk of mobility limitations, falls, fractures and disability in activities of daily living. This is not surprising since bones adapt their morphology and strength to the long-term loads exerted by muscle during anti-gravitational and physical activities. Non-mechanical systemic and local factors also modulate the mechanostat effect of muscle on bone by affecting the bidirectional osteocyte-muscle crosstalk, but the specific pathways that regulate these homeostatic mechanisms are not fully understood. More research is required to reach a consensus on cut points in bone and muscle parameters that identify individuals at high risk for adverse health outcomes, including falls, fractures and disability. A better understanding of the muscle-bone physiological interaction may help to develop preventive strategies that reduce the burden of musculoskeletal diseases, the consequent disability in older persons and to limit the financial burden associated with such conditions. In this review, we summarize age-related bone-muscle changes focusing on the biomechanical and homeostatic mechanisms that explain bone-muscle interaction and we speculate about possible pathological events that occur when these mechanisms become impaired. We also report some recent definitions of osteoporosis and sarcopenia that have emerged in the literature and their implications in clinical practice. Finally, we outline the current evidence for the efficacy of available anti-osteoporotic and proposed anti-sarcopenic interventions in older persons. PMID:24050165
Correlation between ultrasound velocity and densitometry in fresh and demineralized cortical bone
de Mesquita, Alessandro Queiroz; Barbieri, Giuliano; Barbieri, Claudio Henrique
2016-01-01
OBJECTIVE: To compare ultrasound propagation velocity with densitometry in the diaphyseal compact cortical bone of whole sheep metatarsals. METHODS: The transverse ultrasound velocity and bone mineral density of 5-cm-long diaphyseal bone segments were first measured. The bone segments were then divided into four groups of 15 segments each and demineralized in an aqueous 0.5 N hydrochloric acid solution for 6, 12, 24 or 36 hours. All measurements were repeated after demineralization for each time duration and the values measured before and after demineralization were compared. RESULTS: Ultrasound velocity and bone mineral density decreased with demineralization time, and most differences in the pre- and post-demineralization values within each group and between groups were significant: A moderate correlation coefficient (r=0.75956) together with a moderate agreement was determined between both post-demineralization parameters, detected by the Bland-Altman method. CONCLUSION: We conclude that both ultrasound velocity and bone mineral density decrease as a result of demineralization, thus indicating that bone mineral content is of great importance for maintaining the acoustic parameters of cortical bone, as observed for cancellous bone. Ultrasound velocity can be used to evaluate both compact cortical bone quality and bone mineral density. PMID:27982167
Correlation between ultrasound velocity and densitometry in fresh and demineralized cortical bone.
Mesquita, Alessandro Queiroz de; Barbieri, Giuliano; Barbieri, Claudio Henrique
2016-11-01
To compare ultrasound propagation velocity with densitometry in the diaphyseal compact cortical bone of whole sheep metatarsals. The transverse ultrasound velocity and bone mineral density of 5-cm-long diaphyseal bone segments were first measured. The bone segments were then divided into four groups of 15 segments each and demineralized in an aqueous 0.5 N hydrochloric acid solution for 6, 12, 24 or 36 hours. All measurements were repeated after demineralization for each time duration and the values measured before and after demineralization were compared. Ultrasound velocity and bone mineral density decreased with demineralization time, and most differences in the pre- and post-demineralization values within each group and between groups were significant: A moderate correlation coefficient (r=0.75956) together with a moderate agreement was determined between both post-demineralization parameters, detected by the Bland-Altman method. We conclude that both ultrasound velocity and bone mineral density decrease as a result of demineralization, thus indicating that bone mineral content is of great importance for maintaining the acoustic parameters of cortical bone, as observed for cancellous bone. Ultrasound velocity can be used to evaluate both compact cortical bone quality and bone mineral density.
A quantification strategy for missing bone mass in case of osteolytic bone lesions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fränzle, Andrea, E-mail: a.fraenzle@dkfz.de; Giske, Kristina; Bretschi, Maren
Purpose: Most of the patients who died of breast cancer have developed bone metastases. To understand the pathogenesis of bone metastases and to analyze treatment response of different bone remodeling therapies, preclinical animal models are examined. In breast cancer, bone metastases are often bone destructive. To assess treatment response of bone remodeling therapies, the volumes of these lesions have to be determined during the therapy process. The manual delineation of missing structures, especially if large parts are missing, is very time-consuming and not reproducible. Reproducibility is highly important to have comparable results during the therapy process. Therefore, a computerized approachmore » is needed. Also for the preclinical research, a reproducible measurement of the lesions is essential. Here, the authors present an automated segmentation method for the measurement of missing bone mass in a preclinical rat model with bone metastases in the hind leg bones based on 3D CT scans. Methods: The affected bone structure is compared to a healthy model. Since in this preclinical rat trial the metastasis only occurs on the right hind legs, which is assured by using vessel clips, the authors use the left body side as a healthy model. The left femur is segmented with a statistical shape model which is initialised using the automatically segmented medullary cavity. The left tibia and fibula are segmented using volume growing starting at the tibia medullary cavity and stopping at the femur boundary. Masked images of both segmentations are mirrored along the median plane and transferred manually to the position of the affected bone by rigid registration. Affected bone and healthy model are compared based on their gray values. If the gray value of a voxel indicates bone mass in the healthy model and no bone in the affected bone, this voxel is considered to be osteolytic. Results: The lesion segmentations complete the missing bone structures in a reasonable way. The mean ratiov{sub r}/v{sub m} of the reconstructed bone volume v{sub r} and the healthy model bone volume v{sub m} is 1.07, which indicates a good reconstruction of the modified bone. Conclusions: The qualitative and quantitative comparison of manual and semi-automated segmentation results have shown that comparing a modified bone structure with a healthy model can be used to identify and measure missing bone mass in a reproducible way.« less
Microcracks induce osteoblast alignment and maturation on hydroxyapatite scaffolds
NASA Astrophysics Data System (ADS)
Shu, Yutian
Physiological bone tissue is a mineral/collagen composite with a hierarchical structure. The features in bone, such as mineral crystals, fibers, and pores can range from the nanometer to the centimeter in size. Currently available bone tissue scaffolds primarily address the chemical composition, pore size, and pore size distribution. While these design parameters are extensively investigated for mimicking bone function and inducing bone regeneration, little is known about microcracks, which is a prevalent feature found in fractured bone in vivo and associated with fracture healing and repair. Since the purpose of bone tissue engineering scaffold is to enhance bone regeneration, the coincidence of microcracks and bone densification should not be neglected but rather be considered as a potential parameter in bone tissue engineering scaffold design. The purpose of this study is to test the hypothesis that microcracks enhance bone healing. In vitro studies were designed to investigate the osteoblast (bone forming cells) response to microcracks in dense (94%) hydroxyapatite substrates. Microcracks were introduced using a well-established Vickers indentation technique. The results of our study showed that microcracks induced osteoblast alignment, enhanced osteoblast attachment and more rapid maturation. These findings may provide insight into fracture healing mechanism(s) as well as improve the design of bone tissue engineering orthopedic scaffolds for more rapid bone regeneration.
Image analysis for dental bone quality assessment using CBCT imaging
NASA Astrophysics Data System (ADS)
Suprijanto; Epsilawati, L.; Hajarini, M. S.; Juliastuti, E.; Susanti, H.
2016-03-01
Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Δp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Δp have potential to be the classification parameters of dental calcium density.
An analysis of factors affecting the mercury content in the human femoral bone.
Zioła-Frankowska, A; Dąbrowski, M; Kubaszewski, Ł; Rogala, P; Kowalski, A; Frankowski, M
2017-01-01
The study was carried out to determine the content of mercury in bone tissue of the proximal femur (head and neck bone) of 95 patients undergoing total hip replacement due to osteoarthritis, using CF-AFS analytical technique. Furthermore, the investigations were aimed at assessing the impact of selected factors, such as age, gender, tobacco smoking, alcohol consumption, exposure to chemical substance at work, type of degenerative changes, clinical evaluation and radiological parameters, type of medications, on the concentration of mercury in the head and neck of the femur, resected in situ. Mercury was obtained in all samples of the head and neck of the femur (n = 190) in patients aged 25-91 years. The mean content of mercury for the whole group of patients was as follows: 37.1 ± 35.0 ng/g for the femoral neck and 24.2 ± 19.5 ng/g for the femoral head. The highest Hg contents were found in femoral neck samples, both in women and men, and they amounted to 169.6 and 176.5 ng/g, respectively. The research showed that the mercury content of bones can be associated with body mass index, differences in body anatomy, and gender. The uses of statistical analysis gave the possibility to define the influence of factors on mercury content in human femoral bones.
Effect of supplementary zinc on orthodontic tooth movement in a rat model
Sadegh, Ahmad Akhoundi Mohammad; Rezvaneh, Ghazanfari; Shahroo, Etemad-Moghadam; Mojgan, Alaeddini; Azam, Khorshidian; Shahram, Rabbani; Reza, Shamshiri Ahmad; Nafiseh, Momeni
2016-01-01
ABSTRACT Introduction: Osteoclasts and osteoblasts are responsible for regulating bone homeostasis during which the trace element zinc has been shown to exert a cumulative effect on bone mass by stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. Objective: The aim of the present study was to investigate the effects of zinc (Zn) on orthodontic tooth movement (OTM) in a rat model. Material and Methods: A total of 44 male Wistar rats were divided into four groups of 11 animals each and received 0, 1.5, 20 and 50 ppm Zn in distilled water for 60 days. In the last 21 days of the study, nickel-titanium closed coil springs were ligated between maxillary right incisors and first molars of all rats, and tooth movement was measured at the end of this period. Histological analysis of hematoxylin/eosin slides was performed to assess root resorption lacunae, osteoclast number and periodontal ligament (PDL) width. Results: Mean OTM was calculated as 51.8, 49.1, 35.5 and 45 µm in the 0, 1.5, 20 and 50 ppm zinc-receiving groups, respectively. There were no significant differences in neither OTM nor histological parameters among the study groups (p > 0.05). Conclusion: According to the results obtained in the current investigation, increase in supplementary zinc up to 50 ppm does not affect the rate of OTM neither bone and root resorption in rats. PMID:27275614
Schöffl, I; Kemmler, W; Kladny, B; Vonstengel, S; Kalender, W A; Engelke, K
2008-01-01
The objective of this study was an integrated cross-sectional investigation for answering the question whether differences in bone mineral density in elderly postmenopausal women are associated with differences in habitual physical activity and unspecific exercise levels. Two hundred and ninety nine elderly women (69-/+3 years), without diseases or medication affecting bone metabolism were investigated. The influence of weight, body composition and physical activity on BMD was measured at multiple sites using different techniques (DXA, QCT, and QUS). Physical activity and exercise level were assessed by questionnaire, maximum strength of the legs and aerobic capacity. Variations in physical activity or habitual exercise had no effect on bone. The only significant univariate relation between strength/VO(2)max and BMD/BMC that remained after adjusting for confounding variables was between arm BMD (DXA) and hand-grip strength. The most important variable for explaining BMD was weight and for cortical BMC of the femur (QCT) lean body mass. Weight and lean body mass emerge as predominant predictors of BMD in normal elderly women, whereas the isolated effect of habitual physical activity, unspecific exercise participation, and muscle strength on bone parameters is negligible. Thus, an increase in the amount of habitual physical activity will probably have no beneficial impact on bone.
Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C.; Zahner, Daniel; Hemdan, Nasr Y.; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian
2013-01-01
Background Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Material/Methods Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. Results BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below −5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Conclusions Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk. PMID:23446183
Govindarajan, Parameswari; Schlewitz, Gudrun; Schliefke, Nathalie; Weisweiler, David; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C; Zahner, Daniel; Hemdan, Nasr Y; Böcker, Wolfgang; Schnettler, Reinhard; Heiss, Christian
2013-02-28
Osteoporosis is a multi-factorial, chronic, skeletal disease highly prevalent in post-menopausal women and is influenced by hormonal and dietary factors. Because animal models are imperative for disease diagnostics, the present study establishes and evaluates enhanced osteoporosis obtained through combined ovariectomy and deficient diet by DEXA (dual-energy X-ray absorptiometry) for a prolonged time period. Sprague-Dawley rats were randomly divided into sham (laparotomized) and OVX-diet (ovariectomized and fed with deficient diet) groups. Different skeletal sites were scanned by DEXA at the following time points: M0 (baseline), M12 (12 months post-surgery), and M14 (14 months post-surgery). Parameters analyzed included BMD (bone mineral density), BMC (bone mineral content), bone area, and fat (%). Regression analysis was performed to determine the interrelationships between BMC, BMD, and bone area from M0 to M14. BMD and BMC were significantly lower in OVX-diet rats at M12 and M14 compared to sham rats. The Z-scores were below -5 in OVX-diet rats at M12, but still decreased at M14 in OVX-diet rats. Bone area and percent fat were significantly lower in OVX-diet rats at M14 compared to sham rats. The regression coefficients for BMD vs. bone area, BMC vs. bone area, and BMC vs. BMD of OVX-diet rats increased with time. This is explained by differential percent change in BMD, BMC, and bone area with respect to time and disease progression. Combined ovariectomy and deficient diet in rats caused significant reduction of BMD, BMC, and bone area, with nearly 40% bone loss after 14 months, indicating the development of severe osteoporosis. An increasing regression coefficient of BMD vs. bone area with disease progression emphasizes bone area as an important parameter, along with BMD and BMC, for prediction of fracture risk.
Tooth dentin defects reflect genetic disorders affecting bone mineralization
Vital, S. Opsahl; Gaucher, C.; Bardet, C.; Rowe, P.S.; George, A.; Linglart, A.; Chaussain, C.
2012-01-01
Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization. PMID:22296718
Di Mauro, R; Greco, L; Melis, M; Manenti, G; Floris, R; Giacomini, P G; Di Girolamo, M; Di Girolamo, S
2016-05-01
Beta thalassemia is a blood dyscrasia that caused a marked expansion of active marrow spaces and extramedullary haematopoiesis results. In these patients various alterations and abnormalities affects different body areas, including increased risk of sinusitis. The marrow expansion in the facial bones results in delay in pneumatisation of the sinuses, overgrowth of the maxillae, and forward displacement of the upper incisors with skeletal deformities. In current literature, maxillary sinuses are not deeply evaluated by CT scan studies in these kind of patients. The aim of our study was to investigate the presence of maxillary sinuses abnormalities by the use of CT in patients with beta-thalassemia major and to compare these findings with a control group free from this disease. A retrospective analysis of 22 paediatric patients with beta-thalassemia major and 22 control subjects without sinonasal diseases was performed. CT was done using a 64-multidetector-row CT scanner without contrast injection, obtained in axial plane using thin-slice technique. Evaluated parameters were: bone thickness of the lateral and anterior wall, density and volume of the maxillary sinuses. Significant difference was found between the study group and control group in the evaluation of all the parameters examined. The maxillary sinus of β thalassemic patients was smaller respect of controls, the bone was more dense and thick in the side and anterior wall. Beta-thalassemic patients have a relative risk of 2.87 to develop a maxillary sinusitis. In these patients there is an increased incidence of sinonasal infections due to the abnormal development of cranio facial skeleton. These bone alterations might confuse the physicians and lead to an increased rate of sinusitis diagnoses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Photoacoustic and ultrasound characterization of bone composition
NASA Astrophysics Data System (ADS)
Lashkari, Bahman; Yang, Lifeng; Liu, Lixian; Tan, Joel W. Y.; Mandelis, Andreas
2015-02-01
This study examines the sensitivity and specificity of backscattered ultrasound (US) and backscattering photoacoustic (PA) signals for bone composition variation assessment. The conventional approach in the evaluation of bone health relies on measurement of bone mineral density (BMD). Although, a crucial and probably the most important parameter, BMD is not the only factor defining the bone health. New trends in osteoporosis research, also pursue the changes in collagen content and cross-links with bone diseases and aging. Therefore, any non-invasive method that can assess any of these parameters can improve the diagnostic tools and also can help with the biomedical studies on the diseases themselves. Our previous studies show that both US and PA are responsive to changes in the BMD, PA is, in addition, sensitive to changes in the collagen content of the bone. Measurements were performed on bone samples before and after mild demineralization and decollagenization at the exact same points. Results show that combining both modalities can enhance the sensitivity and specificity of diagnostic tool.
Ferrer, Gerald A; Miller, R Matthew; Murawski, Christopher D; Tashman, Scott; Irrgang, James J; Musahl, Volker; Fu, Freddie H; Debski, Richard E
2016-09-01
The objective of this study was to determine parameters associated with patellar fracture after quadriceps tendon autograft harvest. Thirteen non-fractured and five fractured patella surface models were created based on patient data obtained from a prospective randomized clinical trial in order to assess geometric parameters and bending stress. Measurements that describe the bone block harvest site geometry were used to calculate three normalized parameters. The relative depth parameter describes the thickness of the bone block harvest site with respect to the thickness of the patella at the harvest site. The asymmetry parameter defines the medial-lateral location of the bone bock harvest site. The normalized bending stress parameter assesses the bending stress experienced by the remaining bone beneath the bone block harvest site. The relative depth of the bone block harvest site in the non-fractured patellae was 27 ± 12 % and for the fractured patellae was 42 ± 14 % (p < 0.05). With a value <1 indicating a more lateral location of the harvest site, asymmetry for the non-fractured group was 1.0 ± 0.5 and 0.7 ± 0.4 for the fractured group (n.s.). The maximum bending stress experienced by the non-fractured patellae was (1.8 × 10(-3) ± 1.3 × 10(-3)) mm(-3) × M and for the fractured patellae was over three times greater (6.3 × 10(-3) ± 3.7 × 10(-3)) mm(-3) × M (p < 0.05). Based on the non-uniform geometry of the patella, an emphasis should be made on harvesting a standard percentage of patella thickness rather than a fixed depth. In order to minimize the incidence of a patellar fracture, bone blocks should not be taken laterally and should not exceed 30 % of the total patella thickness at the harvest site.
High fat diet promotes achievement of peak bone mass in young rats.
Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R; Bhat, Manoj Kumar
2014-12-05
The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.
Time dependent loss of trabecular bone in human tibial plateau fractures.
Solomon, Lucian Bogdan; Kitchen, David; Anderson, Paul Hamill; Yang, Dongqing; Starczak, Yolandi; Kogawa, Masakazu; Perilli, Egon; Smitham, Peter Jonathan; Rickman, Mark Sean; Thewlis, Dominic; Atkins, Gerald James
2018-05-22
We investigated if time between injury and surgery affects cancellous bone properties in patients suffering tibial plateau fractures (TPF), in terms of structural integrity and gene expression controlling bone loss. A cohort of 29 TPF, operated 1-17 days post-injury, had biopsies from the fracture and an equivalent contralateral limb site, at surgery. Samples were assessed using micro-computed tomography and real-time RT-PCR analysis for the expression of genes known to be involved in bone remodeling and fracture healing. Significant decreases in the injured vs control side were observed for bone volume fraction (BV/TV, -13.5 ± 6.0%, p = 0.011), trabecular number (Tb.N, -10.5 ± 5.9%, p = 0.041) and trabecular thickness (Tb.Th, -4.6 ± 2.5%, p = 0.033). Changes in these parameters were more evident in patients operated 5-17 days post-injury, compared to those operated in the first 4 days post injury. A significant negative association was found between Tb.Th (r = -0.54, p < 0.01) and BV/TV (r = -0.39, p < 0.05) in relation to time post-injury in the injured limb. Both BV/TV and Tb.Th were negatively associated with expression of key molecular markers of bone resorption, CTSK, ACP5 and the ratio of RANKL:OPG mRNA. These structure/gene expression relationships did not exist in the contralateral tibial plateau of these patients. This study demonstrated that there is a significant early time-dependent bone loss in the proximal tibia after TPF. This bone loss was significantly associated with altered expression of genes typically involved in the process of osteoclastic bone resorption but possibly also by osteocytes. The mechanism of early bone loss in such fractures should be a subject of further investigation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Dittmer, Keren E; Firth, Elwyn C; Thompson, Keith G; Marshall, Jonathan C; Blair, Hugh T
2011-03-01
An inherited skeletal disease with gross and microscopic features of rickets has been diagnosed in Corriedale sheep in New Zealand. The aim of this study was to quantify the changes present in tibia from sheep with inherited rickets using peripheral quantitative computed tomography. In affected sheep, scans in the proximal tibia, where metaphysis becomes diaphysis, showed significantly greater trabecular bone mineral content (BMC) and bone mineral density (BMD). The sheep with inherited rickets had significantly greater BMC and bone area in the mid-diaphysis of the proximal tibia compared to control sheep. However, BMD in the mid-diaphysis was significantly less in affected sheep than in controls, due to the greater cortical area and lower voxel density values in affected sheep. From this it was concluded that the increased strain on under-mineralised bone in sheep with inherited rickets led to increased bone mass in an attempt to improve bone strength. Copyright © 2010 Elsevier Ltd. All rights reserved.
Does fetal smoke exposure affect childhood bone mass? The Generation R Study.
Heppe, D H M; Medina-Gomez, C; Hofman, A; Rivadeneira, F; Jaddoe, V W V
2015-04-01
We assessed the intrauterine influence of maternal smoking on childhood bone mass by comparing parental prenatal and postnatal smoking habits. We observed higher bone mass in children exposed to maternal smoking, explained by higher body weight. Maternal smoking or related lifestyle factors may affect childhood weight gain rather than skeletal growth. Maternal smoking during pregnancy may adversely affect bone health in later life. By comparing the associations of maternal and paternal smoking and of prenatal and postnatal exposure with childhood bone measures, we aimed to explore whether the suggested association could be explained by fetal programming or reflects confounding by familial factors. In 5565 mothers, fathers and children participating in a population-based prospective cohort study, parental smoking habits during pregnancy and current household smoking habits were assessed by postal questionnaires. Total body bone mineral content (BMC), bone area (BA) and bone mineral density (BMD) were measured by dual-energy X-ray absorptiometry (DXA) at the median age of 6.0 years (IQR 0.37). In confounder-adjusted models, maternal smoking during pregnancy was associated with a higher BMC of 11.6 g (95 % confidence interval (CI) 5.6, 17.5), a larger BA of 9.7 cm(2) (95 % CI 3.0, 16.4), a higher BMD of 6.7 g/cm(2) (95 % CI 2.4, 11.0) and a higher BMC of 5.4 g (95 % CI 1.3, 9.6) adjusted for BA of the child. Current weight turned out to mediate these associations. Among mothers who did not smoke, paternal smoking did not show evident associations with childhood bone measures. Also, household smoking practices during childhood were not associated with childhood bone measures. Our results do not support the hypothesis of fetal smoke exposure affecting childhood bone mass via intrauterine mechanisms. Maternal smoking or related lifestyle factors may affect childhood weight gain rather than skeletal growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazan, Jose G.; Luxton, Gary; Kozak, Margaret M.
Purpose: To determine how chemotherapy agents affect radiation dose parameters that correlate with acute hematologic toxicity (HT) in patients treated with pelvic intensity modulated radiation therapy (P-IMRT) and concurrent chemotherapy. Methods and Materials: We assessed HT in 141 patients who received P-IMRT for anal, gynecologic, rectal, or prostate cancers, 95 of whom received concurrent chemotherapy. Patients were separated into 4 groups: mitomycin (MMC) + 5-fluorouracil (5FU, 37 of 141), platinum ± 5FU (Cis, 32 of 141), 5FU (26 of 141), and P-IMRT alone (46 of 141). The pelvic bone was contoured as a surrogate for pelvic bone marrow (PBM) andmore » divided into subsites: ilium, lower pelvis, and lumbosacral spine (LSS). The volumes of each region receiving 5-40 Gy were calculated. The endpoint for HT was grade ≥3 (HT3+) leukopenia, neutropenia or thrombocytopenia. Normal tissue complication probability was calculated using the Lyman-Kutcher-Burman model. Logistic regression was used to analyze association between HT3+ and dosimetric parameters. Results: Twenty-six patients experienced HT3+: 10 of 37 (27%) MMC, 14 of 32 (44%) Cis, 2 of 26 (8%) 5FU, and 0 of 46 P-IMRT. PBM dosimetric parameters were correlated with HT3+ in the MMC group but not in the Cis group. LSS dosimetric parameters were well correlated with HT3+ in both the MMC and Cis groups. Constrained optimization (0« less
Effect of low-dose CT and iterative reconstruction on trabecular bone microstructure assessment
NASA Astrophysics Data System (ADS)
Kopp, Felix K.; Baum, Thomas; Nasirudin, Radin A.; Mei, Kai; Garcia, Eduardo G.; Burgkart, Rainer; Rummeny, Ernst J.; Bauer, Jan S.; Noël, Peter B.
2016-03-01
The trabecular bone microstructure is an important factor in the development of osteoporosis. It is well known that its deterioration is one effect when osteoporosis occurs. Previous research showed that the analysis of trabecular bone microstructure enables more precise diagnoses of osteoporosis compared to a sole measurement of the mineral density. Microstructure parameters are assessed on volumetric images of the bone acquired either with high-resolution magnetic resonance imaging, high-resolution peripheral quantitative computed tomography or high-resolution computed tomography (CT), with only CT being applicable to the spine, which is one of clinically most relevant fracture sites. However, due to the high radiation exposure for imaging the whole spine these measurements are not applicable in current clinical routine. In this work, twelve vertebrae from three different donors were scanned with standard and low radiation dose. Trabecular bone microstructure parameters were assessed for CT images reconstructed with statistical iterative reconstruction (SIR) and analytical filtered backprojection (FBP). The resulting structure parameters were correlated to the biomechanically determined fracture load of each vertebra. Microstructure parameters assessed for low-dose data reconstructed with SIR significantly correlated with fracture loads as well as parameters assessed for standard-dose data reconstructed with FBP. Ideal results were achieved with low to zero regularization strength yielding microstructure parameters not significantly different from those assessed for standard-dose FPB data. Moreover, in comparison to other approaches, superior noise-resolution trade-offs can be found with the proposed methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lekadir, Karim, E-mail: karim.lekadir@upf.edu; Hoogendoorn, Corné; Armitage, Paul
Purpose: This paper presents a statistical approach for the prediction of trabecular bone parameters from low-resolution multisequence magnetic resonance imaging (MRI) in children, thus addressing the limitations of high-resolution modalities such as HR-pQCT, including the significant exposure of young patients to radiation and the limited applicability of such modalities to peripheral bones in vivo. Methods: A statistical predictive model is constructed from a database of MRI and HR-pQCT datasets, to relate the low-resolution MRI appearance in the cancellous bone to the trabecular parameters extracted from the high-resolution images. The description of the MRI appearance is achieved between subjects by usingmore » a collection of feature descriptors, which describe the texture properties inside the cancellous bone, and which are invariant to the geometry and size of the trabecular areas. The predictive model is built by fitting to the training data a nonlinear partial least square regression between the input MRI features and the output trabecular parameters. Results: Detailed validation based on a sample of 96 datasets shows correlations >0.7 between the trabecular parameters predicted from low-resolution multisequence MRI based on the proposed statistical model and the values extracted from high-resolution HRp-QCT. Conclusions: The obtained results indicate the promise of the proposed predictive technique for the estimation of trabecular parameters in children from multisequence MRI, thus reducing the need for high-resolution radiation-based scans for a fragile population that is under development and growth.« less
[New therapies for children affected by bone diseases].
Ballhausen, Diana; Dépraz, Nuria Garcia; Kern, Ilse; Unger, Sheila; Bonafé, Luisa
2012-02-22
Considerable progress has been achieved in recent years in treating children affected by bone diseases. Advances in the understanding of the molecular pathophysiology of genetic bone diseases have led to the development of enzyme replacement therapies for various lysosomal storage diseases, following the breakthrough initiated in treating Gaucher disease. Clinical studies are underway with tailored molecules correcting bone fragility and alleviating chronic bone pain and other manifestations of hypophosphatasia, or promoting growth of long bones in achondroplasia patients. We further report our very encouraging experience with intravenous bisphosphonate treatment in children suffering from secondary osteopenia and the high prevalence of calcium and vitamin D deficits in these severely disabled children.
Pediatric inflammatory bowel disease and bone health.
Mascarenhas, Maria R; Thayu, Meena
2010-08-01
Childhood and adolescence are important periods for bone development. Any disease that affects bone health has the potential to affect the bones not only in the short term but also later in life. Bone health abnormalities in patients with inflammatory bowel disease are being increasingly recognized. Screening the at-risk patient is important so that appropriate treatments can be instituted. Treatment options are limited to vitamin D and calcium supplementation, control of underlying disease activity, and appropriate physical activity. The role of bisphosphonates in these patients needs to be better studied, and treatment with bisphosphonates may be considered for some patients in consultation with a bone health expert.
NASA Astrophysics Data System (ADS)
Mei, Kai; Kopp, Felix K.; Fehringer, Andreas; Pfeiffer, Franz; Rummeny, Ernst J.; Kirschke, Jan S.; Noël, Peter B.; Baum, Thomas
2017-03-01
The trabecular bone microstructure is a key to the early diagnosis and advanced therapy monitoring of osteoporosis. Regularly measuring bone microstructure with conventional multi-detector computer tomography (MDCT) would expose patients with a relatively high radiation dose. One possible solution to reduce exposure to patients is sampling fewer projection angles. This approach can be supported by advanced reconstruction algorithms, with their ability to achieve better image quality under reduced projection angles or high levels of noise. In this work, we investigated the performance of iterative reconstruction from sparse sampled projection data on trabecular bone microstructure in in-vivo MDCT scans of human spines. The computed MDCT images were evaluated by calculating bone microstructure parameters. We demonstrated that bone microstructure parameters were still computationally distinguishable when half or less of the radiation dose was employed.
Ru, Nan; Liu, Sean Shih-Yao; Zhuang, Li; Li, Song; Bai, Yuxing
2013-05-01
To observe the real-time microarchitecture changes of the alveolar bone and root resorption during orthodontic treatment. A 10 g force was delivered to move the maxillary left first molars mesially in twenty 10-week-old rats for 14 days. The first molar and adjacent alveolar bone were scanned using in vivo microcomputed tomography at the following time points: days 0, 3, 7, and 14. Microarchitecture parameters, including bone volume fraction, structure model index, trabecular thickness, trabecular number, and trabecular separation of alveolar bone, were measured on the compression and tension side. The total root volume was measured, and the resorption crater volume at each time point was calculated. Univariate repeated measures analysis of variance with Bonferroni corrections were performed to compare the differences in each parameter between time points with significance level at P < .05. From day 3 to day 7, bone volume fraction, structure model index, trabecular thickness, and trabecular separation decreased significantly on the compression side, but the same parameters increased significantly on the tension side from day 7 to day 14. Root resorption volume of the mesial root increased significantly on day 7 of orthodontic loading. Real-time root and bone resorption during orthodontic movement can be observed in 3 dimensions using in vivo micro-CT. Alveolar bone resorption and root resorption were observed mostly in the apical third on day 7 on the compression side; bone formation was observed on day 14 on the tension side during orthodontic tooth movement.
A paradigm shift for bone quality in dentistry: A literature review.
Kuroshima, Shinichiro; Kaku, Masaru; Ishimoto, Takuya; Sasaki, Muneteru; Nakano, Takayoshi; Sawase, Takashi
2017-10-01
The aim of this study was to present the current concept of bone quality based on the proposal by the National Institutes of Health (NIH) and some of the cellular and molecular factors that affect bone quality. This is a literature review which focuses on collagen, biological apatite (BAp), and bone cells such as osteoblasts and osteocytes. In dentistry, the term "bone quality" has long been considered to be synonymous with bone mineral density (BMD) based on radiographic and sensible evaluations. In 2000, the NIH proposed the concept of bone quality as "the sum of all characteristics of bone that influence the bone's resistance to fracture," which is completely independent of BMD. The NIH defines bone quality as comprising bone architecture, bone turnover, bone mineralization, and micro-damage accumulation. Moreover, our investigations have demonstrated that BAp, collagen, and bone cells such as osteoblasts and osteocytes play essential roles in controlling the current concept of bone quality in bone around hip and dental implants. The current concept of bone quality is crucial for understanding bone mechanical functions. BAp, collagen and osteocytes are the main factors affecting bone quality. Moreover, mechanical loading dynamically adapts bone quality. Understanding the current concept of bone quality is required in dentistry. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Liao, Zhipeng; Yoda, Nobuhiro; Chen, Junning; Zheng, Keke; Sasaki, Keiichi; Swain, Michael V; Li, Qing
2017-04-01
This paper aimed to develop a clinically validated bone remodeling algorithm by integrating bone's dynamic properties in a multi-stage fashion based on a four-year clinical follow-up of implant treatment. The configurational effects of fixed partial dentures (FPDs) were explored using a multi-stage remodeling rule. Three-dimensional real-time occlusal loads during maximum voluntary clenching were measured with a piezoelectric force transducer and were incorporated into a computerized tomography-based finite element mandibular model. Virtual X-ray images were generated based on simulation and statistically correlated with clinical data using linear regressions. The strain energy density-driven remodeling parameters were regulated over the time frame considered. A linear single-stage bone remodeling algorithm, with a single set of constant remodeling parameters, was found to poorly fit with clinical data through linear regression (low [Formula: see text] and R), whereas a time-dependent multi-stage algorithm better simulated the remodeling process (high [Formula: see text] and R) against the clinical results. The three-implant-supported and distally cantilevered FPDs presented noticeable and continuous bone apposition, mainly adjacent to the cervical and apical regions. The bridged and mesially cantilevered FPDs showed bone resorption or no visible bone formation in some areas. Time-dependent variation of bone remodeling parameters is recommended to better correlate remodeling simulation with clinical follow-up. The position of FPD pontics plays a critical role in mechanobiological functionality and bone remodeling. Caution should be exercised when selecting the cantilever FPD due to the risk of overloading bone resorption.
USDA-ARS?s Scientific Manuscript database
Cancer progression is accompanied by wasting that eventually results in cachexia characterized by significant weight loss and multi-organ functional failures. Limited clinical trials indicate that bone is adversely affected by cancer-associated wasting. To determine the effects of breast cancer on...
Cellular Therapy to Obtain Rapid Endochondral Bone Formation
2008-02-01
efficiency of the delivery cells for optimal BMP2 production is the key parameter in determining the ex- tent of bone formation (Olmsted et al., 2001...quan- titative bone analysis software provided with the MicroCT sys- tem. For this analysis, any tissue with a hydroxyapatite density greater than 0.26...2B. Continued. B duced cells do not interfere with the osteoinductive nature of BMP2. Using set parameters to obtain equivalent functional BMP2
New mouse models for metabolic bone diseases generated by genome-wide ENU mutagenesis.
Sabrautzki, Sibylle; Rubio-Aliaga, Isabel; Hans, Wolfgang; Fuchs, Helmut; Rathkolb, Birgit; Calzada-Wack, Julia; Cohrs, Christian M; Klaften, Matthias; Seedorf, Hartwig; Eck, Sebastian; Benet-Pagès, Ana; Favor, Jack; Esposito, Irene; Strom, Tim M; Wolf, Eckhard; Lorenz-Depiereux, Bettina; Hrabě de Angelis, Martin
2012-08-01
Metabolic bone disorders arise as primary diseases or may be secondary due to a multitude of organ malfunctions. Animal models are required to understand the molecular mechanisms responsible for the imbalances of bone metabolism in disturbed bone mineralization diseases. Here we present the isolation of mutant mouse models for metabolic bone diseases by phenotyping blood parameters that target bone turnover within the large-scale genome-wide Munich ENU Mutagenesis Project. A screening panel of three clinical parameters, also commonly used as biochemical markers in patients with metabolic bone diseases, was chosen. Total alkaline phosphatase activity and total calcium and inorganic phosphate levels in plasma samples of F1 offspring produced from ENU-mutagenized C3HeB/FeJ male mice were measured. Screening of 9,540 mice led to the identification of 257 phenodeviants of which 190 were tested by genetic confirmation crosses. Seventy-one new dominant mutant lines showing alterations of at least one of the biochemical parameters of interest were confirmed. Fifteen mutations among three genes (Phex, Casr, and Alpl) have been identified by positional-candidate gene approaches and one mutation of the Asgr1 gene, which was identified by next-generation sequencing. All new mutant mouse lines are offered as a resource for the scientific community.
Tariq, Sundus; Lone, Khalid Parvez; Tariq, Saba
2016-01-01
Optimal physical activity is important in attaining a peak bone mass. Physically active women have better bone mineral density and reduce fracture risk as compared to females living a sedentary life. The objective of this study was to compare parameters of bone profile and serum homocysteine levels in physically active and non-active postmenopausal females. In this cross sectional study postmenopausal females between 50-70 years of age were recruited and divided into two groups: Physically inactive (n=133) performing light physical activity and Physically active (n=34) performing moderate physical activity. Physical activity (in metabolic equivalents), bone mineral density and serum homocysteine levels were assessed. Spearman's rho correlation was applied to observe correlations. Two independent sample t test and Mann Whitney U test were applied to compare groups. P-value ≤ 0.05 was taken statistically significant. Parameters of bone profile were significantly higher and serum homocysteine levels were significantly lower in postmenopausal females performing moderate physical activity as compared to females performing light physical activity. Homocysteine was not significantly related to T-score and Z-score in both groups. Improving physical activity could be beneficial for improving the quality of bone, decreasing fracture risk and decreasing serum homocysteine levels.
Mohamed, Norazlina; Yin, Chai Mei; Shuid, Ahmad Nazrun; Muhammad, Norliza; Babji, Abdul Salam; Soelaiman, Ima Nirwana
2013-09-01
Cosmos caudatus (ulam raja) contains high mineral content and possesses high antioxidant activity which may be beneficial in bone disorder such as postmenopausal osteoporosis. The effects of C. caudatus on bone metabolism biomarkers in ovariectomized rats were studied. 48 Sprague-Dawley rats aged three months were divided into 6 groups. One group of rats was sham-operated while the remaining rats were ovariectomized. The ovariectomized rats were further divided into 5 groups: the control, three groups force-fed with C. caudatus at the doses of 100mg/kg, 200mg/kg or 300mg/kg and another group supplemented with calcium 1% ad libitum. Treatments were given 6 days per week for a period of eight weeks. Blood samples were collected twice; before and after treatment. Parameters measured were bone resorbing cytokine; interleukin-1 and the bone biomarkers; osteocalcin and pyridinoline. Serum IL-1 and pyridinoline levels were significantly increased in ovariectomized rats. Supplementation of C. caudatus was able to prevent the increase of IL-1 and pyridinoline in ovariectomized rats. Besides that, C. caudatus showed the same effect as calcium 1% on biochemical parameters of bone metabolism in ovariectomized rats. In conclusion, Cosmos caudatus was as effective as calcium in preventing the increase in bone resorption in ovariectomized rats.
NASA Astrophysics Data System (ADS)
Ben-Zvi, Yehonatan; Reznikov, Natalie; Shahar, Ron; Weiner, Steve
2017-09-01
Cancellous bone is an intricate network of interconnected trabeculae, to which analysis of network topology can be applied. The inter-trabecular angle (ITA) analysis - an analysis of network topological parameters and regularity of network-forming nodes, was previously carried out on human proximal femora and showed that trabecular bone follows two main principles: sparsity of the network connectedness (prevalence of nodes with low connectivity in the network) and maximal space spanning (angular offset of connected elements is maximal for their number and approximates the values of geometrically symmetric shapes). These observations suggest that 3D organization of trabecular bone, irrespective of size and shape of individual elements, reflects a tradeoff between minimal metabolic cost of maintenance and maximal network stability under conditions of multidirectional loading. In this study we validate the ITA application using additional 3D structures (cork and 3D-printed metal lattices), analyze the ITA parameters in porcine proximal femora and mandibles and carry out a spatial analysis of the most common node type in the porcine mandibular condyle. The validation shows that the ITA application reliably detects designed or evolved topological parameters. The ITA parameters of porcine trabecular bones are similar to those of human bones. We demonstrate functional adaptation in the pig mandibular condyle by showing that the planar nodes with 3 edges are preferentially aligned in relation to the muscle forces that are applied to the condyle. We conclude that the ITA topological parameters are remarkable conserved, but locally do adapt to applied stresses.
