Averill, Colin
2014-10-01
Allocation trade-offs shape ecological and biogeochemical phenomena at local to global scale. Plant allocation strategies drive major changes in ecosystem carbon cycling. Microbial allocation to enzymes that decompose carbon vs. organic nutrients may similarly affect ecosystem carbon cycling. Current solutions to this allocation problem prioritise stoichiometric tradeoffs implemented in plant ecology. These solutions may not maximise microbial growth and fitness under all conditions, because organic nutrients are also a significant carbon resource for microbes. I created multiple allocation frameworks and simulated microbial growth using a microbial explicit biogeochemical model. I demonstrate that prioritising stoichiometric trade-offs does not optimise microbial allocation, while exploiting organic nutrients as carbon resources does. Analysis of continental-scale enzyme data supports the allocation patterns predicted by this framework, and modelling suggests large deviations in soil C loss based on which strategy is implemented. Therefore, understanding microbial allocation strategies will likely improve our understanding of carbon cycling and climate. © 2014 John Wiley & Sons Ltd/CNRS.
Herbivore-induced shifts in carbon and nitrogen allocation in red oak seedlings
Christopher J. Frost; Mark D. Hunter
2008-01-01
A dual-isotope, microcosm experiment was conducted with Quercus rubra (red oak) seedlings to test the hypothesis that foliar herbivory would increase belowground carbon allocation (BCA), carbon (C) rhizodeposition and nitrogen (N) uptake. Plant BCA links soil ecosystems to aboveground processes and can be affected by insect herbivores, though the...
Brock, M T; Winkelman, R L; Rubin, M J; Edwards, C E; Ewers, B E; Weinig, C
2017-11-01
Allocation of finite resources to separate reproductive functions is predicted to vary across environments and affect fitness. Biomass is the most commonly measured allocation currency; however, in comparison with nutrients it may be less limited and express different environmental and evolutionary responses. Here, we measured carbon, nitrogen, phosphorus, and biomass allocation among floral whorls in recombinant inbred lines of Brassica rapa in multiple environments to characterize the genetic architecture of floral allocation, including its sensitivity to environmental heterogeneity and to choice of currency. Mass, carbon, and nitrogen allocation to female whorls (pistils and sepals) decreased under high density, whereas nitrogen allocation to male organs (stamens) decreased under drought. Phosphorus allocation decreased by half in pistils under drought, while stamen phosphorus was unaffected by environment. While the contents of each currency were positively correlated among whorls, selection to improve fitness through female (or male) function typically favored increased allocation to pistils (or stamens) but decreased allocation to other whorls. Finally, genomic regions underlying correlations among allocation metrics were mapped, and loci related to nitrogen uptake and floral organ development were located within mapped quantitative trait loci. Our candidate gene identification suggests that nutrient uptake may be a limiting step in maintaining male allocation. Taken together, allocation to male vs female function is sensitive to distinct environmental stresses, and the choice of currency affects the interpretation of floral allocation responses to the environment. Further, genetic correlations may counter the evolution of allocation patterns that optimize fitness through female or male function.
NASA Astrophysics Data System (ADS)
Pendall, E.; Drake, J. E.; Furze, M.; Barton, C. V.; Carillo, Y.; Richter, A.; Tjoelker, M. G.
2017-12-01
Climate warming has the potential to alter the balance between photosynthetic carbon assimilation and respiratory losses in forest trees, leading to uncertainty in predicting their future physiological functioning. In a previous experiment, warming decreased canopy CO2 assimilation (A) rates of Eucalyptus tereticornis trees, but respiration (R) rates were usually not significantly affected, due to physiological acclimation to temperature. This led to a slight increase in (R/A) and thus decrease in plant carbon use efficiency with climate warming. In contrast to carbon fluxes, the effect of warming on carbon allocation and residence time in trees has received less attention. We conducted a study to test the hypothesis that warming would decrease the allocation of C belowground owing to reduced cost of nutrient uptake. E. parramattensis trees were grown in the field in unique whole-tree chambers operated at ambient and ambient +3 °C temperature treatments (n=3 per treatment). We applied a 13CO2 pulse and followed the label in CO2 respired from leaves, roots, canopy and soil, in plant sugars, and in rhizosphere microbes over a 3-week period in conjunction with measurements of tree growth. The 9-m tall, 57 m3 whole-tree chambers were monitored for CO2 concentrations in independent canopy and below ground (root and soil) compartments; periodic monitoring of δ13C values in air in the compartments allowed us to quantify the amount of 13CO2 assimilated and respired by each tree. Warmed trees grew faster and assimilated more of the label than control trees, but the 13C allocation to canopy, root and soil respiration was not altered. However, warming appeared to reduce the residence time of carbon respired from leaves, and especially from roots and soil, indicating that autotrophic respiration has the potential to feedback to climate change. This experiment provides insights into how warming may affect the fate of assimilated carbon from the leaf to the ecosystem scale.
Carrie Andrew; Erik A. Lilleskov
2009-01-01
Sporocarp production is essential for ectomycorrhizal fungal recombination and dispersal, which influences fungal community dynamics. Increasing atmospheric carbon dioxide (CO2) and ozone (O3) affect host plant carbon gain and allocation, which may in turn influence ectomycorrhizal sporocarp production if the carbon...
Climate change(elevated atmospheric CO-2,and altered air temperatures,precipitation amounts and seasonal patterns)may affect ecosystem processes by altering carbon allocation in plants,and carbon flux from plants to soil.Mycorrhizal fungi,as carbon sinks, are among the first soil...
New insights into mechanisms driving carbon allocation in tropical forests.
Hofhansl, Florian; Schnecker, Jörg; Singer, Gabriel; Wanek, Wolfgang
2015-01-01
The proportion of carbon allocated to wood production is an important determinant of the carbon sink strength of global forest ecosystems. Understanding the mechanisms controlling wood production and its responses to environmental drivers is essential for parameterization of global vegetation models and to accurately predict future responses of tropical forests in terms of carbon sequestration. Here, we synthesize data from 105 pantropical old-growth rainforests to investigate environmental controls on the partitioning of net primary production to wood production (%WP) using structural equation modeling. Our results reveal that %WP is governed by two independent pathways of direct and indirect environmental controls. While temperature and soil phosphorus availability indirectly affected %WP via increasing productivity, precipitation and dry season length both directly increased %WP via tradeoffs along the plant economics spectrum. We provide new insights into the mechanisms driving %WP, allowing us to conclude that projected climate change could enhance %WP in less productive tropical forests, thus increasing carbon sequestration in montane forests, but adversely affecting lowland forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Glen P; Marland, Gregg; Hertwich, Edgar G.
2009-01-01
Globalization and the dynamics of ecosystem sinks need be considered in post-Kyoto climate negotiations as they increasingly affect the carbon dioxide concentration in the atmosphere. Currently, the allocation of responsibility for greenhouse gas mitigation is based on territorial emissions from fossil-fuel combustion, process emissions and some land-use emissions. However, at least three additional factors can significantly alter a country's impact on climate from carbon dioxide emissions. First, international trade causes a separation of consumption from production, reducing domestic pollution at the expense of foreign producers, or vice versa. Second, international transportation emissions are not allocated to countries for the purposemore » of mitigation. Third, forest growth absorbs carbon dioxide and can contribute to both carbon sequestration and climate change protection. Here we quantify how these three factors change the carbon dioxide emissions allocated to China, Japan, Russia, USA, and European Union member countries. We show that international trade can change the carbon dioxide currently allocated to countries by up to 60% and that forest expansion can turn some countries into net carbon sinks. These factors are expected to become more dominant as fossil-fuel combustion and process emissions are mitigated and as international trade and forest sinks continue to grow. Emission inventories currently in wide-spread use help to understand the global carbon cycle, but for long-term climate change mitigation a deeper understanding of the interaction between the carbon cycle and society is needed. Restructuring international trade and investment flows to meet environmental objectives, together with the inclusion of forest sinks, are crucial issues that need consideration in the design of future climate policies. And even these additional issues do not capture the full impact of changes in the carbon cycle on the global climate system.« less
Mechanisms and Control of Phloem Transport in Trees: Fast and Slow - Sink and Source
NASA Astrophysics Data System (ADS)
Gessler, Arthur; Hagedorn, Frank; Galiano, Lucia; Schaub, Marcus; Joseph, Jobin; Arend, Matthias; Hommel, Robert; Kayler, Zachary
2017-04-01
Trees are large global stores of carbon that will be affected by increased carbon dioxide levels and climate change in the future. However, at present we cannot properly predict the carbon balance of forests as we lack knowledge on how plant physiological processes and especially the transport of carbon within the plant interact with environmental drivers and ecosystem-scale processes. The central conveyor belt for C allocation and distribution within the tree is the phloem and its functionality under environmental stress (esp. drought) is important for the avoidance of C starvation. This paper addresses the distribution of new assimilates within the plant, and sheds light on phloem transport mechanisms and transport control using 13C pulse labelling techniques. We provide experimental evidence that at least two mechanisms are employed to couple C sink processes to assimilation. We observed a fast increase of belowground respiration with the onset of photosynthesis, which we assume is induced by pressure concentration waves travelling through the phloem. A second, much later occurring peak in respiration is fueled by new 13C labeled assimilates. Moreover, we relate phloem transport velocity and intensity of labelled 13C assimilates to drought stress intensity and give indication how sink rather than source control might affect phloem transport in trees. During drought, net photosynthesis, soil respiration and the allocation of recent assimilates below ground were reduced. Carbohydrates accumulated in metabolically resting roots but not in leaves, indicating sink control of the tree carbon balance. After drought release, soil respiration recovered faster than assimilation and CO2 fluxes exceeded those in continuously watered trees for months. This stimulation was related to greater assimilate allocation to and metabolization in the rhizosphere. These findings show that trees prioritize the investment of assimilates below ground, probably to regain root functions after drought and indicate that sink activity governs carbon allocation not only during drought stress but also after stress release.
Thompson, Michael; Gamage, Dananjali; Hirotsu, Naoki; Martin, Anke; Seneweera, Saman
2017-01-01
Plant responses to atmospheric carbon dioxide will be of great concern in the future, as carbon dioxide concentrations ([CO2]) are predicted to continue to rise. Elevated [CO2] causes increased photosynthesis in plants, which leads to greater production of carbohydrates and biomass. Which organ the extra carbohydrates are allocated to varies between species, but also within species. These carbohydrates are a major energy source for plant growth, but they also act as signaling molecules and have a range of uses beyond being a source of carbon and energy. Currently, there is a lack of information on how the sugar sensing and signaling pathways of plants are affected by the higher content of carbohydrates produced under elevated [CO2]. Particularly, the sugar signaling pathways of roots are not well understood, along with how they are affected by elevated [CO2]. At elevated [CO2], some plants allocate greater amounts of sugars to roots where they are likely to act on gene regulation and therefore modify nutrient uptake and transport. Glucose and sucrose also promote root growth, an effect similar to what occurs under elevated [CO2]. Sugars also crosstalk with hormones to regulate root growth, but also affect hormone biosynthesis. This review provides an update on the role of sugars as signaling molecules in plant roots and thus explores the currently known functions that may be affected by elevated [CO2]. PMID:28848452
Thompson, Michael; Gamage, Dananjali; Hirotsu, Naoki; Martin, Anke; Seneweera, Saman
2017-01-01
Plant responses to atmospheric carbon dioxide will be of great concern in the future, as carbon dioxide concentrations ([CO 2 ]) are predicted to continue to rise. Elevated [CO 2 ] causes increased photosynthesis in plants, which leads to greater production of carbohydrates and biomass. Which organ the extra carbohydrates are allocated to varies between species, but also within species. These carbohydrates are a major energy source for plant growth, but they also act as signaling molecules and have a range of uses beyond being a source of carbon and energy. Currently, there is a lack of information on how the sugar sensing and signaling pathways of plants are affected by the higher content of carbohydrates produced under elevated [CO 2 ]. Particularly, the sugar signaling pathways of roots are not well understood, along with how they are affected by elevated [CO 2 ]. At elevated [CO 2 ], some plants allocate greater amounts of sugars to roots where they are likely to act on gene regulation and therefore modify nutrient uptake and transport. Glucose and sucrose also promote root growth, an effect similar to what occurs under elevated [CO 2 ]. Sugars also crosstalk with hormones to regulate root growth, but also affect hormone biosynthesis. This review provides an update on the role of sugars as signaling molecules in plant roots and thus explores the currently known functions that may be affected by elevated [CO 2 ].
NASA Astrophysics Data System (ADS)
Reinsch, Sabine; Michelsen, Anders; Sárossy, Zsuzsa; Egsgaard, Helge; Kappel Schmidt, Inger; Jakobsen, Iver; Ambus, Per
2013-04-01
The global terrestrial soil organic matter stock is the biggest terrestrial carbon pool (1500 Pg C) of which about 4 % is turned over annually. Thus, terrestrial ecosystems have the potential to accelerate or diminish atmospheric climate change effects via belowground carbon processes. We investigated the effect of elevated CO2 (510 ppm), prolonged spring/summer droughts and increased temperature (1 ˚C) on belowground carbon allocation and on the recovery of carbon by the soil microbial community. An in-situ 13C-carbon pulse-labeling experiment was carried out in a temperate heath/grassland (Denmark) in May 2011. Recently assimilated 13C-carbon was traced into roots, soil and microbial biomass 1, 2 and 8 days after pulse-labeling. The importance of the microbial community in C utilization was investigated using 13C enrichment patterns in microbial functional groups on the basis of phospholipid fatty acids (PLFAs) in roots. Gram-negative and gram-positive bacteria were distinguished from the decomposer groups of actinomycetes (belonging to the group of gram-positive bacteria) and saprophytic fungi. Mycorrhizal fungi specific PLFAs were not detected probably due to limited sample size in combination with restricted sensitivity of the used GC-c-IRMS setup. Climate treatments did not affect 13C allocation into roots, soil and microbial biomass carbon and also the total microbial biomass size stayed unchanged as frequently observed. However, climate treatments changed the composition of the microbial community: elevated CO2 significantly reduced the abundance of gram-negative bacteria (17:0cy) but did not affect the abundance of decomposers. Drought favored the bacterial community whereas increased temperatures showed reduced abundance of gram-negative bacteria (19:0cy) and changed the actinomycetes community (10Me16:0, 10Me18:0). However, not only the microbial community composition was affected by the applied climatic conditions, but also the activity of microbial functional groups in their utilization of recently assimilated carbon. Particularly the negative effect of the future treatment combination (CO2×T×D) on actinomycetes activity was surprising. By means of activity patterns of gram-negative bacteria, we observed the fastest carbon turnover rate under elevated CO2, and the slowest under extended drought conditions. A changed soil microbial community in combination with altered activities of different microbial functional groups leads to the conclusion that carbon allocation belowground was different under ambient and future climatic conditions and indicated reduced utilization of soil organic matter in the future due to a change of actinomycetes abundance and activity.
The QQS orphan gene of Arabidopsis modulates carbon and nitrogen allocation in soybean
Li, Ling; Wurtele, Eve Syrkin
2015-01-01
The genome of each species contains as high as 8% of genes that are uniquely present in that species. Little is known about the functional significance of these so-called species specific or orphan genes. The Arabidopsis thaliana gene Qua-Quine Starch (QQS) is species specific. Here, we show that altering QQS expression in Arabidopsis affects carbon partitioning to both starch and protein. We hypothesized QQS may be conserved in a feature other than primary sequence, and as such could function to impact composition in another species. To test the potential of QQS in affecting composition in an ectopic species, we introduced QQS into soybean. Soybean T1 lines expressing QQS have up to 80% decreased leaf starch and up to 60% increased leaf protein; T4 generation seeds from field-grown plants contain up to 13% less oil, while protein is increased by up to 18%. These data broaden the concept of QQS as a modulator of carbon and nitrogen allocation, and demonstrate that this species-specific gene can affect the seed composition of an agronomic species thought to have diverged from Arabidopsis 100 million years ago. PMID:25146936
Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui
2016-04-01
Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. © 2015 John Wiley & Sons Ltd.
Gao, Jun-Qin; Gao, Ju-Juan; Zhang, Xue-Wen; Xu, Xing-Liang; Deng, Zhao-Heng; Yu, Fei-Hai
2015-01-01
Waterlogging has been suggested to affect carbon (C) turnover in wetlands, but how it affects C allocation and stocks remains unclear in alpine wetlands. Using in situ 13CO2 pulse labelling, we investigated C allocation in both waterlogged and non-waterlogged sites in the Zoigê wetlands on the Tibetan Plateau in August 2011. More than 50% of total 13C fixed by photosynthesis was lost via shoot respiration. Shoots recovered about 19% of total 13C fixed by photosynthesis at both sites. Only about 26% of total fixed 13C was translocated into the belowground pools. Soil organic C pool accounted for 19% and roots recovered about 5–7% of total fixed 13C at both sites. Waterlogging significantly reduced soil respiration and very little 13C was lost via soil respiration in the alpine wetlands compared to that in grasslands. We conclude that waterlogging did not significantly alter C allocations among the C pools except the 13CO2 efflux derived from soil respiration and that shoots made similar contributions to C sequestration as the belowground parts in the Zoigê alpine wetlands. Therefore, changes in waterlogging due to climate change will not affect C assimilate partitioning but soil C efflux. PMID:25797457
Assessment of allowance mechanism China's carbon trading pilots
Xiong, Ling; Shen, Bo; Qi, Shaozhou; ...
2015-08-28
The allowance mechanism is one of the core and sensitive aspects in design of a carbon trading scheme and affects the compliance cost for each company covered under the scheme. By examining China's allowance mechanism from two aspects including allowance allocation and allowance distribution, this paper compares China's carbon trading pilots with the EU Emissions Trading System and California Cap-and-Trade Program, and through the comparison identify issues that affect the efficiency of the pilots. The paper also recommends course of actions to strengthen China's existing pilots and build valuable experiences for the establishment of the national cap-and-trade system in China.
Carbon and Nitrogen dynamics in deciduous and broad leaf trees under drought stress
NASA Astrophysics Data System (ADS)
Joseph, Jobin; Schaub, Marcus; Arend, Matthias; Saurer, Matthias; siegwolf, Rolf; Weiler, Markus; Gessler, Arthur
2017-04-01
Climate change is projected to lead to an increased frequency and duration of severe drought events in future. Already within the last twenty years, however, drought stress related forest mortality has been increasing across the globe. Tree and forest die off events have multiple adverse effects on ecosystem functioning and might convert previous carbon sinks to act as carbon sources instead and can thus intensify the effect of climate change and global warming. Current predictions of forest's functioning under drought and thus forest mortality under future climatic conditions are constrained by a still incomplete picture of the trees' physiological reactions that allows some trees to survive drought periods while others succumb. Concerning the effects of drought on the carbon balance and on tree hydraulics our picture is getting more complete, but still interactions between abiotic factors and pest and diseases as well as the interaction between carbon and nutrient balances as factors affecting drought induced mortality are not well understood. Reduced carbon allocation from shoots to roots might cause a lack of energy for root nutrient uptake and to a shortage of carbon skeletons for nitrogen assimilation and thus to an impaired nutrient status of trees. To tackle these points, we have performed a drought stress experiment with six different plant species, 3 broad leaf (maple, beech and oak) and 3 deciduous (pine, fir and spruce). Potted two-year-old seedlings were kept inside a greenhouse for 5 months and 3 levels of drought stress (no stress (control), intermediate and intensive drought stress) were applied by controlling water supply. Gas exchange measurements were performed periodically to monitor photosynthesis, transpiration, stomatal conductance. At the pinnacle of drought stress, we applied isotopic pulse labelling: On the one hand we exposed trees to 13CO2 to investigate on carbon dynamics and the allocation of new assimilates within the plant. Moreover, we labelled the soil with 15N nitrate by injecting nitrate solution into the soil without strongly changing the water content for investigating nitrogen uptake and distribution along different compartments of the plant soil continuum. We observed a distinct difference in the carbon and nitrogen dynamics and allocation pattern between broad leaf and conifer seedlings. Broad leaf species showed a lower reduction of CO2 assimilation under drought and still allocated significant amounts of the new assimilates to the roots. Especially in maple and oak the belowground transfer of assimilates was kept at high levels even under severe drought stress, while there was a reduction in assimilation transport in beech. Instead, only small amounts of 13C labelled new assimilates arrived in the roots of conifers in the drought treatments. In the deciduous species 15N taken up the roots was more intensively allocated to aboveground tissues compared to conifers under control conditions, which retained the largest amounts within the fine roots. 15N uptake was reduced in the drought treatments in all species assessed. There was, however, no clear relation of this reduction to changes in 13C allocation to the roots. We thus cannot conclude that the reduction of nitrogen uptake is due to reduced transport of new assimilates belowground. We thus need to assume that carbon storage is sufficient to provide energy and carbon for nitrogen uptake and assimilation at least over the short-term. During longer drought periods, however, depletion of carbon stores might adversely affect the nutrient uptake and balance of trees.
Williams, Alwyn; Manoharan, Lokeshwaran; Rosenstock, Nicholas P; Olsson, Pål Axel; Hedlund, Katarina
2017-01-01
Agricultural fertilization significantly affects arbuscular mycorrhizal fungal (AMF) community composition. However, the functional implications of community shifts are unknown, limiting understanding of the role of AMF in agriculture. We assessed AMF community composition at four sites managed under the same nitrogen (N) and phosphorus (P) fertilizer regimes for 55 yr. We also established a glasshouse experiment with the same soils to investigate AMF-barley (Hordeum vulgare) nutrient exchange, using carbon ( 13 C) and 33 P isotopic labelling. N fertilization affected AMF community composition, reducing diversity; P had no effect. In the glasshouse, AMF contribution to plant P declined with P fertilization, but was unaffected by N. Barley C allocation to AMF also declined with P fertilization. As N fertilization increased, C allocation to AMF per unit of P exchanged increased. This occurred with and without P fertilization, and was concomitant with reduced barley biomass. AMF community composition showed no relationship with glasshouse experiment results. The results indicate that plants can reduce C allocation to AMF in response to P fertilization. Under N fertilization, plants allocate an increasing amount of C to AMF and receive relatively less P. This suggests an alteration in the terms of P-C exchange under N fertilization regardless of soil P status. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Kafle, Arjun; Garcia, Kevin; Wang, Xiurong; Pfeffer, Philip E; Strahan, Gary D; Bücking, Heike
2018-06-02
Legumes form tripartite interactions with arbuscular mycorrhizal (AM) fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the SUT and SWEET family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits. This article is protected by copyright. All rights reserved.
Carbon allocation in forest ecosystems
Creighton M. Litton; James W. Raich; Michael G. Ryan
2007-01-01
Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit...
Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration.
Salvador, Sara; Corazzin, Mirco; Romanzin, Alberto; Bovolenta, Stefano
2017-07-01
Recent studies on milk production have often focused on environmental impacts analysed using the Life Cycle Assessment (LCA) approach. In grassland-based livestock systems, soil carbon sequestration might be a potential sink to mitigate greenhouse gas (GHG) balance. Nevertheless, there is no commonly shared methodology. In this work, the GHG emissions of small-scale mountain dairy farms were assessed using the LCA approach. Two functional units, kg of Fat and Protein Corrected Milk (FPCM) and Utilizable Agricultural Land (UAL), and two different emissions allocations methods, no allocation and physical allocation, which accounts for the co-product beef, were considered. Two groups of small-scale dairy farms were identified based on the Livestock Units (LU) reared: <30 LU (LLU) and >30 LU (HLU). Before considering soil carbon sequestration in LCA, performing no allocation methods, LLU farms tended to have higher GHG emission than HLU farms per kg of FPCM (1.94 vs. 1.59 kg CO 2 -eq/kg FPCM, P ≤ 0.10), whereas the situation was reversed upon considering the m 2 of UAL as a functional unit (0.29 vs. 0.89 kg CO 2 -eq/m 2 , P ≤ 0.05). Conversely, considering physical allocation, the difference between the two groups became less noticeable. When the contribution from soil carbon sequestration was included in the LCA and no allocation method was performed, LLU farms registered higher values of GHG emission per kg of FPCM than HLU farms (1.38 vs. 1.10 kg CO 2 -eq/kg FPCM, P ≤ 0.05), and the situation was likewise reversed in this case upon considering the m 2 of UAL as a functional unit (0.22 vs. 0.73 kg CO 2 -eq/m 2 , P ≤ 0.05). To highlight how the presence of grasslands is crucial for the carbon footprint of small-scale farms, this study also applied a simulation for increasing the forage self-sufficiency of farms to 100%. In this case, an average reduction of GHG emission per kg of FPCM of farms was estimated both with no allocation and with physical allocation, reaching 27.0% and 28.8%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.
2014-06-01
The partitioning of photosynthates toward biomass compartments has a crucial role in the carbon sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought prone forests. We analyzed the fate of GPP in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Gross and net carbon fluxes between the ecosystem and the atmosphere were measured with an eddy-covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy-covariance fluxes with annual productions we managed to close a C budget and derive values of autotrophic and heterotrophic respirations, NPP and carbon use efficiency (CUE, the ratio between NPP and GPP). Average values of yearly NEP, GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding ANPP components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems. Gross and net carbon exchange between the ecosystem and the atmosphere were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected, the stem growth, to the least affected, the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease more slightly in response to drought than GPP and NPP, probably due to drought-acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem and highlight the value of maintaining continuous experimental measurements over the long term.
Carbon allocation and accumulation in conifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gower, S.T.; Isebrands, J.G.; Sheriff, D.W.
1995-07-01
Forests cover approximately 33% of the land surface of the earth, yet they are responsible for 65% of the annual carbon (C) accumulated by all terrestrial biomes. In general, total C content and net primary production rates are greater for forests than for other biomes, but C budgets differ greatly among forests. Despite several decades of research on forest C budgets, there is still an incomplete understanding of the factors controlling C allocation. Yet, if we are to understand how changing global events such as land use, climate change, atmospheric N deposition, ozone, and elevated atmospheric CO{sub 2} affect themore » global C budget, a mechanistic understanding of C assimilation, partitioning, and allocation is necessary. The objective of this chapter is to review the major factors that influence C allocation and accumulation in conifer trees and forests. In keeping with the theme of this book, we will focus primarily on evergreen conifers. However, even among evergreen conifers, leaf, canopy, and stand-level C and nutrient allocation patterns differ, often as a function of leaf development and longevity. The terminology related to C allocation literature is often inconsistent, confusing and inadequate for understanding and integrating past and current research. For example, terms often used synonymously to describe C flow or movement include translocation, transport, distribution, allocation, partitioning, apportionment, and biomass allocation. A common terminology is needed because different terms have different meanings to readers. In this paper we use C allocation, partitioning, and accumulation according to the definitions of Dickson and Isebrands (1993). Partitioning is the process of C flow into and among different chemical, storage, and transport pools. Allocation is the distribution of C to different plant parts within the plant (i.e., source to sink). Accumulation is the end product of the process of C allocation.« less
Resource allocation in an annual herb: Effects of light, mycorrhizal fungi, and defoliation
NASA Astrophysics Data System (ADS)
Aguilar-Chama, Ana; Guevara, Roger
2016-02-01
Concurrent interactions and the availability of resources (e.g., light) affect the cost/benefit balance during mutualistic and antagonistic interactions, as well as plant resource allocation patterns. Mycorrhizal interactions and herbivory concur in most plants, where mycorrhizae can enhance the uptake of soil nutrients by plants as well as consuming a large fraction of the plant's carbon, and defoliation usually reduces light interception and photosynthesis, thereby causing direct losses to the hosts of mycorrhizal fungi. Both types of interactions affect the carbon budget of their host plants and thus we predict that the relative costs of herbivory and mycorrhizal colonization will increase when photosynthesis is reduced, for instance in light limited environments. We conducted a greenhouse experiment using Datura stramonium to investigate the effects of defoliation and mycorrhizal inoculation on the resource allocation patterns in two different light environments. Defoliated plants overcompensated in terms of leaf mass in both light environments, but total seed mass per fruit was negatively affected by defoliation in both light environments. Mycorrhizal inoculation had a positive effect on vegetative growth and the leaf nitrogen content, but defoliation negates the benefit of mycorrhizal interactions in terms of the leaf nitrogen content. In general, D. stramonium compensated for the relative costs of concurrent mycorrhizal interactions and defoliation; plants that lacked both interactions exhibited the same performance as plants with both types of interactions.
Does carbon availability control temporal dynamics of radial growth in Norway spruce (Picea abies)?
NASA Astrophysics Data System (ADS)
Oberhuber, Walter; Gruber, Andreas; Swidrak, Irene
2015-04-01
Intra-annual dynamics of cambial activity and wood formation of coniferous species exposed to soil dryness revealed early culmination of maximum growth in late spring prior to occurrence of more favourable environmental conditions, i.e., repeated high rainfall events during summer (Oberhuber et al. 2014). Because it is well known that plants can adjust carbon allocation patterns to optimize resource uptake under prevailing environmental constraints, we hypothesize that early decrease in radial stem growth is an adaptation to cope with drought stress, which might require an early switch of carbon allocation to belowground organs. Physical blockage of carbon transport in the phloem through girdling causes accumulation and depletion of carbohydrates above and below the girdle, respectively, making this method quite appropriate to investigate carbon relationships in trees. Hence, in a common garden experiment we will manipulate the carbon status of Norway spruce (Picea abies) saplings by phloem blockage at different phenological stages during the growing season. We will present the methodological approach and first results of the study aiming to test the hypothesis that carbon status of the tree affects temporal dynamics of cambial activity and wood formation in conifers under drought. Acknowledgment The research is funded by the Austrian Science Fund (FWF): P25643-B16 "Carbon allocation and growth of Scots pine". Reference Oberhuber W, A Gruber, W Kofler, I Swidrak (2014) Radial stem growth in response to microclimate and soil moisture in a drought-prone mixed coniferous forest at an inner Alpine site. Eur J For Res 133:467-479.
Shading responses of carbon allocation dynamics in mountain grassland
NASA Astrophysics Data System (ADS)
Bahn, M.; Lattanzi, F. A.; Brueggemann, N.; Siegwolf, R. T.; Richter, A.
2012-12-01
Carbon (C) allocation strongly influences plant and soil processes. Global environmental changes can alter source - sink relations of plants with potential implications for C allocation. Short-term C allocation dynamics in ecosystems and their responses to environmental changes are still poorly understood. To analyze effects of assimilate supply (i.e. C source strength) on ecosystem C allocation dynamics and the role of non-structural carbohydrates, canopy sections of a mountain meadow were pulse labeled with 13CO2 and subsequently shaded for a week or left unshaded (control). Tracer dynamics in above- and belowground sucrose and starch pools were analysed and coupled using compartmental modelling. The hypothesis was tested that shading affects tracer dynamics in non-structural carbohydrates and diminishes the transfer of recently assimilated C to roots and their storage pools. In unshaded plots up to 40% of assimilated C was routed through short-term storage in shoot starch and sucrose to buffer day / night cycles in photosynthesis. Shoot- and root sucrose and shoot starch were kinetically closely related pools. The tracer dynamics of the modelled root sucrose pool corresponded well with those in soil CO2 efflux. Root starch played no role in buffering day / night cycles and likely acted as a seasonal store. Shading strongly reduced sucrose and starch concentrations in shoots but not roots and resulted in a massive reduction of leaf respiration, while root respiration was much less diminished. Shading affected tracer dynamics in sucrose and starch of shoots: shoot starch rapidly lost tracer, while sucrose transiently increased its tracer content. Surprisingly, shading did not alter the dynamics of root carbohydrates. Even under severe C limitation after one week of shading, tracer C continued to be incorporated in root starch. Also the amount of 13C incorporated in phospholipid fatty acids of soil microbial communities was not reduced by shading, though its residence time followed a changed pattern, suggesting an influence of C source strength on the utilization and turnover of recent plant-derived C. These findings will be discussed in the broader context of plant and ecosystem carbon allocation, with particular reference to the concepts of 'source versus sink strength' and 'passive versus active C storage'.
Comment on Geoengineering with seagrasses: is credit due where credit is given?
NASA Astrophysics Data System (ADS)
Oreska, Matthew P. J.; McGlathery, Karen J.; Emmer, Igino M.; Needelman, Brian A.; Emmett-Mattox, Stephen; Crooks, Stephen; Megonigal, J. Patrick; Myers, Doug
2018-03-01
In their recent review, ‘Geoengineering with seagrasses: is credit due where credit is given?,’ Johannessen and Macdonald (2016) invoke the prospect of carbon offset-credit over-allocation by the Verified Carbon Standard as a pretense for their concerns about published seagrass carbon burial rate and global stock estimates. Johannessen and Macdonald (2016) suggest that projects seeking offset-credits under the Verified Carbon Standard methodology VM0033: Methodology for Tidal Wetland and Seagrass Restoration will overestimate long-term (100 yr) sediment organic carbon (SOC) storage because issues affecting carbon burial rates bias storage estimates. These issues warrant serious consideration by the seagrass research community; however, VM0033 does not refer to seagrass SOC ‘burial rates’ or ‘storage.’ Projects seeking credits under VM0033 must document greenhouse gas emission reductions over time, relative to a baseline scenario, in order to receive credits. Projects must also monitor changes in carbon pools, including SOC, to confirm that observed benefits are maintained over time. However, VM0033 allows projects to conservatively underestimate project benefits by citing default values for specific accounting parameters, including CO2 emissions reductions. We therefore acknowledge that carbon crediting methodologies such as VM0033 are sensitive to the quality of the seagrass literature, particularly when permitted default factors are based in part on seagrass burial rates. Literature-derived values should be evaluated based on the concerns raised by Johannessen and Macdonald (2016), but these issues should not lead to credit over-allocation in practice, provided VM0033 is rigorously followed. These issues may, however, affect the feasibility of particular seagrass offset projects.
NASA Astrophysics Data System (ADS)
Kriiska, Kaie; Uri, Veiko; Frey, Jane; Napa, Ülle; Kabral, Naima; Soosaar, Kaido; Rannik, Kaire; Ostonen, Ivika
2017-04-01
Carbon (C) allocation plays a critical role in forest ecosystem carbon cycling. Changes in C allocation alter ecosystems carbon sequestration and plant-soil-atmosphere gas exchange, hence having an impact on the climate. Currently, there is lack of reliable indicators that show the direction of C accumulation patterns in forest ecosystems on regional scale. The first objective of our study was to determine the variability of carbon allocation in hemiboreal coniferous forests along the gradient of soil fertility in Estonia. We measured C stocks and fluxes, such as litter, fine root biomass and production, soil respiration etc. in 8 stands of different site types - Scots pine (Cladonia, Vaccinium, Myrtillus, Fragaria) and Norway spruce (Polytrichum, Myrtillus, Oxalis, Calamagrostis alvar). The suitability of above- and belowground litter production (AG/BG) ratio was analysed as a carbon allocation indicator. The second aim of the study was to analyse forest C allocation patterns along the north-south gradient from northern boreal Finland to hemiboreal Estonia. Finally, C sequestration in silver birch and grey alder stands were compared with coniferous stands in order to determine the impact of tree species on carbon allocation. Preliminary results indicate that estimated AG/BG ratio (0.5 ... 3.0) tends to decrease with increasing soil organic horizon C/N ratio, indicating that in less fertile sites more carbon is allocated into belowground through fine root growth and in consequence the soil organic carbon stock increases. Similar trends were found on the north-south forest gradient. However, there was a significant difference between coniferous and broadleaf stands in C allocation patterns. Net ecosystem exchange in Estonian coniferous stands varied from -1.64 ... 3.95 t C ha-1 yr-1, whereas older stands tended to be net carbon sources.
Abadie, Cyril; Bathellier, Camille; Tcherkez, Guillaume
2018-04-01
In gas-exchange experiments, manipulating CO 2 and O 2 is commonly used to change the balance between carboxylation and oxygenation. Downstream metabolism (utilization of photosynthetic and photorespiratory products) may also be affected by gaseous conditions but this is not well documented. Here, we took advantage of sunflower as a model species, which accumulates chlorogenate in addition to sugars and amino acids (glutamate, alanine, glycine and serine). We performed isotopic labelling with 13 CO 2 under different CO 2 /O 2 conditions, and determined 13 C contents to compute 13 C-allocation patterns and build-up rates. The 13 C content in major metabolites was not found to be a constant proportion of net fixed carbon but, rather, changed dramatically with CO 2 and O 2 . Alanine typically accumulated at low O 2 (hypoxic response) while photorespiratory intermediates accumulated under ambient conditions and at high photorespiration, glycerate accumulation exceeding serine and glycine build-up. Chlorogenate synthesis was relatively more important under normal conditions and at high CO 2 and its synthesis was driven by phosphoenolpyruvate de novo synthesis. These findings demonstrate that carbon allocation to metabolites other than photosynthetic end products is affected by gaseous conditions and therefore the photosynthetic yield of net nitrogen assimilation varies, being minimal at high CO 2 and maximal at high O 2 . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Effect of long-term drought on carbon allocation and nitrogen uptake of Pinus sylvestris seedlings
NASA Astrophysics Data System (ADS)
Pumpanen, Jukka; Aaltonen, Heidi; Lindén, Aki; Köster, Kajar; Biasi, Christina; Heinonsalo, Jussi
2015-04-01
Weather extremes such as drought events are expected to increase in the future as a result of climate change. The drought affects the allocation of carbon assimilated by plants e.g. by modifying the root to shoot ratio, amount of fine roots and the amount of mycorrhizal fungal hyphae. We studied the effect of long term drought on the allocation of carbon in a common garden experiment with 4-year-old Pinus sylvestris seedlings. Half of the seedlings were exposed to long-term drought by setting the soil water content close to wilting point for over two growing seasons whereas the other half was grown in soil close to field capacity. We conducted a pulse labelling with 13CO2 in the end of the study by injecting a known amount of 13C enriched CO2 to the seedlings and measuring the CO2 uptake and distribution of 13C to the biomass of the seedlings and to the root and rhizosphere respiration. In addition, we studied the effect of drought on the decomposition of needle litter and uptake of nitrogen by 15N labelled needles buried in the soil in litter bags. The litterbags were collected and harvested in the end of the experiment and the changes in microbial community in the litterbags were studied from the phospholipid fatty acid (PLFA) composition. We also determined the 15N isotope concentrations from the needles of the seedlings to study the effect of drought on the nitrogen uptake of the seedlings. Our results indicate that the drought had a significant effect both on the biomass allocation of the seedlings and on the microbial species composition. The amount of carbon allocated belowground was much higher in the seedlings exposed to drought compared to the control seedlings. The seedlings seemed to adapt their carbon allocation to long-term drought to sustain adequate needle biomass and water uptake. The seedlings also adapted their osmotic potential and photosynthesis capacity to sustain the long-term drought as was indicated by the measurements of osmotic potential and photosynthetic light response.
NASA Astrophysics Data System (ADS)
Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.
2014-12-01
The partitioning of photosynthates toward biomass compartments plays a crucial role in the carbon (C) sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought-prone forests. We analyzed the fate of gross primary production (GPP) in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Carbon fluxes between the ecosystem and the atmosphere were measured with an eddy covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns, and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy covariance fluxes with annual net primary productions (NPP), we managed to close a C budget and derive values of autotrophic, heterotrophic respirations and carbon-use efficiency (CUE; the ratio between NPP and GPP). Average values of yearly net ecosystem production (NEP), GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding aboveground net primary production (ANPP) components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems, respectively. NEP, GPP and Reco were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected - the stem growth - to the least affected - the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease less drastically in response to drought than GPP and NPP did, probably due to drought acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem, and they highlight the value of maintaining continuous experimental measurements over the long term.
NASA Astrophysics Data System (ADS)
Ouimette, A.; Ollinger, S. V.; Hobbie, E. A.; Lepine, L. C.; Stephens, R.; Rowe, R.; Vadeboncoeur, M. A.; Tumber-Davila, S. J.
2017-12-01
Species composition and resource availability exert a strong influence on the dynamics of carbon allocation among different forest ecosystem components. Recent work in temperate forests has highlighted a tradeoff between carbon allocation to aboveground woody tissues (access to light), and belowground to fine roots (access to soil nutrients). Although root-associated mycorrhizal fungi are crucial for N acquisition and can receive 20% or more of annual net primary production, most studies fail to explicitly include carbon allocation to mycorrhizal fungi. In part, this is due to the inherent difficulties in accurately quantifying fungal production. We took several approaches to quantify production of mycorrhizal fungi, including a carbon budget approach and isotopic techniques. Here we present data on patterns of carbon allocation to aboveground (wood and foliar production), and belowground components (production of fine roots and mycorrhizal fungi), across temperate forest stands spanning a range of nitrogen availability and species composition. We found that as the proportion of conifer species decreased, and stand nitrogen availability increased, both the absolute amount and the fraction of net primary production increased for foliage, aboveground wood, and fine roots ("a rising tide lifts all boats"). While allocation to plant pools increased, allocation to mycorrhizal fungi significantly decreased with decreasing conifer dominance and increasing soil nitrogen availability. We did not find a strong trade-off between carbon allocation to fine roots and aboveground wood or foliage. Instead, a negative relationship is seen between allocation to mycorrhizal fungi and other plant pools. Effort to estimate carbon allocation to mycorrhizal fungi is important for gaining a more complete understanding of how ecosystems respond to changes in growth-limiting resources.
Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.
2014-01-01
Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351
NASA Astrophysics Data System (ADS)
Reyes, J. J.; Tague, C.; Choate, J. S.; Adam, J. C.
2014-12-01
More than one-third of the United States' land cover is comprised of rangelands, which support both forage production and livestock grazing. For grasses in both semi-arid and humid environments, small changes in precipitation and temperature, as well as grazing, can have disproportionately larger impacts on ecosystem processes. For example, these areas may experience large response pulses under highly variable precipitation and other potential future changes. The ultimate goal of this study is to provide information on the interactions between management activities, climate and ecosystem processes to inform sustainable rangeland management. The specific objectives of this paper are to (1) evaluate a new carbon allocation strategy for grasses and (2) test the sensitivity of this improved strategy to changes in climate and grazing strategies. The Regional Hydro-ecologic Simulation System (RHESSys) is a process-based, watershed-scale model that simulates hydrology and biogeochemical cycling with dynamic soil and vegetation modules. We developed a new carbon allocation algorithm for partitioning net primary productivity (NPP) between roots and leaves for grasses. The 'hybrid' approach represents a balance between preferential partitioning due to environmental conditions and age-related growth. We evaluated this new allocation scheme at the point-scale at a variety of rangeland sites in the U.S. using observed biomass measurements and against existing allocation schemes used in RHESSys. Additionally, changes in the magnitude, frequency, and intensity of precipitation and temperature were used to assess ecosystem responses using our new allocation scheme. We found that changes in biomass and NPP were generally more sensitive to changes in precipitation than changes in temperature. At more arid sites, larger percent reductions in historic baseline precipitation affected biomass and NPP more negatively. We incorporated grazing impacts through biomass removal. We found that the recovery of grasses to defoliation was governed primarily through the following parameters: (1) the daily to annual allocation of NPP and (2) the fractional storage of carbohydrates. The latter was more appropriate in balancing seasonal patterns of grazing with enough emergency storage of carbon for regrowth.
Whole-plant C allocation priorities: do secondary metabolites and VOCs matter?
NASA Astrophysics Data System (ADS)
Hartmann, Henrik; Huang, Jianbei; Forkelova, Lenka; Behrendt, Thomas; Reichelt, Michael; Hammerbacher, Almuth
2017-04-01
Whole-plant carbon (C) allocation is a critical issue for understanding plant functioning and has been studied for many decades. Plants fix CO2 from the atmosphere and partition the resulting photosynthetic products (carbohydrates) among several functional pools including growth of structural and reproductive biomass, metabolic processes like respiration but also for the synthesis of secondary metabolites promoting defense and communication. Allocation to secondary metabolites is conceptually viewed as a trade-off between growth and defense. Plants either invest carbohydrates to produce biomass which may be lost - at least partially -to herbivory or they increase allocation to secondary metabolites to deter herbivores from consuming existing biomass. While conceptually intuitive, trade-off hypotheses all suffer from one important shortcoming: the whole-plant carbon balance, critical for determining trade-off relationships, is usually unknown. In the research group on Plant Allocation, we manipulate and measure the whole-plant carbon balance in different species and use tracers to investigate carbon fluxes through the plant and into functional allocation pools. Inducing carbon limitation by reducing atmospheric [CO2] allows us to infer allocation priorities. In this presentation I will show several examples of studies on whole-plant carbon allocation patterns in different plant species. These investigations include assessments of different functional pools like growth, storage, secondary metabolites and volatile emissions as well as the underlying phytohormonal patterns and show that allocation to secondary metabolites and volatiles has a high priority in the whole-plant carbon balance.
Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.
de Jong, Sierk; Antonissen, Kay; Hoefnagels, Ric; Lonza, Laura; Wang, Michael; Faaij, André; Junginger, Martin
2017-01-01
The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Fischer-Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86-104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77-80%) and sugarcane- (71-75%) and corn stover-based Alcohol-to-Jet (60-75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity). Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products.
Christian P. Giardina; Michael G. Ryan
2002-01-01
Trees allocate a large portion of gross primary production belowground for the production and maintenance of roots and mycorrhizae. The difficulty of directly measuring total belowground carbon allocation (TBCA) has limited our understanding of belowground carbon (C) cycling and the factors that control this important flux. We measured TBCA over 4 years using a...
Wagner, Heiko; Jakob, Torsten; Fanesi, Andrea; Wilhelm, Christian
2017-09-05
In microalgae, the photosynthesis-driven CO 2 assimilation delivers cell building blocks that are used in different biosynthetic pathways. Little is known about how the cell regulates the subsequent carbon allocation to, for example, cell growth or for storage. However, knowledge about these regulatory mechanisms is of high biotechnological and ecological importance. In diatoms, the situation becomes even more complex because, as a consequence of their secondary endosymbiotic origin, the compartmentation of the pathways for the primary metabolic routes is different from green algae. Therefore, the mechanisms to manipulate the carbon allocation pattern cannot be adopted from the green lineage. This review describes the general pathways of cellular energy distribution from light absorption towards the final allocation of carbon into macromolecules and summarizes the current knowledge of diatom-specific allocation patterns. We further describe the (limited) knowledge of regulatory mechanisms of carbon partitioning between lipids, carbohydrates and proteins in diatoms. We present solutions to overcome the problems that hinder the identification of regulatory elements of carbon metabolism.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).
Kölling, Katharina; Thalmann, Matthias; Müller, Antonia; Jenny, Camilla; Zeeman, Samuel C
2015-10-01
Plant growth involves the coordinated distribution of carbon resources both towards structural components and towards storage compounds that assure a steady carbon supply over the complete diurnal cycle. We used (14) CO2 labelling to track assimilated carbon in both source and sink tissues. Source tissues exhibit large variations in carbon allocation throughout the light period. The most prominent change was detected in partitioning towards starch, being low in the morning and more than double later in the day. Export into sink tissues showed reciprocal changes. Fewer and smaller changes in carbon allocation occurred in sink tissues where, in most respects, carbon was partitioned similarly, whether the sink leaf assimilated it through photosynthesis or imported it from source leaves. Mutants deficient in the production or remobilization of leaf starch exhibited major alterations in carbon allocation. Low-starch mutants that suffer from carbon starvation at night allocated much more carbon into neutral sugars and had higher rates of export than the wild type, partly because of the reduced allocation into starch, but also because of reduced allocation into structural components. Moreover, mutants deficient in the plant's circadian system showed considerable changes in their carbon partitioning pattern suggesting control by the circadian clock. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
De Kauwe, Martin G; Medlyn, Belinda E; Zaehle, Sönke; Walker, Anthony P; Dietze, Michael C; Wang, Ying-Ping; Luo, Yiqi; Jain, Atul K; El-Masri, Bassil; Hickler, Thomas; Wårlind, David; Weng, Ensheng; Parton, William J; Thornton, Peter E; Wang, Shusen; Prentice, I Colin; Asao, Shinichi; Smith, Benjamin; McCarthy, Heather R; Iversen, Colleen M; Hanson, Paul J; Warren, Jeffrey M; Oren, Ram; Norby, Richard J
2014-01-01
Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to evaluate representations of allocation and turnover in 11 ecosystem models. Observed eCO2 effects on allocation were dynamic. Allocation schemes based on functional relationships among biomass fractions that vary with resource availability were best able to capture the general features of the observations. Allocation schemes based on constant fractions or resource limitations performed less well, with some models having unintended outcomes. Few models represent turnover processes mechanistically and there was wide variation in predictions of tissue lifespan. Consequently, models did not perform well at predicting eCO2 effects on vegetation carbon storage. Our recommendations to reduce uncertainty include: use of allocation schemes constrained by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and turnover data in terms of model parameters. Data from intensively studied ecosystem manipulation experiments are invaluable for constraining models and we recommend that such experiments should attempt to fully quantify carbon, water and nutrient budgets. PMID:24844873
Effects of prolonged drought stress on Scots pine seedling carbon allocation.
Aaltonen, Heidi; Lindén, Aki; Heinonsalo, Jussi; Biasi, Christina; Pumpanen, Jukka
2017-04-01
As the number of drought occurrences has been predicted to increase with increasing temperatures, it is believed that boreal forests will become particularly vulnerable to decreased growth and increased tree mortality caused by the hydraulic failure, carbon starvation and vulnerability to pests following these. Although drought-affected trees are known to have stunted growth, as well as increased allocation of carbon to roots, still not enough is known about the ways in which trees can acclimate to drought. We studied how drought stress affects belowground and aboveground carbon dynamics, as well as nitrogen uptake, in Scots pine (Pinus sylvestris L.) seedlings exposed to prolonged drought. Overall 40 Scots pine seedlings were divided into control and drought treatments over two growing seasons. Seedlings were pulse-labelled with 13CO2 and litter bags containing 15N-labelled root biomass, and these were used to follow nutrient uptake of trees. We determined photosynthesis, biomass distribution, root and rhizosphere respiration, water potential, leaf osmolalities and carbon and nitrogen assimilation patterns in both treatments. The photosynthetic rate of the drought-induced seedlings did not decrease compared to the control group, the maximum leaf specific photosynthetic rate being 0.058 and 0.045 µmol g-1 s-1 for the drought and control treatments, respectively. The effects of drought were, however, observed as lower water potentials, increased osmolalities as well as decreased growth and greater fine root-to-shoot ratio in the drought-treated seedlings. We also observed improved uptake of labelled nitrogen from soil to needles in the drought-treated seedlings. The results indicate acclimation of seedlings to long-term drought by aiming to retain sufficient water uptake with adequate allocation to roots and root-associated mycorrhizal fungi. The plants seem to control water potential with osmolysis, for which sufficient photosynthetic capability is needed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
EFFECTS OF CARBON DIOXIDE AND OZONE ON GROWTH AND BIOMASS ALLOCATION IN PINUS PONDEROSA
The future productivity of forests will be affected by combinations of elevated atmospheric CO2 and O3. Because productivity of forests will, in part, be determined by growth of young trees, we evaluated shoot growth and biomass responses of Pinus ponderosa seedlings exposed to ...
Jose Luiz Stape; Dan Binkley; Michael G. Ryan
2008-01-01
We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (...
Christian P. Giardina; Michael G. Ryan; Dan Binkley; Dan Binkley; James H. Fownes
2003-01-01
Nutrient supply commonly limits aboveground plant productivity in forests, but the effects of an altered nutrient supply on gross primary production (GPP) and patterns of carbon (C) allocation remain poorly characterized. Increased nutrient supply may lead to a higher aboveground net primary production (ANPP), but a lower total belowground carbon allocation (TBCA),...
The response of belowground carbon allocation in forests to global change
Christian P. Giardina; Mark Coleman; Dan Binkley; Jessica Hancock; John S. King; Erik Lilleskov; Wendy M. Loya; Kurt S. Pregitzer; Michael G. Ryan; Carl Trettin
2005-01-01
Belowground carbon allocation (BCA) in forests regulates soil organic matter formation and influences biotic and abiotic properties of soil such as bulk density, cation exchange capacity, and water holding capacity. On a global scale, the total quantity of carbon allocated belowground by terrestrial plants is enormous, exceeding by an order of magnitude the quantity of...
Carbon allocation to root and shoot systems of woody plants
Mark D. Coleman; J.G. Isebrands
1994-01-01
Carbon allocation to roots is of widespread and increasing interest due to a growing appreciation of the importance of root processes to whole-plant physiology and plant productivity. Carbon (C) allocation commonly refers to the distribution of C among plant organs (e.g., leaves, stems, roots); however, the term also applies to functional categories within organs such...
Wang, Xianzhong; Taub, Daniel R; Jablonski, Leanne M
2015-04-01
Reproduction is an important life history trait that strongly affects dynamics of plant populations. Although it has been well documented that elevated carbon dioxide (CO2) in the atmosphere greatly enhances biomass production in plants, the overall effect of elevated CO2 on reproductive allocation (RA), i.e., the proportion of biomass allocated to reproductive structures, is little understood. We combined meta-analysis with graphical vector analysis to examine the overall effect of elevated CO2 on RA and how other environmental factors, such as low nutrients, drought and elevated atmospheric ozone (O3), interacted with elevated CO2 in affecting RA in herbaceous plants. Averaged across all species of different functional groups and environmental conditions, elevated CO2 had little effect on RA (-0.9%). RA in plants of different reproductive strategies and functional groups, however, differed in response to elevated CO2. For example, RA in iteroparous wild species decreased by 8%, while RA in iteroparous crops increased significantly (+14%) at elevated CO2. RA was unaffected by CO2 in plants grown with no stress or in low-nutrient soils. RA decreased at elevated CO2 and elevated O3, but increased in response to elevated CO2 in drought-stressed plants, suggesting that elevated CO2 could ameliorate the adverse effect of drought on crop production to some extent. Our results demonstrate that elevated CO2 and other global environmental changes have the potential to greatly alter plant community composition through differential effects on RA of different plant species and thus affect the dynamics of natural and agricultural ecosystems in the future.
Available fuel dynamics in nine contrasting forest ecosystems in North America
Soung-Ryoul Ryu; Jiquan Chen; Thomas R. Crow; Sari C. Saunders
2004-01-01
Available fuel and its dynamics, both of which affect fire behavior in forest ecosystems, are direct products of ecosystem production, decomposition, and disturbances. Using published ecosystem models and equations, we developed a simulation model to evaluate the effects of dynamics of aboveground net primary production (ANPP), carbon allocation, residual slash,...
Kölling, Katharina; Thalmann, Matthias; Müller, Antonia; Jenny, Camilla; Zeeman, Samuel C
2015-01-01
Abstract Plant growth involves the coordinated distribution of carbon resources both towards structural components and towards storage compounds that assure a steady carbon supply over the complete diurnal cycle. We used 14CO2 labelling to track assimilated carbon in both source and sink tissues. Source tissues exhibit large variations in carbon allocation throughout the light period. The most prominent change was detected in partitioning towards starch, being low in the morning and more than double later in the day. Export into sink tissues showed reciprocal changes. Fewer and smaller changes in carbon allocation occurred in sink tissues where, in most respects, carbon was partitioned similarly, whether the sink leaf assimilated it through photosynthesis or imported it from source leaves. Mutants deficient in the production or remobilization of leaf starch exhibited major alterations in carbon allocation. Low-starch mutants that suffer from carbon starvation at night allocated much more carbon into neutral sugars and had higher rates of export than the wild type, partly because of the reduced allocation into starch, but also because of reduced allocation into structural components. Moreover, mutants deficient in the plant’s circadian system showed considerable changes in their carbon partitioning pattern suggesting control by the circadian clock. This work focusses on the temporal changes in the allocation and transport of photoassimilates within Arabidopsis rosettes, helping to fill a gap in our understanding of plant growth. Using short pulses of 14C-labelled carbon dioxide, we quantified how much carbon is used for growth and how much is stored as starch for use at night. In source leaves, partitioning is surprisingly dynamic during the day, even though photosynthesis is relatively constant, while in sink leaves, utilisation is more constant. Furthermore, by analysing metabolic mutants and clock mutants, and by manipulating the growth conditions, we show that partitioning is responsive to endogenous signals such as carbon starvation and the plant’s circadian rhythm. Commentary: Understanding carbon partitioning and its role in determining plant growth PMID:25651812
QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions
Li, Ling; Zheng, Wenguang; Zhu, Yanbing; Ye, Huaxun; Tang, Buyun; Arendsee, Zebulun W.; Jones, Dallas; Li, Ruoran; Ortiz, Diego; Zhao, Xuefeng; Du, Chuanlong; Nettleton, Dan; Scott, M. Paul; Salas-Fernandez, Maria G.; Yin, Yanhai; Wurtele, Eve Syrkin
2015-01-01
The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance. PMID:26554020
QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions.
Li, Ling; Zheng, Wenguang; Zhu, Yanbing; Ye, Huaxun; Tang, Buyun; Arendsee, Zebulun W; Jones, Dallas; Li, Ruoran; Ortiz, Diego; Zhao, Xuefeng; Du, Chuanlong; Nettleton, Dan; Scott, M Paul; Salas-Fernandez, Maria G; Yin, Yanhai; Wurtele, Eve Syrkin
2015-11-24
The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua-Quine Starch; At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates metabolic processes affecting carbon and nitrogen partitioning among proteins and carbohydrates, modulating leaf and seed composition in Arabidopsis and soybean. Here the universality of QQS function in modulating carbon and nitrogen allocation is exemplified by a series of transgenic experiments. We show that ectopic expression of QQS increases soybean protein independent of the genetic background and original protein content of the cultivar. Furthermore, transgenic QQS expression increases the protein content of maize, a C4 species (a species that uses 4-carbon photosynthesis), and rice, a protein-poor agronomic crop, both highly divergent from Arabidopsis. We determine that QQS protein binds to the transcriptional regulator AtNF-YC4 (Arabidopsis nuclear factor Y, subunit C4). Overexpression of AtNF-YC4 in Arabidopsis mimics the QQS-overexpression phenotype, increasing protein and decreasing starch levels. NF-YC, a component of the NF-Y complex, is conserved across eukaryotes. The NF-YC4 homologs of soybean, rice, and maize also bind to QQS, which provides an explanation of how QQS can act in species where it does not occur endogenously. These findings are, to our knowledge, the first insight into the mechanism of action of QQS in modulating carbon and nitrogen allocation across species. They have major implications for the emergence and function of orphan genes, and identify a nontransgenic strategy for modulating protein levels in crop species, a trait of great agronomic significance.
Dong, Jinlong; Xu, Qiao; Gruda, Nazim; Chu, Wenying; Li, Xun; Duan, Zengqiang
2018-02-25
Elevated carbon dioxide (CO 2 ) and nitrogen (N) availability can interactively promote cucumber yield, but how the yield increase is realized remains unclear, whilst the interactive effects on fruit quality are unknown. In this study, cucumber plants (Cucumis sativus L. cv. Jinmei No. 3) were grown in a paddy soil under three CO 2 concentrations - 400 (ambient CO 2 ), 800 (elevated CO 2 , eCO 2 ) and 1200 µmol mol -1 (super-elevated CO 2 ) - and two N applications - 0.06 (low N) and 0.24 g N kg -1 soil (high N). Compared with ambient CO 2 , eCO 2 increased yield by 106% in high N but the increase in total biomass was only 33%. This can result from greater carbon translocation to fruits from other organs, indicated by the increased biomass allocation from stems and leaves, particularly source leaves, to fruits and the decreased concentrations of fructose and glucose in source leaves. Super-elevated CO 2 reduced the carbon allocation to fruits thus yield increase (71%). Additionally, eCO 2 also increased the concentrations of fructose and glucose in fruits, maintained the concentrations of dietary fiber, phosphorus, potassium, calcium, magnesium, sulfur, manganese, copper, molybdenum and sodium, whilst it decreased the concentrations of nitrate, protein, iron, and zinc in high N. Compared with eCO 2 , super-elevated CO 2 can still improve the fruit quality to some extent in low N availability. Elevated CO 2 promotes cucumber yield largely by carbon allocation from source leaves to fruits in high N availability. Besides a dilution effect, carbon allocation to fruits, carbohydrate transformation, and nutrient uptake and assimilation can affect the fruit quality. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Allocation and simulation study of carbon emission quotas among China's provinces in 2020.
Zhou, Xing; Guan, Xueling; Zhang, Ming; Zhou, Yao; Zhou, Meihua
2017-03-01
China will form its carbon market in 2017 to focus on the allocation of regional carbon emission quota in order to cope with global warming. The rationality of the regional allocation has become an important consideration for the government in ensuring stable growth in different regions that are experiencing disparity in resource endowment and economic status. Based on constructing the quota allocation indicator system for carbon emission, the emission quota for each province in different scenarios and schemes in 2020 is simulated by the multifactor hybrid weighted Shannon entropy allocation model. The following conclusions are drawn: (1) The top 5 secondary-level indicators that influence provincial quota allocation in weight are as follows: per capita energy consumption, openness, per capita carbon emission, per capita disposable income, and energy intensity. (2) The ratio of carbon emission in 2020 is different from that in 2013 in many scenarios, and the variation is scenario 2 > scenario 1 > scenario 3, with Hubei and Guangdong the provinces with the largest increase and decrease ratios, respectively. (3) In the same scenario, the quota allocation varies in different reduction criteria emphases; if the government emphasizes reduction efficiency, scheme 1 will show obvious adjustment, that is, Hunan, Hubei, Guizhou, and Yunnan will have the largest decrease. The amounts are 4.28, 8.31, 4.04, and 5.97 million tons, respectively.
NASA Astrophysics Data System (ADS)
Wegener, Frederik; Beyschlag, Wolfram; Werner, Christiane
2014-05-01
Carbon allocation strategies differ clearly between functional plant groups (e.g. grasses, shrubs and trees) and to a lesser extent between different species of the same functional group. However, little is known about the plasticity of carbon allocation within the same species. To investigate the variability of carbon (C) allocation, we induced different allocation pattern in the Mediterranean shrub Halimium halimifolium by changing growing conditions (light and nutrition) and followed the plant development for 15 months. We analyzed morphological and physiological traits, and changes in C allocation and δ13C values in seven tissue classes: 1st generation leaves, 2nd generation leaves, emerging leaves, lateral shoots, stem, main roots and fine roots. We used a soil/canopy chamber system that enables independent measurements of above and belowground δ13CO2-exchange, enabling total estimates of carbon gain during photosynthesis and the carbon loss during respiration on a whole plant level. Moreover, we followed the fate of recently assimilated carbon in all plant tissues by 13CO2 pulse labeling for 13 days. A reduction of light (Low L treatment) increased allocation to stems by 84% and the specific leaf area (SLA) by 29%, compared to control. Reduced nutrient availability (Low N treatment) enhanced carbon allocation into fine roots by 57%. We found high intraspecific variability in turnover times of C pools. The Low N treatment enhanced transport of recently assimilated C from leaves to roots in quantity (22% compared to 7% in control plants) and velocity (13C peak in main roots after 5h compared to 18h in control). The treatments differed also in fractions of 13C recovered within leaves: 48%, 28% and 41% of 13C from labeling were found after 13 days in leaves of control, Low N, and Low L, respectively. Through the combination of natural carbon isotope analysis, 13CO2 labeling and whole-plant chamber measurements we obtained information about long and short-term C allocation to different tissues and respiration. The results give valuable new information to understand the total plant C balance and to characterize its intraspecific variability due to environmental factors.
Persson, Inga-Lill; Nilsson, Mats B; Pastor, John; Eriksson, Tobias; Bergström, Roger; Danell, Kjell
2009-10-01
Large herbivores can affect the carbon cycle in boreal forests by changing productivity and plant species composition, which in turn could ultimately alter litter production, nutrient cycling, and the partitioning between aboveground and belowground allocation of carbon. Here we experimentally tested how moose (Alces alces) at different simulated population densities affected belowground respiration rates (estimated as CO2 flux) in young boreal forest stands situated along a site productivity gradient. At high simulated population density, moose browsing considerably depressed belowground respiration rates (24-56% below that of no-moose controls) except during June, where the difference only was 10%. Moose browsing depressed belowground respiration the most on low-productivity sites. Soil moisture and temperature did not affect respiration rates. Impact of moose on belowground respiration was closely linked to litter production and followed Michaelis-Menten dynamics. The main mechanism by which moose decrease belowground respiration rates is likely their effect on photosynthetic biomass (especially decreased productivity of deciduous trees) and total litter production. An increased productivity of deciduous trees along the site productivity gradient causes an unequal effect of moose along the same gradient. The rapid growth of deciduous trees may offer higher resilience against negative effects of moose browsing on litter production and photosynthate allocation to roots.
Wu, Jianbo; Hong, Jiangtao; Wang, Xiaodan; Sun, Jian; Lu, Xuyang; Fan, Jihui; Cai, Yanjiang
2013-01-01
Alpine steppe is considered to be the largest grassland type on the Tibetan Plateau. This grassland contributes to the global carbon cycle and is sensitive to climate changes. The allocation of biomass in an ecosystem affects plant growth and the overall functioning of the ecosystem. However, the mechanism by which plant biomass is allocated on the alpine steppe remains unclear. In this study, biomass allocation and its relationship to environmental factors on the alpine grassland were studied by a meta-analysis of 32 field sites across the alpine steppe of the northern Tibetan Plateau. We found that there is less above-ground biomass (M A ) and below-ground biomass (M B ) in the alpine steppe than there is in alpine meadows and temperate grasslands. By contrast, the root-to-shoot ratio (R:S) in the alpine steppe is higher than it is in alpine meadows and temperate grasslands. Although temperature maintained the biomass in the alpine steppe, precipitation was found to considerably influence M A , M B , and R:S, as shown by ordination space partitioning. After standardized major axis (SMA) analysis, we found that allocation of biomass on the alpine steppe is supported by the allometric biomass partitioning hypothesis rather than the isometric allocation hypothesis. Based on these results, we believe that M A and M B will decrease as a result of the increased aridity expected to occur in the future, which will reduce the landscape's capacity for carbon storage.
Carbon limitation reveals allocation priority to defense compounds in peppermint
NASA Astrophysics Data System (ADS)
Forkelova, Lenka; Unsicker, Sybille; Forkel, Matthias; Huang, Jianbei; Trumbore, Susan; Hartmann, Henrik
2016-04-01
Studies of carbon partitioning during insect or pathogen infestation reveal high carbon investment into induced chemical defenses to deter the biotic agent (Baldwin, 1998). However, little is known how carbon investment into chemical defenses changes under abiotic stress such as drought. Drought forces plants to close their stomata to prevent water loss through transpiration while decreasing the amount of assimilated carbon. Furthermore drought hampers carbohydrates translocation due to declining plant hydration and reduced phloem functioning (McDowell, 2011; Hartmann et al., 2013; Sevanto, 2014). Hence long lasting drought can force plants into carbon starvation. The aim of our study was to disentangle carbon allocation priorities between growth, maintenance metabolism, storage and production of defense compounds under carbon limiting conditions using peppermint as our model plant. Drought is not the only method how to manipulate plant carbon metabolism and photosynthetic yield. Exposing plants to reduced [CO2] air is a promising tool simulating drought induced carbon limitation without affecting phloem functioning and so carbohydrate translocation (Hartmann et al., 2015). We exposed peppermint plants to drought (50% of the control irrigation) and to low [CO2] (progressive decrease from 350 ppm to 20 ppm) to disentangle hydraulic failure from carbon starvation effects on carbon allocation. Drought was applied as a cross-treatment yielding four treatments: watered and high [CO2] (W+CO2), drought and high [CO2] (D+CO2), water and low [CO2] (W-CO2), drought and low [CO2] (D-CO2). We analyzed the most abundant terpenoid defense compounds (α-Pinene, sabinene, myrcene, limonene, menthone, menthol and pulegone) and used continuous 13CO2 labelling to trace allocation pattern of new and old assimilated carbon in the four carbon sinks (structural biomass, water soluble sugars, starch and terpenoid defense compounds) in young expanding leaf tissue. This leaf tissue grew after the start of treatments and after the onset of the 13CO2 labelling. Under the control treatment (W+CO2) the relative proportion of new carbon in the four carbon sinks was very similar whereas under the three stress treatments (D+CO2, W-CO2, D-CO2) new carbon was preferentially invested into terpenoid defense compounds. This indicates that also under abiotic stress plants need to invest carbon into defense and so protect immature leaf tissue to secure long-term photosynthetic activity (Massad et al., 2014). Even though the concentration of water soluble sugars under both low [CO2] treatments dramatically dropped, concentration of terpenoid compounds correspondingly change only under the combination of drought and low [CO2] (D-CO2), which was the harshest treatment. Drought alone (D+CO2) caused high investment of old carbon and concentration increase of water soluble sugars as well as starch compared to other treatments. This carbohydrates increase could be explained by the use of water soluble sugars as osmoprotectants (Dichio et al.,2009) and by the fast growth decline as the main carbon sink (Muller et al., 2011).
Carbon allocation and partitioning in aspen clones varying in sensitivity to tropospheric ozone
M.D. Coleman; R.E. Dickson; J.G. Isebrands; D.F. Karnosky
1995-01-01
Clones of aspen (Populus tremuloides Michx.) were identified that differ in biomass production in response to O3exposure. 14Carbon tracer studies were used to determine if the differences in biomass response were linked to shifts in carbon allocation and carbon partitioning patterns. Rooted cuttings from...
Rate of Belowground Carbon Allocation Differs with Successional Habit of Two Afromontane Trees
Shibistova, Olga; Yohannes, Yonas; Boy, Jens; Richter, Andreas; Wild, Birgit; Watzka, Margarethe; Guggenberger, Georg
2012-01-01
Background Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO2 efflux is crucial for addressing the carbon footprint of creeping degradation. Methodology We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree 13CO2 pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO2. Further, we quantified the overall losses of assimilated 13C with soil CO2 efflux. Principal Findings 13C in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO2 efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO2 efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. Conclusions Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e.g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run. PMID:23049813
Rate of belowground carbon allocation differs with successional habit of two afromontane trees.
Shibistova, Olga; Yohannes, Yonas; Boy, Jens; Richter, Andreas; Wild, Birgit; Watzka, Margarethe; Guggenberger, Georg
2012-01-01
Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO(2) efflux is crucial for addressing the carbon footprint of creeping degradation. We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree (13)CO(2) pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO(2). Further, we quantified the overall losses of assimilated (13)C with soil CO(2) efflux. (13)C in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO(2) efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO(2) efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e.g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.
Tree- Rings Link Climate and Carbon Storage in a Northern Mixed Hardwood Forest
NASA Astrophysics Data System (ADS)
Chiriboga, A.
2007-12-01
The terrestrial biosphere is a variable sink for atmospheric carbon dioxide. It is important to understand how carbon storage in trees is affected by natural climate variability to better characterize the sink. Quantifying the sensitivity of forest carbon storage to climate will improve carbon budgets and have implications for forest management practices. Here we explore how climate variability affects the ability of a northern mixed hardwood forest in Michigan to sequester atmospheric carbon dioxide in woody tissues. This site is ideal for studies of carbon sequestration; The University of Michigan Biological Station is an Ameriflux site, and has detailed meteorological and biometric records, as well as CO2 flux data. We have produced an 82- year aspen (Populus grandidentata) tree-ring chronology for this site, and measured ring widths at several heights up the bole. These measurements were used to estimate annual wood volume, which represents carbon allocated to aboveground carbon stores. Standard dendroclimatological techniques are used to identify environmental factors (e.g. temperature or precipitation) that drive tree-ring increment variability in the past century, and therefore annual carbon storage in this forest. Preliminary results show that marker years within the tree- ring chronology correspond with years that have cold spring temperatures. This suggests that trees at this site are temperature sensitive.
GENOME-ENABLED DISCOVERY OF CARBON SEQUESTRATION GENES IN POPLAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
DAVIS J M
2007-10-11
Plants utilize carbon by partitioning the reduced carbon obtained through photosynthesis into different compartments and into different chemistries within a cell and subsequently allocating such carbon to sink tissues throughout the plant. Since the phytohormones auxin and cytokinin are known to influence sink strength in tissues such as roots (Skoog & Miller 1957, Nordstrom et al. 2004), we hypothesized that altering the expression of genes that regulate auxin-mediated (e.g., AUX/IAA or ARF transcription factors) or cytokinin-mediated (e.g., RR transcription factors) control of root growth and development would impact carbon allocation and partitioning belowground (Fig. 1 - Renewal Proposal). Specifically, themore » ARF, AUX/IAA and RR transcription factor gene families mediate the effects of the growth regulators auxin and cytokinin on cell expansion, cell division and differentiation into root primordia. Invertases (IVR), whose transcript abundance is enhanced by both auxin and cytokinin, are critical components of carbon movement and therefore of carbon allocation. Thus, we initiated comparative genomic studies to identify the AUX/IAA, ARF, RR and IVR gene families in the Populus genome that could impact carbon allocation and partitioning. Bioinformatics searches using Arabidopsis gene sequences as queries identified regions with high degrees of sequence similarities in the Populus genome. These Populus sequences formed the basis of our transgenic experiments. Transgenic modification of gene expression involving members of these gene families was hypothesized to have profound effects on carbon allocation and partitioning.« less
von Rein, I; Kayler, Z E; Premke, K; Gessler, A
2016-11-01
With the projected increase in drought duration and intensity in future, small water bodies, and especially the terrestrial-aquatic interfaces, will be subjected to longer dry periods with desiccation of the sediment. Drought effects on the plant-sediment microorganism carbon continuum may disrupt the tight linkage between plants and microbes which governs sediment carbon and nutrient cycling, thus having a potential negative impact on carbon sequestration of small freshwater ecosystems. However, research on drought effects on the plant-sediment carbon transfer in aquatic ecosystems is scarce. We therefore exposed two emergent aquatic macrophytes, Phragmites australis and Typha latifolia, to a month-long summer drought in a mesocosm experiment. We followed the fate of carbon from leaves to sediment microbial communities with 13 CO 2 pulse labelling and microbial phospholipid-derived fatty acid (PLFA) analysis. We found that drought reduced the total amount of carbon allocated to stem tissues but did not delay the transport. We also observed an increase in accumulation of 13 C-labelled sugars in roots and found a reduced incorporation of 13 C into the PLFAs of sediment microorganisms. Drought induced a switch in plant carbon allocation priorities, where stems received less new assimilates leading to reduced starch reserves whilst roots were prioritised with new assimilates, suggesting their use for osmoregulation. There were indications that the reduced carbon transfer from roots to microorganisms was due to the reduction of microbial activity via direct drought effects rather than to a decrease in root exudation or exudate availability. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability
DeAngelis, Donald L.; Ju, Shu; Liu, Rongsong; Bryant, John P.; Gourley, Stephen A.
2012-01-01
We use modeling to determine the optimal relative plant carbon allocations between foliage, fine roots, anti-herbivore defense, and reproduction to maximize reproductive output. The model treats these plant components and the herbivore compartment as variables. Herbivory is assumed to be purely folivory. Key external factors include nutrient availability, degree of shading, and intensity of herbivory. Three alternative functional responses are used for herbivory, two of which are variations on donor-dependent herbivore (models 1a and 1b) and one of which is a Lotka–Volterra type of interaction (model 2). All three were modified to include the negative effect of chemical defenses on the herbivore. Analysis showed that, for all three models, two stable equilibria could occur, which differs from most common functional responses when no plant defense component is included. Optimal strategies of carbon allocation were defined as the maximum biomass of reproductive propagules produced per unit time, and found to vary with changes in external factors. Increased intensity of herbivory always led to an increase in the fractional allocation of carbon to defense. Decreases in available limiting nutrient generally led to increasing importance of defense. Decreases in available light had little effect on defense but led to increased allocation to foliage. Decreases in limiting nutrient and available light led to decreases in allocation to reproduction in models 1a and 1b but not model 2. Increases in allocation to plant defense were usually accompanied by shifts in carbon allocation away from fine roots, possibly because higher plant defense reduced the loss of nutrients to herbivory.
Guillemette, François; Leigh McCallister, S; Del Giorgio, Paul A
2016-06-01
Here we explore strategies of resource utilization and allocation of algal versus terrestrially derived carbon (C) by lake bacterioplankton. We quantified the consumption of terrestrial and algal dissolved organic carbon, and the subsequent allocation of these pools to bacterial growth and respiration, based on the δ(13)C isotopic signatures of bacterial biomass and respiratory carbon dioxide (CO2). Our results confirm that bacterial communities preferentially remove algal C from the terrestrially dominated organic C pool of lakes, but contrary to current assumptions, selectively allocate this autochthonous substrate to respiration, whereas terrestrial C was preferentially allocated to biosynthesis. The results provide further evidence of a mechanism whereby inputs of labile, algal-derived organic C may stimulate the incorporation of a more recalcitrant, terrestrial C pool. This mechanism resulted in a counterintuitive pattern of high and relatively constant levels of allochthony (~76%) in bacterial biomass across lakes that otherwise differ greatly in productivity and external inputs.
Guillemette, François; Leigh McCallister, S; del Giorgio, Paul A
2016-01-01
Here we explore strategies of resource utilization and allocation of algal versus terrestrially derived carbon (C) by lake bacterioplankton. We quantified the consumption of terrestrial and algal dissolved organic carbon, and the subsequent allocation of these pools to bacterial growth and respiration, based on the δ13C isotopic signatures of bacterial biomass and respiratory carbon dioxide (CO2). Our results confirm that bacterial communities preferentially remove algal C from the terrestrially dominated organic C pool of lakes, but contrary to current assumptions, selectively allocate this autochthonous substrate to respiration, whereas terrestrial C was preferentially allocated to biosynthesis. The results provide further evidence of a mechanism whereby inputs of labile, algal-derived organic C may stimulate the incorporation of a more recalcitrant, terrestrial C pool. This mechanism resulted in a counterintuitive pattern of high and relatively constant levels of allochthony (~76%) in bacterial biomass across lakes that otherwise differ greatly in productivity and external inputs. PMID:26623544
Introduction to the invited issue on carbon allocation of trees and forests
Daniel Epron; Yann Nouvellon; Michael G. Ryan
2012-01-01
Carbon (C) allocation is a major issue in plant ecology, controlling the flows of C fixed in photosynthesis between respiration and biomass production, and between short- and long-lived and aboveground and belowground tissues. Incomplete knowledge of C allocation currently hinders accurate modelling of tree growth and forest ecosystem metabolism (Friedlingstein et al....
Carbon allocation and nitrogen acquisition in a developing Populus deltoides plantation
Mark D. Coleman; Christel C. Kern
2004-01-01
We established Populus deltoides Bartr. stands differing in nitrogen (N) availability and tested if: (1) N-induced carbon (C) allocation could be explained by developmental allocation controls; and (2) N uptake per unit root mass, i.e., specific N-uptake rate, increased with N availability. Closely spaced (1 x 1 m) stands were treated with 50, 100...
Dong, Shaoyun; Zhang, Joshua; Beckles, Diane M
2018-06-18
Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14 C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14 C to maintain sugar levels under stress, primarily by reducing 14 C into the storage compounds in the source leaf, and decreasing 14 C into the pools used for growth processes in the roots. Salinity and cold increased 14 C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauffette, Y.
1987-01-01
The coast live oak (Quercus agrifolia Nee) is an evergreen tree species distributed along the coastal range of California. The seasonal photosynthate allocation and leaf chemistry were studied on fifteen oak trees from spring 1982 to spring 1984. Branches of Q. agrifolia were labeled with /sup 14/CO/sub 2/ at monthly intervals, to determine photosynthate allocation to growth and to defensive compounds throughout the year. Labeled leaves were chemically analyzed to determine the activity present in various metabolic fractions (sugar, lipid, starch, phenolic, tannin, protein, organic and amino acid, and cell wall material). The utilization of photosynthate for the different chemicalmore » fractions varied during the seasons. New leaves allocated a significant proportion of carbon to phenolics early in the growing season, whereas later in the season more carbon was allocated to cell wall material. Old leaves maintained more consistent allocation patterns throughout seasons, and a large proportion of carbon was devoted to storage products.« less
Scenarios for low carbon and low water electric power plant ...
In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under
Bloom, A. Anthony; Exbrayat, Jean-François; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew
2016-01-01
The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle and its processes is, therefore, necessary to better understand its current state and predict its future state. We combine a diagnostic ecosystem carbon model with satellite observations of leaf area and biomass (where and when available) and soil carbon data to retrieve the first global estimates, to our knowledge, of carbon cycle state and process variables at a 1° × 1° resolution; retrieved variables are independent from the plant functional type and steady-state paradigms. Our results reveal global emergent relationships in the spatial distribution of key carbon cycle states and processes. Live biomass and dead organic carbon residence times exhibit contrasting spatial features (r = 0.3). Allocation to structural carbon is highest in the wet tropics (85–88%) in contrast to higher latitudes (73–82%), where allocation shifts toward photosynthetic carbon. Carbon use efficiency is lowest (0.42–0.44) in the wet tropics. We find an emergent global correlation between retrievals of leaf mass per leaf area and leaf lifespan (r = 0.64–0.80) that matches independent trait studies. We show that conventional land cover types cannot adequately describe the spatial variability of key carbon states and processes (multiple correlation median = 0.41). This mismatch has strong implications for the prediction of terrestrial carbon dynamics, which are currently based on globally applied parameters linked to land cover or plant functional types. PMID:26787856
Age, allocation and availability of nonstructural carbon in mature red maple trees
Mariah S. Carbone; Claudia I. Czimczik; Trevor F. Keenan; Paula F. Murakami; Neil Pederson; Paul G. Schaberg; Xiaomei Xu; Andrew D. Richardson
2013-01-01
The allocation of nonstructural carbon (NSC) to growth, metabolism and storage remains poorly understood, but is critical for the prediction of stress tolerance and mortality.We used the radiocarbon (14C) ‘bomb spike’ as a tracer of substrate and age of carbon in stemwood NSC, CO2 emitted by stems, tree...
Eric A. Kuehler; Mary Anne Sword Sayer; James D. Haywood; C. Dan Andries
2004-01-01
Depending on the season and intensity of fire, as well as the phenology of foliage and new root growth, fire may damage foliage, and subsequently decrease whole-crown carbon fixation and allocation to the root system. In central Louisiana the authors investigated how season of prescribed burning affects fine-root dynamics, root carbohydrate relations, and leaf area...
Andrew Slack; Jeffrey Kane; Eric Knapp; Rosemary Sherriff
2017-01-01
Many forest ecosystems with a large pine component in the western United States have experienced environmental stress associated with climate change and increased competition with forest densification in the absence of fire. Information on how changes in climate and competition affect carbon allocation to tree growth and defense is needed to anticipate changes to tree...
Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong
2018-03-01
Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed that leaf morphological features of both E. sylvestris and I. henryi affected their corresponding leaf nutrient traits. These results improve our understanding of the dynamic balance between leaf NSCs and leaf C, N and P components in the nutritional metabolism of shade-tolerant plants. Two species of understory shade-tolerant plants responded differently to varying light intensities in terms of leaf non-structural carbohydrate allocation and the utilization of carbon, nitrogen and phosphorus to balance nutritional metabolism and adapt to environmental stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Carbon allocation and nitrogen acquisition in a developing Populus deltoides plantation
Mark D. Coleman; Christel C. Kern
2004-01-01
We established Populus deltoides Bartr. stands differing in nitrogen (N) availability and tested if: (1) N-induced carbon (C) allocation could be explained by develop- mental allocation controls; and (2) N uptake per unit root mass, i.e., specific N-uptake rate, increased with N availability. Closely spaced (1 Ã 1 m) stands were treated with 50, 100 and 200 kg N ha Â...
Estimates of carbon allocation to ectomycorrhizal fungi in a temperate forest
NASA Astrophysics Data System (ADS)
Ouimette, A.; Ollinger, S. V.; Vadeboncoeur, M. A.; Hobbie, E. A.
2012-12-01
The capacity of temperate and boreal forests to grow and sequester carbon (C) is limited by the amount of available nitrogen (N) in soils. While the importance of N to carbon storage is well known, we lack a thorough understanding of the mechanisms of N acquisition and the belowground carbon investment required for trees to compete for N. Resolving these uncertainties is critical for predicting future carbon budgets, given expected changes in climate, N deposition, atmospheric CO2, and tree species distribution. Some of the greatest uncertainties surrounding belowground C-N interactions involve the symbiotic fungi that serve as an interface between trees and various forms of N they acquire. Nearly all temperate and boreal forest trees have associations with one of two types of fungi: ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. Both types of fungi provide trees with soil nitrogen and other nutrients necessary for growth and in return receive carbon (sugars) from trees. Understanding the differences between these fungal groups is important because they differ dramatically in their carbon requirements and in their ability to access different forms of N. ECM fungi have higher carbon demand, more extensive hyphae (fungal roots), and much stronger capabilities to break down soil organic matter than AM fungi. Despite their importance in the terrestrial C cycle, mycorrhizal fungi are distinctly absent from forest ecosystem C and N models, primarily due to a lack of quantitative data on carbon allocation to mycorrhizal fungi in forests. Quantifying carbon allocation to mycorrhizal fungi is inherently difficult given their small (microscopic) size and lack of specific quantitative biomarkers. Here we present simple measurements that make use of natural abundance N stable isotope data (δ15N) of plant and soil pools, as well as forest C and N budget data, to provide estimates of C allocation to ECM fungi across temperate forest stands with a range of soil N availabilities and species composition. Results show that the fraction of NPP allocated to ECM fungi is related to soil N availability and tree functional type (coniferous vs. broadleaf). These estimates of C allocation will help parameterize ecosystem models to specifically include ECM fungi.
Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests
Andrei G. Lapenis; Gregory B. Lawrence; Alexander Heim; Chengyang Zheng; Walter Shortle
2013-01-01
Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots...
Integration of ecosystem services into the carbon footprint of milk of South German dairy farms.
Robert Kiefer, Lukas; Menzel, Friederike; Bahrs, Enno
2015-04-01
Allocation of greenhouse gas emissions (GHG) in Life Cycle Assessments (LCA) is challenging especially when multi-functionality of dairy farms, which do not only produce milk but also meat is considered. Moreover, some farms fulfill a wide range of additional services for society such as management of renewable natural resources as well as preservation of biodiversity and cultural landscapes. Due to the increasing degradation of ecosystems many industrialized as well as developing countries designed payment systems for environmental services. This study examines different allocation methods of GHG for a comparatively large convenience sample of 113 dairy farms located in grassland-based areas of southern Germany. Results are carbon footprints of 1.99 kg CO2eq/kg of fat and protein corrected milk (FPCM) on average if "no allocation" for coupled products is performed. "Physical allocation" results in 1.53 kg CO2eq/kg FPCM and "conventional economic allocation" in 1.66 kg CO2eq/kg FPCM on average if emissions are apportioned between milk and meat. Economic allocation which includes ecosystem services for society based on the farm net income as a new aspect in this study results in a carbon footprint of 1.5 kg CO2eq/kg FPCM on average. System expansion that puts greater emphasis on coupled beef production accounts for a carbon footprint of 0.68 kg CO2eq/kg FPCM on average. Intense milk production systems with higher milk yields show better results based on "no allocation", "physical allocation" and "conventional economic allocation". By contrast, economic allocation, which takes into account ecosystem services favors extensive systems, especially in less favored areas. This shows that carbon footprints of dairy farms should not be examined one-dimensionally based on the amount of milk and meat that is produced on the farm. Rather, a broader perspective is necessary that takes into account the multi-functionality of dairy farms especially in countries where a wide range of ecosystem services is provided. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zimmerman, Richard C; Kohrs, Donald G; Alberte, Randall S
1996-09-01
The unusual appearance of a commensal eelgrass limpet [Tectura depicta (Berry)] from southern California at high density (up to 10 shoot -1 ) has coincided with the catastrophic decline of a subtidal Zostera marina L. meadow in Monterey Bay, California. Some commensal limpets graze the chloroplast-rich epidermis of eelgrass leaves, but were not known to affect seagrass growth or productivity. We evaluated the effect on eelgrass productivity of grazing by limpets maintained at natural densities (8±2 shoot -1 ) in a natural light mesocosm for 45 days. Growth rates, carbon reserves, root proliferation and net photosynthesis of grazed plants were 50-80% below those of ungrazed plants, but biomass-specific respiration was unaffected. The daily period of irradiance-saturated photosynthesis (H sat ) needed to maintain positive carbon balance in grazed plants approached 13.5 h, compared with 5-6 h for ungrazed plants. The amount of carbon allocated to roots of ungrazed plants was 800% higher than for grazed plants. By grazing the chlorophyll-rich epidermis, T. depicta induced carbon limitation in eelgrass growing in an other-wise light-replete environment. Continued northward movement of T. depicta, may have significant impacts on eelgrass production and population dynamics in the northeast Pacific, even thought this limpet consumes very little plant biomass. This interaction is a dramatic example of top-down control (grazing/predation) of eelgrass productivity and survival operating via a bottom-up mechanism (photosynthesis limitation).
J.W. Raich; D.A. Clark; L. Schwendenmann; Tana Wood
2014-01-01
Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15â20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the...
Vitulo, Nicola; Diretto, Gianfranco; Block, Maryse; Jouhet, Juliette; Meneghesso, Andrea; Valle, Giorgio; Giuliano, Giovanni; Maréchal, Eric
2016-01-01
The seawater microalga Nannochloropsis gaditana is capable of accumulating a large fraction of reduced carbon as lipids. To clarify the molecular bases of this metabolic feature, we investigated light-driven lipid biosynthesis in Nannochloropsis gaditana cultures combining the analysis of photosynthetic functionality with transcriptomic, lipidomic and metabolomic approaches. Light-dependent alterations are observed in amino acid, isoprenoid, nucleic acid, and vitamin biosynthesis, suggesting a deep remodeling in the microalgal metabolism triggered by photoadaptation. In particular, high light intensity is shown to affect lipid biosynthesis, inducing the accumulation of diacylglyceryl-N,N,N-trimethylhomo-Ser and triacylglycerols, together with the up-regulation of genes involved in their biosynthesis. Chloroplast polar lipids are instead decreased. This situation correlates with the induction of genes coding for a putative cytosolic fatty acid synthase of type 1 (FAS1) and polyketide synthase (PKS) and the down-regulation of the chloroplast fatty acid synthase of type 2 (FAS2). Lipid accumulation is accompanied by the regulation of triose phosphate/inorganic phosphate transport across the chloroplast membranes, tuning the carbon metabolic allocation between cell compartments, favoring the cytoplasm, mitochondrion, and endoplasmic reticulum at the expense of the chloroplast. These results highlight the high flexibility of lipid biosynthesis in N. gaditana and lay the foundations for a hypothetical mechanism of regulation of primary carbon partitioning by controlling metabolite allocation at the subcellular level. PMID:27325666
Ezzat, Leïla; Maguer, Jean-François; Grover, Renaud; Ferrier-Pagès, Christine
2015-01-01
Anthropogenic nutrient enrichment affects the biogeochemical cycles and nutrient stoichiometry of coastal ecosystems and is often associated with coral reef decline. However, the mechanisms by which dissolved inorganic nutrients, and especially nitrogen forms (ammonium versus nitrate) can disturb the association between corals and their symbiotic algae are subject to controversial debate. Here, we investigated the coral response to varying N : P ratios, with nitrate or ammonium as a nitrogen source. We showed significant differences in the carbon acquisition by the symbionts and its allocation within the symbiosis according to nutrient abundance, type and stoichiometry. In particular, under low phosphate concentration (0.05 µM), a 3 µM nitrate enrichment induced a significant decrease in carbon fixation rate and low values of carbon translocation, compared with control conditions (N : P = 0.5 : 0.05), while these processes were significantly enhanced when nitrate was replaced by ammonium. A combined enrichment in ammonium and phosphorus (N : P = 3 : 1) induced a shift in nutrient allocation to the symbionts, at the detriment of the host. Altogether, these results shed light into the effect of nutrient enrichment on reef corals. More broadly, they improve our understanding of the consequences of nutrient loading on reef ecosystems, which is urgently required to refine risk management strategies. PMID:26203006
THE EFFECT OF OZONE ON BELOW-GROUND CARBON ALLOCATION IN WHEAT
Short term 14CO2 pulse and chase experiments were conducted in order to investigate the effect ozone on below-ground carbon allocation in spring wheat seedlings (Triticum aestivumL. ?ANZA'). Wheat seedlings were grown in a sand-hydroponic system and exposed to either high ozone ...
Our understanding of seagrass physiology is based on crude estimates of production and biomass. To better understand the complex physiological relationships between the plants and the environment we developed a model of carbon and nitrogen allocation in the sub-tropical seagrass ...
O'Brien, D; Capper, J L; Garnsworthy, P C; Grainger, C; Shalloo, L
2014-03-01
Life-cycle assessment (LCA) is the preferred methodology to assess carbon footprint per unit of milk. The objective of this case study was to apply an LCA method to compare carbon footprints of high-performance confinement and grass-based dairy farms. Physical performance data from research herds were used to quantify carbon footprints of a high-performance Irish grass-based dairy system and a top-performing United Kingdom (UK) confinement dairy system. For the US confinement dairy system, data from the top 5% of herds of a national database were used. Life-cycle assessment was applied using the same dairy farm greenhouse gas (GHG) model for all dairy systems. The model estimated all on- and off-farm GHG sources associated with dairy production until milk is sold from the farm in kilograms of carbon dioxide equivalents (CO2-eq) and allocated emissions between milk and meat. The carbon footprint of milk was calculated by expressing GHG emissions attributed to milk per tonne of energy-corrected milk (ECM). The comparison showed that when GHG emissions were only attributed to milk, the carbon footprint of milk from the Irish grass-based system (837 kg of CO2-eq/t of ECM) was 5% lower than the UK confinement system (884 kg of CO2-eq/t of ECM) and 7% lower than the US confinement system (898 kg of CO2-eq/t of ECM). However, without grassland carbon sequestration, the grass-based and confinement dairy systems had similar carbon footprints per tonne of ECM. Emission algorithms and allocation of GHG emissions between milk and meat also affected the relative difference and order of dairy system carbon footprints. For instance, depending on the method chosen to allocate emissions between milk and meat, the relative difference between the carbon footprints of grass-based and confinement dairy systems varied by 3 to 22%. This indicates that further harmonization of several aspects of the LCA methodology is required to compare carbon footprints of contrasting dairy systems. In comparison to recent reports that assess the carbon footprint of milk from average Irish, UK, and US dairy systems, this case study indicates that top-performing herds of the respective nations have carbon footprints 27 to 32% lower than average dairy systems. Although differences between studies are partly explained by methodological inconsistency, the comparison suggests that potential exists to reduce the carbon footprint of milk in each of the nations by implementing practices that improve productivity. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Zhou, Youping; Stuart-Williams, Hilary; Grice, Kliti; Kayler, Zachary E; Zavadlav, Saša; Vogts, Angela; Rommerskirchen, Florian; Farquhar, Graham D; Gessler, Arthur
2015-03-01
It has long been theorized that carbon allocation, in addition to the carbon source and to kinetic isotopic effects associated with a particular lipid biosynthetic pathway, plays an important role in shaping the carbon isotopic composition ((13)C/(12)C) of lipids (Park and Epstein, 1961). If the latter two factors are properly constrained, valuable information about carbon allocation during lipid biosynthesis can be obtained from carbon isotope measurements. Published work of Chikaraishi et al. (2004) showed that leaf lipids isotopic shifts from bulk leaf tissue Δδ(13)C(bk-lp) (defined as δ(13)C(bulkleaftissue)-δ(13)C(lipid)) are pathway dependent: the acetogenic (ACT) pathway synthesizing fatty lipids has the largest isotopic shift, the mevalonic acid (MVA) pathway synthesizing sterols the lowest and the phytol synthesizing 1-deoxy-D-xylulose 5-phosphate (DXP) pathway gives intermediate values. The differences in Δδ(13)C(bk-lp) between C3 and C4 plants Δδ(13)C(bk-lp,C4-C3) are also pathway-dependent: Δδ(13)C(ACT)(bk-lp,C4-C3) > Δδ(13)C(DXP(bk-lp,C4-C3) > Δδ(13)C(MVA)(bk-lp,C4-C3). These pathway-dependent differences have been interpreted as resulting from kinetic isotopic effect differences of key but unspecified biochemical reactions involved in lipids biosynthesis between C3 and C4 plants. After quantitatively considering isotopic shifts caused by (dark) respiration, export-of-carbon (to sink tissues) and photorespiration, we propose that the pathway-specific differences Δδ(13)C(bk-lp,C4-C3) can be successfully explained by C4-C3 carbon allocation (flux) differences with greatest flux into the ACT pathway and lowest into the MVA pathways (when flux is higher, isotopic shift relative to source is smaller). Highest carbon allocation to the ACT pathway appears to be tied to the most stringent role of water-loss-minimization by leaf waxes (composed mainly of fatty lipids) while the lowest carbon allocation to the MVA pathway can be largely explained by the fact that sterols act as regulatory hormones and membrane fluidity modulators in rather low concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Supply chain carbon footprinting and responsibility allocation under emission regulations.
Chen, Jin-Xiao; Chen, Jian
2017-03-01
Reduction of greenhouse gas emissions has become an enormous challenge for any single enterprise and its supply chain because of the increasing concern on global warming. This paper investigates carbon footprinting and responsibility allocation for supply chains involved in joint production. Our study is conducted from the perspective of a social planner who aims to achieve social value optimization. The carbon footprinting model is based on operational activities rather than on firms because joint production blurs the organizational boundaries of footprints. A general model is proposed for responsibility allocation among firms who seek to maximize individual profits. This study looks into ways for the decentralized supply chain to achieve centralized optimality of social value under two emission regulations. Given a balanced allocation for the entire supply chain, we examine the necessity of over-allocation to certain firms under specific situations and find opportunities for the firms to avoid over-allocation. The comparison of the two regulations reveals that setting an emission standard per unit of product will motivate firms to follow the standard and improve their emission efficiencies. Hence, a more efficient and promising policy is needed in contrast to existing regulations on total production. Copyright © 2016 Elsevier Ltd. All rights reserved.
A hybrid method for provincial scale energy-related carbon emission allocation in China.
Bai, Hongtao; Zhang, Yingxuan; Wang, Huizhi; Huang, Yanying; Xu, He
2014-01-01
Achievement of carbon emission reduction targets proposed by national governments relies on provincial/state allocations. In this study, a hybrid method for provincial energy-related carbon emissions allocation in China was developed to provide a good balance between production- and consumption-based approaches. In this method, provincial energy-related carbon emissions are decomposed into direct emissions of local activities other than thermal power generation and indirect emissions as a result of electricity consumption. Based on the carbon reduction efficiency principle, the responsibility for embodied emissions of provincial product transactions is assigned entirely to the production area. The responsibility for carbon generation during the production of thermal power is borne by the electricity consumption area, which ensures that different regions with resource endowments have rational development space. Empirical studies were conducted to examine the hybrid method and three indices, per capita GDP, resource endowment index and the proportion of energy-intensive industries, were screened to preliminarily interpret the differences among China's regional carbon emissions. Uncertainty analysis and a discussion of this method are also provided herein.
Carbon allocation and morphology of cherrybark oak seedlings and sprouts under three light regimes
Brian Roy Lockhart; Emile S. Gardiner; John D. Hodges; Andrew W. Ezell
2008-01-01
Continued problems in regenerating oak forests has led to a need for more basic infomation on oak seedling biology.In the present study, carbon allocation and morphology were compared between cherrybark oak (Quercus pagoda Raf.) seedlings and sprouts at I -Lag grown in full, 47%, and 20% sunlight....
NASA Astrophysics Data System (ADS)
Yun, Mi Sun; Joo, Hui Tae; Park, Jung Woo; Kang, Jae Joong; Kang, Sung-Ho; Lee, Sang H.
2018-04-01
The carbon allocations of phytoplankton into different photosynthetic end products (lipids, LMWM, polysaccharides, and proteins) were determined to understand physiological conditions of phytoplankton in the northern Chukchi Sea during the Korean Arctic expedition, 2011, using the 13C isotope tracer technique. The carbon allocation rates of lipids, LMWM, polysaccharides, and proteins were 0.00009-0.00062 h-1, 0.00001-0.00049 h-1, 0.00001-0.00025 h-1, and 0.00001-0.00062 h-1 within the euphotic depths from surface to 1% light depths during our cruise period, respectively. Significant relationships between protein production rates and chlorophyll a concentrations (large and total) were found in this study. Moreover, we found a significant negative relationship between lipid production rates and ammonium concentrations. These relationships match well with the previous results for environmental/physiological conditions for phytoplankton growth. Overall, phytoplankton allocated more photosynthetic carbon into lipids (42.5 ± 17.7%) whereas relatively lower to proteins (20.4 ± 15.5%) in this study. The lipid-rich and protein-poor allocation patterns in this study suggest that phytoplankton in the northern Chukchi Sea were in a stationary growth phase under nutrient deficient condition based on biological and environmental conditions observed during our study period. Based on comparison with the previous studies in the northern Bering Sea and southern Chukchi Sea, we found that the photosynthetic carbon allocation patterns depending on physiological status of phytoplankton under the different growth and/or nutrient conditions could be largely vary at different regions in the Arctic Ocean. More intensive research on the physiological status of phytoplankton is further required to determine how phytoplankton response to the changing environmental conditions and consequently how they impact on higher trophic levels in marine ecosystems in the Arctic Ocean.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, D.E.
1991-05-01
Experiments were performed to determine the effects of carbon dioxide on plants and on the insects feeding on these plants. Current progress is reported for the following experiments: Response of a Specialist-Feeding Insect Herbivore to Carbon Dioxide Induced Changes in Its Hostplant; Growth and Reproduction of Grasshoppers Feeding on a C{sub 4} Grass Under Elevated Carbon Dioxide; Elevated Carbon Dioxide and Temperature Effects on Growth and Defense of Big Sagebrush; Sagebrush and Grasshopper Responses to Atmospheric Carbon Dioxide Concentration; Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide; and Sagebrush Carbon Allocation Patterns and Grasshopper Nutrition:more » The Influence of Carbon Dioxide Enrichment and Soil Mineral Limitation.« less
Hasselquist, Niles J; Högberg, Peter
2014-08-01
Although it is well known that nitrogen (N) additions strongly affect ectomycorrhizal (EM) fungal community composition, less is known about how different N application rates and duration of N additions affect the functional role EM fungi play in the forest N cycle.We measured EM sporocarp abundance and species richness as well as determined the δ (15)N in EM sporocarps and tree foliage in two Pinus sylvestris forests characterized by short- and long-term N addition histories and multiple N addition treatments. After 20 and 39 years of N additions, two of the long-term N addition treatments were terminated, thereby providing a unique opportunity to examine the temporal recovery of EM sporocarps after cessation of high N loading.In general, increasing N availability significantly reduced EM sporocarp production, species richness, and the amount of N retained in EM sporocarps. However, these general responses were strongly dependent on the application rate and duration of N additions. The annual addition of 20 kg·N·ha(-1) for the past 6 years resulted in a slight increase in the production and retention of N in EM sporocarps, whereas the addition of 100 kg·N·ha(-1)·yr(-1) during the same period nearly eliminated EM sporocarps. In contrast, long-term additions of N at rates of ca. 35 or 70 kg·N·ha(-1)·yr(-1) for the past 40 years did not eliminate tree carbon allocation to EM sporocarps, although there was a decrease in the abundance and a shift in the dominant EM sporocarp taxa. Despite no immediate recovery, EM sporocarp abundance and species richness approached those of the control 20 years after terminating N additions in the most heavily fertilized treatment, suggesting a recovery of carbon allocation to EM sporocarps after cessation of high N loading.Our results provide evidence for a tight coupling between tree carbon allocation to and N retention in EM sporocarps and moreover highlight the potential use of δ (15)N in EM sporocarps as a relative index of EM fungal sink strength for N. However, nitrogen additions at high dosage rates or over long time periods appear to disrupt this feedback, which could have important ramifications on carbon and nitrogen dynamics in these forested ecosystems.
NASA Astrophysics Data System (ADS)
Kagawa, A.; Sugimoto, A.; Maximov, T. C.
2006-12-01
Tree-ring density and widths have been successfully used to reconstruct summer temperatures in high- northern latitudes, although a discrepancy between tree-growth and temperature has been found for recent decades. The so-called "reduced sensitivity" of tree rings to summer temperatures has been observed especially strongly in northern Siberia (Briffa et al., 1998) and drought stress (increased water use efficiency) arose from global warming and/or increasing CO2 are suggested as causes (Barber et al. 2000, Saurer et al. 2004). By using carbon isotope ratio as an indicator of drought stress and ring-width/density as indicators of growth, we can clarify how drought stress caused by recent global warming affects wood formation of Siberian trees. However, isotope dendroclimatology is still in its infancy and our understanding of basic physiological processes of isotope signal transfer from leaves to tree rings is insufficient. In order to understand translocation, storage, and allocation of photoassimilate to different organs of trees, we pulse- labeled ten L. gmelinii growing in a continuous permafrost zone with stable 13CO2. We studied seasonal course of carbon allocation patterns of photoassimilate among needles, branches, stem and roots and also how spring, summer, and autumn photoassimilate is later used for both earlywood and latewood formation. About half of the carbon in new needles was derived from stored material. The starch pool in non- needle parts, which can be used for xylem formation, drew about 43 percent of its carbon from previous year's photoassimilate, suggesting that carbon storage is the key mechanism behind autocorrelation in (isotope) dendroclimatology. Analysis of intra-annual 13C of the tree rings formed after the labeling revealed that earlywood contained photoassimilate from the previous summer and autumn as well as from the current spring. Latewood was mainly composed of photoassimilate from the current year's summer/autumn, although it also relied on stored material in some cases. Carbon isotope chronology of recent 100 years shows that the latewood 13C contains stronger climate signal than the earlywood and is significantly correlated to July temperature and July precipitation, corresponding to the timing of carbon incorporation that constitutes latewood. The results suggest the need for separating earlywood and latewood for isotope dendroclimatological study in Siberia. References: 1) Kagawa A., Sugimoto A., & Maximov, T.C. (2006) 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant, Cell and Environment 29, 1571-1584. 2) Kagawa A., Sugimoto A., & Maximov, T. C. (2006) Seasonal course of translocation, storage, and remobilization of 13C pulse-labeled photoassimilate in naturally growing Larix gmelinii saplings. New Phytologist 171, 793-804. 3) Kagawa A., Naito D., Sugimoto A. & Maximov T. C. (2003) Effects of spatial and temporal variability in soil moisture on widths and 13C values of eastern Siberian tree rings. Journal of Geophysical Research 108 (D16), 4500, doi:10.1029/2002JD003019.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karve, Abhijit A.; Alexoff, David; Kim, Dohyun
Although important aspects of whole-plant carbon allocation in crop plants (e.g., to grain) occur late in development when the plants are large, techniques to study carbon transport and allocation processes have not been adapted for large plants. Positron emission tomography (PET), developed for dynamic imaging in medicine, has been applied in plant studies to measure the transport and allocation patterns of carbohydrates, nutrients, and phytohormones labeled with positron-emitting radioisotopes. However, the cost of PET and its limitation to smaller plants has restricted its use in plant biology. Here we describe the adaptation and optimization of a commercial clinical PET scannermore » to measure transport dynamics and allocation patterns of 11C-photoassimilates in large crops. Based on measurements of a phantom, we optimized instrument settings, including use of 3-D mode and attenuation correction to maximize the accuracy of measurements. To demonstrate the utility of PET, we measured 11C-photoassimilate transport and allocation in Sorghum bicolor, an important staple crop, at vegetative and reproductive stages (40 and 70 days after planting; DAP). The 11C-photoassimilate transport speed did not change over the two developmental stages. However, within a stem, transport speeds were reduced across nodes, likely due to higher 11C-photoassimilate unloading in the nodes. Photosynthesis in leaves and the amount of 11C that was exported to the rest of the plant decreased as plants matured. In young plants, exported 11C was allocated mostly (88 %) to the roots and stem, but in flowering plants (70 DAP) the majority of the exported 11C (64 %) was allocated to the apex. Our results show that commercial PET scanners can be used reliably to measure whole-plant C-allocation in large plants nondestructively including, importantly, allocation to roots in soil. This capability revealed extreme changes in carbon allocation in sorghum plants, as they advanced to maturity. Further, our results suggest that nodes may be important control points for photoassimilate distribution in crops of the family Poaceae. In conclusion, quantifying real-time carbon allocation and photoassimilate transport dynamics, as demonstrated here, will be important for functional genomic studies to unravel the mechanisms controlling phloem transport in large crop plants, which will provide crucial insights for improving yields.« less
Karve, Abhijit A.; Alexoff, David; Kim, Dohyun; ...
2015-11-09
Although important aspects of whole-plant carbon allocation in crop plants (e.g., to grain) occur late in development when the plants are large, techniques to study carbon transport and allocation processes have not been adapted for large plants. Positron emission tomography (PET), developed for dynamic imaging in medicine, has been applied in plant studies to measure the transport and allocation patterns of carbohydrates, nutrients, and phytohormones labeled with positron-emitting radioisotopes. However, the cost of PET and its limitation to smaller plants has restricted its use in plant biology. Here we describe the adaptation and optimization of a commercial clinical PET scannermore » to measure transport dynamics and allocation patterns of 11C-photoassimilates in large crops. Based on measurements of a phantom, we optimized instrument settings, including use of 3-D mode and attenuation correction to maximize the accuracy of measurements. To demonstrate the utility of PET, we measured 11C-photoassimilate transport and allocation in Sorghum bicolor, an important staple crop, at vegetative and reproductive stages (40 and 70 days after planting; DAP). The 11C-photoassimilate transport speed did not change over the two developmental stages. However, within a stem, transport speeds were reduced across nodes, likely due to higher 11C-photoassimilate unloading in the nodes. Photosynthesis in leaves and the amount of 11C that was exported to the rest of the plant decreased as plants matured. In young plants, exported 11C was allocated mostly (88 %) to the roots and stem, but in flowering plants (70 DAP) the majority of the exported 11C (64 %) was allocated to the apex. Our results show that commercial PET scanners can be used reliably to measure whole-plant C-allocation in large plants nondestructively including, importantly, allocation to roots in soil. This capability revealed extreme changes in carbon allocation in sorghum plants, as they advanced to maturity. Further, our results suggest that nodes may be important control points for photoassimilate distribution in crops of the family Poaceae. In conclusion, quantifying real-time carbon allocation and photoassimilate transport dynamics, as demonstrated here, will be important for functional genomic studies to unravel the mechanisms controlling phloem transport in large crop plants, which will provide crucial insights for improving yields.« less
Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; ...
2015-11-04
Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO 2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO 2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO 2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits, and energy consumption for corn oil production and corn oil biodiesel production. Furthermore, this study’s results demonstrate that co-product treatment methodology strongly influences corn oil biodiesel life-cycle GHG emissions and can affect how this fuel is treated under the Renewable Fuel and Low Carbon Fuel Standards.« less
Wang, Zhichao; Dunn, Jennifer B; Han, Jeongwoo; Wang, Michael Q
2015-01-01
Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California's Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller's grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol's life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits, and energy consumption for corn oil production and corn oil biodiesel production. This study's results demonstrate that co-product treatment methodology strongly influences corn oil biodiesel life-cycle GHG emissions and can affect how this fuel is treated under the Renewable Fuel and Low Carbon Fuel Standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo
Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO 2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO 2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO 2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits, and energy consumption for corn oil production and corn oil biodiesel production. Furthermore, this study’s results demonstrate that co-product treatment methodology strongly influences corn oil biodiesel life-cycle GHG emissions and can affect how this fuel is treated under the Renewable Fuel and Low Carbon Fuel Standards.« less
Carbon emission allowance allocation with a mixed mechanism in air passenger transport.
Qiu, Rui; Xu, Jiuping; Zeng, Ziqiang
2017-09-15
Air passenger transport carbon emissions have become a great challenge for both governments and airlines because of rapid developments in the aviation industry in recent decades. In this paper, a mixed mechanism composed of a cap-and-trade mechanism and a carbon tax mechanism is developed to assist governments in allocating carbon emission allowances to airlines operating on the routes. Combined this mixed mechanism with an equilibrium strategy, a bi-level multi-objective model is proposed for an air passenger transport carbon emission allowance allocation problem, in which a government is considered as a leader and the airlines as the followers. An interactive solution approach integrating a genetic algorithm and an interactive evolutionary mechanism is designed to search for satisfactory solutions of the proposed model. A case study is then presented to show its practicality and efficiency in mitigating carbon emissions. Sensitivity analyses under different tradable and taxable levels are also conducted, which can give the government insights as to the tradeoffs between lowering carbon intensity and improving airlines' operations. The computational results demonstrate that the mixed mechanism can assist greatly in carbon emission mitigation for air passenger transport and therefore, it should be established as part of air passenger transport carbon emission policies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exposure to(ozone 0-3)has been shown to decrease the allocation of carbon to tree roots. Decreased allocation of carbon to roots might disrupt root metabolism and rhizosphere organisms. The effects of soil type and shoot 0, exposure on below-ground respiration and soil microbial ...
Implementing seasonal carbon allocation into a dynamic vegetation model
NASA Astrophysics Data System (ADS)
Vermeulen, Marleen; Kruijt, Bart; Hickler, Thomas; Forrest, Matthew; Kabat, Pavel
2014-05-01
Long-term measurements of terrestrial fluxes through the FLUXNET Eddy Covariance network have revealed that carbon and water fluxes can be highly variable from year-to-year. This so-called interannual variability (IAV) of ecosystems is not fully understood because a direct relation with environmental drivers cannot always be found. Many dynamic vegetation models allocate NPP to leaves, stems, and root compartments on an annual basis, and thus do not account for seasonal changes in productivity in response to changes in environmental stressors. We introduce this vegetation seasonality into dynamic vegetation model LPJ-GUESS by implementing a new carbon allocation scheme on a daily basis. We focus in particular on modelling the observed flux seasonality of the Amazon basin, and validate our new model against fluxdata and MODIS GPP products. We expect that introducing seasonal variability into the model improves estimates of annual productivity and IAV, and therefore the model's representation of ecosystem carbon budgets as a whole.
Optimality Based Dynamic Plant Allocation Model: Predicting Acclimation Response to Climate Change
NASA Astrophysics Data System (ADS)
Srinivasan, V.; Drewry, D.; Kumar, P.; Sivapalan, M.
2009-12-01
Allocation of assimilated carbon to different plant parts determines the future plant status and is important to predict long term (months to years) vegetated land surface fluxes. Plants have the ability to modify their allometry and exhibit plasticity by varying the relative proportions of the structural biomass contained in each of its tissue. The ability of plants to be plastic provides them with the potential to acclimate to changing environmental conditions in order to enhance their probability of survival. Allometry based allocation models and other empirical allocation models do not account for plant plasticity cause by acclimation due to environmental changes. In the absence of a detailed understanding of the various biophysical processes involved in plant growth and development an optimality approach is adopted here to predict carbon allocation in plants. Existing optimality based models of plant growth are either static or involve considerable empiricism. In this work, we adopt an optimality based approach (coupled with limitations on plant plasticity) to predict the dynamic allocation of assimilated carbon to different plant parts. We explore the applicability of this approach using several optimization variables such as net primary productivity, net transpiration, realized growth rate, total end of growing season reproductive biomass etc. We use this approach to predict the dynamic nature of plant acclimation in its allocation of carbon to different plant parts under current and future climate scenarios. This approach is designed as a growth sub-model in the multi-layer canopy plant model (MLCPM) and is used to obtain land surface fluxes and plant properties over the growing season. The framework of this model is such that it retains the generality and can be applied to different types of ecosystems. We test this approach using the data from free air carbon dioxide enrichment (FACE) experiments using soybean crop at the Soy-FACE research site. Our results show that there are significant changes in the allocation patterns of vegetation when subjected to elevated CO2 indicating that our model is able to account for plant plasticity arising from acclimation. Soybeans when grown under elevated CO2, increased their allocation to structural components such as leaves and decreased their allocation to reproductive biomass. This demonstrates that plant acclimation causes lower than expected crop yields when grown under elevated CO2. Our findings can have serious implications in estimating future crop yields under climate change scenarios where it is widely expected that rising CO2 will fully offset losses due to climate change.