Zavodovskaya, Regina; Stover, Susan M; Murphy, Brian G; Katzman, Scott; Durbin-Johnson, Blythe; Britton, Monica; Finno, Carrie J
2018-01-01
Osteoporosis has been associated with pulmonary silicosis in California horses exposed to soils rich in cytotoxic silica dioxide crystals, a syndrome termed silicate associated osteoporosis (SAO). The causal mechanism for the development of osteoporosis is unknown. Osteoporotic lesions are primarily located in bone marrow-rich sites such as ribs, scapula and pelvis. Gene transcription patterns within bone marrow and pulmonary lymph nodes of affected horses may offer clues to disease pathobiology. Bone marrow core and tracheobronchial lymph node tissue samples harvested postmortem from affected and unaffected horses were examined histologically and subjected to RNA sequencing (RNA-seq). Sequenced data were analyzed for differential gene expression and gene ontology. Metatranscriptomic and metagenomic assays evaluated samples for infectious agents. Thirteen of 17 differentially expressed transcripts in bone marrow were linked to bone and cartilage formation such as integrin binding bone sialoprotein (log2FC = 3.39, PFDR = 0.013) and chondroadherin (log2FC = 4.48, PFDR = 0.031). Equus caballus solute carrier family 9, subfamily A2 (log2FC = 3.77, PFDR = 0.0034) was one of the four differentially expressed transcripts linked to osteoclast activity. Osteoblasts were hyperplastic and hypertrophic in bone marrow from affected horses. Biological pathways associated with skeletal morphogenesis were significantly enriched in affected horses. The 30 differentially expressed genes in affected lymph nodes were associated with inflammatory responses. Evidence of infectious agents was not found. The SAO affected bone marrow molecular signature demonstrated increased transcription and heightened activation of osteoblasts. Increased osteoblastic activity could be part of the pathological mechanism for osteoporosis or a compensatory response to the accelerated osteolysis. Transcriptome data offer gene targets for inquiries into the role of osteocytes and osteoblasts in SAO pathogenesis. Viral or bacterial infectious etiology in SAO is less likely based on metatranscriptomic and metagenomic data but cannot be completely ruled out.
Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT.
Mussawy, Haider; Schmidt, Tobias; Rolvien, Tim; Rüther, Wolfgang; Amling, Michael
2017-01-01
Complex regional pain syndrome (CRPS) is a major complication after trauma, surgery, and/or immobilization of an extremity. The disease often starts with clinical signs of local inflammation and develops into a prolonged phase that is characterized by trophic changes and local osteoporosis and sometimes results in functional impairment of the affected limb. While the pathophysiology of CRPS remains poorly understood, increased local bone resorption plays an undisputed pivotal role. The aim of this retrospective clinical study was to assess the bone microstructure in patients with CRPS. Patients with CRPS type I of the upper limb whose affected and unaffected distal radii were analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) were identified retrospectively. The osteology laboratory data and dual-energy X-ray absorptiometry (DXA) images of the left femoral neck and lumbar spine, which were obtained on the same day as HR-pQCT, were extracted from the medical records. Five patients were identified. The CRPS-affected upper limbs had significantly lower trabecular numbers and higher trabecular thicknesses than the unaffected upper limbs. However, the trabecular bone volume to total bone volume and cortical thickness values of the affected and unaffected sides were similar. Trabecular thickness tended to increase with time since disease diagnosis. CRPS associated with significant alterations in the bone microstructure of the affected upper limb that may amplify as the duration of disease increases.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-10-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-01-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors. PMID:28042512
NASA Astrophysics Data System (ADS)
He, Weizhen; Zhu, Yunhao; Feng, Ting; Wang, Huaideng; Yuan, Jie; Xu, Guan; Wang, Xueding; Carson, Paul
2017-03-01
Osteoporosis is a progressive bone disease which is characterized by a decrease in the bone mass and deterioration in bone micro-architecture. In theory, photoacoustic (PA) imaging analysis has potential to obtain the characteristics of the bone effectively. Previous study demonstrated that photoacoustic spectral analysis (PASA) method with the qualified parameter slope could provide an objective assessment of bone microstructure and deterioration. In this study, we tried to compare PASA method with the traditional quantitative ultrasound (QUS) method in osteoporosis assessment. Numerical simulations of both PA and ultrasound (US) signal are performed on computerized tomographic (CT) images of trabecular bone with different bone mineral densities (BMDs). Ex vivo experiments were conducted on porcine femur bone model of different BMDs. We compared the quantified parameter slope and the broadband ultrasound attenuation (BUA) coefficient from the PASA and QUS among different bone models, respectively. Both the simulation and ex vivo experiment results show that bone with low BMD has a higher slope value and lower BUA value. Our result demonstrated that the PASA method has the same efficacy with QUS in bone assessment, considering PA is a non-ionizing, non-invasive technique, PASA method holds potential for clinical diagnosis in osteoporosis and other bone diseases.
Shiraishi, Ayako; Sakai, Sadaoki; Saito, Hitoshi; Takahashi, Fumiaki
2014-10-01
Eldecalcitol (ELD), a 2β-hydroxypropyloxy derivative of 1α,25(OH)2D3, is a potent inhibitor of bone resorption that has demonstrated a greater effect at reducing the risk of fracture in osteoporotic patients than alfacalcidol (ALF). In the present study, we used the senescence-accelerated mouse strain P6 (SAM/P6), which has low bone mass caused by osteoblast dysfunction, to evaluate the effect of ELD on cortical bone in comparison with ALF. Four-month-old SAM/P6 mice were given either ELD (0.025 or 0.05μg/kg) or ALF (0.2 or 0.4μg/kg) by oral gavage 5 times/week for 6 weeks. Both ELD and ALF increased serum calcium (Ca) in a dose-dependent manner. Serum Ca levels in the ELD 0.05μg/kg group were comparable to those of the ALF 0.2μg/kg group. ELD 0.05μg/kg significantly improved the bone biomechanical properties of the femur compared with the vehicle control group (p<0.001) and the ALF 0.2μg/kg group (p<0.05) evaluated by 3-point bending test. The cortical area of the mid-femur in the ELD 0.05μg/kg group but not the ALF 0.2μg/kg group was significantly higher than those of the vehicle control group (p<0.001). Bone histomorphometry revealed that in the femoral endocortical surface, the suppression of bone resorption parameters (N.Oc/BS) and bone formation parameters (MS/BS) by ELD (0.05μg/kg) was greater than that by ALF (0.2μg/kg). In contrast, in the femoral periosteal surface, ELD 0.05μg/kg significantly increased bone formation parameters (BFR/BS, MS/BS) compared with the vehicle control group (p<0.05, p<0.01, respectively), whereas ALF 0.2μg/kg did not alter these parameters. These results indicate that ELD improved the biomechanical properties of femoral cortical bone not only by inhibiting endocortical bone resorption but also by stimulating the periosteal bone formation in SAM/P6 mice. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.
An Increased Risk of Osteoporosis during Acquired Immunodeficiency Syndrome.
Annapoorna, N; Rao, G Venkateswara; Reddy, N S; Rambabu, P; Rao, K R S Samabasiva
2004-01-01
Osteoporosis is characterized by decreased bone mineral density and mechanistic imbalances of bone tissue that may result in reduced skeletal strength and an enhanced susceptibility to fractures. Osteoporosis in its most common form affects the elderly (both sexes) and all racial groups of human beings. Multiple environmental risk factors like acquired immune deficiency syndrome (AIDS) are believed to be one of the causes of osteoporosis. Recently a high incidence of osteoporosis has been observed in human immunodeficiency virus (HIV) infected individuals. The etiology of this occurrence in HIV infections is controversial. This problem seems to be more frequent in patients receiving potent antiretroviral therapy. In AIDS, the main suggested risk factors for the development of osteoporosis are use of protease inhibitors, longer duration of HIV infection, lower body weight before antiretroviral therapy, high viral load. Variations in serum parameters like osteocalcin, c-telopeptide, levels of elements like Calcium, Magnesium, Phosphorus, concentration of vitamin-D metabolites, lactate levels, bicarbonate concentrations, amount of alkaline phosphatase are demonstrated in the course of development of osteoporosis. OPG/RANKL/RANK system is final mediator of bone remodeling. Bone mineral density (BMD) test is of added value to assess the risk of osteoporosis in patients infected with AIDS. The biochemical markers also aid in this assessment. Clinical management mostly follows the lines of treatment of osteoporosis and osteopenia.
Remote optical configuration of pigmented lesion detection and diagnosis of bone fractures
NASA Astrophysics Data System (ADS)
Ozana, Nisan; Bishitz, Yael; Beiderman, Yevgeny; Garcia, Javier; Zalevsky, Zeev; Schwarz, Ariel
2016-02-01
In this paper we present a novel approach of realizing a safe, simple, and inexpensive sensor applicable to bone fractures and pigmented lesions detection. The approach is based on temporal tracking of back-reflected secondary speckle pattern generated while illuminating the affected area with a laser and applying periodic pressure to the surface via a controlled vibration. The use of such a concept was already demonstrated for non-contact monitoring of various bio-medical parameters such as heart rate, blood pulse pressure, concentration of alcohol and glucose in the blood stream and intraocular pressure. The presented technique is a safe and effective method of detecting bone fractures in populations at risk. When applied to pigmented lesions, the technique is superior to visual examination in avoiding many false positives and resultant unnecessary biopsies. Applying a series of different vibration frequencies at the examined tissue and analyzing the 2-D speckle pattern trajectory in response to the applied periodic pressure creates a unique signature for each and different pigmented lesion. Analyzing these signatures is the first step toward detection of malignant melanoma. In this paper we present preliminary experiments that show the validity of the developed sensor for both applications: the detection of damaged bones as well as the classification of pigmented lesions.
Impens, Saartje; Chen, Yantian; Mullens, Steven; Luyten, Frank; Schrooten, Jan
2010-12-01
The repair of large and complex bone defects could be helped by a cell-based bone tissue engineering strategy. A reliable and consistent cell-seeding methodology is a mandatory step in bringing bone tissue engineering into the clinic. However, optimization of the cell-seeding step is only relevant when it can be reliably evaluated. The cell seeding efficiency (CSE) plays a fundamental role herein. Results showed that cell lysis and the definition used to determine the CSE played a key role in quantifying the CSE. The definition of CSE should therefore be consistent and unambiguous. The study of the influence of five drop-seeding-related parameters within the studied test conditions showed that (i) the cell density and (ii) the seeding vessel did not significantly affect the CSE, whereas (iii) the volume of seeding medium-to-free scaffold volume ratio (MFR), (iv) the seeding time, and (v) the scaffold morphology did. Prolonging the incubation time increased the CSE up to a plateau value at 4 h. Increasing the MFR or permeability by changing the morphology of the scaffolds significantly reduced the CSE. These results confirm that cell seeding optimization is needed and that an evidence-based selection of the seeding conditions is favored.
Muscle-Bone Interactions in Pediatric Bone Diseases.
Veilleux, Louis-Nicolas; Rauch, Frank
2017-10-01
Here, we review the skeletal effects of pediatric muscle disorders as well as muscle impairment in pediatric bone disorders. When starting in utero, muscle disorders can lead to congenital multiple contractures. Pediatric-onset muscle weakness such as cerebral palsy, Duchenne muscular dystrophy, spinal muscular atrophy, or spina bifida typically are associated with small diameter of long-bone shafts, low density of metaphyseal bone, and increased fracture incidence in the lower extremities, in particular, the distal femur. Primary bone diseases can affect muscles through generic mechanisms, such as decreased physical activity or in disease-specific ways. For example, the collagen defect underlying the bone fragility of osteogenesis imperfecta may also affect muscle force generation or transmission. Transforming growth factor beta released from bone in Camurati Engelman disease may decrease muscle function. Considering muscle-bone interactions does not only contribute to the understanding of musculoskeletal disorders but also can identify new targets for therapeutic interventions.
Alkhedaide, Adel; Soliman, Mohamed Mohamed; Salah-Eldin, Alaa-Eldin; Ismail, Tamer Ahmed; Alshehiri, Zafer Saad; Attia, Hossam Fouad
2016-06-01
The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca‑Cola, Pepsi and 7‑Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi‑quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione‑S‑transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca‑Cola exhibited a hepatic decrease in the mRNA expression of α2‑macroglobulin compared with rats administered Pepsi and 7‑Up. On the other hand, SDC increased the mRNA expression of α1‑acid glycoprotein. The present renal studies revealed that Coca‑Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca‑Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression of certain genes associated with the bio‑vital function of both the liver and kidney.
ALKHEDAIDE, ADEL; SOLIMAN, MOHAMED MOHAMED; SALAH-ELDIN, ALAA-ELDIN; ISMAIL, TAMER AHMED; ALSHEHIRI, ZAFER SAAD; ATTIA, HOSSAM FOUAD
2016-01-01
The present study was performed to examine the effects of chronic soft drink consumption (SDC) on oxidative stress, biochemical alterations, gene biomarkers and histopathology of bone, liver and kidney. Free drinking water of adult male Wistar rats was substituted with three different soft drinks: Coca-Cola, Pepsi and 7-Up, for three consecutive months. The serum and organs were collected for examining the biochemical parameters associated with bone, liver and kidney functions. Semi-quantitative reverse transcription polymerase chain reaction was used to observe the changes in the expression of genes in the liver and kidney, which are associated with oxidative stress resistance. Histopathological investigations were performed to determine the changes in bone, liver and kidney tissues using hematoxylin and eosin stains. SDC affected liver, kidney and bone function biomarkers. Soft drinks increased oxidative stress, which is represented by an increase in malondialdehyde and a decrease in antioxidant levels. SDC affected serum mineral levels, particularly calcium and phosphorus. Soft drinks downregulated the expression levels of glutathione-S-transferase and super oxide dismutase in the liver compared with that of control rats. Rats administered Coca-Cola exhibited a hepatic decrease in the mRNA expression of α2-macroglobulin compared with rats administered Pepsi and 7-Up. On the other hand, SDC increased the mRNA expression of α1-acid glycoprotein. The present renal studies revealed that Coca-Cola increased the mRNA expression levels of desmin, angiotensinogen and angiotensinogen receptor compared with the other groups, together with mild congestion in renal histopathology. Deleterious histopathological changes were reported predominantly in the bone and liver of the Coca-Cola and Pepsi groups. In conclusion, a very strict caution must be considered with SDC due to the increase in oxidative stress biomarkers and disruption in the expression of certain genes associated with the bio-vital function of both the liver and kidney. PMID:27121771
In-vitro analysis of forces in conventional and ultrasonically assisted drilling of bone.
Alam, K; Hassan, Edris; Imran, Syed Husain; Khan, Mushtaq
2016-05-12
Drilling of bone is widely performed in orthopaedics for repair and reconstruction of bone. Current paper is focused on the efforts to minimize force generation during the drilling process. Ultrasonically Assisted Drilling (UAD) is a possible option to replace Conventional Drilling (CD) in bone surgical procedures. The purpose of this study was to investigate and analyze the effect of drilling parameters and ultrasonic parameters on the level of drilling thrust force in the presence of water irrigation. Drilling tests were performed on young bovine femoral bone using different parameters such as spindle speeds, feed rates, coolant flow rates, frequency and amplitudes of vibrations. The drilling force was significantly dropped with increase in drill rotation speed in both types of drilling. Increase in feed rate was more influential in raising the drilling force in CD compared to UAD. The force was significantly dropped when ultrasonic vibrations up to 10 kHz were imposed on the drill. The drill force was found to be unaffected by the range of amplitudes and the amount of water supplied to the drilling region in UAD. Low frequency vibrations with irrigation can be successfully used for safe and efficient drilling in bone.
CT-derived indices of canine osteosarcoma-affected antebrachial strength.
Garcia, Tanya C; Steffey, Michele A; Zwingenberger, Allison L; Daniel, Leticia; Stover, Susan M
2017-05-01
To improve the prediction of fractures in dogs with bone tumors of the distal radius by identifying computed tomography (CT) indices that correlate with antebrachial bone strength and fracture location. Prospective experimental study. Dogs with antebrachial osteosarcoma (n = 10), and normal cadaver bones (n=9). Antebrachia were imaged with quantitative CT prior to biomechanical testing to failure. CT indices of structural properties were compared to yield force and maximum force using Pearson correlation tests. Straight beam failure (Fs), axial rigidity, curved beam failure (Fc), and craniocaudal bending moment of inertia (MOICrCd) CT indices most highly correlated (0.77 > R > 0.57) with yield and maximum forces when iOSA-affected and control bones were included in the analysis. Considering only OSA-affected bones, Fs, Fc, and axial rigidity correlated highly (0.85 > R > 0.80) with maximum force. In affected bones, the location of minimum axial rigidity and maximum MOICrCd correlated highly (R > 0.85) with the actual fracture location. CT-derived axial rigidity, Fs, and MOICrCd have strong linear relationships with yield and maximum force. These indices should be further evaluated prospectively in OSA-affected dogs that do, and do not, experience pathologic fracture. © 2017 The American College of Veterinary Surgeons.
Giroux, Sylvie; Elfassihi, Latifa; Cardinal, Guy; Laflamme, Nathalie; Rousseau, François
2007-05-01
Bone mineral density has a strong genetic component but it is also influenced by environmental factors making it a complex trait to study. LRP5 gene was previously shown to be involved in rare diseases affecting bone mass. Mutations associated with gain-of-function were described as well as loss-of-function mutations. Following this discovery, many frequent LRP5 polymorphisms were tested against the variation of BMD in the normal population. Heel bone parameters (SOS, BUA) were measured by right calcaneal QUS in 5021 healthy French-Canadian women and for 2104 women, BMD evaluated by DXA at two sites was available (femoral neck (FN) and lumbar spine (LS)). Among women with QUS measures and those with DXA measures, 26.5% and 32.8% respectively were premenopausal, 9.2% and 10.7% were perimenopausal and 64.2% and 56.5% were postmenopausal. About a third of the peri- and postmenopausal women never received hormone therapy. Two single nucleotide coding polymorphisms (Val667Met and Ala1330Val) in LRP5 gene were genotyped by allele-specific PCR. All bone measures were tested individually for associations with each polymorphism by analysis of covariance with adjustment for non genetic risk factors. Furthermore, haplotype analysis was performed to take into account the strong linkage disequilibrium between the two polymorphisms. The two LRP5 polymorphisms were found to be associated with all five bone measures (L2L4 and femoral neck DXA as well as heel SOS, BUA and stiffness index) in the whole sample. Premenopausal women drove the association as expected from the proposed role of LRP5 in peak bone mass. Our results suggest that the Val667Met polymorphism is the causative variant but this remains to be functionally proven.
Bone and fat connection in aging bone.
Duque, Gustavo
2008-07-01
The fat and bone connection plays an important role in the pathophysiology of age-related bone loss. This review will focus on the age-induced mechanisms regulating the predominant differentiation of mesenchymal stem cells into adipocytes. Additionally, bone marrow fat will be considered as a diagnostic and therapeutic approach to osteoporosis. There are two types of bone and fat connection. The 'systemic connection', usually seen in obese patients, is hormonally regulated and associated with high bone mass and strength. The 'local connection' happens inside the bone marrow. Increasing amounts of bone marrow fat affect bone turnover through the inhibition of osteoblast function and survival and the promotion of osteoclast differentiation and activation. This interaction is regulated by paracrine secretion of fatty acids and adipokines. Additionally, bone marrow fat could be quantified using noninvasive methods and could be used as a therapeutic approach due to its capacity to transdifferentiate into bone without affecting other types of fat in the body. The bone and fat connection within the bone marrow constitutes a typical example of lipotoxicity. Additionally, bone marrow fat could be used as a new diagnostic and therapeutic approach for osteoporosis in older persons.
Krupski, W; Tatara, M R; Charuta, A; Brodzki, A; Szpetnar, M; Jóźwik, A; Strzałkowska, N; Poławska, E; Łuszczewska-Sierakowska, I
2018-06-01
1. Sex-related differences of long pelvic limb bones and serum bone metabolism indices were evaluated in 14-month-old female (N = 7) and male (N = 7) ostriches of similar body weights. 2. Densitometric parameters of femur, tibia and tarsometatarsus were determined using quantitative computed tomography (volumetric bone mineral density, calcium hydroxyapatite density and mean volumetric bone mineral density) and dual energy X-ray absorptiometry (bone mineral density and bone mineral content) methods. Geometrical parameters such as cortical bone area, cross-sectional area, second moment of inertia, mean relative wall thickness and cortical index were determined in the midshaft of bones. Mechanical properties of bones (maximum elastic strength and ultimate strength) were evaluated using three-point bending test. Serum concentrations of free amino acids, osteocalcin, N-terminal propeptide of type I procollagen, C-terminal telopeptides of type II collagen and total antioxidative capacity were also determined. 3. Bone weight and relative bone weight of all bones were significantly higher in males than in females. Significantly lower values of trabecular bone mineral density and calcium hydroxyapatite density were found in the trabecular bone of tibia in males. The highest number of the sex-related differences was observed in the tarsometatarsus where bone length, bone mineral content, cortical bone area, cross-sectional area and ultimate strength were higher in males. Serum concentrations of taurine, hydroxyproline, valine and isoleucine were significantly higher in males. 4. Higher loading of the tarsometatarsus in comparison to femur and tibia may be an important factor interacting with sex hormones in regulation of bone formation and mineralisation processes. Sex-related differences of bone properties were associated with increased serum concentration of selected amino acids in males.
QUS devices for assessment of osteoporosis
NASA Astrophysics Data System (ADS)
Langton, Christian
2002-05-01
The acronym QUS (Quantitative Ultrasound) is now widely used to describe ultrasound assessment of osteoporosis, a disease primarily manifested by fragility fractures of the wrist and hip along with shortening of the spine. There is currently available a plethora of commercial QUS devices, measuring various anatomic sites including the heel, finger, and tibia. Largely through commercial rather than scientific drivers, the parameters reported often differ significantly from the two fundamental parameters of velocity and attenuation. Attenuation at the heel is generally reported as BUA (broadband ultrasound attenuation, the linearly regressed increase in attenuation between 200 and 600 kHz). Velocity derivatives include bone, heel, TOF, and AdV. Further, velocity and BUA parameters may be mathematically combined to provide proprietary parameters including ``stiffness'' and ``QUI.'' In terms of clinical utility, the situation is further complicated by ultrasound being inherently dependent upon ``bone quality'' (e.g., structure) in addition to ``bone quantity'' (generally expressed as BMD, bone mineral density). Hence the BMD derived WHO criteria for osteoporosis and osteopenia may not be directly applied to QUS. There is therefore an urgent need to understand the fundamental dependence of QUS parameters, to perform calibration and cross-correlation studies of QUS devices, and to define its clinical utility.
Wang, Yanmao; Zhu, Yu; Lu, Shengdi; Hu, Chengfang; Zhong, Wanrun; Chai, Yimin
2018-04-15
Osteoporosis is linked to reduced bone mineral density (BMD) as a major risk factor for fragility fractures. Recent studies indicated an association between BMD and abnormally elevated lipid levels in blood as common indicators for hyperlipidemia. In this study, we assessed the protective effect of paeoniflorin, a phytochemical compound with multiple pharmacological activities, against hyperlipidemia-induced osteoporosis in rats fed a high-carbohydrate, high-fat diet (HCHF). The special diet-fed rats were subjected to an 8-week treatment with either paeoniflorin (20 mg/kg, daily) or vehicle. The control group received a normal diet during the entire study. At study conclusion, serum markers of lipid metabolism and bone turnover were measured. Bone strength was assessed by biomechanical testing, and femurs were scanned using micro-computed tomography to analyze trabecular and cortical bone structure. Interestingly, paeoniflorin controlled the serum lipid profile by significantly decreasing HCHF-induced high levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol. Paeoniflorin significantly improved trabecular and cortical parameters as well as femur length and width that were negatively affected by HCHF diet. Biomechanical strength testing showed that femurs of HCHF diet-fed rats endured significantly lower force but higher displacement and strain than those of control rats, whereas paeoniflorin reversed the negative effects. Moreover, paeoniflorin rescued osteoblast differentiation and cell spreading activities along with bone turnover markers. In conclusion, HCHF-induced hyperlipidemia caused adverse effects on the bone that were rescued by paeoniflorin treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Kadric, Lejla; Zylla, Stephanie; Nauck, Matthias; Völzke, Henry; Friedrich, Nele; Hannemann, Anke
2018-06-01
Chemerin is an adipokine associated with parameters of inflammation and the metabolic syndrome. Small observational studies suggested that high circulating chemerin levels are also related to bone erosion. We aimed to determine whether plasma chemerin levels are related to bone quality in the general population and to investigate the influence of body mass index (BMI) on that relation. For our analyses, we obtained data from 3583 adults who participated in the population-based Study of Health in Pomerania-Trend. The participants were divided into three groups according to their BMI: lean (<25 kg/m2), overweight (25 to 30 kg/m2), and obese (≥30 kg/m2). Chemerin concentrations were determined in EDTA plasma. Bone quality was assessed using quantitative ultrasound at the heel. Broadband ultrasound attenuation (BUA), speed of sound (SOS), stiffness index, and osteoporotic fracture risk were derived from this measurement. Sex- and BMI-specific linear regression models revealed inverse associations between chemerin levels and BUA in obese men. In obese women, inverse relations between chemerin levels and SOS or stiffness index were found. Logistic regression models revealed positive associations between chemerin levels and osteoporotic fracture risk. In lean or overweight subjects, no statistically significant associations were found. Our sex- and BMI-specific analyses showed that inverse associations between chemerin levels and bone quality are restricted to obese men and women. The observed association may be due to a chemerin-induced negative affect on bone metabolism, possibly due to abrogation of osteoblastogenesis or stimulation of adipogenesis.
Zarrinkalam, M R; Mulaibrahimovic, A; Atkins, G J; Moore, R J
2012-04-01
Histomorphometric assessment of trabecular bone in osteoporotic sheep showed that bone volume, osteoid surface area, bone formation rate, and osteocyte density were reduced. In contrast, eroded surface area and empty lacunae density were increased. Changes in osteocyte density correlated with changes in osteoblast and osteoclast activity. Osteocytes contribute to the regulation of the activity of osteoclasts and osteoblasts that together control bone mass. Osteocytes therefore likely play a role in the loss of bone mass associated with osteoporosis. The purpose of this study was to investigate the relationships between osteocyte lacunar density and other bone histomorphometric parameters in the iliac crest (IC) and lumbar spine (LS) of osteoporotic sheep. Osteoporosis was induced in ten mature ewes by an established protocol involving a combination of ovariectomy, dexamethasone injection, and low calcium diet for 6 months. Five ewes were used as controls. Post-mortem IC and LS biopsies were collected and processed for further histomorphometric assessment. Bone volume, osteoid surface, and bone formation rate in the IC and LS of osteoporotic sheep were reduced compared to those of the controls. In contrast, eroded surface area was increased in osteoporotic sheep. In the osteoporotic group, osteocyte density was reduced in the LS region and to a greater extent in the IC region. The empty osteocyte lacunae were increased 1.7-fold in LS and 2.1-fold in IC in the osteoporotic group. The osteocyte density correlated positively with markers of osteoblast activity and negatively with those of osteoclast activity. Depletion of osteocytes and an increase in the empty lacunae could be important factors contributing to bone loss in this model since they may adversely affect intercellular communication between osteoblasts and osteoclasts. The regional differences in histology suggest that there may be different pathological mechanisms operating at different anatomical sites.
Obesity is a concern for bone health with aging.
Shapses, Sue A; Pop, L Claudia; Wang, Yang
2017-03-01
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. Copyright © 2017 Elsevier Inc. All rights reserved.
Obesity is a concern for bone health with aging
Shapses, Sue A.; Pop, L. Claudia; Wang, Yang
2017-01-01
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. PMID:28385284
Bigerelle, M; Anselme, K; Dufresne, E; Hardouin, P; Iost, A
2002-08-01
We present a new parameter to quantify the order of a surface. This parameter is scale-independent and can be used to compare the organization of a surface at different scales of range and amplitude. To test the accuracy of this roughness parameter versus a hundred existing ones, we created an original statistical bootstrap method. In order to assess the physical relevance of this new parameter, we elaborated a great number of surfaces with various roughness amplitudes on titanium and titanium-based alloys using different physical processes. Then we studied the influence of the roughness amplitude on in vitro adhesion and proliferation of human osteoblasts. It was then shown that our new parameter best discriminates among the cell adhesion phenomena than others' parameters (Average roughness (Ra em leader )): cells adhere better on isotropic surfaces with a low order, provided this order is quantified on a scale that is more important than that of the cells. Additionally, on these low ordered metallic surfaces, the shape of the cells presents the same morphological aspect as that we can see on the human bone trabeculae. The method used to prepare these isotropic surfaces (electroerosion) could be undoubtedly and easily applied to prepare most biomaterials with complex geometries and to improve bone implant integration. Moreover, the new order parameter we developed may be particularly useful for the fundamental understanding of the mechanism of bone cell installation on a relief and of the formation of bone cell-material interface.
Leptin regulates bone formation via the sympathetic nervous system
NASA Technical Reports Server (NTRS)
Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard
2002-01-01
We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.
Krege, John B; Aref, Mohammad W; McNerny, Erin; Wallace, Joseph M; Organ, Jason M; Allen, Matthew R
2016-06-01
Reference point indentation (RPI) was developed as a novel method to assess mechanical properties of bone in vivo, yet it remains unclear what aspects of bone dictate changes/differences in RPI-based parameters. The main RPI parameter, indentation distance increase (IDI), has been proposed to be inversely related to the ability of bone to form/tolerate damage. The goal of this work was to explore the relationshipre-intervention RPI measurebetween RPI parameters and traditional mechanical properties under varying experimental conditions (drying and ashing bones to increase brittleness, demineralizing bones and soaking in raloxifene to decrease brittleness). Beams were machined from cadaveric bone, pre-tested with RPI, subjected to experimental manipulation, post-tested with RPI, and then subjected to four-point bending to failure. Drying and ashing significantly reduced RPI's IDI, as well as ultimate load (UL), and energy absorption measured from bending tests. Demineralization increased IDI with minimal change to bending properties. Ex vivo soaking in raloxifene had no effect on IDI but tended to enhance post-yield behavior at the structural level. These data challenge the paradigm of an inverse relationship between IDI and bone toughness, both through correlation analyses and in the individual experiments where divergent patterns of altered IDI and mechanical properties were noted. Based on these results, we conclude that RPI measurements alone, as compared to bending tests, are insufficient to reach conclusions regarding mechanical properties of bone. This proves problematic for the potential clinical use of RPI measurements in determining fracture risk for a single patient, as it is not currently clear that there is an IDI, or even a trend of IDI, that can determine clinically relevant changes in tissue properties that may contribute to whole bone fracture resistance. Copyright © 2016 Elsevier Inc. All rights reserved.
Krege, John B.; Aref, Mohammad W.; McNerny, Erin; Wallace, Joseph M.; Organ, Jason M.; Allen, Matthew R.
2016-01-01
Reference point indentation (RPI) was developed as a novel method to assess mechanical properties of bone in vivo, yet it remains unclear what aspects of bone dictate changes/differences in RPI-based parameters. The main RPI parameter, indentation distance increase (IDI), has been proposed to be inversely related to the ability of bone to form/tolerate damage. The goal of this work was to explore the relationship between RPI parameters and traditional mechanical properties under varying experimental conditions (drying and ashing bones to increase brittleness, demineralizing bones and soaking in raloxifene to decrease brittleness). Beams were machined from cadaveric bone, pre-tested with RPI, subjected to experimental manipulation, post-tested with RPI, and then subjected to four-point bending to failure. Drying and ashing significantly reduced RPI’s IDI, as well as ultimate load (UL), and energy absorption measured from bending tests. Demineralization increased IDI with minimal change to bending properties. Ex vivo soaking in raloxifene had no effect on IDI but tended to enhance post-yield behavior at the structural level. These data challenge the paradigm of an inverse relationship between IDI and bone toughness, both through correlation analyses and in the individual experiments where divergent patterns of altered IDI and mechanical properties were noted. Based on these results, we conclude that RPI measurements alone, as compared to bending tests, are insufficient to reach conclusions regarding mechanical properties of bone. This proves problematic for the potential clinical use of RPI measurements in determining fracture risk for a single patient, as it is not currently clear that there is an IDI, or even a trend of IDI, that can determine clinically relevant changes in tissue properties that may contribute to whole bone fracture resistance. PMID:27072518
Relationships of bone characteristics in MYO9B deficient femurs.
Kim, Do-Gyoon; Jeong, Yong-Hoon; McMichael, Brooke K; Bähler, Martin; Bodnyk, Kyle; Sedlar, Ryan; Lee, Beth S
2018-08-01
The objective of this study was to examine relationships among a variety of bone characteristics, including volumetric, mineral density, geometric, dynamic mechanical analysis, and static fracture mechanical properties. As MYO9B is an unconventional myosin in bone cells responsible for normal skeletal growth, bone characteristics of wild-type (WT), heterozygous (HET), and MYO9B knockout (KO) mice groups were compared as an animal model to express different bone quantity and quality. Forty-five sex-matched 12-week-old mice were used in this study. After euthanization, femurs were isolated and scanned using microcomputed tomography (micro-CT) to assess bone volumetric, tissue mineral density (TMD), and geometric parameters. Then, a non-destructive dynamic mechanical analysis (DMA) was performed by applying oscillatory bending displacement on the femur. Finally, the same femur was subject to static fracture testing. KO group had significantly lower length, bone mineral density (BMD), bone mass and volume, dynamic and static stiffness, and strength than WT and HET groups (p < 0.019). On the other hand, TMD parameters of KO group were comparable with those of WT group. HET group showed volumetric, geometric, and mechanical properties similar to WT group, but had lower TMD (p < 0.014). Non-destructive micro-CT and DMA parameters had significant positive correlations with strength (p < 0.015) without combined effect of groups and sex on the correlations (p > 0.077). This comprehensive characterization provides a better understanding of interactive behavior between the tissue- and organ-level of the same femur. The current findings elucidate that MYO9B is responsible for controlling bone volume to determine the growth rate and fracture risk of bone. Copyright © 2018 Elsevier Ltd. All rights reserved.
Boron supplementation improves bone health of non-obese diabetic mice.
Dessordi, Renata; Spirlandeli, Adriano Levi; Zamarioli, Ariane; Volpon, José Batista; Navarro, Anderson Marliere
2017-01-01
Diabetes Mellitus is a condition that predisposes a higher risk for the development of osteoporosis. The objective of this study was to investigate the influence of boron supplementation on bone microstructure and strength in control and non-obese diabetic mice for 30days. The animals were supplemented with 40μg/0,5ml of boron solution and controls received 0,5ml of distilled water daily. We evaluated the biochemical parameters: total calcium, phosphorus, magnesium and boron; bone analysis: bone computed microtomography, and biomechanical assay with a three point test on the femur. This study consisted of 28 animals divided into four groups: Group water control - Ctrl (n=10), Group boron control - Ctrl±B (n=8), Group diabetic water - Diab (n=5) and Group diabetic boron - Diab±B (n=5). The results showed that cortical bone volume and the trabecular bone volume fraction were higher for Diab±B and Ctrl±B compared to the Diab and Ctrl groups (p≤0,05). The trabecular specific bone surface was greater for the Diab±B group, and the trabecular thickness and structure model index had the worst values for the Diab group. The boron serum concentrations were higher for the Diab±B group compared to non-supplemented groups. The magnesium concentration was lower for Diab and Diab±B compared with controls. The biomechanical test on the femur revealed maintenance of parameters of the bone strength in animals Diab±B compared to the Diab group and controls. The results suggest that boron supplementation improves parameters related to bone strength and microstructure of cortical and trabecular bone in diabetic animals and the controls that were supplemented. Copyright © 2016 Elsevier GmbH. All rights reserved.
Kruse, Christian
2018-06-01
To review current practices and technologies within the scope of "Big Data" that can further our understanding of diabetes mellitus and osteoporosis from large volumes of data. "Big Data" techniques involving supervised machine learning, unsupervised machine learning, and deep learning image analysis are presented with examples of current literature. Supervised machine learning can allow us to better predict diabetes-induced osteoporosis and understand relative predictor importance of diabetes-affected bone tissue. Unsupervised machine learning can allow us to understand patterns in data between diabetic pathophysiology and altered bone metabolism. Image analysis using deep learning can allow us to be less dependent on surrogate predictors and use large volumes of images to classify diabetes-induced osteoporosis and predict future outcomes directly from images. "Big Data" techniques herald new possibilities to understand diabetes-induced osteoporosis and ascertain our current ability to classify, understand, and predict this condition.
Surface Damage on Dental Implants with Release of Loose Particles after Insertion into Bone.
Senna, Plinio; Antoninha Del Bel Cury, Altair; Kates, Stephen; Meirelles, Luiz
2015-08-01
Modern dental implants present surface features of distinct dimensions that can be damaged during the insertion procedure into bone. The aims of this study were (1) to quantify by means of roughness parameters the surface damage caused by the insertion procedure of dental implants and (2) to investigate the presence of loose particles at the interface. Three groups of dental implants representing different surface topographies were inserted in fresh cow rib bone blocks. The surface roughness was characterized by interferometry on the same area before and after the insertion. Scanning electron microscopy (SEM)-back-scattered electron detector (BSD) analysis was used to identify loose particles at the interface. The amplitude and hybrid roughness parameters of all three groups were lower after insertion. The surface presenting predominance of peaks (Ssk [skewness] > 0) associated to higher structures (height parameters) presented higher damage associated to more pronounced reduction of material volume. SEM-BSD images revealed loose titanium and aluminum particles at the interface mainly at the crestal cortical bone level. Shearing forces during the insertion procedure alters the surface of dental implants. Loose metal particles can be generated at bone-implant interface especially around surfaces composed mainly by peaks and with increased height parameters. © 2013 Wiley Periodicals, Inc.
Surface Damage on Dental Implants with Release of Loose Particles after Insertion into Bone
Senna, Plinio; Del Bel Cury, Altair Antoninha; Kates, Stephen; Meirelles, Luiz
2015-01-01
Background Modern dental implants present surface features of distinct dimensions that can be damaged during the insertion procedure into bone. Purpose The aims of this study were (1) to quantify by means of roughness parameters the surface damage caused by the insertion procedure of dental implants and (2) to investigate the presence of loose particles at the interface. Materials and Methods Three groups of dental implants representing different surface topographies were inserted in fresh cow rib bone blocks. The surface roughness was characterized by interferometry on the same area before and after the insertion. SEM-BSD analysis was used to identify loose particles at the interface. Results The amplitude and hybrid roughness parameters of all three groups were lower after insertion. The surface presenting predominance of peaks (Ssk>0) associated to higher structures (height parameters) presented higher damage associated to more pronounced reduction of material volume. SEM-BSD images revealed loose titanium and aluminum particles at the interface mainly at the crestal cortical bone level. Conclusions Shearing forces during the insertion procedure alters the surface of dental implants. Loose metal particles can be generated at bone-implant interface especially around surfaces composed mainly by peaks and with increased height parameters. PMID:24283455
Felice, Juan Ignacio; Schurman, León; McCarthy, Antonio Desmond; Sedlinsky, Claudia; Aguirre, José Ignacio; Cortizo, Ana María
2017-04-01
Deleterious effects of metabolic syndrome (MS) on bone are still controversial. In this study we evaluated the effects of a fructose-induced MS, and/or an oral treatment with metformin on the osteogenic potential of bone marrow mesenchymal stromal cells (MSC), as well as on bone formation and architecture. 32 male 8week-old Wistar rats were assigned to four groups: control (C), control plus oral metformin (CM), rats receiving 10% fructose in drinking water (FRD), and FRD plus metformin (FRDM). Samples were collected to measure blood parameters, and to perform pQCT analysis and static and dynamic histomorphometry. MSC were isolated to determine their osteogenic potential. Metformin improved blood parameters in FRDM rats. pQCT and static and dynamic histomorphometry showed no significant differences in trabecular and cortical bone parameters among groups. FRD reduced TRAP expression and osteocyte density in trabecular bone and metformin only normalized osteocyte density. FRD decreased the osteogenic potential of MSC and metformin administration could revert some of these parameters. FRD-induced MS shows reduction in MSC osteogenic potential, in osteocyte density and in TRAP activity. Oral metformin treatment was able to prevent trabecular osteocyte loss and the reduction in extracellular mineralization induced by FRD-induced MS. Copyright © 2017 Elsevier B.V. All rights reserved.
Goertz, B; Fassbender, W J; Williams, J C; Marzeion, A M; Bretzel, R G; Stracke, H; Berliner, M N
2003-01-01
Vitamin D is known to exert immunomodulatory effects. An overrepresentation of the b allele of the vitamin D receptor (VDR) has been detected in autoimmune diseases as type-1-diabetes and multiple sclerosis. VDR polymorphisms have been shown to influence bone metabolism and bone density. The aim of the present study was to examine the distribution of VDR alleles in German rheumatoid arthritis (RA) patients and their relation to bone turnover parameters. 62 German RA patients were included and compared to 40 controls. Three VDR alleles were examined (Bsm I, Taq I and Fok I). In addition, serum intact osteocalcin (OC), parathyroid hormone, bone specific alkaline phosphatase (B-ALP), the carboxyterminal extension peptide of type I procollagen, 25-OH-vitamin D and urinary deoxypyridinoline (DPD) excretion were measured. Furthermore, C-reactive protein, erythrocyte sedimentation rate and rheumatoid factor were measured. We found a slightly higher frequency of the bB and tT-genotype in RA patients compared to controls, which was not statistically significant. OC and B-ALP were found to be significantly higher in RA patients with positive correlations between bone formation and resorption parameters indicating higher bone turnover in RA patients with maintained coupling. CRP in RA patients correlated with DPD and inversely with PTH. VDR genotype showed no association with bone turnover, family history or the presence of rheumatoid factor. Our results suggest that VDR polymorphisms do not play a major role in RA predisposition in Germans.