Schnoor, Tim Krone; Mårtensson, Linda-Maria; Olsson, Pål Axel
2011-11-01
We have studied how disturbance by ploughing and rotavation affects the carbon (C) flow to arbuscular mycorrhizal (AM) fungi in a dry, semi-natural grassland. AM fungal biomass was estimated using the indicator neutral lipid fatty acid (NLFA) 16:1ω5, and saprotrophic fungal biomass using NLFA 18:2ω6,9. We labeled vegetation plots with (13)CO(2) and studied the C flow to the signature fatty acids as well as uptake and allocation in plants. We found that AM fungal biomass in roots and soil decreased with disturbance, while saprotrophic fungal biomass in soil was not influenced by disturbance. Rotavation decreased the (13)C enrichment in NLFA 16:1ω5 in soil, but (13)C enrichment in the AM fungal indicator NLFA 16:1ω5 in roots or soil was not influenced by any other disturbance. In roots, (13)C enrichment was consistently higher in NLFA 16:1ω5 than in crude root material. Grasses (mainly Festuca brevipila) decreased as a result of disturbance, while non-mycorrhizal annual forbs increased. This decreases the potential for mycorrhizal C sequestration and may have been the main reason for the reduced mycorrhizal C allocation found in disturbed plots. Disturbance decreased the soil ammonium content but did not change the pH, nitrate or phosphate availability. The overall effect of disturbance on C allocation was that more of the C in AM fungal mycelium was directed to the external phase. Furthermore, the functional identity of the plants seemed to play a minor role in the C cycle as no differences were seen between different groups, although annuals contained less AM fungi than the other groups.
Coupled nutrient cycling determines tropical forest trajectory under elevated CO2.
NASA Astrophysics Data System (ADS)
Bouskill, N.; Zhu, Q.; Riley, W. J.
2017-12-01
Tropical forests have a disproportionate capacity to affect Earth's climate relative to their areal extent. Despite covering just 12 % of land surface, tropical forests account for 35 % of global net primary productivity and are among the most significant of terrestrial carbon stores. As atmospheric CO2 concentrations increase over the next century, the capacity of tropical forests to assimilate and sequester anthropogenic CO2 depends on limitation by multiple factors, including the availability of soil nutrients. Phosphorus availability has been considered to be the primary factor limiting metabolic processes within tropical forests. However, recent evidence points towards strong spatial and temporal co-limitation of tropical forests by both nitrogen and phosphorus. Here, we use the Accelerated Climate Modeling for Energy (ACME) Land Model (ALMv1-ECA-CNP) to examine how nutrient cycles interact and affect the trajectory of the tropical forest carbon sink under, (i) external nutrient input, (ii) climate (iii) elevated CO2, and (iv) a combination of 1-3. ALMv1 includes recent theoretical advances in representing belowground competition between roots, microbes and minerals for N and P uptake, explicit interactions between the nitrogen and phosphorus cycles (e.g., phosphatase production and nitrogen fixation), the dynamic internal allocation of plant N and P resources, and the integration of global datasets of plant physiological traits. We report nutrient fertilization (N, P, N+P) predictions for four sites in the tropics (El Verde, Puerto Rico, Barro Colorado Island, Panama, Manaus, Brazil and the Osa Peninsula, Coast Rica) to short-term nutrient fertilization (N, P, N+P), and benchmarking of the model against a meta-analysis of forest fertilization experiments. Subsequent simulations focus on the interaction of the carbon, nitrogen, and phosphorus cycles across the tropics with a focus on the implications of coupled nutrient cycling and the fate of the tropical forest carbon sink. Our results highlight the importance of transient CNP allocation, leaf-level stoichiometric controls on photosynthesis, and trade-offs between above and belowground plant investments.
Forest biomass, productivity and carbon cycling along a rainfall gradient in West Africa.
Moore, Sam; Adu-Bredu, Stephen; Duah-Gyamfi, Akwasi; Addo-Danso, Shalom D; Ibrahim, Forzia; Mbou, Armel T; de Grandcourt, Agnès; Valentini, Riccardo; Nicolini, Giacomo; Djagbletey, Gloria; Owusu-Afriyie, Kennedy; Gvozdevaite, Agne; Oliveras, Imma; Ruiz-Jaen, Maria C; Malhi, Yadvinder
2018-02-01
Net Primary Productivity (NPP) is one of the most important parameters in describing the functioning of any ecosystem and yet it arguably remains a poorly quantified and understood component of carbon cycling in tropical forests, especially outside of the Americas. We provide the first comprehensive analysis of NPP and its carbon allocation to woody, canopy and root growth components at contrasting lowland West African forests spanning a rainfall gradient. Using a standardized methodology to study evergreen (EF), semi-deciduous (SDF), dry forests (DF) and woody savanna (WS), we find that (i) climate is more closely related with above and belowground C stocks than with NPP (ii) total NPP is highest in the SDF site, then the EF followed by the DF and WS and that (iii) different forest types have distinct carbon allocation patterns whereby SDF allocate in excess of 50% to canopy production and the DF and WS sites allocate 40%-50% to woody production. Furthermore, we find that (iv) compared with canopy and root growth rates the woody growth rate of these forests is a poor proxy for their overall productivity and that (v) residence time is the primary driver in the productivity-allocation-turnover chain for the observed spatial differences in woody, leaf and root biomass across the rainfall gradient. Through a systematic assessment of forest productivity we demonstrate the importance of directly measuring the main components of above and belowground NPP and encourage the establishment of more permanent carbon intensive monitoring plots across the tropics. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Aubrey, D. P.; Mims, J. T.; Oswald, S. W.; Teskey, R. O.; Mitchell, R. J.
2016-12-01
Allocation of assimilated carbon to storage provides a critical carbohydrate buffer when metabolic demands exceed current photosynthetic supply; however, our process-level understanding of controls on carbon storage pools and fluxes remains relatively poor. Recent studies have shifted the paradigm from the concept that stored carbon pools are a sink of low priority that accumulate passively when photosynthetic inputs exceed demand toward the concept that these pools are active sinks of high priority. It follows that allocation toward storage—at the expense of growth—is a trait that would be under selective pressure since species that allocate toward storage should be more resilient to disturbance. Using fire-dependent longleaf pine in a series of manipulative and observational studies, we explore how stored carbon dynamics are controlled by a combination of evolutionary, physiological, and ecological pressures. Our manipulative studies revealed large stored carbon pools in roots that maintained belowground metabolism for a year after current photosynthetic supply was restricted. Likewise, the concentration of stored carbon in the smallest, most metabolically active roots was not influenced until nearly one year later. Our observational studies indicated that stored carbon pools differ among closely related species with overlapping natural distributions, but evolutionary histories of different disturbance frequencies and thus, different selective pressures on carbon storage. Our comparisons of stored carbon pools between longleaf trees growing under xeric or mesic soil moisture regimes indicated that allocation toward storage exhibits plasticity through space and time in response to both short- and long-term variations in resource availability. We expect a continuum of responses to disturbances related to ecological niche and evolutionary adaptation that influence the availability of carbohydrates for metabolic demands. We also expect a continuum in stored carbon pools and metabolic buffering capacity among species as well as spatially, temporally, and developmentally within individual species.
Yong-Jiang Zhang; Frederick C. Meinzer; Guang-You Hao; Fabian G. Scholz; Sandra J. Bucci; Frederico S.C. Takahashi; Randol Villalobos-Vega; Juan P. Giraldo; Kun-Fang Cao; William A. Hoffmann; Guillermo Goldstein
2009-01-01
Size-related changes in hydraulic architecture, carbon allocation, and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ~6 m tall exhibited more branch damage,...
Impact of interspecific competition and drought on the allocation of new assimilates in trees
R. Hommel; R. Siegwolf; S. Zavadlav; M. Arend; M. Schaub; L. Galiano; M. Haeni; Z.E. Kayler; A. Gessler; W. Adams
2016-01-01
In trees, the interplay between reduced carbon assimilation and the inability to transport carbohydrates to the sites of demand under drought might be one of the mechanisms leading to carbon starvation. However, we largely lack knowledge on how drought effects on new assimilate allocation differ between species with different drought sensitivities and how these effects...
Belowground carbon cycling in a humid tropical forest decreases with fertilization
C. Giardina; D. Binkley; M. Ryan; J. Fownes
2004-01-01
Only a small fraction of the carbon (C) allocated belowground by trees is retained by soils in long-lived, decay-resistant forms, yet because of the large magnitude of terrestrial primary productivity, even small changes in C allocation or retention can alter terrestrial C storage. The humid tropics exert a disproportionately large influence over terrestrial C storage...
Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems.
Mao, Fangjie; Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing
2016-05-01
Numerical models are the most appropriate instrument for the analysis of the carbon balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based model BIOME-BGC is widely used in simulation of carbon balance within vegetation, litter and soil of unmanaged ecosystems. For Moso bamboo forests, however, simulations with BIOME-BGC are inaccurate in terms of the growing season and the carbon allocation, due to the oversimplified representation of phenology. Our aim was to improve the applicability of BIOME-BGC for managed Moso bamboo forest ecosystem by implementing several new modules, including phenology, carbon allocation, and management. Instead of the simple phenology and carbon allocation representations in the original version, a periodic Moso bamboo phenology and carbon allocation module was implemented, which can handle the processes of Moso bamboo shooting and high growth during "on-year" and "off-year". Four management modules (digging bamboo shoots, selective cutting, obtruncation, fertilization) were integrated in order to quantify the functioning of managed ecosystems. The improved model was calibrated and validated using eddy covariance measurement data collected at a managed Moso bamboo forest site (Anji) during 2011-2013 years. As a result of these developments and calibrations, the performance of the model was substantially improved. Regarding the measured and modeled fluxes (gross primary production, total ecosystem respiration, net ecosystem exchange), relative errors were decreased by 42.23%, 103.02% and 18.67%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Epron, D.; Dannoura, M.; Ngao, J.; Plain, C.; Berveller, D.; Chipeaux, C.; Gerant, D.; Bosc, A.; Maillard, P.; Loustau, D.; Damesin, C.; Cats Project (Anr-07-Blan-0109)
2010-12-01
Soil and trunk respiration are the major sources of carbon from forest ecosystems to the atmosphere and they account for a large fraction of total ecosystem respiration. The amount of photosynthate allocated to respiration affects the growth of the tree and the potential for carbon sequestration of forest ecosystems. This study, aiming at understanding patterns of carbon allocation to respiration among species and seasons, consisted in pure 13CO2 labelling of the entire crown of three different tree species (beech, oak and pine) at distinct phenological stages between Sept 2008 and Feb 2010. 13C was then tracked for several weeks in soil and trunk CO2 efflux at high temporal resolution using tuneable diode laser absorption spectrometry (Plain et al. 2009). Recovery of 13C in trunk and soil CO2 efflux was observed a few couple of hours after the beginning of the labelling in oak and beech. There is a rapid transfer of 13C belowground with a maximum occurring within 2 to 4 days after labelling. Label was recovered at the same time in the respiration and in the biomass of both fine roots and microbes. Maximum recovery occurred earlier in beech and oak, while it happened later in Pine. Indeed, the velocity of phloem transport, calculated as the difference of time lags in 13C recovery in trunk respiration at different height, was around 0.10-0.2m/h in pine and around 0.2-1.2 m/h in oak and beech, reflecting difference in phloem anatomy between angiosperm and gymnosperm. The cumulated amount of label recovered in soil CO2 efflux 20 days after labelling varied among the seasons in all species, from 1 to 16% in beech, 2 to 11% in oak and 1 to 11% in pine. For all species, allocation to soil respiration was greater in early summer compared to spring, late summer and autumn. A compartmental analysis is further conducted to characterise functional pools of labelled substrates and storage compounds that contribute to both trunk and soil respiration. [Plain C, Gérant D, Maillard P, Dannoura M, Dong Y, Zeller B, Priault P, Parent F, Epron D. 2009. Tracing of recently assimilated carbon in respiration at high temporal resolution in the field with a tuneable diode laser absorption spectrometer after in situ 13CO2 pulse labelling of 20-year-old beech trees. Tree Physiology 29: 1433-1447.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, J. A. M.; Jiang, J.; Post, W. M.
Carbon cycle models often lack explicit belowground organism activity, yet belowground organisms regulate carbon storage and release in soil. Ectomycorrhizal fungi are important players in the carbon cycle because they are a conduit into soil for carbon assimilated by the plant. It is hypothesized that ectomycorrhizal fungi can also be active decomposers when plant carbon allocation to fungi is low. Here, we reviewed the literature on ectomycorrhizal decomposition and we developed a simulation model of the plant-mycorrhizae interaction where a reduction in plant productivity stimulates ectomycorrhizal fungi to decompose soil organic matter. Our review highlights evidence demonstrating the potential formore » ectomycorrhizal fungi to decompose soil organic matter. Our model output suggests that ectomycorrhizal activity accounts for a portion of carbon decomposed in soil, but this portion varied with plant productivity and the mycorrhizal carbon uptake strategy simulated. Lower organic matter inputs to soil were largely responsible for reduced soil carbon storage. Using mathematical theory, we demonstrated that biotic interactions affect predictions of ecosystem functions. Specifically, we developed a simple function to model the mycorrhizal switch in function from plant symbiont to decomposer. In conclusion, we show that including mycorrhizal fungi with the flexibility of mutualistic and saprotrophic lifestyles alters predictions of ecosystem function.« less
M.B. Adams; E.G. O' Neill
1991-01-01
Patterns of carbon allocation and mycorrhizal colonization were examined in loblolly pine seedlings from two half-sib families exposed to three ozone treatments (charcoal-filtered air, ambient air + 80 ppb 03 , and ambient air + 160 ppb 03) and three rain pH levels (5.2, 4.5, and 3.3) for 12 weeks in open-topped chambers in...
Optimal co-allocation of carbon and nitrogen in a forest stand at steady state
Annikki Makela; Harry T. Valentine; Helja-Sisko Helmisaari
2008-01-01
Nitrogen (N) is essential for plant production, but N uptake imposes carbon (C) costs through maintenance respiration and fine-root construction, suggesting that an optimal C:N balance can be found. Previous studies have elaborated this optimum under exponential growth; work on closed canopies has focused on foliage only. Here, the optimal co-allocation of C and N to...
Contribution of aboveground plant respiration to carbon cycling in a Bornean tropical rainforet
NASA Astrophysics Data System (ADS)
Katayama, Ayumi; Tanaka, Kenzo; Ichie, Tomoaki; Kume, Tomonori; Matsumoto, Kazuho; Ohashi, Mizue; Kumagai, Tomo'omi
2014-05-01
Bornean tropical rainforests have a different characteristic from Amazonian tropical rainforests, that is, larger aboveground biomass caused by higher stand density of large trees. Larger biomass may cause different carbon cycling and allocation pattern. However, there are fewer studies on carbon allocation and each component in Bornean tropical rainforests, especially for aboveground plant respiration, compared to Amazonian forests. In this study, we measured woody tissue respiration and leaf respiration, and estimated those in ecosystem scale in a Bornean tropical rainforest. Then, we examined carbon allocation using the data of soil respiration and aboveground net primary production obtained from our previous studies. Woody tissue respiration rate was positively correlated with diameter at breast height (dbh) and stem growth rate. Using the relationships and biomass data, we estimated woody tissue respiration in ecosystem scale though methods of scaling resulted in different estimates values (4.52 - 9.33 MgC ha-1 yr-1). Woody tissue respiration based on surface area (8.88 MgC ha-1 yr-1) was larger than those in Amazon because of large aboveground biomass (563.0 Mg ha-1). Leaf respiration rate was positively correlated with height. Using the relationship and leaf area density data at each 5-m height, leaf respiration in ecosystem scale was estimated (9.46 MgC ha-1 yr-1), which was similar to those in Amazon because of comparable LAI (5.8 m2 m-2). Gross primary production estimated from biometric measurements (44.81 MgC ha-1 yr-1) was much higher than those in Amazon, and more carbon was allocated to woody tissue respiration and total belowground carbon flux. Large tree with dbh > 60cm accounted for about half of aboveground biomass and aboveground biomass increment. Soil respiration was also related to position of large trees, resulting in high soil respiration rate in this study site. Photosynthesis ability of top canopy for large trees was high and leaves for the large trees accounted for 30% of total, which can lead high GPP. These results suggest that large trees play considerable role in carbon cycling and make a distinctive carbon allocation in the Bornean tropical rainforest.
A simple method for estimating gross carbon budgets for vegetation in forest ecosystems.
Ryan, Michael G.
1991-01-01
Gross carbon budgets for vegetation in forest ecosystems are difficult to construct because of problems in scaling flux measurements made on small samples over short periods of time and in determining belowground carbon allocation. Recently, empirical relationships have been developed to estimate total belowground carbon allocation from litterfall, and maintenance respiration from tissue nitrogen content. I outline a method for estimating gross carbon budgets using these empirical relationships together with data readily available from ecosystem studies (aboveground wood and canopy production, aboveground wood and canopy biomass, litterfall, and tissue nitrogen contents). Estimates generated with this method are compared with annual carbon fixation estimates from the Forest-BGC model for a lodgepole pine (Pinus contorta Dougl.) and a Pacific silver fir (Abies amabilis Dougl.) chronosequence.
NASA Astrophysics Data System (ADS)
Imbuzeiro, H. A.
2016-12-01
The Macauba palm (Acrocomia aculeata (Jacq.) Lood. ex Mart) is a native oil palm of the tropical America growing in anthropic areas, especially in grazing lands of Brazilian Cerrado. Macauba palm displays intense fruiting which results in high fruit and oil yield (3.0 - 6.0 ton/ha/year). The main Macauba palm differentials are: it is adapted to the environment with marked water restriction (1000 mm annual precipitation) which makes it resistant to drought and it does not compete with areas of rainforest; the oil is similar in composition to the African palm oil (Elaeis guineensis Jacq.) and can be used in several industrial applications such as biofuels, food, cosmetics, pharmaceutics and oil chemistry. Additionally, Macauba fruit processing generates several by-products like edible pulp bran, high-protein edible kernel bran, dense endocarp biomass, and husk biomass, all valuable products. Today, 172 million hectares of Brazilian land are used for grazing, of which 30 million hectares of these lands are degraded due to poor land use, 6 million in the state of Minas Gerais, in Brazil. Macauba could be cultivated in these degraded lands and is a candidate to become the main raw material for production of biokerosene. A new productive chain is forming in Brazil, the first commercial plantation of Macauba was implemented last year in Minas Gerais state and it is important to estimate the environmental impacts of this plantation, in terms of carbon (C) allocation. There is a lack of experimental data on Macauba carbon allocation and this study aimed to estimate the carbon allocation (leaves, stems and roots) of Macauba palm. The results suggest that Macauba palm is important in contributing to the carbon allocation and nutrient cycling.
NASA Astrophysics Data System (ADS)
Imbuzeiro, H. A.; Moreira, S. L. S.; Motoike, S. Y.; Fernandes, R. B. A.
2017-12-01
The Macauba palm (Acrocomia aculeata (Jacq.) Lood. ex Mart) is a native oil palm of the tropical America growing in anthropic areas, especially in grazing lands of Brazilian Cerrado. Macauba palm displays intense fruiting which results in high fruit and oil yield (3.0 - 6.0 ton/ha/year). The main Macauba palm differentials are: it is adapted to the environment with marked water restriction (1000 mm annual precipitation) which makes it resistant to drought and it does not compete with areas of rainforest; the oil is similar in composition to the African palm oil (Elaeis guineensis Jacq.) and can be used in several industrial applications such as biofuels, food, cosmetics, pharmaceutics and oil chemistry. Additionally, Macauba fruit processing generates several by-products like edible pulp bran, high-protein edible kernel bran, dense endocarp biomass, and husk biomass, all valuable products. Today, 172 million hectares of Brazilian land are used for grazing, of which 30 million hectares of these lands are degraded due to poor land use, 6 million in the state of Minas Gerais, in Brazil. Macauba could be cultivated in these degraded lands and is a candidate to become the main raw material for production of biokerosene. A new productive chain is forming in Brazil, the first commercial plantation of Macauba was implemented last year in Minas Gerais state and it is important to estimate the environmental impacts of this plantation, in terms of carbon (C) allocation. There is a lack of experimental data on Macauba carbon allocation and this study aimed to estimate the carbon allocation (leaves, stems and roots) of Macauba palm. The results suggest that Macauba palm is important in contributing to the carbon allocation.
Pyl, Eva-Theresa; Piques, Maria; Ivakov, Alexander; Schulze, Waltraud; Ishihara, Hirofumi; Stitt, Mark; Sulpice, Ronan
2012-01-01
Diurnal cycles provide a tractable system to study the response of metabolism and growth to fluctuating temperatures. We reasoned that the response to daytime and night temperature may vary; while daytime temperature affects photosynthesis, night temperature affects use of carbon that was accumulated in the light. Three Arabidopsis thaliana accessions were grown in thermocycles under carbon-limiting conditions with different daytime or night temperatures (12 to 24°C) and analyzed for biomass, photosynthesis, respiration, enzyme activities, protein levels, and metabolite levels. The data were used to model carbon allocation and growth rates in the light and dark. Low daytime temperature led to an inhibition of photosynthesis and an even larger inhibition of growth. The inhibition of photosynthesis was partly ameliorated by a general increase in protein content. Low night temperature had no effect on protein content, starch turnover, or growth. In a warm night, there is excess capacity for carbon use. We propose that use of this capacity is restricted by feedback inhibition, which is relaxed at lower night temperature, thus buffering growth against fluctuations in night temperature. As examples, the rate of starch degradation is completely temperature compensated against even sudden changes in temperature, and polysome loading increases when the night temperature is decreased. PMID:22739829
Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland.
Yan, Bangguo; Ji, Zhonghua; Fan, Bo; Wang, Xuemei; He, Guangxiong; Shi, Liangtao; Liu, Gangcai
2016-09-01
Biomass allocation can exert a great influence on plant resource acquisition and nutrient use. However, the role of biomass allocation strategies in shaping plant community composition under nutrient limitations remains poorly addressed. We hypothesized that species-specific allocation strategies can affect plant adaptation to nutrient limitations, resulting in species turnover and changes in community-level biomass allocations across nutrient gradients. In this study, we measured species abundance and the concentrations of nitrogen and phosphorus in leaves and soil nutrients in an arid-hot grassland. We quantified species-specific allocation parameters for stems vs leaves based on allometric scaling relationships. Species-specific stem vs leaf allocation parameters were weighted with species abundances to calculate the community-weighted means driven by species turnover. We found that the community-weighted means of biomass allocation parameters were significantly related to the soil nutrient gradient as well as to leaf stoichiometry, indicating that species-specific allocation strategies can affect plant adaptation to nutrient limitations in the studied grassland. Species that allocate less to stems than leaves tend to dominate nutrient-limited environments. The results support the hypothesis that species-specific allocations affect plant adaptation to nutrient limitations. The allocation trade-off between stems and leaves has the potential to greatly affect plant distribution across nutrient gradients. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Galbraith, D.; Levine, N. M.; Christoffersen, B. O.; Imbuzeiro, H. A.; Powell, T.; Costa, M. H.; Saleska, S. R.; Moorcroft, P. R.; Malhi, Y.
2014-12-01
The mathematical codes embedded within different vegetation models ultimately represent alternative hypotheses of biosphere functioning. While formulations for some processes (e.g. leaf-level photosynthesis) are often shared across vegetation models, other processes (e.g. carbon allocation) are much more variable in their representation across models. This creates the opportunity for equifinality - models can simulate similar values of key metrics such as NPP or biomass through very different underlying causal pathways. Intensive carbon cycle measurements allow for quantification of a comprehensive suite of carbon fluxes such as the productivity and respiration of leaves, roots and wood, allowing for in-depth assessment of carbon flows within ecosystems. Thus, they provide important information on poorly-constrained C-cycle processes such as allocation. We conducted an in-depth evaluation of the ability of four commonly used dynamic global vegetation models (CLM, ED2, IBIS, JULES) to simulate carbon cycle processes at ten lowland Amazonian rainforest sites where individual C-cycle components have been measured. The rigorous model-data comparison procedure allowed identification of biases which were specific to different models, providing clear avenues for model improvement and allowing determination of internal C-cycling pathways that were better supported by data. Furthermore, the intensive C-cycle data allowed for explicit testing of the validity of a number of assumptions made by specific models in the simulation of carbon allocation and plant respiration. For example, the ED2 model assumes that maintenance respiration of stems is negligible while JULES assumes equivalent allocation of NPP to fine roots and leaves. We argue that field studies focusing on simultaneous measurement of a large number of component fluxes are fundamentally important for reducing uncertainty in vegetation model simulations.
Reich, Peter B.; Rich, Roy L.; Lu, Xingjie; Wang, Ying-Ping; Oleksyn, Jacek
2014-01-01
Leaf life span is an important plant trait associated with interspecific variation in leaf, organismal, and ecosystem processes. We hypothesized that intraspecific variation in gymnosperm needle traits with latitude reflects both selection and acclimation for traits adaptive to the associated temperature and moisture gradient. This hypothesis was supported, because across 127 sites along a 2,160-km gradient in North America individuals of Picea glauca, Picea mariana, Pinus banksiana, and Abies balsamea had longer needle life span and lower tissue nitrogen concentration with decreasing mean annual temperature. Similar patterns were noted for Pinus sylvestris across a north–south gradient in Europe. These differences highlight needle longevity as an adaptive feature important to ecological success of boreal conifers across broad climatic ranges. Additionally, differences in leaf life span directly affect annual foliage turnover rate, which along with needle physiology partially regulates carbon cycling through effects on gross primary production and net canopy carbon export. However, most, if not all, global land surface models parameterize needle longevity of boreal evergreen forests as if it were a constant. We incorporated temperature-dependent needle longevity and %nitrogen, and biomass allocation, into a land surface model, Community Atmosphere Biosphere Land Exchange, to assess their impacts on carbon cycling processes. Incorporating realistic parameterization of these variables improved predictions of canopy leaf area index and gross primary production compared with observations from flux sites. Finally, increasingly low foliage turnover and biomass fraction toward the cold far north indicate that a surprisingly small fraction of new biomass is allocated to foliage under such conditions. PMID:25225397
Fanwoua, Julienne; Bairam, Emna; Delaire, Mickael; Buck-Sorlin, Gerhard
2014-01-01
Understanding the role of branch architecture in carbon production and allocation is essential to gain more insight into the complex process of assimilate partitioning in fruit trees. This mini review reports on the current knowledge of the role of branch architecture in carbohydrate production and partitioning in apple. The first-order carrier branch of apple illustrates the complexity of branch structure emerging from bud activity events and encountered in many fruit trees. Branch architecture influences carbon production by determining leaf exposure to light and by affecting leaf internal characteristics related to leaf photosynthetic capacity. The dynamics of assimilate partitioning between branch organs depends on the stage of development of sources and sinks. The sink strength of various branch organs and their relative positioning on the branch also affect partitioning. Vascular connections between branch organs determine major pathways for branch assimilate transport. We propose directions for employing a modeling approach to further elucidate the role of branch architecture on assimilate partitioning. PMID:25071813
Colesie, Claudia; Green, T G Allan; Haferkamp, Ilka; Büdel, Burkhard
2014-10-01
Biological soil crusts (BSC) are the dominant functional vegetation unit in some of the harshest habitats in the world. We assessed BSC response to stress through changes in biotic composition, CO2 gas exchange and carbon allocation in three lichen-dominated BSC from habitats with different stress levels, two more extreme sites in Antarctica and one moderate site in Germany. Maximal net photosynthesis (NP) was identical, whereas the water content to achieve maximal NP was substantially lower in the Antarctic sites, this apparently being achieved by changes in biomass allocation. Optimal NP temperatures reflected local climate. The Antarctic BSC allocated fixed carbon (tracked using (14)CO2) mostly to the alcohol soluble pool (low-molecular weight sugars, sugar alcohols), which has an important role in desiccation and freezing resistance and antioxidant protection. In contrast, BSC at the moderate site showed greater carbon allocation into the polysaccharide pool, indicating a tendency towards growth. The results indicate that the BSC of the more stressed Antarctic sites emphasise survival rather than growth. Changes in BSC are adaptive and at multiple levels and we identify benefits and risks attached to changing life traits, as well as describing the ecophysiological mechanisms that underlie them.
Decomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model
Moore, J. A. M.; Jiang, J.; Post, W. M.; ...
2015-03-06
Carbon cycle models often lack explicit belowground organism activity, yet belowground organisms regulate carbon storage and release in soil. Ectomycorrhizal fungi are important players in the carbon cycle because they are a conduit into soil for carbon assimilated by the plant. It is hypothesized that ectomycorrhizal fungi can also be active decomposers when plant carbon allocation to fungi is low. Here, we reviewed the literature on ectomycorrhizal decomposition and we developed a simulation model of the plant-mycorrhizae interaction where a reduction in plant productivity stimulates ectomycorrhizal fungi to decompose soil organic matter. Our review highlights evidence demonstrating the potential formore » ectomycorrhizal fungi to decompose soil organic matter. Our model output suggests that ectomycorrhizal activity accounts for a portion of carbon decomposed in soil, but this portion varied with plant productivity and the mycorrhizal carbon uptake strategy simulated. Lower organic matter inputs to soil were largely responsible for reduced soil carbon storage. Using mathematical theory, we demonstrated that biotic interactions affect predictions of ecosystem functions. Specifically, we developed a simple function to model the mycorrhizal switch in function from plant symbiont to decomposer. In conclusion, we show that including mycorrhizal fungi with the flexibility of mutualistic and saprotrophic lifestyles alters predictions of ecosystem function.« less
Managing carbon sequestration and storage in northern hardwood forests
Eunice A. Padley; Deahn M. Donner; Karin S. Fassnacht; Ronald S. Zalesny; Bruce Birr; Karl J. Martin
2011-01-01
Carbon has an important role in sustainable forest management, contributing to functions that maintain site productivity, nutrient cycling, and soil physical properties. Forest management practices can alter ecosystem carbon allocation as well as the amount of total site carbon.
Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests
Lapenis, Andrei Gennady; Lawrence, Gregory B.; Heim, Alexander; Zheng, Chengyang; Shortle, Walter
2013-01-01
Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots over less decomposable woody biomass. Furthermore, tree core data throughout mid- and northern latitudes have revealed a divergence problem (DP), a weakening in tree ring responses to warming over the past half century that is receiving increasing attention, but remains poorly understood. Often, the same sites exhibit trend inconsistency phenomenon (TIP), namely positive, or no trends in growing season NDVI where negative trends in tree ring indexes are observed. Here we studied growth of two Norway spruce (Picea abies) stands in western Russia that exhibited both the DP and TIP but were subject to soil acidification and calcium depletion of differing timing and severity. Our results link the decline in radial growth starting in 1980 to a shift in carbon allocation from wood to roots driven by a combination of two factors: (a) soil acidification that depleted calcium and impaired root function and (b) earlier onset of the growing season that further taxed the root system. The latter change in phenology appears to act as a trigger at both sites to push trees into nutrient limitation as the demand for Ca increased with the longer growing season, thereby causing the shift in carbon allocation.
Li, Shuangyan; Li, Xialian; Zhang, Dezhi; Zhou, Lingyun
2017-01-01
This study develops an optimization model to integrate facility location and inventory control for a three-level distribution network consisting of a supplier, multiple distribution centers (DCs), and multiple retailers. The integrated model addressed in this study simultaneously determines three types of decisions: (1) facility location (optimal number, location, and size of DCs); (2) allocation (assignment of suppliers to located DCs and retailers to located DCs, and corresponding optimal transport mode choices); and (3) inventory control decisions on order quantities, reorder points, and amount of safety stock at each retailer and opened DC. A mixed-integer programming model is presented, which considers the carbon emission taxes, multiple transport modes, stochastic demand, and replenishment lead time. The goal is to minimize the total cost, which covers the fixed costs of logistics facilities, inventory, transportation, and CO2 emission tax charges. The aforementioned optimal model was solved using commercial software LINGO 11. A numerical example is provided to illustrate the applications of the proposed model. The findings show that carbon emission taxes can significantly affect the supply chain structure, inventory level, and carbon emission reduction levels. The delay rate directly affects the replenishment decision of a retailer.
Testing the sensitivity of terrestrial carbon models using remotely sensed biomass estimates
NASA Astrophysics Data System (ADS)
Hashimoto, H.; Saatchi, S. S.; Meyer, V.; Milesi, C.; Wang, W.; Ganguly, S.; Zhang, G.; Nemani, R. R.
2010-12-01
There is a large uncertainty in carbon allocation and biomass accumulation in forest ecosystems. With the recent availability of remotely sensed biomass estimates, we now can test some of the hypotheses commonly implemented in various ecosystem models. We used biomass estimates derived by integrating MODIS, GLAS and PALSAR data to verify above-ground biomass estimates simulated by a number of ecosystem models (CASA, BIOME-BGC, BEAMS, LPJ). This study extends the hierarchical framework (Wang et al., 2010) for diagnosing ecosystem models by incorporating independent estimates of biomass for testing and calibrating respiration, carbon allocation, turn-over algorithms or parameters.
Lincoln, D E; Couvet, D
1989-01-01
The carbon supply of peppermint plants was manipulated by growing clonal propagules under three carbon dioxide regimes (350, 500 and 650 μl l -1 ). Feeding by fourth instar caterpillars of Spodoptera eridania increased with elevated CO 2 hostplant regime, as well as with low leaf nitrogen content and by a high proportion of leaf volatile terpenoids. Leaf weight increased significantly with the increased carbon supply, but the amount of nitrogen per leaf did not change. The amount of volatile leaf mono-and sesquiterpenes increased proportionately with total leaf dry weight and hence was not influenced by CO 2 supply. These results are consistent with ecological hypotheses which assume that allocation to defense is closely regulated and not sensitive to carbon supply per se.
Wang, G M; Coleman, D C; Freckman, D W; Dyer, M I; McNAUGHTON, S J; Agra, M A; Goeschl, J D
1989-08-01
Gas exchange and carbon allocation patterns were studied in two populations of Panicum coloratum, an Africa C-4 grass. The plants were grown in split-root pots, containing partially sterilized soil, with one side either inoculated (I) or not inoculated (NI) with a vesicular arbuscular (VA) mycorrhizal Fungus, Gigaspora margarita. Net carbon exchange rates (CER) and stomatal conductances were measured with conventional gas exchange apparatus, and carbon assimilation, translocation, and allocation were measured using photosynthetically-fixed 11 CO 2 . Mycorrhizal infection on one half of the split-root system caused a 20%, increase in CER. The effect on CER was less in tillers on the opposite side of the plants from the infected half of the roots. The rate at which photosynthates were stored in the leaves was 45% higher. Sink activity (concentration of labelled photosynthates in stem phloem tissue) more than doubled in 1 versus NI plants. CER and stomatal conductances, along with most of the carbon allocation patterns, were nearly identical between the NI (control) high grazing and low grazing ecotypes. However, VA mycorrhizal fungi caused a greater storage of photosynthates in the low grazing ecotype.
Buursink, Marc L.; Cahan, Steven M.; Warwick, Peter D.
2015-01-01
Following the geologic basin-scale assessment of technically accessible carbon dioxide storage resources in onshore areas and State waters of the United States, the U.S. Geological Survey estimated that an area of about 130 million acres (or about 200,000 square miles) of Federal lands overlies these storage resources. Consequently, about 18 percent of the assessed area associated with storage resources is allocated to Federal land management. Assessed areas are allocated to four other general land-ownership categories as follows: State lands about 4.5 percent, Tribal lands about 2.4 percent, private and other lands about 72 percent, and offshore areas about 2.6 percent.
Simultaneous reproduction of global carbon exchange and storage of terrestrial forest ecosystems
NASA Astrophysics Data System (ADS)
Kondo, M.; Ichii, K.
2012-12-01
Understanding the mechanism of the terrestrial carbon cycle is essential for assessing the impact of climate change. Quantification of both carbon exchange and storage is the key to the understanding, but it often associates with difficulties due to complex entanglement of environmental and physiological factors. Terrestrial ecosystem models have been the major tools to assess the terrestrial carbon budget for decades. Because of its strong association with climate change, carbon exchange has been more rigorously investigated by the terrestrial biosphere modeling community. Seeming success of model based assessment of carbon budge often accompanies with the ill effect, substantial misrepresentation of storage. In practice, a number of model based analyses have paid attention solely on terrestrial carbon fluxes and often neglected carbon storage such as forest biomass. Thus, resulting model parameters are inevitably oriented to carbon fluxes. This approach is insufficient to fully reduce uncertainties about future terrestrial carbon cycles and climate change because it does not take into account the role of biomass, which is equivalently important as carbon fluxes in the system of carbon cycle. To overcome this issue, a robust methodology for improving the global assessment of both carbon budget and storage is needed. One potentially effective approach to identify a suitable balance of carbon allocation proportions for each individual ecosystem. Carbon allocations can influence the plant growth by controlling the amount of investment acquired from photosynthesis, as well as carbon fluxes by controlling the carbon content of leaves and litter, both are active media for photosynthesis and decomposition. Considering those aspects, there may exist the suitable balance of allocation proportions enabling the simultaneous reproduction of carbon budget and storage. The present study explored the existence of such suitable balances of allocation proportions, and examines the performance of carbon fluxes and biomass simulations with them. An experiment was performed with a widely used model, Biome-BGC, and effects of disturbance and forest age were considered in the model run. As for disturbance, human influence index map derived by CIESIN was used. A global forest age map was prepared with model inversion method using CIESIN human influence index, GFED fire burnt area, and IIASA global forest biomass maps. To validate model GPP and RE, we prepared the global GPP map estimated with support vector machine and the global RE map derived by downscaling the carbon budget product (L4A) of Greenhouse gases Observing SATellite (GOSAT) in conjunction with IIASA biomass and soil carbon products. Through a process of testing the simultaneous reproducibility of the Biome-BGC model, it will be determined whether the current terrestrial ecosystem model is sophisticated enough for clarifying the mechanism of carbon cycle.
Roach, Melissa; Arrivault, Stéphanie; Mahboubi, Amir; Krohn, Nicole; Sulpice, Ronan; Stitt, Mark; Niittylä, Totte
2017-06-15
The contribution of transcriptional and post-transcriptional regulation to modifying carbon allocation to developing wood of trees is not well defined. To clarify the role of transcriptional regulation, the enzyme activity patterns of eight central primary metabolism enzymes across phloem, cambium, and developing wood of aspen (Populus tremula L.) were compared with transcript levels obtained by RNA sequencing of sequential stem sections from the same trees. Enzymes were selected on the basis of their importance in sugar metabolism and in linking primary metabolism to lignin biosynthesis. Existing enzyme assays were adapted to allow measurements from ~1 mm3 sections of dissected stem tissue. These experiments provided high spatial resolution of enzyme activity changes across different stages of wood development, and identified the gene transcripts probably responsible for these changes. In most cases, there was a clear positive relationship between transcripts and enzyme activity. During secondary cell wall formation, the increases in transcript levels and enzyme activities also matched with increased levels of glucose, fructose, hexose phosphates, and UDP-glucose, emphasizing an important role for transcriptional regulation in carbon allocation to developing aspen wood. These observations corroborate the efforts to increase carbon allocation to wood by engineering gene regulatory networks. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Campioli, M.; Gielen, B.; Göckede, M.; Papale, D.; Bouriaud, O.; Granier, A.
2011-09-01
The allocation of carbon (C) taken up by the tree canopy for respiration and production of tree organs with different construction and maintenance costs, life span and decomposition rate, crucially affects the residence time of C in forests and their C cycling rate. The carbon-use efficiency, or ratio between net primary production (NPP) and gross primary production (GPP), represents a convenient way to analyse the C allocation at the stand level. In this study, we extend the current knowledge on the NPP-GPP ratio in forests by assessing the temporal variability of the NPP-GPP ratio at interannual (for 8 years) and seasonal (for 1 year) scales for a young temperate beech stand, reporting dynamics for both leaves and woody organs, in particular stems. NPP was determined with biometric methods/litter traps, whereas the GPP was estimated via the eddy covariance micrometeorological technique. The interannual variability of the proportion of C allocated to leaf NPP, wood NPP and leaf plus wood NPP (on average 11% yr-1, 29% yr-1 and 39% yr-1, respectively) was significant among years with up to 12% yr-1 variation in NPP-GPP ratio. Studies focusing on the comparison of NPP-GPP ratio among forests and models using fixed allocation schemes should take into account the possibility of such relevant interannual variability. Multiple linear regressions indicated that the NPP-GPP ratio of leaves and wood significantly correlated with environmental conditions. Previous year drought and air temperature explained about half of the NPP-GPP variability of leaves and wood, respectively, whereas the NPP-GPP ratio was not decreased by severe drought, with large NPP-GPP ratio on 2003 due mainly to low GPP. During the period between early May and mid June, the majority of GPP was allocated to leaf and stem NPP, whereas these sinks were of little importance later on. Improved estimation of seasonal GPP and of the contribution of previous-year reserves to stem growth, as well as reduction of data uncertainty, will be of relevance to increase the accuracy of the seasonal assessment of the NPP-GPP ratio in forests.
Li, Congjuan; Shi, Xiang; Mohamad, Osama Abdalla; Gao, Jie; Xu, Xinwen; Xie, Yijun
2017-01-01
Water influences various physiological and ecological processes of plants in different ecosystems, especially in desert ecosystems. The purpose of this study is to investigate the response of physiological and morphological acclimation of two shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in irrigation intervals. The irrigation frequency was set as 1-, 2-, 4-, 8- and 12-week intervals respectively from March to October during 2012-2014 to investigate the response of physiological and morphological acclimation of two desert shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in the irrigation system. The irrigation interval significantly affected the individual-scale carbon acquisition and biomass allocation pattern of both species. Under good water conditions (1- and 2-week intervals), carbon assimilation was significantly higher than other treatments; while, under water shortage conditions (8- and 12-week intervals), there was much defoliation; and under moderate irrigation intervals (4 weeks), the assimilative organs grew gently with almost no defoliation occurring. Both studied species maintained similar ecophysiologically adaptive strategies, while C. mongolicunl was more sensitive to drought stress because of its shallow root system and preferential belowground allocation of resources. A moderate irrigation interval of 4 weeks was a suitable pattern for both plants since it not only saved water but also met the water demands of the plants.
Chmura, D J; Modrzyński, J; Chmielarz, P; Tjoelker, M G
2017-03-01
Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle-leaved) and observed tolerance to shade, when growing in two contrasting light treatments - open (about 20% of full sunlight) and shade (about 5% of full sunlight). We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments. Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) - leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area-based rates of light-saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade. We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle-leaved conifers in response to shade. However, an expectation of higher plasticity in shade-intolerant species than in shade-tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Ruan, Zuoxi; Giordano, Mario
2017-02-01
The assimilation of N-NO 3 - requires more energy than that of N-NH 4 + . This becomes relevant when energy is limiting and may impinge differently on cell energy budget depending on depth, time of the day and season. We hypothesize that N-limited and energy-limited cells of the oceanic cyanobacterium Synechococcus sp. differ in their response to the N source with respect to growth, elemental stoichiometry and carbon allocation. Under N limitation, cells retained almost absolute homeostasis of elemental and organic composition, and the use of NH 4 + did not stimulate growth. When energy was limiting, however, Synechococcus grew faster in NH 4 + than in NO 3 - and had higher C (20%), N (38%) and S (30%) cell quotas. Furthermore, more C was allocated to protein, whereas the carbohydrate and lipid pool size did not change appreciably. Energy limitation also led to a higher photosynthetic rate relative to N limitation. We interpret these results as an indication that, under energy limitation, the use of the least expensive N source allowed a spillover of the energy saved from N assimilation to the assimilation of other nutrients. The change in elemental stoichiometry influenced C allocation, inducing an increase in cell protein, which resulted in a stimulation of photosynthesis and growth. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Montane, F.; Fox, A. M.; Arellano, A. F.; Alexander, M. R.; Moore, D. J.
2016-12-01
Carbon (C) allocation to different plant tissues (leaves, stem and roots) remains a central challenge for understanding the global C cycle, as it determines C residence time. We used a diverse set of observations (AmeriFlux eddy covariance towers, biomass estimates from tree-ring data, and Leaf Area Index measurements) to compare C fluxes, pools, and Leaf Area Index (LAI) data with the Community Land Model (CLM). We ran CLM for seven temperate forests in North America (including evergreen and deciduous sites) between 1980 and 2013 using different C allocation schemes: i) standard C allocation scheme in CLM, which allocates C to the stem and leaves as a dynamic function of annual net primary productivity (NPP); ii) two fixed C allocation schemes, one representative of evergreen and the other one of deciduous forests, based on Luyssaert et al. 2007; iii) an alternative C allocation scheme, which allocated C to stem and leaves, and to stem and coarse roots, as a dynamic function of annual NPP, based on Litton et al. 2007. At our sites CLM usually overestimated gross primary production and ecosystem respiration, and underestimated net ecosystem exchange. Initial aboveground biomass in 1980 was largely overestimated for deciduous forests, whereas aboveground biomass accumulation between 1980 and 2011 was highly underestimated for both evergreen and deciduous sites due to the lower turnover rate in the sites than the one used in the model. CLM overestimated LAI in both evergreen and deciduous sites because the Leaf C-LAI relationship in the model did not match the observed Leaf C-LAI relationship in our sites. Although the different C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, one of the alternative C allocation schemes used (iii) gave more realistic stem C/leaf C ratios, and highly reduced the overestimation of initial aboveground biomass, and accumulated aboveground NPP for deciduous forests by CLM. Our results would suggest using different C allocation schemes for evergreen and deciduous forests. It is crucial to improve CLM in the near future to minimize data-model mismatches, and to address some of the current model structural errors and parameter uncertainties.
Malhi, Yadvinder; Girardin, Cécile A J; Goldsmith, Gregory R; Doughty, Christopher E; Salinas, Norma; Metcalfe, Daniel B; Huaraca Huasco, Walter; Silva-Espejo, Javier E; Del Aguilla-Pasquell, Jhon; Farfán Amézquita, Filio; Aragão, Luiz E O C; Guerrieri, Rossella; Ishida, Françoise Yoko; Bahar, Nur H A; Farfan-Rios, William; Phillips, Oliver L; Meir, Patrick; Silman, Miles
2017-05-01
Why do forest productivity and biomass decline with elevation? To address this question, research to date generally has focused on correlative approaches describing changes in woody growth and biomass with elevation. We present a novel, mechanistic approach to this question by quantifying the autotrophic carbon budget in 16 forest plots along a 3300 m elevation transect in Peru. Low growth rates at high elevations appear primarily driven by low gross primary productivity (GPP), with little shift in either carbon use efficiency (CUE) or allocation of net primary productivity (NPP) between wood, fine roots and canopy. The lack of trend in CUE implies that the proportion of photosynthate allocated to autotrophic respiration is not sensitive to temperature. Rather than a gradual linear decline in productivity, there is some limited but nonconclusive evidence of a sharp transition in NPP between submontane and montane forests, which may be caused by cloud immersion effects within the cloud forest zone. Leaf-level photosynthetic parameters do not decline with elevation, implying that nutrient limitation does not restrict photosynthesis at high elevations. Our data demonstrate the potential of whole carbon budget perspectives to provide a deeper understanding of controls on ecosystem functioning and carbon cycling. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Efficiency of Fiscal Allocations in Site-Based Empowered Schools
ERIC Educational Resources Information Center
Meyer, Jerome Jay
2011-01-01
This study implemented a two phase concurrent mixed-methods design to generate a greater understanding of how elementary schools with increased autonomy in fiscal decision making allocated their money, how their site-based decisions affected allocative efficiency, and how increased autonomy affected site-based decision making when compared with a…
Effects of road dust on the growth characteristics of Sophora japonica L. seedlings.
Bao, Le; Qu, Laiye; Ma, Keming; Lin, Lin
2016-08-01
Road dust is one of the most common pollutants and causes a series of negative effects on plant physiology. Dust's impacts on plants can be regarded as a combination of load, composition and grain size impacts on plants; however, there is a lack of integrated dust effect studies involving these three aspects. In our study, Sophora japonica seedlings were artificially dusted with road dust collected from the road surface of Beijing so that we could study the impacts of this dust on nitrogen/carbon allocation, biomass allocation and photosynthetic pigments from the three aspects of composition, load and grain size. The results showed that the growth characteristics of S. japonica seedlings were mostly influenced by dust composition and load. Leaf N, root-shoot ratio and chlorophyll a/b were significantly affected by dust composition and load; leaf C/N, shoot biomass, total chlorophyll and carotenoid were significantly affected by dust load; stem N and stem C/N were significantly affected by dust composition; while the dust grain size alone did not affect any of the growth characteristics. Road dust did influence the growth characteristics more extensively than loam. Therefore, a higher dust load could increase the differences between road dust and loam treatments. The elements in dust are well correlated to the shoot N, shoot C/N, and root-shoot ratio of S. japonica seedlings. This knowledge could benefit the management of urban green spaces. Copyright © 2016. Published by Elsevier B.V.
Market-driven emissions from recovery of carbon dioxide gas.
Supekar, Sarang D; Skerlos, Steven J
2014-12-16
This article uses a market-based allocation method in a consequential life cycle assessment (LCA) framework to estimate the environmental emissions created by recovering carbon dioxide (CO2). We find that 1 ton of CO2 recovered as a coproduct of chemicals manufacturing leads to additional greenhouse gas emissions of 147-210 kg CO2 eq , while consuming 160-248 kWh of electricity, 254-480 MJ of heat, and 1836-4027 kg of water. The ranges depend on the initial and final purity of the CO2, particularly because higher purity grades require additional processing steps such as distillation, as well as higher temperature and flow rate of regeneration as needed for activated carbon treatment and desiccant beds. Higher purity also reduces process efficiency due to increased yield losses from regeneration gas and distillation reflux. Mass- and revenue-based allocation methods used in attributional LCA estimate that recovering CO2 leads to 19 and 11 times the global warming impact estimated from a market-based allocation used in consequential LCA.
Bhattacharyya, P; Roy, K S; Neogi, S; Manna, M C; Adhya, T K; Rao, K S; Nayak, A K
2013-10-01
Changes in the soil labile carbon fractions and soil biochemical properties to elevated carbon dioxide (CO2) and temperature reflect the changes in the functional capacity of soil ecosystems. The belowground root system and root-derived carbon products are the key factors for the rhizospheric carbon dynamics under elevated CO2 condition. However, the relationship between interactive effects of elevated CO2 and temperature on belowground soil carbon accrual is not very clear. To address this issue, a field experiment was laid out to study the changes of carbon allocation in tropical rice soil (Aeric Endoaquept) under elevated CO2 and elevated CO2 + elevated temperature conditions in open top chambers (OTCs). There were significant increase of root biomass by 39 and 44 % under elevated CO2 and elevated CO2 + temperature compared to ambient condition, respectively. A significant increase (55 %) of total organic carbon in the root exudates under elevated CO2 + temperature was noticed. Carbon dioxide enrichment associated with elevated temperature significantly increased soil labile carbon, microbial biomass carbon, and activities of carbon-transforming enzyme like β-glucosidase. Highly significant correlations were noticed among the different soil enzymes and soil labile carbon fractions.
Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics.
Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D; Wilson, Cathy J; Cai, Michael; McDowell, Nate G
2012-01-01
Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO(2) concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO(2) concentration, temperature, and radiation when evaluated against published data of V(c,max) (maximum carboxylation rate) and J(max) (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO(2) concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models.
Toward a Mechanistic Modeling of Nitrogen Limitation on Vegetation Dynamics
Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D.; Wilson, Cathy J.; Cai, Michael; McDowell, Nate G.
2012-01-01
Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO2 concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO2 concentration, temperature, and radiation when evaluated against published data of Vc,max (maximum carboxylation rate) and Jmax (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO2 concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions and the vegetation feedbacks to climate in Earth system models. PMID:22649564
Li, Shuangyan; Li, Xialian; Zhang, Dezhi; Zhou, Lingyun
2017-01-01
This study develops an optimization model to integrate facility location and inventory control for a three-level distribution network consisting of a supplier, multiple distribution centers (DCs), and multiple retailers. The integrated model addressed in this study simultaneously determines three types of decisions: (1) facility location (optimal number, location, and size of DCs); (2) allocation (assignment of suppliers to located DCs and retailers to located DCs, and corresponding optimal transport mode choices); and (3) inventory control decisions on order quantities, reorder points, and amount of safety stock at each retailer and opened DC. A mixed-integer programming model is presented, which considers the carbon emission taxes, multiple transport modes, stochastic demand, and replenishment lead time. The goal is to minimize the total cost, which covers the fixed costs of logistics facilities, inventory, transportation, and CO2 emission tax charges. The aforementioned optimal model was solved using commercial software LINGO 11. A numerical example is provided to illustrate the applications of the proposed model. The findings show that carbon emission taxes can significantly affect the supply chain structure, inventory level, and carbon emission reduction levels. The delay rate directly affects the replenishment decision of a retailer. PMID:28103246
Schiestl-Aalto, Pauliina; Kulmala, Liisa; Mäkinen, Harri; Nikinmaa, Eero; Mäkelä, Annikki
2015-04-01
The control of tree growth vs environment by carbon sources or sinks remains unresolved although it is widely studied. This study investigates growth of tree components and carbon sink-source dynamics at different temporal scales. We constructed a dynamic growth model 'carbon allocation sink source interaction' (CASSIA) that calculates tree-level carbon balance from photosynthesis, respiration, phenology and temperature-driven potential structural growth of tree organs and dynamics of stored nonstructural carbon (NSC) and their modifying influence on growth. With the model, we tested hypotheses that sink demand explains the intra-annual growth dynamics of the meristems, and that the source supply is further needed to explain year-to-year growth variation. The predicted intra-annual dimensional growth of shoots and needles and the number of cells in xylogenesis phases corresponded with measurements, whereas NSC hardly limited the growth, supporting the first hypothesis. Delayed GPP influence on potential growth was necessary for simulating the yearly growth variation, indicating also at least an indirect source limitation. CASSIA combines seasonal growth and carbon balance dynamics with long-term source dynamics affecting growth and thus provides a first step to understanding the complex processes regulating intra- and interannual growth and sink-source dynamics. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Hasselquist, Niles; Metcalfe, Daniel; Högberg, Peter
2013-04-01
Vegetation research in boreal forests has traditionally been focused on trees, with little attention given to understory vegetation. However, understory vegetation has been identified as a key driver for the functioning of boreal forests and may play an important role in the amount of carbon (C) that is entering and leaving these forested ecosystems. We conducted a large-scale 13C pulse labeling experiment to better understand how recently fixed C is allocated in the understory vegetation characteristic of boreal forests. We used transparent plastic chambers to pulse label the understory vegetation with enriched 13CO2 in the early (June) and late (August) growing seasons. This study was also replicated across a nitrogen (N) fertilization treatment to better understand the effects of N availability on C allocation patterns. We present data on the amount of 13C label found in different components of the understory vegetation (i.e. leaves, stems, lichens, mosses, rhizomes and fine roots) as well as CO2 efflux. Additionally, we provide estimates of C residence time (MRT) among the different components and examine how MRT of C is affected by seasonality and N availability. Seasonality had a large effect on how recently fixed C is allocated in understory vegetation, whereas N fertilization influenced the MRT of C in the different components of ericaceous vegetation. Moreover, there was a general trend that N additions increased the amount of 13C in CO2 efflux compared to the amount of 13C in biomass, suggesting that N fertilization may lead to an increase in the utilization of recently fixed C, whereas N-limitation promotes the storage of recently fixed C.
NASA Astrophysics Data System (ADS)
Matveev, A.; Matthews, H. D.
2009-04-01
Carbon fluxes from land conversion are among the most uncertain variables in our understanding of the contemporary carbon cycle, which limits our ability to estimate both the total human contribution to current climate forcing and the net effect of terrestrial biosphere changes on atmospheric CO2 increases. The current generation of coupled climate-carbon models have made significant progress in simulating the coupled climate and carbon cycle response to anthropogenic CO2 emissions, but do not typically include land-use change as a dynamic component of the simulation. In this work we have incorporated a book-keeping land-use carbon accounting model into the University of Victoria Earth System Climate Model (UVic ESCM), and intermediate-complexity coupled climate-carbon model. The terrestrial component of the UVic ESCM allows an aerial competition of five plant functional types (PFTs) in response to climatic conditions and area availability, and tracks the associated changes in affected carbon pools. In order to model CO2 emissions from land conversion in the terrestrial component of the model, we calculate the allocation of carbon to short and long-lived wood products following specified land-cover change, and use varying decay timescales to estimate CO2 emissions. We use recently available spatial datasets of both crop and pasture distributions to drive a series of transient simulations and estimate the net contribution of human land-use change to historical carbon emissions and climate change.
Pallas, Benoît; Da Silva, David; Valsesia, Pierre; Yang, Weiwei; Guillaume, Olivier; Lauri, Pierre-Eric; Vercambre, Gilles; Génard, Michel; Costes, Evelyne
2016-01-01
Background and aims Plant growth depends on carbon availability and allocation among organs. QualiTree has been designed to simulate carbon allocation and partitioning in the peach tree (Prunus persica), whereas MappleT is dedicated to the simulation of apple tree (Malus × domestica) architecture. The objective of this study was to couple both models and adapt QualiTree to apple trees to simulate organ growth traits and their within-tree variability. Methods MappleT was used to generate architectures corresponding to the ‘Fuji’ cultivar, accounting for the variability within and among individuals. These architectures were input into QualiTree to simulate shoot and fruit growth during a growth cycle. We modified QualiTree to account for the observed shoot polymorphism in apple trees, i.e. different classes (long, medium and short) that were characterized by different growth function parameters. Model outputs were compared with observed 3D tree geometries, considering shoot and final fruit size and growth dynamics. Key Results The modelling approach connecting MappleT and QualiTree was appropriate to the simulation of growth and architectural characteristics at the tree scale (plant leaf area, shoot number and types, fruit weight at harvest). At the shoot scale, mean fruit weight and its variability within trees was accurately simulated, whereas the model tended to overestimate individual shoot leaf area and underestimate its variability for each shoot type. Varying the parameter related to the intensity of carbon exchange between shoots revealed that behaviour intermediate between shoot autonomy and a common assimilate pool was required to properly simulate within-tree fruit growth variability. Moreover, the model correctly dealt with the crop load effect on organ growth. Conclusions This study provides understanding of the integration of shoot ontogenetic properties, carbon supply and transport between entities for simulating organ growth in trees. Further improvements regarding the integration of retroaction loops between carbon allocation and the resulting plant architecture are expected to allow multi-year simulations. PMID:27279576
Radeva, Tsvetomira; Dornhaus, Anna; Lynch, Nancy; Nagpal, Radhika; Su, Hsin-Hao
2017-12-01
Adaptive collective systems are common in biology and beyond. Typically, such systems require a task allocation algorithm: a mechanism or rule-set by which individuals select particular roles. Here we study the performance of such task allocation mechanisms measured in terms of the time for individuals to allocate to tasks. We ask: (1) Is task allocation fundamentally difficult, and thus costly? (2) Does the performance of task allocation mechanisms depend on the number of individuals? And (3) what other parameters may affect their efficiency? We use techniques from distributed computing theory to develop a model of a social insect colony, where workers have to be allocated to a set of tasks; however, our model is generalizable to other systems. We show, first, that the ability of workers to quickly assess demand for work in tasks they are not currently engaged in crucially affects whether task allocation is quickly achieved or not. This indicates that in social insect tasks such as thermoregulation, where temperature may provide a global and near instantaneous stimulus to measure the need for cooling, for example, it should be easy to match the number of workers to the need for work. In other tasks, such as nest repair, it may be impossible for workers not directly at the work site to know that this task needs more workers. We argue that this affects whether task allocation mechanisms are under strong selection. Second, we show that colony size does not affect task allocation performance under our assumptions. This implies that when effects of colony size are found, they are not inherent in the process of task allocation itself, but due to processes not modeled here, such as higher variation in task demand for smaller colonies, benefits of specialized workers, or constant overhead costs. Third, we show that the ratio of the number of available workers to the workload crucially affects performance. Thus, workers in excess of those needed to complete all tasks improve task allocation performance. This provides a potential explanation for the phenomenon that social insect colonies commonly contain inactive workers: these may be a 'surplus' set of workers that improves colony function by speeding up optimal allocation of workers to tasks. Overall our study shows how limitations at the individual level can affect group level outcomes, and suggests new hypotheses that can be explored empirically.
Dornhaus, Anna; Su, Hsin-Hao
2017-01-01
Adaptive collective systems are common in biology and beyond. Typically, such systems require a task allocation algorithm: a mechanism or rule-set by which individuals select particular roles. Here we study the performance of such task allocation mechanisms measured in terms of the time for individuals to allocate to tasks. We ask: (1) Is task allocation fundamentally difficult, and thus costly? (2) Does the performance of task allocation mechanisms depend on the number of individuals? And (3) what other parameters may affect their efficiency? We use techniques from distributed computing theory to develop a model of a social insect colony, where workers have to be allocated to a set of tasks; however, our model is generalizable to other systems. We show, first, that the ability of workers to quickly assess demand for work in tasks they are not currently engaged in crucially affects whether task allocation is quickly achieved or not. This indicates that in social insect tasks such as thermoregulation, where temperature may provide a global and near instantaneous stimulus to measure the need for cooling, for example, it should be easy to match the number of workers to the need for work. In other tasks, such as nest repair, it may be impossible for workers not directly at the work site to know that this task needs more workers. We argue that this affects whether task allocation mechanisms are under strong selection. Second, we show that colony size does not affect task allocation performance under our assumptions. This implies that when effects of colony size are found, they are not inherent in the process of task allocation itself, but due to processes not modeled here, such as higher variation in task demand for smaller colonies, benefits of specialized workers, or constant overhead costs. Third, we show that the ratio of the number of available workers to the workload crucially affects performance. Thus, workers in excess of those needed to complete all tasks improve task allocation performance. This provides a potential explanation for the phenomenon that social insect colonies commonly contain inactive workers: these may be a ‘surplus’ set of workers that improves colony function by speeding up optimal allocation of workers to tasks. Overall our study shows how limitations at the individual level can affect group level outcomes, and suggests new hypotheses that can be explored empirically. PMID:29240763
Code of Federal Regulations, 2011 CFR
2011-07-01
... revenues allocated to Gulf producing States? 219.415 Section 219.415 Mineral Resources BUREAU OF OCEAN... and royalty credits affect revenues allocated to Gulf producing States? If bonus and royalty credits issued under Section 104(c) of the Gulf of Mexico Energy Security Act are used to pay bonuses or...
Resource Allocation and Seed Size Selection in Perennial Plants under Pollen Limitation.
Huang, Qiaoqiao; Burd, Martin; Fan, Zhiwei
2017-09-01
Pollen limitation may affect resource allocation patterns in plants, but its role in the selection of seed size is not known. Using an evolutionarily stable strategy model of resource allocation in perennial iteroparous plants, we show that under density-independent population growth, pollen limitation (i.e., a reduction in ovule fertilization rate) should increase the optimal seed size. At any level of pollen limitation (including none), the optimal seed size maximizes the ratio of juvenile survival rate to the resource investment needed to produce one seed (including both ovule production and seed provisioning); that is, the optimum maximizes the fitness effect per unit cost. Seed investment may affect allocation to postbreeding adult survival. In our model, pollen limitation increases individual seed size but decreases overall reproductive allocation, so that pollen limitation should also increase the optimal allocation to postbreeding adult survival. Under density-dependent population growth, the optimal seed size is inversely proportional to ovule fertilization rate. However, pollen limitation does not affect the optimal allocation to postbreeding adult survival and ovule production. These results highlight the importance of allocation trade-offs in the effect pollen limitation has on the ecology and evolution of seed size and postbreeding adult survival in perennial plants.
NASA Astrophysics Data System (ADS)
Grams, Thorsten
2016-04-01
This contribution summarizes a series of C allocation studies in maturing European beech and Norway spruce trees at Kranzberg Forest, located in southern Germany. Study objects are 60 to 70 year old trees, readily accessible via scaffoldings and canopy crane. Allocation of recently fixed photoassimilates is assessed either by conventional branch-bag labelling with 99 atom% 13CO2 or whole-tree labeling using 13C-depleted CO2 (isoFACE system). While labeling in branch bags, employed for few hours only, focused on phloem functionality in particular under long-term drought, C labeling of whole tree canopies was employed for up to 20 days, studying allocation of recent photoassimilates from the canopy along branches and stems to roots and soils below ground. In all experiments, dynamics of C allocation were mostly pursued assessing carbon isotopic composition of CO2 efflux from woody tissues which typically reflected isotopic composition of phloem sugars. Effects of severe and long-term summer drought are assessed in an ongoing experiment with roughly 100 trees assigned to a total of 12 plots (kroof.wzw.tum.de). Precipitation throughfall was completely excluded since early spring, resulting in pre-dawn leaf water potentials of both beech and spruce up to -2.2 MPa. The hypothesis was tested that long-term drought affects allocation of recently fixed C to branches and phloem functionality. In the annual course under unstressed conditions, phloem transport speed from the canopy to the stem (breast height) was double in beech compared to spruce, with highest transport velocities in early summer (about 0.51 and 0.26 m/h) and lowest in spring (0.26 and 0.12 m/h for beech and spruce, respectively). After leaf flush in spring, growth respiration of beech trunks was largely supplied by C stores. Recent photoassimilates supplied beech stem growth in early summer and refilled C stores in late summer, whereas seasonality was less pronounced in spruce. The hypothesis that growth respiration is exclusively supplied by recently fixed C was rejected for both species. After long-term (7 years) exposure to elevated (i.e. twice-ambient) O3 concentrations, allocation of recently fixed C to stems was distinctly affected when studied during later summer. In correspondence with significantly lowered woody biomass development in beech (- 40 %), C allocation to stems was reduced in response to O3 exposure. Conversely in spruce, photoassimilate allocation to stems and coarse root respiration was hardly affected, reflecting the overall lower sensitivity of spruce to elevated O3 concentrations. Compartmental modeling characterized functional properties of substrate pools supplying respiratory C demands. Stem respiration of spruce appeared to be largely supplied by recent photoassimilates. Conversely in beech, stored C, putatively located in stem parenchyma cells, was a major source for respiration, reflecting the fundamental anatomical disparity between angiosperm beech and gymnosperm spruce. Overall, the observed differences in C allocation between the two study species reflect the high plasticity of beech trees in response to seasons and stressors such as drought and elevated O3, whereas spruce displayed much lower responsiveness to the applied stressors and along the seasonal course of the year.
Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A. M.; Voesenek, Laurentius A. C. J.; Pierik, Ronald
2015-01-01
Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’. Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments. Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’. Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant–plant interactions. PMID:25851141
Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A M; Voesenek, Laurentius A C J; Pierik, Ronald
2015-05-01
Volatile organic compounds (VOCs) play various roles in plant-plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar 'Alva' cause changes in biomass allocation in plants of the cultivar 'Kara'. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant-plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant-plant signalling between 'Alva' and 'Kara'. The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by 'Alva' under control and far-red light-enriched conditions were analysed using gas chromatography-mass spectrometry (GC-MS). 'Kara' plants were exposed to the VOC blend emitted by the 'Alva' plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for 'Kara' plants exposed to 'Alva' VOCs, and also for 'Alva' plants exposed to either control or far-red-enriched light treatments. Total VOC emissions by 'Alva' were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by 'Alva' plants exposed to low R:FR was found to affect carbon allocation in receiver plants of 'Kara'. The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant-plant interactions. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
ELEVATED CO2 AND TEMPERATURE ALTER NITROGEN ALLOCATION IN DOUGLAS-FIR
The effects of elevated CO2 and temperature on principal carbon constituents (PCC) and C and N allocation between needle, woody (stem and branches) and root tissue of Pseudotsuga menziesii Mirb. Franco seedlings were determined. The seedlings were grown in sun-lit controlled-envi...
The intertidal seagrass Zostera marina is an important species that provides critical habitat for a number of estuarine species. Despite its widespread distribution, there is limited information on seasonal patterns of carbon dynamics of plants growing in situ, particularly esti...
Comparison of model microbial allocation parameters in soils of varying texture
NASA Astrophysics Data System (ADS)
Hagerty, S. B.; Slessarev, E.; Schimel, J.
2017-12-01
The soil microbial community decomposes the majority of carbon (C) inputs to the soil. However, not all of this C is respired—rather, a substantial portion of the carbon processed by microbes may remain stored in the soil. The balance between C storage and respiration is controlled by microbial turnover rates and C allocation strategies. These microbial community properties may depend on soil texture, which has the potential to influence both the nature and the fate of microbial necromass and extracellular products. To evaluate the role of texture on microbial turnover and C allocation, we sampled four soils from the University of California's Hastings Reserve that varied in texture (one silt loam, two sandy loam, and on clay soil), but support similar grassland plant communities. We added 14C- glucose to the soil and measured the concentration of the label in the carbon dioxide (CO2), microbial biomass, and extractable C pools over 7 weeks. The labeled biomass turned over the slowest in the clay soil; the concentration of labeled biomass was more than 1.5 times the concentration of the other soils after 8 weeks. The clay soil also had the lowest mineralization rate of the label, and mineralization slowed after two weeks. In contrast, in the sandier soils mineralization rates were higher and did not plateau until 5 weeks into the incubation period. We fit the 14C data to a microbial allocation model and estimated microbial parameters; assimilation efficiency, exudation, and biomass specific respiration and turnover for each soil. We compare these parameters across the soil texture gradient to assess the extent to which models may need to account for variability in microbial C allocation across soils of different texture. Our results suggest that microbial C turns over more slowly in high-clay soils than in sandy soils, and that C lost from microbial biomass is retained at higher rates in high-clay soils. Accounting for these differences in microbial allocation and carbon stabilization could improve model representations of C cycling across a range of soil types.
Code of Federal Regulations, 2014 CFR
2014-07-01
... revenues allocated to Gulf producing States? 519.415 Section 519.415 Mineral Resources BUREAU OF OCEAN... affect revenues allocated to Gulf producing States? If bonus and royalty credits issued under Section 104(c) of the Gulf of Mexico Energy Security Act are used to pay bonuses or royalties on leases in the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... revenues allocated to Gulf producing States? 519.415 Section 519.415 Mineral Resources BUREAU OF OCEAN... affect revenues allocated to Gulf producing States? If bonus and royalty credits issued under Section 104(c) of the Gulf of Mexico Energy Security Act are used to pay bonuses or royalties on leases in the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... revenues allocated to Gulf producing States? 519.415 Section 519.415 Mineral Resources BUREAU OF OCEAN... affect revenues allocated to Gulf producing States? If bonus and royalty credits issued under Section 104(c) of the Gulf of Mexico Energy Security Act are used to pay bonuses or royalties on leases in the...
Potential effect of stand structure on belowground allocation
Thomas J. Dean
2001-01-01
Stand structure affects two key variables that affect biomass allocation to the stem: leaf area and height to the center of the crown. By translating wind forces into bending moment, these variables generate bending stress within a stem. The uniform stress axiom of stem formation can be used to calculate current stem mass for a given bending moment and stem allocation...
Forest biogeochemistry in response to drought.
Schlesinger, William H; Dietze, Michael C; Jackson, Robert B; Phillips, Richard P; Rhoades, Charles C; Rustad, Lindsey E; Vose, James M
2016-07-01
Trees alter their use and allocation of nutrients in response to drought, and changes in soil nutrient cycling and trace gas flux (N2 O and CH4 ) are observed when experimental drought is imposed on forests. In extreme droughts, trees are increasingly susceptible to attack by pests and pathogens, which can lead to major changes in nutrient flux to the soil. Extreme droughts often lead to more common and more intense forest fires, causing dramatic changes in the nutrient storage and loss from forest ecosystems. Changes in the future manifestation of drought will affect carbon uptake and storage in forests, leading to feedbacks to the Earth's climate system. We must improve the recognition of drought in nature, our ability to manage our forests in the face of drought, and the parameterization of drought in earth system models for improved predictions of carbon uptake and storage in the world's forests. © 2015 John Wiley & Sons Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-30
...: Land Allocation National Restructuring Program Regional Incentive Scheme: Reduced Corporate Tax Rates Regional Incentive Scheme: Social Security Premium Contribution for Employees Regional Incentive Scheme: Allocation of State Land Regional Incentive Scheme: Interest Support OIZ: Waste Water Charges OIZ: Exemptions...
Li, Congjuan; Shi, Xiang; Mohamad, Osama Abdalla; Gao, Jie; Xu, Xinwen; Xie, Yijun
2017-01-01
Background Water influences various physiological and ecological processes of plants in different ecosystems, especially in desert ecosystems. The purpose of this study is to investigate the response of physiological and morphological acclimation of two shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in irrigation intervals. Methodology/Principal findings The irrigation frequency was set as 1-, 2-, 4-, 8- and 12-week intervals respectively from March to October during 2012–2014 to investigate the response of physiological and morphological acclimation of two desert shrubs Haloxylon ammodendron and Calligonum mongolicunl to variations in the irrigation system. The irrigation interval significantly affected the individual-scale carbon acquisition and biomass allocation pattern of both species. Under good water conditions (1- and 2-week intervals), carbon assimilation was significantly higher than other treatments; while, under water shortage conditions (8- and 12-week intervals), there was much defoliation; and under moderate irrigation intervals (4 weeks), the assimilative organs grew gently with almost no defoliation occurring. Conclusion/Significance Both studied species maintained similar ecophysiologically adaptive strategies, while C. mongolicunl was more sensitive to drought stress because of its shallow root system and preferential belowground allocation of resources. A moderate irrigation interval of 4 weeks was a suitable pattern for both plants since it not only saved water but also met the water demands of the plants. PMID:28719623
Botticella, Ermelinda; Sestili, Francesco; Sparla, Francesca; Moscatello, Stefano; Marri, Lucia; Cuesta-Seijo, Jose A; Falini, Giuseppe; Battistelli, Alberto; Trost, Paolo; Lafiandra, Domenico
2018-03-02
Modifications to the composition of starch, the major component of wheat flour, can have a profound effect on the nutritional and technological characteristics of the flour's end products. The starch synthesized in the grain of conventional wheats (Triticum aestivum) is a 3:1 mixture of the two polysaccharides amylopectin and amylose. Altering the activity of certain key starch synthesis enzymes (GBSSI, SSIIa and SBEIIa) has succeeded in generating starches containing a different polysaccharide ratio. Here, mutagenesis, followed by a conventional marker-assisted breeding exercise, has been used to generate three mutant lines that produce starch with an amylose contents of 0%, 46% and 79%. The direct and pleiotropic effects of the multiple mutation lines were identified at both the biochemical and molecular levels. Both the structure and composition of the starch were materially altered, changes which affected the functionality of the starch. An analysis of sugar and nonstarch polysaccharide content in the endosperm suggested an impact of the mutations on the carbon allocation process, suggesting the existence of cross-talk between the starch and carbohydrate synthesis pathways. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Zhou, Fangyuan; Lou, Qiaozhe; Wang, Bo; Xu, Letian; Cheng, Chihang; Lu, Min; Sun, Jianghua
2016-01-01
Insect-microbe interaction is a key area of research in multiplayer symbiosis, yet little is known about the role of microbe-microbe interactions in insect-microbe symbioses. The red turpentine beetle (RTB) has destroyed millions of healthy pines in China and forms context-dependent relationships with associated fungi. The adult-associated fungus Leptographium procerum have played key roles in RTB colonization. However, common fungal associates (L. procerum and Ophiostoma minus) with RTB larvae compete for carbohydrates. Here, we report that dominant bacteria associated with RTB larvae buffer the competition by inhibiting the growth and D-glucose consumption of O. minus. However, they didn’t inhibit the growth of L. procerum and forced this fungus to consume D-pinitol before consuming D-glucose, even though D-glucose was available and a better carbon source not only for L. procerum but also for RTB larvae and associated bacteria. This suggests the most frequently isolated bacteria associated with RTB larvae could affect fungal growth and the sequence of carbohydrate consumption. Thus, this regulates carbohydrate allocation in the RTB larva-microbe community, which may in turn benefit RTB larvae development. We also discuss the mechanism of carbohydrate allocation in the RTB larva-microbe community, and its potential contribution to the maintenance of a symbiotic community. PMID:26839264
Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests.
Riutta, Terhi; Malhi, Yadvinder; Kho, Lip Khoon; Marthews, Toby R; Huaraca Huasco, Walter; Khoo, MinSheng; Tan, Sylvester; Turner, Edgar; Reynolds, Glen; Both, Sabine; Burslem, David F R P; Teh, Yit Arn; Vairappan, Charles S; Majalap, Noreen; Ewers, Robert M
2018-01-24
Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here, we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n = 6) and logged (n = 5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha -1 year -1 respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, nonpioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests. © 2018 John Wiley & Sons Ltd.
Oppel, Steffen; Powell, Abby N.; O'Brien, Diane M.
2010-01-01
The use of stored nutrients for reproduction represents an important component of life-history variation. Recent studies from several species have used stable isotopes to estimate the reliance on stored body reserves in reproduction. Such approaches rely on population-level dietary endpoints to characterize stored reserves (“capital”) and current diet (“income”). Individual variation in diet choice has so far not been incorporated in such approaches, but is crucial for assessing variation in nutrient allocation strategies. We investigated nutrient allocation to egg production in a large-bodied sea duck in northern Alaska, the king eider (Somateria spectabilis). We first used Bayesian isotopic mixing models to quantify at the population level the amount of endogenous carbon and nitrogen invested into egg proteins based on carbon and nitrogen isotope ratios. We then defined the isotopic signature of the current diet of every nesting female based on isotope ratios of eggshell membranes, because diets varied isotopically among individual king eiders on breeding grounds. We used these individual-based dietary isotope signals to characterize nutrient allocation for each female in the study population. At the population level, the Bayesian and the individual-based approaches yielded identical results, and showed that king eiders used an income strategy for the synthesis of egg proteins. The majority of the carbon and nitrogen in albumen (C: 86 ± 18%, N: 99 ± 1%) and the nitrogen in lipid-free yolk (90 ± 15%) were derived from food consumed on breeding grounds. Carbon in lipid-free yolk derived evenly from endogenous sources and current diet (exogenous C: 54 ± 24%), but source contribution was highly variable among individual females. These results suggest that even large-bodied birds traditionally viewed as capital breeders use exogenous nutrients for reproduction. We recommend that investigations of nutrient allocation should incorporate individual variation into mixing models to reveal intraspecific variation in reproductive strategies.
Karlowsky, Stefan; Augusti, Angela; Ingrisch, Johannes; Hasibeder, Roland; Lange, Markus; Lavorel, Sandra; Bahn, Michael; Gleixner, Gerd
2018-05-01
Mountain grasslands have recently been exposed to substantial changes in land use and climate and in the near future will likely face an increased frequency of extreme droughts. To date, how the drought responses of carbon (C) allocation, a key process in the C cycle, are affected by land-use changes in mountain grassland is not known.We performed an experimental summer drought on an abandoned grassland and a traditionally managed hay meadow and traced the fate of recent assimilates through the plant-soil continuum. We applied two 13 CO 2 pulses, at peak drought and in the recovery phase shortly after rewetting.Drought decreased total C uptake in both grassland types and led to a loss of above-ground carbohydrate storage pools. The below-ground C allocation to root sucrose was enhanced by drought, especially in the meadow, which also held larger root carbohydrate storage pools.The microbial community of the abandoned grassland comprised more saprotrophic fungal and Gram(+) bacterial markers compared to the meadow. Drought increased the newly introduced AM and saprotrophic (A+S) fungi:bacteria ratio in both grassland types. At peak drought, the 13 C transfer into AM and saprotrophic fungi, and Gram(-) bacteria was more strongly reduced in the meadow than in the abandoned grassland, which contrasted the patterns of the root carbohydrate pools.In both grassland types, the C allocation largely recovered after rewetting. Slowest recovery was found for AM fungi and their 13 C uptake. In contrast, all bacterial markers quickly recovered C uptake. In the meadow, where plant nitrate uptake was enhanced after drought, C uptake was even higher than in control plots. Synthesis . Our results suggest that resistance and resilience (i.e. recovery) of plant C dynamics and plant-microbial interactions are negatively related, that is, high resistance is followed by slow recovery and vice versa. The abandoned grassland was more resistant to drought than the meadow and possibly had a stronger link to AM fungi that could have provided better access to water through the hyphal network. In contrast, meadow communities strongly reduced C allocation to storage and C transfer to the microbial community in the drought phase, but in the recovery phase invested C resources in the bacterial communities to gain more nutrients for regrowth. We conclude that the management of mountain grasslands increases their resilience to drought.
Carbon stock projection in North Sumatera using multi objective land allocation approach
NASA Astrophysics Data System (ADS)
Ichwani, S. N.; Wulandari, R.; Ramachandra, A.
2018-05-01
Nowadays, GHG emission is a critical issue for environmental management due to the large scale of land cover change, especially forest cover. This study provides a protection development strategy for North Sumatera as one way to manage the area. By using Multi Objective Land Allocation (MOLA), we evaluated two GHG emission scenarios, including a Business As Usual (BAU) scenario and Protection scenario. The result shows that the province will lose the carbon stock up to 24 million tons in the year of 2035 by using a BAU scenario. On the other hand, by implementing the Protection scenario, total carbon stock that is lost in the same period is about 5 millions tons solely. It proves that protection scenario is a good scenario and effective to reduce the carbon loss. Furthermore, this scenario can be an alternative for North Sumatera spatial plan.
N.J. Karberg; K.S. Pregitzer; J.S. King; A.L. Friend; J.R. Wood
2004-01-01
Global emissions of atmospheric CO2 and tropospheric O3 are rising and expected to impact large areas of the Earth's forests. While CO2 stimulates net primary production, O3 reduces photosynthesis, altering plant C allocation and reducing ecosystem C storage. The effects...
Resource Allocation Based on Evaluation of Research.
ERIC Educational Resources Information Center
Fransson, Rune
1985-01-01
At Sweden's Karolinska Institute, a resource allocation model for medical research in use since 1970 allows the research activity of the different departments to affect resource allocation direclty. (MSE)
NASA Astrophysics Data System (ADS)
Huang, Jianbei; Behrendt, Thomas; Hammerbacher, Almuth; Weinhold, Alexander; Hellén, Heidi; Reichelt, Michael; Wisthaler, Armin; Dam, Nicole; Trumbore, Susan; Hartmann, Henrik
2017-04-01
For more than 40 years plant carbon (C) allocation have been of central interest to plant scientists. Most studies on C allocation focus on either biomass partitioning (e.g., root:shoot ratios), particular fluxes (e.g., non-structural carbohydrate, NSC; biogenic emissions of volatile organic compounds, VOCs) or short-term proportional allocation patterns (e.g., pulse-chase studies using isotopic tracers). However, a thorough understanding of C allocation priorities, especially at the whole-plant level, requires assessing all of these aspects together. We investigated C allocation trade-off in Norway spruce (Picea abies) saplings by assessing whole-plant fluxes (assimilation, respiration and VOCs) and biomass partitioning (structural biomass; NSC; secondary metabolites, SMs). The study was carried out over 8 weeks and allowed us, by modifying atmospheric CO2 concentrations ([CO2]), manipulating plant carbon (C) availability. Treatments included control (400 ppm), carbon compensation (down to 120 ppm) and starvation (down to 50 ppm) C availability levels. Reductions in [CO2] aimed to reveal plant allocation strategies assuming that pools receiving more C than others under C limitation have a high allocation priority. Respiration was less sensitive to declining [CO2] compared to assimilation, NSC and SMs. Strong declines in NSC at low [CO2] suggest that respiration was maintained by using stored NSC. Furthermore, reduced NSC and SMs concentrations also indicate preferential C allocation to growth over NSC and SMs at low C availability. SMs decreased to a lesser extent than NSC in old needles, and remained relatively constant in branches until death from starvation. These results suggest that pools of stored NSC may serve as a buffer for respiration or growth under C limitation but also that SMs remain largely inaccessible for metabolism once they are stored in tissues. VOCs emissions, however, showed contrasting responses to [CO2]; oxygenated VOCs (methanol and acetone) decreased whereas monoterpene and sesquiterpene emissions slightly increased with decreasing [CO2]. Our experimental design provides an excellent platform for studying control mechanisms of C allocation. The range of C availabilities applied in our study will allow partitioning compensatory mechanisms (e.g., up-regulation of C storage due to sugar signalling at high C availability) from evolutionary programming (e.g., storage formation to increase long-term survival at expense of other functions with decreasing C availability). Such partitioning is corroborated via phytohormone and transcriptome analysis, and results will hopefully be available at the time of presentation.
Using the CARDAMOM framework to retrieve global terrestrial ecosystem functioning properties
NASA Astrophysics Data System (ADS)
Exbrayat, Jean-François; Bloom, A. Anthony; Smallman, T. Luke; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew
2016-04-01
Terrestrial ecosystems act as a sink for anthropogenic emissions of fossil-fuel and thereby partially offset the ongoing global warming. However, recent model benchmarking and intercomparison studies have highlighted the non-trivial uncertainties that exist in our understanding of key ecosystem properties like plant carbon allocation and residence times. It leads to worrisome differences in terrestrial carbon stocks simulated by Earth system models, and their evolution in a warming future. In this presentation we attempt to provide global insights on these properties by merging an ecosystem model with remotely-sensed global observations of leaf area and biomass through a data-assimilation system: the CARbon Data MOdel fraMework (CARDAMOM). CARDAMOM relies on a Markov Chain Monte Carlo algorithm to retrieve confidence intervals of model parameters that regulate ecosystem properties independently of any prior land-cover information. The MCMC method thereby enables an explicit representation of the uncertainty in land-atmosphere fluxes and the evolution of terrestrial carbon stocks through time. Global experiments are performed for the first decade of the 21st century using a 1°×1° spatial resolution. Relationships emerge globally between key ecosystem properties. For example, our analyses indicate that leaf lifespan and leaf mass per area are highly correlated. Furthermore, there exists a latitudinal gradient in allocation patterns: high latitude ecosystems allocate more carbon to photosynthetic carbon (leaves) while plants invest more carbon in their structural parts (wood and root) in the wet tropics. Overall, the spatial distribution of these ecosystem properties does not correspond to usual land-cover maps and are also partially correlated with disturbance regimes. For example, fire-prone ecosystems present statistically significant higher values of carbon use efficiency than less disturbed ecosystems experiencing similar climatic conditions. These results raise concerns on the suitability of the plant functional type paradigm for terrestrial carbon cycling.
Allocation to carbon storage pools in Norway spruce saplings under drought and low CO2.
Hartmann, Henrik; McDowell, Nate G; Trumbore, Susan
2015-03-01
Non-structural carbohydrates (NSCs) are critical to maintain plant metabolism under stressful environmental conditions, but we do not fully understand how NSC allocation and utilization from storage varies with stress. While it has become established that storage allocation is unlikely to be a mere overflow process, very little empirical evidence has been produced to support this view, at least not for trees. Here we present the results of an intensively monitored experimental manipulation of whole-tree carbon (C) balance (young Picea abies (L.) H Karst.) using reduced atmospheric [CO2] and drought to reduce C sources. We measured specific C storage pools (glucose, fructose, sucrose, starch) over 21 weeks and converted concentration measurement into fluxes into and out of the storage pool. Continuous labeling ((13)C) allowed us to track C allocation to biomass and non-structural C pools. Net C fluxes into the storage pool occurred mainly when the C balance was positive. Storage pools increased during periods of positive C gain and were reduced under negative C gain. (13)C data showed that C was allocated to storage pools independent of the net flux and even under severe C limitation. Allocation to below-ground tissues was strongest in control trees followed by trees experiencing drought followed by those grown under low [CO2]. Our data suggest that NSC storage has, under the conditions of our experimental manipulation (e.g., strong progressive drought, no above-ground growth), a high allocation priority and cannot be considered an overflow process. While these results also suggest active storage allocation, definitive proof of active plant control of storage in woody plants requires studies involving molecular tools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Richard E. Dickson; Patricia T. Tomlinson; J. G. Isebrands
2000-01-01
The episodic or flushing growth habit of northern red oak (Quercus rubra L.,) has a significant influence on carbon fixation, carbon transport from source leaves, and carbon allocation within the plant; however, the impact of episodic growth on carbon parciprioning among chemical fractions is unknown. Median-flush leaves of the first and second flush...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-06
... Support. L. IEP: Land Allocation. M. National Restructuring Program. N. Regional Incentive Scheme: Reduced Corporate Tax Rates. O. Regional Incentive Scheme: Social Security Premium Contribution for Employees. P. Regional Incentive Scheme: Allocation of State Land. Q. Regional Incentive Scheme: Interest Support. R. OIZ...
Biogeographical patterns of biomass allocation in leaves, stems, and roots in China's forests.
Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping
2015-11-03
To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China's forests using both the national forest inventory data (2004-2008) and our field measurements (2011-2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China.
Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests
Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping
2015-01-01
To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China’s forests using both the national forest inventory data (2004–2008) and our field measurements (2011–2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China. PMID:26525117
NASA Astrophysics Data System (ADS)
Straková, P.; Niemi, R. M.; Freeman, C.; Peltoniemi, K.; Toberman, H.; Heiskanen, I.; Fritze, H.; Laiho, R.
2011-09-01
Peatlands are carbon (C) storage ecosystems sustained by a high water table (WT). High WT creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WT drawdown caused by climate and/or land-use change. Aerobic decomposers are directly affected by WT drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WT drawdown on aerobic decomposer activity in plant litter at two stages of decomposition (incubated in the field for 1 or 2 years). We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen (N), phosphorus (P) and sulphur. Our study sites represented a three-stage chronosequence from pristine to short-term (years) and long-term (decades) WT drawdown conditions under two nutrient regimes (bog and fen). The litter types included reflected the prevalent vegetation: Sphagnum mosses, graminoids, shrubs and trees. Litter type was the main factor shaping microbial activity patterns and explained about 30 % of the variation in enzyme activities and activity allocation. Overall, enzyme activities were higher in vascular plant litters compared to Sphagnum litters, and the allocation of enzyme activities towards C or nutrient acquisition was related to the initial litter quality (chemical composition). Direct effects of WT regime, site nutrient regime and litter decomposition stage (length of incubation period) summed to only about 40 % of the litter type effect. WT regime alone explained about 5 % of the variation in enzyme activities and activity allocation. Generally, enzyme activity increased following the long-term WT drawdown and the activity allocation turned from P and N acquisition towards C acquisition. This caused an increase in the rate of litter decomposition. The effects of the short-term WT drawdown were minor compared to those of the long-term WT drawdown: e.g., the increase in the activity of C-acquiring enzymes was up to 120 % (bog) or 320 % (fen) higher after the long-term WT drawdown compared to the short-term WT drawdown. In general, the patterns of microbial activity as well as their responses to WT drawdown depended on peatland type: e.g., the shift in activity allocation to C-acquisition was up to 100 % stronger at the fen compared to the bog. Our results imply that changes in plant community composition in response to persistent WT drawdown will strongly affect the C dynamics of peatlands. The predictions of decomposer activity under changing climate and/or land-use thus cannot be based on the direct effects of the changed environment only, but need to consider the indirect effects of environmental changes: the changes in plant community composition, their dependence on peatland type, and their time scale.
da Costa, Fernanda Vieira; de Queiroz, Antônio César Medeiros; Maia, Maria Luiza Bicalho; Júnior, Ronaldo Reis; Fagundes, Marcilio
2016-06-01
Plants have limited resources to invest in reproduction, vegetative growth and defense against herbivorous. Trade-off in resources allocation promotes changes in plant traits that may affect higher trophic levels. In this study, we evaluated the trade-off effect between years of high and low fruiting on the investment of resources for growth and defense, and their indirect effects on herbivory in Copaifera langsdorffii. Our questions were: (i) does the resource investment on reproduction causes a depletion in vegetative growth as predicted by the Carbon/Nutrient Balance hypothesis (CNBH), resulting in more availability of resources to be allocated for defense?, (ii) does the variation in resource allocation for growth and defense between years of high and low fruiting leads to indirect changes in herbivory? Thirty-five trees located in a Cerrado area were monitored during 2008 (year of high fruiting) and 2009 (year of no fruiting) to evaluate the differential investment in vegetative traits (biomass, growth and number of ramifications), plant defense (tannin concentration and plant hypersensitivity) and herbivory (galling attack and folivory). According to our first question, we observed that in the fruiting year, woody biomass negatively affected tannin concentration, indicating that fruit production restricted the resources that could be invested both in growth as in defense. In the same way, we observed an inter-annual variation in herbivorous attack, and found that plants with higher leaf biomass and tannin concentration, experienced higher galling attack and hypersensitive reaction, regardless years. These findings suggested that plants’ resistance to herbivory is a good proxy of plant defense and an effective defense strategy for C. langsdorffii, besides the evidence of indirect responses of the third trophic level, as postulated by the second question. In summary, the supra-annual fruiting pattern promoted several changes on plant development, demonstrating the importance of evaluating different plant traits when characterizing the vegetative investment. As expected by theory, the trade-off in resource allocation favored changes in defense compounds production and patterns of herbivory. The understanding of this important element of insect-plant interactions will be fundamental to decipher coevolutionary life histories and interactions between plant species reproduction and herbivory. Besides that, only through long-term studies we will be able to build models and develop more accurate forecasts about the factors that trigger the bottom-up effect on herbivory performance, as well the top-down effect of herbivores on plant trait evolution.
Wang, Chuan-Hua; Li, Jun-Qing; Yang, Ying
2011-12-01
To investigate the effects of atmospheric nitrogen deposition on the seedlings regeneration of Liquidambar formosana, a greenhouse experiment was conducted, in which, the low light- and nitrogen supplies were controlled similar to those in typical L. formosana secondary forests, with the effects of different light- and nitrogen supply on the L. formosana seedlings survival, leaf functional traits, biomass allocation, and gas exchange studied. The whole plant light compensation point (LCP(whoIe-plant)) of the seedlings was estimated with a whole plant carbon balance model, and then compared with the understory photosynthetic active radiance (PAR) of the typical secondary forests. Under 3.0% and 6.0% of full sunlight, eutrophic nitrogen supply led to a decrease of seedlings survival (shade tolerance) and specific leaf area (SLA), but had no obvious effects on the seedlings biomass allocation. At eutrophic nitrogen supply, light intensity had significant effects on the leaf area based maximum assimilation rate, whereas increasing nitrogen supply under low light induced the increase of leaf mass based dark respiration rate. Both light intensity and nitrogen supply had significant effects on the mass based leaf respiration rate, and the interaction of light and nitrogen had significant effects on the mass based stem respiration rate. Increasing nitrogen supply increased the LCP(wholeplant), under 3.0%, 6.0%, and 12.0% of full sunlight, but decreased the LCP(whoIe-plant) under 25.0% of full sunlight. The decrease of the seedlings shade tolerance induced by the increasing nitrogen supply under low light was correlated with the variations of the seedlings carbon balance capacity. Under the background of elevated atmospheric nitrogen deposition, the maintenance of L. formosana populations in China would more depend on disturbances and gap regeneration, and the population dynamics would be deeply affected.
Sex Differences, Sex-Role Orientation, and Reward Allocations.
ERIC Educational Resources Information Center
Olejnik, Anthony B.
1982-01-01
In separate studies, examined (1) ways that college students allocated rewards to children performing in team and competitive situations, and (2) the relationship between sex role orientation and reward allocations. Found that sex and situational differences in reward allocations are affected by sex role orientation and differential socialization…
Healthcare resource allocation decisions affecting uninsured services
Harrison, Krista Lyn; Taylor, Holly A.
2017-01-01
Purpose Using the example of community access programs (CAPs), the purpose of this paper is to describe resource allocation and policy decisions related to providing health services for the uninsured in the USA and the organizational values affecting these decisions. Design/methodology/approach The study used comparative case study methodology at two geographically diverse sites. Researchers collected data from program documents, meeting observations, and interviews with program stakeholders. Findings Five resource allocation or policy decisions relevant to providing healthcare services were described at each site across three categories: designing the health plan, reacting to funding changes, and revising policies. Organizational values of access to care and stewardship most frequently affected resource allocation and policy decisions, while economic and political pressures affect the relative prioritization of values. Research limitations/implications Small sample size, the potential for social desirability or recall bias, and the exclusion of provider, member or community perspectives beyond those represented among participating board members. Practical implications Program directors or researchers can use this study to assess the extent to which resource allocation and policy decisions align with organizational values and mission statements. Social implications The description of how healthcare decisions are actually made can be matched with literature that describes how healthcare resource decisions ought to be made, in order to provide a normative grounding for future decisions. Originality/value This study addresses a gap in literature regarding how CAPs actually make resource allocation decisions that affect access to healthcare services. PMID:27934550
Nemeth, Denise; Lambrinos, John G; Strik, Bernadine C
2017-02-01
Perennial crops potentially provide a sink for atmospheric carbon. However, there is a poor understanding of how perennial crops differ in their carbon allocation patterns, and few studies have tested how agronomic practices such as fertilization influence long-term patterns of carbon allocation in actual production systems. In this study, we report results of a long-term field experiment that tested the individual and combined effects of organic matter incorporation and nitrogen fertilization on carbon allocation. The mature (nine-year-old) blueberry plants in this study had an average standing carbon stock of 1147gCm -2 and average annual Net Primary Production (NPP) of 523gCm -2 yr -1 , values that are similar to those reported for other woody crops. Forty-four percent of blueberry annual NPP was sequestered in persistent biomass, 19% was exported as harvested fruit, and 37% entered the detrital pathway. Nitrogen applied at rates typical for blueberry production throughout the span of the study had no significant effect on total plant or soil C. However, pre-planting organic matter incorporation and periodic mulching with sawdust significantly increased both soil organic matter and soil C. Pre-planting organic matter incorporation also increased total standing plant C nine years later at maturity. At the field scale, we estimate that fields receiving pre-planting organic matter incorporation would have 4.8% (4.5Mgha -1 ) more standing C relative to non-amended fields, although the difference is within the range of uncertainty of the estimated values. These results suggest that blueberry production can provide a valuable medium-term carbon store that is comparable in magnitude to that of temperate tree crops, but overall carbon budgets are influenced by management practices over the first decade after planting. Copyright © 2016 Elsevier B.V. All rights reserved.
Dry matter and energy partitioning in plants under climatic stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolhar-Nordenkampf, H.R.; Postl, W.F.; Meister, M.H.
1996-12-31
During ontogenesis plants distribute assimilates quite differently among their organs depending on the environmental conditions. In case of high sink capacity energetically cheap storing compounds such as carbohydrates and/or organic acids are formed, whereas during periods with low demand proteins and lipids may be accumulated. Besides ontogenesis, drought and increased CO{sub 2} are able to modify sink capacity and by this transients in the partitioning pattern of carbon are induced. Plants, well adapted to several dry seasons during the year are able to allocate carbon predominantly to below ground organs. During this period many leaves become senescent. In any casemore » stems and remaining green leaves will loose dry matter and energy. With 80% of plants under investigation CO{sub 2} enrichment was shown to induce an enforced allocation of carbon to below ground organs. Roots and Rhizomes, beets and tubers act as a sink for the additionally fixed carbon. It was demonstrated that sink capacity is controlling photosynthetic activity. With respect to agricultural production, to ecosystems and to single plants, climatic change will modify productivity and plants distribution pattern as a consequence of quite different metabolic changes. These responses are depending on the effect of natural and anthropogenic stress factors on the use of enhanced CO{sub 2} and on the allocation of additionally formed assimilates.« less
Role of metabolite transporters in source-sink carbon allocation
Ludewig, Frank; Flügge, Ulf-Ingo
2013-01-01
Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g., roots, flowers, small leaves, and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartmentalized. Photoassimilates are allocated to distinct compartments of these tissues in all organs, requiring a set of metabolite transporters mediating this intercompartmental transfer. The general route of photoassimilates can be briefly described as follows. Upon fixation of carbon dioxide in chloroplasts of mesophyll cells, triose phosphates either enter the cytosol for mainly sucrose formation or remain in the stroma to form transiently stored starch which is degraded during the night and enters the cytosol as maltose or glucose to be further metabolized to sucrose. In both cases, sucrose enters the phloem for long distance transport or is transiently stored in the vacuole, or can be degraded to hexoses which also can be stored in the vacuole. In the majority of plant species, sucrose is actively loaded into the phloem via the apoplast. Following long distance transport, it is released into sink organs, where it enters cells as source of carbon and energy. In storage organs, sucrose can be stored, or carbon derived from sucrose can be stored as starch in plastids, or as oil in oil bodies, or – in combination with nitrogen – as protein in protein storage vacuoles and protein bodies. Here, we focus on transport proteins known for either of these steps, and discuss the implications for yield increase in plants upon genetic engineering of respective transporters. PMID:23847636
Advances in liver transplantation allocation systems.
Schilsky, Michael L; Moini, Maryam
2016-03-14
With the growing number of patients in need of liver transplantation, there is a need for adopting new and modifying existing allocation policies that prioritize patients for liver transplantation. Policy should ensure fair allocation that is reproducible and strongly predictive of best pre and post transplant outcomes while taking into account the natural history of the potential recipients liver disease and its complications. There is wide acceptance for allocation policies based on urgency in which the sickest patients on the waiting list with the highest risk of mortality receive priority. Model for end-stage liver disease and Child-Turcotte-Pugh scoring system, the two most universally applicable systems are used in urgency-based prioritization. However, other factors must be considered to achieve optimal allocation. Factors affecting pre-transplant patient survival and the quality of the donor organ also affect outcome. The optimal system should have allocation prioritization that accounts for both urgency and transplant outcome. We reviewed past and current liver allocation systems with the aim of generating further discussion about improvement of current policies.
NASA Astrophysics Data System (ADS)
Bauters, Marijn; Bruneel, Stijn; Demol, Miro; Taveirne, Cys; Van Der Heyden, Dries; Boeckx, Pascal; Kearsley, Elizabeth; Cizungu, Landry; Verbeeck, Hans
2016-04-01
Tropical forests are key actors in the global carbon cycle. Predicting future responses of these forests to global change is challenging, but important for global climate models. However, our current understanding of such responses is limited, due to the complexity of forest ecosystems and the slow dynamics that inherently form these systems. Our understanding of ecosystem ecology and functioning could greatly benefit from experimental setups including strong environmental gradients in the tropics, as found on altitudinal transects. We setup two such transects in both South-America and Africa, focussing on shifts in carbon allocation, forest structure and functional composition. By a cross-continental comparison of both transects, we will gain insight in how different or alike both tropical forests biomes are in their responses, and how universal the observed adaption mechanisms are.
Carbon allocation belowground in Pinus pinaster using stable carbon isotope pulse labeling technique
NASA Astrophysics Data System (ADS)
Dannoura, M.; Bosc, A.; Chipeaux, C.; Sartore, M.; Lambrot, C.; Trichet, P.; Bakker, M.; Loustau, D.; Epron, D.
2010-12-01
Carbon allocation belowground competes with aboveground growth and biomass production. In the other hand, it contributes to resource acquisition such as nutrient, water and carbon sequestration in soil. Thus, a better characterization of carbon flow from plant to soil and its residence time within each compartment is an important issue for understanding and modeling forest ecosystem carbon budget. 13C pulse labeling of whole crown was conducted at 4 seasons to study the fate of assimilated carbon by photosynthesis into the root on 12 year old Pinus pinaster planted in the INRA domain of Pierroton. Maritime pine is the most widely planted species in South-West Europe. Stem, root and soil CO2 effluxes and their isotope composition were measured continuously by tunable diode laser absorption spectroscopy with a trace gas analyzer (TGA 100A; Campbell Scientific) coupled to flow-through chambers. 13CO2 recovery and peak were observed in respiration of each compartment after labeling. It appeared sequentially from top of stem to bottom, and to coarse root. The maximum velocity of carbon transfer was calculated as the difference in time lag of recovery between two positions on the trunk or on the root. It ranged between 0.08-0.2 m h-1 in stem and between 0.04-0.12 m h-1 in coarse root. This velocity was higher in warmer season, and the difference between time lag of recovery and peak increased after first frost. Photosynthates arrived underground 1.5 to 5 days after labeling, at similar time in soil CO2 effluxes and coarse root respiration. 0.08-1.4 g of carbon was respired per tree during first 20 days following labeling. It presented 0.6 -10% of 13C used for labeling and it is strongly related to seasons. The isotope signal was detected in fine root organs and microbial biomass by periodical core sampling. The peak was observed 6 days after labeling in early summer while it was delayed more than 10 days in autumn and winter with less amount of carbon allocated belowground.
Medeiros, J C C; Coelho, F F; Teixeira, E
2016-06-01
Aquatic plants can use differential allocation (trade-off) of carbon among their structures depending on the nutrition concentration. Given that N and P are limiting in the growth of plants, our questions were: Are the N and P concentrations in S. auriculata related to the biomass allocation to its structures? Is a differential allocation of N and P between floating and submerged leaves? We evaluated the relation between the nutrients and the biomass allocation, and the trade-off among the leaves using the Spearman correlation. Our results showed that N and P concentrations in S. auriculata are related to the biomass allocation to its structures, and that there is no trade-off of these nutrients between "shoot and root". Thus, we can see the importance of N and P concentration in the biomass of S. auriculata, and why this plant is capable to development in different environments as a weedy.
Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests
Lisa J. Samuelson; Thomas A. Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Timothy A. Martin; Wendell P. Cropper; Pete H. Anderson; Michael R. Ramirez; John C. Lewis
2017-01-01
Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5...
NASA Astrophysics Data System (ADS)
Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; MacBean, Natasha; Alexander, M. Ross; Dye, Alex; Bishop, Daniel A.; Trouet, Valerie; Babst, Flurin; Hessl, Amy E.; Pederson, Neil; Blanken, Peter D.; Bohrer, Gil; Gough, Christopher M.; Litvak, Marcy E.; Novick, Kimberly A.; Phillips, Richard P.; Wood, Jeffrey D.; Moore, David J. P.
2017-09-01
How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.-iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m-2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m-2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C-LAI relationship in the model did not match the observed leaf C-LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic Cstem / Cleaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.
The impact of temperature on marine phytoplankton resource allocation and metabolism
NASA Astrophysics Data System (ADS)
Toseland, A.; Daines, S. J.; Clark, J. R.; Kirkham, A.; Strauss, J.; Uhlig, C.; Lenton, T. M.; Valentin, K.; Pearson, G. A.; Moulton, V.; Mock, T.
2013-11-01
Marine phytoplankton are responsible for ~50% of the CO2 that is fixed annually worldwide, and contribute massively to other biogeochemical cycles in the oceans. Their contribution depends significantly on the interplay between dynamic environmental conditions and the metabolic responses that underpin resource allocation and hence biogeochemical cycling in the oceans. However, these complex environment-biome interactions have not been studied on a larger scale. Here we use a set of integrative approaches that combine metatranscriptomes, biochemical data, cellular physiology and emergent phytoplankton growth strategies in a global ecosystems model, to show that temperature significantly affects eukaryotic phytoplankton metabolism with consequences for biogeochemical cycling under global warming. In particular, the rate of protein synthesis strongly increases under high temperatures even though the numbers of ribosomes and their associated rRNAs decreases. Thus, at higher temperatures, eukaryotic phytoplankton seem to require a lower density of ribosomes to produce the required amounts of cellular protein. The reduction of phosphate-rich ribosomes in warmer oceans will tend to produce higher organismal nitrogen (N) to phosphate (P) ratios, in turn increasing demand for N with consequences for the marine carbon cycle due to shifts towards N-limitation. Our integrative approach suggests that temperature plays a previously unrecognized, critical role in resource allocation and marine phytoplankton stoichiometry, with implications for the biogeochemical cycles that they drive.
NASA Astrophysics Data System (ADS)
Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.
2012-10-01
Carbon use efficiency (CUE) is a functional parameter that could possibly link the current increasingly accurate global estimates of gross primary production with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, net primary production (NPP) and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a~measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross-check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard both net ecosystem production and gross primary production on yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruits: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.09, was higher than the previously suggested constant values of 0.47-0.50. Low nitrogen investment in fruits, the limited root-apparatus, and the optimal growth temperature and nutritional condition observed at the site are suggested to be explanatory variables for the high CUE observed.
Physiological girdling of pine trees via phloem chilling: proof of concept
Kurt Johnsen; Chris Maier; Felipe Sanchez; Peter Anderson; John Butnor; Richard Waring; Sune Linder
2007-01-01
Quantifying below-ground carbon (C) allocation is particularly difficult as methods usually disturb the rootâ mycorrhizalâsoil continuum. We reduced C allocation below ground of loblolly pine trees by: (1) physically girdling trees and (2) physiologically girdling pine trees by chilling the phloem. Chilling reduced cambium temperatures by approximately 18 °C. Both...
Liao, Kuo-Jen; Hou, Xiangting; Strickland, Matthew J.
2016-01-01
ABSTRACT An important issue of regional air quality management is to allocate air quality management funds to maximize environmental and human health benefits. In this study, we use an innovative approach to tackle this air quality management issue. We develop an innovative resource allocation model that allows identification of air pollutant emission control strategies that maximize mortality avoidances subject to a resource constraint. We first present the development of the resource allocation model and then a case study to show how the model can be used to identify resource allocation strategies that maximize mortality avoidances for top five Metropolitan Statistical Areas (MSAs) (i.e., New York, Los Angeles, Chicago, Dallas-Fort Worth, and Philadelphia) in the continental United States collectively. Given budget constraints in the U.S. Environmental Protection Agency’s (EPA) Clean Air Act assessment, the results of the case study suggest that controls of sulfur dioxide (SO2) and primary carbon (PC) emissions from EPA Regions 2, 3, 5, 6, and 9 would have significant health benefits for the five selected cities collectively. Around 30,800 air pollution–related mortalities could be avoided during the selected 2-week summertime episode for the five cities collectively if the budget could be allocated based on the results of the resource allocation model. Although only five U.S. cities during a 2-week episode are considered in the case study, the resource allocation model can be used by decision-makers to plan air pollution mitigation strategies to achieve the most significant health benefits for other seasons and more cities over a region or the continental U.S.Implications: Effective allocations of air quality management resources are challenging and complicated, and it is desired to have a tool that can help decision-makers better allocate the funds to maximize health benefits of air pollution mitigation. An innovative resource allocation model developed in this study can help decision-makers identify the best resource allocation strategies for multiple cities collectively. The results of a case study suggest that controls of primary carbon and sulfur dioxides emissions would achieve the most significant health benefits for five selected cities collectively. PMID:27441782
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Second Allocation of Public... disaster that affects public transportation systems. The Disaster Relief Appropriations Act provides $10.9... projected total recovery costs for the four most severely affected public transportation systems, not...
Predominant role of water in regulating the tree-growth response to diurnal asymmetric warmin
NASA Astrophysics Data System (ADS)
Chen, Z.; Xia, J.; Cui, E.
2017-12-01
Growth of the Northern Hemisphere trees is affected by diurnal asymmetric warming, which is generally considered to touch off carbon assimilation and increment of carbon storage. Asymmetric effects of diurnal warming on vegetation greenness were validated in previous researches, however, the effect of diurnal warming on wood tissue which stores most carbon of a whole plant is still unknown. Here, we combined ring-width index (RWI), remote sensing-based normalized difference vegetation index (NDVI) and climate datasets to detect the effects of daytime and night-time warming on vegetation growth, respectively. Our results indicate that daytime warming enhances NDVI but has neutral effect on tree woody growth over the Northern Hemisphere. Response of wood growth to daytime warming is linearly regulated by soil water availability. The underlying mechanism of different response of canopy and wood growth to daytime warming may attribute to the biomass change, that is, allocation to foliage tissues increased at the expense of wood tissue under warming and water-limited conditions. Night-time warming show neutral effects on NDVI and RWI over the Northern Hemisphere, and the neutral Tmin-NDVI correlations result from the non-linear mediation of soil water availability. Our results highlight the current greening trend under daytime warming does not mean higher carbon sink capacity, the warming-drying climate may impair the large carbon sink of global forests.
Endrulat, Tina; Buchmann, Nina; Brunner, Ivano
2016-01-01
Abies alba (European silver fir) was used to investigate possible effects of simulated browsing on C allocation belowground by 13CO2 pulse-labelling at spring, summer or autumn, and by harvesting the trees at the same time point of the labelling or at a later season for biomass and for 13C-allocation into the fine-root system. Before budburst in spring, the leader shoots and 50% of all lateral shoots of half of the investigated 5-year old Abies alba saplings were clipped to simulate browsing. At harvest, different fine-root classes were separated, and starch as an important storage compartment was analysed for concentrations. The phenology had a strong effect on the allocation of the 13C-label from shoots to roots. In spring, shoots did not supply the fine-roots with high amounts of the 13C-label, because the fine-roots contained less than 1% of the applied 13C. In summer and autumn, however, shoots allocated relatively high amounts of the 13C-label to the fine roots. The incorporation of the 13C-label as structural C or as starch into the roots is strongly dependent on the root type and the root diameter. In newly formed fine roots, 3–5% of the applied 13C was incorporated, whereas 1–3% in the ≤0.5 mm root class and 1–1.5% in the >0.5–1.0 mm root class were recorded. Highest 13C-enrichment in the starch was recorded in the newly formed fine roots in autumn. The clipping treatment had a significant positive effect on the amount of allocated 13C-label to the fine roots after the spring labelling, with high relative 13C-contents observed in the ≤0.5 mm and the >0.5–1.0 mm fine-root classes of clipped trees. No effects of the clipping were observed after summer and autumn labelling in the 13C-allocation patterns. Overall, our data imply that the season of C assimilation and, thus, the phenology of trees is the main determinant of the C allocation from shoots to roots and is clearly more important than browsing. PMID:27123860
Endrulat, Tina; Buchmann, Nina; Brunner, Ivano
2016-01-01
Abies alba (European silver fir) was used to investigate possible effects of simulated browsing on C allocation belowground by 13CO2 pulse-labelling at spring, summer or autumn, and by harvesting the trees at the same time point of the labelling or at a later season for biomass and for 13C-allocation into the fine-root system. Before budburst in spring, the leader shoots and 50% of all lateral shoots of half of the investigated 5-year old Abies alba saplings were clipped to simulate browsing. At harvest, different fine-root classes were separated, and starch as an important storage compartment was analysed for concentrations. The phenology had a strong effect on the allocation of the 13C-label from shoots to roots. In spring, shoots did not supply the fine-roots with high amounts of the 13C-label, because the fine-roots contained less than 1% of the applied 13C. In summer and autumn, however, shoots allocated relatively high amounts of the 13C-label to the fine roots. The incorporation of the 13C-label as structural C or as starch into the roots is strongly dependent on the root type and the root diameter. In newly formed fine roots, 3-5% of the applied 13C was incorporated, whereas 1-3% in the ≤0.5 mm root class and 1-1.5% in the >0.5-1.0 mm root class were recorded. Highest 13C-enrichment in the starch was recorded in the newly formed fine roots in autumn. The clipping treatment had a significant positive effect on the amount of allocated 13C-label to the fine roots after the spring labelling, with high relative 13C-contents observed in the ≤0.5 mm and the >0.5-1.0 mm fine-root classes of clipped trees. No effects of the clipping were observed after summer and autumn labelling in the 13C-allocation patterns. Overall, our data imply that the season of C assimilation and, thus, the phenology of trees is the main determinant of the C allocation from shoots to roots and is clearly more important than browsing.
Productivity and nutrient cycling in bioenergy cropping systems
NASA Astrophysics Data System (ADS)
Heggenstaller, Andrew Howard
One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem (Andropogon geradii Vitman), switchgrass (Panicum virgatum L.), indiangrass [ Sorghastrum nutans (L.) Nash], and eastern gamagrass (Tripsacum dactyloides L.). Generally, the optimum rate of fertilization for biomass yield by the grasses was 140 kg N ha-1. Nitrogen inputs also had pronounced but grass-specific effects on biomass and nutrient partitioning, and on carbon storage. For big bluestem and switchgrass, 140 kg N ha -1. maximized root biomass, favored allocation of nutrients to roots over shoots, and led to net increases in carbon storage over the study duration. In contrast, for indiangrass and eastern gamagrass, root biomass and root nutrient allocation were generally adversely affected by N fertilization and carbon storage increased only with 0 or 65 kg N ha-1. For all grasses, 220 kg N ha -1 tended to shift allocation of nutrients to shoots over roots and resulted in no net increase in carbon storage. Optimal nitrogen management strategies for perennial, warm-season grass energy crops should take into consideration the effects of N on biomass yield as well as factors such as nutrient and carbon balance that will also impact economic feasibility and environmental sustainability.
Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest
YIQING LI; MING XU; XIAOMING ZOU
2006-01-01
Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July...
Slavíková, Renata; Püschel, David; Janoušková, Martina; Hujslová, Martina; Konvalinková, Tereza; Gryndlerová, Hana; Gryndler, Milan; Weiser, Martin; Jansa, Jan
2017-01-01
Quantification of carbon (C) fluxes in mycorrhizal plants is one of the important yet little explored tasks of mycorrhizal physiology and ecology. 13 CO 2 pulse-chase labelling experiments are increasingly being used to track the fate of C in these plant-microbial symbioses. Nevertheless, continuous monitoring of both the below- and aboveground CO 2 emissions remains a challenge, although it is necessary to establish the full C budget of mycorrhizal plants. Here, a novel CO 2 collection system is presented which allows assessment of gaseous CO 2 emissions (including isotopic composition of their C) from both belowground and shoot compartments. This system then is used to quantify the allocation of recently fixed C in mycorrhizal versus nonmycorrhizal Medicago truncatula plants with comparable biomass and mineral nutrition. Using this system, we confirmed substantially greater belowground C drain in mycorrhizal versus nonmycorrhizal plants, with the belowground CO 2 emissions showing large variation because of fluctuating environmental conditions in the glasshouse. Based on the assembled 13 C budget, the C allocation to the mycorrhizal fungus was between 2.3% (increased 13 C allocation to mycorrhizal substrate) and 2.9% (reduction of 13 C allocation to mycorrhizal shoots) of the plant gross photosynthetic production. Although the C allocation to shoot respiration (measured during one night only) did not differ between the mycorrhizal and nonmycorrhizal plants under our experimental conditions, it presented a substantial part (∼10%) of the plant C budget, comparable to the amount of CO 2 released belowground. These results advocate quantification of both above- and belowground CO 2 emissions in future studies.
NASA Astrophysics Data System (ADS)
Ivanov, Valeriy Y.; Bras, Rafael L.; Vivoni, Enrique R.
2008-03-01
Vegetation, particularly its dynamics, is the often-ignored linchpin of the land-surface hydrology. This work emphasizes the coupled nature of vegetation-water-energy dynamics by considering linkages at timescales that vary from hourly to interannual. A series of two papers is presented. A dynamic ecohydrological model [tRIBS + VEGGIE] is described in this paper. It reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. The framework focuses on ecohydrology of semiarid environments exhibiting abundant input of solar energy but limiting soil water that correspondingly affects vegetation structure and organization. The mechanisms through which water limitation influences plant dynamics are related to carbon assimilation via the control of photosynthesis and stomatal behavior, carbon allocation, stress-induced foliage loss, as well as recruitment and phenology patterns. This first introductory paper demonstrates model performance using observations for a site located in a semiarid environment of central New Mexico.
NASA Astrophysics Data System (ADS)
Reyes, J. J.; Adam, J. C.; Tague, C.
2016-12-01
Grasslands play an important role in agricultural production as forage for livestock; they also provide a diverse set of ecosystem services including soil carbon (C) storage. The partitioning of C between above and belowground plant compartments (i.e. allocation) is influenced by both plant characteristics and environmental conditions. The objectives of this study are to 1) develop and evaluate a hybrid C allocation strategy suitable for grasslands, and 2) apply this strategy to examine the importance of various parameters related to biogeochemical cycling, photosynthesis, allocation, and soil water drainage on above and belowground biomass. We include allocation as an important process in quantifying the model parameter uncertainty, which identifies the most influential parameters and what processes may require further refinement. For this, we use the Regional Hydro-ecologic Simulation System, a mechanistic model that simulates coupled water and biogeochemical processes. A Latin hypercube sampling scheme was used to develop parameter sets for calibration and evaluation of allocation strategies, as well as parameter uncertainty analysis. We developed the hybrid allocation strategy to integrate both growth-based and resource-limited allocation mechanisms. When evaluating the new strategy simultaneously for above and belowground biomass, it produced a larger number of less biased parameter sets: 16% more compared to resource-limited and 9% more compared to growth-based. This also demonstrates its flexible application across diverse plant types and environmental conditions. We found that higher parameter importance corresponded to sub- or supra-optimal resource availability (i.e. water, nutrients) and temperature ranges (i.e. too hot or cold). For example, photosynthesis-related parameters were more important at sites warmer than the theoretical optimal growth temperature. Therefore, larger values of parameter importance indicate greater relative sensitivity in adequately representing the relevant process to capture limiting resources or manage atypical environmental conditions. These results may inform future experimental work by focusing efforts on quantifying specific parameters under various environmental conditions or across diverse plant functional types.
Adressing optimality principles in DGVMs: Dynamics of Carbon allocation changes
NASA Astrophysics Data System (ADS)
Pietsch, Stephan
2017-04-01
DGVMs are designed to reproduce and quantify ecosystem processes. Based on plant functions or species specific parameter sets, the energy, carbon, nitrogen and water cycles of different ecosystems are assessed. These models have been proven to be important tools to investigate ecosystem fluxes as they are derived by plant, site and environmental factors. The general model approach assumes steady state conditions and constant model parameters. Both assumptions, however, are wrong, since: (i) No given ecosystem ever is at steady state! (ii) Ecosystems have the capability to adapt to changes in growth conditions, e.g. via changes in allocation patterns! This presentation will give examples how these general failures within current DGVMs may be addressed.
Adressing optimality principles in DGVMs: Dynamics of Carbon allocation changes.
NASA Astrophysics Data System (ADS)
Pietsch, S.
2016-12-01
DGVMs are designed to reproduce and quantify ecosystem processes. Based on plant functions or species specific parameter sets, the energy, carbon, nitrogen and water cycles of different ecosystems are assessed. These models have been proven to be important tools to investigate ecosystem fluxes as they are derived by plant, site and environmental factors. The general model approach assumes steady state conditions and constant model parameters. Both assumptions, however, are wrong. Any given ecosystem never is at steady state! Ecosystems have the capability to adapt to changes in growth conditions, e.g. via changes in allocation patterns! This presentation will give examples how these general failures within current DGVMs may be addressed.
Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; ...
2017-09-22
How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocationmore » schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m -2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m -2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the observed leaf C–LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic C stem/C leaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.
How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocationmore » schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m -2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m -2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the observed leaf C–LAI relationship at our sites. Although the four C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, D-Litton gave more realistic C stem/C leaf ratios and strongly reduced the overestimation of initial aboveground biomass and aboveground NPP for deciduous forests by D-CLM4.5. We identified key structural and parameterization deficits that need refinement to improve the accuracy of LSMs in the near future. These include changing how C is allocated in fixed and dynamic schemes based on data from current forest syntheses and different parameterization of allocation schemes for different forest types. Our results highlight the utility of using measurements of aboveground biomass to evaluate and constrain the C allocation scheme in LSMs, and suggest that stem turnover is overestimated by CLM4.5 for these AmeriFlux sites. Understanding the controls of turnover will be critical to improving long-term C processes in LSMs.« less
Synaptic Tagging During Memory Allocation
Rogerson, Thomas; Cai, Denise; Frank, Adam; Sano, Yoshitake; Shobe, Justin; Aranda, Manuel L.; Silva, Alcino J.
2014-01-01
There is now compelling evidence that the allocation of memory to specific neurons (neuronal allocation) and synapses (synaptic allocation) in a neurocircuit is not random and that instead specific mechanisms, such as increases in neuronal excitability and synaptic tagging and capture, determine the exact sites where memories are stored. We propose an integrated view of these processes, such that neuronal allocation, synaptic tagging and capture, spine clustering and metaplasticity reflect related aspects of memory allocation mechanisms. Importantly, the properties of these mechanisms suggest a set of rules that profoundly affect how memories are stored and recalled. PMID:24496410
NASA Astrophysics Data System (ADS)
Snoalv, J.; Groeneveld, M.; Quine, T. A.; Tranvik, L.
2017-12-01
Flocculation of dissolved organic carbon (DOC) in streams and rivers is a process that contributes to the pool of particulate organic carbon (POC) in the aquatic system. In low-energy waters the increased sedimentation rates of this higher-density fraction of organic carbon (OC) makes POC important in allocating organic carbon into limnic storage, which subsequently influences emissions of greenhouse gases from the continental environment to the atmosphere. Allochthonous OC, derived from the terrestrial environment by soil erosion and litterfall, import both mineral aggregate-bound and free OC into freshwaters, which comprise carbon species of different quality and recalcitrance than autochthonous in-stream produced OC, such as from biofilms, aquatic plants and algae. Increased soil erosion due to land use change (e.g. agriculture, deforestation etc.) influences the input of allochthonous OC, which can lead to increased POC formation and sedimentation of terrestrial OC at flocculation boundaries in the landscape, i.e. where coagulation and flocculation processes are prone to occur in the water column. This study investigates the seasonal variation in POC content and flocculation capacity with respect to water quality (elemental composition) in eight river systems (four agricultural and four wooded streams) with headwaters in Exmoor, UK, that drain managed and non-managed land into Bristol Channel. Through flocculation experiments the samples were allowed to flocculate by treatments with added clay and salt standards that simulate the flocculation processes by 1) increased input of sediment into streams, and 2) saline mixing at the estuarine boundary, in order to quantify floc production and investigate POC quality by each process respectively. The results show how floc production, carbon quality and incorporation (e.g. complexation) of metals and rare earth elements (REE) in produced POC and remaining DOC in solution vary in water samples over the season and how these are related to different flocculation processes and affected by land use. This study improves our understanding on OC flocculation dynamics on a local catchment scale and how POC fate is affected by changed water quality in streams perturbed by land use change.
NASA Astrophysics Data System (ADS)
Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.
2015-12-01
Forest carbon processes are affected by soil moisture, soil temperature and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore they can neither resolve topographically driven hill-slope soil moisture patterns, nor simulate the nonlinear effects of soil moisture on carbon processes. A spatially-distributed biogeochemistry model, Flux-PIHM-BGC, has been developed by coupling the Biome-BGC (BBGC) model with a coupled physically-based land surface hydrologic model, Flux-PIHM. Flux-PIHM incorporates a land-surface scheme (adapted from the Noah land surface model) into the Penn State Integrated Hydrologic Model (PIHM). Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. Flux-PIHM-BGC model was tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations at the SSHCZO, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, aboveground carbon stock, and soil carbon efflux, provided an ideal test bed for the coupled model. Model results show that when uniform solar radiation is used, vegetation carbon and soil carbon are positively correlated with soil moisture in space, which agrees with the observations within the watershed. When topographically-driven solar radiation is used, however, the wetter valley floor becomes radiation limited, and produces less vegetation and soil carbon than the drier hillslope due to the assumption that canopy height is uniform in the watershed. This contradicts with the observations, and suggests that a tree height model with dynamic allocation model are needed to reproduce the spatial variation of carbon processes within a watershed.
J.S. King; C.P. Giardina; K.S. Pregitzer; A.L. Friend
2007-01-01
Carbon (C) allocation to the perennial coarse-root system of trees contributes to ecosystem C sequestration through formation of long-lived live wood biomass and, following senescence, by providing a large source of nutrient-poor detrital C. Our understanding of the controls on C allocation to coarse-root growth is rudimentary, but it has important implications for...
Tree carbon allocation dynamics determined using a carbon mass balance approach.
Klein, Tamir; Hoch, Günter
2015-01-01
Tree internal carbon (C) fluxes between compound and compartment pools are difficult to measure directly. Here we used a C mass balance approach to decipher these fluxes and provide a full description of tree C allocation dynamics. We collected independent measurements of tree C sinks, source and pools in Pinus halepensis in a semi-arid forest, and converted all fluxes to g C per tree d(-1) . Using this data set, a process flowchart was created to describe and quantify the tree C allocation on diurnal to annual time-scales. The annual C source of 24.5 kg C per tree yr(-1) was balanced by C sinks of 23.5 kg C per tree yr(-1) , which partitioned into 70%, 17% and 13% between respiration, growth, and litter (plus export to soil), respectively. Large imbalances (up to 57 g C per tree d(-1) ) were observed as C excess during the wet season, and as C deficit during the dry season. Concurrent changes in C reserves (starch) were sufficient to buffer these transient C imbalances. The C pool dynamics calculated using the flowchart were in general agreement with the observed pool sizes, providing confidence regarding our estimations of the timing, magnitude, and direction of the internal C fluxes. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Campioli, M.; Gielen, B.; Granier, A.; Verstraeten, A.; Neirynck, J.; Janssens, I. A.
2010-10-01
Carbon taken up by the forest canopy is allocated to tree organs for biomass production and respiration. Because tree organs have different life span and decomposition rate, the tree C allocation determines the residence time of C in the ecosystem and its C cycling rate. The study of the carbon-use efficiency, or ratio between net primary production (NPP) and gross primary production (GPP), represents a convenient way to analyse the C allocation at the stand level. Previous studies mostly focused on comparison of the annual NPP-GPP ratio among forests of different functional types, biomes and age. In this study, we extend the current knowledge by assessing (i) the annual NPP-GPP ratio and its interannual variability (for five years) for five tree organs (leaves, fruits, branches, stem and coarse roots), and (ii) the seasonal dynamic of NPP-GPP ratio of leaves and stems, for two stands dominated by European beech and Scots pine. The average NPP-GPP ratio for the beech stand (38%) was similar to previous estimates for temperate deciduous forests, whereas the NPP-GPP ratio for the pine stand (17%) is the lowest recorded till now in the literature. The proportion of GPP allocated to leaf NPP was similar for both species, whereas beech allocated a remarkable larger proportion of GPP to wood NPP than pine (29% vs. 6%, respectively). The interannual variability of the NPP-GPP ratio for wood was substantially larger than the interannual variability of the NPP-GPP ratio for leaves, fruits and overall stand and it is likely to be controlled by previous year air temperature (both species), previous year drought intensity (beech) and thinning (pine). Seasonal pattern of NPP-GPP ratio greatly differed between beech and pine, with beech presenting the largest ratio in early season, and pine a more uniform ratio along the season. For beech, NPP-GPP ratio of leaves and stems peaked during the same period in the early season, whereas they peaked in opposite periods of the growing season for pine. Seasonal differences in C allocation are likely due to functional differences between deciduous and evergreen species and temporal variability of the sink strength. The similar GPP and autotrophic respiration between stands and the remarkable larger C allocation to wood at the beech stand indicate that at the beech ecosystem C has a longer residence time than at the pine ecosystem. Further research on belowground production and particularly on fine roots and ectomycorrhizal fungi likely represents the most important step to progress our knowledge on C allocation dynamics.
Savage, Jessica A; Haines, Dustin F; Holbrook, N Michele
2015-08-01
Despite the success of breeding programmes focused on increasing fruit size, relatively little is known about the anatomical and physiological changes required to increase reproductive allocation. To address this gap in knowledge, we compared fruit/ovary anatomy, vascular structure and phloem transport of two varieties of giant pumpkins, and their smaller fruited progenitor under controlled environmental conditions. We also modelled carbon transport into the fruit of competitively grown plants using data collected in the field. There was no evidence that changes in leaf area or photosynthetic capacity impacted fruit size. Instead, giant varieties differed in their ovary morphology and contained more phloem on a cross-sectional area basis in their petioles and pedicels than the ancestral variety. These results suggest that sink activity is important in determining fruit size and that giant pumpkins have an enhanced capacity to transport carbon. The strong connection observed between carbon fixation, phloem structure and fruit growth in field-grown plants indicates that breeding for large fruit has led to changes throughout the carbon transport system that could have important implications for how we think about phloem transport velocity and carbon allocation. © 2014 John Wiley & Sons Ltd.
Kerhoulas, Lucy P; Kane, Jeffrey M
2012-01-01
Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables measured suggests that tree carbon allocation to coarse roots is independent of annual climate variability. The greater number of missing rings in branches highlights the fact that canopy development is a low priority for carbon allocation during poor growing conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Allocation of Public Transportation...) announces the allocation of $2,000,000,000 under the Public Transportation Emergency Relief Program... after an emergency or major disaster that affects public transportation systems. The Appropriations Act...
NASA Astrophysics Data System (ADS)
Carrara, J.; Walter, C. A.; Govindarajulu, R.; Hawkins, J.; Brzostek, E. R.
2017-12-01
Nitrogen (N) deposition has enhanced the ability of trees to capture atmospheric carbon (C). The effect of elevated N on belowground C cycling, however, is variable and response mechanisms are largely unknown. Recent research has highlighted distinct differences between ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees in the strength of root-microbial interactions. In particular, ECM trees send more C to rhizosphere microbes to stimulate enzyme activity and nutrient mobilization than AM trees, which primarily rely on saprotrophic microbes to mobilize N. As such, we hypothesized that N fertilization would weaken root-microbial interactions and soil decomposition in ECM stands more than in AM stands. To test this hypothesis, we measured root-microbial interactions in ECM and AM plots in two long-term N fertilization studies, the Fernow Experimental Forest, WV and Bear Brook Watershed, ME. We found that N fertilization led to declines in plant C allocation belowground to fine root biomass, branching, and root exudation in ECM stands to a greater extent than in AM stands. As ECM roots are tightly coupled to the soil microbiome through energy and nutrient exchange, reductions in belowground C allocation were mirrored by shifts in microbial community composition and reductions in fungal gene expression. These shifts were accompanied by larger reductions in fungal-derived lignolytic and hydrolytic enzyme activity in ECM stands than in AM stands. In contrast, as the AM soil microbiome is less reliant on trees for C and are more adapted to high inorganic nutrient environments, the soil metagenome and transcriptome were more resilient to decreases in belowground C allocation. Collectively, our results indicate the N fertilization decoupled root-microbial interactions by reducing belowground carbon allocation in ECM stands. Thus, N fertilization may reduce soil turnover and increase soil C storage to a greater extent in forests dominated by ECM than AM trees.
NASA Astrophysics Data System (ADS)
Griebel, Anne; Bennett, Lauren T.; Arndt, Stefan K.
2016-04-01
Evergreen forests have the potential to sequester carbon year-round due to the presence of leaves with a multi-year lifespan. Eucalypt forests occur in warmer climates where temperature and radiation are not imposing a strong seasonality. Thus, unlike deciduous or many coniferous trees, many eucalypts grow opportunistically as conditions allow. As such, many eucalypts do not produce distinct growth rings, which present challenges to the implementation of standard methods and data interpretation approaches for monitoring and explaining carbon allocation dynamics in response to climatic stress. As a consequence, there is a lack of detailed understanding of seasonal growth dynamics of evergreen forests as a whole, and, in particular, of the influence of climatic drivers on carbon allocation to the various biomass pools. We used a multi-instrument approach in a mixed species eucalypt forest to investigate the influence of climatic drivers on the seasonal growth dynamics of a predominantly temperate and moisture-regulated environment in south-eastern Australia. Ecosystem scale observations of net ecosystem exchange (NEE) from a flux tower in the Wombat forest near Melbourne indicated that the ecosystem is a year-round carbon sink, but that intra-annual variations in temperature and moisture along with prolonged heat waves and dry spells resulted in a wide range of annual sums over the past three years (NEE ranging from ~4 to 12 t C ha-1 yr-1). Dendrometers were used to monitor stem increments of the three dominant eucalypt species. Stem expansion was generally opportunistic with the greatest increments under warm but moist conditions (often in spring and autumn), and the strongest indicators of stem growth dynamics being radiation, vapour pressure deficit and a combined heat-moisture index. Differences in the seasonality of stem increments between species were largely due to differences in the canopy position of sampled individuals. The greatest stem increments were recorded in the years with highest NEE, but NEE was not a strong seasonal driver of stem increment. Recently developed terrestrial lidar scanners (VEGNET) monitored the daily changes in canopy dynamics with a comparable temporal resolution to dendrometer and eddy covariance measurements. Growth of each canopy stratum was distinctly seasonal, and we detected contrasting responses to climatic stress along the canopy height gradient. Leaf turnover was predominantly in summer and was initiated by prolonged heat stress and isolated storm events. Leaf shedding and replacement happened concurrently, with leaves being mainly discarded from the middle stratum and replaced in the top stratum. Due to our novel multi-instrument approach and the high temporal resolution of tree to ecosystem-scale growth dynamics we were able to demonstrate that above ground carbon allocation to stem and crown pools followed separate seasonal dynamics that did not necessarily follow the same seasonality as ecosystem scale carbon sequestration. Our findings will ultimately improve our understanding of the effects of short- and long-term variability in temperature and moisture stress on carbon allocation dynamics to the above ground biomass pools for broadleaf evergreen ecosystems.
Modeling forest C and N allocation responses to free-air CO2 enrichment
NASA Astrophysics Data System (ADS)
Luus, Kristina; De Kauwe, Martin; Walker, Anthony; Werner, Christian; Iversen, Colleen; McCarthy, Heather; Medlyn, Belinda; Norby, Richard; Oren, Ram; Zak, Donald; Zaehle, Sönke
2015-04-01
Vegetation allocation patterns and soil-vegetation partitioning of C and N are predicted to change in response to rising atmospheric concentrations of CO2. These allocation responses to rising CO2 have been examined at the ecosystem level through through free-air CO2 enrichment (FACE) experiments, and their global implications for the timing of progressive N limitation (PNL) and C sequestration have been predicted for ~100 years using a variety of ecosystem models. However, recent FACE model-data syntheses studies [1,2,3] have indicated that ecosystem models do not capture the 5-10 year site-level ecosystem allocation responses to elevated CO2. This may be due in part to the missing representation of the rhizosphere interactions between plants and soil biota in models. Ecosystem allocation of C and N is altered by interactions between soil and vegetation through the priming effect: as plant N availability diminishes, plants respond physiologically by altering their tissue allocation strategies so as to increase rates of root growth and rhizodeposition. In response, either soil organic material begins to accumulate, which hastens the onset of PNL, or soil microbes start to decompose C more rapidly, resulting in increased N availability for plant uptake, which delays PNL. In this study, a straightforward approach for representing rhizosphere interactions in ecosystem models was developed through which C and N allocation to roots and rhizodeposition responds dynamically to elevated CO2 conditions, modifying soil decomposition rates without pre-specification of the direction in which soil C and N accumulation should shift in response to elevated CO2. This approach was implemented in a variety of ecosystem models ranging from stand (G'DAY), to land surface (CLM 4.5, O-CN), to dynamic global vegetation (LPJ-GUESS) models. Comparisons against data from three forest FACE sites (Duke, Oak Ridge & Rhinelander) indicated that representing rhizosphere interactions allowed models to more reliably capture responses of ecosystem C and N allocation to free-air CO2 enrichment because they were able to simulate the priming effect. Insights were therefore gained into between-site differences observed in forest FACE experiments, and the underlying physiological and biogeochemical mechanisms determining ecosystem C and N allocation responses to elevated CO2. References 1. De Kauwe, M. G., et al. (2014), Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites, New Phytologist, 203, 883-899. 2. Walker, A. P., et al. (2014), Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO2 enrichment experiments: Model performance at ambient CO2 concentration, Journal of Geophysical Research: Biogeosciences, 119, 937-964. 3. Zaehle, S., et al. (2014), Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies, New Phytologist, 202 (3), 803-822.
Do plants modulate biomass allocation in response to petroleum pollution?
Nie, Ming; Yang, Qiang; Jiang, Li-Fen; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo
2010-01-01
Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a 13CO2 pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root–shoot ratio for both plant biomass and 13C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution. PMID:20484231
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleska, Scott; Davidson, Eric; Finzi, Adrien
This project combines automated in situ observations of the isotopologues of CO 2 with root observations, novel experimental manipulations of below ground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. above ground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: (A) Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics; (B) Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated below groundmore » using measurements of root growth and indices of below ground autotrophic vs. heterotrophic respiration (via trenched plots andisotope measurements); (C) Testing whether plant allocation of carbon below ground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and (D) Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Eric A.; Saleska, Scott; Savage, Kathleen
1. Project Summary and Objectives This project combines automated in situ observations of the isotopologues of CO 2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO 2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitudemore » of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2).« less
46 CFR 272.41 - Requirements for examination and allocation of M&R expenses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 8 2010-10-01 2010-10-01 false Requirements for examination and allocation of M&R... AFFECTING SUBSIDIZED VESSELS AND OPERATORS REQUIREMENTS AND PROCEDURES FOR CONDUCTING CONDITION SURVEYS AND... Requirements for examination and allocation of M&R expenses. (a) Examination requirement. Pursuant to the...
Nabin Gyawali; Thomas B. Lynch; Rodney E. Will
2013-01-01
Traditionally, the main focus of forest production has usually been to maximize allocation of biomass to merchantable stem wood. But the assessment of biomass partitioning in stands is needed to address management concerns such as stem production and allocation, carbon sequestration, wildland fire, whole tree harvesting, etc. Thinning mainly increases the bole diameter...
Biotic interactions reduce microbial carbon use efficiency
NASA Astrophysics Data System (ADS)
Bradford, M.; Maynard, D. S.
2017-12-01
The efficiency by which microbes decompose organic matter governs the amount of carbon that is retained in microbial biomass versus lost to the atmosphere as respiration. This carbon use efficiency (CUE) is affected by various abiotic conditions, such as temperature and nutrient availability. In biogeochemical model simulations, CUE is a key variable regulating how much soil carbon is stored or lost from ecosystems under simulated global changes, such as climate warming. Theoretically, the physiological costs of biotic interactions such as competition should likewise alter CUE, yet the direction and magnitude of these costs are untested. Here we conduct a microcosm experiment to quantify how competitive interactions among saprotrophic fungi alter growth, respiration, and CUE. Free-living decomposer fungi representing a broad range of traits and phylogenies were grown alone, in pairwise competition, and in multi-species (up to 15) communities. By combing culturing and stable carbon isotope approaches, we could resolve the amount of carbon substrate allocated to fungal biomass versus respiration, and so estimate CUE. By then comparing individual performance to community-level outcomes, we show that species interactions induce consistent declines in CUE, regardless of abiotic conditions. Pairwise competition lowers CUE by as much as 25%, with the magnitude of these costs equal to or greater than the observed variation across abiotic conditions. However, depending on the competitive network structure, increasing species richness led to consistent gains or declines in CUE. Our results suggest that the extent to which microbial-mediated carbon fluxes respond to environmental change may be influenced strongly by competitive interactions. As such, knowledge of abiotic conditions and community composition is necessary to confidently project CUE and hence ecosystem carbon dynamics.
Evaluating the Community Land Model in a pine stand with shading manipulations and 13CO2 labeling
NASA Astrophysics Data System (ADS)
Mao, J.; Ricciuto, D. M.; Thornton, P. E.; Warren, J. M.; King, A. W.; Shi, X.; Iversen, C. M.; Norby, R. J.
2016-02-01
Carbon allocation and flow through ecosystems regulates land surface-atmosphere CO2 exchange and thus is a key, albeit uncertain, component of mechanistic models. The Partitioning in Trees and Soil (PiTS) experiment-model project tracked carbon allocation through a young Pinus taeda stand following pulse labeling with 13CO2 and two levels of shading. The field component of this project provided process-oriented data that were used to evaluate terrestrial biosphere model simulations of rapid shifts in carbon allocation and hydrological dynamics under varying environmental conditions. Here we tested the performance of the Community Land Model version 4 (CLM4) in capturing short-term carbon and water dynamics in relation to manipulative shading treatments and the timing and magnitude of carbon fluxes through various compartments of the ecosystem. When calibrated with pretreatment observations, CLM4 was capable of closely simulating stand-level biomass, transpiration, leaf-level photosynthesis, and pre-labeling 13C values. Over the 3-week treatment period, CLM4 generally reproduced the impacts of shading on soil moisture changes, relative change in stem carbon, and soil CO2 efflux rate. Transpiration under moderate shading was also simulated well by the model, but even with optimization we were not able to simulate the high levels of transpiration observed in the heavy shading treatment, suggesting that the Ball-Berry conductance model is inadequate for these conditions. The calibrated version of CLM4 gave reasonable estimates of label concentration in phloem and in soil surface CO2 after 3 weeks of shade treatment, but it lacks the mechanisms needed to track the labeling pulse through plant tissues on shorter timescales. We developed a conceptual model for photosynthate transport based on the experimental observations, and we discussed conditions under which the hypothesized mechanisms could have an important influence on model behavior in larger-scale applications. Implications for future experimental studies are described, some of which are already being implemented in follow-on studies.
Decision Makers' Allocation of Home-Care Therapy Services: A Process Map
Poss, Jeff; Egan, Mary; Rappolt, Susan; Berg, Katherine
2013-01-01
ABSTRACT Purpose: To explore decision-making processes currently used in allocating occupational and physical therapy services in home care for complex long-stay clients in Ontario. Method: An exploratory study using key-informant interviews and client vignettes was conducted with home-care decision makers (case managers and directors) from four home-care regions in Ontario. The interview data were analyzed using the framework analysis method. Results: The decision-making process for allocating therapy services has four stages: intake, assessment, referral to service provider, and reassessment. There are variations in the management processes deployed at each stage. The major variation is in the process of determining the volume of therapy services across home-care regions, primarily as a result of financial constraints affecting the home-care programme. Government funding methods and methods of information sharing also significantly affect home-care therapy allocation. Conclusion: Financial constraints in home care are the primary contextual factor affecting allocation of therapy services across home-care regions. Given the inflation of health care costs, new models of funding and service delivery need to be developed to ensure that the right person receives the right care before deteriorating and requiring more costly long-term care. PMID:24403672
NASA Technical Reports Server (NTRS)
Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.
2005-01-01
We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (
NASA Astrophysics Data System (ADS)
Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.
2013-05-01
Carbon use efficiency (CUE), the ratio of net primary production (NPP) over gross primary production (GPP), is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.12, was higher than the previously suggested constant values of 0.47-0.50. Low nitrogen investment in fruit, the limited root apparatus, and the optimal growth temperature and nutritional condition observed at the site are suggested to be explanatory variables for the high CUE observed.
Genetic Manipulation of Glycogen Allocation Affects Replicative Lifespan in E. coli
Röösli, Thomas; Bigosch, Colette; Ackermann, Martin
2016-01-01
In bacteria, replicative aging manifests as a difference in growth or survival between the two cells emerging from division. One cell can be regarded as an aging mother with a decreased potential for future survival and division, the other as a rejuvenated daughter. Here, we aimed at investigating some of the processes involved in aging in the bacterium Escherichia coli, where the two types of cells can be distinguished by the age of their cell poles. We found that certain changes in the regulation of the carbohydrate metabolism can affect aging. A mutation in the carbon storage regulator gene, csrA, leads to a dramatically shorter replicative lifespan; csrA mutants stop dividing once their pole exceeds an age of about five divisions. These old-pole cells accumulate glycogen at their old cell poles; after their last division, they do not contain a chromosome, presumably because of spatial exclusion by the glycogen aggregates. The new-pole daughters produced by these aging mothers are born young; they only express the deleterious phenotype once their pole is old. These results demonstrate how manipulations of nutrient allocation can lead to the exclusion of the chromosome and limit replicative lifespan in E. coli, and illustrate how mutations can have phenotypic effects that are specific for cells with old poles. This raises the question how bacteria can avoid the accumulation of such mutations in their genomes over evolutionary times, and how they can achieve the long replicative lifespans that have recently been reported. PMID:27093302
A possible link between life and death of a xeric tree in desert.
Xu, Gui-Qing; McDowell, Nate G; Li, Yan
2016-05-01
Understanding the interactions between drought and tree ontogeny or size remains an essential research priority because size-specific mortality patterns have large impacts on ecosystem structure and function, determine forest carbon storage capacity, and are sensitive to climatic change. Here we investigate a xerophytic tree species (Haloxylon ammodendron (C.A. Mey.)) with which the changes in biomass allocation with tree size may play an important role in size-specific mortality patterns. Size-related changes in biomass allocation, root distribution, plant water status, gas exchange, hydraulic architecture and non-structural carbohydrate reserves of this xerophytic tree species were investigated to assess their potential role in the observed U-shaped mortality pattern. We found that excessively negative water potentials (<-4.7MPa, beyond the P50leaf of -4.1MPa) during prolonged drought in young trees lead to hydraulic failure; while the imbalance of photoassimilate allocation between leaf and root system in larger trees, accompanied with declining C reserves (<2% dry matter across four tissues), might have led to carbon starvation. The drought-resistance strategy of this species is preferential biomass allocation to the roots to improve water capture. In young trees, the drought-resistance strategy is not well developed, and hydraulic failure appears to be the dominant driver of mortality during drought. With old trees, excess root growth at the expense of leaf area may lead to carbon starvation during prolonged drought. Our results suggest that the drought-resistance strategy of this xeric tree is closely linked to its life and death: well-developed drought-resistance strategy means life, while underdeveloped or overdeveloped drought-resistance strategy means death. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghimire, B.; Riley, W. J.; Koven, C.
2013-12-01
Nitrogen is the most important nutrient limiting plant carbon assimilation and growth, and is required for production of photosynthetic enzymes, growth and maintenance respiration, and maintaining cell structure. The forecasted rise in plant available nitrogen through atmospheric nitrogen deposition and the release of locked soil nitrogen by permafrost thaw in high latitude ecosystems is likely to result in an increase in plant productivity. However a mechanistic representation of plant nitrogen dynamics is lacking in earth system models. Most earth system models ignore the dynamic nature of plant nutrient uptake and allocation, and further lack tight coupling of below- and above-ground processes. In these models, the increase in nitrogen uptake does not translate to a corresponding increase in photosynthesis parameters, such as maximum Rubisco capacity and electron transfer rate. We present an improved modeling framework implemented in the Community Land Model version 4.5 (CLM4.5) for dynamic plant nutrient uptake, and allocation to different plant parts, including leaf enzymes. This modeling framework relies on imposing a more realistic flexible carbon to nitrogen stoichiometric ratio for different plant parts. The model mechanistically responds to plant nitrogen uptake and leaf allocation though changes in photosynthesis parameters. We produce global simulations, and examine the impacts of the improved nitrogen cycling. The improved model is evaluated against multiple observations including TRY database of global plant traits, nitrogen fertilization observations and 15N tracer studies. Global simulations with this new version of CLM4.5 showed better agreement with the observations than the default CLM4.5-CN model, and captured the underlying mechanisms associated with plant nitrogen cycle.
Toward a Multilevel Perspective on the Allocation of Educational Resources.
ERIC Educational Resources Information Center
Monk, David H.
1981-01-01
The importance of the following is demonstrated: (1) striking a balance between the attention given to resource allocation practices at macro compared to microlevels of decision making; and (2) learning more about how resource allocation decisions made at one level affect practices at other levels of the educational system. (Author/GK)
Funding Education: Developing a Method of Allocation for Improvement
ERIC Educational Resources Information Center
BenDavid-Hadar, Iris
2018-01-01
Purpose: Resource allocation is a key policy instrument that affects the educational achievement distribution (EAD). The literature on methods of allocation is focused mainly on equity issues. The purpose of this paper is to develop a composite funding formula, which adds to the equity-based element (i.e. a needs-based element compensating for…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... impacted and distressed areas, HUD computes allocations based on the best available data that cover all the eligible affected areas. This Notice allocates funds based on unmet housing and economic revitalization... date of this Notice. Based on a review of the impacts from Hurricane Sandy, and estimates of unmet need...
Microbial control over carbon cycling in soil
Schimel, Joshua P.; Schaeffer, Sean M.
2012-01-01
A major thrust of terrestrial microbial ecology is focused on understanding when and how the composition of the microbial community affects the functioning of biogeochemical processes at the ecosystem scale (meters-to-kilometers and days-to-years). While research has demonstrated these linkages for physiologically and phylogenetically “narrow” processes such as trace gas emissions and nitrification, there is less conclusive evidence that microbial community composition influences the “broad” processes of decomposition and organic matter (OM) turnover in soil. In this paper, we consider how soil microbial community structure influences C cycling. We consider the phylogenetic level at which microbes form meaningful guilds, based on overall life history strategies, and suggest that these are associated with deep evolutionary divergences, while much of the species-level diversity probably reflects functional redundancy. We then consider under what conditions it is possible for differences among microbes to affect process dynamics, and argue that while microbial community structure may be important in the rate of OM breakdown in the rhizosphere and in detritus, it is likely not important in the mineral soil. In mineral soil, physical access to occluded or sorbed substrates is the rate-limiting process. Microbial community influences on OM turnover in mineral soils are based on how organisms allocate the C they take up – not only do the fates of the molecules differ, but they can affect the soil system differently as well. For example, extracellular enzymes and extracellular polysaccharides can be key controls on soil structure and function. How microbes allocate C may also be particularly important for understanding the long-term fate of C in soil – is it sequestered or not? PMID:23055998
Massad, Tara Joy; Dyer, Lee A; Vega C, Gerardo
2012-01-01
One of the goals of chemical ecology is to assess costs of plant defenses. Intraspecific trade-offs between growth and defense are traditionally viewed in the context of the carbon-nutrient balance hypothesis (CNBH) and the growth-differentiation balance hypothesis (GDBH). Broadly, these hypotheses suggest that growth is limited by deficiencies in carbon or nitrogen while rates of photosynthesis remain unchanged, and the subsequent reduced growth results in the more abundant resource being invested in increased defense (mass-balance based allocation). The GDBH further predicts trade-offs in growth and defense should only be observed when resources are abundant. Most support for these hypotheses comes from work with phenolics. We examined trade-offs related to production of two classes of defenses, saponins (triterpenoids) and flavans (phenolics), in Pentaclethra macroloba (Fabaceae), an abundant tree in Costa Rican wet forests. We quantified physiological costs of plant defenses by measuring photosynthetic parameters (which are often assumed to be stable) in addition to biomass. Pentaclethra macroloba were grown in full sunlight or shade under three levels of nitrogen alone or with conspecific neighbors that could potentially alter nutrient availability via competition or facilitation. Biomass and photosynthesis were not affected by nitrogen or competition for seedlings in full sunlight, but they responded positively to nitrogen in shade-grown plants. The trade-off predicted by the GDBH between growth and metabolite production was only present between flavans and biomass in sun-grown plants (abundant resource conditions). Support was also only partial for the CNBH as flavans declined with nitrogen but saponins increased. This suggests saponin production should be considered in terms of detailed biosynthetic pathway models while phenolic production fits mass-balance based allocation models (such as the CNBH). Contrary to expectations based on the two defense hypotheses, trade-offs were found between defenses and photosynthesis, indicating that studies of plant defenses should include direct measures of physiological responses.
ERIC Educational Resources Information Center
Parag, Yael; Capstick, Stuart; Poortinga, Wouter
2011-01-01
A comparative experiment in the UK examined people's willingness to change energy consumption behavior under three different policy framings: energy tax, carbon tax, and personal carbon allowances (PCA). PCA is a downstream cap-and-trade policy proposed in the UK, in which emission rights are allocated to individuals. We hypothesized that due to…
Sari Palmroth; Ram Oren; Heather R. McCarthy; Kurt H. Johnsen; Adrien C. Finzi; John R. Butnor; Michael G. Ryan; William H. Schlesinger
2006-01-01
The partitioning among carbon (C) pools of the extra C captured under elevated atmospheric CO2 concentration ([CO2]) determines the enhancement in C sequestration, yet no clear partitioning rules exist. Here, we used first principles and published data from four free-air CO2 enrichment (FACE)...
Future carbon storage in harvested wood products from Ontario's Crown forests
Jiaxin Chen; Stephen J. Colombo; Michael T. Ter-Mikaelian; Linda S. Heath
2008-01-01
This analysis quantifies projected carbon (C) storage in harvested wood products (HWP) from Ontario's Crown forests. The large-scale forest C budget model, FORCARB-ON, was applied to estimate HWP C stock changes using the production approach defined by the Intergovernmental Panel on Climate Change. Harvested wood volume was converted to C mass and allocated to...
The present study compares the dynamics in carbon (C) allocation of adult deciduous beech (Fagus sylvatica) and evergreen spruce (Picea abies) during summer and in response to seven-year-long exposure with twice-ambient ozone (O3) concentrations (2 × O3). Focus was on the respira...
Karina V.R. Schafer; Ram Oren; David S. Ellsworth; Chun-Ta Lai; Jeffrey D. Herricks; Adrien C. Finzi; Daniel D. Richter; Gabriel G. Katul
2003-01-01
We linked a leaf-level C02 assimilation model with a model that accounts for light attenuation in the canopy and measurements of sap-flux-based canopy conductance into a new canopy conductance-constrained carbon assimilation (4C-A) model. We estimated canopy C02 uptake (AnC) at...
The QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions
USDA-ARS?s Scientific Manuscript database
The allocation of carbon and nitrogen resources to the synthesis of plant proteins, carbohydrates, and lipids is complex and under the control of many genes; much remains to be understood about this process. QQS (Qua Quine Starch, At3g30720), an orphan gene unique to Arabidopsis thaliana, regulates...
NASA Astrophysics Data System (ADS)
Kastovska, Eva; Edwards, Keith; Santruckova, Hana
2017-04-01
Carbon allocation pattern represents the plant strategy for growth and nutrient capture. Plants exhibit high plasticity in their allocation pattern and belowground C partitioning in response to changes in the availability of nutrients limiting their production, namely nitrogen (N). Any shift in the belowground C fluxes and partitioning between root production, exudation and other rhizodeposits could affect the soil microbial activity and soil organic matter turnover. We studied the influence of N availability on plant allocation patterns with emphasis on belowground C fluxes of two wetland graminoids, the competitive Glyceria maxima and the conservative Carex acuta. Plants were grown in pots under two levels of N availability. We combined pulse-labeling of plants with 13CO2 to track recent assimilates with estimation of the root death rate calculated from the difference between gross and net root growth rates for assessing the rhizodeposition flux to soil, and the contribution of root exudates and lysates from root turnover. We found that higher N supply enhanced root biomass and, subsequently, the total rhizodeposition. Both species shifted partitioning of belowground C towards higher mass-specific root production and turnover, with lower investments into root exudation. Therefore, the rhizodeposition flux was enriched in root-derived lysates over soluble exudates. Root exudates accounted for 50-70% of the rhizodeposition flux in conditions of low N availability, while it was only 20-40% under high N availability. The N fertilization induced changes in belowground C fluxes were species-specific, with more pronounced changes in the conservative Carex than the competitive Glyceria. In summary, soil N loading enhanced total C rhizodeposition and, simultaneously, the proportion of predominantly more complex root lysates over soluble root exudates, with potential implications for soil organic matter dynamics. Our results further stress the importance of species-specific responses to N loading in predicting total rhizodeposition flux and changes in its quality.
Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation.
MacNeill, Gregory J; Mehrpouyan, Sahar; Minow, Mark A A; Patterson, Jenelle A; Tetlow, Ian J; Emes, Michael J
2017-07-20
Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Realizing Mitigation Efficiency of European Commercial Forests by Climate Smart Forestry.
Yousefpour, Rasoul; Augustynczik, Andrey Lessa Derci; Reyer, Christopher P O; Lasch-Born, Petra; Suckow, Felicitas; Hanewinkel, Marc
2018-01-10
European temperate and boreal forests sequester up to 12% of Europe's annual carbon emissions. Forest carbon density can be manipulated through management to maximize its climate mitigation potential, and fast-growing tree species may contribute the most to Climate Smart Forestry (CSF) compared to slow-growing hardwoods. This type of CSF takes into account not only forest resource potentials in sequestering carbon, but also the economic impact of regional forest products and discounts both variables over time. We used the process-based forest model 4 C to simulate European commercial forests' growth conditions and coupled it with an optimization algorithm to simulate the implementation of CSF for 18 European countries encompassing 68.3 million ha of forest (42.4% of total EU-28 forest area). We found a European CSF policy that could sequester 7.3-11.1 billion tons of carbon, projected to be worth 103 to 141 billion euros in the 21st century. An efficient CSF policy would allocate carbon sequestration to European countries with a lower wood price, lower labor costs, high harvest costs, or a mixture thereof to increase its economic efficiency. This policy prioritized the allocation of mitigation efforts to northern, eastern and central European countries and favored fast growing conifers Picea abies and Pinus sylvestris to broadleaves Fagus sylvatica and Quercus species.
Running, Steven W.; Gower, Stith T.
1991-01-01
A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.
Variational methods to estimate terrestrial ecosystem model parameters
NASA Astrophysics Data System (ADS)
Delahaies, Sylvain; Roulstone, Ian
2016-04-01
Carbon is at the basis of the chemistry of life. Its ubiquity in the Earth system is the result of complex recycling processes. Present in the atmosphere in the form of carbon dioxide it is adsorbed by marine and terrestrial ecosystems and stored within living biomass and decaying organic matter. Then soil chemistry and a non negligible amount of time transform the dead matter into fossil fuels. Throughout this cycle, carbon dioxide is released in the atmosphere through respiration and combustion of fossils fuels. Model-data fusion techniques allow us to combine our understanding of these complex processes with an ever-growing amount of observational data to help improving models and predictions. The data assimilation linked ecosystem carbon (DALEC) model is a simple box model simulating the carbon budget allocation for terrestrial ecosystems. Over the last decade several studies have demonstrated the relative merit of various inverse modelling strategies (MCMC, ENKF, 4DVAR) to estimate model parameters and initial carbon stocks for DALEC and to quantify the uncertainty in the predictions. Despite its simplicity, DALEC represents the basic processes at the heart of more sophisticated models of the carbon cycle. Using adjoint based methods we study inverse problems for DALEC with various data streams (8 days MODIS LAI, monthly MODIS LAI, NEE). The framework of constraint optimization allows us to incorporate ecological common sense into the variational framework. We use resolution matrices to study the nature of the inverse problems and to obtain data importance and information content for the different type of data. We study how varying the time step affect the solutions, and we show how "spin up" naturally improves the conditioning of the inverse problems.
ERIC Educational Resources Information Center
Wei, Bao
2012-01-01
This article attempts to analyze the changing circumstances of the regional disparities in the allocation of China's higher educational resources before and after the increase in college enrollments, as well as the mechanisms that have affected these circumstances. The conclusions are that regional disparities in the allocation of China's funding…
Root hairs increase root exudation and rhizosphere extension
NASA Astrophysics Data System (ADS)
Holz, Maire; Zarebandanadkouki, Mohsen; Kuzyakov, Yakov; Carmintati, Andrea
2017-04-01
Plant roots employ various mechanisms to increase their access to limited soil resources. An example of such strategies is the production of root hairs. Root hairs extend the root surface and therefore increase the access to nutrients. Additionally, carbon release from root hairs might facilitate nutrient uptake by spreading of carbon in the rhizosphere and enhancing microbial activity. The aim of this study was to test: i) how root hairs change the allocation of carbon in the soil-plant system; ii) whether root hairs exude carbon into the soil and iii) how differences in C release between plants with and without root hairs affect rhizosphere extension. We grew barley plants with and without root hairs (wild type: WT, bald root barley: brb) in rhizoboxes filled with a sandy soil. Root elongation was monitored over time. After 4 weeks of growth, plants were labelled with 14CO2. A filter paper was placed on the soil surface before labelling and was removed after 36 h. 14C imaging of the soil surface and of the filter paper was used to quantify the allocation of 14C into the roots and the exudation of 14C, respectively. Plants were sampled destructively one day after labeling to quantify 14C in the plant-soil system. 14CO2 release from soil over time (17 d) was quantified by trapping CO2 in NaOH with an additional subset of plants. WT and brb plants had a similar aboveground biomass and allocated similar amounts of 14C into shoots (170 KBq for WT; 152 KBq for brb) and roots one day after labelling. Biomass of root, rhizosphere soil as well as root elongation were lower for brb compared to the wild type. WT plants transported more C from the shoots to the roots (22.8% for WT; 13.8% for brb) and from the root into the rhizosphere (8.8% for WT 3.5% for brb). Yet lower amounts of 14CO2 were released from soil over time for WT. Radial and longitudinal rhizosphere extension was increased for WT compared to brb (4.7 vs. 2.6 mm; 5.6 vs. 3.1 cm). The total exudation which was estimated based on the grey values of the filter paper images was 1.6 times higher for WT compared to brb. After one month, brb plants performed as good as WT plants, presumably because nutrients and water were not limiting for young plants. Under nutrient limiting conditions higher C release as well as increased longitudinal and radial rhizosphere extension for WT may maintain higher nutrient accessibility compared to root hair free plants.
Code of Federal Regulations, 2011 CFR
2011-01-01
... intergovernmental cooperation in that a state, in accordance with its coastal zone management program, may allocate some of its coastal zone management responsibilities to several agencies, including local governments... could directly affect the State's coastal zone. ...
Taylor, J Eric T; Witt, Jessica K; Pratt, Jay
2017-01-01
Attentional allocation is flexibly altered by action-related priorities. Given that tools - and specifically weapons - can affect attentional allocation, we asked whether training with a weapon or holding a weapon during search would affect change detection. In three experiments, participants searched for changes to agents, shootable objects, or environments in the popular flicker paradigm. Participants trained with a simulated weapon or watched a video from the same training perspective and then searched for changes while holding a weapon or a control object. Results show an effect of training, highlighting the importance of sensorimotor experience for the action-relevant allocation of attention, and a possible interaction between training and the object held during search. Simulated training with ballistic weapons reduces change blindness. This result has implications for the interaction between tool use and attentional allocation.
Rosenthal, Marsha; Schlesinger, Mark
2002-01-01
A crucial aspect of medical consumerism has been overlooked in past research and policymaking: how consumers decide whom to "blame" for bad outcomes. This study explores how, in a system increasingly dominated by managed care, these attributions affect consumers' attitudes and behavior. Using data from the experiences of people with serious mental illness, hypotheses are tested regarding the origins and consequences of blaming for medical consumerism. Blame was allocated to health plans in a manner similar, but not identical, to the way in which blame was allocated to health care professionals. Both allocations are shaped by enrollment in managed care, with blame allocation affecting consumers' subsequent willingness to talk about adverse events. Policy implications include the need for more finely tuned grievance procedures and better consumer education about managed care practices.
Plant mycorrhizal traits and carbon fates from plot to globe
NASA Astrophysics Data System (ADS)
Soudzilovskaia, N.; Cornelissen, H. H. C.
2016-12-01
Evidence is accumulating that plant traits related to mycorrhizal symbiosis, i.e. mycorrhizal type and the degree of plant root colonization by mycorrhizal fungi have important consequences for carbon pools and allocation in plants and soil. How plant and soil carbon pools vary among vegetation dominated by plants of different mycorrhizal types is a new and exciting research challenge. Absence of global databases on abundance of mycorrhizal fungi in soil and plant roots retards research aimed to understand involvement of mycorrhizas into soil carbon transformation processes. Using own data and published studies we have assembled currently world-largest database of plant species-per-site degrees root colonization by two most common types of mycorrhizal fungi, arbuscular mycorrhizal (AM) and ectomycorrhizal (EM). The database features records for plant root colonization degrees by AM and EM (above 8000 records in total). Using this database, we demonstrate that the degree of mycorrhizal fungal colonization has globally consistent patterns across plant species. This suggests that the level of plant species-specific root colonization can be used as a plant trait. I will discuss how combining plot-level field data, literature data and mycorrhizal infection trait data may help us to quantify the carbon consequences of relative dominance by arbuscular versus ectomycorrhizal symbiosis in vegetation from plot to global scale. To exemplify this method, I will present an assessment of the impacts of EM shrub encroachment on carbon stocks in sub-arctic tundra, and show how the plant trait data (root, leaf, stem and mycorrhizal colonization traits) could predict (1) impacts of AM and EM vegetation on soil carbon budget and (2) changes in soil carbon budget due to increase of EM plants in an AM-dominated ecosystem and visa versa. This approach may help to predict how global change-mediated vegetation shifts, via mycorrhizal carbon pools and dynamics, may affect terrestric and (thereby) atmospheric carbon.
The allocation of ecosystem net primary productivity in tropical forests
Malhi, Yadvinder; Doughty, Christopher; Galbraith, David
2011-01-01
The allocation of the net primary productivity (NPP) of an ecosystem between canopy, woody tissue and fine roots is an important descriptor of the functioning of that ecosystem, and an important feature to correctly represent in terrestrial ecosystem models. Here, we collate and analyse a global dataset of NPP allocation in tropical forests, and compare this with the representation of NPP allocation in 13 terrestrial ecosystem models. On average, the data suggest an equal partitioning of allocation between all three main components (mean 34 ± 6% canopy, 39 ± 10% wood, 27 ± 11% fine roots), but there is substantial site-to-site variation in allocation to woody tissue versus allocation to fine roots. Allocation to canopy (leaves, flowers and fruit) shows much less variance. The mean allocation of the ecosystem models is close to the mean of the data, but the spread is much greater, with several models reporting allocation partitioning outside of the spread of the data. Where all main components of NPP cannot be measured, litterfall is a good predictor of overall NPP (r2 = 0.83 for linear fit forced through origin), stem growth is a moderate predictor and fine root production a poor predictor. Across sites the major component of variation of allocation is a shifting allocation between wood and fine roots, with allocation to the canopy being a relatively invariant component of total NPP. This suggests the dominant allocation trade-off is a ‘fine root versus wood’ trade-off, as opposed to the expected ‘root–shoot’ trade-off; such a trade-off has recently been posited on theoretical grounds for old-growth forest stands. We conclude by discussing the systematic biases in estimates of allocation introduced by missing NPP components, including herbivory, large leaf litter and root exudates production. These biases have a moderate effect on overall carbon allocation estimates, but are smaller than the observed range in allocation values across sites. PMID:22006964
The limits of crop productivity
NASA Technical Reports Server (NTRS)
Bugbee, Bruce; Monje, Oscar
1992-01-01
The component processes that govern yield limits in food crops are reviewed and how each process can be individually measured is described. The processes considered include absorption of photosynthetic radiation by green tissue, carbon-fixation efficiency in photosynthesis, carbon use efficiency in respiration, biomass allocation to edible products, and efficiency of photosynthesis and respiration. The factors limiting yields in optimal environments are considered.
NASA Astrophysics Data System (ADS)
Ceballos-Núñez, Verónika; Richardson, Andrew; Sierra, Carlos
2017-04-01
The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. However, it is uncertain how some vegetation dynamics such as the allocation of carbon to different ecosystem compartments should be represented in models. The assumptions behind model structures may result in highly divergent model predictions. Here, we asses model performance by calculating the age of the carbon in the system and in each compartment, and the overall transit time of C in the system. We used these diagnostics to assess the influence of three different carbon allocation schemes on the rates of C cycling in vegetation. First, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find the best set of parameters for the different model structures. Second, we calculated C stocks, respiration fluxes, radiocarbon values, ages, and transit times. We found a good fit of the three model structures to the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed and reduce model equifinality. Differences in model structures had a small impact on predicting ecosystem C compartments, but overall they resulted in very different predictions of age and transit time distributions. In particular, the inclusion of a storage compartment had an important impact on predicting system ages and transit times. In the case of the models with 1 or 2 storage compartments, the age of carbon in the system and in each of the compartments was distributed more towards younger ages than in the model that had no storage; the mean system age of these two models with storage was 80 years younger than in the model without storage. As expected from these age distributions, the mean transit time for the two models with storage compartments was 50 years faster than for the model without storage. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure and could largely help to reduce uncertainties in model predictions. Furthermore, by considering age and transit times of C in vegetation compartments as distributions, not only their mean values, we obtain additional insights on the temporal dynamics of carbon use, storage, and allocation to plant parts, which not only depends on the rate at which this C is transferred in and out of the compartments, but also on the stochastic nature of the process itself.
Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, R. M.; Miller, S. P.; Jastrow, J. D.
The carbon sink strength of arbuscular mycorrhizal fungi (AMF) was investigated by comparing the growth dynamics of mycorrhizal and nonmycorrhizal Andropogon gerardii plants over a wide range of equivalent tissue phosphorus : nitrogen (P : N) ratios. Host growth, apparent photosynthesis (A{sub net}), net C gain (C{sub n}) and P and N uptake were evaluated in sequential harvests of mycorrhizal and nonmycorrhizal A. gerardii plants. Response curves were used to assess the effect of assimilate supply on the mycorrhizal symbiosis in relation to the association of C with N and P. Mycorrhizal plants had higher C{sub n} than nonmycorrhizal plantsmore » at equivalent shoot P : N ratios even though colonization did not affect plant dry mass. The higher C{sub n} in mycorrhizal plants was related to both an increase in specific leaf area and enhanced photosynthesis. The additional carbon gain associated with the mycorrhizal condition was not allocated to root biomass. The C{sub n} in the mycorrhizal plants was positively related to the proportion of active colonization in the roots. The calculated difference between C{sub n} values in mycorrhizal and nonmycorrhizal plants, C{sub diff}, appeared to correspond to the sink strength of the AMF and was not an indirect result of enhanced nutrition in mycorrhizal plants.« less
Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells*
Salabei, Joshua K.; Lorkiewicz, Pawel K.; Mehra, Parul; Gibb, Andrew A.; Haberzettl, Petra; Hong, Kyung U.; Wei, Xiaoli; Zhang, Xiang; Li, Qianhong; Wysoczynski, Marcin; Bolli, Roberto; Bhatnagar, Aruni; Hill, Bradford G.
2016-01-01
Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair. PMID:27151219
NASA Technical Reports Server (NTRS)
Monje, O.; Bugbee, B.
1998-01-01
The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.
Where does the carbon go?–Plant carbon allocation under climate change
Sevanto, Sanna; Dickman, L. Turin
2015-06-01
The ability of terrestrial vegetation to both take up and release carbon and water makes understanding climate change effects on plant function critical. These effects could alter the impacts and feedbacks of vegetation on climate and either slow down or accelerate climatic warming (Bonan 2008). In conclusion, studies on plant responses to increased atmospheric CO 2 concentration and elevated temperatures have become abundant in the last 20 years (for reviews, see Way and Oren 2010, Franks et al. 2013).
NASA Astrophysics Data System (ADS)
Ceballos-Núñez, Verónika; Richardson, Andrew D.; Sierra, Carlos A.