Chang, Gregory; Honig, Stephen; Liu, Yinxiao; Chen, Cheng; Chu, Kevin K; Rajapakse, Chamith S; Egol, Kenneth; Xia, Ding; Saha, Punam K; Regatte, Ravinder R
2015-05-01
Osteoporosis is a disease of poor bone quality. Bone mineral density (BMD) has limited ability to discriminate between subjects without and with poor bone quality, and assessment of bone microarchitecture may have added value in this regard. Our goals were to use 7 T MRI to: (1) quantify and compare distal femur bone microarchitecture in women without and with poor bone quality (defined clinically by presence of fragility fractures); and (2) determine whether microarchitectural parameters could be used to discriminate between these two groups. This study had institutional review board approval, and we obtained written informed consent from all subjects. We used a 28-channel knee coil to image the distal femur of 31 subjects with fragility fractures and 25 controls without fracture on a 7 T MRI scanner using a 3-D fast low angle shot sequence (0.234 mm × 0.234 mm × 1 mm, parallel imaging factor = 2, acquisition time = 7 min 9 s). We applied digital topological analysis to quantify parameters of bone microarchitecture. All subjects also underwent standard clinical BMD assessment in the hip and spine. Compared to controls, fracture cases demonstrated lower bone volume fraction and markers of trabecular number, plate-like structure, and plate-to-rod ratio, and higher markers of trabecular isolation, rod disruption, and network resorption (p < 0.05 for all). There were no differences in hip or spine BMD T-scores between groups (p > 0.05). In receiver-operating-characteristics analyses, microarchitectural parameters could discriminate cases and controls (AUC = 0.66-0.73, p < 0.05). Hip and spine BMD T-scores could not discriminate cases and controls (AUC = 0.58-0.64, p ≥ 0.08). We conclude that 7 T MRI can detect bone microarchitectural deterioration in women with fragility fractures who do not differ by BMD. Microarchitectural parameters might some day be used as an additional tool to detect patients with poor bone quality who cannot be detected by dual-energy X-ray absorptiometry (DXA).
Kazakia, Galateia J; Carballido-Gamio, Julio; Lai, Andrew; Nardo, Lorenzo; Facchetti, Luca; Pasco, Courtney; Zhang, Chiyuan A; Han, Misung; Parrott, Amanda Hutton; Tien, Phyllis; Krug, Roland
2018-02-01
There is evidence that human immunodeficiency virus (HIV) infection and antiretroviral therapy (ART) are independent risk factors for osteoporosis and fracture which is not solely explained by changes in bone mineral density. Thus, we hypothesized that the assessment of trabecular microstructure might play an important role for bone quality in this population and might explain the increased fracture risk. In this study, we have assessed bone microstructure in the proximal femur using high-resolution magnetic resonance imaging (MRI) as well as in the extremities using high resolution peripheral quantitative computed tomography (HR-pQCT) in HIV-infected men and healthy controls and compared these findings to those based on areal bone mineral density (aBMD) derived from dual X-ray absorptiometry (DXA) which is the standard clinical parameter for the diagnosis of osteoporosis. Eight HIV-infected men and 11 healthy age-matched controls were recruited and informed consent was obtained before each scan. High-resolution MRI of the proximal femur was performed using fully balanced steady state free precession (bSSFP) on a 3T system. Three volumes of interest at corresponding anatomic locations across all subjects were defined based on registrations of a common template. Four MR-based trabecular microstructural parameters were analyzed at each region: fuzzy bone volume fraction (f-BVF), trabecular number (Tb.N), thickness (Tb.Th), and spacing (Tb.Sp). In addition, the distal radius and distal tibia were imaged with HR-pQCT. Four HR-pQCT-based microstructural parameters were analyzed: trabecular bone volume fraction (BV/TV), Tb.N, Tb.Th, and Tb.Sp. Total hip and spine aBMD were determined from DXA. Microstructural bone parameters derived from MRI at the proximal femur and from HR-pQCT at the distal tibia showed significantly lower bone quality in HIV-infected patients compared to healthy controls. In contrast, DXA aBMD data showed no significant differences between HIV-infected patients and healthy controls. Our results suggest that high-resolution imaging is a powerful tool to assess trabecular bone microstructure and can be used to assess bone health in HIV-infected men who show no differences to healthy males by DXA aBMD. Advances in MRI technology have made microstructural imaging at the proximal femur possible. Further studies in larger patient cohorts are clearly warranted.
Zhong, Zhendong A; Sun, Weihua; Chen, Haiyan; Zhang, Hongliang; Lay, Yu-An E; Lane, Nancy E; Yao, Wei
2015-12-01
For tamoxifen-dependent Cre recombinase, also known as CreER recombinase, tamoxifen (TAM) is used to activate the Cre to generate time- and tissue-specific mouse mutants. TAM is a potent CreER system inducer; however, TAM is also an active selective estrogen receptor modulator (SERM) that can influence bone homeostasis. The purpose of this study was to optimize the TAM dose for Cre recombinase activation while minimizing the effects of TAM on bone turnover in young growing mice. To evaluate the effects of TAM on bone turnover and bone mass, 1-month-old wild-type male and female mice were intraperitoneally injected with TAM at 0, 1, 10 or 100mg/kg/day for four consecutive days, or 100, 300 mg/kg/day for one day. The distal femurs were analyzed one month after the last TAM injection by microCT, mechanical test, and surface-based bone histomorphometry. Similar doses of TAM were used in Col1 (2.3 kb)-CreERT2; mT/mG reporter male mice to evaluate the dose-dependent efficacy of Cre-ER activation in bone tissue. A TAM dose of 100 mg/kg × 4 days significantly increased trabecular bone volume/total volume (BV/TV) of the distal femur, femur length, bone strength, and serum bone turnover markers compared to the 0mg control group. In contrast, TAM doses ≤ 10 mg/kg did not significantly change any of these parameters compared to the 0mg group, although a higher bone strength was observed in the 10mg group. Surface-based histomorphometry revealed that the 100mg/kg dose of TAM dose significantly increased trabecular bone formation and decreased periosteal bone formation at 1-week post-TAM treatment. Using the reporter mouse model Col1-CreERT2; mT/mG, we found that 10mg/kg TAM induced Col1-CreERT2 activity in bone at a comparable level to the 100mg/kg dose. TAM treatment at 100mg/kg/day × 4 days significantly affects bone homeostasis, resulting in an anabolic bone effect on trabecular bone in 1-month-old male mice. However, a lower dose of TAM at 10 mg/kg/day × 4 days can yield similar Col1-CreERT2 induction efficacy with minimum effects on bone turnover in young male mice. Copyright © 2015 Elsevier Inc. All rights reserved.
Trabecular architecture in the sciuromorph femoral head: allometry and functional adaptation.
Mielke, Maja; Wölfer, Jan; Arnold, Patrick; van Heteren, Anneke H; Amson, Eli; Nyakatura, John A
2018-01-01
Sciuromorpha (squirrels and close relatives) are diverse in terms of body size and locomotor behavior. Individual species are specialized to perform climbing, gliding or digging behavior, the latter being the result of multiple independent evolutionary acquisitions. Each lifestyle involves characteristic loading patterns acting on the bones of sciuromorphs. Trabecular bone, as part of the bone inner structure, adapts to such loading patterns. This network of thin bony struts is subject to bone modeling, and therefore reflects habitual loading throughout lifetime. The present study investigates the effect of body size and lifestyle on trabecular structure in Sciuromorpha. Based upon high-resolution computed tomography scans, the femoral head 3D inner microstructure of 69 sciuromorph species was analyzed. Species were assigned to one of the following lifestyle categories: arboreal, aerial, fossorial and semifossorial. A cubic volume of interest was selected in the center of each femoral head and analyzed by extraction of various parameters that characterize trabecular architecture (degree of anisotropy, bone volume fraction, connectivity density, trabecular thickness, trabecular separation, bone surface density and main trabecular orientation). Our analysis included evaluation of the allometric signals and lifestyle-related adaptation in the trabecular parameters. We show that bone surface density, bone volume fraction, and connectivity density are subject to positive allometry, and degree of anisotropy, trabecular thickness, and trabecular separation to negative allometry. The parameters connectivity density, bone surface density, trabecular thickness, and trabecular separation show functional signals which are related to locomotor behavior. Aerial species are distinguished from fossorial ones by a higher trabecular thickness, lower connectivity density and lower bone surface density. Arboreal species are distinguished from semifossorial ones by a higher trabecular separation. This study on sciuromorph trabeculae supplements the few non-primate studies on lifestyle-related functional adaptation of trabecular bone. We show that the architecture of the femoral head trabeculae in Sciuromorpha correlates with body mass and locomotor habits. Our findings provide a new basis for experimental research focused on functional significance of bone inner microstructure.
Al-Jamali, Jamil; Glaum, Ricarda; Kassem, Ahmed; Voss, Pit Jacob; Schmelzeisen, Rainer; Schön, Ralf
2012-12-01
Gorham disease is a very rare condition associated with spontaneous destruction and resorption of 1 or more bones anywhere in the body. Many authors have suggested and/or implicated trauma as the initiating factor in the majority of the reported cases. It can affect almost all bones, and a combination of bones has been reported. In the maxillofacial skeleton, the first facial case was reported by Romer in 1928. Until now, only a few cases of Gorham disease affecting the maxillofacial bones, including this case report, have been reported. We present a brief review of the pathogenesis and treatment modalities of the disease and report a very rare clinical picture of the disease affecting a young and otherwise healthy patient with massive osteolysis of the mandibular bone and extensive involvement of the mouth floor and skin of the chin, which to our knowledge, is the only case report with skin manifestation affecting the maxillofacial region. Such skin manifestations play an important role for the diagnosis and add a clue for management of such condition. Copyright © 2012 Elsevier Inc. All rights reserved.
Factors affecting the aluminium content of human femoral head and neck.
Zioła-Frankowska, Anetta; Dąbrowski, Mikołaj; Kubaszewski, Łukasz; Rogala, Piotr; Frankowski, Marcin
2015-11-01
Tissues for the study were obtained intraoperatively during hip replacement procedures from 96 patients. In all the cases, the indication for this treatment was primary or secondary degenerative changes in the hip joint. The subject of the study was the head and neck of the femur, resected in situ. Aluminium concentrations measured in femoral head and neck samples from patients aged between 25 and 91 were varied. Statistical methods were applied to determine the variations in relation to the parameters from the background survey. Significant differences in the aluminium content of femoral head samples were observed between patients under and over 60 years of age. Based on the results, it was confirmed that the aluminium accumulates in bones over a lifetime. The study showed that the content of aluminium in the head and neck of the femur depends on the factors such as: type of medicines taken, contact with chemicals at work, differences in body anatomy and sex. The study on the levels of aluminium in bones and the factors affecting its concentration is a valuable source of information for further research on the role of aluminium in bone diseases. Based on the investigations, it was found that the GF-AAS technique is the best analytical tool for routine analysis of aluminium in complex matrix samples. The use of femoral heads in the investigations was approved by the Bioethics Committee of the University of Medical Sciences in Poznań (Poland). Copyright © 2015 Elsevier Inc. All rights reserved.
SHOX haploinsufficiency presenting with isolated short long bones in the second and third trimester.
Ramachandrappa, Shwetha; Kulkarni, Abhijit; Gandhi, Hina; Ellis, Cheryl; Hutt, Renata; Roberts, Lesley; Hamid, Rosol; Papageorghiou, Aris; Mansour, Sahar
2018-03-01
Haploinsufficiency of the transcription factor short stature homeobox (SHOX) manifests as a spectrum of clinical phenotypes, ranging from disproportionate short stature and Madelung deformity to isolated short stature. Here, we describe five infants with molecularly confirmed diagnoses of SHOX haploinsufficiency who presented in utero with short long bones during routine antenatal scanning from as early as 19 weeks gestation. Other foetal growth parameters were normal. The molecular basis of SHOX haploinsufficiency was distinct in each case. In four cases, SHOX haploinsufficiency was inherited from a previously undiagnosed parent. In our de novo case, SHOX haploinsufficiency reflected the formation of a derivative sex chromosome during paternal meiosis. Final adult height in the SHOX-deficient parents ranged from -1.9 to -1.2 SDS. All affected parents had disproportionately short limbs and two affected mothers had bilateral Madelung deformity. To our knowledge, SHOX haploinsufficiency has not previously been reported to present in utero. Our experience illustrates that SHOX deficiency should form part of the differential diagnosis of foetal short long bones and suggests a low threshold for genetic testing. This should be particularly targeted at, but not limited to, families with a history of features suggestive of SHOX deficiency. Data on the postnatal growth of our index cases is presented which demonstrates that antenatal presentation of SHOX haploinsufficiency is not indicative of severe postnatal growth restriction. Early identification of SHOX deficiency will enable accurate genetic counselling reflecting a good postnatal outcome and facilitate optimal initiation of growth hormone therapy.
NASA Astrophysics Data System (ADS)
Maldonado, Solvey; Findeisen, Rolf
2010-06-01
The modeling, analysis, and design of treatment therapies for bone disorders based on the paradigm of force-induced bone growth and adaptation is a challenging task. Mathematical models provide, in comparison to clinical, medical and biological approaches an structured alternative framework to understand the concurrent effects of the multiple factors involved in bone remodeling. By now, there are few mathematical models describing the appearing complex interactions. However, the resulting models are complex and difficult to analyze, due to the strong nonlinearities appearing in the equations, the wide range of variability of the states, and the uncertainties in parameters. In this work, we focus on analyzing the effects of changes in model structure and parameters/inputs variations on the overall steady state behavior using systems theoretical methods. Based on an briefly reviewed existing model that describes force-induced bone adaptation, the main objective of this work is to analyze the stationary behavior and to identify plausible treatment targets for remodeling related bone disorders. Identifying plausible targets can help in the development of optimal treatments combining both physical activity and drug-medication. Such treatments help to improve/maintain/restore bone strength, which deteriorates under bone disorder conditions, such as estrogen deficiency.
Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT
Mussawy, Haider; Schmidt, Tobias; Rolvien, Tim; Rüther, Wolfgang; Amling, Michael
2017-01-01
Summary Introduction Complex regional pain syndrome (CRPS) is a major complication after trauma, surgery, and/or immobilization of an extremity. The disease often starts with clinical signs of local inflammation and develops into a prolonged phase that is characterized by trophic changes and local osteoporosis and sometimes results in functional impairment of the affected limb. While the pathophysiology of CRPS remains poorly understood, increased local bone resorption plays an undisputed pivotal role. The aim of this retrospective clinical study was to assess the bone microstructure in patients with CRPS. Methods Patients with CRPS type I of the upper limb whose affected and unaffected distal radii were analyzed by high-resolution peripheral quantitative computed tomography (HR-pQCT) were identified retrospectively. The osteology laboratory data and dual-energy X-ray absorptiometry (DXA) images of the left femoral neck and lumbar spine, which were obtained on the same day as HR-pQCT, were extracted from the medical records. Results Five patients were identified. The CRPS-affected upper limbs had significantly lower trabecular numbers and higher trabecular thicknesses than the unaffected upper limbs. However, the trabecular bone volume to total bone volume and cortical thickness values of the affected and unaffected sides were similar. Trabecular thickness tended to increase with time since disease diagnosis. Discussion CRPS associated with significant alterations in the bone microstructure of the affected upper limb that may amplify as the duration of disease increases. PMID:28740526
Fan, Ruoxun; Liu, Jie; Jia, Zhengbin; Deng, Ying; Liu, Jun
2018-01-01
Macro-level failure in bone structure could be diagnosed by pain or physical examination. However, diagnosing tissue-level failure in a timely manner is challenging due to the difficulty in observing the interior mechanical environment of bone tissue. Because most fractures begin with tissue-level failure in bone tissue caused by continually applied loading, people attempt to monitor the tissue-level failure of bone and provide corresponding measures to prevent fracture. Many tissue-level mechanical parameters of bone could be predicted or measured; however, the value of the parameter may vary among different specimens belonging to a kind of bone structure even at the same age and anatomical site. These variations cause difficulty in representing tissue-level bone failure. Therefore, determining an appropriate tissue-level failure evaluation standard is necessary to represent tissue-level bone failure. In this study, the yield and failure processes of rat femoral cortical bones were primarily simulated through a hybrid computational-experimental method. Subsequently, the tissue-level strains and the ratio between tissue-level failure and yield strains in cortical bones were predicted. The results indicated that certain differences existed in tissue-level strains; however, slight variations in the ratio were observed among different cortical bones. Therefore, the ratio between tissue-level failure and yield strains for a kind of bone structure could be determined. This ratio may then be regarded as an appropriate tissue-level failure evaluation standard to represent the mechanical status of bone tissue.
Finite element simulation of Reference Point Indentation on bone.
Idkaidek, Ashraf; Agarwal, Vineet; Jasiuk, Iwona
2017-01-01
Reference Point Indentation (RPI) is a novel technique aimed to assess bone quality. Measurements are recorded by the BioDent instrument that applies multiple indents to the same location of cortical bone. Ten RPI parameters are obtained from the resulting force-displacement curves. Using the commercial finite element analysis software Abaqus, we assess the significance of the RPI parameters. We create an axisymmetric model and employ an isotropic viscoelastic-plastic constitutive relation with damage to simulate indentations on a human cortical bone. Fracture of bone tissue is not simulated for simplicity. The RPI outputs are computed for different simulated test cases and then compared with experimental results, measured using the BioDent, found in literature. The number of cycles, maximum indentation load, indenter tip radius, and the mechanical properties of bone: Young׳s modulus, compressive yield stress, and viscosity and damage constants, are varied. The trends in the RPI parameters are then investigated. We find that the RPI parameters are sensitive to the mechanical properties of bone. An increase in Young׳s modulus of bone causes the force-displacement loading and unloading slopes to increase and the total indentation distance (TID) to decrease. The compressive yield stress is inversely proportional to a creep indentation distance (CID1) and the TID. The viscosity constant is proportional to the CID1 and an average of the energy dissipated (AvED). The maximum indentation load is proportional to the TID, CID1, loading and unloading slopes, and AvED. The damage parameter is proportional to the TID, but it is inversely proportional to both the loading and unloading slopes and the AvED. The value of an indenter tip radius is proportional to the CID1 and inversely proportional to the TID. The number of load cycles is inversely proportional to an average of a creep indentation depth (AvCID) and the AvED. The indentation distance increase (IDI) is strongly inversely proportional to the compressive yield stress, and strongly proportional to the viscosity constant and maximum applied load, but has weak relation with the damage parameter, indenter tip radius, and elastic modulus. This computational study advances our understanding of the RPI outputs and provides a starting point for more comprehensive computational studies of the RPI technique. Copyright © 2016 Elsevier Ltd. All rights reserved.
Warren, Gordon L; Moran, Amy L; Hogan, Harry A; Lin, Angela S; Guldberg, Robert E; Lowe, Dawn A
2007-11-01
The study's objective was to investigate how estrogen deficiency and run training affect the tibial bone-soleus muscle functional relationship in mice. Female mice were assigned into one of two surgical conditions, ovariectomy (OVX) or sham ovariectomy (sham), and one of two activity conditions, voluntary wheel running (Run) or sedentary (Sed). To determine whether differences observed between OVX and sham conditions could be attributed to estradiol (E(2)), additional OVX mice were supplemented with E(2). Tibial bones were analyzed for their functional capacities, ultimate load, and stiffness. Soleus muscles were analyzed for their functional capacities, maximal isometric tetanic force (P(o)), and peak eccentric force. The ratios of bone functional capacities to those of muscle were calculated. The bone functional capacities were affected by both surgical condition and activity but more strongly by surgical condition. Ultimate load and stiffness for the sham group were 7-12% greater than those for OVX animals (P = 0.002), whereas only stiffness was greater for Run than for Sed animals (9%; P = 0.015). The muscle functional capacities were affected by both surgical condition and activity; however, in contrast to the bone, the muscle was more affected by activity. P(o) and peak eccentric force were 10-21% greater for Run than for Sed animals (P < or = 0.016), whereas only P(o) was greater in sham than in OVX animals (9%; P = 0.011). The bone-to-muscle ratios of functional capacities were affected by activity but not by surgical condition or E(2) supplementation. Thus a mismatch of bone-muscle function occurred in mice that voluntarily ran on wheels, irrespective of estrogen status.
Effects of simulated weightlessness on bone mineral metabolism
NASA Technical Reports Server (NTRS)
Globus, R. K.; Bikle, D. D.; Morey-Holton, E.
1984-01-01
It is pointed out that prolonged space flight, bedrest, and immobilization are three factors which can produce a negative calcium balance, osteopenia, and an inhibition of bone formation. It is not known whether the effects of gravity on bone mineral metabolism are mediated by systemic endocrine factors which affect all bones simultaneously, or by local factors which affect each bone individually. The present investigation has the objective to test the relative importance of local vs. systemic factors in regulating the bone mineral response to conditions simulating weightlessness. Experiments were conducted with male Sprague-Dawley rats. The test conditions made it possible to compare the data from weighted and unweighted bones in the same animal. The obtained findings indicate that a decrease in bone mass relative to control value occurs rapidly under conditions which simulate certain aspects of weightlessness. However, this decrease reaches a plateau after 10 days.
NASA Technical Reports Server (NTRS)
Durnova, G.; Kaplansky, A.; Morey-Holton, E.
1996-01-01
Tibial bones of rats flown onboard the SLS-2 shuttle mission were studied. Trabecular bone parameters were investigated, including growth plate height, trabecular bone volume, thickness and number, and trabecular separation in the primary and secondary spongiosa. Several histomorphometric changes were noted, allowing researchers to conclude that exposure to microgravity resulted in osteopenia of spongy bone of tibial metaphysis. The roles of bone formation and bone resorption are discussed.
Carballido-Gamio, Julio; Krug, Roland; Huber, Markus B; Hyun, Ben; Eckstein, Felix; Majumdar, Sharmila; Link, Thomas M
2009-02-01
In vivo assessment of trabecular bone microarchitecture could improve the prediction of fracture risk and the efficacy of osteoporosis treatment and prevention. Geodesic topological analysis (GTA) is introduced as a novel technique to quantify the trabecular bone microarchitecture from high-spatial resolution magnetic resonance (MR) images. Trabecular bone parameters that quantify the scale, topology, and anisotropy of the trabecular bone network in terms of its junctions are the result of GTA. The reproducibility of GTA was tested with in vivo images of human distal tibiae and radii (n = 6) at 1.5 Tesla; and its ability to discriminate between subjects with and without vertebral fracture was assessed with ex vivo images of human calcanei at 1.5 and 3.0 Tesla (n = 30). GTA parameters yielded an average reproducibility of 4.8%, and their individual areas under the curve (AUC) of the receiver operating characteristic curve analysis for fracture discrimination performed better at 3.0 than at 1.5 Tesla reaching values of up to 0.78 (p < 0.001). Logistic regression analysis demonstrated that fracture discrimination was improved by combining GTA parameters, and that GTA combined with bone mineral density (BMD) allow for better discrimination than BMD alone (AUC = 0.95; p < 0.001). Results indicate that GTA can substantially contribute in studies of osteoporosis involving imaging of the trabecular bone microarchitecture. Copyright 2009 Wiley-Liss, Inc.
Ko, Hoon; Jeong, Kwanmoon; Lee, Chang-Hoon; Jun, Hong Young; Jeong, Changwon; Lee, Myeung Su; Nam, Yunyoung; Yoon, Kwon-Ha; Lee, Jinseok
2016-01-01
Image artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT). To investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest-bone-equivalent solid material containing 50 mg HA per cm(-3) and water-to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation. The high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients. Although other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.
Kapteijns-van Kordelaar, Simone; Noordam, Kees; Otten, Barto; van den Bergh, Joop
2003-11-01
To evaluate the effect of gonadotrophin-releasing hormone (GnRH) agonist treatment on bone quality at final height, we studied girls with central precocious puberty (CPP) and with idiopathic short stature (ISS). A total of 25 Caucasian girls were included: group A (n=14) with idiopathic CPP (mean age at start 7.4 years) and group B (n=11) with ISS (mean age at start 11.7 years). Treatment duration was 3.8 and 1.7 years respectively. The quantitative ultrasound parameters (QUS) broadband ultrasound attenuation (BUA) and speed of sound (SOS) were measured at the calcaneus (UBIS 3000 device). Lumbar spine bone mineral density (BMD; L2-L4) was measured by dual energy X-ray absorptiometry (DXA) (Hologic QDR1000). Measurements were performed at final height and expressed as Z-scores corrected for bone age. Mean Z-scores of QUS parameters, areal BMD and volumetric BMD (BMDvol) were above -1 in both groups (group A: BUA Z-score -0.21, SOS Z-score -0.29, BMD Z-score 0.02, BMDvol Z-score 0.05, group B: BUA Z-score -0.93, SOS Z-score -0.40, BMD Z-score -0.86, BMDvol Z-score -0.68), although mean Z-scores of BUA and areal BMD in group B were significantly different from zero (P=0.03 and P=0.02 respectively). Mean Z-score BMDvol was not significantly different from zero (P=0.05), we found no significant difference between the groups for BMDvol (P=0.13). Although quantitative ultrasound parameters parameters and bone mineral density were normal in girls with central precocious puberty at final height after gonadotrophin-releasing hormone agonist treatment, mean Z-score for broadband ultrasound attenuation and areal bone mineral density were significantly different from zero and mean Z-score for volumetric bone mineral density was (just) not significantly different from zero in idiopathic short stature girls with normal puberty treated with gonadotrophin-releasing hormone agonists. Therefore we cannot say that this treatment is safe in these girls with regard to bone health.
Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.
Turunen, Mikael J; Saarakkala, Simo; Rieppo, Lassi; Helminen, Heikki J; Jurvelin, Jukka S; Isaksson, Hanna
2011-06-01
The molecular composition of the organic and inorganic matrices of bone undergoes alterations during maturation. The aim of this study was to compare Fourier transform infrared (FT-IR) and near-infrared (NIR) Raman microspectroscopy techniques for characterization of the composition of growing and developing bone from young to skeletally mature rabbits. Moreover, the specificity and differences of the techniques for determining bone composition were clarified. The humeri of female New Zealand White rabbits, with age range from young to skeletally mature animals (four age groups, n = 7 per group), were studied. Spectral peak areas, intensities, and ratios related to organic and inorganic matrices of bone were analyzed and compared between the age groups and between FT-IR and Raman microspectroscopic techniques. Specifically, the degree of mineralization, type-B carbonate substitution, crystallinity of hydroxyapatite (HA), mineral content, and collagen maturity were examined. Significant changes during maturation were observed in various compositional parameters with one or both techniques. Overall, the compositional parameters calculated from the Raman spectra correlated with analogous parameters calculated from the IR spectra. Collagen cross-linking (XLR), as determined through peak fitting and directly from the IR spectra, were highly correlated. The mineral/matrix ratio in the Raman spectra was evaluated with multiple different peaks representing the organic matrix. The results showed high correlation with each other. After comparison with the bone mineral density (BMD) values from micro-computed tomography (micro-CT) imaging measurements and crystal size from XRD measurements, it is suggested that Raman microspectroscopy is more sensitive than FT-IR microspectroscopy for the inorganic matrix of the bone. In the literature, similar spectroscopic parameters obtained with FT-IR and NIR Raman microspectroscopic techniques are often compared. According to the present results, however, caution is required when performing this kind of comparison.
Design and performance study of an orthopaedic surgery robotized module for automatic bone drilling.
Boiadjiev, George; Kastelov, Rumen; Boiadjiev, Tony; Kotev, Vladimir; Delchev, Kamen; Zagurski, Kazimir; Vitkov, Vladimir
2013-12-01
Many orthopaedic operations involve drilling and tapping before the insertion of screws into a bone. This drilling is usually performed manually, thus introducing many problems. These include attaining a specific drilling accuracy, preventing blood vessels from breaking, and minimizing drill oscillations that would widen the hole. Bone overheating is the most important problem. To avoid such problems and reduce the subjective factor, automated drilling is recommended. Because numerous parameters influence the drilling process, this study examined some experimental methods. These concerned the experimental identification of technical drilling parameters, including the bone resistance force and temperature in the drilling process. During the drilling process, the following parameters were monitored: time, linear velocity, angular velocity, resistance force, penetration depth, and temperature. Specific drilling effects were revealed during the experiments. The accuracy was improved at the starting point of the drilling, and the error for the entire process was less than 0.2 mm. The temperature deviations were kept within tolerable limits. The results of various experiments with different drilling velocities, drill bit diameters, and penetration depths are presented in tables, as well as the curves of the resistance force and temperature with respect to time. Real-time digital indications of the progress of the drilling process are shown. Automatic bone drilling could entirely solve the problems that usually arise during manual drilling. An experimental setup was designed to identify bone drilling parameters such as the resistance force arising from variable bone density, appropriate mechanical drilling torque, linear speed of the drill, and electromechanical characteristics of the motors, drives, and corresponding controllers. Automatic drilling guarantees greater safety for the patient. Moreover, the robot presented is user-friendly because it is simple to set robot tasks, and process data are collected in real time. Copyright © 2013 John Wiley & Sons, Ltd.
Marvel, Skylar; Okrasinski, Stan; Bernacki, Susan H; Loboa, Elizabeth; Dayton, Paul A
2010-09-01
To study the potential effects of low-intensity pulsed ultrasound (LIPUS) on cell response in vitro, the ability to alter LIPUS parameters is required. However, commercial LIPUS systems have very little control over parameter selection. In this study, a custom LIPUS system was designed and validated by exploring the effects of using different pulse repetition frequency (PRF) parameters on human adipose derived adult stem cells (hASCs) and bone marrow derived mesenchymal stem cells (hMSCs), two common stem cell sources for creating bone constructs in vitro. Changing the PRF was found to affect cellular response to LIPUS stimulation for both cell types. Proliferation of LIPUS-stimulated cells was found to decrease for hASCs by d 7 for all three groups compared with unstimulated control cells (P = 0.008, 0.011, 0.014 for 1 Hz, 100 Hz and 1 kHz PRF, respectively) and for hMSCs by d 14 (donor 1: P = 0.0005, 0.0002, 0.0003; donor 2: P = 0.0003, 0.0002, 0.0001; for PRFs of 1 Hz, 100 Hz, and 1 kHz, respectively). Additionally, LIPUS was shown to strongly accelerate osteogenic differentiation of hASCs based on amount of calcium accretion normalized by total DNA (P = 0.003, 0.001, 0.003, and 0.032 between control/100 Hz, control/1 kHz, 1 Hz/1 kHz, and 100 Hz/1 kHz pulse repetition frequencies, respectively). These findings promote the study of using LIPUS to induce osteogenic differentiation and further encourage the exploration of LIPUS parameter optimization. The custom LIPUS system was successfully designed to allow extreme parameter variation, specifically PRF, and encourages further studies.
Alveolar bone changes after asymmetric rapid maxillary expansion.
Akin, Mehmet; Baka, Zeliha Muge; Ileri, Zehra; Basciftci, Faruk Ayhan
2015-09-01
To quantitatively evaluate the effects of asymmetric rapid maxillary expansion (ARME) on cortical bone thickness and buccal alveolar bone height (BABH), and to determine the formation of dehiscence and fenestration in the alveolar bone surrounding the posterior teeth, using cone-beam computed tomography (CBCT). The CBCT records of 23 patients with true unilateral posterior skeletal crossbite (10 boys, 14.06 ± 1.08 years old, and 13 girls, 13.64 ± 1.32 years old) who had undergone ARME were selected from our clinic archives. The bonded acrylic ARME appliance, including an occlusal stopper, was used on all patients. CBCT records had been taken before ARME (T1) and after the 3-month retention period (T2). Axial slices of the CBCT images at 3 vertical levels were used to evaluate the buccal and palatal aspects of the canines, first and second premolars, and first molars. Paired samples and independent sample t-tests were used for statistical comparison. The results suggest that buccal cortical bone thickness of the affected side was significantly more affected by the expansion than was the unaffected side (P < .05). ARME significantly reduced the BABH of the canines (P < .01) and the first and second premolars (P < .05) on the affected side. ARME also increased the incidence of dehiscence and fenestration on the affected side. ARME may quantitatively decrease buccal cortical bone thickness and height on the affected side.
Feichtinger, Xaver; Muschitz, Christian; Heimel, Patrick; Baierl, Andreas; Fahrleitner-Pammer, Astrid; Redl, Heinz; Resch, Heinrich; Geiger, Elisabeth; Skalicky, Susanna; Dormann, Rainer; Plachel, Fabian; Pietschmann, Peter; Grillari, Johannes; Hackl, Matthias; Kocijan, Roland
2018-03-20
The assessment of bone quality and the prediction of fracture risk in idiopathic osteoporosis (IOP) are complex prospects as bone mineral density (BMD) and bone turnover markers (BTM) do not indicate fracture-risk. MicroRNAs (miRNAs) are promising new biomarkers for bone diseases, but the current understanding of the biological information contained in the variability of miRNAs is limited. Here, we investigated the association between serum-levels of 19 miRNA biomarkers of idiopathic osteoporosis to bone microstructure and bone histomorphometry based upon bone biopsies and µCT (9.3 μm) scans from 36 patients. Four miRNAs were found to be correlated to bone microarchitecture and seven miRNAs to dynamic histomorphometry (p < 0.05). Three miRNAs, namely, miR-29b-3p, miR-324-3p, and miR-550a-3p showed significant correlations to histomorphometric parameters of bone formation as well as microstructure parameters. miR-29b-3p and miR-324-p were found to be reduced in patients undergoing anti-resorptive therapy. This is the first study to report that serum levels of bone-related miRNAs might be surrogates of dynamic histomorphometry and potentially reveal changes in bone microstructure. Although these findings enhance the potential value of circulating miRNAs as bone biomarkers, further experimental studies are required to qualify the clinical utility of miRNAs to reflect dynamic changes in bone formation and microstructure.
Larmonier, C. B.; McFadden, R.-M. T.; Hill, F. M.; Schreiner, R.; Ramalingam, R.; Besselsen, D. G.; Ghishan, F. K.
2013-01-01
Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D3 has been considered a viable adjunctive therapy in IBD. However, vitamin D3 plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D3 supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10−/− CD4+ T cell transfer model of chronic colitis. High-dose vitamin D3 supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D3 metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D3 supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D3 diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D3 group. Our data suggest that vitamin D3, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D3 supplementation in patients with active IBD. PMID:23639807
Larmonier, C B; McFadden, R-M T; Hill, F M; Schreiner, R; Ramalingam, R; Besselsen, D G; Ghishan, F K; Kiela, P R
2013-07-01
Decreased bone mineral density (BMD) represents an extraintestinal complication of inflammatory bowel disease (IBD). Vitamin D₃ has been considered a viable adjunctive therapy in IBD. However, vitamin D₃ plays a pleiotropic role in bone modeling and regulates the bone formation-resorption balance, depending on the physiological environment, and supplementation during active IBD may have unintended consequences. We evaluated the effects of vitamin D₃ supplementation during the active phase of disease on colonic inflammation, BMD, and bone metabolism in an adoptive IL-10-/- CD4⁺ T cell transfer model of chronic colitis. High-dose vitamin D₃ supplementation for 12 days during established disease had negligible effects on mucosal inflammation. Plasma vitamin D₃ metabolites correlated with diet, but not disease, status. Colitis significantly reduced BMD. High-dose vitamin D₃ supplementation did not affect cortical bone but led to a further deterioration of trabecular bone morphology. In mice fed a high vitamin D₃ diet, colitis more severely impacted bone formation markers (osteocalcin and bone alkaline phosphatase) and increased bone resorption markers, ratio of receptor activator of NF-κB ligand to osteoprotegrin transcript, plasma osteoprotegrin level, and the osteoclast activation marker tartrate-resistant acid phosphatase (ACp5). Bone vitamin D receptor expression was increased in mice with chronic colitis, especially in the high vitamin D₃ group. Our data suggest that vitamin D₃, at a dose that does not improve inflammation, has no beneficial effects on bone metabolism and density during active colitis or may adversely affect BMD and bone turnover. These observations should be taken into consideration in the planning of further clinical studies with high-dose vitamin D₃ supplementation in patients with active IBD.
Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars
NASA Technical Reports Server (NTRS)
Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Licatta, Angelo; Griffin, Devon
2007-01-01
The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.
Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars
NASA Technical Reports Server (NTRS)
Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Griffin, Devon
2008-01-01
The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.
Martino, F; Di Mauro, R; Paciaroni, K; Gaziev, J; Alfieri, C; Greco, L; Floris, R; Di Girolamo, S; Di Girolamo, M
2018-03-01
Sickle cell anemia (SCA) and β -thalassemia major are well-recognized beta-globin gene disorders of red blood cells associated to mortality and morbidity included bone morbidities due to ineffective erythropoiesis and bone marrow expansion, which affect every part of the skeleton. While there are an abundance of described disease manifestations of the head and neck, the manner of paranasal sinuses involvement and its relations to β-thalassemia and SCA process was not studied yet. Therefore, the aim of this study was to investigate a possible increased risk of rhinosinusitis and the real pathogenetic mechanism of it, comparing these two hematological diseases using msCT, gold standard for paranasal sinuses evaluation. A retrospective analysis of 90 patients affected by β-thalassemia major or SCA (respectively 59 and 31) underwent allogeneic bone marrow transplantation (BMT), and 44 control subjects was performed. Both patient categories and control group have been subjected to hematological and radiological evaluation using 64-multidetector-row CT scanner without contrast injection. Statistical analysis reveals that patients of the two study groups exhibit a significantly increased risk of sinusitis in comparison with the normal controls (RR: 3.55 for β-thalassemic pediatric subjects; RR: 3.35 for SCA pediatric subjects). A significant difference (p < 0,5) was found between the β -thalassemic patients on the one side, and SCA and control group on the other side, with regard to the evaluation of the typical anatomic alteration of maxillary sinus: β-thalassemic children had significant increase in the bone thickness of anterior and lateral sinus walls and significant reduction in volume and density compared to SCA patients and control group, with normal conditions of these parameters. In these hematological patients, there is an increased incidence of sinonasal infections due their therapy-induced immunosuppression post transplantation. In β-thalassemic patients, furthermore, the specific anatomical variants play an important confounding factor in radiological interpretation of CT images. Therefore, a cranio-facial CT scan evaluation could be a useful tool in the management of upper airway infections after BMT and should be a routinely exams in order to avoid useless surgical or antibiotic approaches. Copyright © 2018 Elsevier B.V. All rights reserved.
Discrete tomography in an in vivo small animal bone study.
Van de Casteele, Elke; Perilli, Egon; Van Aarle, Wim; Reynolds, Karen J; Sijbers, Jan
2018-01-01
This study aimed at assessing the feasibility of a discrete algebraic reconstruction technique (DART) to be used in in vivo small animal bone studies. The advantage of discrete tomography is the possibility to reduce the amount of X-ray projection images, which makes scans faster and implies also a significant reduction of radiation dose, without compromising the reconstruction results. Bone studies are ideal for being performed with discrete tomography, due to the relatively small number of attenuation coefficients contained in the image [namely three: background (air), soft tissue and bone]. In this paper, a validation is made by comparing trabecular bone morphometric parameters calculated from images obtained by using DART and the commonly used standard filtered back-projection (FBP). Female rats were divided into an ovariectomized (OVX) and a sham-operated group. In vivo micro-CT scanning of the tibia was done at baseline and at 2, 4, 8 and 12 weeks after surgery. The cross-section images were reconstructed using first the full set of projection images and afterwards reducing them in number to a quarter and one-sixth (248, 62, 42 projection images, respectively). For both reconstruction methods, similar changes in morphometric parameters were observed over time: bone loss for OVX and bone growth for sham-operated rats, although for DART the actual values were systematically higher (bone volume fraction) or lower (structure model index) compared to FBP, depending on the morphometric parameter. The DART algorithm was, however, more robust when using fewer projection images, where the standard FBP reconstruction was more prone to noise, showing a significantly bigger deviation from the morphometric parameters obtained using all projection images. This study supports the use of DART as a potential alternative method to FBP in X-ray micro-CT animal studies, in particular, when the number of projections has to be drastically minimized, which directly reduces scanning time and dose.
Fazeli, Pouneh K; Faje, Alexander T; Cross, Ela J; Lee, Hang; Rosen, Clifford J; Bouxsein, Mary L; Klibanski, Anne
2015-08-01
Anorexia nervosa (AN) is a psychiatric disorder characterized by self-induced starvation and low body weight. Women with AN have impaired bone formation, low bone mass and an increased risk of fracture. FGF-21 is a hormone secreted by the liver in starvation and FGF-21 transgenic mice have significant bone loss due to an uncoupling of bone resorption and bone formation. We hypothesized that FGF-21 may contribute to the low bone mass state of AN. We studied 46 women: 20 with AN (median age [interquartile range]: 27.5 [25, 30.75] years) and 26 normal-weight controls (NWC) of similar age (25 [24, 28.5] years). We investigated associations between serum FGF-21 and 1) aBMD measured by dual energy X-ray absorptiometry, 2) parameters of bone microarchitecture in the distal radius and tibia measured by high-resolution peripheral quantitative CT and 3) bone strength, estimated by microfinite element analysis. FGF-21 levels were similar in AN and NWC (AN: 33.1 [18.1, 117.0] pg/ml vs. NWC: 57.4 [23.8, 107.1] pg/ml; p = 0.54). There was a significant inverse association between log FGF-21 and trabecular number in the radius in both AN (R = -0.57, p < 0.01) and NWC (R=-0.53, p < 0.01) and a significant positive association between log FGF-21 and trabecular separation in the radius in AN (R = 0.50, p < 0.03) and NWC (R = 0.52, p < 0.01). Estimates of radial bone strength were inversely associated with log FGF-21 in AN (R = -0.50, p < 0.03 for both stiffness and failure load). There were no associations between FGF-21 and aBMD, cortical parameters or tibial parameters in the AN or NWC groups. FGF-21 may be an important determinant of trabecular skeletal homeostasis in AN. Copyright © 2015 Elsevier Inc. All rights reserved.
Lapauw, Bruno; Taes, Youri; Goemaere, Stefan; Toye, Kaatje; Zmierczak, Hans-Georg; Kaufman, Jean-Marc
2009-11-01
Pathophysiology of deficient bone mass acquisition in male idiopathic osteoporosis (IO) remains poorly understood. Our objective was to investigate volumetric and geometric parameters of the appendicular skeleton, biochemical markers, and anthropometrics in men with IO. Our cross-sectional study included 107 men diagnosed with idiopathic low bone mass, 23 of their adult sons, and 130 age-matched controls. Body composition and areal bone parameters (dual-energy x-ray absorptiometry) and volumetric and geometric parameters of radius and tibia (peripheral quantitative computed tomography) were assessed. Serum levels of testosterone, estradiol (E(2)), and SHBG, and bone turnover markers were measured using immunoassays. Free hormone fractions were calculated. Men with idiopathic low bone mass had lower weight (-9.6%), truncal height (-3.3%), and upper/lower body segment ratio (-2.7%; all P < 0.001) and presented at the radius and tibia lower trabecular (-19.0 and -23.6%, respectively; both P < 0.001) and cortical volumetric bone mineral density (vBMD) (-2.4 and -1.7%; both P < 0.001) and smaller cortical areas (-9.7 and -13.6%; both P < 0.001) and thicknesses (-13.5 and -14.5%, both P < 0.001) due to larger endosteal circumferences (+11.8 and +7.4%, both P < 0.001) than controls. Furthermore, (free) E(2) was lower and SHBG higher (both P < 0.01). Their sons had lower trabecular vBMD (-10.3%, P = 0.036) and a thinner cortex (-8.3%, P = 0.024) at the radius. Bone mass deficits in men with idiopathic low bone mass involve trabecular and cortical bone, resulting from lower vBMD and smaller cortical bone cross-sectional areas and thicknesses. A similar bone phenotype is present in at least part of their sons. The lower E(2), together with characteristics as lower upper/lower body segment ratio, larger endosteal circumferences and lower vBMD, may indicate an estrogen-related factor in the pathogenesis of male IO.
Ito, Ran; Huang, Jung-Ju; Hsieh, Wei-Chuan; Kao, Huang-Kai; Lao, William Wei-Kai; Fang, Ku-Hao; Huang, Yenlin; Chang, Yu-Liang; Cheng, Ming-Huei; Chang, Kai-Ping
2018-03-01
The aim of this study is to evaluate osteonecrosis of the jaw (ONJ) with the extent of marginal mandibulectomy. Between January 2006 and December 2012, 3087 patients undergoing ablative resection were consecutively enrolled. Among them, 345 cases undergoing marginal mandibulectomy were retrospectively reviewed. The occurrence of ONJ was 5.51% and associated with body mass index, overall stage, diabetes, concomitant mandibulotomy, and radiotherapy (P = 0.023, 0.033, 0.009, 0.016, and 0.006, respectively). As for bone parameters based on radiological measurements after marginal mandibulectomy, resected bone height, remaining bone height to original bone height ratio, and resected bone height to original bone height ratio were associated with ONJ. In multivariate logistic analyses, concomitant mandibulotomy, radiotherapy, diabetes, resected bone height of >14.5 mm, resected bone height to original bone height ratio of >49.5%, and remaining bone height to original bone height ratio of <53.5% indicated higher risks for ONJ (adjusted HR: 4.345, 4.152, 4.079, 3.402, 3.541, and 3.211; P = 0.018, 0.013, 0.009, 0.021, 0.018, and 0.043, respectively). This study demonstrated the predisposing factors and parameters associated with ONJ with marginal mandibulectomy; more caution is necessitated in performing marginal mandibulectomy in patients with multiple risks to prevent ONJ. © 2017 Wiley Periodicals, Inc.
Effects of Physical Activity and Muscle Quality on Bone Development in Girls
Farr, Joshua N.; Laddu, Deepika R.; Blew, Robert M.; Lee, Vinson R.; Going, Scott B.
2013-01-01
Poor muscle quality and sedentary behavior are risk factors for metabolic dysfunction in children and adolescents. However, because longitudinal data are scarce, relatively little is known about how changes in muscle quality and physical activity influence bone development. Purpose In a 2-year longitudinal study, we examined the effects of physical activity and changes in muscle quality on bone parameters in young girls. Methods The sample included 248 healthy girls aged 9–12 years at baseline. Peripheral quantitative computed tomography was used to measure calf and thigh muscle density, an indicator of skeletal muscle fat content or muscle quality, as well as bone parameters at diaphyseal and metaphyseal sites of the femur and tibia. Physical activity was assessed using a validated questionnaire specific for youth. Results After controlling for covariates in multiple regression models, increased calf muscle density was independently associated with greater gains in cortical (β = 0.13, P < 0.01) and trabecular (β = 0.25, P < 0.001) volumetric bone mineral density (vBMD) and the bone strength index (BSI; β = 0.25, P < 0.001) of the tibia. Importantly, these relationships were generalized, as similar changes were present at the femur. Associations between physical activity and changes in bone parameters were weaker than those observed for muscle density. Nevertheless, physical activity was significantly (all P < 0.05) associated with greater gains in trabecular vBMD and the BSI of the distal femur. Conclusions These findings suggest that poor muscle quality may put girls at risk for suboptimal bone development. Physical activity is associated with more optimal gains in weight-bearing bone density and strength in girls, but to a lesser extent than changes in muscle quality. PMID:23698240
Ito, M; Oishi, R; Fukunaga, M; Sone, T; Sugimoto, T; Shiraki, M; Nishizawa, Y; Nakamura, T
2014-03-01
Once-weekly administration of 56.5 μg teriparatide improved cortical bone parameters and biomechanical parameters at the proximal femur by CT geometry analysis. The aim of this study was to evaluate the effects of weekly administration of teriparatide [human PTH (1-34)] on bone geometry, volumetric bone mineral density (vBMD), and parameters of bone strength at the proximal femur which were longitudinally investigated using computed tomography (CT). The subjects were a subgroup of a recent, randomly assigned, double-blind study (578 subjects) comparing the anti-fracture efficacy of a once-weekly subcutaneous injection of 56.5 μg teriparatide with placebo (TOWER trial). Sixty-six ambulatory postmenopausal women with osteoporosis were enrolled at 15 study sites having multi-detector row CT, and included women injected with teriparatide (n = 29, 74.2 ± 5.1 years) or with placebo (n = 37, 74.8 ± 5.3 years). CT data were obtained at baseline and follow-up scans were performed at 48 and 72 weeks. The data were analyzed to obtain cross-sectional densitometric, geometric, and biomechanical parameters including the section modulus (SM) and buckling ratio (BR) of the femoral neck, inter-trochanter, and femoral shaft. We found that once-weekly teriparatide increased cortical thickness/cross-sectional area (CSA) and total area, and improved biomechanical properties (i.e., decreasing BR) at the femoral neck and shaft. Teriparatide did not change the cortical perimeter. Our longitudinal analysis of proximal femur geometry by CT revealed that once-weekly administration of 56.5 μg teriparatide improved cortical bone parameters at the femoral neck and shaft and also improved biomechanical parameters.
Koskela, A; Koponen, J; Lehenkari, P; Viluksela, M; Korkalainen, M; Tuukkanen, J
2017-07-28
Perfluoroalkyl substances (PFAS), including two most commonly studied compounds perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are widely distributed environmental pollutants, used extensively earlier. Due to their toxicological effects the use of PFAS is now regulated. Based on earlier studies on PFOA's distribution in bone and bone marrow in mice, we investigated PFAS levels and their possible link to bone microarchitecture of human femoral bone samples (n = 18). Soft tissue and bone biopsies were also taken from a 49-year old female cadaver for PFAS analyses. We also studied how PFOA exposure affects differentiation of human osteoblasts and osteoclasts. PFAS were detectable from all dry bone and bone marrow samples, PFOS and PFOA being the most prominent. In cadaver biopsies, lungs and liver contained the highest concentrations of PFAS, whereas PFAS were absent in bone marrow. Perfluorononanoic acid (PFNA) was present in the bones, PFOA and PFOS were absent. In vitro results showed no disturbance in osteogenic differentiation after PFOA exposure, but in osteoclasts, lower concentrations led to increased resorption, which eventually dropped to zero after increase in PFOA concentration. In conclusion, PFAS are present in bone and have the potential to affect human bone cells partly at environmentally relevant concentrations.
Shao, Hong Da; Li, Guan Wu; Liu, Yong; Qiu, Yu You; Yao, Jian Hua; Tang, Guang Yu
2015-09-01
The fat and bone connection is complicated, and the effect of adipose tissue on hip bone strength remains unclear. The aim of this study was to clarify the relative contribution of body fat accumulation and fat distribution to the determination of proximal femur strength in healthy postmenopausal Chinese women. This cross-sectional study enrolled 528 healthy postmenopausal women without medication history or known diseases. Total lean mass (LM), appendicular LM (ALM), percentage of lean mass (PLM), total fat mass (FM), appendicular FM (AFM), percentage of body fat (PBF), android and gynoid fat amount, android-to-gynoid fat ratio (AOI), bone mineral density (BMD), and proximal femur geometry were measured by dual energy X-ray absorptiometry. Hip structure analysis was used to compute some variables as geometric strength-related parameters by analyzing the images of the hip generated from DXA scans. Correlation analyses among anthropometrics, variables of body composition and bone mass, and geometric indices of hip bone strength were performed with stepwise linear regression analyses as well as Pearson's correlation analysis. In univariate analysis, there were significantly inverse correlations between age, years since menopause (YSM), hip BMD, and hip geometric parameters. Bone data were positively related to height, body weight, LM, ALM, FM, AFM, and PBF but negatively related to AOI and amount of android fat (all P < 0.05). AFM and AOI were significantly related to most anthropometric parameters. AFM was positively associated with height, body weight, and BMI. AFM was negatively associated with age and YSM. AOI was negatively associated with height, body weight, and BMI. AOI positively associated with age and YSM. LM, ALM, and FM had a positive relationship with anthropometric parameters (P < 0.05 for all). PLM had a negative relationship with those parameters. The correlation between LM, ALM, FM, PLM, ALM, age, and YSM was not significant. In multivariate linear regression analysis, the hip bone strength was observed to have a consistent and unchanged positive association with AFM and a negative association with AOI, whereas its association with other variables of body composition was not significant after adjusting for age, years since menopause, height, body weight, and BMI. AFM may be a positively protective effect for hip bone strength while AOI, rather than android fat, shows a strong negative association with hip bone strength after making an adjustment for confounders (age, YSM, height, body weight, and BMI) in healthy postmenopausal Chinese women. Rational weight control and AOI reduction during menopause may have vital clinical significance in decreasing postmenopausal osteoporosis.
Heterogeneous glycation of cancellous bone and its association with bone quality and fragility.
Karim, Lamya; Vashishth, Deepak
2012-01-01
Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage.
Heterogeneous Glycation of Cancellous Bone and Its Association with Bone Quality and Fragility
Karim, Lamya; Vashishth, Deepak
2012-01-01
Non-enzymatic glycation (NEG) and enzymatic biochemical processes create crosslinks that modify the extracellular matrix (ECM) and affect the turnover of bone tissue. Because NEG affects turnover and turnover at the local level affects microarchitecture and formation and removal of microdamage, we hypothesized that NEG in cancellous bone is heterogeneous and accounts partly for the contribution of microarchitecture and microdamage on bone fragility. Human trabecular bone cores from 23 donors were subjected to compression tests. Mechanically tested cores as well as an additional 19 cores were stained with lead-uranyl acetate and imaged to determine microarchitecture and measure microdamage. Post-yield mechanical properties were measured and damaged trabeculae were extracted from a subset of specimens and characterized for the morphology of induced microdamage. Tested specimens and extracted trabeculae were quantified for enzymatic and non-enzymatic crosslink content using a colorimetric assay and Ultra-high Performance Liquid Chromatography (UPLC). Results show that an increase in enzymatic crosslinks was beneficial for bone where they were associated with increased toughness and decreased microdamage. Conversely, bone with increased NEG required less strain to reach failure and were less tough. NEG heterogeneously modified trabecular microarchitecture where high amounts of NEG crosslinks were found in trabecular rods and with the mechanically deleterious form of microdamage (linear microcracks). The extent of NEG in tibial cancellous bone was the dominant predictor of bone fragility and was associated with changes in microarchitecture and microdamage. PMID:22514706
Marin-Padilla, M; Marin-Padilla, T M
1977-01-01
Specific developmental malformations have been demonstrated in the occipital bone of two chondrodysplastic disorders (achondroplasia and thanatophoric dwarfism). Analysis of these malformations indicates that the occipital bone is primary affected in these disorders. In both cases, the endochondral-derived components of the occipital bone (the basioccipital, the two lateral parts, and the planum nuchale of the squama occipitalis) have failed to grow properly and are smaller and shorter than normal. On the other hand, the planum occipitalis of the squama, which derives from intramembranous ossification, is unaffected. In addition, the nature of these abnormalities indicates that the occipital synchondroses, together with the epiphyseal plates of other bones, are primarily affected in these two chondrodysplasias. The components of the occipital bone formed between the affected synchondroses failed to grow normally. The resulting malformation of the occipital bone is undoubtedly the cause of the shortening of the posterior cerebral fossa and of the considerable narrowing of the foramen magnum often described in these chondrodysplasias. It is postulated that growth disturbances between the affected occipital bone and the unaffected central nervous system results in the inadequacy of the posterior cerebral fossa and the foramen magnum to accommodate the growing brain. Consequently, compression of the brain at the posterior cerebral fossa or the foramen magnum levels could occur and thus lead to neurologic complications such as hydrocephalus and compression of the brain stem. It is suggested that the surgical removal of the fused posterior border of the lateral parts of the occipital bone (partial nuchalectomy) for the purpose of enlarging the narrow foramen magnum may be indicated in those chondrodysplastic children who develop these types of neurologic complications.
NASA Astrophysics Data System (ADS)
Raeth, Christoph W.; Mueller, Dirk; Link, Thomas M.; Boehm, Holger; Monetti, Roberto
2006-03-01
Osteoporosis is a metabolic bone disease leading to de-mineralization and increased risk of fracture. The two major factors that determine the biomechanical competence of bone are the degree of mineralization and the micro-architectural integrity. Today, modern imaging modalities exist that allow to depict structural details of trabecular bone tissue. Recently, non-linear techniques in 2D and 3D based on the scaling vector method (SVM) and the Minkowski functionals (MF) have been introduced, which show excellent performance in predicting bone strength and fracture risk. However, little is known about the performance of the various parameters with respect to monitoring structural changes due to progression of osteoporosis or as a result of medical treatment. We test and compare the two methodologies using realistic two-dimensional simulations of bone structures, which model the effect of osteoblasts and osteoclasts on the local change of relative bone density. Different realizations with slightly varying control parameters are considered. Our results show that even small changes in the trabecular structures, which are induced by variation of a control parameter of the system, become discernible by applying both the MF and the locally adapted scaling vector method. The results obtained with SVM are superior to those obtained with the Minkowski functionals. An additive combination of both measures drastically increases the sensitivity to slight changes in bone structures. These findings may be especially important for monitoring the treatment of patients, where the early recognition of (drug-induced) changes in the trabecular structure is crucial.
Heavy metals accumulation affects bone microarchitecture in osteoporotic patients.
Scimeca, Manuel; Feola, Maurizio; Romano, Lorenzo; Rao, Cecilia; Gasbarra, Elena; Bonanno, Elena; Brandi, Maria Luisa; Tarantino, Umberto
2017-04-01
Bone metabolism is affected by mechanical, genetic, and environmental factors and plays a major role in osteoporosis. Nevertheless, the influence of environmental pollution on the occurrence of osteoporosis is still unclear and controversial. In this context, heavy metals are the most important pollutants capable to affect bone mass. The aim of this study was to investigate whether heavy metals accumulation in bone tissues could be related to the altered bone metabolism and architecture of osteoporotic patients. To this end, we analyzed 25 bone head biopsies osteoporotic patients and 25 bone head biopsies of osteoarthritic patients. Moreover we enrolled 15 patients underwent hip arthroplasty for high-energy hip fracture or osteonecrosis of the femoral head as a control group. Bone head biopsies were studied by BioQuant-osteo software, scanning electron microscopy and Energy Dispersive X-ray microanalysis. We found a prevalence of lead, cadmium and chromium accumulation in osteoporotic patients. Noteworthy, high levels of sclerostin, detected by immunohistochemistry, correlate with the accumulation of heavy metal found in the bone of osteoporotic patients, suggesting a molecular link between heavy metal accumulation and bone metabolism impairment. In conclusion, the presence of heavy metals into bone shed new light on the comprehension of the pathogenesis of osteoporosis since these elements could play a non redundant role in the development of osteoporosis at cellular/molecular and epigenetic level. Nevertheless, in vivo and in vitro studies need to better elucidate the molecular mechanism in which heavy metals can participate to osteoporosis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1333-1342, 2017. © 2016 Wiley Periodicals, Inc.
Hsiao, Edward C.; Millard, Susan M.; Louie, Alyssa; Huang, Yong; Conklin, Bruce R.; Nissenson, Robert A.
2010-01-01
Age-dependent changes in skeletal growth play important roles in regulating skeletal expansion and in the course of many diseases affecting bone. How G protein-coupled receptor (GPCR) signaling affects these changes is poorly understood. Previously, we described a mouse model expressing Rs1, an engineered receptor with constitutive Gs activity. Rs1 expression in osteoblasts from gestation induced a dramatic age-dependent increase in trabecular bone with features resembling fibrous dysplasia; however, these changes were greatly minimized if Rs1 expression was delayed until after puberty. To further investigate whether ligand-induced activation of the Gs-GPCR pathway affects bone formation in adult mice, we activated Rs1 in adult mice with the synthetic ligand RS67333 delivered continuously via an osmotic pump or intermittently by daily injections. We found that osteoblasts from adult animals can be stimulated to form large amounts of bone, indicating that adult mice are sensitive to the dramatic bone- forming actions of Gs signaling in osteoblasts. In addition, our results show that intermittent and continuous activation of Rs1 led to structurally similar but quantitatively different degrees of trabecular bone formation. These results indicate that activation of a Gs-coupled receptor in osteoblasts of adult animals by either intermittent or continuous ligand administration can increase trabecular bone formation. In addition, osteoblasts located at the bone epiphyses may be more responsive to Gs signaling than osteoblasts at the bone diaphysis. This model provides a powerful tool for investigating the effects of ligand-activated Gs-GPCR signaling on dynamic bone growth and remodeling. PMID:20150184
NASA Technical Reports Server (NTRS)
Chang, Katarina L.; Pennline, James A.
2013-01-01
During long-duration missions at the International Space Station, astronauts experience weightlessness leading to skeletal unloading. Unloading causes a lack of a mechanical stimulus that triggers bone cellular units to remove mass from the skeleton. A mathematical system of the cellular dynamics predicts theoretical changes to volume fractions and ash fraction in response to temporal variations in skeletal loading. No current model uses image technology to gather information about a skeletal site s initial properties to calculate bone remodeling changes and then to compare predicted bone strengths with the initial strength. The goal of this study is to use quantitative computed tomography (QCT) in conjunction with a computational model of the bone remodeling process to establish initial bone properties to predict changes in bone mechanics during bone loss and recovery with finite element (FE) modeling. Input parameters for the remodeling model include bone volume fraction and ash fraction, which are both computed from the QCT images. A non-destructive approach to measure ash fraction is also derived. Voxel-based finite element models (FEM) created from QCTs provide initial evaluation of bone strength. Bone volume fraction and ash fraction outputs from the computational model predict changes to the elastic modulus of bone via a two-parameter equation. The modulus captures the effect of bone remodeling and functions as the key to evaluate of changes in strength. Application of this time-dependent modulus to FEMs and composite beam theory enables an assessment of bone mechanics during recovery. Prediction of bone strength is not only important for astronauts, but is also pertinent to millions of patients with osteoporosis and low bone density.
Treatment of a unicameral bone cyst in a dog using a customized titanium device.
Nojiri, Ayami; Akiyoshi, Hideo; Ohashi, Fumihito; Ijiri, Atsuki; Sawase, Osamu; Matsushita, Tomiharu; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Nakamura, Takashi; Yamaguchi, Tsutomu
2015-01-01
A 4-year-old Shih-Tzu, referred for an enlarged left carpus, was diagnosed with a unicameral bone cyst. A customized titanium device was inserted into cystic lesion and fixed by titanium screws. Sufficient strength of the affected bone with the device inserted to maintain limb function was established after resection of contents of cystic lesion. There was no deterioration of the lesion of bone cyst, and acceptable function of the affected limb with no clinical signs of lameness was maintained during 36 months follow-up. The results of this study demonstrated that bone cyst curettage and use of a customized titanium device could provide an effective alternative treatment of huge lesion of unicameral bone cysts with the intent of preventing pathologic fractures.
Treatment of a unicameral bone cyst in a dog using a customized titanium device
NOJIRI, Ayami; AKIYOSHI, Hideo; OHASHI, Fumihito; IJIRI, Atsuki; SAWASE, Osamu; MATSUSHITA, Tomiharu; TAKEMOTO, Mitsuru; FUJIBAYASHI, Shunsuke; NAKAMURA, Takashi; YAMAGUCHI, Tsutomu
2014-01-01
ABSTRACT A 4-year-old Shih-Tzu, referred for an enlarged left carpus, was diagnosed with a unicameral bone cyst. A customized titanium device was inserted into cystic lesion and fixed by titanium screws. Sufficient strength of the affected bone with the device inserted to maintain limb function was established after resection of contents of cystic lesion. There was no deterioration of the lesion of bone cyst, and acceptable function of the affected limb with no clinical signs of lameness was maintained during 36 months follow-up. The results of this study demonstrated that bone cyst curettage and use of a customized titanium device could provide an effective alternative treatment of huge lesion of unicameral bone cysts with the intent of preventing pathologic fractures. PMID:25319515
Bone: from a reservoir of minerals to a regulator of energy metabolism
Confavreux, Cyrille B
2011-01-01
Besides locomotion, organ protection, and calcium–phosphorus homeostasis, the three classical functions of the skeleton, bone remodeling affects energy metabolism through uncarboxylated osteocalcin, a recently discovered hormone secreted by osteoblasts. This review traces how energy metabolism affects osteoblasts through the central control of bone mass involving leptin, serotoninergic neurons, the hypothalamus, and the sympathetic nervous system. Next, the role of osteocalcin (insulin secretion, insulin sensitivity, and pancreas β-cell proliferation) in the regulation of energy metabolism is described. Then, the connections between insulin signaling on osteoblasts and the release of uncarboxylated osteocalcin during osteoclast bone resorption through osteoprotegerin are reported. Finally, the understanding of this new bone endocrinology will provide some insights into bone, kidney, and energy metabolism in patients with chronic kidney disease. PMID:21346725
[Bone quantitative ultrasound].
Matsukawa, Mami
2016-01-01
The conventional ultrasonic bone densitometry system can give us information of bone as ultrasonic wave velocity and attenuation. However, the data reflect both structural and material properties of bone. In order to focus only on the bone matrix properties without the effect of bone structure, studies of microscopic Brillouin scattering technique are introduced. The wave velocity in a trabecula was anisotropic and depended on the position and structure of the cancellous bone. The glycation also affected on the wave velocities in bone. As a new bone quality, the piezoelectricity of bone is also discussed.
Dynamic histomorphometric evaluation of human fetal bone formation.
Glorieux, F H; Salle, B L; Travers, R; Audra, P H
1991-01-01
We have evaluated dynamic and static parameters of bone formation in femoral metaphyses collected from two human fetuses at 19 weeks of gestation. Tetracycline was administered to the mother at set intervals (2-5-2 day schedule) before interruption of pregnancy. Labels were distinct and sharply linear, suggesting a well organized calcification front at this early stage of mineralization. Mineral apposition rate (MAR) was fastest (4.1 +/- 0.3 microns/d) in the periosteal (Ps) envelope, and about half that value in the endosteal envelopes (endocortical: 2.5 +/- 0.1, cancellous 2.1 +/- 0.1 microns/d). Because cellular activities may vary throughout the metaphyseal area, sections were arbitrarily separated in 0.75 mm layers starting from the growth plate. Three measured parameters decreased rapidly with increasing distance from the physis: Ps MAR: 4.9 to 2.3 microns/d, trabecular osteoid thickness: 5.9 to 1.2 microns, and cartilage volume (CgV/TV): 5.4% to 1.2%. Others did not vary significantly along the metaphysis. Comparison of several static parameters with those measured in five autopsy specimens from full-term infants showed that bone and cartilage volume, and trabecular thickness increased while osteoid thickness and parameters of resorption decreased in the second half of the gestation period. The study indicates that fetal bone matrix mineralization is already highly organized at mid-gestation, and validates the use of histomorphometry to assess bone maturation during early skeletal development.
2013-01-01
Introduction The acute respiratory distress syndrome (ARDS), affects up to 150,000 patients per year in the United States. We and other groups have demonstrated that bone marrow derived mesenchymal stromal stem cells prevent ARDS induced by systemic and local administration of endotoxin (lipopolysaccharide (LPS)) in mice. Methods A study was undertaken to determine the effects of the diverse populations of bone marrow derived cells on the pathophysiology of ARDS, using a unique ex-vivo swine preparation, in which only the ventilated lung and the liver are perfused with autologous blood. Six experimental groups were designated as: 1) endotoxin alone, 2) endotoxin + total fresh whole bone marrow nuclear cells (BMC), 3) endotoxin + non-hematopoietic bone marrow cells (CD45 neg), 4) endotoxin + hematopoietic bone marrow cells (CD45 positive), 5) endotoxin + buffy coat and 6) endotoxin + in vitro expanded swine CD45 negative adherent allogeneic bone marrow cells (cultured CD45neg). We measured at different levels the biological consequences of the infusion of the different subsets of cells. The measured parameters were: pulmonary vascular resistance (PVR), gas exchange (PO2), lung edema (lung wet/dry weight), gene expression and serum concentrations of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6. Results Infusion of freshly purified autologous total BMCs, as well as non-hematopoietic CD45(-) bone marrow cells significantly reduced endotoxin-induced pulmonary hypertension and hypoxemia and reduced the lung edema. Also, in the groups that received BMCs and cultured CD45neg we observed a decrease in the levels of IL-1β and TNF-α in plasma. Infusion of hematopoietic CD45(+) bone marrow cells or peripheral blood buffy coat cells did not protect against LPS-induced lung injury. Conclusions We conclude that infusion of freshly isolated autologous whole bone marrow cells and the subset of non-hematopoietic cells can suppress the acute humoral and physiologic responses induced by endotoxemia by modulating the inflammatory response, mechanisms that do not involve engraftment or trans-differentiation of the cells. These observations may have important implications for the design of future cell therapies for ARDS. PMID:23497755
Abutment Disconnection/Reconnection Affects Peri-implant Marginal Bone Levels: A Meta-Analysis.
Koutouzis, Theofilos; Gholami, Fatemeh; Reynolds, John; Lundgren, Tord; Kotsakis, Georgios A
Preclinical and clinical studies have shown that marginal bone loss can be secondary to repeated disconnection and reconnection of abutments that affect the peri-implant mucosal seal. The aim of this systematic review and meta-analysis was to evaluate the impact of abutment disconnections/reconnections on peri-implant marginal bone level changes. To address this question, two reviewers independently performed an electronic search of three major databases up to October 2015 complemented by manual searches. Eligible articles were selected on the basis of prespecified inclusion and exclusion criteria after a two-phase search strategy and assessed for risk of bias. A random-effects meta-analysis was performed for marginal bone loss. The authors initially identified 392 titles and abstracts. After evaluation, seven controlled clinical studies were included. Qualitative assessment of the articles revealed a trend toward protective marginal bone level preservation for implants with final abutment placement (FAP) at the time of implant placement compared with implants for which there were multiple abutment placements (MAP). The FAP group exhibited a marginal bone level change ranging from 0.08 to 0.34 mm, whereas the MAP group exhibited a marginal bone level change ranging from 0.09 to 0.55 mm. Meta-analysis of the seven studies reporting on 396 implants showed significantly greater bone loss in cases of multiple abutment disconnections/reconnections. The weighted mean difference in marginal bone loss was 0.19 mm (95% confidence interval, 0.06-0.32 mm), favoring bone preservation in the FAP group. Within the limitations of this meta-analysis, abutment disconnection and reconnection significantly affected peri-implant marginal bone levels. These findings pave the way for revisiting current restorative protocols at the restorative treatment planning stage to prevent incipient marginal bone loss.
Whole bone mechanics and bone quality.
Cole, Jacqueline H; van der Meulen, Marjolein C H
2011-08-01
The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.
Hagmann, Sebastien; Moradi, Babak; Frank, Sebastian; Dreher, Thomas; Kämmerer, Peer Wolfgang; Richter, Wiltrud; Gotterbarm, Tobias
2013-07-30
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) play an important role in modern tissue engineering, while distinct variations of culture media compositions and supplements have been reported. Because MSCs are heterogeneous regarding their regenerative potential and their surface markers, these parameters were compared in four widely used culture media compositions. MSCs were isolated from bone marrow and expanded in four established cell culture media. MSC yield/1000 MNCs, passage time and growth index were observed. In P4, typical MSC surface markers were analysed by fluorescence cytometry. Additionally, chondrogenic, adipogenic and osteogenic differentiation potential were evaluated. Growth index and P0 cell yield varied importantly between the media. The different expansion media had a significant influence on the expression of CD10, CD90, CD105, CD140b CD146 and STRO-1. While no significant differences were observed regarding osteogenic and adipogenic differentiation, chondrogenic differentiation was superior in medium A as reflected by GAG/DNA content. The choice of expansion medium can have a significant influence on growth, differentiation potential and surface marker expression of mesenchymal stromal cells, which is of fundamental importance for tissue engineering procedures.
Osteotomy models - the current status on pain scoring and management in small rodents.
Lang, Annemarie; Schulz, Anja; Ellinghaus, Agnes; Schmidt-Bleek, Katharina
2016-12-01
Fracture healing is a complex regeneration process which produces new bone tissue without scar formation. However, fracture healing disorders occur in approximately 10% of human patients and cause severe pain and reduced quality of life. Recently, the development of more standardized, sophisticated and commercially available osteosynthesis techniques reflecting clinical approaches has increased the use of small rodents such as rats and mice in bone healing research dramatically. Nevertheless, there is no standard for pain assessment, especially in these species, and consequently limited information regarding the welfare aspects of osteotomy models. Moreover, the selection of analgesics is restricted for osteotomy models since non-steroidal anti-inflammatory drugs (NSAIDs) are known to affect the initial, inflammatory phase of bone healing. Therefore, opioids such as buprenorphine and tramadol are often used. However, dosage data in the literature are varied. Within this review, we clarify the background of osteotomy models, explain the current status and challenges of animal welfare assessment, and provide an example score sheet including model specific parameters. Furthermore, we summarize current refinement options and present a brief outlook on further 3R research. © The Author(s) 2016.
Leichter, I; Bivas, A; Margulies, J Y; Roman, I; Simkin, A
1990-01-01
This study examines the relation between the nature of acoustic emission signals emitted from cancellous bone under compression and the mechanical properties of the tissue. The examined bone specimens were taken from 12 normal, 31 osteoporotic and six osteoarthritic femoral heads. The mechanical behaviour of the osteoporotic bone specimens was found to be significantly different from that of the normal specimens both in the pre-yield and post-yield ranges. In the osteoarthritic bones only the elastic behaviour was significantly different. The rates of acoustic events before yield and beyond it were found to be significantly higher both in the osteoporotic and osteoarthritic bone specimens. The average peak amplitude of the signals was also significantly higher in the diseased bones. Stepwise regression analysis showed that a combination of the acoustic emission parameters could significantly predict some mechanical properties of the bone. The energy absorbed during compression and the ultimate compressive stress of the specimens could be estimated from the rate of pre-yield acoustic events, the average amplitude of the signals and the rate of post-yield events. However, the explanation power of the acoustic emission parameters was only moderate. The nature of acoustic emission signals was thus demonstrated to be a potential tool for assessing bone quality.
Ultrasound arthroscopy of human knee cartilage and subchondral bone in vivo.
Liukkonen, Jukka; Lehenkari, Petri; Hirvasniemi, Jukka; Joukainen, Antti; Virén, Tuomas; Saarakkala, Simo; Nieminen, Miika T; Jurvelin, Jukka S; Töyräs, Juha
2014-09-01
Arthroscopic ultrasound imaging enables quantitative evaluation of articular cartilage. However, the potential of this technique for evaluation of subchondral bone has not been investigated in vivo. In this study, we address this issue in clinical arthroscopy of the human knee (n = 11) by determining quantitative ultrasound (9 MHz) reflection and backscattering parameters for cartilage and subchondral bone. Furthermore, in each knee, seven anatomical sites were graded using the International Cartilage Repair Society (ICRS) system based on (i) conventional arthroscopy and (ii) ultrasound images acquired in arthroscopy with a miniature transducer. Ultrasound enabled visualization of articular cartilage and subchondral bone. ICRS grades based on ultrasound images were higher (p < 0.05) than those based on conventional arthroscopy. The higher ultrasound-based ICRS grades were expected as ultrasound reveals additional information on, for example, the relative depth of the lesion. In line with previous literature, ultrasound reflection and scattering in cartilage varied significantly (p < 0.05) along the ICRS scale. However, no significant correlation between ultrasound parameters and structure or density of subchondral bone could be demonstrated. To conclude, arthroscopic ultrasound imaging had a significant effect on clinical grading of cartilage, and it was found to provide quantitative information on cartilage. The lack of correlation between the ultrasound parameters and bone properties may be related to lesser bone change or excessive attenuation in overlying cartilage and insufficient power of the applied miniature transducer. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Nonlinear viscoelastic characterization of bovine trabecular bone.
Manda, Krishnagoud; Wallace, Robert J; Xie, Shuqiao; Levrero-Florencio, Francesc; Pankaj, Pankaj
2017-02-01
The time-independent elastic properties of trabecular bone have been extensively investigated, and several stiffness-density relations have been proposed. Although it is recognized that trabecular bone exhibits time-dependent mechanical behaviour, a property of viscoelastic materials, the characterization of this behaviour has received limited attention. The objective of the present study was to investigate the time-dependent behaviour of bovine trabecular bone through a series of compressive creep-recovery experiments and to identify its nonlinear constitutive viscoelastic material parameters. Uniaxial compressive creep and recovery experiments at multiple loads were performed on cylindrical bovine trabecular bone samples ([Formula: see text]). Creep response was found to be significant and always comprised of recoverable and irrecoverable strains, even at low stress/strain levels. This response was also found to vary nonlinearly with applied stress. A systematic methodology was developed to separate recoverable (nonlinear viscoelastic) and irrecoverable (permanent) strains from the total experimental strain response. We found that Schapery's nonlinear viscoelastic constitutive model describes the viscoelastic response of the trabecular bone, and parameters associated with this model were estimated from the multiple load creep-recovery (MLCR) experiments. Nonlinear viscoelastic recovery compliance was found to have a decreasing and then increasing trend with increasing stress level, indicating possible stiffening and softening behaviour of trabecular bone due to creep. The obtained parameters from MLCR tests, expressed as second-order polynomial functions of stress, showed a similar trend for all the samples, and also demonstrate stiffening-softening behaviour with increasing stress.
Ballarre, Josefina; Manjubala, Inderchand; Schreiner, Wido H; Orellano, Juan Carlos; Fratzl, Peter; Ceré, Silvia
2010-04-01
In this study, we report a hybrid organic-inorganic TEOS-MTES (tetraethylorthosilicate-methyltriethoxysilane) sol-gel-made coating as a potential solution to improve the in vivo performance of AISI 316L stainless steel, which is used as permanent bone implant material. These coatings act as barriers for ion migration, promoting the bioactivity of the implant surface. The addition of SiO(2) colloidal particles to the TEOS-MTES sol (10 or 30 mol.%) leads to thicker films and also acts as a film reinforcement. Also, the addition of bioactive glass-ceramic particles is considered responsible for enhancing osseointegration. In vitro assays for bioactivity in simulated body fluid showed the presence of crystalline hydroxyapatite (HA) crystals on the surface of the double coating with 10mol.% SiO(2) samples on stainless steel after 30 days of immersion. The HA crystal lattice parameters are slightly different from stoichiometric HA. In vivo implantation experiments were carried out in a rat model to observe the osteointegration of the coated implants. The coatings promote the development of newly formed bone in the periphery of the implant, in both the remodellation zone and the marrow zone. The quality of the newly formed bone was assessed for mechanical and structural integrity by nanoindentation and small-angle X-ray scattering experiments. The different amount of colloidal silica present in the inner layer of the coating slightly affects the material quality of the newly formed bone but the nanoindentation results reveal that the lower amount of silica in the coating leads to mechanical properties similar to cortical bone. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Long-term effects of placing one or two cages in instrumented posterior lumbar interbody fusion.
Zhang, Mingzheng; Pu, Fang; Xu, Liqiang; Zhang, Linlin; Yao, Jie; Li, Deyu; Wang, Yu; Fan, Yubo
2016-06-01
Posterior lumbar interbody fusion (PLIF) is an established surgical procedure for spine stabilization after the removal of an intervertebral disc. Researches have shown that inserting a single oblique cage has a similar immediate effect to coupled cages, and it has been proposed that single-cage PLIF is a useful alternative to traditional two-cage PLIF. However, it is not clear whether placing one or two cages represents the best choice for long-term fusion. The aim of this study is to examine how cage placement affects bone remodeling after PLIF surgery, and how this consequently impacts the long-term fusion process. A finite element model of a L3-L4 lumbar spine with PLIF was developed. The spinal segment was modeled with a partial laminectomy and a discectomy with partial facetectomy, and implanted with posterior pedicle screws. Two models were analyzed, one with coupled parallel cages and one with a single oblique cage. Adaptive bone remodeling was simulated according to Huiskes' criterion. The results showed that in the initial state prior to any bone remodeling, cage stress, cage subsidence and cage dislodgement in the single cage model were all greater than in the coupled cage model. In the final state after significant bone remodeling had taken place, these parameters had decreased in both models and the differences between the two models were reduced. Also, the single cage model demonstrated superior bone development in the bone graft when placed under a constant 400 N axial compressive load. Based on the long-term results, instrumented PLIF with a single cage could also be encouraged in clinical practice.