2018-03-01
The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. These dynamics, as well as processes such as the mixing of old and newly fixed carbon, have been studied using ecosystem models, but different assumptions regarding the carbon allocation strategies and other model structures may result in highly divergent model predictions. We assessed the influence of three different carbon allocation schemes on the C cycling in vegetation. First, we described each model with a set of ordinary differential equations. Second, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find suitable parameters for the different model structures. And third, we calculated C stocks, release fluxes, radiocarbon values (based on the bomb spike), ages, and transit times. We obtained model simulations in accordance with the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed, and reduce model equifinality. Although the simulated C stocks in ecosystem compartments were similar, the different model structures resulted in very different predictions of age and transit time distributions. In particular, the inclusion of two storage compartments resulted in the prediction of a system mean age that was 12-20 years older than in the models with one or no storage compartments. The age of carbon in the wood compartment of this model was also distributed towards older ages, whereas fast cycling compartments had an age distribution that did not exceed 5 years. As expected, models with C distributed towards older ages also had longer transit times. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure and could largely help to reduce uncertainties in model predictions. Furthermore, by considering age and transit times of C in vegetation compartments as distributions, not only their mean values, we obtain additional insights into the temporal dynamics of carbon use, storage, and allocation to plant parts, which not only depends on the rate at which this C is transferred in and out of the compartments but also on the stochastic nature of the process itself.
Code of Federal Regulations, 2010 CFR
2010-07-01
... revenues allocated to Gulf producing States? 219.415 Section 219.415 Mineral Resources MINERALS MANAGEMENT... allocated to Gulf producing States? If bonus and royalty credits issued under Section 104(c) of the Gulf of Mexico Energy Security Act are used to pay bonuses or royalties on leases in the 181 Area located in the...
Aspinwall, Michael J; Blackman, Chris J; de Dios, Víctor Resco; Busch, Florian A; Rymer, Paul D; Loik, Michael E; Drake, John E; Pfautsch, Sebastian; Smith, Renee A; Tjoelker, Mark G; Tissue, David T
2018-05-08
Intraspecific variation in biomass production responses to elevated atmospheric carbon dioxide (eCO2) could influence tree species' ecological and evolutionary responses to climate change. However, the physiological mechanisms underlying genotypic variation in responsiveness to eCO2 remain poorly understood. In this study, we grew 17 Eucalyptus camaldulensis Dehnh. subsp. camaldulensis genotypes (representing provenances from four different climates) under ambient atmospheric CO2 and eCO2. We tested whether genotype leaf-scale photosynthetic and whole-tree carbon (C) allocation responses to eCO2 were predictive of genotype biomass production responses to eCO2. Averaged across genotypes, growth at eCO2 increased in situ leaf net photosynthesis (Anet) (29%) and leaf starch concentrations (37%). Growth at eCO2 reduced the maximum carboxylation capacity of Rubisco (-4%) and leaf nitrogen per unit area (Narea, -6%), but Narea calculated on a total non-structural carbohydrate-free basis was similar between treatments. Growth at eCO2 also increased biomass production and altered C allocation by reducing leaf area ratio (-11%) and stem mass fraction (SMF, -9%), and increasing leaf mass area (18%) and leaf mass fraction (5%). Overall, we found few significant CO2 × provenance or CO2 × genotype (within provenance) interactions. However, genotypes that showed the largest increases in total dry mass at eCO2 had larger increases in root mass fraction (with larger decreases in SMF) and photosynthetic nitrogen-use efficiency (PNUE) with CO2 enrichment. These results indicate that genetic differences in PNUE and carbon sink utilization (in roots) are both important predictors of tree productivity responsiveness to eCO2.
Epron, Daniel; Bahn, Michael; Derrien, Delphine; Lattanzi, Fernando Alfredo; Pumpanen, Jukka; Gessler, Arthur; Högberg, Peter; Maillard, Pascale; Dannoura, Masako; Gérant, Dominique; Buchmann, Nina
2012-06-01
Pulse-labelling of trees with stable or radioactive carbon (C) isotopes offers the unique opportunity to trace the fate of labelled CO(2) into the tree and its release to the soil and the atmosphere. Thus, pulse-labelling enables the quantification of C partitioning in forests and the assessment of the role of partitioning in tree growth, resource acquisition and C sequestration. However, this is associated with challenges as regards the choice of a tracer, the methods of tracing labelled C in tree and soil compartments and the quantitative analysis of C dynamics. Based on data from 47 studies, the rate of transfer differs between broadleaved and coniferous species and decreases as temperature and soil water content decrease. Labelled C is rapidly transferred belowground-within a few days or less-and this transfer is slowed down by drought. Half-lives of labelled C in phloem sap (transfer pool) and in mature leaves (source organs) are short, while those of sink organs (growing tissues, seasonal storage) are longer. (13)C measurements in respiratory efflux at high temporal resolution provide the best estimate of the mean residence times of C in respiratory substrate pools, and the best basis for compartmental modelling. Seasonal C dynamics and allocation patterns indicate that sink strength variations are important drivers for C fluxes. We propose a conceptual model for temperate and boreal trees, which considers the use of recently assimilated C versus stored C. We recommend best practices for designing and analysing pulse-labelling experiments, and identify several topics which we consider of prime importance for future research on C allocation in trees: (i) whole-tree C source-sink relations, (ii) C allocation to secondary metabolism, (iii) responses to environmental change, (iv) effects of seasonality versus phenology in and across biomes, and (v) carbon-nitrogen interactions. Substantial progress is expected from emerging technologies, but the largest challenge remains to carry out in situ whole-tree labelling experiments on mature trees to improve our understanding of the environmental and physiological controls on C allocation.
Richet, Nicolas; Afif, Dany; Huber, Françoise; Pollet, Brigitte; Banvoy, Jacques; El Zein, Rana; Lapierre, Catherine; Dizengremel, Pierre; Perré, Patrick; Cabané, Mireille
2011-01-01
Wood formation in trees is a dynamic process that is strongly affected by environmental factors. However, the impact of ozone on wood is poorly documented. The objective of this study was to assess the effects of ozone on wood formation by focusing on the two major wood components, cellulose and lignin, and analysing any anatomical modifications. Young hybrid poplars (Populus tremula×alba) were cultivated under different ozone concentrations (50, 100, 200, and 300 nl l−1). As upright poplars usually develop tension wood in a non-set pattern, the trees were bent in order to induce tension wood formation on the upper side of the stem and normal or opposite wood on the lower side. Biosynthesis of cellulose and lignin (enzymes and RNA levels), together with cambial growth, decreased in response to ozone exposure. The cellulose to lignin ratio was reduced, suggesting that cellulose biosynthesis was more affected than that of lignin. Tension wood was generally more altered than opposite wood, especially at the anatomical level. Tension wood may be more susceptible to reduced carbon allocation to the stems under ozone exposure. These results suggested a coordinated regulation of cellulose and lignin deposition to sustain mechanical strength under ozone. The modifications of the cellulose to lignin ratio and wood anatomy could allow the tree to maintain radial growth while minimizing carbon cost. PMID:21357770
Gao, Yuan; Li, Xiao-Xi; Han, Mei-Mei; Yang, Xiao-Fan; Li, Zheng; Wang, Jun; Pan, Qiu-Hong
2016-01-01
This study investigated the effect of rain-shelter cultivation on the biosynthesis of flavonoids and volatiles in grapes, with an aim of determining whether rain-shelter application could help to improve the sensory attributes and quality of grapes. Vitis vinifera L. Chardonnay grapes, grown in the Huaizhuo basin region of northern China, were selected within two consecutive years. A rain-shelter roof was constructed using a colorless polyethylene (PE) film with a light transmittance of 80%. Results showed that rain-shelter treatment did not affect the accumulation of soluble solids during grape maturation. However, the allocation of assimilated carbon in phenolic and volatile biosynthetic pathways varied significantly, leading to alterations in polyphenolic and volatile profiles. The rain-shelter cultivation enhanced the concentration of flavan-3-ols via the flavonoid-3'5'-hydroxylase (F3'5'H) pathway, but reduced the level of flavonols and flavan-3-ols via the flavonoid-3'-hydroxylase (F3'H) pathway. In addition, the rain-shelter cultivation significantly enhanced the synthesis of fatty acid-derived volatiles, isoprene-derived terpenoids and amino acid-derived branched-chain aliphatics, but led to a decrease in the accumulation of isoprene-derived norisoprenoids and amino acid-derived benzenoids. Principal component analysis revealed some key compounds that differentiated the grapes cultivated under open-field and rain-shelter conditions. Moreover, the effect of the rain-shelter application on the accumulation of these compounds appeared to be vintage dependent. The alteration of their profiles caused by the rain-shelter treatment was significant in the vintage that received higher rainfall, which usually took place in the first rapid growth and veraison phases.
Han, Mei-Mei; Yang, Xiao-Fan; Li, Zheng; Wang, Jun; Pan, Qiu-Hong
2016-01-01
This study investigated the effect of rain-shelter cultivation on the biosynthesis of flavonoids and volatiles in grapes, with an aim of determining whether rain-shelter application could help to improve the sensory attributes and quality of grapes. Vitis vinifera L. Chardonnay grapes, grown in the Huaizhuo basin region of northern China, were selected within two consecutive years. A rain-shelter roof was constructed using a colorless polyethylene (PE) film with a light transmittance of 80%. Results showed that rain-shelter treatment did not affect the accumulation of soluble solids during grape maturation. However, the allocation of assimilated carbon in phenolic and volatile biosynthetic pathways varied significantly, leading to alterations in polyphenolic and volatile profiles. The rain-shelter cultivation enhanced the concentration of flavan-3-ols via the flavonoid-3’5’-hydroxylase (F3’5’H) pathway, but reduced the level of flavonols and flavan-3-ols via the flavonoid-3’-hydroxylase (F3’H) pathway. In addition, the rain-shelter cultivation significantly enhanced the synthesis of fatty acid-derived volatiles, isoprene-derived terpenoids and amino acid-derived branched-chain aliphatics, but led to a decrease in the accumulation of isoprene-derived norisoprenoids and amino acid-derived benzenoids. Principal component analysis revealed some key compounds that differentiated the grapes cultivated under open-field and rain-shelter conditions. Moreover, the effect of the rain-shelter application on the accumulation of these compounds appeared to be vintage dependent. The alteration of their profiles caused by the rain-shelter treatment was significant in the vintage that received higher rainfall, which usually took place in the first rapid growth and veraison phases. PMID:27218245
Barillot, Romain; Chambon, Camille; Andrieu, Bruno
2016-01-01
Background and Aims Simulating resource allocation in crops requires an integrated view of plant functioning and the formalization of interactions between carbon (C) and nitrogen (N) metabolisms. This study evaluates the functional–structural model CN-Wheat developed for winter wheat after anthesis. Methods In CN-Wheat the acquisition and allocation of resources between photosynthetic organs, roots and grains are emergent properties of sink and source activities and transfers of mobile metabolites. CN-Wheat was calibrated for field plants under three N fertilizations at anthesis. Model parameters were taken from the literature or calibrated on the experimental data. Key Results The model was able to predict the temporal variations and the distribution of resources in the culm. Thus, CN-Wheat accurately predicted the post-anthesis kinetics of dry masses and N content of photosynthetic organs and grains in response to N fertilization. In our simulations, when soil nitrates were non-limiting, N in grains was ultimately determined by availability of C for root activity. Dry matter accumulation in grains was mostly affected by photosynthetic organ lifespan, which was regulated by protein turnover and C-regulated root activity. Conclusions The present study illustrates that the hypotheses implemented in the model were able to predict realistic dynamics and spatial patterns of C and N. CN-Wheat provided insights into the interplay of C and N metabolism and how the depletion of mobile metabolites due to grain filling ultimately results in the cessation of resource capture. This enabled us to identify processes that limit grain mass and protein content and are potential targets for plant breeding. PMID:27497243
Effect of social influence on effort-allocation for monetary rewards.
Gilman, Jodi M; Treadway, Michael T; Curran, Max T; Calderon, Vanessa; Evins, A Eden
2015-01-01
Though decades of research have shown that people are highly influenced by peers, few studies have directly assessed how the value of social conformity is weighed against other types of costs and benefits. Using an effort-based decision-making paradigm with a novel social influence manipulation, we measured how social influence affected individuals' decisions to allocate effort for monetary rewards during trials with either high or low probability of receiving a reward. We found that information about the effort-allocation of peers modulated participant choices, specifically during conditions of low probability of obtaining a reward. This suggests that peer influence affects effort-based choices to obtain rewards especially under conditions of risk. This study provides evidence that people value social conformity in addition to other costs and benefits when allocating effort, and suggests that neuroeconomic studies that assess trade-offs between effort and reward should consider social environment as a factor that can influence decision-making.
The role of intrinsic motivations in attention allocation and shifting
Di Nocera, Dario; Finzi, Alberto; Rossi, Silvia; Staffa, Mariacarla
2014-01-01
The concepts of attention and intrinsic motivations are of great interest within adaptive robotic systems, and can be exploited in order to guide, activate, and coordinate multiple concurrent behaviors. Attention allocation strategies represent key capabilities of human beings, which are strictly connected with action selection and execution mechanisms, while intrinsic motivations directly affect the allocation of attentional resources. In this paper we propose a model of Reinforcement Learning (RL), where both these capabilities are involved. RL is deployed to learn how to allocate attentional resources in a behavior-based robotic system, while action selection is obtained as a side effect of the resulting motivated attentional behaviors. Moreover, the influence of intrinsic motivations in attention orientation is obtained by introducing rewards associated with curiosity drives. In this way, the learning process is affected not only by goal-specific rewards, but also by intrinsic motivations. PMID:24744746
Jessica E. Hancock; Kate L. Bradley; Christian P. Giardina; Kurt S. Pregitzer
2008-01-01
Plants influence soil carbon (C) formation through the quality and quantity of C released to soil. Soil type, in turn can modify a plant's influence on soil through effects on plant production, tissue quality and regulation of soil C decomposition and stabilization. Wild-type aspen and three transgenic aspen lines expressing reduced stem lignin concentrations and/...
Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux
A. Christopher Oishi; Sari Palmroth; Kurt H. Johnsen; Heather R. McCarthy; Ram Oren
2014-01-01
Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity,...
Modeling forest stand dynamics from optimal balances of carbon and nitrogen
Harry T. Valentine; Annikki Makela
2012-01-01
We formulate a dynamic evolutionary optimization problem to predict the optimal pattern by which carbon (C) and nitrogen (N) are co-allocated to fine-root, leaf, and wood production, with the objective of maximizing height growth rate, year by year, in an even-aged stand. Height growth is maximized with respect to two adaptive traits, leaf N concentration and the ratio...
Ahrends, Antje; Burgess, Neil D; Milledge, Simon A H; Bulling, Mark T; Fisher, Brendan; Smart, James C R; Clarke, G Philip; Mhoro, Boniface E; Lewis, Simon L
2010-08-17
Tropical forest degradation emits carbon at a rate of approximately 0.5 Pgxy(-1), reduces biodiversity, and facilitates forest clearance. Understanding degradation drivers and patterns is therefore crucial to managing forests to mitigate climate change and reduce biodiversity loss. Putative patterns of degradation affecting forest stocks, carbon, and biodiversity have variously been described previously, but these have not been quantitatively assessed together or tested systematically. Economic theory predicts a systematic allocation of land to its highest use value in response to distance from centers of demand. We tested this theory to see if forest exploitation would expand through time and space as concentric waves, with each wave targeting lower value products. We used forest data along a transect from 10 to 220 km from Dar es Salaam (DES), Tanzania, collected at two points in time (1991 and 2005). Our predictions were confirmed: high-value logging expanded 9 kmxy(-1), and an inner wave of lower value charcoal production 2 kmxy(-1). This resource utilization is shown to reduce the public goods of carbon storage and species richness, which significantly increased with each kilometer from DES [carbon, 0.2 Mgxha(-1); 0.1 species per sample area (0.4 ha)]. Our study suggests that tropical forest degradation can be modeled and predicted, with its attendant loss of some public goods. In sub-Saharan Africa, an area experiencing the highest rate of urban migration worldwide, coupled with a high dependence on forest-based resources, predicting the spatiotemporal patterns of degradation can inform policies designed to extract resources without unsustainably reducing carbon storage and biodiversity.
Petit, Giai; Savi, Tadeja; Consolini, Martina; Anfodillo, Tommaso; Nardini, Andrea
2016-11-01
Efficient leaf water supply is fundamental for assimilation processes and tree growth. Renovating the architecture of the xylem transport system requires an increasing carbon investment while growing taller, and any deficiency of carbon availability may result in increasing hydraulic constraints to water flow. Therefore, plants need to coordinate carbon assimilation and biomass allocation to guarantee an efficient and safe long-distance transport system. We tested the hypothesis that reduced branch elongation rates together with carbon-saving adjustments of xylem anatomy hydraulically compensate for the reduction in biomass allocation to xylem. We measured leaf biomass, hydraulic and anatomical properties of wood segments along the main axis of branches in 10 slow growing (SG) and 10 fast growing (FG) Fraxinus ornus L. trees. Branches of SG trees had five times slower branch elongation rate (7 vs 35 cm year -1 ), and produced a higher leaf biomass (P < 0.0001) and thinner xylem rings with fewer but larger vessels (P < 0.0001). On the contrary, we found no differences between SG and FG trees in terms of leaf-specific conductivity (P > 0.05) and xylem safety (Ψ 50 ≈ -3.2 MPa). Slower elongation rate coupled with thinner annual rings and larger vessels allows the reduction of carbon costs associated with growth, while maintaining similar leaf-specific conductivity and xylem safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Gennaretti, Fabio; Gea-Izquierdo, Guillermo; Boucher, Etienne; Berninger, Frank; Arseneault, Dominique; Guiot, Joel
2017-11-01
A better understanding of the coupling between photosynthesis and carbon allocation in the boreal forest, together with its associated environmental factors and mechanistic rules, is crucial to accurately predict boreal forest carbon stocks and fluxes, which are significant components of the global carbon budget. Here, we adapted the MAIDEN ecophysiological forest model to consider important processes for boreal tree species, such as nonlinear acclimation of photosynthesis to temperature changes, canopy development as a function of previous-year climate variables influencing bud formation and the temperature dependence of carbon partition in summer. We tested these modifications in the eastern Canadian taiga using black spruce (Picea mariana (Mill.) B.S.P.) gross primary production and ring width data. MAIDEN explains 90 % of the observed daily gross primary production variability, 73 % of the annual ring width variability and 20-30 % of its high-frequency component (i.e., when decadal trends are removed). The positive effect on stem growth due to climate warming over the last several decades is well captured by the model. In addition, we illustrate how we improve the model with each introduced model adaptation and compare the model results with those of linear response functions. Our results demonstrate that MAIDEN simulates robust relationships with the most important climate variables (those detected by classical response-function analysis) and is a powerful tool for understanding how environmental factors interact with black spruce ecophysiology to influence present-day and future boreal forest carbon fluxes.
NASA Astrophysics Data System (ADS)
Caldararu, S.; Kern, M.; Engel, J.; Zaehle, S.
2016-12-01
Despite recent advances in global vegetation models, we still lack the capacity to predict observed vegetation responses to experimental environmental changes such as elevated CO2, increased temperature or nutrient additions. In particular for elevated CO2 (FACE) experiments, studies have shown that this is related in part to the models' inability to represent plastic changes in nutrient use and biomass allocation. We present a newly developed vegetation model which aims to overcome these problems by including optimality processes to describe nitrogen (N) and carbon allocation within the plant. We represent nitrogen allocation to the canopy and within the canopy between photosynthetic components as an optimal processes which aims to maximize net primary production (NPP) of the plant. We also represent biomass investment into aboveground and belowground components (root nitrogen uptake , biological N fixation) as an optimal process that maximizes plant growth by considering plant carbon and nutrient demands as well as acquisition costs. The model can now represent plastic changes in canopy N content and chlorophyll and Rubisco concentrations as well as in belowground allocation both on seasonal and inter-annual time scales. Specifically, we show that under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry would predicts a quick onset of N limitation. In general, our model aims to include physiologically-based plant processes and avoid arbitrarily imposed parameters and thresholds in order to improve our predictive capability of vegetation responses under changing environmental conditions.
Adaptability in linkage of soil carbon nutrient cycles - the SEAM model
NASA Astrophysics Data System (ADS)
Wutzler, Thomas; Zaehle, Sönke; Schrumpf, Marion; Ahrens, Bernhard; Reichstein, Markus
2017-04-01
In order to understand the coupling of carbon (C) and nitrogen (N) cycles, it is necessary to understand C and N-use efficiencies of microbial soil organic matter (SOM) decomposition. While important controls of those efficiencies by microbial community adaptations have been shown at the scale of a soil pore, an abstract simplified representation of community adaptations is needed at ecosystem scale. Therefore we developed the soil enzyme allocation model (SEAM), which takes a holistic, partly optimality based approach to describe C and N dynamics at the spatial scale of an ecosystem and time-scales of years and longer. We explicitly modelled community adaptation strategies of resource allocation to extracellular enzymes and enzyme limitations on SOM decomposition. Using SEAM, we explored whether alternative strategy-hypotheses can have strong effects on SOM and inorganic N cycling. Results from prototypical simulations and a calibration to observations of an intensive pasture site showed that the so-called revenue enzyme allocation strategy was most viable. This strategy accounts for microbial adaptations to both, stoichiometry and amount of different SOM resources, and supported the largest microbial biomass under a wide range of conditions. Predictions of the SEAM model were qualitatively similar to models explicitly representing competing microbial groups. With adaptive enzyme allocation under conditions of high C/N ratio of litter inputs, N in formerly locked in slowly degrading SOM pools was made accessible, whereas with high N inputs, N was sequestered in SOM and protected from leaching. The finding that adaptation in enzyme allocation changes C and N-use efficiencies of SOM decomposition implies that concepts of C-nutrient cycle interactions should take account for the effects of such adaptations. This can be done using a holistic optimality approach.
Can plant phloem properties affect the link between ecosystem assimilation and respiration?
NASA Astrophysics Data System (ADS)
Mencuccini, M.; Hölttä, T.; Sevanto, S.; Nikinmaa, E.
2012-04-01
Phloem transport of carbohydrates in plants under field conditions is currently not well understood. This is largely the result of the lack of techniques suitable for measuring phloem physiological properties continuously under field conditions. This lack of knowledge is currently hampering our efforts to link ecosystem-level processes of carbon fixation, allocation and use, especially belowground. On theoretical grounds, the properties of the transport pathway from canopy to roots must be important in affecting the link between carbon assimilation and respiration, but it is unclear whether their effect is partially or entirely masked by processes occurring in other parts of the ecosystem. One can also predict the characteristic time scales over which these effects should occur and, as consequence, predict whether the transfer of turgor and osmotic signals from the site of carbon assimilation to the sites of carbon use are likely to control respiration. We will present two sources of evidence suggesting that the properties of the phloem transport system may affect processes that are dependent on the supply of carbon substrate, such as root or soil respiration. Firstly, we will summarize the results of a literature survey on soil and ecosystem respiration where the speed of transfer of photosynthetic sugars from the plant canopy to the soil surface was determined. Estimates of the transfer speed could be grouped according to whether the study employed isotopic or canopy soil flux-based techniques. These two groups provided very different estimates of transfer times likely because transport of sucrose molecules, and pressure-concentration waves, in phloem differed. Secondly, we will argue that simultaneous measurements of bark and xylem diameters provide a novel tool to determine the continuous variations of phloem turgor in vivo in the field. We will present a model that interprets these changes in xylem and live bark diameters and present data testing the model predictions for mature trees in the field. At the diurnal scale, the calculated phloem turgor signal related to patterns of photosynthetic activity and inferred phloem loading. At the seasonal scale, phloem turgor showed rapid changes during two droughts and after two rainfall events consistent with physiological predictions of phloem transport. Daily cumulative totals of calculated phloem osmotic concentrations were strongly related to daily cumulative totals of canopy photosynthesis. We propose that this method has potential for continuous field monitoring of tree phloem function.
12 years of intensive management increases soil carbon stocks in Loblolly pine and Sweetgum stands
NASA Astrophysics Data System (ADS)
Sanchez, F. G.; Samuelson, L.; Johnsen, K.
2009-12-01
To achieve and maintain productivity goals, forest managers rely on intensive management strategies. These strategies have resulted in considerable gains in forest productivity. However, the impacts of these strategies on belowground carbon dynamics is less clear. Carbon dynamics are influenced by a multitude of factors including soil moisture, nutrient status, net primary productivity and carbon allocation patterns. In this study, we describe the impact of four management strategies on soil carbon and nitrogen stocks in 12-year-old loblolly pine and sweetgum plantations. The management strategies are: (1) complete understory control, (2) complete understory control + drip irrigation, (3) complete understory control + drip irrigation and fertilization and (4) complete understory control + drip irrigation and fertilization and pest control. These management strategies were replicated on 3 blocks in a randomized complete block design. After 12 years, soil carbon stocks increased with increasing management intensity for both tree species. This effect was consistent throughout the depth increments measured (0-10, 10-20, 20-30 cm). Alternatively, no significant effect was detected for soil nitrogen at any depth increment. Sweetgum had higher soil carbon and nitrogen stocks at each depth increment than loblolly pine. There was a greater difference in nitrogen stocks than carbon stocks between the two species resulting in lower soil C:N ratios in the sweetgum stands. These observations may be due to differences in net primary productivity, rooting structure and carbon allocation patterns of sweetgum compared with loblolly pine. To determine the relative stability of the carbon and nitrogen stocks for the different treatments and tree species, we sequentially fractionated the soil samples into six fractions of differing stability. Although soil carbon stocks for both species increased with management intensity, there was no detectable difference in the soil carbon fractions based on management intensity. Additionally, there was no difference between soil carbon fractions based on tree species. These observations suggest that although external inputs (i.e., moisture, carbon and nutrients) increase soil carbon stocks, they do not alter soil carbon stabilization mechanisms at these sites.
Aguado, Pedro L; Curt, M Dolores; Pereira, Helena; Fernández, Jesús
2017-02-01
The growth pattern of cork oak (Quercus suber L.), an important component of South Mediterranean woodlands, is seasonal. Seasonality has been found for shoot, radial and cork ring growth as well as for carbon (C) photoassimilation, nutrients remobilization and water relations, among other physiological aspects. However, little is known about the seasonality of C allocation to cork oak chemical compounds, including suberin, a major component of cork. In order to achieve this goal, an isotopic tracer experiment was conducted using 18-month-old cork oaks so that the fate of C photoassimilated in different seasons could be traced into biochemical (main organic) stem components. Two distinct patterns of C allocation, associated with the stages of active plant growth and dormancy, were identified and described. Evidence was provided that translocation of photoassimilated C to stems does not cease during the dormancy period and that suberin is the major C sink for the C assimilated throughout the whole active growth period, as compared with other stem components. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
77 FR 29457 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... Estate Mortgage Investment Conduits; Reporting Requirements and Other Administrative Matters; TD 8431 (Final) Allocation of Allocable Investment Expense; Original Issue Discount Reporting Requirements... mortgage investment conduit (REMIC) and the filing requirements for REMICs and certain brokers. Affected...
Rico, J E; de Souza, J; Allen, M S; Lock, A L
2017-01-01
Our study evaluated the dose-dependent effects of a palmitic acid-enriched supplement in basal diets with or without the inclusion of whole cottonseed on nutrient digestibility and production responses of dairy cows. Sixteen Holstein cows (149 ± 56 days in milk) were used in a split plot Latin square design experiment. Cows were blocked by 3.5% fat-corrected milk (FCM) and allocated to a main plot receiving either a basal diet with soyhulls (SH, = 8) or a basal diet with whole cottonseed (CS, = 8) that was fed throughout the experiment. A palmitic acid-enriched supplement (PA 88.5% C16:0) was fed at 0, 0.75, 1.50, or 2.25% of ration DM in a replicated 4 × 4 Latin Square design within each basal diet group. Periods were 14 d with the final 4 d used for data collection. PA dose increased milk fat content linearly, and cubically affected yields of milk fat and 3.5% FCM. The PA dose did not affect milk protein and lactose contents, BW, and BCS, but tended to increase yields of milk, milk protein, and milk lactose. Also, PA dose reduced DMI and 16-carbon fatty acid digestibility quadratically, and increased 18-carbon fatty acid digestibility quadratically. There were no effects of basal diet on the yield of milk or milk components, but DMI tended to decrease in CS compared with SH, increasing feed efficiency (3.5% FCM/DMI). Compared with SH, CS diets increased yield of preformed milk fatty acids and 16-carbon fatty acid digestibility, and tended to decrease 18-carbon fatty acid digestibility. We observed basal diet × PA dose interactions for yields of milk and milk protein and for 16-carbon and total fatty acid digestibility, as well as tendency for yields of milk fat and 3.5% FCM. Also, there was a tendency for an interaction between basal diet and PA dose for NDF digestibility, which increased more for CS with increasing PA than for SH. PA dose linearly decreased digestibility of total fatty acids in SH diets but did not affect it in CS diets Results demonstrate that responses to PA dose are affected by the dietary basal diet. Additionally, the decrease in fatty acid digestibility only in the SH diets suggests that digestibility is impacted mainly by the profile of 16- and 18-carbon fatty acids reaching the duodenum. Under the dietary conditions evaluated, the yield of 3.5% FCM and milk fat were optimal when PA was fed at 1.5% of ration DM.
Coherence between woody carbon uptake and net ecosystem productivity at five eddy-covariance sites
NASA Astrophysics Data System (ADS)
Babst, F.; Bouriaud, O.; Papale, D.; Gielen, B.; Janssens, I.; Nikinmaa, E.; Ibrom, A.; Wu, J.; Bernhofer, C.; Koestner, B.; Gruenwald, T.; Seufert, G.; Ciais, P.; Frank, D. C.
2013-12-01
Forest growth ranks amongst the most important processes that determine the carbon balance of terrestrial ecosystems. Quantifications of forest carbon cycling can be made e.g. using biometric and eddy-covariance (EC) techniques. Both offer different perspectives on carbon uptake and attempts to combine them have been inconsistent and variably successful in the past. This contributes to persistent uncertainties regarding carbon allocation in forest ecosystems and complicates precise vegetation model parameterization. Aiming to reconcile assessments of carbon cycling from biometric and EC techniques, we measured radial tree growth and wood density at five long-term EC stations across Europe. The resulting records were used to calculate annual carbon uptake during above-ground wood formation and compared to monthly and seasonal CO2-flux measurements. Efforts were made to identify i) the time periods when EC and tree-ring data correspond best in different parts of Europe and ii) the fraction of eddy-fluxes which is associated with changes in above-ground woody carbon stocks. Biometric measurements and net ecosystem productivity (NEP) proved largely compatible at seasonal time scales while relationships with gross primary productivity (GPP) were often weaker. Results suggest a partitioning of sequestered carbon mainly used for volume increase (January-June) and a combination of cell-wall thickening and storage (July-September). The inter-annual variability in above-ground woody carbon uptake was significantly linked with absolute productivity ranging between 69-366 g C m-2 y-1 at boreal and temperate sites, thereby accounting for 10-25% of GPP, 15-32% of TER, and 25-80% of NEP. These findings from sites representing the major European climate zones and tree species contribute to improved quantification of above-ground carbon allocation in forests. Furthermore, they refine knowledge on processes driving ecosystem productivity important for e.g. vegetation models and provide an enhanced framework for integrative studies linking tree-ring parameters with EC measurements.
The influence of nitrogen fertilization on the magnitude of rhizosphere effects
NASA Astrophysics Data System (ADS)
Zhu, B.; Panke-Buisse, K.; Kao-Kniffin, J.
2012-12-01
The labile carbon released from roots to the rhizosphere enhances soil microbial activity and nutrient availability, but factors that regulate such "rhizosphere effects" are poorly understood. Nitrogen fertilization may suppress rhizosphere effects by reducing plant carbon allocation belowground. Here we investigated the impact of nitrogen fertilization (+100 mg NH4NO3-N kg soil-1) on the magnitude of rhizosphere effects of two grass species (Bermuda grass Cynodon dactylon and smooth crabgrass Digitaria ischaemum) grown in a nutrient-poor soil for 80-100 days inside a growth chamber. Rhizosphere effects were estimated by the percentage difference between the planted soil (rhizosphere soil) and the unplanted soil (bulk soil) for several assays. We found that the rhizosphere soil of both plants had higher pH (+ 0.5~0.7 units), similar microbial biomass carbon, but lower microbial biomass nitrogen (- 27~37%) compared to the bulk soil. The rate of net N mineralization and the activity of three soil enzymes that degrade chitin (NAG), protein (LAP) and lignin (peroxidase) and produce mineral nitrogen were generally enhanced by the rhizosphere effects (up to 80%). Although nitrogen fertilization significantly increased plant biomass, it generally affected microbial biomass, activity and net N mineralization rate to a similar extent between rhizosphere soil and bulk soil, and thus did not significantly impact the magnitude of rhizosphere effects. Moreover, the community structure of soil bacteria (indicated by T-RFLP) showed remarkable divergence between the planted and unplanted soils, but not between the control and fertilized soils. Collectively, these results suggest that grass roots affects soil microbial activity and community structure, but short-term nitrogen fertilization may not significantly influence these rhizosphere effects.
Laser Subdivision of the Genesis Concentrator Target Sample 60000
NASA Technical Reports Server (NTRS)
Lauer, Howard V., Jr.; Burkett, P. J.; Rodriquez, M. C.; Nakamura-Messenger, K.; Clemett, S. J.; Gonzales, C. P.; Allton, J. H.; McNamara, K. M.; See, T. H.
2013-01-01
The Genesis Allocation Committee received a request for 1 square centimeter of the diamond-like-carbon (DLC) concentrator target for the analysis of solar wind nitrogen isotopes. The target consists of a single crystal float zone (FZ) silicon substrate having a thickness on the order of 550 micrometers with a 1.5-3.0 micrometer-thick coating of DLC on the exposed surface. The solar wind is implanted shallowly in the front side DLC. The original target was a circular quadrant with a radius of 3.1 cm; however, the piece did not survive intact when the spacecraft suffered an anomalous landing upon returning to Earth on September 8, 2004. An estimated 75% of the DLC target was recovered in at least 18 fragments. The largest fragment, Genesis sample 60000, has been designated for this allocation and is the first sample to be subdivided using our laser scribing system Laser subdivision has associated risks including thermal diffusion of the implant if heating occurs and unintended breakage during cleavage. A careful detailed study and considerable subdividing practice using non-flight FZ diamond on silicon, DOS, wafers has considerably reduced the risk of unplanned breakage during the cleaving process. In addition, backside scribing reduces the risk of possible thermal excursions affecting the implanted solar wind, implanted shallowly in the front side DLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.
Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months ofmore » plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.« less
Macler, Bruce A.
1988-01-01
The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O2 evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and photorespiration exceeded photosynthesis with lethal results. At higher salinities, although photosynthesis was inhibited, respiration was low and carbon fixation adequate to offset increased photorespiration. PMID:16666369
Macler, B A
1988-11-01
The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O(2) evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and photorespiration exceeded photosynthesis with lethal results. At higher salinities, although photosynthesis was inhibited, respiration was low and carbon fixation adequate to offset increased photorespiration.
Carbon and nitrogen balances for six shrublands across Europe
NASA Astrophysics Data System (ADS)
Beier, Claus; Emmett, Bridget A.; Tietema, Albert; Schmidt, Inger K.; PeñUelas, Josep; LáNg, Edit KováCs; Duce, Pierpaolo; de Angelis, Paolo; Gorissen, Antonie; Estiarte, Marc; de Dato, Giovanbattista D.; Sowerby, Alwyn; KröEl-Dulay, GyöRgy; Lellei-KováCs, Eszter; Kull, Olevi; Mand, Pille; Petersen, Henning; Gjelstrup, Peter; Spano, Donatella
2009-12-01
Shrublands constitute significant and important parts of European landscapes providing a large number of important ecosystem services. Biogeochemical cycles in these ecosystems have gained little attention relative to forests and grassland systems, but data on such cycles are required for developing and testing ecosystem models. As climate change progresses, the potential feedback from terrestrial ecosystems to the atmosphere through changes in carbon stocks, carbon sequestration, and general knowledge on biogeochemical cycles becomes increasingly important. Here we present carbon and nitrogen balances of six shrublands along a climatic gradient across the European continent. The aim of the study was to provide a basis for assessing the range and variability in carbon storage in European shrublands. Across the sites the net carbon storage in the systems ranged from 1,163 g C m-2 to 18,546 g C m-2, and the systems ranged from being net sinks (126 g C m-2 a-1) to being net sources (-536 g C m-2 a-1) of carbon with the largest storage and sink of carbon at wet and cold climatic conditions. The soil carbon store dominates the carbon budget at all sites and in particular at the site with a cold and wet climate where soil C constitutes 95% of the total carbon in the ecosystem. Respiration of carbon from the soil organic matter pool dominated the carbon loss at all sites while carbon loss from aboveground litter decomposition appeared less important. Total belowground carbon allocation was more than 5 times aboveground litterfall carbon which is significantly greater than the factor of 2 reported in a global analysis of forest data. Nitrogen storage was also dominated by the soil pools generally showing small losses except when atmospheric N input was high. The study shows that in the future a climate-driven land cover change between grasslands and shrublands in Europe will likely lead to increased ecosystem C where shrublands are promoted and less where grasses are promoted. However, it also emphasizes that if feedbacks on the global carbon cycle are to be predicted it is critically important to quantify and understand belowground carbon allocation and processes as well as soil carbon pools, particularly on wet organic soils, rather than plant functional change as the soil stores dominate the overall budget and fluxes of carbon.
Unconscious semantic activation depends on feature-specific attention allocation.
Spruyt, Adriaan; De Houwer, Jan; Everaert, Tom; Hermans, Dirk
2012-01-01
We examined whether semantic activation by subliminally presented stimuli is dependent upon the extent to which participants assign attention to specific semantic stimulus features and stimulus dimensions. Participants pronounced visible target words that were preceded by briefly presented, masked prime words. Both affective and non-affective semantic congruence of the prime-target pairs were manipulated under conditions that either promoted selective attention for affective stimulus information or selective attention for non-affective semantic stimulus information. In line with our predictions, results showed that affective congruence had a clear impact on word pronunciation latencies only if participants were encouraged to assign attention to the affective stimulus dimension. In contrast, non-affective semantic relatedness of the prime-target pairs produced no priming at all. Our findings are consistent with the hypothesis that unconscious activation of (affective) semantic information is modulated by feature-specific attention allocation. Copyright © 2011 Elsevier B.V. All rights reserved.
1997 Federal Highway Cost Allocation Study. Summary Report
DOT National Transportation Integrated Search
1997-08-01
This is the first Federal Highway Cost Allocation Study (HCAS) since 1982. There are two key reasons for conducting this study. The first is to determine how changes in the Federal highway program and user fees which support that program have affecte...
The effect of salinity on the allocation of carbon to energy-rich compounds in Euphorbia lathyris
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, S.E.; Skrukrud, C.L.; Calvin, M.
1987-01-01
Hydroponically-grown Euphorbia lathyris plants were exposed to increasing levels of NaCl to study the effect of salinity on carbon allocation within the plant. Salinization caused a decrease in overall growth and an increase in the percentage of both hydrocarbons and sugars. The hydrocarbon fraction, containing mostly triterpenoids, increased by 50% and the sugar fraction, containing mostly sucrose, was increased by 88%. This resulted in a shift of available biomass from lignocellulose to the more usable sugars and hydrocarbons. A two-fold increase in the activity (per leaf area) of the enzyme ..beta..-Hydroxymethylglutaryl-Coenzyme A Reductase was also observed with increased salinity. Thismore » enzyme is involved in the biosynthesis of the triterpenoids, and its response to increased salinity indicates a role for this enzyme in the regulation of plant hydrocarbon productivity. 10 refs., 4 figs., 3 tabs.« less
Schwager, Susanne; Rothermund, Klaus
2014-01-01
Valence biases in attention allocation were assessed after remembering positive or negative personal events that were either still emotionally hot or to which the person had already adapted psychologically. Differences regarding the current state of psychological adjustment were manipulated experimentally by instructing participants to recall distant vs. recent events (Experiment 1) or affectively hot events vs. events to which the person had accommodated already (Experiment 2). Valence biases in affective processing were measured with a valence search task. Processes of emotional counter-regulation (i.e., attention allocation to stimuli of opposite valence to the emotional event) were elicited by remembering affectively hot events, whereas congruency effects (i.e., attention allocation to stimuli of the same valence as the emotional event) were obtained for events for which a final appraisal had already been established. The results of our study help to resolve conflicting findings from the literature regarding congruent vs. incongruent effects of remembering emotional events on affective processing. We discuss implications of our findings for the conception of emotions and for the dynamics of emotion regulation processes.
Brauner, Katrin; Birami, Benjamin; Brauner, Horst A; Heyer, Arnd G
2018-06-01
Whole-plant carbon balance comprises diurnal fluctuations of photosynthetic carbon gain and respiratory losses, as well as partitioning of assimilates between phototrophic and heterotrophic organs. Because it is difficult to access, the root system is frequently neglected in growth models, or its metabolism is rated based on generalizations from other organs. Here, whole-plant cuvettes were used for investigating total-plant carbon exchange with the environment over full diurnal cycles. Dynamics of primary metabolism and diurnally resolved phloem exudation profiles, as proxy of assimilate transport, were combined to obtain a full picture of resource allocation. This uncovered a strong impact of periodicity of inter-organ transport on the efficiency of carbon gain. While a sinusoidal fluctuation of the transport rate, with minor diel deflections, minimized respiratory losses in Arabidopsis wild-type plants, triangular or rectangular patterns of transport, found in mutants defective in either starch or sucrose metabolism, increased root respiration at the end or beginning of the day, respectively. Power spectral density and cross-correlation analysis revealed that only the rate of starch synthesis was strictly correlated to the rate of net photosynthesis in wild-type, while in a sucrose-phosphate synthase mutant (spsa1), this applied also to carboxylate synthesis, serving as an alternative carbon pool. In the starchless mutant of plastidial phospho-gluco mutase (pgm), none of these rates, but concentrations of sucrose and glucose in the root, followed the pattern of photosynthesis, indicating direct transduction of shoot sugar levels to the root. The results demonstrate that starch metabolism alone is insufficient to buffer diurnal fluctuations of carbon exchange. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
di Porcia e Brugnera, M.; Longo, M.; Verbeek, H.
2017-12-01
Lianas are an important component of tropical forests, constituting up to 40% of the woody stems and about 35% of the woody species. Tropical forests have been experiencing large-scale structural changes, including an increase in liana abundance and biomass. This may eventually reduce the projected carbon sink of tropical forests. Despite their crucial role no single terrestrial ecosystem model has included lianas so far. Here, we present the very first implementation of lianas in the Ecosystem Demography model (ED2). ED2 is able to represent the competition for water and light between different vegetation types at the regional level. Our new implementation of ED2 is hence suitable to address important questions such as the impact of lianas on the tropical forest carbon balance. We validated the model against forest inventory and eddy covariance flux data at a dry seasonal site (Barro Colorado Island, Panama), and at a wet rainforest site (Paracou, French Guiana). The model was able to represent size structure and carbon accumulation rates. We also evaluated the impact of the unique allocation strategy of lianas on their competitive ability. Lianas invest only a small fraction of their carbon for structural tissues when compared to trees. As a result, lianas benefit from an extra amount of available carbon, however the trade-offs of low allocation on structural tissues are not yet well understood. We are currently investigating a number of hypotheses, including the possibility for lianas to have high turnover rates for leaves and fine roots, or to have high mortality rates due to the loss of structural support when trees die. As such our model allows us to get a better understanding of the role of lianas in the tropical forest carbon cycle.
NASA Astrophysics Data System (ADS)
Dannoura, M.; Kominami, Y.; Takanashi, S.; Takahashi, K.
2013-12-01
Studying carbon allocation in trees is a key to better understand belowground carbon cycle and its response to climate change. Tracing 13C in tree and soil compartments after pulse labeling is one of powerful tool to study the fate of carbon in forest ecosystems. This experiment was conducted in Yamashiro experimental forest, Kyoto, Japan. Annual mean temperature and precipitation from 1994 to 2009 are 15.5 ° C and 1,388 mm respectively. The branch pulse labeling were done 7 times in 2011 using same branch of Quercus serrata (H:11.7 m, DBH; 33.7 cm) to see seasonal variations of carbon velocity. Whole crown labeling of Quercus serrata (H:9 m, DBH; 13.7 cm) was done in 2012 to study carbon allocation and to especially focus on belowground carbon flux until to the hyphae respiration. Pure 13CO2 (99.9%) was injected to the labeling chamber which was set to branch or crown. Then, after one hour of branch labeling and 3.5 hour for crown labeling, the chamber was opened. Trunk respiration chambers, fine root chambers and hyphae chambers were set to the target tree to trace labeled carbon in the CO2 efflux. 41 μm mesh was used to exclude ingrowth of roots into hyphae chambers. The results show that the velocity of carbon through the tree varied seasonally, with higher velocity in summer than autumn, averaging 0.47 m h-1. Half-lives of labeled carbon in autotrophic respiration were similar above and below ground during the growing season, but they were twice longer in trunk than in root in autumn. From the whole crown labeling done end of growing season, the 13CO2 signal was observed 25 hours after labeling in trunk chamber and 34-37.7 hours after labeling in fine root and hyphae respiration almost simultaneously. Half-lives of 13 was longer in trunk than below ground. Trunk respiration was still using labelled carbon during winter suggesting that winter trunk respiration is partly fueled by carbon stored in the trunk at the end of the growing season.
Biomass for biorefining: Resources, allocation, utilization, and policies
USDA-ARS?s Scientific Manuscript database
The importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass are discussed in this chapter. Bioenergy development will depend on maximizing the amount of biomass obtained fro...
NASA Astrophysics Data System (ADS)
Metcalfe, D. B.; Fisher, R. A.; Wardle, D. A.
2011-08-01
Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R) is a key prerequisite for accurate prediction of the future carbon (C) balance of terrestrial ecosystems under climate change. However, developing a mechanistic understanding of the determinants of R is complicated by the presence of multiple different sources of respiratory C within soil - such as soil microbes, plant roots and their mycorrhizal symbionts - each with their distinct dynamics and drivers. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Despite often large variation amongst studies and methods, several general trends emerge. Mechanisms whereby plants affect R may be grouped into effects on belowground C allocation, aboveground litter properties and microclimate. Within vegetation types, the amount of C diverted belowground, and hence R, may be controlled mainly by the rate of photosynthetic C uptake, while amongst vegetation types this should be more dependent upon the specific C allocation strategies of the plant life form. We make the case that plant community composition, rather than diversity, is usually the dominant control on R in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community and/or modulates the occurrence of major natural disturbances. We show that climate vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. We also suggest that under a warmer future climate, many plant communities may shift towards dominance by fast growing plants which produce large quantities of nutrient rich litter. Where this community shift occurs, it could drive an increase in R beyond that expected from direct climate impacts on soil microbial activity alone. We identify key gaps in knowledge and recommend them as priorities for future work. These include the patterns of photosynthate partitioning amongst belowground components, ecosystem level effects of individual plant traits, and the importance of trophic interactions and species invasions or extinctions for ecosystem processes. A final, overarching challenge is how to link these observations and drivers across spatio-temporal scales to predict regional or global changes in R over long time periods. A more unified approach to understanding R, which integrates information about plant traits and community dynamics, will be essential for better understanding, simulating and predicting patterns of R across terrestrial ecosystems and its role within the earth-climate system.
Fraser, Kimberly D; Estabrooks, Carole; Allen, Marion; Strang, Vicki
2009-03-01
Case managers make decisions that directly affect the amount and type of services home care clients receive and subsequently affect the overall available health care resources of home care programs. A recent systematic review of the literature identified significant knowledge gaps with respect to resource allocation decision-making in home care. Using Spradley's methodology, we designed an ethnographic study of a children's home care program in Western Canada. The sample included 11 case managers and program leaders. Data sources included interviews, card sorts, and participant observation over a 5-month period. Data analyses included open coding, domain, taxonomic, and componential analysis. One of the key findings was a taxonomy of factors that influence case manager resource allocation decisions. The factors were grouped into one of four main categories: system-related, home care program-related, family related, or client-related. Family related factors have not been previously reported as influencing case manager resource allocation decision-making and nor has the team's role been reported as an influencing factor. The findings of this study are examined in light of Daniels and Sabin's Accountability for Reasonableness framework, which may be useful for future knowledge development about micro-level resource allocation theory.
Carbon Trading Protocols for Geologic Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoversten, Shanna
2008-08-07
Carbon capture and storage (CCS) could become an instrumental part of a future carbon trading system in the US. If the US starts operating an emissions trading scheme (ETS) similar to that of the European Union's then limits on CO{sub 2} emissions will be conservative in the beginning stages. The government will most likely start by distributing most credits for free; these free credits are called allowances. The US may follow the model of the EU ETS, which during the first five-year phase distributed 95% of the credits for free, bringing that level down to 90% for the second five-yearmore » phase. As the number of free allowances declines, companies will be forced to purchase an increasing number of credits at government auction, or else obtain them from companies selling surplus credits. In addition to reducing the number of credits allocated for free, with each subsequent trading period the number of overall credits released into the market will decline in an effort to gradually reduce overall emissions. Companies may face financial difficulty as the value of credits continues to rise due to the reduction of the number of credits available in the market each trading period. Governments operating emissions trading systems face the challenge of achieving CO{sub 2} emissions targets without placing such a financial burden on their companies that the country's economy is markedly affected.« less
Desalme, Dorine; Binet, Philippe; Chiapusio, Geneviève
2013-05-07
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that raise environmental concerns because of their toxicity. Their accumulation in vascular plants conditions harmful consequences to human health because of their position in the food chain. Consequently, understanding how atmospheric PAHs are taken up in plant tissues is crucial for risk assessment. In this review we synthesize current knowledge about PAH atmospheric deposition, accumulation in both gymnosperms and angiosperms, mechanisms of transfer, and ecological and physiological effects. PAHs emitted in the atmosphere partition between gas and particulate phases and undergo atmospheric deposition on shoots and soil. Most PAH concentration data from vascular plant leaves suggest that contamination occurs by both direct (air-leaf) and indirect (air-soil-root) pathways. Experimental studies demonstrate that PAHs affect plant growth, interfering with plant carbon allocation and root symbioses. Photosynthesis remains the most studied physiological process affected by PAHs. Among scientific challenges, identifying specific physiological transfer mechanisms and improving the understanding of plant-symbiont interactions in relation to PAH pollution remain pivotal for both fundamental and applied environmental sciences.
Heather R. McCarthy; Ram Oren; Kurt H Johnsen; Anne Gallet-Budynek; Seth G. Pritchard; Charles W Cook; Shannon L. LaDeau; Robert B. Jackson; Adrien C. Finzi
2010-01-01
The potential for elevated [CO2]-induced changes to plant carbon (C) storage, through modifications in plant production and allocation of C among plant pools, is an important source of uncertainty when predicting future forest function. Utilizing 10 yr of data from the Duke free-air CO2 enrichment site, we evaluated the...
NASA Astrophysics Data System (ADS)
Black, C. K.; Miller, J. N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.
2014-12-01
Annually-harvested agroecosystems have the potential to be net carbon sinks only if their root systems allocate sufficient carbon belowground and if this carbon is then retained as stable soil organic matter. Soil respiration measurements are the most common approach to evaluate the stability of soil carbon at experimental time scales, but valid inferences require the partitioning of soil respiration into root-derived (current-year C) and heterotrophic (older C) components. This partitioning is challenging at the field scale because roots and soil are intricately mixed and physical separation in impossible without disturbing the fluxes to be measured. To partition soil flux and estimate the C sink potential of bioenergy crops, we used the carbon isotope difference between C3 and C4 plant species to quantify respiration from roots of three C4 grasses (maize, Miscanthus, and switchgrass) grown in a site with a mixed cropping history where respiration from the breakdown of old soil carbon has a mixed C3-C4 signature. We used a Keeling plot approach to partition fluxes both at the soil surface using soil chambers and from the whole field using continuous flow sampling of air within and above the canopy. Although soil respiration rates from perennial grasses were higher than those from maize, the isotopic signature of respired carbon indicated that the fraction of soil CO2 flux attributable to current-year vegetation was 1.5 (switchgrass) to 2 (Miscanthus) times greater in perennials than that from maize, indicating that soil CO2 flux came mostly from roots and turnover of soil organic matter was reduced in the perennial crops. This reduction in soil heterotrophic respiration, combined with the much greater quantities of C allocated belowground by perennial grasses compared to maize, suggests that perennial grasses grown as bioenergy crops may be able to provide an additional climate benefit by acting as carbon sinks in addition to reducing fossil fuel consumption.
Burgess, Neil D.; Milledge, Simon A. H.; Bulling, Mark T.; Fisher, Brendan; Smart, James C. R.; Clarke, G. Philip; Mhoro, Boniface E.; Lewis, Simon L.
2010-01-01
Tropical forest degradation emits carbon at a rate of ~0.5 Pg·y−1, reduces biodiversity, and facilitates forest clearance. Understanding degradation drivers and patterns is therefore crucial to managing forests to mitigate climate change and reduce biodiversity loss. Putative patterns of degradation affecting forest stocks, carbon, and biodiversity have variously been described previously, but these have not been quantitatively assessed together or tested systematically. Economic theory predicts a systematic allocation of land to its highest use value in response to distance from centers of demand. We tested this theory to see if forest exploitation would expand through time and space as concentric waves, with each wave targeting lower value products. We used forest data along a transect from 10 to 220 km from Dar es Salaam (DES), Tanzania, collected at two points in time (1991 and 2005). Our predictions were confirmed: high-value logging expanded 9 km·y−1, and an inner wave of lower value charcoal production 2 km·y−1. This resource utilization is shown to reduce the public goods of carbon storage and species richness, which significantly increased with each kilometer from DES [carbon, 0.2 Mg·ha−1; 0.1 species per sample area (0.4 ha)]. Our study suggests that tropical forest degradation can be modeled and predicted, with its attendant loss of some public goods. In sub-Saharan Africa, an area experiencing the highest rate of urban migration worldwide, coupled with a high dependence on forest-based resources, predicting the spatiotemporal patterns of degradation can inform policies designed to extract resources without unsustainably reducing carbon storage and biodiversity. PMID:20679200
40 CFR 74.10 - Roles-EPA and permitting authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... allowance allocation, and allocating allowances for combustion or process sources that become affected units under this part; (2) Certifying or recertifying monitoring systems for combustion or process sources as... accounting for the replacement of thermal energy, closing accounts for opt-in sources that shut down, are...
Gruber, A; Pirkebner, D; Oberhuber, W
2013-10-01
Recent studies on non-structural carbohydrate (NSC) reserves in trees focused on xylem NSC reserves, while still little is known about changes in phloem carbohydrate pools, where NSC charging might be significantly different. To gain insight on NSC dynamics in xylem and phloem, we monitored NSC concentrations in stems and roots of Pinus cembra (L.) and Larix decidua (Mill.) growing at the alpine timberline throughout 2011. Species-specific differences affected tree phenology and carbon allocation during the course of the year. After a delayed start in spring, NSC concentrations in L. decidua were significantly higher in all sampled tissues from August until the end of growing season. In both species, NSC concentrations were five to seven times higher in phloem than that in xylem. However, significant correlations between xylem and phloem starch content found for both species indicate a close linkage between long-term carbon reserves in both tissues. In L. decidua also, free sugar concentrations in xylem and phloem were significantly correlated throughout the year, while a lack of correlation between xylem and phloem free sugar pools in P. cembra indicate a decline of phloem soluble carbohydrate pools during periods of high sink demand.
Seasonal dynamics of mobile carbohydrate pools in phloem and xylem of two alpine timberline conifers
GRUBER, A.; PIRKEBNER, D.; OBERHUBER, W.
2016-01-01
Recent studies on non-structural carbohydrate (NSC) reserves in trees focused on xylem NSC reserves, while still little is known about changes in phloem carbohydrate pools, where NSC charging might be significantly different. To gain insight on NSC dynamics in xylem and phloem, we monitored NSC concentrations in stems and roots of Pinus cembra and Larix decidua growing at the alpine timberline throughout 2011. Species-specific differences affected tree phenology and carbon allocation in the course of the year. After a delayed start in spring, NSC concentrations in Larix decidua were significantly higher in all sampled tissues from August until end of growing season. In both species NSC concentrations were five to seven times higher in phloem than in xylem. However, significant correlations between xylem and phloem starch content found for both species indicate a close linkage between long term carbon reserves in both tissues. In Larix decidua also free sugar concentrations in xylem and phloem were significantly correlated throughout the year, while missing correlations between xylem and phloem free sugar pools in Pinus cembra indicate a decline of phloem soluble carbohydrate pools during periods of high sink demand. PMID:24186941
Alipanah, Leila; Winge, Per; Rohloff, Jens; Najafi, Javad; Brembu, Tore; Bones, Atle M
2018-01-01
Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments. Our analysis revealed strong induction of gene expression for proteins involved in phosphate acquisition and scavenging, and down-regulation of processes such as photosynthesis, nitrogen assimilation and nucleic acid and ribosome biosynthesis. P deprivation resulted in alterations of carbon allocation through the induction of the pentose phosphate pathway and cytosolic gluconeogenesis, along with repression of the Calvin cycle. Reorganization of cellular lipids was indicated by coordinated induced expression of phospholipases, sulfolipid biosynthesis enzymes and a putative betaine lipid biosynthesis enzyme. A comparative analysis of nitrogen- and phosphorus-deprived P. tricornutum revealed both common and distinct regulation patterns in response to phosphate and nitrate stress. Regulation of central carbon metabolism and amino acid metabolism was similar, whereas unique responses were found in nitrogen assimilation and phosphorus scavenging in nitrogen-deprived and phosphorus-deprived cells, respectively.