An Increased Risk of Osteoporosis during Acquired Immunodeficiency Syndrome
2004-01-01
Osteoporosis is characterized by decreased bone mineral density and mechanistic imbalances of bone tissue that may result in reduced skeletal strength and an enhanced susceptibility to fractures. Osteoporosis in its most common form affects the elderly (both sexes) and all racial groups of human beings. Multiple environmental risk factors like acquired immune deficiency syndrome (AIDS) are believed to be one of the causes of osteoporosis. Recently a high incidence of osteoporosis has been observed in human immunodeficiency virus (HIV) infected individuals. The etiology of this occurrence in HIV infections is controversial. This problem seems to be more frequent in patients receiving potent antiretroviral therapy. In AIDS, the main suggested risk factors for the development of osteoporosis are use of protease inhibitors, longer duration of HIV infection, lower body weight before antiretroviral therapy, high viral load. Variations in serum parameters like osteocalcin, c-telopeptide, levels of elements like Calcium, Magnesium, Phosphorus, concentration of vitamin-D metabolites, lactate levels, bicarbonate concentrations, amount of alkaline phosphatase are demonstrated in the course of development of osteoporosis. OPG/RANKL/RANK system is final mediator of bone remodeling. Bone mineral density (BMD) test is of added value to assess the risk of osteoporosis in patients infected with AIDS. The biochemical markers also aid in this assessment. Clinical management mostly follows the lines of treatment of osteoporosis and osteopenia. PMID:15912194
Casarrubios, Laura; Matesanz, María Concepción; Sánchez-Salcedo, Sandra; Arcos, Daniel; Vallet-Regí, María; Portolés, María Teresa
2016-11-15
Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200°C) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700°C) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages) have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone. Copyright © 2016 Elsevier Inc. All rights reserved.
Klingvall Ek, Rebecca; Hong, Jaan; Thor, Andreas; Bäckström, Mikael; Rännar, Lars-Erik
This study aimed to evaluate how as-built electron beam melting (EBM) surface properties affect the onset of blood coagulation. The properties of EBM-manufactured implant surfaces for placement have, until now, remained largely unexplored in literature. Implants with conventional designs and custom-made implants have been manufactured using EBM technology and later placed into the human body. Many of the conventional implants used today, such as dental implants, display modified surfaces to optimize bone ingrowth, whereas custom-made implants, by and large, have machined surfaces. However, titanium in itself demonstrates good material properties for the purpose of bone ingrowth. Specimens manufactured using EBM were selected according to their surface roughness and process parameters. EBM-produced specimens, conventional machined titanium surfaces, as well as PVC surfaces for control were evaluated using the slide chamber model. A significant increase in activation was found, in all factors evaluated, between the machined samples and EBM-manufactured samples. The results show that EBM-manufactured implants with as-built surfaces augment the thrombogenic properties. EBM that uses Ti6Al4V powder appears to be a good manufacturing solution for load-bearing implants with bone anchorage. The as-built surfaces can be used "as is" for direct bone contact, although any surface treatment available for conventional implants can be performed on EBM-manufactured implants with a conventional design.
Vibration paradox in orthodontics: Anabolic and catabolic effects
Alikhani, Mani; Alansari, Sarah; Hamidaddin, Mohammad A.; Sangsuwon, Chinapa; Alyami, Bandar; Thirumoorthy, Soumya N.; Oliveira, Serafim M.; Nervina, Jeanne M.
2018-01-01
Vibration in the form of High Frequency Acceleration (HFA) is anabolic on the craniofacial skeleton in the absence of inflammation. Orthodontic forces trigger an inflammation-dependent catabolic cascade that is crucial for tooth movement. It is unknown what effect HFA has on alveolar bone if applied during orthodontic treatment. The objectives of this study are to examine the effect of HFA on the rate of tooth movement and alveolar bone, and determine the mechanism by which HFA affects tooth movement. Adult Sprague Dawley rats were divided to control, orthodontic force alone (OTM), and different experimental groups that received the same orthodontic forces and different HFA regimens. Orthodontic tooth movement was assessed when HFA parameters, frequency, acceleration, duration of exposure, and direct or indirect application were varied. We found that HFA treatment significantly enhanced the inflammation-dependent catabolic cascade during orthodontic tooth movement. HFA treatment increased inflammatory mediators and osteoclastogenesis, and decreased alveolar bone density during orthodontic tooth movement. Each of the HFA variables produced significant changes in the rate of tooth movement and the effect was PDL-dependent. This is the first report that HFA enhances inflammation-dependent catabolic cascades in bone. The clinical implications of our study are highly significant, as HFA can be utilized to enhance the rate of orthodontic tooth movement during the catabolic phase of treatment and subsequently be utilized to enhance retention during the anabolic remodeling phase after orthodontic forces are removed. PMID:29734391
NASA Astrophysics Data System (ADS)
Mansor, N. N.; Daud, R.; Basaruddin, K. S.; Mat, F.; Bajuri, Y.; Ariffin, A. K.
2017-09-01
Inmultiscale Haversian system of cortical bone fracture, a homogenous bone modeling consideration is limited to only one Young modulus was significant for each cortex without having any constituents in that bone. A two dimension model of human femur cortical bone is presented by considering the anatomical positions of four cortices, e.g anterior, posterior, medial and lateral. The Haversian system is modeled under tensile loading by considering the interstitial matrix, osteon and cement line mechanical properties. The interaction between single microcrack and single osteon is evaluated using linear elastic fracture mechanics theory, and was determined using of stress intensity factor, strain energy release rate, and the critical stress intensity factor and critical strain energy release rate parameter. The results indicate that the medial cortex has the highest SIFs while the lowest was posterior cortex. The Young modulus of material was greatly influence the fracture parameters. More stiff the material, the SIF was reduced.
Indentation experiments and simulation of ovine bone using a viscoelastic-plastic damage model
Zhao, Yang; Wu, Ziheng; Turner, Simon; MacLeay, Jennifer; Niebur, Glen L.; Ovaert, Timothy C.
2015-01-01
Indentation methods have been widely used to study bone at the micro- and nanoscales. It has been shown that bone exhibits viscoelastic behavior with permanent deformation during indentation. At the same time, damage due to microcracks is induced due to the stresses beneath the indenter tip. In this work, a simplified viscoelastic-plastic damage model was developed to more closely simulate indentation creep data, and the effect of the model parameters on the indentation curve was investigated. Experimentally, baseline and 2-year postovariectomized (OVX-2) ovine (sheep) bone samples were prepared and indented. The damage model was then applied via finite element analysis to simulate the bone indentation data. The mechanical properties of yielding, viscosity, and damage parameter were obtained from the simulations. The results suggest that damage develops more quickly for OVX-2 samples under the same indentation load conditions as the baseline data. PMID:26136623
How tough is Brittle Bone? Investigating Osteogenesis Imperfecta in Mouse Bone††
Carriero, A.; Zimmermann, E. A.; Paluszny, A.; Tang, S. Y.; Bale, H.; Busse, B.; Alliston, T.; Kazakia, G.
2015-01-01
The multiscale hierarchical structure of bone is naturally optimized to resist fractures. In osteogenesis imperfecta, or brittle bone disease, genetic mutations affect the quality and/or quantity of collagen, dramatically increasing bone fracture risk. Here we reveal how the collagen defect results in bone fragility in a mouse model of osteogenesis imperfecta (oim), which has homotrimeric α1(I) collagen. At the molecular level we attribute the loss in toughness to a decrease in the stabilizing enzymatic crosslinks and an increase in non-enzymatic crosslinks, which may break prematurely inhibiting plasticity. At the tissue level, high vascular canal density reduces the stable crack growth, and extensive woven bone limits the crack-deflection toughening during crack growth. This demonstrates how modifications at the bone molecular level have ramifications at larger length scales affecting the overall mechanical integrity of the bone; thus, treatment strategies have to address multiscale properties in order to regain bone toughness. In this regard, findings from the heterozygous oim bone, where defective as well as normal collagen are present, suggest that increasing the quantity of healthy collagen in these bones helps to recover toughness at the multiple length scales. PMID:24420672
Bone histomorphometry using free and commonly available software.
Egan, Kevin P; Brennan, Tracy A; Pignolo, Robert J
2012-12-01
Histomorphometric analysis is a widely used technique to assess changes in tissue structure and function. Commercially available programs that measure histomorphometric parameters can be cost-prohibitive. In this study, we compared an inexpensive method of histomorphometry to a current proprietary software program. Image J and Adobe Photoshop(®) were used to measure static and kinetic bone histomorphometric parameters. Photomicrographs of Goldner's trichrome-stained femurs were used to generate black-and-white image masks, representing bone and non-bone tissue, respectively, in Adobe Photoshop(®) . The masks were used to quantify histomorphometric parameters (bone volume, tissue volume, osteoid volume, mineralizing surface and interlabel width) in Image J. The resultant values obtained using Image J and the proprietary software were compared and differences found to be statistically non-significant. The wide-ranging use of histomorphometric analysis for assessing the basic morphology of tissue components makes it important to have affordable and accurate measurement options available for a diverse range of applications. Here we have developed and validated an approach to histomorphometry using commonly and freely available software that is comparable to a much more costly, commercially available software program. © 2012 Blackwell Publishing Limited.
Bone histomorphometry using free and commonly available software
Egan, Kevin P.; Brennan, Tracy A.; Pignolo, Robert J.
2012-01-01
Aims Histomorphometric analysis is a widely used technique to assess changes in tissue structure and function. Commercially-available programs that measure histomorphometric parameters can be cost prohibitive. In this study, we compared an inexpensive method of histomorphometry to a current proprietary software program. Methods and results Image J and Adobe Photoshop® were used to measure static and kinetic bone histomorphometric parameters. Photomicrographs of Goldner’s Trichrome stained femurs were used to generate black and white image masks, representing bone and non-bone tissue, respectively, in Adobe Photoshop®. The masks were used to quantify histomorphometric parameters (bone volume, tissue volume, osteoid volume, mineralizing surface, and interlabel width) in Image J. The resultant values obtained using Image J and the proprietary software were compared and found to be statistically non-significant. Conclusions The wide ranging use of histomorphometric analysis for assessing the basic morphology of tissue components makes it important to have affordable and accurate measurement options that are available for a diverse range of applications. Here we have developed and validated an approach to histomorphometry using commonly and freely available software that is comparable to a much more costly, commercially-available software program. PMID:22882309
Ito, Masako
Structural property of bone includes micro- or nano-structural property of the trabecular and cortical bone, and macroscopic geometry. Radiological technique is useful to analyze the bone structural property;multi-detector row CT(MDCT)or high-resolution peripheral QCT(HR-pQCT)is available to analyze human bone in vivo . For the analysis of hip geometry, CT-based hip structure analysis(HSA)is available as well as DXA-based HSA. These structural parameters are related to biomechanical property, and these assessment tools provide information of pathological changes or the effects of anti-osteoporotic agents on bone.
Bone vascularization: a way to study bone microarchitecture?
NASA Astrophysics Data System (ADS)
Blery, P.; Autrusseau, F.; Crauste, E.; Freuchet, Erwan; Weiss, Pierre; Guédon, J.-P.; Amouriq, Y.
2014-03-01
Trabecular bone and its microarchitecture are of prime importance for health. Studying vascularization helps to better know the relationship between bone and vascular microarchitecture. This research is an animal study (nine Lewis rats), based on the perfusion of vascularization by a contrast agent (a mixture of 50% barium sulfate with 1.5% of gelatin) before euthanasia. The samples were studied by micro CT at a resolution of 9μm. Softwares were used to show 3D volumes of bone and vessels, to calculate bone and vessels microarchitecture parameters. This study aims to understand simultaneously the bone microarchitecture and its vascular microarchitecture.
The Lyme Disease Pathogen Borrelia burgdorferi Infects Murine Bone and Induces Trabecular Bone Loss.
Tang, Tian Tian; Zhang, Lucia; Bansal, Anil; Grynpas, Marc; Moriarty, Tara J
2017-02-01
Lyme disease is caused by members of the Borrelia burgdorferi sensu lato species complex. Arthritis is a well-known late-stage pathology of Lyme disease, but the effects of B. burgdorferi infection on bone at sites other than articular surfaces are largely unknown. In this study, we investigated whether B. burgdorferi infection affects bone health in mice. In mice inoculated with B. burgdorferi or vehicle (mock infection), we measured the presence of B. burgdorferi DNA in bones, bone mineral density (BMD), bone formation rates, biomechanical properties, cellular composition, and two- and three-dimensional features of bone microarchitecture. B. burgdorferi DNA was detected in bone. In the long bones, increasing B. burgdorferi DNA copy number correlated with reductions in areal and trabecular volumetric BMDs. Trabecular regions of femora exhibited significant, copy number-correlated microarchitectural disruption, but BMD, microarchitectural, and biomechanical properties of cortical bone were not affected. Bone loss in tibiae was not due to increased osteoclast numbers or bone-resorbing surface area, but it was associated with reduced osteoblast numbers, implying that bone loss in long bones was due to impaired bone building. Osteoid-producing and mineralization activities of existing osteoblasts were unaffected by infection. Therefore, deterioration of trabecular bone was not dependent on inhibition of osteoblast function but was more likely caused by blockade of osteoblastogenesis, reduced osteoblast survival, and/or induction of osteoblast death. Together, these data represent the first evidence that B. burgdorferi infection induces bone loss in mice and suggest that this phenotype results from inhibition of bone building rather than increased bone resorption. Copyright © 2017 Tang et al.
Akça, Kivanç; Chang, Ting-Ling; Tekdemir, Ibrahim; Fanuscu, Mete I
2006-08-01
The objective of this biomechanical study was to explore the effect of bone micro-morphology on initial intraosseous stability of implants with different designs. Straumann and Astra Tech dental implants were placed into anterior and posterior regions of completely edentulous maxilla and mandible of a human cadaver. Experiments were undertaken to quantify initial implant stability and bone micro-morphology. Installation torque values (ITVs) and implant stability quotients (ISQs) were measured to determine initial intraosseous implant stability. For quantification of relative bone volume and micro-architecture, sectioned implant-bone and bone core specimens of each implant placement site were consecutively scanned and trabecular bone was analyzed in a micro-computed tomography (micro-CT) unit. Experimental outcomes were evaluated for correlations among implant designs, initial intraosseous implant stability and bone micro-structural parameters. ITVs correlated higher with bone volume fraction (BV/TV) than ISQs, at 88.1% and 68.9% levels, respectively. Correlations between ITVs and micro-morphometric parameters were significant at the 95% confidence level (P<0.05) while ISQs were not. Differences in ITVs, ISQs and BV/TV data in regards to implant designs used were not significant at the 95% confidence level (P>0.05). Bone micro-morphology has a prevailing effect over implant design on intraosseus initial implant stability, and ITV is more sensitive in terms of revealing biomechanical properties at the bone-implant interface in comparison with ISQ.
Unloading-induced bone loss was suppressed in gold-thioglucose treated mice.
Hino, K; Nifuji, A; Morinobu, M; Tsuji, K; Ezura, Y; Nakashima, K; Yamamoto, H; Noda, M
2006-10-15
Loss of mechanical stress causes bone loss. However, the mechanisms underlying the unloading-induced bone loss are largely unknown. Here, we examined the effects of gold-thioglucose (GTG) treatment, which destroys ventromedial hypothalamus (VMH), on unloading-induced bone loss. Unloading reduced bone volume in control (saline-treated) mice. Treatment with GTG-reduced bone mass and in these GTG-treated mice, unloading-induced reduction in bone mass levels was not observed. Unloading reduced the levels of bone formation rate (BFR) and mineral apposition rate (MAR). GTG treatment also reduced these parameters and under this condition, unloading did not further reduce the levels of BFR and MAR. Unloading increased the levels of osteoclast number (Oc.N/BS) and osteoclast surface (Oc.S/BS). GTG treatment did not alter the basal levels of these bone resorption parameters. In contrast to control, GTG treatment suppressed unloading-induced increase in the levels of Oc.N/BS and Oc.S/BS. Unloading reduced the levels of mRNA expression of the genes encoding osteocalcin, type I collagen and Cbfa1 in bone. In contrast, GTG treatment suppressed such unloading-induced reduction of mRNA expression. Unloading also enhanced the levels of fat mass in bone marrow and mRNA expression of the genes encoding PPARgamma2, C/EBPalpha, and C/EBPbeta in bone. In GTG-treated mice, unloading did not increase fat mass and the levels of fat-related mRNA expression. These results indicated that GTG treatment suppressed unloading-induced alteration in bone loss. 2006 Wiley-Liss, Inc.
Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apostol, Lian; Boudousq, Vincent; Basset, Oliver
Although the diagnosis of osteoporosis is mainly based on dual x-ray absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regard to fracture risk. In vivo, techniques based on high-resolution x-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. Thirty-three calcaneus and femoral neck bone samples including the cortical shells (diameter: 14 mm, height: 30-40 mm) were imaged using 3D-synchrotron x-ray micro-CT at the ESRF. The 3D reconstructed images with a cubic voxel size of 15 {mu}m were further usedmore » for two purposes: (1) quantification of three-dimensional trabecular bone micro-architecture (2) simulation of realistic x-ray radiographs under different acquisition conditions. The simulated x-ray radiographs were then analyzed using a large variety of texture analysis methods (co-occurrence, spectral density, fractal, morphology, etc.). The range of micro-architecture parameters was in agreement with previous studies and rather large, suggesting that the population was representative. More than 350 texture parameters were tested. A small number of them were selected based on their correlation to micro-architectural morphometric parameters. Using this subset of texture parameters, multiple regression allowed one to predict up to 93% of the variance of micro-architecture parameters using three texture features. 2D texture features predicting 3D micro-architecture parameters other than BV/TV were identified. The methodology proposed for evaluating the relationships between 3D micro-architecture and 2D texture parameters may also be used for optimizing the conditions for radiographic imaging. Further work will include the application of the method to physical radiographs. In the future, this approach could be used in combination with DXA to refine osteoporosis diagnosis.« less
Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle
2016-08-01
Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters for the mechanical modulation of growth plate in fusionless treatments.
Altered bone turnover during spaceflight
NASA Technical Reports Server (NTRS)
Turner, R. T.; Morey, E. R.; Liu, C.; Baylink, D. J.
1982-01-01
Modifications in calcium metabolism during spaceflight were studied, using parameters that reflect bone turnover. Bone formation rate, medullary area, bone length, bone density, pore size distribution, and differential bone cell number were evaluated in growing rate both immediately after and 25 days after orbital spaceflights aboard the Soviet biological satellites Cosmos 782 and 936. The primary effect of space flight on bone turnover was a reversible inhibition of bone formation at the periosteal surface. A simultaneous increase in the length of the periosteal arrest line suggests that bone formation ceased along corresponding portions of that surface. Possible reasons include increased secretion of glucocorticoids and mechanical unloading of the skeleton due to near-weightlessness, while starvation and immobilization are excluded as causes.
Sensitivity and ex vivo validation of finite element models of the domestic pig cranium
Bright, Jen A; Rayfield, Emily J
2011-01-01
A finite element (FE) validation and sensitivity study was undertaken on a modern domestic pig cranium. Bone strain data were collected ex vivo from strain gauges, and compared with results from specimen-specific FE models. An isotropic, homogeneous model was created, then input parameters were altered to investigate model sensitivity. Heterogeneous, isotropic models investigated the effects of a constant-thickness, stiffer outer layer (representing cortical bone) atop a more compliant interior (representing cancellous bone). Loading direction and placement of strain gauges were also varied, and the use of 2D membrane elements at strain gauge locations as a method of projecting 3D model strains into the plane of the gauge was investigated. The models correctly estimate the loading conditions of the experiment, yet at some locations fail to reproduce correct principal strain magnitudes, and hence strain ratios. Principal strain orientations are predicted well. The initial model was too stiff by approximately an order of magnitude. Introducing a compliant interior reported strain magnitudes more similar to the ex vivo results without notably affecting strain orientations, ratios or contour patterns, suggesting that this simple heterogeneity was the equivalent of reducing the overall stiffness of the model. Models were generally insensitive to moderate changes in loading direction or strain gauge placement, except in the squamosal portion of the zygomatic arch. The use of membrane elements made negligible differences to the reported strains. The models therefore seem most sensitive to changes in material properties, and suggest that failure to model local heterogeneity in material properties and structure of the bone may be responsible for discrepancies between the experimental and model results. This is partially attributable to a lack of resolution in the CT scans from which the model was built, and partially due to an absence of detailed material properties data for pig cranial bone. Thus, caution is advised when using FE models to estimate absolute numerical values of breaking stress and bite force unless detailed input parameters are available. However, if the objective is to compare relative differences between models, the fact that the strain environment is replicated well means that such investigations can be robust. PMID:21718316
Wassberg, Cecilia; Lubberink, Mark; Sörensen, Jens; Johansson, Silvia
2017-12-01
18F-fluoride PET/CT exhibits high sensitivity to delineate and measure the extent of bone metastatic disease in patients with prostate cancer. 18F-fluoride PET/CT could potentially replace traditional bone scintigraphy in clinical routine and trials. However, more studies are needed to assess repeatability and biological uptake variation. The aim of this study was to perform test-retest analysis of quantitative PET-derived parameters and blood/serum bone turnover markers at the same time point. Ten patients with prostate cancer and verified bone metastases were prospectively included. All underwent two serial 18F-fluoride PET/CT at 1 h post-injection. Up to five dominant index lesions and whole-body 18F-fluoride skeletal tumour burden were recorded per patient. Lesion-based PET parameters were SUVmax, SUVmean and functional tumour volume applying a VOI with 50% threshold (FTV 50% ). The total skeletal tumour burden, total lesion 18F-fluoride (TLF), was calculated using a threshold of SUV of ≥15. Blood/serum biochemical bone turnover markers obtained at the time of each PET were PSA, ALP, S-osteocalcin, S-beta-CTx, 1CTP and BAP. A total of 47 index lesions and a range of 2-122 bone metastases per patient were evaluated. Median time between 18F-fluoride PET/CT was 7 days (range 6-8 days). Repeatability coefficients were for SUVmax 26%, SUVmean 24%, FTV 50% for index lesions 23% and total skeletal tumour burden (TLF) 35%. Biochemical bone marker repeatability coefficients were for PSA 19%, ALP 23%, S-osteocalcin 18%, S-beta-CTx 22%, 1CTP 18% and BAP 23%. Quantitative 18F-fluoride uptake and simultaneous biochemical bone markers measurements are reproducible for prostate cancer metastases and show similar magnitude in test-retest variation.
Li, Xiaojuan; Shet, Keerthi; Xu, Kaipin; Rodríguez, Juan Pablo; Pino, Ana María; Kurhanewicz, John; Schwartz, Ann; Rosen, Clifford J
2017-12-01
There are increasing evidences suggesting bone marrow adiposity tissue (MAT) plays a critical role in affecting both bone quantity and quality. However, very limited studies that have investigated the association between the composition of MAT and bone mineral density (BMD). The goal of this study was to quantify MAT unsaturation profile of marrow samples from post-menopausal women using ex vivo high-resolution magic angle spinning (HRMAS) proton nuclear magnetic resonance ( 1 H NMR) spectroscopy, and to investigate the relationship between MAT composition and BMD. Bone marrow samples were obtained by iliac crest aspiration during surgical procedures from 24 postmenopausal women (65-89years) who had hip surgery due to bone fracture or arthroplasty. Marrow fat composition parameters, in particular, unsaturation level (UL), mono-unsaturation level (MUL) and saturation level (SL), were quantified using HRMAS 1 H NMR spectroscopy. The patients were classified into three groups based on the DXA BMD T-scores: controls, osteopenia and osteoporosis. Marrow fat composition was compared between these three groups as well as between subjects with and without factures using ANOCOVA, adjusted for age. Subjects with lower BMD (n=17) had significantly lower MUL (P=0.003) and UL (P=0.039), and significantly higher SL (P=0.039) compared to controls (n=7). When separating lower BMD into osteopenia (n=9) and osteoporosis (n=8) groups, subjects with osteopenia had significantly lower MUL (P=0.002) and UL (P=0.010), and significantly higher SL (P=0.010) compared to healthy controls. No significant difference was observed between subjects with osteopenia and osteoporosis. Using HRMAS 1 H NMR, significantly lower unsaturation and significantly higher saturation levels were observed in the marrow fat of subjects with lower BMD. HRMAS 1 H NMR was shown to be a powerful tool for identifying novel MR markers of marrow fat composition that are associated with bone quality and potentially fracture, and other bone pathologies and changes after treatment. A better understanding of the relationship between bone marrow composition and bone quality in humans may identify novel treatment targets, and provide guidance on novel interventions and therapeutic strategies for bone preservation. Copyright © 2017 Elsevier Inc. All rights reserved.
Wilhelm, Birgit; Kann, Peter Herbert
2004-10-15
Subnormal bone mineral density (BMD) and increased fracture risk are described in patients with growth hormone deficiency (GHD). Growth hormone (GH) has been reported to have beneficial effects on bone in GHD. The aim of this study was to investigate the long-term effects of GH replacement therapy on bone metabolism, BMD, and bone quality in patients with GHD. 20 adult patients with GHD (eleven male, nine female, mean age 42.5 years) were included in the study and randomized to either GH or placebo in a dose of 0.25 U/kg body weight/week. After 6 months all patients received GH. After a 1-year double-blind, placebo-controlled study the patients were followed for another 72 months in an open study. The patients were compared to 20 age- und sex-matched healthy controls. Bone turnover was determined by ICTP (type I collagen carboxyterminal cross-linked telopeptide) as parameter of bone resorption and PICP (carboxyterminal propeptide of type I procollagen) as marker of bone formation. BMD was measured at the lumbar spine by dual-photon absorptiometry (DPA) and at the forearm by single-photon absorptiometry (SPA). Apparent phalangeal ultrasound transmission velocity (APU) was assessed as parameter of bone quality independent of BMD. At the beginning of the study BMD at both measuring sites was lower in patients with GHD than in healthy controls. During the 1st year of GH replacement therapy BMD decreased, followed by a continuous increase in BMD (about 12%) up to 60 months which remained unchanged thereafter, building up a plateau. After 72 months no significant difference between the patients and the healthy controls could be detected. Concerning parameters of bone turnover, first ICTP as marker of bone resorption showed a significant increase, later on the marker of bone formation increased as well. APU decreased during the first 6 months of treatment, but had returned to its baseline value after 24 months and remained unchanged throughout the rest of the study. BMD is subnormal in adults with GHD. GH replacement therapy stimulates bone turnover in patients with GHD and in the long term such stimulation results in an increased BMD. Thereby, GH shows a triphasic action on BMD: an initial decrease in BMD during the 1st year, followed by a continuous increase in BMD with buildup of a stable plateau after 60 months. The newly formed bone seems to have normal bone elasticity.
[Evaluation of bone structure and quality of ovariectomized rats by microcrack].
Dai, Ru-chun; Liao, Er-yuan; Yang, Chuan
2003-12-01
To compare microcrack with bone mineral desity (BMD), bone histomorphometry and biomechanics parameters, and to investigate the potential of microcrack in the evaluation of bone biomechanical quality. Eight 10-month-old Sprague-Dawley rats were served as baseline controls, and 90 10-month-old rats were randomly divided into A, B, and C groups. Each group comprised ovariectomized (OVX), 17 beta-estradiol treated [EST, 10 micro/(kg x d)] and sham-operated (SHAM) subgroups. Rats from groups A,B and C were killed at the 3rd, 15th and 21st week post-operatively. Total body and lumbar vertebral BMD were measured before being killed, and BMD of isolated lumbar vertebrae and tibiae were measured after killing. Bone histomorphometry of the proximal end of isolated right tibia was performed,and compression test was carried out on the isolated 5th lumbar vertebra (L5). After fatigue damage, the isolated 4th lumbar vertebra was stained by en bloc basic fuchsin staining, and microcrack density (Cr. Dn) and microcrack surface density (Cr. SDn) were de- termined on the bone tissue sections. Bone parameters in each subgroup of rats were observed at different time. (1) At the 15th and 21st week post-operatively, multi-part BMD, Cr. Dn and Cr. SDn were higher than those at the 3rd week. (2) At the 15th week, trabecular separation (Tb. Sp) increased, trabecular number (Tb. N) decreased, and the maximum loading level and elastic modulus of vertebra reached the peak. (3) At the 3rd week, Tb. Sp, Cr. Dn and Cr. SDn in the OVX subgroup were greater than those in the EST subgroup, while the percentage of trabecular area (TbTr) in the OVX subgroup was lower than that of the EST and SHAM subgroups. No changes of BMDs and biomechanic parameters were observed among the three subgroups. (4) At the 15th week, multi-part BMD and maximum loading level in the OVX and EST subgroups were lower than those in the SHAM subgroup, while elastic modulus, bone histomorphometry parameters, Cr. Dn and Cr. SDn had no change among the three subgroups. (5) At the 21st week, multi-part BMDs, Tb. N and TbTr in the OVX subgroup were smaller than those in the EST and SHAM subgroups. Tb. Sp, bone formation rate, mineral apposition rate, percent labeled perimeter,Cr. Dn and Cr. SDn in the OVX subgroups were greater than those in the EST and SHAM subgroups. Maximum loading level and elastic modulus of vertebra in EST and OVX subgroups were lower than those in the SHAM subgroup. There were no significant differences in all of these parameters Microcrack can be regarded as an alterative between the EST and the SHAM subgroup. Conclusion parameter in the evaluation of bone biomechanical quality.
The BPAQ: a bone-specific physical activity assessment instrument.
Weeks, B K; Beck, B R
2008-11-01
A newly developed bone-specific physical activity questionnaire (BPAQ) was compared with other common measures of physical activity for its ability to predict parameters of bone strength in healthy, young adults. The BPAQ predicted indices of bone strength at clinically relevant sites in both men and women, while other measures did not. Only certain types of physical activity (PA) are notably osteogenic. Most methods to quantify levels of PA fail to account for bone relevant loading. Our aim was to examine the ability of several methods of PA assessment and a new bone-specific measure to predict parameters of bone strength in healthy adults. We recruited 40 men and women (mean age 24.5). Subjects completed the modifiable activity questionnaire, Bouchard 3-day activity record, a recently published bone loading history questionnaire (BLHQ), and wore a pedometer for 14 days. We also administered our bone-specific physical activity questionnaire (BPAQ). Calcaneal broadband ultrasound attenuation (BUA) (QUS-2, Quidel) and densitometric measures (XR-36, Norland) were examined. Multiple regression and correlation analyses were performed on the data. The current activity component of BPAQ was a significant predictor of variance in femoral neck bone mineral density (BMD), lumbar spine BMD, and whole body BMD (R(2) = 0.36-0.68, p < 0.01) for men, while the past activity component of BPAQ predicted calcaneal BUA (R(2) = 0.48, p = 0.001) for women. The BPAQ predicted indices of bone strength at skeletal sites at risk of osteoporotic fracture while other PA measurement tools did not.
Good, Bad, or Ugly: the Biological Roles of Bone Marrow Fat.
Singh, Lakshman; Tyagi, Sonia; Myers, Damian; Duque, Gustavo
2018-04-01
Bone marrow fat expresses mixed characteristics, which could correspond to white, brown, and beige types of fat. Marrow fat could act as either energy storing and adipokine secreting white fat or as a source of energy for hematopoiesis and bone metabolism, thus acting as brown fat. However, there is also a negative interaction between marrow fat and other elements of the bone marrow milieu, which is known as lipotoxicity. In this review, we will describe the good and bad roles of marrow fat in the bone, while focusing on the specific components of the negative effect of marrow fat on bone metabolism. Lipotoxicity in the bone is exerted by bone marrow fat through the secretion of adipokines and free fatty acids (FFA) (predominantly palmitate). High levels of FFA found in the bone marrow of aged and osteoporotic bone are associated with decreased osteoblastogenesis and bone formation, decreased hematopoiesis, and increased osteoclastogenesis. In addition, FFA such as palmitate and stearate induce apoptosis and dysfunctional autophagy in the osteoblasts, thus affecting their differentiation and function. Regulation of marrow fat could become a therapeutic target for osteoporosis. Inhibition of the synthesis of FFA by marrow fat could facilitate osteoblastogenesis and bone formation while affecting osteoclastogenesis. However, further studies testing this hypothesis are still required.
Elastic-plastic fracture mechanics of compact bone
NASA Astrophysics Data System (ADS)
Yan, Jiahau
Bone is a composite composed mainly of organics, minerals and water. Most studies on the fracture toughness of bone have been conducted at room temperature. Considering that the body temperature of animals is higher than room temperature, and that bone has a high volumetric percentage of organics (generally, 35--50%), the effect of temperature on fracture toughness of bone should be studied. Single-edged V-shaped notched (SEVN) specimens were prepared to measure the fracture toughness of bovine femur and manatee rib in water at 0, 10, 23, 37 and 50°C. The fracture toughness of bovine femur and manatee rib were found to decrease from 7.0 to 4.3 MPa·m1/2 and from 5.5 to 4.1 MPa·m1/2, respectively, over a temperature range of 50°C. The decreases were attributed to inability of the organics to sustain greater stresses at higher temperatures. We studied the effects of water and organics on fracture toughness of bone using water-free and organics-free SEVN specimens at 23°C. Water-free and organics-free specimens were obtained by placing fresh bone specimen in a furnace at different temperatures. Water and organics significantly affected the fracture toughness of bone. Fracture toughness of the water-free specimens was 44.7% (bovine femur) and 32.4% (manatee rib) less than that of fresh-bone specimens. Fracture toughness of the organics-free specimens was 92.7% (bovine femur) and 91.5% (manatee rib) less than that of fresh bone specimens. Linear Elastic Fracture Mechanics (LEFM) is widely used to study bone. However, bone often has small to moderate scale yielding during testing. We used J integral, an elastic-plastic fracture-mechanics parameter, to study the fracture process of bone. The J integral of bovine femur increased from 6.3 KJ/mm2 at 23°C to 6.7 KJ/mm2 at 37°C. Although the fracture toughness of bovine bone decreases as the temperature increases, the J integral results show a contrary trend. The energy spent in advancing the crack beyond the linear-elastic deformation was much greater than the energy spent in linear-elastic deformation. This could be because bone has at least four toughening mechanisms and a high volumetric percentage of organics (approximately 42% for bovine femur). The J integral is shown to better describe the fracture process of bovine femur and manatee rib.
Ruiz, M; Sarriés, M V; Beriain, M J; Crecente, S; Domínguez, R; Lorenzo, J M
2018-05-01
In order to improve foal carcass quality, it is necessary in particular to improve the carcass dressing percentage and tissue composition. Thus, it is important to establish relationships between grading systems and these parameters. This research was conducted to study the effect of slaughter age (13 v. 26 months) and finishing feed (standard v. linseed feed) on carcass characteristics such as subcutaneous fat colour plus classification of foals for the degree of fatness and conformation. For this study, 46 foals of crossbred genotype (Galician Mountain×Burguete) were used. Finishing feed did not affect any parameter, whereas slaughter age influenced all parameters (P<0.05). The oldest foals had higher carcass measurements, 13% more of meat, 4% more of bone, 12% more of fat, and 4% and 9% bigger fore- and hindquarter, respectively. Consequently, bigger valuable prime cuts were obtained. Nevertheless, the meat : bone ratio was very similar for both 13- and 26-month-old foals (2.88). Most of 26-month-old foals were classified in 'E' (Extra) and '5' (Complete fat cover) categories of conformation and degree of fatness. Most of the carcasses showed subcutaneous fat described as yellowish-white irrespective of age or diet. A regression model found that conformation (36%) and degree of fatness (33%) in live animals was positively linked with carcass tissue composition. It is therefore suggested that producers aim for older slaughter ages than 13 months and that the foal meat industry establishes grading systems to predict carcass quality. Further studies should be necessary to find the optimal slaughter age to obtain carcasses in the best categories of degree of fatness and conformation. New studies should be recommended to improve the meat : bone ratio of foal carcasses as it estimates the aptitude for meat production.
Thomson, Wendy; Boonen, Steven; Borghs, Herman; Vanderschueren, Dirk; Gielen, Evelien; Huhtaniemi, Ilpo T.; Adams, Judith E.; Ward, Kate A.; Bartfai, Gyorgy; Casanueva, Felipe; Finn, Joseph D.; Forti, Gianni; Giwercman, Aleksander; Han, Thang S.; Kula, Krzysztof; Labrie, Fernand; Lean, Michael E. J.; Pendleton, Neil; Punab, Margus; Wu, Frederick C. W.; O'Neill, Terence W.
2011-01-01
Purpose Genome-wide association studies (GWAS) have identified 6q25, which incorporates the oestrogen receptor α gene (ESR1), as a quantitative trait locus for areal bone mineral density (BMDa) of the hip and lumbar spine. The aim of this study was to determine the influence of this locus on other bone health outcomes; calcaneal ultrasound (QUS) parameters, radial peripheral quantitative computed tomography (pQCT) parameters and markers of bone turnover in a population sample of European men. Methods Eight single nucleotide polymorphisms (SNP) in the 6q25 locus were genotyped in men aged 40–79 years from 7 European countries, participating in the European Male Ageing Study (EMAS). The associations between SNPs and measured bone parameters were tested under an additive genetic model adjusting for centre using linear regression. Results 2468 men, mean (SD) aged 59.9 (11.1) years had QUS measurements performed and bone turnover marker levels measured. A subset of 628 men had DXA and pQCT measurements. Multiple independent SNPs showed significant associations with BMD using all three measurement techniques. Most notably, rs1999805 was associated with a 0.10 SD (95%CI 0.05, 0.16; p = 0.0001) lower estimated BMD at the calcaneus, a 0.14 SD (95%CI 0.05, 0.24; p = 0.004) lower total hip BMDa, a 0.12 SD (95%CI 0.02, 0.23; p = 0.026) lower lumbar spine BMDa and a 0.18 SD (95%CI 0.06, 0.29; p = 0.003) lower trabecular BMD at the distal radius for each copy of the minor allele. There was no association with serum levels of bone turnover markers and a single SNP which was associated with cortical density was also associated with cortical BMC and thickness. Conclusions Our data replicate previous associations found between SNPs in the 6q25 locus and BMDa at the hip and extend these data to include associations with calcaneal ultrasound parameters and radial volumetric BMD. PMID:21760950
McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W
2008-02-01
Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.
Bone mineral density trends in Indian patients with hyperthyroidism--effect of antithyroid therapy.
Dhanwal, Dinesh Kumar; Gupta, Nandita
2011-09-01
Hyperthyroidism is associated with bone loss, which is reversible after treatment. The extent of reversibility of loss of bone mass density (BMD) in hyperthyroid patients after treatment especially at forearm is not clear. Therefore, the present study was conducted to assess degree of reversibility in bone mineral density following one-year medical treatment in Indian patients with hyperthyroidism. A total of 30 consecutive patients with hyperthyroidism were included in this one year study at All India Institute of Medical Sciences, New Delhi, India. All the patients were assessed for parameters of bone mineral homeostasis such as calcium, phosphorous, alkaline phosphatase, 25-hydroxy vitamin D [25 (OH) D], parathyroid hormone (PTH) at the time of diagnosis and after one year medical treatment. Bone mineral density was measured using Hologic DXA scan at hip, spine and forearm. All the patients received medical therapy with carbimazole. The parameters of bone homeostasis and bone mineral density at base line and after one year medical treatment was compared. All patients attained euthyroid status after eight weeks of carbimazole therapy. Parameters of bone homeostasis such as calcium, phosphorous, 25 (OH) D and PTH did not show any significant change from base line. Bone mineral density expressed as bone mineral content in gm/cm2 at left hip neck, trochanteric and intertrochanteric region was significantly higher after carbimazole therapy (745.2 +/- 127.6 gm/cm2 vs. 688.2 +/- 123.5 gm/cm2; p = 0.02, 573.4 +/- 109.9 gm/cm2 vs. 641.0 +/- 138.0 gm/cm2, p = 0.005 and 1008.6 +/- 185.5 gm/cm2 vs. 938.0 +/- 145.3 gm/cm2 p = 0.0131 respectively). Bone mineral density at lumbar spine expressed as either T and Z score was significantly higher after treatment (10 months of euthyroid state) (-0.6 +/- 1.3 vs. -1.7 +/- 1.2, p = 0.013 and -0.4 +/- 1.2 vs. -1.4 +/- 1.2, p = 0.012 respectively). However Bone mineral measures as T and Z score at left forearm decreased significantly after one year of medical therapy. In Indian patients with hyperthyroidism, the pattern of recovery of bone loss after one year of antithyroid therapy suggests early recovery at hip and lumbar spine and deterioration at forearm.
Jun, Sang Ho; Park, Chang-Joo; Hwang, Suk-Hyun; Lee, Youn Ki; Zhou, Cong; Jang, Hyon-Seok; Ryu, Jae-Jun
2018-12-01
This study was to evaluate the effect of bone graft procedure on the primary stability of implants installed in fresh sockets and assess the vertical alteration of peri-implant bone radiographically. Twenty-three implants were inserted in 18 patients immediately after tooth extraction. The horizontal gap between the implant and bony walls of the extraction socket was grafted with xenografts. The implant stability before and after graft procedure was measured by Osstell Mentor as implant stability quotient before bone graft (ISQ bbg) and implant stability quotient after bone graft (ISQ abg). Peri-apical radiographs were taken to measure peri-implant bone change immediately after implant surgery and 12 months after implant placement. Data were analyzed by independent t test; the relationships between stability parameters (insertion torque value (ITV), ISQ abg, and ISQ bbg) and peri-implant bone changes were analyzed according to Pearson correlation coefficients. The increase of ISQ in low primary stability group (LPSG) was 6.87 ± 3.62, which was significantly higher than the increase in high primary stability group (HPSG). A significant correlation between ITV and ISQ bbg ( R = 0.606, P = 0.002) was found; however, age and peri-implant bone change were not found significantly related to implant stability parameters. It was presented that there were no significant peri-implant bone changes at 1 year after bone graft surgery. Bone graft procedure is beneficial for increasing the primary stability of immediately placed implants, especially when the ISQ of implants is below 65 and that bone grafts have some effects on peri-implant bone maintenance.
Bone vascularization and bone micro-architecture characterizations according to the μCT resolution
NASA Astrophysics Data System (ADS)
Crauste, E.; Autrusseau, F.; Guédon, Jp.; Pilet, P.; Amouriq, Y.; Weiss, P.; Giumelli, B.
2015-03-01
Trabecular bone and its micro-architecture are of prime importance for health. Changes of bone micro-architecture are linked to different pathological situations like osteoporosis and begin now to be understood. In a previous paper [12], we started to investigate the relationships between bone and vessels and proposed some indices of characterization for the vessels issued from those used for the bone. Our main objective in this paper is to qualify the classical values used for bone as well as those we proposed for vessels according to different acquisition parameters and for several thresholding methods used to separate bone vessels and background. This study is also based on vessels perfusion by a contrast agent (barium sulfate mixed with gelatin) before euthanasia on rats. Femurs and tibias as well as mandibles were removed after rat's death and were imaged by microCT (Skyscan 1272, Bruker, Belgium) with a resolution ranging from 18 to 3μm. The so obtained images were analyzed with various softwares (NRecon Reconstruction, CtAn, and CtVox from Bruker) in order to calculate bone and vessels micro-architecture parameters (density of bone/blood within the volume), and to know if the results both for bone and vascular micro-architecture are constant along the chosen pixel resolution. The result is clearly negative. We found a very different characterization both for bone and vessels with the 3μm acquisition. Tibia and mandibles bones were also used to show results that can be visually assessed. The largest portions of the vascular tree are orthogonal to the obtained slices of the bone. Therefore, the contrast agent appears as cylinders of various sizes.
Goossens, Liesbet; Vanderoost, Jef; Jaecques, Siegfried; Boonen, Steven; D'hooge, Jan; Lauriks, Walter; Van der Perre, Georges
2008-01-01
For the clinical assessment of osteoporosis (i.e., a degenerative bone disease associated with increased fracture risk), ultrasound has been proposed as an alternative or supplement to the dual-energy X-ray absorptiometry (DEXA) technique. However, the interaction of ultrasound waves with (trabecular) bone remains relatively poorly understood. The present study aimed to improve this understanding by simulating ultrasound wave propagation in 15 trabecular bone samples from the human lumbar spine, using microcomputed tomography-based finite-element modeling. The model included only the solid bone, without the bone marrow. Two structural parameters were calculated: the bone volume fraction (BV/TV) and the structural (apparent) elastic modulus (E(s)), and the ultrasound propagation parameter speed of sound (SOS). Relations between BV/TV and E(s) were similar to published experimental relations. At 1 MHz, correlations between SOS and the structural parameters BV/TV and Es were rather weak, but the results can be explained from the specific features of the trabecular structure and the intrinsic material elastic modulus E(i). In particular, the systematic differences between the three main directions provide information on the trabecular structure. In addition, at 1 MHz the correlation found between the simulated SOS values and those calculated from the simple bar equation was poor when the three directions are considered separately. Hence, under these conditions, the homogenization approach-including the bar equation-is not valid. However, at lower frequencies (50-300 kHz) this correlation significantly improved. It is concluded that detailed analysis of ultrasound wave propagation through the solid structure in various directions and with various frequencies, can yield much information on the structural and mechanical properties of trabecular bone.
First experience with early dynamic (18)F-NaF-PET/CT in patients with chronic osteomyelitis.
Freesmeyer, Martin; Stecker, Franz F; Schierz, Jan-Henning; Hofmann, Gunther O; Winkens, Thomas
2014-05-01
This study investigates whether early dynamic positron emission tomography/computed tomography (edPET/CT) using (18)F-sodium fluoride-((18)F-NaF) is feasible in depicting early phases of radiotracer distribution in patients with chronic osteomyelitis (COM). A total of 12 ed(18)F-NaF-PET/CT examinations were performed on 11 consecutive patients (2 female, 9 male; age 53 ± 12 years) in list mode over 5 min starting with radiopharmaceutical injection before standard late (18)F-NaF-PET/CT. Eight consecutive time intervals (frames) were reconstructed for each patient: four 15 s, then four 60 s. Several volumes of interest (VOI) were selected, representing the affected area as well as different reference areas within the bone and soft tissue. Maximum and mean ed standardized uptake values (edSUVmax, edSUVmean, respectively) were calculated in each VOI during each frame to measure early fluoride influx and accumulation. Results were compared between affected and non-affected (contralateral) bones. Starting in the 31-45 s frame, the affected bone area showed significantly higher edSUVmax and edSUVmean compared to the healthy contralateral region. The affected bone areas also significantly differed from non-affected contralateral regions in conventional late (18)F-NaF-PET/CT. This pilot study suggests that, in patients with COM, ed(18)F-NaF -PET offers additional information about early radiotracer distribution to standard (18)F-NaF -PET/CT, similar to a three-phase bone scan. The results should be validated in larger trials which directly compare ed(18)F-NaF-PET to a three-phase bone scan.
della Croce, U; Cappozzo, A; Kerrigan, D C
1999-03-01
Human movement analysis using stereophotogrammetry is based on the reconstruction of the instantaneous laboratory position of selected bony anatomical landmarks (AL). For this purpose, knowledge of an AL's position in relevant bone-embedded frames is required. Because ALs are not points but relatively large and curved areas, their identification by palpation or other means is subject to both intra- and inter-examiner variability. In addition, the local position of ALs, as reconstructed using an ad hoc experimental procedure (AL calibration), is affected by photogrammetric errors. The intra- and inter-examiner precision with which local positions of pelvis and lower limb palpable bony ALs can be identified and reconstructed were experimentally assessed. Six examiners and two subjects participated in the study. Intra- and inter-examiner precision (RMS distance from the mean position) resulted in the range 6-21 mm and 13-25 mm, respectively. Propagation of the imprecision of ALs to the orientation of bone-embedded anatomical frames and to hip, knee and ankle joint angles was assessed. Results showed that this imprecision may cause distortion in joint angle against time functions to the extent that information relative to angular movements in the range of 10 degrees or lower may be concealed. Bone geometry parameters estimated using the same data showed that the relevant precision does not allow for reliable bone geometry description. These findings, together with those relative to skin movement artefacts reported elsewhere, assist the human movement analyst's consciousness of the possible limitations involved in 3D movement analysis using stereophotogrammetry and call for improvements of the relevant experimental protocols.
Caro, Adam C; Tucker, Jennica J; Yannascoli, Sarah M; Dunkman, Andrew A; Thomas, Stephen J; Soslowsky, Louis J
2014-01-01
Although relief of postoperative pain is an imperative aspect of animal welfare, analgesics that do not interfere with the scientific goals of the study must be used. Here we compared the efficacy of different analgesic agents by using an established rat model of supraspinatus tendon healing and a novel gait-analysis system. We hypothesized that different analgesic agents would all provide pain relief in this model but would cause differences in tendon-to-bone healing and gait parameters. Buprenorphine, ibuprofen, tramadol–gabapentin, and acetaminophen were compared with a no-analgesia control group. Gait measures (stride length and vertical force) on the operative forelimb differed between the control group and both the buprenorphine (2 and 4 d postsurgery) and ibuprofen (2 d postsurgery) groups. Step length was different in the control group as compared with the tramadol–gabapentin (2 d after surgery), buprenorphine (2 and 4 d after surgery), and ibuprofen (2 d after surgery) groups. Regarding tendon-to-bone healing, the ibuprofen group showed less stiffness at the insertion site; no other differences in tendon-to-bone healing were detected. In summary, the analgesics evaluated were associated with differences in both animal gait and tendon-to-bone healing. This information will be useful for improving the management of postsurgical pain without adversely affecting tissue healing. Given its ability to improve gait without impeding healing, we recommend use of buprenorphine for postsurgical pain management in rats. In addition, our gait-analysis system can be used to evaluate new analgesics. PMID:24602546
Yu, Haiyang; Gan, Xueqi
2017-01-01
Low magnitude high frequency vibration (LMHFV) has been mainly reported for its influence on the musculoskeletal system, particularly the bone tissue. In the bone structure, osteogenic activity is the main focus of study with regards to LMHFV. However, adipogenesis, another important mode of differentiation in the bone marrow cavity that might be affected by LMHFV, is much less researched. Furthermore, the molecular mechanism of how LMHFV influences adipogenesis still needs to be understood. Here, we tested the effect of LMHFV (0.3g, 40 Hz, amplitude: 50μm), 15min/d, on multipotent stem cells (MSCs), which are the common progenitors of osteogenic, chondrogenic, adipogenic and myogenic cells. It is previously shown that LMHFV promotes osteogenesis of MSCs. In this study, we further revealed its effect on adipo-differentiation of bone marrow stem cells (BMSCs) and studied the underlying signaling pathway. We found that when treated with LMHFV, the cells showed a higher expression of PPARγ, C/EBPα, adiponectin and showed more oil droplets. After vibration, the protein expression of PPARγ increased, and the phosphorylation of p38 MAPK was enhanced. After treating cells with SB203580, a specific p38 inhibitor, both the protein level of PPARγ illustrated by immunofluorescent staining and the oil droplets number, were decreased. Altogether, this indicates that p38 MAPK is activated during adipogenesis of BMSCs, and this is promoted by LMHFV. Our results demonstrating that specific parameters of LMHFV promotes adipogenesis of MSCs and enhances osteogenesis, highlights an unbeneficial side effect of vibration therapy used for preventing obesity and osteoporosis. PMID:28253368
Zhang, Dongdong; Seo, Da Hea; Choi, Han Seok; Park, Hye Sun; Chung, Yoon Sok; Lim, Sung Kil
2017-12-01
Vitamin D deficiency remains common in all age groups and affects skeletal and non-skeletal health. Fibroblast growth factor 23 is a bone-derived hormone that regulates phosphate and 1,25-dihydroxyvitamin D homeostasis as a counter regulatory factor. 1,25-Dihydroxyvitamin D stimulates fibroblast growth factor 23 synthesis in bone, while fibroblast growth factor 23 suppresses 1,25-dihydroxyvitamin D production in the kidney. The aim of this study was to evaluate the effects of vitamin D₃ intramuscular injection therapy on serum fibroblast growth factor 23 concentrations, and several other parameters associated with bone metabolism such as sclerostin, dickkopf-1, and parathyroid hormone. A total of 34 subjects with vitamin D deficiency (defined by serum 25-hydroxyvitamin D levels below 20 ng/mL) were randomly assigned to either the vitamin D injection group (200,000 units) or placebo treatment group. Serum calcium, phosphate, urine calcium/creatinine, serum 25-hydroxyvitamin D, fibroblast growth factor 23, sclerostin, parathyroid hormone, and dickkopf-1 levels were serially measured after treatment. Comparing the vitamin D injection group with the placebo group, no significant changes were observed in serum fibroblast growth factor 23, parathyroid hormone, or dickkopf-1 levels. Serum sclerostin concentrations transiently increased at week 4 in the vitamin D group. However, these elevated levels declined later and there were no statistically significant differences as compared with baseline levels. Serum fibroblast factor 23, sclerostin, parathyroid hormone, and dickkopf-1 levels were not affected significantly by single intramuscular injection of vitamin D₃. Copyright © 2017 Korean Endocrine Society
USDA-ARS?s Scientific Manuscript database
Introduction: Body mass has a positive effect on bone mineral density and the strength. Whether mass derived from an obesity condition is beneficial to bone has not been established; neither have the mechanism by which obesity affects bone metabolism. The aim of this study was to examine the effects...
ZHOU, WEI; KONG, WEIQING; ZHAO, BIZHEN; FU, YISHAN; ZHANG, TAO; XU, JIANGUANG
2013-01-01
The aim of this study was to investigate the method of posterior thoracolumbar vertebral pedicle screw reduction and fixation combined with vertebral bone implantation via the affected vertebral body under navigational aid for the treatment of thoracolumbar fractures. The efficacy of the procedure was also measured. Between June 2005 and March 2011, posterior thoracolumbar vertebral pedicle screw reduction and fixation plus artificial bone implantation via the affected vertebral pedicle under navigational aid was used to treat 30 patients with thoracolumbar fractures, including 18 males and 12 females, ranging in age from 21 to 57 years. Compared with the values prior to surgery, intraspinal occupation, vertebral height ratio and Cobb angle at the follow-up were significantly improved. At the long-term follow-up, the postoperative Cobb angle loss was <1° and the anterior vertebral body height loss was <2 mm. Posterior thoracolumbar vertebral pedicle screw reduction and fixation combined with vertebral bone implantation via the affected vertebral body under navigational aid may increase the accuracy and safety of surgery, and it is an ideal method of internal implantation. Bone implantation via the affected vertebral body may increase vertebral stability. PMID:23935737
Baxter, Victoria K.; Shaw, Gillian C.; Sotuyo, Nathaniel P.; Carlson, Cathy S.; Olson, Erik J.; Zink, M. Christine; Mankowski, Joseph L.; Adams, Robert J.
2013-01-01
The increasing use of the common marmoset (Callithrix jacchus) in research makes it important to diagnose spontaneous disease that may confound experimental studies. Bone disease and gastrointestinal disease are two major causes of morbidity and mortality in captive marmosets, but currently no effective antemortem tests are available to identify affected animals prior to the terminal stage of disease. In this study we propose that bone disease and gastrointestinal disease are associated disease entities in marmosets and aim to establish the efficacy of several economical antemortem tests in identifying and predicting disease. Tissues from marmosets were examined to define affected animals and unaffected controls. Complete blood count, serum chemistry values, body weight, quantitative radiographs, and tissue-specific biochemical markers were evaluated as candidate biomarkers for disease. Bone and gastrointestinal disease were associated, with marmosets being over seven times more likely to have either concurrent bone and gastrointestinal disease or neither disease as opposed to lesions in only one organ system. When used in tandem, serum albumin <3.5 g/dL and body weight <325 g identified 100% of the marmosets affected with concurrent bone and gastrointestinal disease. Progressive body weight loss of 0.05% of peak body weight per day predicted which marmosets would develop disease prior to the terminal stage. Bone tissue-specific tests, such as quantitative analysis of radiographs and serum parathyroid hormone levels, were effective for distinguishing between marmosets with bone disease and those without. These results provide an avenue for making informed decisions regarding the removal of affected marmosets from studies in a timely manner, preserving the integrity of research results. PMID:24324827
Johannesdottir, Fjola; Aspelund, Thor; Siggeirsdottir, Kristin; Jonsson, Brynjolfur Y; Mogensen, Brynjolfur; Sigurdsson, Sigurdur; Harris, Tamara B; Gudnason, Vilmundur G; Lang, Thomas F; Sigurdsson, Gunnar
2012-05-01
In a cross-sectional study we investigated the relationship between muscle and bone parameters in the mid-thigh in older people using data from a single axial computed tomographic section through the mid-thigh. Additionally, we studied the association of these variables with incident low-trauma lower limb fractures. A total of 3,762 older individuals (1,838 men and 1,924 women), aged 66-96 years, participants in the AGES-Reykjavik study, were studied. The total cross-sectional muscular area and knee extensor strength declined with age similarly in both sexes. Muscle parameters correlated most strongly with cortical area and total shaft area (adjusted for age, height, and weight) but explained <10 % of variability in those bone parameters. The increment in medullary area (MA) and buckling ratio (BR) with age was almost fourfold greater in women than men. The association between MA and muscle parameters was nonsignificant. During a median follow-up of 5.3 years, 113 women and 66 men sustained incident lower limb fractures. Small muscular area, low knee extensor strength, large MA, low cortical thickness, and high BR were significantly associated with fractures in both sexes. Our results show that bone and muscle loss proceed at different rates and with different gender patterns.
Graphite-reinforced bone cement
NASA Technical Reports Server (NTRS)
Knoell, A. C.
1976-01-01
Chopped graphite fibers added to surgical bone cement form bonding agent with mechanical properties closely matched to those of bone. Curing reaction produces less heat, resulting in reduced traumatization of body tissues. Stiffness is increased without affecting flexural strength.
Wang, Qi; Zi, Cheng-Ting; Wang, Jing; Wang, Yu-Na; Huang, Ye-Wei; Fu, Xue-Qi; Wang, Xuan-Jun; Sheng, Jun
2018-01-01
Background: Dendrobium officinale, a traditional Chinese medical herb with high value that is widely used in Asia, possesses many positive effects on human health, including anti-chronic inflammation, anti-obesity, and immune modulation properties; however, whether D. officinale has inhibitory effects on postmenopausal osteoporosis remains unknown. Objective: We investigated the effects of D. officinale extract (DOE) on ovariectomy-induced bone loss in vivo and on osteoclastogenesis in vitro. Methods: In vivo, female rats were divided into a sham-operated (sham) group and five ovariectomized (OVX) subgroups: OVX with vehicle (OVX), OVX with Xian-Ling-Gu-Bao capsule (240 mg/kg body weight/day), and OVX with low-, medium-, and high-dose DOE (150, 300, and 600 mg/kg body weight/day, respectively). Animals in each group were administered their corresponding treatments for 13 weeks. Body weight, serum biochemical parameters, uterine and femoral physical parameters, bone mineral density (BMD), bone biomechanical properties, and bone microarchitecture were obtained. In vitro, the effects of DOE on osteoclastogenesis were examined using RAW264.7 cells. The effects of DOE on osteoclastogenesis and the expression of osteoclast-specific marker genes and proteins were determined. Results: DOE effectively ameliorated serum biochemical parameters, especially alleviated estradiol (E2) deficiency and maintained calcium and phosphorus homeostasis. DOE improved uterine and femoral physical parameters. In addition, DOE improved femoral BMD and biomechanical properties. DOE significantly ameliorated bone microarchitecture. Moreover, DOE inhibited osteoclastogenesis independent of its cytoxicity and suppressed the expression of osteoclast-specific marker genes and proteins. Conclusion: DOE can effectively prevent ovariectomy-induced bone loss in vivo and inhibit osteoclastogenesis in vitro. PMID:29379436
Ashouri, Elham; Meimandi, Elham Mahmoodi; Saki, Forough; Dabbaghmanesh, Mohammad Hossein; Omrani, Gholamhossein Ranjbar; Bakhshayeshkaram, Marzieh
2015-11-01
Failure to achieve optimal bone mass in childhood is the primary cause of decreased adult bone mineral density (BMD) and increased bone fragility in later life. Activating and inactivating LRP5 gene mutations has been associated with extreme bone-related phenotypes. Our aim was to investigate the role of LRP5 polymorphism on BMD, mineral biochemical parameters, and body composition in Iranian children. This cross-sectional study was performed on 9-18 years old children (125 boys, 137 girls). The serum level of calcium, phosphorous, alkaline phosphatase, and vitamin D parameters were checked. The body composition and BMD variables were measured by the Hologic system DXA. The rs566442 (V1119V) coding polymorphism in exon 15 of LRP5 was performed using PCR-RFLP method. Linear regression analysis, with adjustment for age, gender, body size parameters, and pubertal status was used to determine the association between LRP5 polymorphism (rs556442) and bone and body composition parameters. The allele frequency of the rs566442 gene was 35.5 % A and 63.9 % G. Our study revealed that LRP5 (rs556442) has not any significant influence on serum calcium, phosphorus, 25OHvitD, and serum alkaline phosphatase (P > 0.05). Total lean mass was greater in GG genotype (P = 0.028). Total body less head area (P = 0.044), spine BMD (P = 0.04), and total femoral BMC (P = 0.049) were lower in AG heterozygote genotype. This study show LRP5 polymorphism may associate with body composition and BMD in Iranian children. However, further investigations should be done to evaluate the role of other polymorphism.
Wang, Qi; Zi, Cheng-Ting; Wang, Jing; Wang, Yu-Na; Huang, Ye-Wei; Fu, Xue-Qi; Wang, Xuan-Jun; Sheng, Jun
2017-01-01
Background: Dendrobium officinale , a traditional Chinese medical herb with high value that is widely used in Asia, possesses many positive effects on human health, including anti-chronic inflammation, anti-obesity, and immune modulation properties; however, whether D. officinale has inhibitory effects on postmenopausal osteoporosis remains unknown. Objective: We investigated the effects of D. officinale extract (DOE) on ovariectomy-induced bone loss in vivo and on osteoclastogenesis in vitro . Methods: In vivo , female rats were divided into a sham-operated (sham) group and five ovariectomized (OVX) subgroups: OVX with vehicle (OVX), OVX with Xian-Ling-Gu-Bao capsule (240 mg/kg body weight/day), and OVX with low-, medium-, and high-dose DOE (150, 300, and 600 mg/kg body weight/day, respectively). Animals in each group were administered their corresponding treatments for 13 weeks. Body weight, serum biochemical parameters, uterine and femoral physical parameters, bone mineral density (BMD), bone biomechanical properties, and bone microarchitecture were obtained. In vitro , the effects of DOE on osteoclastogenesis were examined using RAW264.7 cells. The effects of DOE on osteoclastogenesis and the expression of osteoclast-specific marker genes and proteins were determined. Results: DOE effectively ameliorated serum biochemical parameters, especially alleviated estradiol (E2) deficiency and maintained calcium and phosphorus homeostasis. DOE improved uterine and femoral physical parameters. In addition, DOE improved femoral BMD and biomechanical properties. DOE significantly ameliorated bone microarchitecture. Moreover, DOE inhibited osteoclastogenesis independent of its cytoxicity and suppressed the expression of osteoclast-specific marker genes and proteins. Conclusion: DOE can effectively prevent ovariectomy-induced bone loss in vivo and inhibit osteoclastogenesis in vitro .
Hsu, Pei-Yu; Tsai, Ming-Tzu; Wang, Shun-Ping; Chen, Ying-Ju; Wu, Jay; Hsu, Jui-Ting
2016-01-01
Objective This study used microcomputed tomography (micro-CT) to evaluate the effects of ovariectomy on the trabecular bone microarchitecture and cortical bone morphology in the femoral neck and mandible of female rats. Materials and Methods Twelve female Wister rats were divided into two groups: the control and ovariectomized groups. The rats in the ovariectomized group received ovariectomy at 8 weeks of age; all the rats were sacrificed at 20 weeks of age, and their mandibles and femurs were removed and scanned using micro-CT. Four microstructural trabecular bone parameters were measured for the region below the first mandibular molar and the femoral neck region: bone volume fraction (BV/TV), trabecular thickness (TbTh), trabecular separation (TbSp), and trabecular number (TbN). In addition, four cortical bone parameters were measured for the femoral neck region: total cross-sectional area (TtAr), cortical area (CtAr), cortical bone area fraction (CtAr/TtAr), and cortical thickness (CtTh). The CtTh at the masseteric ridge was used to assess the cortical bone morphology in the mandible. The trabecular bone microarchitecture and cortical bone morphology in the femoral necks and mandibles of the control group were compared with those of the ovariectomized group. Furthermore, Spearman’s correlation (rs) was conducted to analyze the correlation between the osteoporosis conditions of the mandible and femoral neck. Results Regarding the trabecular bone microarchitectural parameters, the BV/TV of the trabecular bone microarchitecture in the femoral necks of the control group (61.199±11.288%, median ± interquartile range) was significantly greater than that of the ovariectomized group (40.329±5.153%). Similarly, the BV/TV of the trabecular bone microarchitecture in the mandibles of the control group (51.704±6.253%) was significantly greater than that of the ovariectomized group (38.486±9.111%). Furthermore, the TbSp of the femoral necks in the ovariectomized group (0.185±0.066 mm) was significantly greater than that in the control group (0.130±0.026mm). Similarly, the TbSp of the mandibles in the ovariectomized group (0.322±0.047mm) was significantly greater than that in the control group (0.285±0.041mm). However, the TbTh and TbN trends for the mandibles and femoral necks were inconsistent between the control and ovariectomized groups. Regarding the cortical bone morphology parameters, the TtAr of the femoral necks in the ovariectomized group was significantly smaller than that in the control group. There was no significant difference in the TtAr, CtAr, or CtTh of the femoral necks between the control and ovariectomized groups, and no significant difference in the CtTh of the mandibles between the control and ovariectomized groups. Moreover, the BV/TV and TbSp of the mandibles were highly correlated with those of the femurs (rs = 0.874 and rs = 0.755 for BV/TV and TbSp, respectively). Nevertheless, the TbTh, TbN, and CtTh of the mandibles were not correlated with those of the femoral necks. Conclusion After the rats were ovariectomized, osteoporosis of the trabecular bone microarchitecture occurred in their femurs and mandibles; however, ovariectomy did not influence the cortical bone morphology. In addition, the parametric values of the trabecular bone microarchitecture in the femoral necks were highly correlated with those of the trabecular bone microarchitecture in the mandibles. PMID:27127909
Virtual plate pre-bending for the long bone fracture based on axis pre-alignment.
Liu, Bin; Luo, Xinjian; Huang, Rui; Wan, Chao; Zhang, Bingbing; Hu, Weihua; Yue, Zongge
2014-06-01
In this paper, a modeling and visualizing system for assisting surgeons in correctly registering for the closed fracture reduction surgery is presented. By using this system, the geometric parameters of the target fixation plate before the long bone fracture operation can be obtained. The main processing scheme consists of following steps: firstly (image data process), utilize the Curvelet transform to denoise the CT images of fracture part and then reconstruct the 3D models of the broken bones. Secondly (pre-alignment), extract the axial lines of the broken bones and spatially align them. Then drive the broken bone models to be pre-aligned. Thirdly (mesh segmentation), a method based on vertex normal feature is utilized to obtain the broken bone cross-sections mesh models. Fourthly (fine registration), the ICP (Iterative Closest Point) algorithm is used to register the cross-sections and the broken bone models are driven to achieve the fine registration posture. Lastly (plate fitting), an accurate NURBS surface fitting method is used to construct the virtual plate. The experiment proved that the obtained models of the pre-bended plates were closely bonded to the surface of the registered long bone models. Finally, the lengths, angles and other interested geometric parameters can be measured on the plate models. Copyright © 2014 Elsevier Ltd. All rights reserved.
Random field assessment of nanoscopic inhomogeneity of bone
Dong, X. Neil; Luo, Qing; Sparkman, Daniel M.; Millwater, Harry R.; Wang, Xiaodu
2010-01-01
Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to present the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. PMID:20817128
Grebe dysplasia - prenatal diagnosis based on rendered 3-D ultrasound images of fetal limbs.
Goncalves, Luis F; Berger, Julie A; Macknis, Jacqueline K; Bauer, Samuel T; Bloom, David A
2017-01-01
Grebe dysplasia is a rare skeletal dysplasia characterized by severe acromesomelic shortening of the long bones in a proximal to distal gradient of severity, with bones of the hands and feet more severely affected than those of the forearms and legs, which in turn are more severely affected than the humeri and femora. In addition, the bones of the lower extremities tend to be more severely affected than the bones of the upper extremities. Despite the severe skeletal deformities, the condition is not lethal and surviving individuals can have normal intelligence. Herein we report a case of Grebe dysplasia diagnosed at 20 weeks of gestation. Rendered 3-D ultrasound images of the fetal limbs, particularly of the characteristic tiny and globular-looking fingers and toes, were instrumental in accurately characterizing the phenotype prenatally.
Polak-Jonkisz, Dorota; Zwolińska, Danuta; Nahaczewska, Wiesława
2010-01-01
Chronic kidney disease (CKD) leads to bone and mineral complications, which are manifested, among others, by hyperparathyroidism, calcium-phosphate and vitamin D balance disturbances. The results of investigation assessing the usefulness of CAP/CIP ratio, (cyclase activating PTH/cyclase inactive PTH) as a marker of bone turnover and bone disturbances in this group of patients are contradictory. was to estimate the concentration of CAP and CIP of parathormone, connection with selected calcium-phosphate balance parameters and usefulness of CAP/CIP ratio to differentiate bone mineral density in patients with CKD treated with repeated haemodialysis. The study included 31 children aged 5 to 18 years. Group I - 15 haemodialysed children. Group II - 16 healthy children. The patients underwent the following serum measurements: calcium concentration (Ca), inorganic phosphate (P), 1.25-dihydroxyvitamin D, parathormone (intact PTH), and CAP, CIP were evaluated with Scantibodies Laboratory Inc test. In group I the densitometric examination was done using the Lunar DPX-L system, performing the overall bone measurement. In children from group I the average values of iPTH concentration and both CIP and CAP components were significantly elevated (p<0.05) as compared to group II. CAP/CIP ratio in group I was <1; in healthy children >1. Average concentrations of Ca and 1.25(OH)2D in serum of group I were lowered, although without statistical significance in comparison with group II. CAP/CIP ratio does not differentiate the children with bone disturbances. Densitometric examination revealed osteopenic changes in 3 children and osteoporosis in 2 children. There were no statistically significant correlations between the examined parameters. 1. The CIP/CAP ratio does not differentiate the bone mineral density status and it is not associated with biochemical parameters of calcium-phosphate metabolism. 2. This indicates its poor diagnostic utility with reference to mineralization disturbances in children with chronic kidney disease.
Reina, Nicolas; Cavaignac, Etienne; Trousdale, William H; Laffosse, Jean-Michel; Braga, José
2017-06-01
It is widely hypothesized that mechanical loading, specifically repetitive low-intensity tasks, influences the inner structure of cancellous bone. As such, there is likely a relationship between handedness and bone morphology. The aim of this study is to determine patterns in trabecular bone between dominant and non-dominant hands in modern humans. Seventeen healthy patients between 22 and 32 years old were included in the study. Radial carpal bones (lunate, capitate, scaphoid, trapezium, trapezoid, 1st, 2nd and 3rd metacarpals) were analyzed with high-resolution micro-computed tomography. Additionally, crush and pinch grip were recorded. Factorial analysis indicated that bone volume ratio, trabeculae number (Tb.N), bone surface to volume ratio (BS.BV), body weight, stature and crush grip were all positively correlated with principal components 1 and 2 explaining 78.7% of the variance. Volumetric and trabecular endostructural parameters (BV/TV, BS/BV or Tb.Th, Tb.N) explain the observed inter-individual variability better than anthropometric or clinical parameters. Factors analysis regressions showed correlations between these parameters and the dominant side for crush strength for the lunate (r 2 = 0.640, P < 0.0001), trapezium (r 2 = 0.836, P < 0.0001) and third metacarpal (r 2 = 0.763). However, despite a significant lateralization in grip strength for all patients, the endostructural variability between dominant and non-dominant sides was limited in perspective to inter-individual differences. In conclusion, handedness is unlikely to generate trabecular patterns of asymmetry. It appears, however, that crush strength can be considered for endostructural analysis in the modern human wrist. © 2017 Anatomical Society.
Degeneration of the osteocyte network in the C57BL/6 mouse model of aging.
Tiede-Lewis, LeAnn M; Xie, Yixia; Hulbert, Molly A; Campos, Richard; Dallas, Mark R; Dusevich, Vladimir; Bonewald, Lynda F; Dallas, Sarah L
2017-10-26
Age-related bone loss and associated fracture risk are major problems in musculoskeletal health. Osteocytes have emerged as key regulators of bone mass and as a therapeutic target for preventing bone loss. As aging is associated with changes in the osteocyte lacunocanalicular system, we focused on the responsible cellular mechanisms in osteocytes. Bone phenotypic analysis was performed in young-(5mo) and aged-(22mo) C57BL/6 mice and changes in bone structure/geometry correlated with alterations in osteocyte parameters determined using novel multiplexed-3D-confocal imaging techniques. Age-related bone changes analogous to those in humans were observed, including increased cortical diameter, decreased cortical thickness, reduced trabecular BV/TV and cortical porosities. This was associated with a dramatic reduction in osteocyte dendrite number and cell density, particularly in females, where osteocyte dendricity decreased linearly from 5, 12, 18 to 22mo and correlated significantly with cortical bone parameters. Reduced dendricity preceded decreased osteocyte number, suggesting dendrite loss may trigger loss of viability. Age-related degeneration of osteocyte networks may impair bone anabolic responses to loading and gender differences in osteocyte cell body and lacunar fluid volumes we observed in aged mice may lead to gender-related differences in mechanosensitivity. Therapies to preserve osteocyte dendricity and viability may be beneficial for bone health in aging.
Krahenbuhl, Tathyane; Gonçalves, Ezequiel M; Guimarães, Roseane Fatima; Guerra-Junior, Gil; Barros-Filho, Antonio
2016-08-01
To examine the influence of participation in competitive sports on bone parameters, as assessed by quantitative ultrasound (QUS) of the phalanges in female adolescents. Female adolescents (n = 329, 13.0-16.7 years old) were classified into handball (n = 55), swimming (n = 49) and control (n = 225) groups. QUS was used to evaluate the amplitude-dependent speed of sound (AD-SoS) and bone transmission time (BTT), and their z-scores (zAD-SoS and zBTT) were calculated. Anthropometric measurements and Tanner's stages were also obtained. Swimmers had higher AD-SoS (2089 ± 43.8 m/s) and zAD-SoS (0.47 ± 0.8) than controls (2060 ± 54.0 m/s; 0.09 ± 1.0; both p ≤ .05) and both groups of athletes had higher BTT (handball: 1.44 ± 0.2 μs; swimming: 1.45 ± 0.2) and zBTT (handball: 0.71 ± 0.8; swimming: 0.72 ± 1.1) than the control group (1.37 ± 0.2 μs; 0.32 ± 0.9; all p ≤ .05). Swimmers had a higher total training time (TTT: 52.5 ± 27.6 months) and frequency of training per week (FT: 5.38 ± 0.1) compared with the handball group (35.9 ± 18.1; 3.32 ± 0.8; p ≤ .05). zAD-SoS, BTT and zBTT were positively correlated with FT, while BTT and zBTT showed a positive correlation with TTT. Sports practice influences bone parameters and higher bone parameter values are related to the amount of time and frequency of weekly training. The differences in phalangeal QUS parameters are independent of the impact of weight-bearing exercise.
2013-01-01
Background Measurements of the morphology of the ankle joint, performed mostly for surgical planning of total ankle arthroplasty and for collecting data for total ankle prosthesis design, are often made on planar radiographs, and therefore can be very sensitive to the positioning of the joint during imaging. The current study aimed to compare ankle morphological measurements using CT-generated 2D images with gold standard values obtained from 3D CT data; to determine the sensitivity of the 2D measurements to mal-positioning of the ankle during imaging; and to quantify the repeatability of the 2D measurements under simulated positioning conditions involving random errors. Method Fifty-eight cadaveric ankles fixed in the neutral joint position (standard pose) were CT scanned, and the data were used to simulate lateral and frontal radiographs under various positioning conditions using digitally reconstructed radiographs (DRR). Results and discussion In the standard pose for imaging, most ankle morphometric parameters measured using 2D images were highly correlated (R > 0.8) to the gold standard values defined by the 3D CT data. For measurements made on the lateral views, the only parameters sensitive to rotational pose errors were longitudinal distances between the most anterior and the most posterior points of the tibial mortise and the tibial profile, which have important implications for determining the optimal cutting level of the bone during arthroplasty. Measurements of the trochlea tali width on the frontal views underestimated the standard values by up to 31.2%, with only a moderate reliability, suggesting that pre-surgical evaluations based on the trochlea tali width should be made with caution in order to avoid inappropriate selection of prosthesis sizes. Conclusions While highly correlated with 3D morphological measurements, some 2D measurements were affected by the bone poses in space during imaging, which may affect surgical decision-making in total ankle arthroplasty, including the amount of bone resection and the selection of the implant sizes. The linear regression equations for the relationship between 2D and 3D measurements will be helpful for correcting the errors in 2D morphometric measurements for clinical applications. PMID:24359413
Gritsch, Kerstin; Laroche, Norbert; Bonnet, Jeanne-Marie; Exbrayat, Patrick; Morgon, Laurent; Rabilloud, Muriel; Grosgogeat, Brigitte
2013-01-01
The present work intends to evaluate the use of immediate loaded orthodontic screws in a growing model, and to study the specific bone response. Thirty-two screws (half of stainless steel and half of titanium) were inserted in the alveolar bone of 8 growing pigs. The devices were immediately loaded with a 100 g orthodontic force. Two loading periods were assessed: 4 and 12 weeks. Both systems of screws were clinically assessed. Histological observations and histomorphometric analysis evaluated the percent of “bone-to-implant contact” and static and dynamic bone parameters in the vicinity of the devices (test zone) and in a bone area located 1.5 cm posterior to the devices (control zone). Both systems exhibit similar responses for the survival rate; 87.5% and 81.3% for stainless steel and titanium respectively (p = 0.64; 4-week period), and 62.5% and 50.0% for stainless steel and titanium respectively (p = 0.09; 12-week period). No significant differences between the devices were found regarding the percent of “bone-to-implant contact” (p = 0.1) or the static and dynamic bone parameters. However, the 5% threshold of “bone-to-implant contact” was obtained after 4 weeks with the stainless steel devices, leading to increased survival rate values. Bone in the vicinity of the miniscrew implants showed evidence of a significant increase in bone trabecular thickness when compared to bone in the control zone (p = 0.05). In our study, it is likely that increased trabecular thickness is a way for low density bone to respond to the stress induced by loading. PMID:24124540
Material model of pelvic bone based on modal analysis: a study on the composite bone.
Henyš, Petr; Čapek, Lukáš
2017-02-01
Digital models based on finite element (FE) analysis are widely used in orthopaedics to predict the stress or strain in the bone due to bone-implant interaction. The usability of the model depends strongly on the bone material description. The material model that is most commonly used is based on a constant Young's modulus or on the apparent density of bone obtained from computer tomography (CT) data. The Young's modulus of bone is described in many experimental works with large variations in the results. The concept of measuring and validating the material model of the pelvic bone based on modal analysis is introduced in this pilot study. The modal frequencies, damping, and shapes of the composite bone were measured precisely by an impact hammer at 239 points. An FE model was built using the data pertaining to the geometry and apparent density obtained from the CT of the composite bone. The isotropic homogeneous Young's modulus and Poisson's ratio of the cortical and trabecular bone were estimated from the optimisation procedure including Gaussian statistical properties. The performance of the updated model was investigated through the sensitivity analysis of the natural frequencies with respect to the material parameters. The maximal error between the numerical and experimental natural frequencies of the bone reached 1.74 % in the first modal shape. Finally, the optimised parameters were matched with the data sheets of the composite bone. The maximal difference between the calibrated material properties and that obtained from the data sheet was 34 %. The optimisation scheme of the FE model based on the modal analysis data provides extremely useful calibration of the FE models with the uncertainty bounds and without the influence of the boundary conditions.
Changes in PGE2 signaling after submandibulectomy alter post-tooth extraction socket healing.
Mohn, Claudia Ester; Troncoso, Gastón Rodolfo; Bozzini, Clarisa; Conti, María Inés; Fernandez Solari, Javier; Elverdin, Juan Carlos
2018-03-10
Saliva is very important to oral health, and a salivary deficit has been shown to bring serious problems to oral health. There is scant information about the mechanisms through which salivary glands participate in post-tooth extraction socket healing. Therefore, the aim of the present study was to investigate the effect of submandibulectomy (SMx), consisting of the ablation of submandibular and sublingual glands (SMG and SLG, respectively), on PGE 2 signaling and other bone regulatory molecules, such as OPG and RANKL, involved in tooth extraction socket healing. Male Wistar rats, 70 g body weight, were assigned to an experimental (subjected to SMx) or a control group (sham operated). One week later, the animals in both groups underwent bilateral extraction of the first mandibular molars. The effect of SMx on different stages of socket healing after tooth extraction (7, 14, and 30 days) was studied by evaluating some parameters of inflammation, including PGE 2 and its receptors, and of bone metabolism, as well as by performing bone biomechanical studies. SMx increased TNFα and PGE 2 content as well as cyclooxygenase-II (COX-II) expression in tooth socket tissue at almost all the studied time points. SMx also had an effect on mRNA expression of PGE 2 receptors at the different time points, but did not significantly alter osteoprotegerin (OPG) and RANKL mRNA expression at any of the studied time points. In addition, an increase in bone mass density was observed in SMx rats compared with matched controls, and the structural and mechanical bone properties of the mandibular socket bone were also affected by SMx. Our results suggest that the SMG/SLG complex regulates cellular activation and differentiation by modulating the production of molecules intervening in tooth extraction socket repair, including the PGE 2 signaling system, which would therefore account for the higher density and resistance of the newly formed bone in SMx rat. © 2018 by the Wound Healing Society.