The Air-Carbon-Water Synergies and Trade-Offs in China's Natural Gas Industry
NASA Astrophysics Data System (ADS)
Qin, Yue
China's coal-dominated energy structure is partly responsible for its domestic air pollution, local water stress, and the global climate change. Primarily to tackle the haze issue, China has been actively promoting a nationwide coal to natural gas end-use switch. My dissertation focuses on evaluating the air quality, carbon, and water impacts and their interactions in China's natural gas industry. Chapter 2 assesses the lifecycle climate performance of China's shale gas in comparison to coal based on stage-level energy consumption and methane leakage rates. I find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the lifecycle carbon footprint of shale gas in China could be 15-60% higher than that of coal across sectors under GWP20. Chapter 3 evaluates the air quality, human health, and the climate impacts of China's coal-based synthetic natural gas (SNG) development. Based on earlier 2020 SNG production targets, I conduct an integrated assessment to identify production technologies and end-use applications that will bring as large air quality and health benefits as possible while keeping carbon penalties as small as possible. I find that, due to inefficient and uncontrolled coal combustion in households, allocating currently available SNG to the residential sector proves to be the best SNG allocation option. Chapter 4 compares the air quality, carbon, and water impacts of China's six major gas sources under three end-use substitution scenarios, which are focused on maximizing air pollutant emission reductions, CO 2 emission reductions, and water stress index (WSI)-weighted water consumption reductions, respectively. I find striking national air-carbon/water trade-offs due to SNG, which also significantly increases water demands and carbon emissions in regions already suffering from severe water stress and having the largest per capita carbon footprint. Gas sources other than SNG may bring national air-carbon-water co-benefits. However, end-use deployment can cause enormous variations in air quality, carbon, and water impacts, with notable air-carbon synergies but air-water trade-offs.
Does drought legacy alter the recovery of grassland carbon dynamics from drought?
NASA Astrophysics Data System (ADS)
Bahn, M.; Hasibeder, R.; Fuchslueger, L.; Ingrisch, J.; Ladreiter-Knauss, T.; Lair, G.; Reinthaler, D.; Richter, A.; Kaufmann, R.
2016-12-01
Climate projections suggest an increase in the frequency and the severity of extreme climatic events, such as droughts, with consequences for the carbon cycle and its feedbacks to the climate system. An important implication of increasing drought frequency is that possible legacies of previous droughts may increasingly affect ecosystem responses to new drought events, though this has been rarely tested. Based on a series of severe experimental droughts performed during nine subsequent years on a mountain grassland in the Austrian Alps, we present evidence of effects of drought legacies on the recovery of grassland carbon dynamics from drought and analyse the underlying mechanisms. Both single and recurrent droughts led to increased aboveground productivity during drought recovery relative to control plots, favoring the biomass production and leaf area of grass species more strongly than of forbs. Belowground productivity was significantly increased during recovery. This led to higher total root length, even though specific root length was strongly reduced during recovery, particularly after recurrent drought events. Following rewetting, the temperature dependence of soil respiration was increasingly diminished and the Birch effect declined with progressive recurrence of droughts. This was paralleled by a change in soil aggregate stability and soil porosity in plots repeatedly exposed to drought. Pulse-labelling experiments revealed effects of drought legacy on plant carbon uptake and belowground allocation and altered microbial turnover of recent plant-derived carbon during and after a subsequent drought. Shifts in tissue nitrogen concentration indicate that drought effects on soil nitrogen turnover and availability could play an important role in the recovery of grassland carbon dynamics following both single and recurrent droughts. In conclusion, drought legacies can alter the recovery of grassland carbon dynamics from drought, the effects increasing with increasing drought frequency and involving changes in both plant functional composition and soil structure and processes.
Does drought legacy alter the recovery of grassland carbon dynamics from drought?
NASA Astrophysics Data System (ADS)
Bahn, Michael; Hasibeder, Roland; Fuchslueger, Lucia; Ingrisch, Johannes; Ladreiter-Knauss, Thomas; Lair, Georg; Reinthaler, David; Richter, Andreas; Kaufmann, Rüdiger
2017-04-01
Climate projections suggest an increase in the frequency and the severity of extreme climatic events, such as droughts, with consequences for the carbon cycle and its feedbacks to the climate system. An important implication of increasing drought frequency is that possible legacies of previous droughts may increasingly affect ecosystem responses to new drought events, though this has been rarely tested. Based on a series of severe experimental droughts performed during nine subsequent years on a mountain grassland in the Austrian Alps, we present evidence of effects of drought legacies on the recovery of grassland carbon dynamics from drought and analyse the underlying mechanisms. Both single and recurrent droughts led to increased aboveground productivity during drought recovery relative to control plots, favoring the biomass production and leaf area of grass species more strongly than of forbs. Belowground productivity was significantly increased during recovery. This led to higher total root length, even though specific root length was strongly reduced during recovery, particularly after recurrent drought events. Following rewetting, the temperature dependence of soil respiration was increasingly diminished and the Birch effect declined with progressive recurrence of droughts. This was paralleled by a change in soil aggregate stability and soil porosity in plots repeatedly exposed to drought. Isotopic pulse-labelling experiments revealed effects of drought legacy on plant carbon uptake and belowground allocation and altered microbial turnover of recent plant-derived carbon during and after a subsequent drought. Shifts in tissue nitrogen concentration indicate that drought effects on soil nitrogen turnover and availability could play an important role in the recovery of grassland carbon dynamics following both single and recurrent droughts. In conclusion, drought legacies can alter the recovery of grassland carbon dynamics from drought, the effects increasing with increasing drought frequency and involving changes in both plant functional composition and soil structure and processes.
Affective picture modulation: valence, arousal, attention allocation and motivational significance.
Leite, Jorge; Carvalho, Sandra; Galdo-Alvarez, Santiago; Alves, Jorge; Sampaio, Adriana; Gonçalves, Oscar F
2012-03-01
The present study analyses the modulatory effects of affective pictures in the early posterior negativity (EPN), the late positive potential (LPP) and the human startle response on both the peripheral (eye blink EMG) and central neurophysiological levels (Probe P3), during passive affective pictures viewing. The affective pictures categories were balanced in terms of valence (pleasant; unpleasant) and arousal (high; low). The data shows that EPN may be sensitive to specific stimulus characteristics (affective relevant pictures versus neutral pictures) associated with early stages of attentional processing. In later stages, the heightened attentional resource allocation as well as the motivated significance of the affective stimuli was found to elicit enhanced amplitudes of slow wave processes thought to be related to enhanced encoding, namely LPP,. Although pleasant low arousing pictures were effective in engaging the resources involved in the slow wave processes, the highly arousing affective stimuli (pleasant and unpleasant) were found to produce the largest enhancement of the LPP, suggesting that high arousing stimuli may are associated with increased motivational significance. Additionally the response to high arousing stimuli may be suggestive of increased motivational attention, given the heightened attentional allocation, as expressed in the P3 probe, especially for the pleasant pictures. The hedonic valence may then serve as a mediator of the attentional inhibition to the affective priming, potentiating or inhibiting a shift towards defensive activation, as measured by the startle reflex. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Graham, Victoria; Laurance, Susan G.; Grech, Alana; Venter, Oscar
2017-04-01
Carbon emissions from the conversion and degradation of tropical forests contribute to anthropogenic climate change. Implementing programs to reduce emissions from tropical forest loss in Southeast Asia are perceived to be expensive due to high opportunity costs of avoided deforestation. However, these costs are not representative of all REDD+ opportunities as they are typically based on average costs across large land areas and are primarily for reducing deforestation from oil palm or pulp concessions. As mitigation costs and carbon benefits can vary according to site characteristics, spatially-explicit information should be used to assess cost-effectiveness and to guide the allocation of scarce REDD+ resources. We analyzed the cost-effectiveness of the following REDD+ strategies in Indonesia, one of the world’s largest sources of carbon emissions from deforestation: halting additional deforestation in protected areas, timber and oil palm concessions, reforesting degraded land and employing reduced-impact logging techniques in logging concessions. We discover that when spatial variation in costs and benefits is considered, low-cost options emerged even for the two most expensive strategies: protecting forests from conversion to oil palm and timber plantations. To achieve a low emissions reduction target of 25%, we suggest funding should target deforestation in protected areas, and oil palm and timber concessions to maximize emissions reductions at the lowest cumulative cost. Low-cost opportunities for reducing emissions from oil palm are where concessions have been granted on deep peat deposits or unproductive land. To achieve a high emissions reduction target of 75%, funding is allocated across all strategies, emphasizing that no single strategy can reduce emissions cost-effectively across all of Indonesia. These findings demonstrate that by using a spatially-targeted approach to identify high priority locations for reducing emissions from deforestation and forest degradation, REDD+ resources can be allocated cost-effectively across Indonesia.
Trade-offs in allocating allowances for CO2 emissions
DOT National Transportation Integrated Search
2007-04-25
In light of scientific evidence about the potential damages from climate change, the Congress is considering legislation that would impose a cap-and-trade program to reduce U.S. emissions of greenhouse gases, including carbon dioxide (CO2) from...
Federal climate change programs : funding history and policy issues
DOT National Transportation Integrated Search
2010-03-01
In recent years, the federal government has allocated several billion dollars annually for projects to expand the understanding of climate change or to reduce carbon dioxide and other greenhouse-gas (GHG) emissions. Most of that spending is done by t...
STUDYING FOREST ROOT SYSTEMS - AN OVERVIEW OF METHODOLOGICAL PROBLEMS
The study of tree root systems is central to understanding forest ecosystem carbon and nutrient cycles, nutrient and water uptake, C allocation patterns by trees, soil microbial populations, adaptation of trees to stress, soil organic matter production, etc. Methodological probl...
Constraining the Carbon Cycle through Tree Rings: A Case Study of the Valles Caldera, NM
NASA Astrophysics Data System (ADS)
Alexander, M. R.; Babst, F.; Moore, D. J.; Trouet, V.
2013-12-01
Terrestrial ecosystems take up approximately 120 Gt of carbon as Gross Primary Productivity (GPP) from the atmosphere annually, but it is challenging to track the allocation of that carbon throughout the biosphere. Here, we combine eddy covariance measurements of net carbon uptake with above ground biomass increments derived from tree-ring data to better understand the interannual variability associated with biomass accumulation. In the summer of 2012, we collected tree cores near two eddy covariance towers in the Jemez Mountains of northern New Mexico. One tower was located in an upper elevation mixed-conifer forest, and the other in a lower elevation Pinus ponderosa forest. Our analysis shows that the annual above ground biomass increment accounted for approximately 40% of the GPP at the lower elevation Pinus ponderosa site and approximately 70% of GPP at the upper elevation mixed-conifer site. We have also used the above ground biomass increment to constrain the Simple Photosynthesis EvapoTranspiration (SiPNET) model to gain a better understanding of allocation within the forest. Tree growth at both elevations was negatively influenced by spring (March-June) temperature and positively by cool season (October-April) precipitation and warm (May-September) and cool season PDSI. We also analyzed the six most extreme temperature and moisture (PDSI) years of the record to determine the response of productivity to climatic forcing. During the driest years, biomass production was reduced by 40% at the upper elevation site and 43% at the lower elevation site. During the hottest years of the record the biomass decreased 28% at the upper site and 45% at the lower site. Our results indicate that tree rings can be used to effectively constrain the above ground biomass component of a forest's carbon budget and to estimate allocation of carbon to woody biomass as a function of climate. However, many variables remain unknown. The combined results of the extreme year analyses and the derived biomass increments illustrate that the forests at the Valles Caldera are considerably less productive during years of extreme drought and warmer than average temperatures. With future projections calling for consecutive years of extreme conditions in the American Southwest, this could have a substantial effect on the overall productivity of these forests.
Mantha, Olivier L; Polakof, Sergio; Huneau, Jean-François; Mariotti, François; Poupin, Nathalie; Zalko, Daniel; Fouillet, Helene
2018-05-01
Little is known about how diet-induced obesity and insulin resistance affect protein and amino acid (AA) metabolism in tissues. The natural relative abundances of the heavy stable isotopes of C (δ 13C) and N (δ 15N) in tissue proteins offer novel and promising biomarkers of AA metabolism. They, respectively, reflect the use of dietary macronutrients for tissue AA synthesis and the relative metabolic use of tissue AA for oxidation v. protein synthesis. In this study, δ 13C and δ 15N were measured in the proteins of various tissues in young adult rats exposed perinatally and/or fed after weaning with a normal- or a high-fat (HF) diet, the aim being to characterise HF-induced tissue-specific changes in AA metabolism. HF feeding was shown to increase the routing of dietary fat to all tissue proteins via non-indispensable AA synthesis, but did not affect AA allocation between catabolic and anabolic processes in most tissues. However, the proportion of AA directed towards oxidation rather than protein synthesis was increased in the small intestine and decreased in the tibialis anterior muscle and adipose tissue. In adipose tissue, the AA reallocation was observed in the case of perinatal or post-weaning exposure to HF, whereas in the small intestine and tibialis anterior muscle the AA reallocation was only observed after HF exposure that covered both the perinatal and post-weaning periods. In conclusion, HF exposure induced an early reorganisation of AA metabolism involving tissue-specific effects, and in particular a decrease in the relative allocation of AA to oxidation in several peripheral tissues.
Carbon Cycling and Storage in Mangrove Forests
NASA Astrophysics Data System (ADS)
Alongi, Daniel M.
2014-01-01
Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y-1) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y-1) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.
Carbon cycling and storage in mangrove forests.
Alongi, Daniel M
2014-01-01
Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y(-1)) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y(-1)) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.
Money, Time and Learning. Final Report.
ERIC Educational Resources Information Center
Thomas, J. Alan; Kemmerer, Frances
Chapter 1 of this study discusses sources of educational inequality in terms of criteria for resource allocation, definitions of educational equity, and equity and efficiency in the classroom. Following the second chapter's review of literature on how resources affect learning, chapter 3 offers a theory of resource allocation education. The fourth…
Status Valued Goal Objects and Performance Expectations
ERIC Educational Resources Information Center
Hysom, Stuart J.
2009-01-01
I designed an experiment to test predictions, derived from expectation states theories, that the unequal allocation of social rewards among collective task-focused actors will affect the actors' rates of power and prestige behavior. Past research shows that allocations of exchangeable resources can have these effects. The prediction, however, is…
Predictors of Department Viability in Periods of Decline.
ERIC Educational Resources Information Center
Robertson, Jane
Characteristics of academic departments that affect resource allocation to departments by the college or university are discussed, especially in times of retrenchment. Attention is focused on the ability of academic departments to maintain or increase their share of the resources allocated by the central governing board. Relevant departmental…
Allocation of Students in Public Schools: Theory and New Evidence
ERIC Educational Resources Information Center
Cohen-Zada, Danny; Gradstein, Mark; Reuven, Ehud
2013-01-01
The allocation of educational resources to students of different socio-economic backgrounds has important policy implications since it affects individual educational outcomes as well as the future distribution of human capital. In this paper, we present a theoretical model showing that local school administrators have an incentive to allocate…
NASA Astrophysics Data System (ADS)
Guerin, M. F.; von Arx, G.; McDowell, N. G.; Pockman, W.; Andreu-Hayles, L.; Gentine, P.
2015-12-01
Survival and distribution of conifers across the globe will depend on their adaptive potential to the new climatic conditions (warmer, more droughts, heat waves). Recent studies predicting forest evolution have mainly focused on understanding tree mortality processes (hydraulic failure, carbon starvation, biotic stresses). These explicit causes of mortality are also the result of unsuccessful adaptation on a longer period. Using a 7 years drought-irrigation experiment in New Mexico, USA, we investigated the response to water availability on structure-function interactions at the tree level. Bridging dendrology and physiology on multiple individuals of local Pinion pine, we observe a structural dynamics in i) wood anatomy ii) evaporative anatomy and a resulting functional dynamics in i) leaf water potential and ii) water use efficiency on multiple time scales (daily to interannual). These results emphasize the tight coupling between carbon allocation and the surface hydrologic cycle on longer time scales and its impact on resilience and mortality, which is not included in current generation land-surface models. figure: Wood anatomy obtained from a 5.2mm core of a Pinion Edulis from the experimental site - illustrating the variability of the water transport capacities accross years
Ringselle, Björn; Prieto-Ruiz, Inés; Andersson, Lars; Aronsson, Helena; Bergkvist, Göran
2017-01-01
Background and Aims Competitive crops are a central component of resource-efficient weed control, especially for problematic perennial weeds such as Elymus repens. Competition not only reduces total weed biomass, but denial of resources can also change the allocation pattern – potentially away from the underground storage organs that make perennial weeds difficult to control. Thus, the competition mode of crops may be an important component in the design of resource-efficient cropping systems. Our aim was to determine how competition from companion crops with different modes of competition affect E. repens biomass acquisition and allocation and discuss that in relation to how E. repens responds to different levels of light and nutrient supply. Methods Greenhouse experiments were conducted with E. repens growing in interspecific competition with increasing density of perennial ryegrass or red clover, or growing at three levels of both light and nutrient supply. Key Results Elymus repens total biomass decreased with increasing biomass of the companion crop and the rate of decrease was higher with red clover than with perennial ryegrass, particularly for E. repens rhizome biomass. A reduced nutrient supply shifted E. repens allocation towards below-ground biomass while a reduced light supply shifted it towards shoot biomass. Red clover caused no change in E. repens allocation pattern, while ryegrass mostly shifted the allocation towards below-ground biomass, but the change was not correlated with ryegrass biomass. Conclusions The companion crop mode of competition influences both the suppression rate of E. repens biomass acquisition and the likelihood of shifts in E. repens biomass allocation. PMID:28025285
The effect of long-term changes in plant inputs on soil carbon stocks
NASA Astrophysics Data System (ADS)
Georgiou, K.; Li, Z.; Torn, M. S.
2017-12-01
Soil organic carbon (SOC) is the largest actively-cycling terrestrial reservoir of C and an integral component of thriving natural and managed ecosystems. C input interventions (e.g., litter removal or organic amendments) are common in managed landscapes and present an important decision for maintaining healthy soils in sustainable agriculture and forestry. Furthermore, climate and land-cover change can also affect the amount of plant C inputs that enter the soil through changes in plant productivity, allocation, and rooting depth. Yet, the processes that dictate the response of SOC to such changes in C inputs are poorly understood and inadequately represented in predictive models. Long-term litter manipulations are an invaluable resource for exploring key controls of SOC storage and validating model representations. Here we explore the response of SOC to long-term changes in plant C inputs across a range of biomes and soil types. We synthesize and analyze data from long-term litter manipulation field experiments, and focus our meta-analysis on changes to total SOC stocks, microbial biomass carbon, and mineral-associated (`protected') carbon pools and explore the relative contribution of above- versus below-ground C inputs. Our cross-site data comparison reveals that divergent SOC responses are observed between forest sites, particularly for treatments that increase C inputs to the soil. We explore trends among key variables (e.g., microbial biomass to SOC ratios) that inform soil C model representations. The assembled dataset is an important benchmark for evaluating process-based hypotheses and validating divergent model formulations.
NASA Astrophysics Data System (ADS)
McGrath, M.; Luyssaert, S.; Naudts, K.; Chen, Y.; Ryder, J.; Otto, J.; Valade, A.
2015-12-01
Forest management has the potential to impact surface physical characteristics to the same degree that changes in land cover do. The impacts of land cover changes on the global climate are well-known. Despite an increasingly detailed understanding of the potential for forest management to affect climate, none of the current generation of Earth system models account for forest management through their land surface modules. We addressed this gap by developing and reparameterizing the ORCHIDEE land surface model to simulate the biogeochemical and biophysical effects of forest management. Through vertical discretization of the forest canopy and corresponding modifications to the energy budget, radiation transfer, and carbon allocation, forest management can now be simulated much more realistically on the global scale. This model was used to explore the effect of forest management on European climate since 1750. Reparameterization was carried out to replace generic forest plant functional types with real tree species, covering the most dominant species across the continent. Historical forest management and land cover maps were created to run the simulations from 1600 until the present day. The model was coupled to the atmospheric model LMDz to explore differences in climate between 1750 and 2010 and attribute those differences to changes in atmospheric carbon dioxide concentrations and concurrent warming, land cover, species composition, and wood extraction. Although Europe's forest are considered a carbon sink in this century, our simulations show the modern forests are still experiencing carbon debt compared to their historical values.
Carbon footprint of dairy goat milk production in New Zealand.
Robertson, Kimberly; Symes, Wymond; Garnham, Malcolm
2015-07-01
The aim of this study was to assess the cradle-to-farm gate carbon footprint of indoor and outdoor dairy goat farming systems in New Zealand, identifying hotspots and discussing variability and methodology. Our study was based on the International Organization for Standardization standards for life cycle assessment, although only results for greenhouse gas emissions are presented. Two functional units were included: tonnes of CO2-equivalents (CO2e) per hectare (ha) and kilograms of CO2e per kilogram of fat- and protein-corrected milk (FPCM). The study covered 5 farms, 2 farming systems, and 3yr. Two methods for the calculation of enteric methane emissions were assessed. The Lassey method, as used in the New Zealand greenhouse gas inventory, provided a more robust estimate of emissions from enteric fermentation and was used in the final calculations. The alternative dry matter intake method was shown to overestimate emissions due to use of anecdotal assumptions around actual consumption of feed. Economic allocation was applied to milk and co-products. Scenario analysis was performed on the allocation method, nitrogen content of manure, manure management, and supplementary feed choice. The average carbon footprint for the indoor farms (n=3) was 11.05 t of CO2e/ha and 0.81kg of CO2e/kg of FPCM. For the outdoor farms (n=2), the average was 5.38 t of CO2e/ha and 1.03kg of CO2e/kg of FPCM. The average for all 5 farms was 8.78 t of CO2e/ha and 0.90kg of CO2e/kg of FPCM. The results showed relatively high variability due to differences in management practices between farms. The 5 farms covered 10% of the total dairy goat farms but may not be representative of an average farm. Methane from enteric fermentation was a major emission source. The use of supplementary feed was highly variable but an important contributor to the carbon footprint. Nitrous oxide can contribute up to 18% of emissions. Indoor goat farming systems produced milk with a significantly higher carbon footprint per area of land farmed compared with outdoor farming systems, although the 2 systems were not significantly different when results were expressed per kilogram of FPCM, at 0.81kg CO2e and 1.03kg CO2e per kg of FPCM, respectively. Both systems had footprints less than other reported dairy goat carbon footprints and on par with those for New Zealand dairy cows. The methodology used to determine enteric methane is important for an accurate and meaningful assessment. The choice of manure management system and supplementary feed can substantially affect the carbon footprint. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Romero, L F; Zuidhof, M J; Jeffrey, S R; Naeima, A; Renema, R A; Robinson, F E
2010-08-01
This study evaluated the effect of feed allocation and energetic efficiency on technical and economic efficiency of broiler breeder hens using the data envelope analysis methodology and quantified the effect of variables affecting technical efficiency. A total of 288 Ross 708 pullets were placed in individual cages at 16 wk of age and assigned to 1 of 4 feed allocation groups. Three of them had feed allocated on a group basis with divergent BW targets: standard, high (standard x 1.1), and low (standard x 0.9). The fourth group had feed allocated on an individual bird basis following the standard BW target. Birds were classified in 3 energetic efficiency categories: low, average, and high, based on estimated maintenance requirements. Technical efficiency considered saleable chicks as output and cumulative ME intake and time as inputs. Economic efficiency of feed allocation treatments was analyzed under different cost scenarios. Birds with low feed allocation exhibited a lower technical efficiency (69.4%) than standard (72.1%), which reflected a reduced egg production rate. Feed allocation of the high treatment could have been reduced by 10% with the same chick production as the standard treatment. The low treatment exhibited reduced economic efficiency at greater capital costs, whereas high had reduced economic efficiency at greater feed costs. The average energetic efficiency hens had a lower technical efficiency in the low compared with the standard feed allocation. A 1% increment in estimated maintenance requirement changed technical efficiency by -0.23%, whereas a 1% increment in ME intake had a -0.47% effect. The negative relationship between technical efficiency and ME intake was counterbalanced by a positive correlation of ME intake and egg production. The negative relationship of technical efficiency and maintenance requirements was synergized by a negative correlation of hen maintenance and egg production. Economic efficiency methodologies are effective tools to assess the economic effect of selection and flock management programs because biological, allocative, and economic factors can be independently analyzed.
High incorporation of carbon into proteins by the phytoplankton of the Bering Strait and Chukchi Sea
NASA Astrophysics Data System (ADS)
Lee, Sang H.; Kim, Hak-Jun; Whitledge, Terry E.
2009-07-01
High incorporation of carbon into proteins and low incorporation into lipids were a characteristic pattern of the photosynthetic allocations of phytoplankton throughout the euphotic zone in the Bering Strait and Chukchi Sea in 2004. According to earlier studies, this indicates that phytoplankton had no nitrogen limitation and a physiologically healthy condition, at least during the cruise period from mid-August to early September in 2004. This is an interesting result, especially for the phytoplankton in the Alaskan coastal water mass-dominated region in the Chukchi Sea which has been thought to be potentially nitrogen limited. The relatively high ammonium concentration is believed to have supported the nitrogen demand of the phytoplankton in the region where small cells (<5 μm) composed of about 50% of the community, since they prefer to use regenerated nitrogen such as ammonium. In fact, a small cell-size community of phytoplankton incorporated much more carbon into proteins in nitrate-depleted water suggesting that small phytoplankton had less nitrogen stress than large phytoplankton. If the high carbon incorporation into proteins by the phytoplankton in 2004 is a general pattern of the photosynthetic allocations in the Chukchi Sea, they could provide nitrogen-sufficient food for the highest benthic faunal biomass in the Arctic Ocean, sustaining large populations of benthic-feeding marine mammals and seabirds.
Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela
2015-01-01
Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. PMID:26339128
Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas
Fragkias, Michail; Lobo, José; Strumsky, Deborah; Seto, Karen C.
2013-01-01
Urban areas consume more than 66% of the world’s energy and generate more than 70% of global greenhouse gas emissions. With the world’s population expected to reach 10 billion by 2100, nearly 90% of whom will live in urban areas, a critical question for planetary sustainability is how the size of cities affects energy use and carbon dioxide (CO2) emissions. Are larger cities more energy and emissions efficient than smaller ones? Do larger cities exhibit gains from economies of scale with regard to emissions? Here we examine the relationship between city size and CO2 emissions for U.S. metropolitan areas using a production accounting allocation of emissions. We find that for the time period of 1999–2008, CO2 emissions scale proportionally with urban population size. Contrary to theoretical expectations, larger cities are not more emissions efficient than smaller ones. PMID:23750213
Coal + Biomass → Liquids + Electricity (with CCS)
In this presentation, Matt Aitken applies the MARKet ALlocation energy system model to evaluate the market potential for a class of technologies that convert coal and biomass to liquid fuels and electricity (CBtLE), paired with carbon capture and storage (CCS). The technology is ...
ROOT BIOMASS ALLOCATION IN THE WORLD'S UPLAND FORESTS
Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard meth...
CARBON EMISSION TRADING COSTS AND ALLOWANCE ALLOCATIONS: EVALUATING THE OPTIONS. (R828628)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Variables influencing allocation of capital expenditure in Indonesia
NASA Astrophysics Data System (ADS)
Muda, Iskandar; Naibaho, Revmianson
2018-03-01
The purpose of this study is to examine the factors affecting capital expenditure in Indonesia. The independent variables used are The Effects of Financing Surplus, Total Population and Regional Sizes and the dependent variable used is The Effects of Financing Surplus. This type of research is a causal associative research. The type of data used is secondary data in severals provinces in Indonesia with multiple regression analysis. The results show significantly the determinants of capital expenditure allocation in Indonesia are affected by Financing Surplus, Total Population and Regional Sizes.
New accounting rules: asset allocation and portfolio management.
Andrew, B K
1997-01-01
New accounting rules went into effect at the end of 1995 that are now starting to affect how medical practices must report income from equity and fixed income investments. This article explores the new accounting rules and considers the other factors that help practices determine investment strategies, including desired investment return, comfort with level of risk, appropriate time horizons, liquidity needs and legal restrictions. The author also presents an example that examines the different considerations that may affect an asset allocation decision, including endowments and operating reserve funds.
Priority setting in health care: disentangling risk aversion from inequality aversion.
Echazu, Luciana; Nocetti, Diego
2013-06-01
In this paper, we introduce a tractable social welfare function that is rich enough to disentangle attitudes towards risk in health outcomes from attitudes towards health inequalities across individuals. Given this preference specification, we evaluate how the introduction of uncertainty over the severity of illness and over the effectiveness of treatments affects the optimal allocation of healthcare resources. We show that the way in which uncertainty affects the optimal allocation within our proposed specification may differ sharply from that in the standard expected utility framework. Copyright © 2012 John Wiley & Sons, Ltd.
Howard, Thomas P.; Fryer, Michael J.; Singh, Prashant; Metodiev, Metodi; Lytovchenko, Anna; Obata, Toshihiro; Fernie, Alisdair R.; Kruger, Nicholas J.; Quick, W. Paul; Lloyd, Julie C.; Raines, Christine A.
2011-01-01
The thioredoxin-regulated chloroplast protein CP12 forms a multienzyme complex with the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). PRK and GAPDH are inactivated when present in this complex, a process shown in vitro to be dependent upon oxidized CP12. The importance of CP12 in vivo in higher plants, however, has not been investigated. Here, antisense suppression of CP12 in tobacco (Nicotiana tabacum) was observed to impact on NAD-induced PRK and GAPDH complex formation but had little effect on enzyme activity. Additionally, only minor changes in photosynthetic carbon fixation were observed. Despite this, antisense plants displayed changes in growth rates and morphology, including dwarfism and reduced apical dominance. The hypothesis that CP12 is essential to separate oxidative pentose phosphate pathway activity from Calvin-Benson cycle activity, as proposed in cyanobacteria, was tested. No evidence was found to support this role in tobacco. Evidence was seen, however, for a restriction to malate valve capacity, with decreases in NADP-malate dehydrogenase activity (but not protein levels) and pyridine nucleotide content. Antisense repression of CP12 also led to significant changes in carbon partitioning, with increased carbon allocation to the cell wall and the organic acids malate and fumarate and decreased allocation to starch and soluble carbohydrates. Severe decreases were also seen in 2-oxoglutarate content, a key indicator of cellular carbon sufficiency. The data presented here indicate that in tobacco, CP12 has a role in redox-mediated regulation of carbon partitioning from the chloroplast and provides strong in vivo evidence that CP12 is required for normal growth and development in plants. PMID:21865489
Factors influencing resource allocation decisions and equity in the health system of Ghana.
Asante, A D; Zwi, A B
2009-05-01
Allocation of financial resources in the health sector is often seen as a formula-driven activity. However, the decision to allocate a certain amount of resources to a particular health jurisdiction or facility may be based on a broader range of factors, sometimes not reflected in the existing resource allocation formula. This study explores the 'other' factors that influence the equity of resource allocation in the health system of Ghana. The extent to which these factors are, or can be, accounted for in the resource allocation process is analysed. An exploratory design focusing on different levels of the health system and diverse stakeholders. Data were gathered through semi-structured qualitative interviews with health authorities at national, regional and district levels, and with donor representatives and local government officials in 2003 and 2004. The availability of human resources for health, local capacity to utilize funds, donor involvement in the health sector, and commitment to promote equity have considerable influence on resource allocation decisions and affect the equity of funding allocations. However, these factors are not accounted for adequately in the resource allocation process. This study highlights the need for a more transparent resource allocation system in Ghana based on needs, and takes into account key issues such as capacity constraints, the inequitable human resource distribution and donor-earmarked funding.
Oc, Burak; Bashshur, Michael R; Moore, Celia
2015-03-01
Subordinates are often seen as impotent, able to react to but not affect how powerholders treat them. Instead, we conceptualize subordinate feedback as an important trigger of powerholders' behavioral self-regulation and explore subordinates' reciprocal influence on how powerholders allocate resources to them over time. In 2 experiments using a multiparty, multiround dictator game paradigm, we found that when subordinates provided candid feedback about whether they found prior allocations to be fair or unfair, powerholders regulated how self-interested their allocations were over time. However, when subordinates provided compliant feedback about powerholders' prior allocation decisions (offered consistently positive feedback, regardless of the powerholders' prior allocation), those powerholders made increasingly self-interested allocations over time. In addition, we showed that guilt partially mediates this relationship: powerholders feel more guilty after receiving negative feedback about an allocation, subsequently leading to a less self-interested allocation, whereas they feel less guilty after receiving positive feedback about an allocation, subsequently taking more for themselves. Our findings integrate the literature on upward feedback with theory about moral self-regulation to support the idea that subordinates are an important source of influence over those who hold power over them. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Carbohydrate storage and light requirements of tropical moist and dry forest tree species.
Poorter, Lourens; Kitajima, Kaoru
2007-04-01
In many plant communities, there is a negative interspecific correlation between relative growth rates and survival of juveniles. This negative correlation is most likely caused by a trade-off between carbon allocation to growth vs. allocation to defense and storage. Nonstructural carbohydrates (NSC) stored in stems allow plants to overcome periods of stress and should enhance survival. In order to assess how species differ in carbohydrate storage in relation to juvenile light requirements, growth, and survival, we quantified NSC concentrations and pool sizes in sapling stems of 85 woody species in moist semi-evergreen and dry deciduous tropical forests in the rainy season in Bolivia. Moist forest species averaged higher NSC concentrations than dry forest species. Carbohydrate concentrations and pool sizes decreased with the light requirements of juveniles of the species in the moist forest but not in the dry forest. Combined, these results suggest that storage is especially important for species that regenerate in persistently shady habitats, as in the understory of moist evergreen forests. For moist forest species, sapling survival rates increased with NSC concentrations and pool sizes while growth rates declined with the NSC concentrations and pool sizes. No relationships were found for dry forest species. Carbon allocation to storage contributes to the growth-survival trade-off through its positive effect on survival. And, a continuum in carbon storage strategies contributes to a continuum in light requirements among species. The link between storage and light requirements is especially strong in moist evergreen forest where species sort out along a light gradient, but disappears in dry deciduous forest where light is a less limiting resource and species sort out along drought and fire gradients.
How one models the input and output data for a life cycle assessment can greatly affect the results. Although much attention has been paid to allocation methodology by researchers in the field, general guidance is still lacking. Current research investigated the effect of applyin...
Resources Allocation in Chinese Universities: Hierarchy, Academic Excellence, or Both?
ERIC Educational Resources Information Center
Ying, Qianwei; Fan, Yongmao; Luo, Danglun; Christensen, Tom
2017-01-01
Scholars are aware that the higher education sector in China is highly affected by its administrative system, but the questions of how and to what extent the Chinese administrative system impacts academic resources allocation have yet to be answered. By examining the empirical data from 2003 to 2010 of China's National Excellent Doctoral…
Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review
NASA Astrophysics Data System (ADS)
Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.
2011-11-01
The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. A further part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the soil profile. Finally, we highlight state-of-the-art stable isotope methodologies and their latest developments. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or currently impede the interpretation of isotopic signals in CO2 or organic compounds at the plant and ecosystem level. This review tries to identify present knowledge gaps in correctly interpreting carbon stable isotope signals in the plant-soil-atmosphere system and how future research approaches could contribute to closing these gaps.
Schärer, Lukas; Pen, Ido
2013-03-05
Sex allocation theory predicts the optimal allocation to male and female reproduction in sexual organisms. In animals, most work on sex allocation has focused on species with separate sexes and our understanding of simultaneous hermaphrodites is patchier. Recent theory predicts that sex allocation in simultaneous hermaphrodites should strongly be affected by post-copulatory sexual selection, while the role of pre-copulatory sexual selection is much less clear. Here, we review sex allocation and sexual selection theory for simultaneous hermaphrodites, and identify several strong and potentially unwarranted assumptions. We then present a model that treats allocation to sexually selected traits as components of sex allocation and explore patterns of allocation when some of these assumptions are relaxed. For example, when investment into a male sexually selected trait leads to skews in sperm competition, causing local sperm competition, this is expected to lead to a reduced allocation to sperm production. We conclude that understanding the evolution of sex allocation in simultaneous hermaphrodites requires detailed knowledge of the different sexual selection processes and their relative importance. However, little is currently known quantitatively about sexual selection in simultaneous hermaphrodites, about what the underlying traits are, and about what drives and constrains their evolution. Future work should therefore aim at quantifying sexual selection and identifying the underlying traits along the pre- to post-copulatory axis.
Schärer, Lukas; Pen, Ido
2013-01-01
Sex allocation theory predicts the optimal allocation to male and female reproduction in sexual organisms. In animals, most work on sex allocation has focused on species with separate sexes and our understanding of simultaneous hermaphrodites is patchier. Recent theory predicts that sex allocation in simultaneous hermaphrodites should strongly be affected by post-copulatory sexual selection, while the role of pre-copulatory sexual selection is much less clear. Here, we review sex allocation and sexual selection theory for simultaneous hermaphrodites, and identify several strong and potentially unwarranted assumptions. We then present a model that treats allocation to sexually selected traits as components of sex allocation and explore patterns of allocation when some of these assumptions are relaxed. For example, when investment into a male sexually selected trait leads to skews in sperm competition, causing local sperm competition, this is expected to lead to a reduced allocation to sperm production. We conclude that understanding the evolution of sex allocation in simultaneous hermaphrodites requires detailed knowledge of the different sexual selection processes and their relative importance. However, little is currently known quantitatively about sexual selection in simultaneous hermaphrodites, about what the underlying traits are, and about what drives and constrains their evolution. Future work should therefore aim at quantifying sexual selection and identifying the underlying traits along the pre- to post-copulatory axis. PMID:23339243
Light Competition and Carbon Partitioning-Allocation in an improved Forest Ecosystem Model
NASA Astrophysics Data System (ADS)
Collalti, Alessio; Santini, Monia; Valentini Valentini, Riccardo
2010-05-01
In Italy about 100.000 km2 are covered by forests. This surface is the 30% of the whole national land and this shows how the forests are important both for socio-economic and for environmental aspects. Forests changes affect a delicate balance that involve not only vegetation components but also bio-geochemical cycles and global climate. The knowledge of the amount of Carbon sequestered by forests represents a precious information for their sustainable management in the framework of climate changes. Primary studies in terms of model about this important issue, has been done through Forest Ecosystem Model (FEM), well known and validated as 3PG (Landsberg et Waring, 1997; Sands 2004). It is based on light use efficiency approach at the canopy level. The present study started from the original model 3PG, producing an improved version that uses many of explicit formulations of all relevant ecophysiological processes but makes it able to be applied for natural forests. The mutual interaction of forest growth and light conditions causes vertical and horizontal differentiation in the natural forest mosaic. Only ecophysiological parameters which can be either directly measured or estimates with reasonable certainty are used. The model has been written in C language and has been created considering a tri-dimensional cell structure with different vertical layers depending on the forest type that has to be simulated. This 3PG 'improved' version enable to work on multi-layer and multi-species forests type with cell resolution of one hectare for the typical Italian forest species. The multi-layer version is the result of the implementation and development of Lambert-Beer law for the estimation of intercepted, absorbed and transmitted light through different storeys of the forest. It is possible estimates, for each storey, a Par value (Photosynthetic Active Radiation) through Leaf Area Index (LAI), Light Extinction Coefficient and cell Canopy Cover using a "Big Leaf" approach. Hence, the presence of a cohort in a storey determines the amount of light received for the photosynthetic processes. The population density (numbers of trees per cell) represents a good competition index for determining the tree crown structure and tree crown dimension within a forest population. The tree crown tend to branch out horizontally to intercept as much light as possible. The model assess the structure of the tree crown both vertically and horizontally on the base of the population density and it up-scales the result to the whole stand. The canopy depth and the percentage of horizontal coverage determines moreover a crowding competition index that lead to a specific biomass partitioning-allocation ratio among the different tree components (foliage, roots and stem) and especially for the stem affecting Height-Diameter (at breast height) ratio. In this model, Height-Diameter ratio is used as an alternative competition index in determining the vigour and the strength of competition on free growth status of trees. The forest dominant vegetative cover affects moreover the presence of a dominated layer, it influences its yield and its Carbon stocking capacity and hence it influences the forest ecosystem CO2 carbon balance. From this model it is possible to simulate the impact of Climate Change on forests, the feedback of one or more dominated layers in terms of CO2 uptake in a forest stand and the effects of forest management activities for the next years.
Van der Laan, Carina; Verweij, Pita A; Quiñones, Marcela J; Faaij, André Pc
2014-12-01
Land use and land cover change occurring in tropical forest landscapes contributes substantially to carbon emissions. Better insights into the spatial variation of aboveground biomass is therefore needed. By means of multiple statistical tests, including geographically weighted regression, we analysed the effects of eight variables on the regional spatial variation of aboveground biomass. North and East Kalimantan were selected as the case study region; the third largest carbon emitting Indonesian provinces. Strong positive relationships were found between aboveground biomass and the tested variables; altitude, slope, land allocation zoning, soil type, and distance to the nearest fire, road, river and city. Furthermore, the results suggest that the regional spatial variation of aboveground biomass can be largely attributed to altitude, distance to nearest fire and land allocation zoning. Our study showed that in this landscape, aboveground biomass could not be explained by one single variable; the variables were interrelated, with altitude as the dominant variable. Spatial analyses should therefore integrate a variety of biophysical and anthropogenic variables to provide a better understanding of spatial variation in aboveground biomass. Efforts to minimise carbon emissions should incorporate the identified factors, by 1) the maintenance of lands with high AGB or carbon stocks, namely in the identified zones at the higher altitudes; and 2) regeneration or sustainable utilisation of lands with low AGB or carbon stocks, dependent on the regeneration capacity of the vegetation. Low aboveground biomass densities can be found in the lowlands in burned areas, and in non-forest zones and production forests.
NASA Astrophysics Data System (ADS)
Straková, P.; Niemi, R. M.; Freeman, C.; Peltoniemi, K.; Toberman, H.; Heiskanen, I.; Fritze, H.; Laiho, R.
2011-02-01
Peatlands are carbon (C) storage ecosystems sustained by a high water level (WL). High WL creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WL drawdown caused by land-use and/or climate change. Aerobic decomposers are directly affected by WL drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WL drawdown on aerobic decomposer activity in plant litter. We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen, phosphorus and sulphur. Our study sites represented a three-stage chronosequence from pristine (undrained) to short-term (years) and long-term (decades) WL drawdown conditions under two nutrient regimes. The litter types included reflected the prevalent vegetation, i.e., Sphagnum mosses, graminoids, shrubs and trees. WL drawdown had a direct and positive effect on microbial activity. Enzyme allocation shifted towards C acquisition, which caused an increase in the rate of decomposition. However, litter type overruled the direct effects of WL drawdown and was the main factor shaping microbial activity patterns. Our results imply that changes in plant community composition in response to persistent WL drawdown will strongly affect the C dynamics of peatlands.
When growth and photosynthesis don't match: implications for carbon balance models
NASA Astrophysics Data System (ADS)
Medlyn, B.; Mahmud, K.; Duursma, R.; Pfautsch, S.; Campany, C.
2017-12-01
Most models of terrestrial plant growth are based on the principle of carbon balance: that growth can be predicted from net uptake of carbon via photosynthesis. A key criticism leveled at these models by plant physiologists is that there are many circumstances in which plant growth appears to be independent of photosynthesis: for example, during the onset of drought, or with rising atmospheric CO2 concentration. A crucial problem for terrestrial carbon cycle models is to develop better representations of plant carbon balance when there is a mismatch between growth and photosynthesis. Here we present two studies providing insight into this mismatch. In the first, effects of root restriction on plant growth were examined by comparing Eucalyptus tereticornis seedlings growing in containers of varying sizes with freely-rooted seedlings. Root restriction caused a reduction in photosynthesis, but this reduction was insufficient to explain the even larger reduction observed in growth. We applied data assimilation to a simple carbon balance model to quantify the response of carbon balance as a whole in this experiment. We inferred that, in addition to photosynthesis, there are significant effects of root restriction on growth respiration, carbon allocation, and carbohydrate utilization. The second study was carried out at the EucFACE Free-Air CO2 Enrichment experiment. At this experiment, photosynthesis of the overstorey trees is increased with enriched CO2, but there is no significant effect on above-ground productivity. These mature trees have reached their maximum height but are at significant risk of canopy loss through disturbance, and we hypothesized that additional carbon taken up through photosynthesis is preferentially allocated to storage rather than growth. We tested this hypothesis by measuring stemwood non-structural carbohydrates (NSC) during a psyllid outbreak that completely defoliated the canopy in 2015. There was a significant drawdown of NSC during canopy re-flushing but no effect of CO2 enrichment on NSC storage nor the rate of canopy renewal. Our studies highlight an important uncertainty in current carbon balance models and demonstrate quantitative approaches than can be used to address this uncertainty.
Villamarín, Francisco; Magnusson, William E; Jardine, Timothy D; Valdez, Dominic; Woods, Ryan; Bunn, Stuart E
2016-01-01
Although considerable knowledge has been gathered regarding the role of fish in cycling and translocation of nutrients across ecosystem boundaries, little information is available on how the energy obtained from different ecosystems is temporally allocated in fish bodies. Although in theory, limitations on energy budgets promote the existence of a trade-off between energy allocated to reproduction and somatic growth, this trade-off has rarely been found under natural conditions. Combining information on RNA:DNA ratios and carbon and nitrogen stable-isotope analyses we were able to achieve novel insights into the reproductive allocation of diamond mullet (Liza alata), a catadromous, widely distributed herbivorous-detritivorous fish. Although diamond mullet were in better condition during the wet season, most reproductive allocation occurred during the dry season when resources are limited and fish have poorer body condition. We found a strong trade-off between reproductive and somatic investment. Values of δ13C from reproductive and somatic tissues were correlated, probably because δ13C in food resources between dry and wet seasons do not differ markedly. On the other hand, data for δ15N showed that gonads are more correlated to muscle, a slow turnover tissue, suggesting long term synthesis of reproductive tissues. In combination, these lines of evidence suggest that L. alata is a capital breeder which shows temporal uncoupling of resource ingestion, energy storage and later allocation to reproduction.
Villamarín, Francisco; Magnusson, William E.; Jardine, Timothy D.; Valdez, Dominic; Woods, Ryan; Bunn, Stuart E.
2016-01-01
Although considerable knowledge has been gathered regarding the role of fish in cycling and translocation of nutrients across ecosystem boundaries, little information is available on how the energy obtained from different ecosystems is temporally allocated in fish bodies. Although in theory, limitations on energy budgets promote the existence of a trade-off between energy allocated to reproduction and somatic growth, this trade-off has rarely been found under natural conditions. Combining information on RNA:DNA ratios and carbon and nitrogen stable-isotope analyses we were able to achieve novel insights into the reproductive allocation of diamond mullet (Liza alata), a catadromous, widely distributed herbivorous-detritivorous fish. Although diamond mullet were in better condition during the wet season, most reproductive allocation occurred during the dry season when resources are limited and fish have poorer body condition. We found a strong trade-off between reproductive and somatic investment. Values of δ13C from reproductive and somatic tissues were correlated, probably because δ13C in food resources between dry and wet seasons do not differ markedly. On the other hand, data for δ15N showed that gonads are more correlated to muscle, a slow turnover tissue, suggesting long term synthesis of reproductive tissues. In combination, these lines of evidence suggest that L. alata is a capital breeder which shows temporal uncoupling of resource ingestion, energy storage and later allocation to reproduction. PMID:26938216
THE EFFECT OF ALLOWANCE ALLOCATION ON THE COST OF CARBON EMISSION TRADING. (R828628)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.
2015-01-01
Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle. PMID:26197714
NASA Astrophysics Data System (ADS)
Schmalenberger, A.; Duran, A. L.; Bray, A. W.; Bridge, J.; Bonneville, S.; Benning, L. G.; Romero-Gonzalez, M. E.; Leake, J. R.; Banwart, S. A.
2015-07-01
Trees and their associated rhizosphere organisms play a major role in mineral weathering driving calcium fluxes from the continents to the oceans that ultimately control long-term atmospheric CO2 and climate through the geochemical carbon cycle. Photosynthate allocation to tree roots and their mycorrhizal fungi is hypothesized to fuel the active secretion of protons and organic chelators that enhance calcium dissolution at fungal-mineral interfaces. This was tested using 14CO2 supplied to shoots of Pinus sylvestris ectomycorrhizal with the widespread fungus Paxillus involutus in monoxenic microcosms, revealing preferential allocation by the fungus of plant photoassimilate to weather grains of limestone and silicates each with a combined calcium and magnesium content of over 10 wt.%. Hyphae had acidic surfaces and linear accumulation of weathered calcium with secreted oxalate, increasing significantly in sequence: quartz, granite < basalt, olivine, limestone < gabbro. These findings confirmed the role of mineral-specific oxalate exudation in ectomycorrhizal weathering to dissolve calcium bearing minerals, thus contributing to the geochemical carbon cycle.
Hsu, Evelyn K; Mazariegos, George V
2017-01-01
Current literature and policy in pediatric liver allocation and organ procurement are reviewed here in narrative fashion, highlighting historical context, ethical framework, technical/procurement considerations, and support for a logical way forward to an equitable pediatric liver allocation system that will improve pediatric wait-list and posttransplant outcomes without adversely affecting adults. Where available, varying examples of successful international pediatric liver allocation and split-liver policy will be compared to current US policy to highlight potential strategies that can be considered globally. Liver Transplantation 23:86-95 2017 AASLD. © 2016 by the American Association for the Study of Liver Diseases.
Hold it! Memory affects attentional dwell time.
Parks, Emily L; Hopfinger, Joseph B
2008-12-01
The allocation of attention, including the initial orienting and the subsequent dwell time, is affected by several bottom-up and top-down factors. How item memory affects these processes, however, remains unclear. Here, we investigated whether item memory affects attentional dwell time by using a modified version of the attentional blink (AB) paradigm. Across four experiments, our results revealed that the AB was significantly affected by memory status (novel vs. old), but critically, this effect depended on the ongoing memory context. Specifically, items that were unique in terms of memory status demanded more resources, as measured by a protracted AB. The present findings suggest that a more comprehensive understanding of memory's effects on attention can be obtained by accounting for an item's memorial context, as well as its individual item memory strength. Our results provide new evidence that item memory and memory context play a significant role in the temporal allocation of attention.
Li, Qinghe; Xu, Jun; Li, Huiqing; Wang, Saixiao; Yan, Xiu; Xin, Zhiming; Jiang, Zeping; Wang, Linlong; Jia, Zhiqing
2013-01-01
The formation of many nebkha dunes relies on the layering of clonal plants. The microenvironmental conditions of such phytogenic nebkha are heterogeneous depending on the aspect and slope. Exploring the effects of aspect on clonal reproduction and biomass allocation can be useful in understanding the ecological adaptation of species. We hypothesized that on the windward side layering propagation would be promoted, that biomass allocation to leaves and stems of ramets would increase, and that the effects of aspect would be greater in the layering with larger biomass. To test these hypotheses, we surveyed the depth of germination points of axillary buds, the rate of ramet sprouting, the density of adventitious root formation points, and the biomass of modules sprouting from layering located on the NE, SE, SW and NW, aspects of Nitraria tangutorum nebkhas. The windward side was located on the NW and SW aspects. The results indicated that conditions of the NW aspect were more conducive to clonal reproduction and had the highest rate of ramet sprouting and the highest density of adventitious formation points. For the modules sprouting from layering on the SW aspect, biomass allocation to leaves and stems was greatest with biomass allocation to adventitious roots being lowest. This result supported our hypothesis. Contrary to our hypothesis, the effects of aspect were greater in layering of smaller biomass. These results support the hypothesis that aspect does affect layering propagation capacity and biomass allocation in this species. Additionally, clonal reproduction and biomass allocation of modules sprouting from layering with smaller biomass was more affected by aspect. These results suggest that the clonal growth of N. tangutorum responses to the microenvironmental heterogeneity that results from aspect of the nebkha. PMID:24205391
Li, Qinghe; Xu, Jun; Li, Huiqing; Wang, Saixiao; Yan, Xiu; Xin, Zhiming; Jiang, Zeping; Wang, Linlong; Jia, Zhiqing
2013-01-01
The formation of many nebkha dunes relies on the layering of clonal plants. The microenvironmental conditions of such phytogenic nebkha are heterogeneous depending on the aspect and slope. Exploring the effects of aspect on clonal reproduction and biomass allocation can be useful in understanding the ecological adaptation of species. We hypothesized that on the windward side layering propagation would be promoted, that biomass allocation to leaves and stems of ramets would increase, and that the effects of aspect would be greater in the layering with larger biomass. To test these hypotheses, we surveyed the depth of germination points of axillary buds, the rate of ramet sprouting, the density of adventitious root formation points, and the biomass of modules sprouting from layering located on the NE, SE, SW and NW, aspects of Nitraria tangutorum nebkhas. The windward side was located on the NW and SW aspects. The results indicated that conditions of the NW aspect were more conducive to clonal reproduction and had the highest rate of ramet sprouting and the highest density of adventitious formation points. For the modules sprouting from layering on the SW aspect, biomass allocation to leaves and stems was greatest with biomass allocation to adventitious roots being lowest. This result supported our hypothesis. Contrary to our hypothesis, the effects of aspect were greater in layering of smaller biomass. These results support the hypothesis that aspect does affect layering propagation capacity and biomass allocation in this species. Additionally, clonal reproduction and biomass allocation of modules sprouting from layering with smaller biomass was more affected by aspect. These results suggest that the clonal growth of N. tangutorum responses to the microenvironmental heterogeneity that results from aspect of the nebkha.
Ringselle, Björn; Prieto-Ruiz, Inés; Andersson, Lars; Aronsson, Helena; Bergkvist, Göran
2017-02-01
Competitive crops are a central component of resource-efficient weed control, especially for problematic perennial weeds such as Elymus repens Competition not only reduces total weed biomass, but denial of resources can also change the allocation pattern - potentially away from the underground storage organs that make perennial weeds difficult to control. Thus, the competition mode of crops may be an important component in the design of resource-efficient cropping systems. Our aim was to determine how competition from companion crops with different modes of competition affect E. repens biomass acquisition and allocation and discuss that in relation to how E. repens responds to different levels of light and nutrient supply. Greenhouse experiments were conducted with E. repens growing in interspecific competition with increasing density of perennial ryegrass or red clover, or growing at three levels of both light and nutrient supply. Elymus repens total biomass decreased with increasing biomass of the companion crop and the rate of decrease was higher with red clover than with perennial ryegrass, particularly for E. repens rhizome biomass. A reduced nutrient supply shifted E. repens allocation towards below-ground biomass while a reduced light supply shifted it towards shoot biomass. Red clover caused no change in E. repens allocation pattern, while ryegrass mostly shifted the allocation towards below-ground biomass, but the change was not correlated with ryegrass biomass. The companion crop mode of competition influences both the suppression rate of E. repens biomass acquisition and the likelihood of shifts in E. repens biomass allocation. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
van Dijk, Eric; De Cremer, David
2006-10-01
Previous research on the allocation of scarce resources suggests that people who are assigned to higher positions (e.g., leaders) are more likely to make self-benefiting allocations than people who are assigned to lower positions (e.g., followers). In this article, the authors investigated the proposition that these findings would be moderated by people's social value orientations. In two experimental studies, the authors assigned participants either to the role of leader or follower and assessed the participants' social value orientations. In agreement with predictions, the findings show that position effects are moderated by social value orientation. Social value orientations only affected the allocation behavior of the leaders: Proself leaders allocated more resources to themselves than did prosocial leaders. Additional analyses indicate that these effects are mediated by feelings of entitlement.
Impact of interspecific competition and drought on the allocation of new assimilates in trees.
Hommel, R; Siegwolf, R; Zavadlav, S; Arend, M; Schaub, M; Galiano, L; Haeni, M; Kayler, Z E; Gessler, A
2016-09-01
In trees, the interplay between reduced carbon assimilation and the inability to transport carbohydrates to the sites of demand under drought might be one of the mechanisms leading to carbon starvation. However, we largely lack knowledge on how drought effects on new assimilate allocation differ between species with different drought sensitivities and how these effects are modified by interspecific competition. We assessed the fate of (13) C labelled assimilates in above- and belowground plant organs and in root/rhizosphere respired CO2 in saplings of drought-tolerant Norway maple (Acer platanoides) and drought-sensitive European beech (Fagus sylvatica) exposed to moderate drought, either in mono- or mixed culture. While drought reduced stomatal conductance and photosynthesis rates in both species, both maintained assimilate transport belowground. Beech even allocated more new assimilate to the roots under moderate drought compared to non-limited water supply conditions, and this pattern was even more pronounced under interspecific competition. Even though maple was a superior competitor compared to beech under non-limited soil water conditions, as indicated by the changes in above- and belowground biomass of both species in the interspecific competition treatments, we can state that beech was still able to efficiently allocate new assimilate belowground under combined drought and interspecific competition. This might be seen as a strategy to maintain root osmotic potential and to prioritise root functioning. Our results thus show that beech tolerates moderate drought stress plus competition without losing its ability to supply belowground tissues. It remains to be explored in future work if this strategy is also valid during long-term drought exposure. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Kobresia pygmaea pasture degradation and its response to increasing N deposition
NASA Astrophysics Data System (ADS)
Liu, Shibin; Schleuss, Per-Marten; Kuzyakov, Yakov
2016-04-01
Kobresia pygmaea is a dominant plant species on the Tibetan Plateau covering ca. one fifth of the total area. Severe degradation by overgrazing is ongoing at K. pygmaea pastures in recent decades. Nitrogen (N) deposition is also increasingly exacerbated across the Tibetan Plateau. Up to now the response of K. pygmaea pastures with increasing degradation to N deposition is unclear. We aimed at: (1) evaluating the effect of pasture degradation on carbon (C) and N contents of soil, root, microbial biomass and leachate, (2) determining N allocation to plant, soil and microbial biomass after N addition and (3) making an estimation of N storage and loss in Kobresia pasture. We used three Kobresia root mat types varying in their degradation stages: (1) living root mats, (2) dying root mats and (3) dead root mats. We also added two levels of 15NH415NO3 solution to simulate N deposition (control: 2.5 kg N/ha; deposition 50.9 kg N/ha) and traced the 15N in the soil-plant system. Leaching of NH4+, NO3- and DON were detected by homogeneously adding distilled water to each sample and collecting the leachate afterwards. Total N content lost by leaching increased 6.5 times following the degradation from living to dead root mats. This indicated that living Kobresia effectively decreased N loss from leaching due to N uptake by plants. The microbial biomass C to N (MBC/MBN) ratio narrowed from 10.2 to 7.5 and then to 5.0 for living, dying and dead root mats, respectively. This shows the degradation K. pygmaea shift the ecosystem from a N-limited to a C-limited status for microbes. Nitrogen addition increased above-ground plant biomass (AGB) as well as its total N content in living root mat while MBC and MBN were not affected. This shows K. pygmaea is more sensitive to N addition than microorganisms. N allocation (% of total N added) by AGB, below-ground plant biomass and soil in living root mats were 22.1%, 22.7% and 17.6%, respectively. No significant effect between these parameters was identified indicating that N allocation was independent to the giving amount of N. Up to 1.86 Mg N/ha were stored in living root mat (0-5 cm). In contrast, dead and dying root mats maintained about 2.0 Mg N/ha and 2.1 Mg N/ha, respectively. N loss in leachate of living root mat regarding a precipitation of 355 mm during growing season (equal to 85% of annual precipitation) was estimated to be around 3.6 kg N/ha (3.4 kg DON and 0.2 kg NH4-N). This amount was up to 6.5 times higher in dead root mat (23.6 kg N/ha with 19.1 kg NO3-N, 4 kg DON and 0.5 kg NH4-N). Therefore, degradation of K. pygmaea significantly increased N loss via leaching, especially NO3-N loss. We conclude N deposition facilitates the growth of K. pygmaea, which may positively affect plant productivity as well as C sequestration. In the absence of K. pygmaea, however, N deposition will lead to high N loss. Key words: Nitrogen allocation, Kobresia pygmaea, above-ground biomass, microbial biomass carbon and nitrogen
NASA Technical Reports Server (NTRS)
Anterola, Aldwin M.; Jeon, Jae-Heung; Davin, Laurence B.; Lewis, Norman G.