D'Erasmo, E; Pisani, D; Ragno, A; Raejntroph, N; Letizia, C; Acca, M
1999-06-01
Some discrepancies exist about the relationship between serum albumin level and the pathogenesis of osteoporosis; moreover, most of the studies available have especially concerned patients with osteoporosis, often associated with fractures. Our study, therefore, aims to investigate the presence of a relationship between serum albumin level and bone mineral density in a group of healthy women (n=650; mean age 59.0 +/- 7.4 years) who voluntarily underwent screening for osteoporosis only because they were menopausal (11.2 +/- 7.4 years since menopause) and, for comparison, in a group of outpatients (n = 44; mean age 57.6 +/- 7.0 years; 9.1 +/- 6.7 years since menopause) with hypoalbuminemia associated with diseases. The results show a lack of any relationship in healthy women between serum albumin value and bone mineral density; the lack of correlation was also shown when the postmenopausal women were down into normal, osteopenic and osteoporotic (WHO criteria) or in hypo, normal and hyperalbuminemic. The only significant parameters associated with lower bone mineral density, in fact, were age and years since menopause (p<0.0001 and p<0.0001 respectively at lumbar spine and p<0.02 and p<0.001 at femoral neck level). In the group of patients with hypoalbuminemia associated with diseases, on the other hand, a relationship between reduced bone mineral density and hypoalbuminemia was found (p<0.01 and p<0.05 respectively at lumbar spine and femoral neck). In conclusion, in healthy postmenopausal women the serum albumin level does not play a significant role in the pathogenesis of bone density reduction, which is mainly due to the number of years since menopause and advancing age. The hypoalbuminemia may be related to the reduction of bone mass only in the subjects affected by diseases associated with a significant albumin reduction.
Guenoun, Daphne; Fouré, Alexandre; Pithioux, Martine; Guis, Sandrine; Le Corroller, Thomas; Mattei, Jean-Pierre; Pauly, Vanessa; Guye, Maxime; Bernard, Monique; Chabrand, Patrick; Champsaur, Pierre; Bendahan, David
2017-10-15
High-resolution imaging and biomechanical investigation of ex-vivo vertebrae. The aim of this study was to assess bone microarchitecture of cadaveric vertebrae using ultra-high field (UHF) 7 Tesla magnetic resonance imaging (MRI) and to determine whether the corresponding microarchitecture parameters were related to bone mineral density (BMD) and bone strength assessed by dual-energy x-ray absorptiometry (DXA) and mechanical compression tests. Limitations of DXA for the assessment of bone fragility and osteoporosis have been recognized and criteria of microarchitecture alteration have been included in the definition of osteoporosis. Although vertebral fracture is the most common osteoporotic fracture, no study has assessed directly vertebral trabecular bone microarchitecture. BMD of 24 vertebrae (L2, L3, L4) from eight cadavers was investigated using DXA. The bone volume fraction (BVF), trabecular thickness (Tb.Th), and trabecular spacing (Tb.Sp) of each vertebra were quantified using UHF MRI. Measurements were performed by two operators to characterize the inter-rater reliability. The whole set of specimens underwent mechanical compression tests to failure and the corresponding failure stress was calculated. The inter-rater reliability for bone microarchitecture parameters was good with intraclass correlation coefficients ranging from 0.82 to 0.94. Failure load and stress were significantly correlated with BVF, Tb.Sp, and BMD (P < 0.05). Tb.Th was only correlated with the failure stress (P < 0.05). Multiple regression analysis demonstrated that the combination of BVF and BMD improved the prediction of the failure stress from an adjusted R = 0.384 for BMD alone to an adjusted R = 0.414. We demonstrated for the first time that the vertebral bone microarchitecture assessed with UHF MRI was significantly correlated with biomechanical parameters. Our data suggest that the multimodal assessment of BMD and trabecular bone microarchitecture with UHF MRI provides additional information on the risk of vertebral bone fracture and might be of interest for the future investigation of selected osteoporotic patients. N /A.
Wang, Xiao-Yan; Zuo, Yi; Huang, Di; Hou, Xian-Deng; Li, Yu-Bao
2010-12-01
To comparatively investigate the inorganic composition and crystallographic properties of cortical and cancellous bone via thermal treatment under 700 °C. Thermogravimetric measurement, infrared spectrometer, X-ray diffraction, chemical analysis and X-ray photo-electron spectrometer were used to test the physical and chemical properties of cortical and cancellous bone at room temperature 250 °C, 450 °C, and 650 °C, respectively. The process of heat treatment induced an extension in the a-lattice parameter and changes of the c-lattice parameter, and an increase in the crystallinity reflecting lattice rearrangement after release of lattice carbonate and possible lattice water. The mineral content in cortical and cancellous bone was 73.2wt% and 71.5wt%, respectively. For cortical bone, the weight loss was 6.7% at the temperature from 60 °C to 250 °C, 17.4% from 250 °C to 450 °C, and 2.7% from 450 °C to 700 °C. While the weight loss for the cancellous bone was 5.8%, 19.9%, and 2.8 % at each temperature range, the Ca/P ratio of cortical bone was 1.69 which is higher than the 1.67 of stoichiometric HA due to the B-type CO₃²⁻ substitution in apatite lattice. The Ca/P ratio of cancellous bone was lower than 1.67, suggesting the presence of more calcium deficient apatite. The collagen fibers of cortical bone were arrayed more orderly than those of cancellous bone, while their mineralized fibers ollkded similar. The minerals in both cortical and cancellous bone are composed of poorly crystallized nano-size apatite crystals with lattice carbonate and possible lattice water. The process of heat treatment induces a change of the lattice parameter, resulting in lattice rearrangement after the release of lattice carbonate and lattice water and causing an increase in crystal size and crystallinity. This finding is helpful for future biomaterial design, preparation and application. Copyright © 2010 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.
Effect of risedronate on bone in renal transplant recipients.
Coco, Maria; Pullman, James; Cohen, Hillel W; Lee, Sally; Shapiro, Craig; Solorzano, Clemencia; Greenstein, Stuart; Glicklich, Daniel
2012-08-01
Bisphosphonates may prevent or treat the bone loss promoted by the immunosuppressive regimens used in renal transplantation. Risedronate is a commonly used third-generation amino-bisphosphonate, but little is known about its effects on the bone health of renal transplant recipients. We randomly assigned 42 new living-donor kidney recipients to either 35 mg of risedronate weekly or placebo for 12 months. We obtained bone biopsies at the time of renal transplant and after 12 months of protocol treatment. Treatment with risedronate did not affect bone mineral density (BMD) in the overall cohort. In subgroup analyses, it tended to preserve BMD in female participants but did not significantly affect the BMD of male participants. Risedronate did associate with increased osteoid volume and trabecular thickness in male participants, however. There was no evidence for the development of adynamic bone disease. In summary, further study is needed before the use of prophylactic bisphosphonates to attenuate bone loss can be recommended in renal transplant recipients.
Influence on bone metabolism of dietary trace elements, protein, fat, carbohydrates, and vitamins.
Sarazin, M; Alexandre, C; Thomas, T
2000-01-01
Osteoporosis is a multifactorial disease driven primarily by the genetic factors that control bone metabolism. Among environmental factors, diet may play a key role, affording a target for low-cost intervention. Calcium and vitamin D are well known to affect bone metabolism. Other nutrients may influence bone mass changes; for instance, a number of trace elements and vitamins other than vitamin D are essential to many of the steps of bone metabolism. A wide variety of foods provide these nutrients, and in industrialized countries deficiencies are more often due to idiosyncratic eating habits than to cultural influences. Both culture and vogue influence the amount of carbohydrate, fat, and protein in the typical diet. In children, the current trend is to reduce protein and to increase carbohydrate and fat. Data from epidemiological and animal studies suggest that this may adversely affect bone mass and the fracture risk.
Clinical and radiographic study of bone and joint lesions in 26 dogs with leishmaniasis.
Agut, A; Corzo, N; Murciano, J; Laredo, F G; Soler, M
2003-11-22
Twenty-six dogs with parasitologically confirmed leishmaniasis and abnormalities of gait were studied to determine the most common radiological patterns of bone and joint lesions. The clinical findings included either lameness, joint pain and crepitation, soft tissue swelling and/or muscle atrophy. Bone lesions were observed radiographically in 12 of the 26 dogs; the radius and ulna were affected in seven, the tibia in six and the femur in six. Joint lesions were observed radiographically in 15 of the 26 dogs; the carpus and stifle were affected in all 15, and the tarsus in nine. There was a tendency for the bones and joints to be affected bilaterally. The radiographic patterns observed were different in the long bones and the joints. In the long bones, the most common pattern was periosteal and intramedullary proliferation, involving the diaphyses and related to the nutrient foramen; in the joints, two patterns, either non-erosive or erosive polyarthritis with soft-tissue swelling, were observed. The changes observed in the synovial fluid were associated in most cases with osteolytic lesions. However, Leishmania organisms were identified in the synovial fluid from joints without bony radiographic changes.
Validation of cortical bone mineral density distribution using micro-computed tomography.
Mashiatulla, Maleeha; Ross, Ryan D; Sumner, D Rick
2017-06-01
Changes in the bone mineral density distribution (BMDD), due to disease or drugs, can alter whole bone mechanical properties such as strength, stiffness and toughness. The methods currently available for assessing BMDD are destructive and two-dimensional. Micro-computed tomography (μCT) has been used extensively to quantify the three-dimensional geometry of bone and to measure the mean degree of mineralization, commonly called the tissue mineral density (TMD). The TMD measurement has been validated to ash density; however parameters describing the frequency distribution of TMD have not yet been validated. In the current study we tested the ability of μCT to estimate six BMDD parameters: mean, heterogeneity (assessed by the full-width-at-half-maximum (FWHM) and the coefficient of variation (CoV)), the upper and lower 5% cutoffs of the frequency distribution, and peak mineralization) in rat sized femoral cortical bone samples. We used backscatter scanning electron microscopy (bSEM) as the standard. Aluminum and hydroxyapatite phantoms were used to identify optimal scanner settings (70kVp, and 57μA, with a 1500ms integration time). When using hydroxyapatite samples that spanned a broad range of mineralization levels, high correlations were found between μCT and bSEM for all BMDD parameters (R 2 ≥0.92, p<0.010). When using cortical bone samples from rats and various species machined to mimic rat cortical bone geometry, significant correlations between μCT and bSEM were found for mean mineralization (R 2 =0.65, p<0.001), peak mineralization (R 2 =0.61, p<0.001) the lower 5% cutoff (R 2 =0.62, p<0.001) and the upper 5% cutoff (R 2 =0.33, p=0.021), but not for heterogeneity, measured by FWHM (R 2 =0.05, p=0.412) and CoV (R 2 =0.04, p=0.469). Thus, while mean mineralization and most parameters used to characterize the BMDD can be assessed with μCT in rat sized cortical bone samples, caution should be used when reporting the heterogeneity. Copyright © 2017 Elsevier Inc. All rights reserved.
High-fat/high-sucrose diet results in higher bone mass in aged rats.
Minematsu, Akira; Nishii, Yasue; Sakata, Susumu
2018-06-01
Intake of high-fat/high-sucrose (HFS) diet or high fat diet influences bone metabolism in young rodents, but its effects on bone properties of aged rodents still remain unclear. This study aimed to examine the effects of HFS diet intake on trabecular bone architecture (TBA) and cortical bone geometry (CBG) in aged rats. Fifteen male Wistar rats over 1 year were randomly divided into two groups. One group was fed a standard laboratory diet (SLD) and the other group was fed a HFS diet for six months. The femur/tibia, obtained from both groups at the end of experimental period, were scanned by micro-computed tomography for TBA/CBG analyses. Serum biochemical analyses were also conducted. Body weight was significantly higher in the HFS group than in the SLD group. In both femur and tibia, the HFS group showed higher trabecular/cortical bone mass in reference to bone mineral content, volume bone mineral density and TBA/CBG parameters compared with the SLD group. In addition, serum calcium, inorganic phosphorus, total protein, triacylglycerol, HDL and TRACP-5b levels were significantly higher in the HFS group than in the SLD group. There were good correlations between body weight and bone parameters in the femur and tibia. These results suggest that HFS diet intake results in higher bone mass in aged rats. Such effects of HFS diet intake might have been induced by increased body weight.
Change in Mouse Bone Turnover in Response to Microgravity on RR-1
NASA Technical Reports Server (NTRS)
Cheng-Campbell, Margareth A.; Blaber, Elizabeth A.; Almeida, Eduardo A. C.
2016-01-01
Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1ap21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23 decrease in bone fraction (p0.005) and 11.91 decrease in bone thickness (p0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n10) and vivarium controls (n10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37-days of spaceflight. To do this, we will analyze differences in bone morphometric parameters using MicroCT. The pelvis, femur, and tibia are key in supporting and distributing weight under normal conditions. Therefore, we expect to see altered remodeling in flight animals in response to microgravity with respect to ground controls. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.
Changes in Mouse Bone Turnover in Response to Microgravity
NASA Technical Reports Server (NTRS)
Cheng-Campbell, M.; Blaber, E.; Almeida, E.
2016-01-01
Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1a/p21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23% decrease in bone fraction (p=0.005) and 11.91% decrease in bone thickness (p=0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl/6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n=10) and vivarium controls (n=10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37-days of spaceflight. To do this, we will analyze differences in bone morphometric parameters using MicroCT. The pelvis, femur, and tibia are key in supporting and distributing weight under normal conditions. Therefore, we expect to see altered remodeling in flight animals in response to microgravity with respect to ground controls. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.
Effects of Exercise on Bone Mineral Content in Postmenopausal Women.
ERIC Educational Resources Information Center
Rikli, Roberta E.; McManis, Beth G.
1990-01-01
Study tested the effect of exercise programs on bone mineral content (BMC) and BMC/bone width in 31 postmenopausal women. Subjects were placed in groups with aerobic exercise, aerobics plus upper-body weight training, or no exercise. Results indicate that regular exercise programs positively affect bone mineral maintenance in postmenopausal women.…
NASA Astrophysics Data System (ADS)
Liu, Xin; Lu, Hongbing; Chen, Hanyong; Zhao, Li; Shi, Zhengxing; Liang, Zhengrong
2009-02-01
Developmental dysplasia of the hip is a congenital hip joint malformation affecting the proximal femurs and acetabulum that are subluxatable, dislocatable, and dislocated. Conventionally, physicians made diagnoses and treatments only based on findings from two-dimensional (2D) images by manually calculating clinic parameters. However, anatomical complexity of the disease and the limitation of current standard procedures make accurate diagnosis quite difficultly. In this study, we developed a system that provides quantitative measurement of 3D clinical indexes based on computed tomography (CT) images. To extract bone structure from surrounding tissues more accurately, the system firstly segments the bone using a knowledge-based fuzzy clustering method, which is formulated by modifying the objective function of the standard fuzzy c-means algorithm with additive adaptation penalty. The second part of the system calculates automatically the clinical indexes, which are extended from 2D to 3D for accurate description of spatial relationship between femurs and acetabulum. To evaluate the system performance, experimental study based on 22 patients with unilateral or bilateral affected hip was performed. The results of 3D acetabulum index (AI) automatically provided by the system were validated by comparison with 2D results measured by surgeons manually. The correlation between the two results was found to be 0.622 (p<0.01).
Effects of titanium surface anodization with CaP incorporation on human osteoblastic response
OLIVEIRA, Natássia Cristina Martins; MOURA, Camilla Christian Gomes; ZANETTA-BARBOSA, Darceny; MENDONÇA, Daniela Baccelli Silveira; MENDONÇA, Gustavo; DECHICHI, Paula
2015-01-01
In this study we investigated whether anodization with calcium phosphate (CaP) incorporation (Vulcano®) enhances growth factors secretion, osteoblast-specific gene expression, and cell viability, when compared to acid etched surfaces (Porous®) and machined surfaces (Screw®) after 3 and 7 days. Results showed significant cell viability for Porous and Vulcano at day 7, when compared with Screw (p=0.005). At the same time point, significant differences regarding runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and bone sialoprotein (BSP) expression were found for all surfaces (p<0.05), but with greater fold induction for Porous and Vulcano. The secretion of transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) was not significantly affected by surface treatment in any experimental time (p>0.05). Although no significant correlation was found for growth factors secretion and Runx2 expression, a significant positive correlation between this gene and ALP/BSP expression showed that their strong association is independent on the type of surface. The incorporation of CaP affected the biological parameters evaluated similar to surfaces just acid etched. The results presented here support the observations that roughness also may play an important role in determining cell response. PMID:23498218
Detection and diagnosis of periodontal conditions amenable to prevention
2015-01-01
Gingivitis and chronic periodontitis are highly prevalent chronic inflammatory diseases. Gingivitis affects the majority of people, and advanced periodontitis is estimated to affect 5-15% of adults. The detection and diagnosis of these common diseases is a fundamentally important component of oral health care. All patients should undergo periodontal assessment as part of routine oral examination. Periodontal screening using methods such as the Basic Periodontal Examination/Community Periodontal Index or Periodontal Screening Record should be performed for all new patients, and also on a regular basis as part of ongoing oral health care. If periodontitis is identified, full periodontal assessment is required, involving recording of full mouth probing and bleeding data, together with assessment of other relevant parameters such as plaque levels, furcation involvement, recession and tooth mobility. Radiographic assessment of alveolar bone levels is driven by the clinical situation, and is required to assess bone destruction in patients with periodontitis. Risk assessment (such as assessing diabetes status and smoking) and risk management (such as promoting smoking cessation) should form a central component of periodontal therapy. This article provides guidance to the oral health care team regarding methods and frequencies of appropriate clinical and radiographic examinations to assess periodontal status, to enable appropriate detection and diagnosis of periodontal conditions. PMID:26390822
NASA Astrophysics Data System (ADS)
Kaygili, Omer; Ates, Tankut; Keser, Serhat; Al-Ghamdi, Ahmed A.; Yakuphanoglu, Fahrettin
2014-08-01
The hydroxyapatite (HAp) samples in the presence of various amounts of ethylenediamine tetraacetic acid (EDTA) were prepared by sol-gel method. The effects of EDTA on the crystallinity, phase structure, chemical, micro-structural and dielectric properties of HAp samples were investigated. With the addition of EDTA, the average crystallite size of the HAp samples is gradually decreased from 30 to 22 nm and the crystallinity is in the range of 65-71%. The values of the lattice parameters (a and c) and volume of the unit cell are decreased by stages with the addition of EDTA. The dielectric parameters such as relative permittivity, dielectric loss and relaxation time are affected by the adding of EDTA. The alternating current conductivity of the as-synthesized hydroxyapatites increases with the increasing frequency and obeys the universal power law behavior. The HAp samples exhibit a non-Debye relaxation mechanism. The obtained results that the dielectrical parameters of the HAp sample can be controlled by EDTA.
Florczyk, Stephen J; Kim, Dae-Joon; Wood, David L; Zhang, Miqin
2011-09-15
Fabrication of porous polymeric scaffolds with controlled structure can be challenging. In this study, we investigated the influence of key experimental parameters on the structures and mechanical properties of resultant porous chitosan-alginate (CA) polyelectrolyte complex (PEC) scaffolds, and on proliferation of MG-63 osteoblast-like cells, targeted at bone tissue engineering. We demonstrated that the porous structure is largely affected by the solution viscosity, which can be regulated by the acetic acid and alginate concentrations. We found that the CA PEC solutions with viscosity below 300 Pa.s yielded scaffolds of uniform pore structure and that more neutral pH promoted more complete complexation of chitosan and alginate, yielding stiffer scaffolds. CA PEC scaffolds produced from solutions with viscosities below 300 Pa.s also showed enhanced cell proliferation compared with other samples. By controlling the key experimental parameters identified in this study, CA PEC scaffolds of different structures can be made to suit various tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.
Fracture Gap Reduction With Variable-Pitch Headless Screws.
Roebke, Austin J; Roebke, Logan J; Goyal, Kanu S
2018-04-01
Fully threaded, variable-pitch, headless screws are used in many settings in surgery and have been extensively studied in this context, especially in regard to scaphoid fractures. However, it is not well understood how screw parameters such as diameter, length, and pitch variation, as well as technique parameters such as depth of drilling, affect gap closure. Acutrak 2 fully threaded variable-pitch headless screws of various diameters (Standard, Mini, and Micro) and lengths (16-28 mm) were inserted into polyurethane blocks of "normal" and "osteoporotic" bone model densities using a custom jig. Three drilling techniques (drill only through first block, 4 mm into second block, or completely through both blocks) were used. During screw insertion, fluoroscopic images were taken and later analyzed to measure gap reduction. The effect of backing the screw out after compression was evaluated. Drilling at least 4 mm past the fracture site reduces distal fragment push-off compared with drilling only through the proximal fragment. There were no significant differences in gap closure in the normal versus the osteoporotic model. The Micro screw had a smaller gap closure than both the Standard and the Mini screws. After block contact and compression with 2 subsequent full forward turns, backing the screw out by only 1 full turn resulted in gapping between the blocks. Intuitively, fully threaded headless variable-pitch screws can obtain compression between bone fragments only if the initial gap is less than the gap closed. Gap closure may be affected by drilling technique, screw size, and screw length. Fragment compression may be immediately lost if the screw is reversed. We describe characteristics of variable-pitch headless screws that may assist the surgeon in screw choice and method of use. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Popescu, L M; Piticescu, R M; Antonelli, A; Rusti, C F; Carboni, E; Sfara, C; Magnani, M; Badilita, V; Vasile, E; Trusca, R; Buruiana, T
2013-11-01
The development of engineered biomaterials that mimic bone tissues is a promising research area that benefits from a growing interest. Polymers and polymer-ceramic composites are the principle materials investigated for the development of synthetic bone scaffolds thanks to their proven biocompatibility and biostability. Several polymers have been combined with calcium phosphates (mainly hydroxyapatite) to prepare nanocomposites with improved biocompatible and mechanical properties. Here, we report the hydrothermal synthesis in high pressure conditions of nanostructured composites based on hydroxyapatite and polyurethane functionalized with carboxyl and thiol groups. Cell-material interactions were investigated for potential applications of these new types of composites as coating for orthopedic implants. Physical-chemical and morphological characteristics of hydroxyapatite/polyurethane composites were evaluated for different compositions, showing their dependence on synthesis parameters (pressure, temperature). In vitro experiments, performed to verify if these composites are biocompatible cell culture substrates, showed that they are not toxic and do not affect cell viability.
Cappella, Annalisa; Amadasi, Alberto; Castoldi, Elisa; Mazzarelli, Debora; Gaudio, Daniel; Cattaneo, Cristina
2014-11-01
The distinction between perimortem and postmortem fractures is an important challenge for forensic anthropology. Such a crucial task is presently based on macro-morphological criteria widely accepted in the scientific community. However, several limits affect these parameters which have not yet been investigated thoroughly. This study aims at highlighting the pitfalls and errors in evaluating perimortem or postmortem fractures. Two trained forensic anthropologists were asked to classify 210 fractures of known origin in four skeletons (three victims of blunt force trauma and one natural death) as perimortem, postmortem, or dubious, twice in 6 months in order to assess intraobserver error also. Results show large errors, ranging from 14.8 to 37% for perimortem fractures and from 5.5 to 14.8% for postmortem ones; more than 80% of errors concerned trabecular bone. This supports the need for more objective and reliable criteria for a correct assessment of peri- and postmortem bone fractures. © 2014 American Academy of Forensic Sciences.
Clinical characteristics of patients with bone sarcoidosis.
Zhou, Ying; Lower, Elyse E; Li, Huiping; Farhey, Yolanda; Baughman, Robert P
2017-08-01
To assess the clinical features, diagnosis, and treatment of bone sarcoidosis in the United States. Patients with bone sarcoidosis were identified and matched to sarcoidosis patients based on race, gender, and age. Detailed characteristics were obtained by medical record review. A total of 64 patients with bone sarcoidosis were enrolled in this study. The female:male ratio was 1.46:1 and the white:black ratio was 3:1. Thirty-eight (59.4%) of 64 patients had bone symptoms. Compared to matched cases, bone sarcoidosis patients have more multi-organ involvement and higher incidence with liver, spleen, and extrathoracic lymph node involvement than controls (P < 0.05). Spine was the most commonly affected bone in 44 (68.8%) of patients, followed by pelvis (35.9%), and hands (15.6%). MRI and PET/CT scan was the common imaging technology, which performed in 36 patients and 32 patients, respectively, and with 97.2% and 93.8% positive bone uptake. Laboratory test indicated anemia was more common in bone sarcoidosis group than controls (P = 0.044). Infliximab was more commonly used in bone sarcoidosis patients than controls (P = 0.009). Bone sarcoidosis was associated with multi-organs affection, and high frequency of liver, spleen, or extrathoracic lymph node involvement. Infliximab should be considered in those patients with aggressive and refractory bone sarcoidosis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Folwarczna, Joanna; Janas, Aleksandra; Pytlik, Maria; Cegieła, Urszula; Śliwiński, Leszek; Krivošíková, Zora; Štefíková, Kornélia; Gajdoš, Martin
2016-03-02
Diabetes increases bone fracture risk. Trigonelline, an alkaloid with potential antidiabetic activity, is present in considerable amounts in coffee. The aim of the study was to investigate the effects of trigonelline on experimental diabetes-induced disorders in the rat skeletal system. Effects of trigonelline (50 mg/kg p.o. daily for four weeks) were investigated in three-month-old female Wistar rats, which, two weeks before the start of trigonelline administration, received streptozotocin (60 mg/kg i.p.) or streptozotocin after nicotinamide (230 mg/kg i.p.). Serum bone turnover markers, bone mineralization, and mechanical properties were studied. Streptozotocin induced diabetes, with significant worsening of bone mineralization and bone mechanical properties. Streptozotocin after nicotinamide induced slight glycemia increases in first days of experiment only, however worsening of cancellous bone mechanical properties and decreased vertebral bone mineral density (BMD) were demonstrated. Trigonelline decreased bone mineralization and tended to worsen bone mechanical properties in streptozotocin-induced diabetic rats. In nicotinamide/streptozotocin-treated rats, trigonelline significantly increased BMD and tended to improve cancellous bone strength. Trigonelline differentially affected the skeletal system of rats with streptozotocin-induced metabolic disorders, intensifying the osteoporotic changes in streptozotocin-treated rats and favorably affecting bones in the non-hyperglycemic (nicotinamide/streptozotocin-treated) rats. The results indicate that, in certain conditions, trigonelline may damage bone.
Vasilić, Branimir; Rajapakse, Chamith S; Wehrli, Felix W
2009-07-01
Trabecular bone microarchitecture is a significant determinant of the bone's mechanical properties and is thus of major clinical relevance in predicting fracture risk. The three-dimensional nature of trabecular bone is characterized by parameters describing scale, topology, and orientation of structural elements. However, none of the current methods calculates all three types of parameters simultaneously and in three dimensions. Here the authors present a method that produces a continuous classification of voxels as belonging to platelike or rodlike structures that determines their orientation and estimates their thickness. The method, dubbed local inertial anisotropy (LIA), treats the image as a distribution of mass density and the orientation of trabeculae is determined from a locally calculated tensor of inertia at each voxel. The orientation entropies of rods and plates are introduced, which can provide new information about microarchitecture not captured by existing parameters. The robustness of the method to noise corruption, resolution reduction, and image rotation is demonstrated. Further, the method is compared with established three-dimensional parameters including the structure-model index and topological surface-to-curve ratio. Finally, the method is applied to data acquired in a previous translational pilot study showing that the trabecular bone of untreated hypogonadal men is less platelike than that of their eugonadal peers.
Weight loss and bone mineral density.
Hunter, Gary R; Plaisance, Eric P; Fisher, Gordon
2014-10-01
Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low bone mineral density (BMD), fearing BMD will be decreased. Confusion exists concerning the effects that weight loss has on bone health. Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid or large weight loss is often associated with loss of bone density, slower or smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. Although dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss.
Cola beverage consumption delays alveolar bone healing: a histometric study in rats.
Teófilo, Juliana Mazzonetto; Leonel, Daniel Vilela; Lamano, Teresa
2010-01-01
Epidemiological studies have suggested that cola beverage consumption may affect bone metabolism and increase bone fracture risk. Experimental evidence linking cola beverage consumption to deleterious effects on bone is lacking. Herein, we investigated whether cola beverage consumption from weaning to early puberty delays the rate of reparative bone formation inside the socket of an extracted tooth in rats. Twenty male Wistar rats received cola beverage (cola group) or tap water (control group) ad libitum from the age of 23 days until tooth extraction at 42 days and euthanasia 2 and 3 weeks later. The neoformed bone volume inside the alveolar socket was estimated in semi-serial longitudinal sections using a quantitative differential point-counting method. Histological examination suggested a decrease in the osteogenic process within the tooth sockets of rats from both cola groups, which had thinner and sparser new bone trabeculae. Histometric data confirmed that alveolar bone healing was significantly delayed in cola-fed rats at three weeks after tooth extraction (ANOVA, p = 0.0006, followed by Tukey's test, p < 0.01). Although the results of studies in rats cannot be extrapolated directly to human clinical dentistry, the present study provides evidence that cola beverage consumption negatively affect maxillary bone formation.
Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic.
Giesen, E B; Ding, M; Dalstra, M; van Eijden, T M
2001-06-01
The objective of the present study was (1) to test the hypothesis that the elastic and failure properties of the cancellous bone of the mandibular condyle depend on the loading direction, and (2) to relate these properties to bone density parameters. Uniaxial compression tests were performed on cylindrical specimens (n=47) obtained from the condyles of 24 embalmed cadavers. Two loading directions were examined, i.e., a direction coinciding with the predominant orientation of the plate-like trabeculae (axial loading) and a direction perpendicular to the plate-like trabeculae (transverse loading). Archimedes' principle was applied to determine bone density parameters. The cancellous bone was in axial loading 3.4 times stiffer and 2.8 times stronger upon failure than in transverse loading. High coefficients of correlation were found among the various mechanical properties and between them and the apparent density and volume fraction. The anisotropic mechanical properties can possibly be considered as a mechanical adaptation to the loading of the condyle in vivo.
Association between physical activity and bone in children with Prader-Willi syndrome.
Duran, Andrea T; Wilson, Kathleen S; Castner, Diobel M; Tucker, Jared M; Rubin, Daniela A
2016-07-01
The aim of the study was to determine if physical activity (PA) is associated with bone health in children with Prader-Willi syndrome (PWS). Participants included 23 children with PWS (age: 11.0±2.0 years). PA, measured by accelerometry, was categorized into light, moderate, vigorous and moderate plus vigorous intensities. Hip, total body minus the head (body), bone mineral content (BMC), bone mineral density (BMD) and BMD z-score (BMDz) were measured by dual X-ray absorptiometry. Separate hierarchical regression models were completed for all bone parameters, PA intensity and select covariates. Moderate PA and select covariates explained the most variance in hip BMC (84.0%), BMD (61.3%) and BMDz (34.9%; p<0.05 for all). Likewise, for each body parameter, moderate PA and select covariates explained the most variance in body BMC (75.8%), BMD (74.4%) and BMDz (31.8%; p<0.05 for all). PA of at least moderate intensity appears important for BMC and BMD in children with PWS.
Assessment of compressive failure process of cortical bone materials using damage-based model.
Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R
2017-02-01
The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Functional Adaptation of the Calcaneus in Historical Foot Binding.
Reznikov, Natalie; Phillips, Carina; Cooke, Martyn; Garbout, Amin; Ahmed, Farah; Stevens, Molly M
2017-09-01
The normal structure of human feet is optimized for shock dampening during walking and running. Foot binding was a historical practice in China aimed at restricting the growth of female feet for aesthetic reasons. In a bound foot the shock-dampening function normally facilitated by the foot arches is withdrawn, resulting in the foot functioning as a rigid extension of the lower leg. An interesting question inspiring this study regards the nature of adaptation of the heel bone to this nonphysiological function using the parameters of cancellous bone anisotropy and 3D fabric topology and a novel intertrabecular angle (ITA) analysis. We found that the trabecular microarchitecture of the normal heel bone, but not of the bound foot, adapts to function by increased anisotropy and preferred orientation of trabeculae. The anisotropic texture in the normal heel bone consistently follows the physiological stress trajectories. However, in the bound foot heel bone the characteristic anisotropy pattern fails to develop, reflecting the lack of a normal biomechanical input. Moreover, the basic topological blueprint of cancellous bone investigated by the ITA method is nearly invariant in both normal and bound foot. These findings suggest that the anisotropic cancellous bone texture is an acquired characteristic that reflects recurrent loading conditions; conversely, an inadequate biomechanical input precludes the formation of anisotropic texture. This opens a long-sought-after possibility to reconstruct bone function from its form. The conserved topological parameters characterize the generic 3D fabric of cancellous bone, which is to a large extent independent of its adaptation to recurrent loading and perhaps determines the mechanical competence of trabecular bone regardless of its functional adaptation. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Cortical bone is more sensitive to alcohol dose effects than trabecular bone in the rat.
Maurel, Delphine B; Boisseau, Nathalie; Benhamou, Claude-Laurent; Jaffré, Christelle
2012-10-01
While chronic alcohol consumption is known to decrease bone mineral content (BMC), bone mineral density (BMD), and negatively modify trabecular bone microarchitecture, the impact of alcohol on cortical microarchitecture is still unclear. The aim of this study was to investigate the effects of various doses of alcohol on bone density, trabecular and cortical parameters and bone strength in rats. Forty-eight male Wistar rats were divided into four groups: control (C), alcohol 25% v/v (A25), alcohol 30% v/v (A30) and alcohol 35% v/v (A35). Rats in the alcohol groups were fed a solution composed of ethanol and water for 17 weeks while the control group drank only water. Bone quality and quantity were evaluated through the analysis of density, trabecular and cortical bone microarchitectural parameters, osteocalcin and N-Telopeptide concentrations and a 3-point bending test. Bone density along with trabecular and cortical thickness were lower in alcohol groups compared to C. BMD was lower in A35 vs. A30 and cortical thickness was lower in A35 vs. A25 and A30. Pore number was increased by alcohol and the porosity was greater in A35 compared to C. N-Telopeptide concentration was decreased in alcohol groups compared to control whereas no differences were observed in osteocalcin concentrations. Maximal energy to failure was lower in A25 and A35 compared to C. Chronic ethanol consumption increases cortical bone damage in rats and may have detrimental effects on bone strength. These effects were dose-dependent, with greater negative effects proportionate to greater alcohol doses. Copyright © 2011 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
Gravity, calcium, and bone - Update, 1989
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Morey-Holton, Emily
1990-01-01
Recent results obtained on skeletal adaptation, calcium metabolism, and bone browth during short-term flights and ground simulated-microgravity experiments are presented. Results demonstrate that two principal components of calcium metabolism respond within days to changes in body position and to weightlessness: the calcium endocrine system and bone characteristics. Furthermore, results of recent studies imply that bone biomechanics are more severely affected by spaceflight exposures than is the bone mass.
A New Insight to Bone Turnover: Role of ω-3 Polyunsaturated Fatty Acids
López-Frías, Magdalena; López-Aliaga, Inmaculada; Ochoa, Julio J.
2013-01-01
Background. Evidence has shown that long-chain polyunsaturated fatty acids (LCPUFA), especially the ω-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are beneficial for bone health and turnover. Objectives. This review summarizes findings from both in vivo and in vitro studies and the effects of LC PUFA on bone metabolism, as well as the relationship with the oxidative stress, the inflammatory process, and obesity. Results. Some studies in humans indicate that LCPUFA can increase bone formation, affect peak bone mass in adolescents, and reduce bone loss. However, the cellular mechanisms of action of the LCPUFA are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signaling pathways, cytokines, and growth factors, although in certain aspects there is still some controversy. LCPUFA affect receptor activator of nuclear factor κ β (RANK), a receptor found on the osteoclast, causing bone resorption, which controls osteoclast formation. Conclusions. Since fatty acids are an endogenous source of reactive oxygen species, free radicals alter the process of bone turnover; however, although there are clinical evidences linking bone metabolism and dietary lipids, more clinical trials are necessary to prove whether ω-3 PUFA supplementation plays a major role in bone health. PMID:24302863
Moderate chronic kidney disease impairs bone quality in C57Bl/6J mice.
Heveran, Chelsea M; Ortega, Alicia M; Cureton, Andrew; Clark, Ryan; Livingston, Eric W; Bateman, Ted A; Levi, Moshe; King, Karen B; Ferguson, Virginia L
2016-05-01
Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week-old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham surgeries. Mice were fed a normal chow diet and euthanized 11weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60μm of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction was also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD. Copyright © 2016 Elsevier Inc. All rights reserved.
Moderate Chronic Kidney Disease Impairs Bone Quality in C57Bl/6J Mice
Heveran, Chelsea M.; Ortega, Alicia M.; Cureton, Andrew; Clark, Ryan; Livingston, Eric; Bateman, Ted; Levi, Moshe; King, Karen B.; Ferguson, Virginia L.
2016-01-01
Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham procedures. Mice were fed a normal chow diet and euthanized 11 weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture (μCT) and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60 micrometers of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction were also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD. PMID:26860048
Pereira, M; Jeyabalan, J; Jørgensen, C S; Hopkinson, M; Al-Jazzar, A; Roux, J P; Chavassieux, P; Orriss, I R; Cleasby, M E; Chenu, C
2015-12-01
Some anti-diabetic therapies can have adverse effects on bone health and increase fracture risk. In this study, we tested the skeletal effects of chronic administration of two Glucagon-like peptide-1 receptor agonists (GLP-1RA), increasingly used for type 2 diabetes treatment, in a model of osteoporosis associated bone loss and examined the expression and activation of GLP-1R in bone cells. Mice were ovariectomised (OVX) to induce bone loss and four weeks later they were treated with Liraglutide (LIR) 0.3mg/kg/day, Exenatide (Ex-4) 10 μg/kg/day or saline for four weeks. Mice were injected with calcein and alizarin red prior to euthanasia, to label bone-mineralising surfaces. Tibial micro-architecture was determined by micro-CT and bone formation and resorption parameters measured by histomorphometric analysis. Serum was collected to measure calcitonin and sclerostin levels, inhibitors of bone resorption and formation, respectively. GLP-1R mRNA and protein expression were evaluated in the bone, bone marrow and bone cells using RT-PCR and immunohistochemistry. Primary osteoclasts and osteoblasts were cultured to evaluate the effect of GLP-1RA on bone resorption and formation in vitro. GLP-1RA significantly increased trabecular bone mass, connectivity and structure parameters but had no effect on cortical bone. There was no effect of GLP-1RA on bone formation in vivo but an increase in osteoclast number and osteoclast surfaces was observed with Ex-4. GLP-1R was expressed in bone marrow cells, primary osteoclasts and osteoblasts and in late osteocytic cell line. Both Ex-4 and LIR stimulated osteoclastic differentiation in vitro but slightly reduced the area resorbed per osteoclast. They had no effect on bone nodule formation in vitro. Serum calcitonin levels were increased and sclerostin levels decreased by Ex-4 but not by LIR. Thus, GLP-1RA can have beneficial effects on bone and the expression of GLP-1R in bone cells may imply that these effects are exerted directly on the tissue. Copyright © 2015 Elsevier Inc. All rights reserved.
Prostaglandin E2 Prevents Ovariectomy-Induced Cancellous Bone Loss in Rats
NASA Technical Reports Server (NTRS)
Ke, Hua Zhu; Li, Mei; Jee, Webster S. S.
1992-01-01
The object of this study was to determine whether prostaglandin E2, (PGE2) can prevent ovariectomy induced cancellous bone loss. Thirty-five 3-month-old female Sprague-Dawley rats were divided into two groups. The rats in the first group were ovariectomized (OVX) while the others received sham operation (sham-OVX). The OVX group was further divided into three treatment groups. The daily doses for the three groups were 0,1 and 6 mg PGE2/kg for 90 days. Bone histomorphometric analyses were performed on double-fluorescent-labeled undecalcified proximal tibial metaphysis (PTM). We confirmed that OVX induces massive cancellous bone loss (-80%) and a higher bone turnover (+143%). The new findings from the present study demonstrate that bone loss due to ovarian hormone deficiency can be prevented by a low-dose (1 mg) daily administration of PGE2. Furthermore, a higher-dose (6 mg) daily administration of PGE2 not only prevents bone loss but also adds extra bone to the proximal tibial metaphyses. PGE, at the 1-mg dose level significantly increased trabecular bone area, trabecular width, trabecular node density, density of node to node, ratio of node to free end, and thus significantly decreased trabecular separation from OVX controls. At this dose level, these same parameters did not differ significantly from sham-OVX controls. However, at the 6-mg dose level PGE2, there were significant increases in trabecular bone area, trabecular width, trabecular node density, density of node to node, and ratio of node to free end, while there was significant decrease in trabecular separation from both OVX and sham-operated controls. The changes in indices of trabecular bone microanatomical structure indicated that PGE2 prevented bone loss as well as the disconnection of existing trabeculae. In summary, PGE2, administration to OVX rats decreased bone turnover and increased bone formation parameters resulting in a positive bone balance that prevented bone loss (in both lower and higher doses) and added extra bone to metaphyses of OVX rats (in higher dose). These findings support the strategy of the use of bone stimulation agents in the prevention of estrogen depletion bone loss (postmenopausal osteoporosis).
França, Renata de Almeida; Esteves, André de Barros Albuquerque; Borges, Cynthia de Moura; Quadros, Kélcia Rosana da Silva; Falcão, Luiz Carlos Nogueira; Caramori, Jacqueline Costa Teixeira; Oliveira, Rodrigo Bueno de
2017-01-01
Chronic kidney disease (CKD) is associated with high morbidity and mortality rates, main causes related with cardiovascular disease (CVD) and bone mineral disorder (CKD-BMD). Uremic toxins, as advanced glycation end products (AGEs), are non-traditional cardiovascular risk factor and play a role on development of CKD-BMD in CKD. The measurement of skin autofluorescence (sAF) is a noninvasive method to assess the level of AGEs in tissue, validated in CKD patients. The aim of this study is analyze AGEs measured by sAF levels (AGEs-sAF) and its relations with CVD and BMD parameters in HD patients. Twenty prevalent HD patients (HD group) and healthy subjects (Control group, n = 24), performed biochemical tests and measurements of anthropometric parameters and AGEs-sAF. In addition, HD group performed measurement of intact parathormone (iPTH), transthoracic echocardiogram and radiographies of pelvis and hands for vascular calcification score. AGEs-sAF levels are elevated both in HD and control subjects ranged according to the age, although higher at HD than control group. Single high-flux HD session does not affect AGEs-sAF levels. AGEs-sAF levels were not related to ventricular mass, interventricular septum or vascular calcification in HD group. AGEs-sAF levels were negatively associated with serum iPTH levels. Our study detected a negative correlation of AGEs-sAF with serum iPTH, suggesting a role of AGEs on the pathophysiology of bone disease in HD prevalent patients. The nature of this relation and the clinical application of this non-invasive methodology for evaluation AGEs deposition must be confirmed and clarified in future studies.
Analysis of video-recorded images to determine linear and angular dimensions in the growing horse.
Hunt, W F; Thomas, V G; Stiefel, W
1999-09-01
Studies of growth and conformation require statistical methods that are not applicable to subjective conformation standards used by breeders and trainers. A new system was developed to provide an objective approach for both science and industry, based on analysis of video images to measure aspects of conformation that were represented by angles or lengths. A studio crush was developed in which video images of horses of different sizes were taken after bone protuberances, located by palpation, were marked with white paper stickers. Screen pixel coordinates of calibration marks, bone markers and points on horse outlines were digitised from captured images and corrected for aspect ratio and 'fish-eye' lens effects. Calculations from the corrected coordinates produced linear dimensions and angular dimensions useful for comparison of horses for conformation and experimental purposes. The precision achieved by the method in determining linear and angular dimensions was examined through systematically determining variance for isolated steps of the procedure. Angles of the front limbs viewed from in front were determined with a standard deviation of 2-5 degrees and effects of viewing angle were detectable statistically. The height of the rump and wither were determined with precision closely related to the limitations encountered in locating a point on a screen, which was greater for markers applied to the skin than for points at the edge of the image. Parameters determined from markers applied to the skin were, however, more variable (because their relation to bone position was affected by movement), but still provided a means by which a number of aspects of size and conformation can be determined objectively for many horses during growth. Sufficient precision was achieved to detect statistically relatively small effects on calculated parameters of camera height position.
Wade-Gueye, Ndéye Marième; Boudiffa, Maya; Laroche, Norbert; Vanden-Bossche, Arnaud; Fournier, Carole; Aubin, Jane E; Vico, Laurence; Lafage-Proust, Marie-Hélène; Malaval, Luc
2010-11-01
Bone sialoprotein (BSP) belongs to the small integrin-binding ligand, N-linked glycoprotein (SIBLING) family, whose members play multiple and distinct roles in the development, turnover, and mineralization of bone and dentin. The functions of BSP in bone remodeling are not yet well established. We previously showed that BSP knockout (BSP(-/-)) mice exhibit a higher trabecular bone volume, concomitant with lower bone remodeling, than wild-type (BSP(+/+)) mice. To determine whether bone turnover can be stimulated in the absence of BSP, we subjected BSP(+/+) and BSP(-/-) mice to catabolic [ovariectomy (OVX)] or anabolic (intermittent PTH administration) hormonal challenges. BSP(-/-) mice progressively develop hypocalcemia and high serum PTH between 2 and 4 months of age. Fifteen and 30 d after OVX, microtomography analysis showed a significant decrease of trabecular bone volume in tibiae of both genotypes. Histomorphometric parameters of bone formation and resorption were significantly increased by OVX. PTH treatment resulted in an increase of trabecular thickness and both bone formation and resorption parameters at all skeletal sites in both genotypes and a decrease of trabecular bone volume in tibiae of BSP(+/+) but not BSP(-/-) mice. PTH increased cortical thickness and bone area in BSP(+/+) but not BSP(-/-) mice and stimulated the bone formation rate specifically in the endosteum of BSP(+/+) mice and the periosteum of BSP(-/-) mice. PTH enhanced the expression of RANKL, MEPE, and DMP1 in both genotypes but increased OPG and OPN expression only in BSP(-/-) mice. In conclusion, despite the low basal turnover, both catabolic and anabolic challenges increase bone formation and resorption in BSP(-/-) mice, suggesting that compensatory pathways are operative in the skeleton of BSP-deficient mice. Although up-regulation of one or several other SIBLINGs is a possible mechanism, further studies are needed to analyze the interplay and cross-regulation involved in compensating for the absence of BSP.
The Influence of Keel Bone Damage on Welfare of Laying Hens
Riber, Anja B.; Casey-Trott, Teresa M.; Herskin, Mette S.
2018-01-01
This article reviews current knowledge about welfare implications of keel bone damage in laying hens. As an initial part, we shortly describe the different conditions and present major risk factors as well as findings on the prevalence of the conditions. Keel bone damage is found in all types of commercial production, however with varying prevalence across systems, countries, and age of the hens. In general, the understanding of animal welfare is influenced by value-based ideas about what is important or desirable for animals to have a good life. This review covers different types of welfare indicators, including measures of affective states, basic health, and functioning as well as natural living of the birds, thereby including the typical public welfare concerns. Laying hens with keel bone fractures show marked behavioral differences in highly motivated behavior, such as perching, nest use, and locomotion, indicating reduced mobility and potentially negative affective states. It remains unclear whether keel bone fractures affect hen mortality, but there seem to be relations between the fractures and other clinical indicators of reduced welfare. Evidence of several types showing pain involvement in fractured keel bones has been published, strongly suggesting that fractures are a source of pain, at least for weeks after the occurrence. In addition, negative effects of fractures have been found in egg production. Irrespective of the underlying welfare concern, available scientific evidence showed that keel bone fractures reduce the welfare of layers in modern production systems. Due to the limited research into the welfare implications of keel bone deviation, evidence of the consequences of this condition is not as comprehensive and clear. However, indications have been found that keel bone deviations have a negative impact on the welfare of laying hens. In order to reduce the occurrence of the conditions as well as to examine how the affected birds should be treated, more research into the welfare implications of keel bone damage is needed. Research should focus on effects of genetic lines, genetic selection, housing, and nutrition for the development, prevalence, and severity of these conditions, preferably conducted as longitudinal and/or transnational studies. PMID:29541640
Osteomesopyknosis: report of a new case with bone histology.
Hardouin, P; Flautre, B; Sutter, B; Leclet, H; Grardel, B; Fauquert, P
1994-01-01
A new case of osteomesopyknosis, a rare autosomal dominant axial osteosclerosis is reported, with 4 affected members of the same family. Biochemical investigations, bone mineral content (BMC) measurement, 99mTc HMDP bone scan and microscopy of iliac crest bone and femoral head have been performed on 1 subject. A marked increase of BMC was found, without abnormality of biochemical data. Microscopy of bone showed an increase of trabecular thickness, and a low rate of bone turnover. No abnormality of mineralization was found on microradiographs.
Yang, Jing; He, Jin; Wang, Ji; Cao, Yabing; Ling, Jianhua; Qian, Jianfei; Lu, Yong; Li, Haiyan; Zheng, Yuhuan; Lan, Yongsheng; Hong, Sungyoul; Matthews, Jairo; Starbuck, Michael W; Navone, Nora M; Orlowski, Robert Z.; Lin, Pei; Kwak, Larry W.; Yi, Qing
2012-01-01
Bone destruction is a hallmark of multiple myeloma and affects more than 80% of patients. However, current therapy is unable to completely cure and/or prevent bone lesions. Although it is accepted that myeloma cells mediate bone destruction by inhibition of osteoblasts and activation of osteoclasts, the underlying mechanism is still poorly understood. This study demonstrates that constitutive activation of p38 mitogen-activated protein kinase in myeloma cells is responsible for myeloma-induced osteolysis. Our results show that p38 is constitutively activated in most myeloma cell lines and primary myeloma cells from patients. Myeloma cells with high/detectable p38 activity, but not those with low/undetectable p38 activity, injected into SCID or SCID-hu mice caused bone destruction. Inhibition or knockdown of p38 in human myeloma reduced or prevented myeloma-induced osteolytic bone lesions without affecting tumor growth, survival, or homing to bone. Mechanistic studies showed that myeloma cell p38 activity inhibited osteoblastogenesis and bone formation and activated osteoclastogenesis and bone resorption in myeloma-bearing SCID mice. This study elucidates a novel molecular mechanism—sactivation of p38 signaling in myeloma cells—by which myeloma cells induce osteolytic bone lesions and indicates that targeting myeloma cell p38 may be a viable approach to treating or preventing myeloma bone disease. PMID:22425892
Kim, Hye-Jung; Koo, Hyung Suk; Kim, Young-Sang; Kim, Moon Jong; Kim, Kwang-Min; Joo, Nam-Seok; Haam, Ji-Hee
2017-11-01
Testosterone and insulin-like growth factor-1 (IGF-1) are essential factors for the maintenance of bone health in men. However, the results for the association of testosterone and IGF-1 with bone parameters were not consistent in prior studies. We evaluated the relationship of testosterone, sex hormone-binding globulin (SHBG), and IGF-1 with bone mineral density (BMD) and bone turnover markers (BTMs) in Korean men. We enrolled 1227 men aged ≥50 years in this cross-sectional study. Serum levels of total testosterone (TT), SHBG, IGF-1, osteocalcin, and C-terminal cross-linking telopeptide of type I collagen (CTX) were measured. Free testosterone (FT) was calculated using Vermeulen's method. BMD was measured by dual-energy X-ray absorptiometry. TT level was not related to BMD or BTMs in the unadjusted model; however, after adjusting for SHBG and IGF-1, the association between TT and BTMs was significant (β = -0.139 for osteocalcin and β = -0.204 for CTX). SHBG levels were negatively associated with lumbar BMD, and positively associated with BTMs in all models. As SHBG level increased, the prevalence of osteopenia or osteoporosis defined by BMD significantly increased (OR of 1SD change, 1.24). IGF-1 levels were significantly related with BMD, but not with BTMs. Meanwhile, FT levels were positively associated with BMD and negatively associated with BTMs. In conclusion, SHBG levels were independently related with bone parameters and osteopenia in men aged ≥50 years. IGF-1 levels were positively associated with BMD, but not with BTMs. SHBG may play a role in regulating age-related bone loss in men after middle-age.
Virtual reconstruction of glenoid bone defects using a statistical shape model.
Plessers, Katrien; Vanden Berghe, Peter; Van Dijck, Christophe; Wirix-Speetjens, Roel; Debeer, Philippe; Jonkers, Ilse; Vander Sloten, Jos
2018-01-01
Description of the native shape of a glenoid helps surgeons to preoperatively plan the position of a shoulder implant. A statistical shape model (SSM) can be used to virtually reconstruct a glenoid bone defect and to predict the inclination, version, and center position of the native glenoid. An SSM-based reconstruction method has already been developed for acetabular bone reconstruction. The goal of this study was to evaluate the SSM-based method for the reconstruction of glenoid bone defects and the prediction of native anatomic parameters. First, an SSM was created on the basis of 66 healthy scapulae. Then, artificial bone defects were created in all scapulae and reconstructed using the SSM-based reconstruction method. For each bone defect, the reconstructed surface was compared with the original surface. Furthermore, the inclination, version, and glenoid center point of the reconstructed surface were compared with the original parameters of each scapula. For small glenoid bone defects, the healthy surface of the glenoid was reconstructed with a root mean square error of 1.2 ± 0.4 mm. Inclination, version, and glenoid center point were predicted with an accuracy of 2.4° ± 2.1°, 2.9° ± 2.2°, and 1.8 ± 0.8 mm, respectively. The SSM-based reconstruction method is able to accurately reconstruct the native glenoid surface and to predict the native anatomic parameters. Based on this outcome, statistical shape modeling can be considered a successful technique for use in the preoperative planning of shoulder arthroplasty. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Controlled longitudinal study of bone mass accrual in children and adolescents with cystic fibrosis
Buntain, H M; Schluter, P J; Bell, S C; Greer, R M; Wong, J C H; Batch, J; Lewindon, P; Wainwright, C E
2006-01-01
Background A study was undertaken to observe the gains in bone mass in children and adolescents with cystic fibrosis (CF) over 24 months and to examine the relationship between areal bone mineral density (aBMD) and associated clinical parameters including physical activity, nutrition, and 25‐hydroxyvitamin D (25OHD). Methods Areal BMD of the total body (TB), lumbar spine (LS), and total femoral neck (FNt) were repeatedly measured in 85 subjects aged 5–18 years with CF and 100 age and sex matched controls over 2 years. At each visit anthropometric variables, nutritional parameters, pubertal status, disease severity, physical activity, dietary calcium, caloric intake, and serum 25OHD were assessed and related to aBMD. Results After adjusting for age, sex, and height Z‐score, gains in LS aBMD in children (5–10 years) and TB and FNt aBMD in adolescents (11–18 years) with CF were significantly less than in controls. Lean tissue mass was significantly associated with TB and LS aBMD gains in children and adolescents and explained a significant proportion of the aBMD deficit observed. Lung function parameters were significantly associated with aBMD gains in adolescents with CF. Conclusions Inadequate bone mass accrual during childhood and adolescence contributes to the low bone mass observed in adults with CF. Accounting for the height discrepancy which is frequently observed in those with CF, in addition to age and sex, is important when assessing low bone mass in children and adolescents with CF. To optimise an individual's potential to acquire maximal bone mass, it is necessary to maximise nutritional status and limit the progression of chronic suppurative lung disease. PMID:16384878
Controlled longitudinal study of bone mass accrual in children and adolescents with cystic fibrosis.
Buntain, H M; Schluter, P J; Bell, S C; Greer, R M; Wong, J C H; Batch, J; Lewindon, P; Wainwright, C E
2006-02-01
A study was undertaken to observe the gains in bone mass in children and adolescents with cystic fibrosis (CF) over 24 months and to examine the relationship between areal bone mineral density (aBMD) and associated clinical parameters including physical activity, nutrition, and 25-hydroxyvitamin D (25OHD). Areal BMD of the total body (TB), lumbar spine (LS), and total femoral neck (FNt) were repeatedly measured in 85 subjects aged 5-18 years with CF and 100 age and sex matched controls over 2 years. At each visit anthropometric variables, nutritional parameters, pubertal status, disease severity, physical activity, dietary calcium, caloric intake, and serum 25OHD were assessed and related to aBMD. After adjusting for age, sex, and height Z-score, gains in LS aBMD in children (5-10 years) and TB and FNt aBMD in adolescents (11-18 years) with CF were significantly less than in controls. Lean tissue mass was significantly associated with TB and LS aBMD gains in children and adolescents and explained a significant proportion of the aBMD deficit observed. Lung function parameters were significantly associated with aBMD gains in adolescents with CF. Inadequate bone mass accrual during childhood and adolescence contributes to the low bone mass observed in adults with CF. Accounting for the height discrepancy which is frequently observed in those with CF, in addition to age and sex, is important when assessing low bone mass in children and adolescents with CF. To optimise an individual's potential to acquire maximal bone mass, it is necessary to maximise nutritional status and limit the progression of chronic suppurative lung disease.
Trisi, Paolo; Berardini, Marco; Falco, Antonello; Podaliri Vulpiani, Michele
2016-11-01
The osseointegration process replaces the surgically damaged bone with newly formed bone in contact to the implant surface. This involves some loss of primary stability, which will continue until new bone is formed providing a new stability, known as "secondary stability." A direct measurement of secondary implant stability appears fundamental to determine the period and modalities for implant loading. The aim of this study was to validate the measurement of the implant micromotion to test secondary implant stability. Twenty-four 3.8 × 11.5 mm implants (Dynamix, Cortex, Shlomi, Israel) were inserted in sheep iliac crests. The animals were sacrificed after 2 months, and the freshly retrieved bone blocks were immediately fixed on a customized device to calculate the value of actual micromotion (VAM) according to a previously described technique. Implant stability quotient (ISQ) values, reverse torque value (RTV), %bone-to-implant contact (%BIC), bone volume percentage (%BV) and crestal bone loss (CBL) were also calculated for each implant. Statistical correlations between VAM and the other parameters were calculated. Data correlation analysis between the examined parameters showed that VAM significantly correlates (P < 0.05) to RTV, %BIC, ISQ and CBL. As VAM showed to be statistical correlated to the other parameters of osseointegration, it may be used to clinically check the amount of implant osseointegration, secondary stability and CBL. Future studies are needed to confirm these results moreover. An instrument to measure VAM in the oral cavity still needs to be developed. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kandemir, Nurgun; Slattery, Meghan; Ackerman, Kathryn E; Tulsiani, Shreya; Bose, Amita; Singhal, Vibha; Baskaran, Charumathi; Ebrahimi, Seda; Goldstein, Mark; Eddy, Kamryn; Klibanski, Anne; Misra, Madhusmita
2018-04-05
We have reported low bone mineral density (BMD), impaired bone structure, and increased fracture risk in anorexia nervosa (AN) and normal-weight, oligo-amenorrheic athletes (OA). However, data directly comparing compartment-specific bone parameters in AN, OA and controls are lacking. 426 females 14-21.9 years old were included; 231 AN, 94 OA and 101 normal-weight eumenorrheic controls. Dual energy x-ray absorptiometry was used to assess areal BMD (aBMD) of the whole body less head (WBLH), spine, and hip. High resolution peripheral quantitative CT was used to assess volumetric BMD (vBMD), bone geometry and structure at the non-weight bearing distal radius and weight-bearing distal tibia. AN had lower WBLH and hip aBMD Z-scores than OA and controls (p<0.0001). AN and OA had lower spine aBMD Z-scores than controls (p<0.01). At the radius, total and cortical vBMD, percent cortical area and thickness were lower in AN and OA vs. controls (p≤0.04); trabecular vBMD was lower in AN than controls. At the tibia, AN had lower measures for most parameters vs. OA and controls (p<0.05); OA had lower cortical vBMD than controls (p=0.002). AN and OA had higher fracture rates vs. controls. Stress fracture prevalence was highest in OA (p<0.0001); non-stress fracture prevalence was highest in AN (p<0.05). AN is deleterious to bone at all sites and both bone compartments. A high stress fracture rate in OA, who have comparable WBLH and hip aBMD measures to controls, indicates that BMD in these women may need to be even higher to avoid fractures.
Barreto, Fellype C; de Oliveira, Rodrigo B; Benchitrit, Joyce; Louvet, Loïc; Rezg, Raja; Poirot, Sabrina; Jorgetti, Vanda; Drüeke, Tilman B; Riser, Bruce L; Massy, Ziad A
2014-11-01
Vascular calcification (VC) is a risk factor for cardiovascular mortality in the setting of chronic kidney disease (CKD). Pyrophosphate (PPi), an endogenous molecule that inhibits hydroxyapatite crystal formation, has been shown to prevent the development of VC in animal models of CKD. However, the possibility of harmful effects of exogenous administration of PPi on bone requires further investigation. To this end, we examined by histomorphometry the bone of CKD mice after intraperitoneal PPi administration. After CKD creation or sham surgery, 10-week-old female apolipoprotein-E knockout (apoE(-/-)) mice were randomized to one non-CKD group or 4 CKD groups (n = 10-35/group) treated with placebo or three distinct doses of PPi, and fed with standard diet. Eight weeks later, the animals were killed. Serum and femurs were sampled. Femurs were processed for bone histomorphometry. Placebo-treated CKD mice had significantly higher values of osteoid volume, osteoid surface and bone formation rate than sham-placebo mice with normal renal function. Slightly higher osteoid values were observed in CKD mice in response to very low PPi dose (OV/BV, O.Th and ObS/BS) and, for one parameter measured, to high PPi dose (O.Th), compared to placebo-treated CKD mice. Treatment with PPi did not modify any other structural parameters. Mineral apposition rates, and other parameters of bone formation and resorption were not significantly different among the treated animal groups or control CKD placebo group. In conclusion, PPi does not appear to be deleterious to bone tissue in apoE(-/-) mice with CKD, although a possible stimulatory PPi effect on osteoid formation may be worth further investigation.
Assessing bone volume for orthodontic miniplate fixation below the maxillary frontal process.
Präger, T M; Brochhagen, H G; Mischkowski, R; Jost-Brinkmann, P-G; Müller-Hartwich, R
2014-09-01
The maxillary bone below the frontal process is used for orthodontic anchorage; indications have included skeletally anchored protraction of the maxilla for treating Class III malocclusions or the intrusion of teeth in patients with a deep bite. This study was conducted to assess the condition of bone before cortically implanting miniplates in that area of the maxilla. A total of 51 thin-sliced computed tomography scans of 51 fully-dentate adult patients (mean age 24.0 ± 8.1 years; 27 men and 24 women) obtained prior to third-molar osteotomy were evaluated. Study parameters included total bone thickness, thickness of the facial cortical plate, and width of the nasal maxillary buttress. All these parameters were measured at different vertical levels. The bone volume adjacent to the piriform aperture was most pronounced at the basal level and decreased progressively toward more cranial levels. The basal bone structure had a mean total thickness of 7.8 mm, facial cortical plate thickness of 1.9 mm, and nasal maxillary buttress width of 9.2 mm. At 16 mm cranial to the aperture base, these values fell to 5.6 mm, 1.3 mm, and 5.8 mm, respectively. These bone measurements suggest that screws 7 mm in length can be inserted at the base level of the piriform aperture and screws 5 mm long at the cranial end of the bone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, N.J.
Data for the bone-by-bone redistribution of 90Sr in the beagle skeleton are reported for a period of 4000 d following a midgestation-to-540-d-exposure by ingestion. The partitioned clearance model (PCM) that was originally developed to describe bone-by-bone radionuclide redistribution of 226Ra after eight semimonthly injections at ages 435-535 d has been fitted to the 90Sr data. The parameter estimates for the PCM that describe the distribution and clearance of 226Ra after deposition on surfaces following injection and analogous parameter estimates for 90Sr after uniform deposition in the skeleton as a function of Ca mass are given. Fractional compact bone masses permore » bone group (mi,COM) are also predicted by the model and compared to measured values; a high degree of correlation (r = 0.84) is found. Bone groups for which the agreement between the model and experimental values of mi,COM was poor had tissue-to-calcium weight ratios about 1.5 times those for bones that agreed well. Metabolically defined surface in PCM is initial activity fraction per Ca fraction in a given skeletal component for intravenously injected alkaline earth (Sae) radionuclides; comparisons are made to similarly defined surface (Sact) values from 239Pu injection studies. The patterns of Sae and Sact distribution throughout the skeleton are similar.« less
Random field assessment of nanoscopic inhomogeneity of bone.
Dong, X Neil; Luo, Qing; Sparkman, Daniel M; Millwater, Harry R; Wang, Xiaodu
2010-12-01
Bone quality is significantly correlated with the inhomogeneous distribution of material and ultrastructural properties (e.g., modulus and mineralization) of the tissue. Current techniques for quantifying inhomogeneity consist of descriptive statistics such as mean, standard deviation and coefficient of variation. However, these parameters do not describe the spatial variations of bone properties. The objective of this study was to develop a novel statistical method to characterize and quantitatively describe the spatial variation of bone properties at ultrastructural levels. To do so, a random field defined by an exponential covariance function was used to represent the spatial uncertainty of elastic modulus by delineating the correlation of the modulus at different locations in bone lamellae. The correlation length, a characteristic parameter of the covariance function, was employed to estimate the fluctuation of the elastic modulus in the random field. Using this approach, two distribution maps of the elastic modulus within bone lamellae were generated using simulation and compared with those obtained experimentally by a combination of atomic force microscopy and nanoindentation techniques. The simulation-generated maps of elastic modulus were in close agreement with the experimental ones, thus validating the random field approach in defining the inhomogeneity of elastic modulus in lamellae of bone. Indeed, generation of such random fields will facilitate multi-scale modeling of bone in more pragmatic details. Copyright © 2010 Elsevier Inc. All rights reserved.
Taki, Hirofumi; Nagatani, Yoshiki; Matsukawa, Mami; Kanai, Hiroshi; Izumi, Shin-Ichi
2017-10-01
Ultrasound signals that pass through cancellous bone may be considered to consist of two longitudinal waves, which are called fast and slow waves. Accurate decomposition of these fast and slow waves is considered to be highly beneficial in determination of the characteristics of cancellous bone. In the present study, a fast decomposition method using a wave transfer function with a phase rotation parameter was applied to received signals that have passed through bovine bone specimens with various bone volume to total volume (BV/TV) ratios in a simulation study, where the elastic finite-difference time-domain method is used and the ultrasound wave propagated parallel to the bone axes. The proposed method succeeded to decompose both fast and slow waves accurately; the normalized residual intensity was less than -19.5 dB when the specimen thickness ranged from 4 to 7 mm and the BV/TV value ranged from 0.144 to 0.226. There was a strong relationship between the phase rotation value and the BV/TV value. The ratio of the peak envelope amplitude of the decomposed fast wave to that of the slow wave increased monotonically with increasing BV/TV ratio, indicating the high performance of the proposed method in estimation of the BV/TV value in cancellous bone.
Accuracy in planar cutting of bones: an ISO-based evaluation.
Cartiaux, Olivier; Paul, Laurent; Docquier, Pierre-Louis; Francq, Bernard G; Raucent, Benoît; Dombre, Etienne; Banse, Xavier
2009-03-01
Computer- and robot-assisted technologies are capable of improving the accuracy of planar cutting in orthopaedic surgery. This study is a first step toward formulating and validating a new evaluation methodology for planar bone cutting, based on the standards from the International Organization for Standardization. Our experimental test bed consisted of a purely geometrical model of the cutting process around a simulated bone. Cuts were performed at three levels of surgical assistance: unassisted, computer-assisted and robot-assisted. We measured three parameters of the standard ISO1101:2004: flatness, parallelism and location of the cut plane. The location was the most relevant parameter for assessing cutting errors. The three levels of assistance were easily distinguished using the location parameter. Our ISO methodology employs the location to obtain all information about translational and rotational cutting errors. Location may be used on any osseous structure to compare the performance of existing assistance technologies.
Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones.
Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan
2013-02-01
Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.
Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones
Ignjatović, Nenad; Ajduković, Zorica; Savić, Vojin; Najman, Stevo; Mihailović, Dragan; Vasiljević, Perica; Stojanović, Zoran; Uskoković, Vuk; Uskoković, Dragan
2012-01-01
Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of six months after the implantation of the material containing different amounts of cobalt, ranging from 5 – 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study. PMID:23090835
Singh, Gurmeet; Jain, Vivek; Gupta, Dheeraj; Ghai, Aman
2016-09-01
Orthopaedic surgery involves drilling of bones to get them fixed at their original position. The drilling process used in orthopaedic surgery is most likely to the mechanical drilling process and there is all likelihood that it may harm the already damaged bone, the surrounding bone tissue and nerves, and the peril is not limited at that. It is very much feared that the recovery of that part may be impeded so that it may not be able to sustain life long. To achieve sustainable orthopaedic surgery, a surgeon must try to control the drilling damage at the time of bone drilling. The area around the holes decides the life of bone joint and so, the contiguous area of drilled hole must be intact and retain its properties even after drilling. This study mainly focuses on optimization of drilling parameters like rotational speed, feed rate and the type of tool at three levels each used by Taguchi optimization for surface roughness and material removal rate. The confirmation experiments were also carried out and results found with the confidence interval. Scanning electrode microscopy (SEM) images assisted in getting the micro level information of bone damage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sclerostin Antibody Improves Skeletal Parameters in a Brtl/+ Mouse Model of Osteogenesis Imperfecta†
Sinder, Benjamin P.; Eddy, Mary M.; Ominsky, Michael S; Caird, Michelle S.; Marini, Joan C.; Kozloff, Kenneth M.
2012-01-01
Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by osteopenia and easy susceptibility to fracture. Symptoms are most prominent during childhood. Although anti-resorptive bisphosphonates have been widely used to treat pediatric OI, controlled trials showed improved vertebral parameters but equivocal effects on long-bone fracture rates. New treatments for OI are needed to increase bone mass throughout the skeleton. Sclerostin antibody (Scl-Ab) therapy is potently anabolic in the skeleton by stimulating osteoblasts via the canonical wnt signaling pathway, and may be beneficial for treating OI. In this study, Scl-Ab therapy was investigated in mice heterozygous for a typical OI-causing Gly->Cys substitution in col1a1. Two weeks of Scl-Ab successfully stimulated osteoblast bone formation in Brtl/+ and WT mice, leading to improved bone mass and reduced long-bone fragility. Image-guided nanoindentation revealed no alteration in local tissue mineralization dynamics with Scl-Ab. These results contrast with previous findings of antiresorptive efficacy in OI both in mechanism and potency of effects on fragility. In conclusion, short-term Scl-Ab was successfully anabolic in osteoblasts harboring a typical OI-causing collagen mutation and represents a potential new therapy to improve bone mass and reduce fractures in pediatric OI. PMID:22836659
Osteoblastoma of the sternum--case report and review of the literature.
Villalobos, Camilo E; Rybak, Leon D; Steiner, German C; Wittig, James C
2010-01-01
Osteoblastoma is an extremely rare entity that represents less than 1% of all bone tumors, and affects twice as many males as females with peak incidence between 15 and 20 years. Osteoblastomas commonly affect axial bones, long bones, bones of the foot and hand, and less commonly the pelvis, scapula, ribs, and clavicle. Osteoblastoma does not have a classic presentation, but can vary with the location and size of the tumor. The main complaint is often progressive pain localized at the tumor site. Osteoblastoma is a benign tumor with an aggressive behavior. The treatment is wide surgical resection, otherwise it continues to enlarge and destroy the bone and surrounding structures. We report a 32-year-old male with an osteoblastoma of this sternum who was treated with an en-bloc resection and reconstruction with Marlex((R)) and a methylmethacrylate plate.
NASA Astrophysics Data System (ADS)
Tamaddon, Maryam; Chen, Shen Mao; Vanaclocha, Leyre; Hart, Alister; El-Husseiny, Moataz; Henckel, Johann; Liu, Chaozong
2017-11-01
Osteoarthritis (OA) is the most common type of arthritis and a major cause of disability in the adult population. It affects both cartilage and subchondral bone in the joints. There has been some progress in understanding the changes in subchondral bone with progression of osteoarthritis. However, local changes in subchondral bone such as microstructure or volumetric bone mineral density in connection with the defect in cartilage are relatively unexplored. To develop an effective treatment for progression of OA, it is important to understand how the physical environment provided by the subchondral bone affects the overlying cartilage. In this study we examined the volumetric bone mineral density (vBMD) distribution in the osteoarthritic joint tissues obtained from total hip replacement surgeries due to osteoarthritis, using peripheral quantitative CT (pQCT). It was found that there is a significant decrease in volumetric bone mineral density, which co-localises with the damage in the overlying cartilage. This was not limited to the subchondral bone immediately adjacent to the cartilage defect but continued in the layers below. Bone resorption and cyst formation in the OA tissues were also detected. We observed that the bone surrounding subchondral bone cysts exhibited much higher volumetric bone mineral density than that of the surrounding bones. PQCT was able to detect significant changes in vBMD between OA and non-OA samples, as well as between areas of different cartilage degeneration, which points to its potential as a technique for detection of early OA.
Fujita, Yuko; Goto, Shota; Ichikawa, Maika; Hamaguchi, Ayako; Maki, Kenshi
2016-12-01
We examined the effects of a low-calcium diet and altered diet hardness on bone architecture and metabolism in the maxilla and mandible. Male rats (n=48, 3 weeks old) were divided into six groups. In total, 24 rats were given a normal-calcium diet and the others were given a low-calcium diet. Each group was then divided into three subgroups, which were fed a 'hard̕ diet for 8 weeks, a 'soft̕ die for 8 weeks, or switched from the soft diet after 4 weeks to the hard diet for 4 weeks. The bone architecture was analyzed using cephalometry and micro-computed tomography, in addition, the bone metabolism was analyzed using serum bone markers and bone histomorphometry in the maxilla and mandible. Moreover, the bone formation patterns were evaluated using histopathologically in the midpalatal suture. The low-calcium diet affected bone architecture by increasing bone turnover and the soft diet affected bone architecture mainly by increasing bone resorption. The soft diet changed the chondrocyte cell layers into fibrous connective tissues in the midpalatal suture. At 4 weeks after the return to a hard diet from a soft diet, recovery of the deterioration in bone architectures was seen in the maxilla and mandible. We demonstrated that mastication with a hard diet is effective for recovering the collapsed equilibrium of jaw bone turnover and the deteriorating jaw bone architectures due to the poor masticatory function during the growing period. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Optimization of multiple quality characteristics in bone drilling using grey relational analysis
Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar
2014-01-01
Purpose Drilling of bone is common during bone fracture treatment to fix the fractured parts with screws wires or plates. Minimally invasive drilling of the bone has a great demand as it helps in better fixation and quick healing of the broken bones. The purpose of the present investigation is to determine the optimum cutting condition for the minimization of the temperature, force and surface roughness simultaneously during bone drilling. Method In this study, drilling experiments have been performed on bovine bone with different conditions of feed rate and drill rotational speed using full factorial design. Optimal level of the drilling parameters is determined by the grey relational grade (GRG) obtained from the GRA as the performance index of multiple quality characteristics. The effect of each drilling parameter on GRG is determined using analysis of variance (ANOVA) and the results obtained are validated by confirmation experiment. Results Grey relational analysis showed that the investigation with feed rate of 40 mm/min and spindle speed of 500 rpm has the highest grey relational grade and is recommended setting for minimum temperature, force and surface roughness simultaneously during bone drilling. Feed rate has the highest contribution (59.49%) on the multiple performance characteristics followed by the spindle speed (37.69%) as obtained from ANOVA analysis. Conclusions The use of grey relational analysis will simplify the complex process of optimization of the multi response characteristics in bone drilling by converting them into a single grey relational grade. The use of the above suggested methodology can greatly minimize the bone tissue injury during drilling. PMID:25829751
Optimization of multiple quality characteristics in bone drilling using grey relational analysis.
Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar
2015-03-01
Drilling of bone is common during bone fracture treatment to fix the fractured parts with screws wires or plates. Minimally invasive drilling of the bone has a great demand as it helps in better fixation and quick healing of the broken bones. The purpose of the present investigation is to determine the optimum cutting condition for the minimization of the temperature, force and surface roughness simultaneously during bone drilling. In this study, drilling experiments have been performed on bovine bone with different conditions of feed rate and drill rotational speed using full factorial design. Optimal level of the drilling parameters is determined by the grey relational grade (GRG) obtained from the GRA as the performance index of multiple quality characteristics. The effect of each drilling parameter on GRG is determined using analysis of variance (ANOVA) and the results obtained are validated by confirmation experiment. Grey relational analysis showed that the investigation with feed rate of 40 mm/min and spindle speed of 500 rpm has the highest grey relational grade and is recommended setting for minimum temperature, force and surface roughness simultaneously during bone drilling. Feed rate has the highest contribution (59.49%) on the multiple performance characteristics followed by the spindle speed (37.69%) as obtained from ANOVA analysis. The use of grey relational analysis will simplify the complex process of optimization of the multi response characteristics in bone drilling by converting them into a single grey relational grade. The use of the above suggested methodology can greatly minimize the bone tissue injury during drilling.
Ueno, Takeshi; Tsukimura, Naoki; Yamada, Masahiro; Ogawa, Takahiro
2011-10-01
This study introduces nanopolymorphic features of alkali- and heat-treated titanium surfaces, comprising of tuft-like, plate-like, and nodular structures that are smaller than 100 nm and determines whether and how the addition of these nanofeatures to a microroughened titanium surface affects bone-implant integration. A comprehensive assessment of biomechanical, interfacial, and histological analyses in a rat model was performed for machined surfaces without microroughness, sandblasted-microroughened surfaces, and micro-nano hybrid surfaces created by sandblasting and alkali and heat treatment. The microroughened surface accelerated the establishment of implant biomechanical fixation at the early healing stage compared with the non-microroughened surface but did not increase the implant fixation at the late healing stage. The addition of the nanopolymorphic features to the microroughened surface further increased implant fixation throughout the healing time. The area of the new bone within 50 μm proximity of the implant surfaces, which was increased 2-3-fold using microroughened surfaces, was further increased 2-fold using nanopolymorphic surfaces. In contrast, the bone area in a 50-200 μm zone was not influenced by either microroughened or nanopolymorphic surfaces. The percentage of bone-implant contact, which was increased 4-5-fold, using microroughened surfaces, was further increased substantially by over 2-fold throughout the healing period. The percentage of soft tissue intervention between bone and implant surfaces, which was reduced to half by microroughened surfaces, was additionally reduced by the nanopolymorphic surfaces to between one-third and one-fourth, resulting in only 5-7% soft tissue intervention compared with 60-75% for the non-microroughened surface. Thus, using an exemplary alkali- and heat-treated nanopolymorphic surface, this study identified critical parameters necessary to describe the process and consequences of bone-implant integration, for which nanofeatures have specific and substantial roles beyond those of microfeatures. Nanofeature-enhanced osteoconductivity, which resulted in both the acceleration and elevation of bone-implant integration, has clearly been demonstrated. Copyright © 2011 Elsevier Ltd. All rights reserved.
Vitamin D and nutritional status are related to bone fractures in alcoholics.
González-Reimers, Emilio; Alvisa-Negrín, Julio; Santolaria-Fernández, Francisco; Candelaria Martín-González, M; Hernández-Betancor, Iván; Fernández-Rodríguez, Camino M; Viña-Rodríguez, J; González-Díaz, Antonieta
2011-01-01
Bone fractures are common in alcoholics. To analyse which factors (ethanol consumption; liver function impairment; bone densitometry; hormone changes; nutritional status, and disrupted social links and altered eating habits) are related to bone fractures in 90 alcoholic men admitted to our hospitalization unit because of organic problems. Bone homoeostasis-related hormones were measured in patients and age- and sex-matched controls. Whole-body densitometry was performed by a Hologic QDR-2000 (Waltham, MA, USA) densitometer, recording bone mineral density (BMD) and fat and lean mass; nutritional status and liver function were assessed. The presence of prevalent fractures was assessed by anamnesis and chest X-ray film. Forty-nine patients presented at least one fracture. We failed to find differences between patients with and without fractures regarding BMD parameters. Differences regarding fat mass were absent, but lean mass was lower among patients with bone fracture. The presence of fracture was significantly associated with impaired subjective nutritional evaluation (χ² = 5.79, P = 0.016), lower vitamin D levels (Z = 2.98, P = 0.003) and irregular eating habits (χ² = 5.32, P = 0.02). Reduced lean mass and fat mass, and altered eating habits were more prevalent among patients with only rib fractures (n = 36) than in patients with multiple fractures and/or fractures affecting other bones (n = 13). These last were more closely related to decompensated liver disease. Serum vitamin D levels showed a significant relationship with handgrip strength (ρ = 0.26, P = 0.023) and lean mass at different parts of the body, but not with fat mass. By logistic regression analysis, only vitamin D and subjective nutritional evaluation were significantly, independently related with fractures. Prevalent fractures are common among heavy alcoholics. Their presence is related more closely to nutritional status, lean mass and vitamin D levels than to BMD. Lean mass is more reduced, nutritional status is more impaired and there is a trend to more altered eating habits among patients with rib fractures, whereas multiple fractures depend more heavily on advanced liver disease.