2002-01-01
Transcriptional profiling of the phenylpropanoid pathway in Pinus taeda cell suspension cultures was carried out using quantitative real time PCR analyses of all known genes involved in the biosynthesis of the two monolignols, p-coumaryl and coniferyl alcohols (lignin/lignan precursors). When the cells were transferred to a medium containing 8% sucrose and 20 mm potassium iodide, the monolignol/phenylpropanoid pathway was induced, and transcript levels for phenylalanine ammonia lyase, cinnamate 4-hydroxylase, p-coumarate 3-hydroxylase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase, and cinnamyl alcohol dehydrogenase were coordinately up-regulated. Provision of increasing levels of exogenously supplied Phe to saturating levels (40 mm) to the induction medium resulted in further up-regulation of their transcript levels in the P. taeda cell cultures; this in turn was accompanied by considerable increases in both p-coumaryl and coniferyl alcohol formation and excretion. By contrast, transcript levels for both cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase were only slightly up-regulated. These data, when considered together with metabolic profiling results and genetic manipulation of various plant species, reveal that carbon allocation to the pathway and its differential distribution into the two monolignols is controlled by Phe supply and differential modulation of cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase activities, respectively. The coordinated up-regulation of phenylalanine ammonia lyase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase in the presence of increasing concentrations of Phe also indicates that these steps are not truly rate-limiting, because they are modulated according to metabolic demand. Finally, the transcript profile of a putative acid/ester O-methyltransferase, proposed as an alternative catalyst for O-methylation leading to coniferyl alcohol, was not up-regulated under any of the conditions employed, suggesting that it is not, in fact, involved in monolignol biosynthesis.
Do Tree Stems Recapture Respired CO2?
NASA Astrophysics Data System (ADS)
Hilman, B.; Angert, A.
2016-12-01
Tree stem respiration is an important, yet not well understood, component of the terrestrial carbon cycle. Predicting how trees as whole organisms respond to changes in climate and atmospheric CO2 requires understanding of the variability in the fraction of assimilated carbon allocated to respiration, versus the allocation to growth, damage repair, and to rhizosphere symbionts. Here we used the ratio of CO2 efflux/O2 influx (Apparent Respiratory Quotient, ARQ) to study stem respiration. The ARQ in trees stems is predicted to be 1.0, as a result of carbohydrates metabolism. Lower than 1.0 ARQ values may indicate a local assimilation of respired CO2, or dissolution and transport of CO2 in the xylem stream. We measured stems ARQ in 16 tree species at tropical, Mediterranean and temperate ecosystems using stem chambers and in-vitro incubations. The CO2 and O2 were measured by a system we developed, which is based on an IRGA and a Fuel-cell O2 analyzer (Hilman and Angert 2016). We found typical values of ARQ in the range of 0.4-0.8. Since incubations of detach stem tissues yielded similar ARQ values, and since the influence of natural variations in the transpiration stream on ARQ was found to be small, we conclude that the removal of the respired CO2 is not via dissolution in the xylem stream. Using 13C labeling, dark fixation of stem tissues was detected, which is most probably phosphoenolpyruvate carboxylase (PEPC) mediated. Hence, we suggest that in-stem dark fixation of respired CO2 to organic acids (e.g. malate) affects the outgoing efflux. Further research should determine if these organic acids are transported to the canopy, stored in the stem, or transported to the roots to serve as exudates. Hilman B, Angert A (2016) Measuring the ratio of CO2 efflux to O2 influx in tree stem respiration. Tree Physiol 2016, doi: 10.1093/treephys/tpw057
Anterola, Aldwin M; Jeon, Jae-Heung; Davin, Laurence B; Lewis, Norman G
2002-05-24
Transcriptional profiling of the phenylpropanoid pathway in Pinus taeda cell suspension cultures was carried out using quantitative real time PCR analyses of all known genes involved in the biosynthesis of the two monolignols, p-coumaryl and coniferyl alcohols (lignin/lignan precursors). When the cells were transferred to a medium containing 8% sucrose and 20 mm potassium iodide, the monolignol/phenylpropanoid pathway was induced, and transcript levels for phenylalanine ammonia lyase, cinnamate 4-hydroxylase, p-coumarate 3-hydroxylase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase, and cinnamyl alcohol dehydrogenase were coordinately up-regulated. Provision of increasing levels of exogenously supplied Phe to saturating levels (40 mm) to the induction medium resulted in further up-regulation of their transcript levels in the P. taeda cell cultures; this in turn was accompanied by considerable increases in both p-coumaryl and coniferyl alcohol formation and excretion. By contrast, transcript levels for both cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase were only slightly up-regulated. These data, when considered together with metabolic profiling results and genetic manipulation of various plant species, reveal that carbon allocation to the pathway and its differential distribution into the two monolignols is controlled by Phe supply and differential modulation of cinnamate 4-hydroxylase and p-coumarate 3-hydroxylase activities, respectively. The coordinated up-regulation of phenylalanine ammonia lyase, 4-coumarate:CoA ligase, caffeoyl-CoA O-methyltransferase, cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase in the presence of increasing concentrations of Phe also indicates that these steps are not truly rate-limiting, because they are modulated according to metabolic demand. Finally, the transcript profile of a putative acid/ester O-methyltransferase, proposed as an alternative catalyst for O-methylation leading to coniferyl alcohol, was not up-regulated under any of the conditions employed, suggesting that it is not, in fact, involved in monolignol biosynthesis.
Mengin, Virginie; Pyl, Eva-Theresa; Alexandre Moraes, Thiago; Sulpice, Ronan; Krohn, Nicole; Encke, Beatrice; Stitt, Mark
2017-11-01
Photoperiod duration can be predicted from previous days, but irradiance fluctuates in an unpredictable manner. To investigate how allocation to starch responds to changes in these two environmental variables, Arabidopsis Col-0 was grown in a 6 h and a 12 h photoperiod at three different irradiances. The absolute rate of starch accumulation increased when photoperiod duration was shortened and when irradiance was increased. The proportion of photosynthate allocated to starch increased strongly when photoperiod duration was decreased but only slightly when irradiance was decreased. There was a small increase in the daytime level of sucrose and twofold increases in glucose, fructose and glucose 6-phosphate at a given irradiance in short photoperiods compared to long photoperiods. The rate of starch accumulation correlated strongly with sucrose and glucose levels in the light, irrespective of whether these sugars were responding to a change in photoperiod or irradiance. Whole plant carbon budget modelling revealed a selective restriction of growth in the light period in short photoperiods. It is proposed that photoperiod sensing, possibly related to the duration of the night, restricts growth in the light period in short photoperiods, increasing allocation to starch and providing more carbon reserves to support metabolism and growth in the long night. © 2017 John Wiley & Sons Ltd.
Buckley, Thomas N; Roberts, David W
2006-02-01
Conventional wisdom holds that the ratio of leaf area to sapwood area (L/S) should decline during height (H) growth to maintain hydraulic homeostasis and prevent stomatal conductance (g(s)) from declining. We contend that L/S should increase with H based on a numerical simulation, a mathematical analysis and a conceptual argument: (1) numerical simulation--a tree growth model, DESPOT (Deducing Emergent Structure and Physiology Of Trees), in which carbon (C) allocation is regulated to maximize C gain, predicts L/S should increase during most of H growth; (2) mathematical analysis--the formal criterion for optimal C allocation, applied to a simplified analytical model of whole tree carbon-water balance, predicts L/S should increase with H if leaf-level gas exchange parameters including g(s) are conserved; and (3) conceptual argument--photosynthesis is limited by several substitutable resources (chiefly nitrogen (N), water and light) and H growth increases the C cost of water transport but not necessarily of N and light capture, so if the goal is to maximize C gain or growth, allocation should shift in favor of increasing photosynthetic capacity and irradiance, rather than sustaining g(s). Although many data are consistent with the prediction that L/S should decline with H, many others are not, and we discuss possible reasons for these discrepancies.
How trees allocate carbon for optimal growth: insight from a game-theoretic model.
Fu, Liyong; Sun, Lidan; Han, Hao; Jiang, Libo; Zhu, Sheng; Ye, Meixia; Tang, Shouzheng; Huang, Minren; Wu, Rongling
2017-02-01
How trees allocate photosynthetic products to primary height growth and secondary radial growth reflects their capacity to best use environmental resources. Despite substantial efforts to explore tree height-diameter relationship empirically and through theoretical modeling, our understanding of the biological mechanisms that govern this phenomenon is still limited. By thinking of stem woody biomass production as an ecological system of apical and lateral growth components, we implement game theory to model and discern how these two components cooperate symbiotically with each other or compete for resources to determine the size of a tree stem. This resulting allometry game theory is further embedded within a genetic mapping and association paradigm, allowing the genetic loci mediating the carbon allocation of stemwood growth to be characterized and mapped throughout the genome. Allometry game theory was validated by analyzing a mapping data of stem height and diameter growth over perennial seasons in a poplar tree. Several key quantitative trait loci were found to interpret the process and pattern of stemwood growth through regulating the ecological interactions of stem apical and lateral growth. The application of allometry game theory enables the prediction of the situations in which the cooperation, competition or altruism is an optimal decision of a tree to fully use the environmental resources it owns. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Galiano, Lucía; Timofeeva, Galina; Saurer, Matthias; Siegwolf, Rolf; Martínez-Vilalta, Jordi; Hommel, Robert; Gessler, Arthur
2017-09-01
Carbon reserves are important for maintaining tree function during and after stress. Increasing tree mortality driven by drought globally has renewed the interest in how plants regulate allocation of recently fixed C to reserve formation. Three-year-old seedlings of two species (Tilia platyphyllos and Pinus sylvestris) were exposed to two intensities of experimental drought during ~10 weeks, and 13 C pulse labelling was subsequently applied with rewetting. Tracking the 13 C label across different organs and C compounds (soluble sugars, starch, myo-inositol, lipids and cellulose), together with the monitoring of gas exchange and C mass balances over time, allowed for the identification of variations in C allocation priorities and tree C balances that are associated with drought effects and subsequent drought release. The results demonstrate that soluble sugars accumulated in P. sylvestris under drought conditions independently of growth trends; thus, non-structural carbohydrates (NSC) formation cannot be simply considered a passive overflow process in this species. Once drought ceased, C allocation to storage was still prioritized at the expense of growth, which suggested the presence of 'drought memory effects', possibly to ensure future growth and survival. On the contrary, NSC and growth dynamics in T. platyphyllos were consistent with a passive (overflow) view of NSC formation. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.
2010-03-01
Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study substantially improved the model performance, the uncertainties that remained in terms of the sensitivity to water conditions should be examined in ongoing and long-term observations.
NASA Astrophysics Data System (ADS)
Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.
2009-08-01
Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, significantly improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites are positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget is partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicates that spring warming enhances the carbon sink, whereas summer warming decreases it across the larch forests. The summer radiation is the most important factor that controls the carbon fluxes in the temperate site, but the VPD and water conditions are the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between aboveground and belowground, is site-specific, and it is negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study significantly improves the model performance, the uncertainties that remain in terms of the sensitivity to water conditions should be examined in ongoing and long-term observations.
NASA Astrophysics Data System (ADS)
Goll, D. S.; Vuichard, N.; Maignan, F.; Jornet-Puig, A.; Sardans, J.; Peng, S.; Sun, Y.; Kvakić, M.; Guimberteau, M.; Guenet, B.; Zaehle, S.; Penuelas, J.; Jannssens, I.; Ciais, P.
2017-12-01
Land surface models rarely incorporate the terrestrial phosphorus cycle and its interactions with the carbon cycle, despite the extensive scientific debate about the importance of nitrogen and phosphorus supply for future land carbon uptake. We describe a representation of the terrestrial phosphorus cycle for the land surface model ORCHIDEE, and evaluate it with data from nutrient manipulation experiments along a soil formation chronosequence in Hawaii. ORCHIDEE accounts for influence of nutritional state of vegetation on tissue nutrient concentrations, photosynthesis, plant growth, biomass allocation, biochemical (phosphatase-mediated) mineralization and biological nitrogen fixation. Changes in nutrient content (quality) of litter affect the carbon use efficiency of decomposition and in return the nutrient availability to vegetation. The model explicitly accounts for root zone depletion of phosphorus as a function of root phosphorus uptake and phosphorus transport from soil to the root surface. The model captures the observed differences in the foliage stoichiometry of vegetation between an early (300yr) and a late stage (4.1 Myr) of soil development. The contrasting sensitivities of net primary productivity to the addition of either nitrogen, phosphorus or both among sites are in general reproduced by the model. As observed, the model simulates a preferential stimulation of leaf level productivity when nitrogen stress is alleviated, while leaf level productivity and leaf area index are stimulated equally when phosphorus stress is alleviated. The nutrient use efficiencies in the model are lower as observed primarily due to biases in the nutrient content and turnover of woody biomass.
Allocation of Talent in Society and Its Effect on Economic Development
ERIC Educational Resources Information Center
Strenze, Tarmo
2013-01-01
Several studies in psychology and economics have demonstrated that the average cognitive ability (talent) of people living in a society affects the economic development of the society. There is, however, reason to expect that the economic development of societies depends not just on the average level of talent but also on the allocation of talent…
Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review
NASA Astrophysics Data System (ADS)
Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S. G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschütz, J.; Gavrichkova, O.; Ghashghaie, J.; Gomez-Casanovas, N.; Keitel, C.; Knohl, A.; Kuptz, D.; Palacio, S.; Salmon, Y.; Uchida, Y.; Bahn, M.
2011-04-01
The terrestrial carbon (C) cycle has received increasing interest over the past few decades, however, there is still a lack of understanding of the fate of newly assimilated C allocated within plants and to the soil, stored within ecosystems and lost to the atmosphere. Stable carbon isotope studies can give novel insights into these issues. In this review we provide an overview of an emerging picture of plant-soil-atmosphere C fluxes, as based on C isotope studies, and identify processes determining related C isotope signatures. The first part of the review focuses on isotopic fractionation processes within plants during and after photosynthesis. The second major part elaborates on plant-internal and plant-rhizosphere C allocation patterns at different time scales (diel, seasonal, interannual), including the speed of C transfer and time lags in the coupling of assimilation and respiration, as well as the magnitude and controls of plant-soil C allocation and respiratory fluxes. Plant responses to changing environmental conditions, the functional relationship between the physiological and phenological status of plants and C transfer, and interactions between C, water and nutrient dynamics are discussed. The role of the C counterflow from the rhizosphere to the aboveground parts of the plants, e.g. via CO2 dissolved in the xylem water or as xylem-transported sugars, is highlighted. The third part is centered around belowground C turnover, focusing especially on above- and belowground litter inputs, soil organic matter formation and turnover, production and loss of dissolved organic C, soil respiration and CO2 fixation by soil microbes. Furthermore, plant controls on microbial communities and activity via exudates and litter production as well as microbial community effects on C mineralization are reviewed. The last part of the paper is dedicated to physical interactions between soil CO2 and the soil matrix, such as CO2 diffusion and dissolution processes within the soil profile. From the presented evidence we conclude that there exists a tight coupling of physical, chemical and biological processes involved in C cycling and C isotope fluxes in the plant-soil-atmosphere system. Generally, research using information from C isotopes allows an integrated view of the different processes involved. However, complex interactions among the range of processes complicate or impede the interpretation of isotopic signals in CO2 or organic compounds at the plant and ecosystem level. This is where new research approaches should be aimed at.
NASA Astrophysics Data System (ADS)
Reyes, J. J.; Liu, M.; Tague, C.; Choate, J. S.; Evans, R. D.; Johnson, K. A.; Adam, J. C.
2013-12-01
Rangelands provide an opportunity to investigate the coupled feedbacks between human activities and natural ecosystems. These areas comprise at least one-third of the Earth's surface and provide ecological support for birds, insects, wildlife and agricultural animals including grazing lands for livestock. Capturing the interactions among water, carbon, and nitrogen cycles within the context of regional scale patterns of climate and management is important to understand interactions, responses, and feedbacks between rangeland systems and humans, as well as provide relevant information to stakeholders and policymakers. The overarching objective of this research is to understand the full consequences, intended and unintended, of human activities and climate over time in rangelands by incorporating dynamics related to rangeland management into an eco-hydrologic model that also incorporates biogeochemical and soil processes. Here we evaluate our model over ungrazed and grazed sites for different rangeland ecosystems. The Regional Hydro-ecologic Simulation System (RHESSys) is a process-based, watershed-scale model that couples water with carbon and nitrogen cycles. Climate, soil, vegetation, and management effects within the watershed are represented in a nested landscape hierarchy to account for heterogeneity and the lateral movement of water and nutrients. We incorporated a daily time-series of plant biomass loss from rangeland to represent grazing. The TRY Plant Trait Database was used to parameterize genera of shrubs and grasses in different rangeland types, such as tallgrass prairie, Intermountain West cold desert, and shortgrass steppe. In addition, other model parameters captured the reallocation of carbon and nutrients after grass defoliation. Initial simulations were conducted at the Curlew Valley site in northern Utah, a former International Geosphere-Biosphere Programme Desert Biome site. We found that grasses were most sensitive to model parameters affecting the daily-to-yearly ratio of net primary productivity allocation of carbon, non-structural carbohydrate pool, rate of root turnover, and leaf on/off days. We also ran RHESSys over AmeriFlux sites representing a spectrum of rangeland ecosystems, such as at Konza Prairie (Kansas), Fort Peck (Montana), and Corral Pocket (Utah), as well as grazed versus ungrazed sites. We evaluated RHESSys using net ecosystem exchange . Competition between rangeland vegetation types with different physiological parameters, such as carbon:nitrogen ratio and specific leaf area within a single site were also tested. Preliminary results indicated both species-specific parameters and allocation controls were important to capturing the ecosystem response to environmental conditions. Furthermore, the addition of a grazing component allowed us to better capture impacts of management at grazed sites. Future research will involve incorporation of other grazing processes, such as impacts of excreta and increased nutrient availability and cycling.
Collective credit allocation in science
Shen, Hua-Wei; Barabási, Albert-László
2014-01-01
Collaboration among researchers is an essential component of the modern scientific enterprise, playing a particularly important role in multidisciplinary research. However, we continue to wrestle with allocating credit to the coauthors of publications with multiple authors, because the relative contribution of each author is difficult to determine. At the same time, the scientific community runs an informal field-dependent credit allocation process that assigns credit in a collective fashion to each work. Here we develop a credit allocation algorithm that captures the coauthors’ contribution to a publication as perceived by the scientific community, reproducing the informal collective credit allocation of science. We validate the method by identifying the authors of Nobel-winning papers that are credited for the discovery, independent of their positions in the author list. The method can also compare the relative impact of researchers working in the same field, even if they did not publish together. The ability to accurately measure the relative credit of researchers could affect many aspects of credit allocation in science, potentially impacting hiring, funding, and promotion decisions. PMID:25114238
[Ozone effects on soil microbial community of rice investigated by 13C isotope labeling].
Chen, Zhan; Wang, Xiao-Ke; Shang, He
2014-10-01
This study was initiated to explore the effects of dynamic ozone (O3) exposure on soil microbial biomass and phospholipid fatty acids (PLFAs) under potted rice. A pulse-chase labeling experiment was designed to expose potted rice with 13CO2 for 6 h after one and two months, the rice were fumigated by elevated O3 concentration with an 8 h mean of 110 nL · L(-1) (O3). The allocation of the assimilated 13C to soil microorganisms was estimated by analyzing the 13C profile of microbial phospholipid fatty acids (PLFAs). After one month O3 exposure, the soil microbial biomass carbon was not affected, while the 13C-microbial biomass was significantly decreased with elevated O3. Both the total and 13C microbial biomass carbon was remarkably lower than that of control treatment after two months O3 exposure. Principal components analysis of 13C-PLFA data showed that elevated O3 significantly changed soil microbial structure after two month exposures, while there was no difference of 13C-PLFA structure between control and elevated O3 treatments after one month exposure. Δδ13C per hundred thousand of individual PLFA was significantly affected by O3 after both one and two month exposures. Only did ozone change the relative abundance of individual 13C-PLFA (13C%) of bacterial fatty acids after one month exposure, while after two month exposures, the 13C% of fungal and actinomycetic fatty acids were markedly changed by elevated O3.
Perdomo, Juan Alejandro; Conesa, Miquel À; Medrano, Hipólito; Ribas-Carbó, Miquel; Galmés, Jeroni
2015-10-01
This study evaluates the long-term individual and combined effects of high temperature (HT) and water deficit (WD) stress on plant growth, leaf gas-exchange and water use efficiency in cultivars of the three most important crops worldwide, rice, wheat and maize. Total plant biomass (B t ) accumulation decreased under all treatments, being the combined HT-WD treatment the most detrimental in all three species. Although decreases in B t correlated with adjustments in biomass allocation patterns (i.e. the leaf area ratio), most of the variation observed in B t was explained by changes in leaf gas exchange parameters. Thus, integrated values of leaf carbon balance obtained from daily course measurements of photosynthesis and respiration were better predictors of plant growth than the instantaneous measurements of leaf gas exchange. Leaf water use efficiency, assessed both by gas exchange and carbon isotope measurements, was negatively correlated with B t under WD, but not under the combined WD and HT treatment. A comparative analysis of the negative effects of single and combined stresses on the main parameters showed an additive component for WD and HT in rice and maize, in contrast to wheat. Overall, the results of the specific cultivars included in the study suggest that the species native climate plays a role shaping the species acclimation potential to the applied stresses. In this regard, wheat, originated in a cold climate, was the most affected species, which foretells a higher affectation of this crop due to climate change. © 2014 Scandinavian Plant Physiology Society.
The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests.
Malhi, Yadvinder; Doughty, Christopher E; Goldsmith, Gregory R; Metcalfe, Daniel B; Girardin, Cécile A J; Marthews, Toby R; Del Aguila-Pasquel, Jhon; Aragão, Luiz E O C; Araujo-Murakami, Alejandro; Brando, Paulo; da Costa, Antonio C L; Silva-Espejo, Javier E; Farfán Amézquita, Filio; Galbraith, David R; Quesada, Carlos A; Rocha, Wanderley; Salinas-Revilla, Norma; Silvério, Divino; Meir, Patrick; Phillips, Oliver L
2015-06-01
Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling. © 2015 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten, Charles T.; Brice, Deanne J.; Castro, Hector F.
2011-01-01
Switchgrass (Panicum virgatum) is a perennial, warm-season grass that has been identified as a potential biofuel feedstock over a large part of North America. We examined above- and belowground responses to nitrogen fertilization in “Alamo” switchgrass grown in West Tennessee, USA. The fertilizer study included a spring and fall sampling of 5-year old switchgrass grown under annual applications of 0, 67, and 202 kg N ha -1 (as ammonium nitrate). Fertilization changed switchgrass biomass allocation as indicated by root:shoot ratios. End-of-growing season root:shoot ratios (mean ± SE) declined significantly (P ≤ 0.05) at the highest fertilizer nitrogen treatment (2.16 ±more » 0.08, 2.02 ± 0.18, and 0.88 ± 0.14, respectively, at 0, 67, and 202 kg N ha -1). Fertilization also significantly increased above- and belowground nitrogen concentrations and decreased plant C:N ratios. Data are presented for coarse live roots, fine live roots, coarse dead roots, fine dead roots, and rhizomes. At the end of the growing season, there was more carbon and nitrogen stored in belowground biomass than aboveground biomass. Finally, fertilization impacted switchgrass tissue chemistry and biomass allocation in ways that potentially impact soil carbon cycle processes and soil carbon storage.« less
Modeling nonstructural carbohydrate reserve dynamics in forest trees
NASA Astrophysics Data System (ADS)
Richardson, Andrew; Keenan, Trevor; Carbone, Mariah; Pederson, Neil
2013-04-01
Understanding the factors influencing the availability of nonstructural carbohydrate (NSC) reserves is essential for predicting the resilience of forests to climate change and environmental stress. However, carbon allocation processes remain poorly understood and many models either ignore NSC reserves, or use simple and untested representations of NSC allocation and pool dynamics. Using model-data fusion techniques, we combined a parsimonious model of forest ecosystem carbon cycling with novel field sampling and laboratory analyses of NSCs. Simulations were conducted for an evergreen conifer forest and a deciduous broadleaf forest in New England. We used radiocarbon methods based on the 14C "bomb spike" to estimate the age of NSC reserves, and used this to constrain the mean residence time of modeled NSCs. We used additional data, including tower-measured fluxes of CO2, soil and biomass carbon stocks, woody biomass increment, and leaf area index and litterfall, to further constrain the model's parameters and initial conditions. Incorporation of fast- and slow-cycling NSC pools improved the ability of the model to reproduce the measured interannual variability in woody biomass increment. We show how model performance varies according to model structure and total pool size, and we use novel diagnostic criteria, based on autocorrelation statistics of annual biomass growth, to evaluate the model's ability to correctly represent lags and memory effects.
NASA Astrophysics Data System (ADS)
Körner, Christian
2014-05-01
Since the discovery that plants 'eat air' 215 years ago, carbon supply was considered the largely unquestioned top driver of plant growth. The ease at which CO2 uptake (C source activity) can be measured, and the elegant algorithms that describe the responses of photosynthesis to light, temperature and CO2 concentration, explain why carbon driven growth and productivity became the starting point of all process based vegetation models. Most of these models, nowadays adopt other environmental drivers, such as nutrient availability, as modulating co-controls, but the carbon priority is retained. Yet, if we believe in the basic rules of stoichometry of all life, there is an inevitable need of 25-30 elements other then carbon, oxygen and hydrogen to build a healthy plant body. Plants compete for most of these elements, and their availability (except for N) is finite per unit land area. Hence, by pure plausibility, it is a highly unlikely situation that carbon plays the rate limiting role of growth under natural conditions, except in deep shade or on exceptionally fertile soils. Furthermore, water shortage and low temperature, both act directly upon tissue formation (meristems) long before photosynthetic limitations come into play. Hence, plants will incorporate C only to the extent other environmental drivers permit. In the case of nutrients and mature ecosystems, this sink control of plant growth may be masked in the short term by a tight, almost closed nutrient cycle or by widening the C to other element ratio. Because source and sink activity must match in the long term, it is not possible to identify the hierarchy of growth controls without manipulating the environment. Dry matter allocation to C rich structures and reserves may provide some stoichimetric leeway or periodic escapes from the more fundamental, long-term environmental controls of growth and productivity. I will explain why carbon centric explanations of growth are limited or arrive at plausible answers for the wrong reason. Suggested reading: Fatichi, Leuzinger, Körner (2013) Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytologist. Körner C (2013) Growth controls photosynthesis - mostly. Nova Acta Leopoldina 391:273-283.
Optimal allocation of leaf epidermal area for gas exchange.
de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J
2016-06-01
A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.
Zhuang, Minghao; Lam, Shu Kee; Li, Yingchun; Chen, Shuanglin
2017-01-15
The increase in tropospheric ozone (O 3 ) affects plant physiology and ecosystem processes, and consequently the cycle of nutrients. While mineral nutrients are critical for plant growth, the effect of elevated tropospheric O 3 concentration on the uptake and allocation of mineral nutrients by plants is not well understood. Using open top chambers (OTCs), we investigated the effect of elevated O 3 on calcium (Ca), magnesium (Mg) and iron (Fe) in mature bamboo species Phyllostachys edulis and Oligostachyum lubricum. Our results showed that elevated O 3 decreased the leaf biomass of P. edulis and O. lubricum by 35.1% and 26.7%, respectively, but had no significant effect on the biomass of branches, stem or root. For P. edulis, elevated O 3 increased the nutrient (Ca, Mg and Fe) concentration and allocation in leaf but reduced the concentration in other organs. In contrast, elevated O 3 increased the nutrient concentration and allocation in the branch of O. lubricum but decreased that of other organs. We also found that that P. edulis and O. lubricum responded differently to elevated O 3 in terms of nutrient (Ca, Mg and Fe) uptake and allocation. This information is critical for nutrient management and adaptation strategies for sustainable growth of P. edulis and O. lubricum under global climate change. Copyright © 2016 Elsevier B.V. All rights reserved.
Hereford, R.; Webb, R.H.; Longpre, C.I.
2006-01-01
Precipitation varied substantially in the Mojave Desert through the 20th century in a manner broadly similar to the other warm North American deserts. Episodes of drought and prolonged dry conditions (1893-1904, ca. 1942-1975, and 1999-present) alternated with relatively wet periods (1905-ca. 1941 and ca. 1976-1998), probably because of global-scale climate fluctuations. These are the El Nin??o-Southern Oscillation that affects interannual climate and the Pacific Decadal Oscillation that evidently causes decadal-scale variability such as prolonged dry and wet episodes. Studies done in the late 20th century demonstrate that precipitation fluctuations affected populations of perennial vegetation, annuals, and small herbivores. Landscape rephotography reveals that several species, particularly creosote bush, increased in size and density during the ca. 1976-1998 wet period. A brief, intense drought from 1989 to 1991 and the ongoing drought caused widespread mortality of certain species; for example, chenopods and perennial grasses suffered up to 100% mortality. Drought pruning, the shedding of above-ground biomass to reduce carbon allocation, increased substantially during drought. Overall, drought had the greatest influence on the Mojave Desert ecosystem. ?? 2006.
Carbon and nitrogen dynamics across a bedrock-regulated subarctic pH gradient
NASA Astrophysics Data System (ADS)
Tomczyk, N.; Heim, E. W.; Sadowsky, J.; Remiszewski, K.; Varner, R. K.; Bryce, J. G.; Frey, S. D.
2014-12-01
Bedrock geochemistry has been shown to influence landscape evolution due to nutrient limitation on primary production. There may also be less direct interactions between bedrock-derived chemicals and ecosystem function. Effects of calcium (Ca) and pH on soil carbon (C) and nitrogen (N) cycling have been shown in acid impacted forests o f North America. Understanding intrinsic factors that affect C and nutrient dynamics in subarctic ecosystems has implications for how these ecosystems will respond to a changing climate. How the soil microbial community allocates enzymes to acquire resources from the environment can indicate whether a system is nutrient or energy limited. This study examined whether bedrock geochemistry exerts pressure on nutrient cycles in the overlying soils. In thin, weakly developed soils, bedrock is the primary mineral material and is a source of vital nutrients. Nitrogen (N) and C are not derived from bedrock, but their cycling is still affected by reactions with geologically-derived chemicals. Our study sites near Abisko, Sweden (~68°N) were selected adjacent to five distinct bedrock outcrops (quartzite, slate, carbonate, and two different metasedimenty units). All sites were at a similar elevation (~700 m a.s.l.) and had similar vegetation (subarctic heath). Nutrient concentrations in bedrock and soils were measured in addition to soil microbial biomass and extracellular enzyme activity. We found a statistically significant correlation between soil Ca concentrations and soil pH (r = 0.88, p < 0.01). There were also significant relationships between soil pH and the ratio of C-acquiring to N-acquiring enzyme activity (r = -0.89, p < 0.01), soil pH and soil C-to-N ratio (r = -0.76, p < 0.01), and the ratio of C-acquiring to N-acquiring enzyme activity and soil C-to-N ratio (r = 0.78, p < 0.01). These results suggest that soil Ca concentrations influence C and N cycling dynamics in these soils through their effect on soil pH.
USDA-ARS?s Scientific Manuscript database
The importance of rhizodeposit C and associated microbial communities in deep soil C stabilization is relatively unknown. Phenotypic variability in plant root biomass could impact C cycling through belowground plant allocation, rooting architecture, and microbial community abundance and composition...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-09
...: Allocation of State Land Regional Incentive Scheme: Interest Support OIZ: Waste Water Charges [[Page 21109... customs purposes, the written description of the merchandise is dispositive. Methodology The Department... regarding specificity. For a full description of the methodology underlying our conclusions, please see...
Ozone exposure decreases belowground carbon allocation and root growth of plants;however,the extent to which these effects persist and the cumulative impact of ozone stress on plant growth are poorly understood.To evaluate the potential for plant compensation,we followed the prog...
SOURCE-SINK BALANCE AND CARBON ALLOCATION BELOW GROUND IN PLANTS EXPOSED TO OZONE
The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications and dozens of reviews over the last several decades. There is still limited understanding, however, regarding the possible effects of ozone on soil processes...
SOURCE-SINK BALANCE AND CARBON ALLOCATION BELOW GROUND IN PLANTS EXPOSED TO OZONE
The role of tropospheric ozone in altering plant growth and development has been the subject of thousands of publications over the last several decades. Still, there is limited understanding regarding the possible effects of ozone on soil processes. In this review, the effects ...
CARBON AND NITROGEN ALLOCATION MODEL FOR THE SEAGRASS THALASSIA TESTUDUNUM IN LOWER LAGUNA MADRE
Inverse modeling methods are a powerful tool for understanding complex physiological relationships between seagrasses and their environment. The power of the method is a result of using ranges of data in a system of constraints to describe the biological system, in this case, t...
NASA Astrophysics Data System (ADS)
de Boer, Hugo J.; van der Laan, Annick; Dekker, Stefan C.; Holzinger, Rupert
2016-04-01
Isoprene (C5H8) is produced in plant leaves as a side product of photosynthesis, whereby approximately 0.1-2.0% of the photosynthetic carbon uptake is released back into the atmosphere via isoprene emissions. Isoprene biosynthesis is thought to alleviate oxidative stress, specifically in warm, dry and high-light environments. Moreover, isoprene biosynthesis is influenced by atmospheric CO2 concentrations in the short term (
Bloemen, Jasper; McGuire, Mary Anne; Aubrey, Doug P; Teskey, Robert O; Steppe, Kathy
2013-01-01
Upward transport of CO₂ via the transpiration stream from belowground to aboveground tissues occurs in tree stems. Despite potentially important implications for our understanding of plant physiology, the fate of internally transported CO₂ derived from autotrophic respiratory processes remains unclear. We infused a ¹³CO₂-labeled aqueous solution into the base of 7-yr-old field-grown eastern cottonwood (Populus deltoides) trees to investigate the effect of xylem-transported CO₂ derived from the root system on aboveground carbon assimilation and CO₂ efflux. The ¹³C label was transported internally and detected throughout the tree. Up to 17% of the infused label was assimilated, while the remainder diffused to the atmosphere via stem and branch efflux. The largest amount of assimilated ¹³C was found in branch woody tissues, while only a small quantity was assimilated in the foliage. Petioles were more highly enriched in ¹³C than other leaf tissues. Our results confirm a recycling pathway for respired CO₂ and indicate that internal transport of CO₂ from the root system may confound the interpretation of efflux-based estimates of woody tissue respiration and patterns of carbohydrate allocation. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species
NASA Astrophysics Data System (ADS)
Ow, Y. X.; Vogel, N.; Collier, C. J.; Holtum, J. A. M.; Flores, F.; Uthicke, S.
2016-03-01
Seagrasses are often considered “winners” of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3-). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions.
Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species.
Ow, Y X; Vogel, N; Collier, C J; Holtum, J A M; Flores, F; Uthicke, S
2016-03-15
Seagrasses are often considered "winners" of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3(-)). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions.
Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species
Ow, Y. X.; Vogel, N.; Collier, C. J.; Holtum, J. A. M.; Flores, F.; Uthicke, S.
2016-01-01
Seagrasses are often considered “winners” of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3−). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions. PMID:26976685
Hydrogen production from carbonaceous material
Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.
2004-09-14
Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.
Regulating nutrient allocation in plants
Udvardi, Michael; Yang, Jiading; Worley, Eric
2014-12-09
The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.
Eric J. Gustafson; Thomas R. Crow
1994-01-01
Timber harvesting affects both composition and structure of the landscape and has important consequences for organisms using forest habitats. A timber harvest allocation model was constructed that allows the input of specific rules to allocate forest stands for clearcutting to generate landscape patterns reflecting the "look and feel" of managed landscapes....
Mohsenpour, Seyed Ramezan; Arab, Mohammad; Razavi, Seyed Hasan Emami; Sari, Ali Akbari
2017-01-01
Background Awareness about the process of law making and the factors that affect the legislative process have an important role in improving legislations that are approved by parliaments. Objective This study aimed to explore and analyze the process of development and enactment of law in Iran’s parliament, and factors that might affect the enactment of laws that are related to the allocation and distribution of health sector resources in Iran. Methods In this case study, data were collected through review of literature and national documents, and experts’ interviews. Interviews were performed with selected members of parliament (MPs), ex members of parliament and professionals from the Ministry of Health and Medical Education (MOHME) (15 persons). MAX QDA 10 was used for coding and constructing themes. Data were analyzed in five steps (familiarization, developing a conceptual framework, coding, indexing, and interpretation) using a content analysis with inductive and deductive approaches. Results The main factors that could affect the approval and enactment of legislations related to allocation of healthcare resources in the Iranian parliament were categorized in seven themes including: Importance of issue, resource availability, legislator’s awareness about the topic, lobbying and unofficial relations with influential officials, mentioning strong reasons by MOHME, weakness of previous laws, and positive feedback related to the same laws. Conclusion Although the process of law making in parliament, and implementation of them in health organizations have legal stages, the study showed that several key factors affect this trend. In fact, it is suggested the health policy makers and MPs consider extending a range of factors to improve the process of law making and the efficiency of legislation related to allocation of healthcare resources. PMID:29238478
Dossett, D; Burns, B
2000-06-01
Developmental changes in kindergarten, 1st-, and 4th-grade children's knowledge about the variables that affect attention sharing and resource allocation were examined. Findings from the 2 experiments showed that kindergartners understood that person and strategy variables affect performance in attention-sharing tasks. However, knowledge of how task variables affect performance was not evident to them and was inconsistent for 1st and 4th graders. Children's knowledge about resource allocation revealed a different pattern and varied according to the dissimilarity of task demands in the attention-sharing task. In Experiment 1, in which the dual attention tasks were similar (i.e., visual detection), kindergarten and 1st-grade children did not differentiate performance in single and dual tasks. Fourth graders demonstrated knowledge that performance on a single task would be better than performance on the dual tasks for only 2 of the variables examined. In Experiment 2, in which the dual attention tasks were dissimilar (i.e., visual and auditory detection), kindergarten and 1st-grade children demonstrated knowledge that performance in the single task would be better than in the dual tasks for 1 of the task variables examined. However, 4th-grade children consistently gave higher ratings for performance on the single than on the dual attention tasks for all variables examined. These findings (a) underscore that children's meta-attention is not unitary and (b) demonstrate that children's knowledge about variables affecting attention sharing and resource allocation have different developmental pathways. Results show that knowledge about attention sharing and about the factors that influence the control of attention develops slowly and undergoes reorganization in middle childhood.
Mohsenpour, Seyed Ramezan; Arab, Mohammad; Razavi, Seyed Hasan Emami; Sari, Ali Akbari
2017-10-01
Awareness about the process of law making and the factors that affect the legislative process have an important role in improving legislations that are approved by parliaments. This study aimed to explore and analyze the process of development and enactment of law in Iran's parliament, and factors that might affect the enactment of laws that are related to the allocation and distribution of health sector resources in Iran. In this case study, data were collected through review of literature and national documents, and experts' interviews. Interviews were performed with selected members of parliament (MPs), ex members of parliament and professionals from the Ministry of Health and Medical Education (MOHME) (15 persons). MAX QDA 10 was used for coding and constructing themes. Data were analyzed in five steps (familiarization, developing a conceptual framework, coding, indexing, and interpretation) using a content analysis with inductive and deductive approaches. The main factors that could affect the approval and enactment of legislations related to allocation of healthcare resources in the Iranian parliament were categorized in seven themes including: Importance of issue, resource availability, legislator's awareness about the topic, lobbying and unofficial relations with influential officials, mentioning strong reasons by MOHME, weakness of previous laws, and positive feedback related to the same laws. Although the process of law making in parliament, and implementation of them in health organizations have legal stages, the study showed that several key factors affect this trend. In fact, it is suggested the health policy makers and MPs consider extending a range of factors to improve the process of law making and the efficiency of legislation related to allocation of healthcare resources.
Sperm competition games when males invest in paternal care.
Requena, Gustavo S; Alonzo, Suzanne H
2017-08-16
Sperm competition games investigate how males partition limited resources between pre- and post-copulatory competition. Although extensive research has explored how various aspects of mating systems affect this allocation, male allocation between mating, fertilization and parental effort has not previously been considered. Yet, paternal care can be energetically expensive and males are generally predicted to adjust their parental effort in response to expected paternity. Here, we incorporate parental effort into sperm competition games, particularly exploring how the relationship between paternal care and offspring survival affects sperm competition and the relationship between paternity and paternal care. Our results support existing expectations that (i) fertilization effort should increase with female promiscuity and (ii) paternal care should increase with expected paternity. However, our analyses also reveal that the cost of male care can drive the strength of these patterns. When paternal behaviour is energetically costly, increased allocation to parental effort constrains allocation to fertilization effort. As paternal care becomes less costly, the association between paternity and paternal care weakens and may even be absent. By explicitly considering variation in sperm competition and the cost of male care, our model provides an integrative framework for predicting the interaction between paternal care and patterns of paternity. © 2017 The Author(s).
Sinclair, Shane; Hagen, Neil A; Chambers, Carole; Manns, Braden; Simon, Anita; Browman, George P
2008-05-01
Drug decision-makers are involved in developing and implementing policy, procedure and processes to support health resource allocation regarding drug treatment formularies. A variety of approaches to decision-making, including formal decision-making frameworks, have been developed to support transparent and fair priority setting. Recently, a decision tool, 'The 6-STEPPPs Tool', was developed to assist in making decisions about new cancer drugs within the public health care system. We conducted a qualitative study, utilizing focus groups and participant observation, in order to investigate the internal frameworks that supported and challenged individual participants as they applied this decision tool within a multi-stakeholder decision process. We discovered that health care resource allocation engaged not only the minds of decision-makers but profoundly called on the often conflicting values of the heart. Objective decision-making frameworks for new drug therapies need to consider the subjective internal frameworks of decision-makers that affect decisions. Understanding the very human, internal turmoil experienced by individuals involved in health care resource allocation, sheds additional insight into how to account for reasonableness and how to better support difficult decisions through transparent, values-based resource allocation policy, procedures and processes.
NASA Astrophysics Data System (ADS)
Splettstößer, T.; Pausch, J.
2016-12-01
Plant induced increase of soil organic matter turnover rates contribute to carbon emissions in agricultural land use systems. In order to better understand these rhizosphere priming effects, we conducted an experiment, which enabled us to monitor CO2 fluxes under zea mays plants with high resolution. The experiment was conducted in a climate chamber where the plants were grown in thin, tightly sealed boxes for 40 days and CO2 efflux from soil was measured twice a day. 13C-CO2 was introduced to allow differentiation between plant and soil derived CO2.This enabled us to monitor root respiration and soil organic matter turnover in the early stages of plant growth and to highlight changes in soil CO2 emissions and priming effects between day and night. The measurements were conducted with a PICARRO G2131-I δ13C high-precision isotopic CO2 Analyzer (PICARRO INC.) utilizing an automated valve system governed by a CR1000 data logger (Campbell Scientific). After harvest roots and shoots were analyzed for 13C content. Microbial biomass, root length density and enzymatic activities in soil were measured and linked to soil organic matter turnover rates. In order to visualize the spatial distribution of carbon allocation to the root system a few plants were additionally labeled with 14C and 14C distribution was monitored by 14C imaging of the root systems over 4 days. Based on the 14C distribution a grid was chosen and the soil was sampled from each square of the grid to investigate the impact of carbon allocation hotspots on enzymatic activities and microbial biomass. First initial results show an increase of soil CO2 efflux in the night periods, whereby the contribution of priming is not fully analyzed yet. Additionally, root tips were identified as hotspots of short term carbon allocation via 14C imaging and an in increase in microbial biomass could be measured in this regions. The full results will be shown at AGU 2016.
Dynamic Interaction between Cap & Trade and Electricity Markets
NASA Astrophysics Data System (ADS)
Jeev, Kumar
Greenhouse Gases (GHG), such as Carbon-Dioxide (CO2), which is released in the atmosphere due to anthropogenic activities like power production, are now accepted as the main culprits for global warming. The Regional Greenhouse Gas Initiative (RGGI), an initiative of the North East and Mid-Atlantic States of the United States (US) for limiting the emission of GHG, has developed a regional cap-and-trade program for CO2 emissions for power plants. Existing cap-and-trade programs in US and Europe for Greenhouse Gases have recently been plagued by over-allocation. Carbon prices recently collapsed in all these markets during the global recession. Since then, there have been significant policy changes, which have resulted in the adoption of aggressive emission cap targets by most major carbon emission markets. This is expected to make carbon emissions availability more restrictive, raising the prices of these credits. These emissions markets are expected to have a major impact on the wholesale electricity markets. Two models to study the interaction of these two markets are presented. These models assess the impact of the emissions market on wholesale electricity prices. The first model characterizes the competition between two types of power plants (coal and gas) in both the electricity and emissions markets as a dynamic game using the Cournot approximation. Under this approximation, we find that in the Nash equilibrium the plants increase their permit allocation to high-demand periods and the marginal value of each credit for a plant is identical in all periods under their optimal equilibrium strategy. The second numerical model allows us to explicitly evaluate the closed loop equilibrium of the dynamic interaction of two competitors in these markets. We find that plants often try to corner the market and push prices all the way to the price cap. Power plants derive most of their profits from these extreme price regimes. In the experiments where trading is allowed, plants can collude to keep prices at the price cap. These problems can be averted by careful allocation of credits and strong regulation to deter market manipulation.
Flowering and biomass allocation in U.S. Atlantic coast Spartina alterniflora.
Crosby, Sarah C; Ivens-Duran, Morgan; Bertness, Mark D; Davey, Earl; Deegan, Linda A; Leslie, Heather M
2015-05-01
Salt marshes are highly productive and valuable ecosystems, providing many services on which people depend. Spartina alterniflora Loisel (Poaceae) is a foundation species that builds and maintains salt marshes. Despite this species' importance, much of its basic reproductive biology is not well understood, including flowering phenology, seed production, and the effects of flowering on growth and biomass allocation. We sought to better understand these life history traits and use that knowledge to consider how this species may be affected by climate change. We examined temporal and spatial patterns in flowering and seed production in S. alterniflora at a latitudinal scale (along the U.S. Atlantic coast), regional scale (within New England), and local scale (among subhabitats within marshes) and determined the impact of flowering on growth allocation using field and greenhouse studies. Flowering stem density did not vary along a latitudinal gradient, while at the local scale plants in the less submerged panne subhabitats produced fewer flowers and seeds than those in more frequently submerged subhabitats. We also found that a shift in biomass allocation from above to belowground was temporally related to flowering phenology. We expect that environmental change will affect seed production and that the phenological relationship with flowering will result in limitations to belowground production and thus affect marsh elevation gain. Salt marshes provide an excellent model system for exploring the interactions between plant ecology and ecosystem functioning, enabling better predictions of climate change impacts. © 2015 Botanical Society of America, Inc.
Does Rural Residence Affect Access to Prenatal Care in Oregon?
ERIC Educational Resources Information Center
Epstein, Beth; Grant, Therese; Schiff, Melissa; Kasehagen, Laurin
2009-01-01
Context: Identifying how maternal residential location affects late initiation of prenatal care is important for policy planning and allocation of resources for intervention. Purpose: To determine how rural residence and other social and demographic characteristics affect late initiation of prenatal care, and how residence status is associated…
Three-Year-Olds Express Suspense when an Agent Approaches a Scene with a False Belief
ERIC Educational Resources Information Center
Moll, Henrike; Kane, Sarah; McGowan, Luke
2016-01-01
Research on early false belief understanding has entirely relied on affect-neutral measures such as judgments (standard tasks), attentional allocation (looking duration, preferential looking, anticipatory looking), or active intervention. We used a novel, affective measure to test whether preschoolers affectively anticipate another's misguided…
Changes in tree functional composition amplify the response of forest biomass to climate variability
NASA Astrophysics Data System (ADS)
Lichstein, Jeremy; Zhang, Tao; Niinemets, Ulo; Sheffield, Justin
2017-04-01
The response of forest carbon storage to climate change is highly uncertain, contributing substantially to the divergence among global climate model projections. Numerous studies have documented responses of forest ecosystems to climate change and variability, including drought-induced increases in tree mortality rates. However, the sensitivity of forests to climate variability - in terms of both biomass carbon storage and functional components of tree species composition - has yet to be quantified across a large region using systematically sampled data. Here, we combine systematic forest inventories across the eastern USA with a species-level drought-tolerance index, derived from a meta-analysis of published literature, to quantify changes in forest biomass and community-mean-drought-tolerance in one-degree grid cells from the 1980s to 2000s. We show that forest biomass responds to decadal-scale changes in water deficit and that this biomass response is amplified by concurrent changes in community-mean-drought-tolerance. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards more drought-tolerant but lower-biomass species. Multiple plant functional traits are correlated with the above species-level drought-tolerance index, and likely contribute to the decrease in biomass with increasing drought-tolerance. These traits include wood density and P50 (the xylem water potential at which a plant loses 50% of its hydraulic conductivity). Simulations with a trait- and competition-based dynamic global vegetation model suggest that species differences in plant carbon allocation to wood, leaves, and fine roots also likely contribute to the observed decrease in biomass with increasing drought-tolerance, because competition drives plants to over-invest in fine roots when water is limiting. Thus, the most competitive species under dry conditions have greater root allocation but lower total biomass than productivity-maximizing plants. Amplification of the biomass-climate response due to shifts in species functional composition (temporal beta diversity) contrasts with evidence that local (alpha) diversity increases ecosystem stability, including increased resistance to climate extremes. These contrasting effects of alpha and beta diversity highlight the need to better understand how different components of biodiversity, including changes in the functional traits of the dominant plant species, affect ecosystem functioning.
[Eco-economic thinking for developing carbon sink industry in the de-farming regions].
Wang, Ji Jun; Wang, Zheng Shu; Cheng, Si Min; Gu, Wen; Li, Yue; Li, Mao Sen
2017-12-01
Based on the potential and the law that plants absorb carbon dioxide, carbon sink industry means certain appropriate artificial intervention to obtain clean air, and to meet people's production and life demand for ecological environment industry. Carbon sink industry is considered as a breakthrough point and a new growth point for optimizing and upgrading of the original relatively balanced or stable agricultural industry-resources system. Among the ecosystem services in the de-farming regions, the rapid increase of the economic manifestation of carbon fixation and oxygen release function and the carbon sink potential, as well as the rise of carbon trading and carbon market both in domestic and international, have established a theoretical and practical basis for the deve-lopment of carbon industry. With the development of the carbon sink industry, improving the carbon sequestration output will become the core of the carbon sink industry. The producers or marketers will form the controlling of the carbon source, the development of the path for carbon storage increasing and re-layout of agricultural industry-resources structure, and thus bring new vitality to regional sustainable development in the de-farming regions. This indicates the emphasis for the future research and development, that is, allocating the agricultural industry-resources structure and their benign coupling mechanism after integrating the carbon sink industry.
NASA Astrophysics Data System (ADS)
Eder, Lucia Muriel; Weber, Enrico; Schrumpf, Marion; Zaehle, Sönke
2017-04-01
The response of plant growth to elevated concentrations of CO2 (eCO2) is often constrained by plant nitrogen (N) uptake. To overcome potential N limitation, plants may invest photosynthetically fixed carbon (C) into N acquiring strategies, including fine root biomass, root exudation, or C allocation to mycorrhizal fungi. In turn, these strategies may affect the decomposition of soil organic matter, leading to uncertainties in net effects of eCO2 on C storage. To gain more insight into these plant-soil C-N-interactions, we combined C and N stable isotope labeling in a mesocosm experiment. Saplings of Fagus sylvatica L. were exposed to a 13CO2 enriched atmosphere at near ambient (380 ppm) or elevated (550 ppm) CO2 concentrations for four months of the vegetation period in 2016. Aboveground and belowground net CO2 fluxes were measured separately and the 13C label enabled partitioning of total soil CO2 efflux into old, soil derived and new, plant-derived C. We used ingrowth cores to assess effects of eCO2on belowground C allocation and plant N uptake in more detail and in particular we evaluated the relative importance of ectomycorrhizal associations. In the soil of each sapling, ingrowth cores with different mesh sizes allowed fine roots or only mycorrhizal hyphae to penetrate. In one type of ingrowth core each, we incorporated fine root litter that was enriched in 15N. Additionally, total N uptake was estimated by using 15N enriched saplings and unlabeled control plants. We found that eCO2 increased aboveground net CO2 exchange rates by 19% and total soil respiration by 11%. The eCO2 effect for GPP and also for NPP was positive (+23% and +11%, respectively). By combining gaseous C fluxes with data on new and old C stocks in bulk soil and plants through destructive harvesting in late autumn 2016, we will be able to infer net effects of eCO2 on the fate of C in these mesocosms. Biomass allocation patterns can reveal physiological responses to high C availability under potentially constrained N availability. Together with data on biomass production within the ingrowth cores these results elucidate mechanisms affecting soil C storage and plant N uptake under eCO2.
Sala, Anna; Carey, Eileen V; Callaway, Ragan M
2001-01-01
Dwarf mistletoes induce abnormal growth patterns and extreme changes in the biomass allocation of their hosts as well as directly parasitizing them for resources. Because biomass allocation can affect the resource use and efficiency of conifers, we studied the influences of dwarf mistletoe infection on above-ground biomass allocation of Douglas fir and western larch, and the consequences of such changes on whole-tree water use and water relations. Sap flow, tree water potentials, leaf:sapwood area ratios (A L :A S ), leaf carbon isotope ratios, and nitrogen content were measured on Douglas fir and western larch trees with various degrees of mistletoe infection during the summer of 1996 in western Montana. Heavy dwarf mistletoe infection on Douglas fir and western larch was related to significant increases in A L :A S . Correspondingly, water transport dynamics were altered in infected trees, but responses were different for the two species. Higher A L :A S ratios in heavily infected Douglas firs were offset by increases in sapwood area-based sap flux densities (Q SW ) such that leaf area-based sap flux densities (Q L ) and predawn leaf water potentials at the end of the summer did not change significantly with mistletoe infection. Small (but statistically insignificant) decreases of Q L for heavily infected Douglas firs were enough to offset increases in leaf area such that whole-tree water use was similar for uninfected and heavily infected trees. Increased A L :A S ratios of heavily infected western larch were not offset by increases of Q SW . Consequently, Q L was reduced, which corresponded with significant decreases of water potential at the end of the summer. Furthermore, mistletoe-infection-related changes in A L :A S as a function of tree size resulted in greater whole-tree water use for large infected larches than for large uninfected trees. Such changes may result in further depletion of limited soil water resources in mature infected stands late in the growing season. Foliage from infected trees of both species had lower water use efficiencies than non-infected trees. Our results demonstrate substantial changes of whole-tree processes related to mistletoe infection, and stress the importance of integrating whole-tree physiological and structural processes to fully understand the mechanisms by which pathogens suppress forest productivity.
Impact of physical maltreatment on the regulation of negative affect and aggression.
Shackman, Jessica E; Pollak, Seth D
2014-11-01
Physically maltreated children are at risk for developing externalizing behavioral problems characterized by reactive aggression. The current experiment tested the relationships between individual differences in a neural index of social information processing, histories of child maltreatment, child negative affect, and aggressive behavior. Fifty boys (17 maltreated) performed an emotion recognition task while the P3b component of the event-related potential was recorded to index attention allocation to angry faces. Children then participated in a peer-directed aggression task. Negative affect was measured by recording facial electromyography, and aggression was indexed by the feedback that children provided to a putative peer. Physically maltreated children exhibited greater negative affect and more aggressive behavior, compared to nonmaltreated children, and this relationship was mediated by children's allocation of attention to angry faces. These data suggest that physical maltreatment leads to inappropriate regulation of both negative affect and aggression, which likely place maltreated children at increased risk for the development and maintenance of externalizing behavior disorders.
Impact of physical maltreatment on the regulation of negative affect and aggression
SHACKMAN, JESSICA E.; POLLAK, SETH D.
2015-01-01
Physically maltreated children are at risk for developing externalizing behavioral problems characterized by reactive aggression. The current experiment tested the relationships between individual differences in a neural index of social information processing, histories of child maltreatment, child negative affect, and aggressive behavior. Fifty boys (17 maltreated) performed an emotion recognition task while the P3b component of the event-related potential was recorded to index attention allocation to angry faces. Children then participated in a peer-directed aggression task. Negative affect was measured by recording facial electromyography, and aggression was indexed by the feedback that children provided to a putative peer. Physically maltreated children exhibited greater negative affect and more aggressive behavior, compared to nonmaltreated children, and this relationship was mediated by children’s allocation of attention to angry faces. These data suggest that physical maltreatment leads to inappropriate regulation of both negative affect and aggression, which likely place maltreated children at increased risk for the development and maintenance of externalizing behavior disorders. PMID:24914736
NASA Astrophysics Data System (ADS)
Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.
2017-12-01
Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in Panama sites.The implementation of dynamic enzyme allocation in response to nutrient availability in the CoMEND model enables us to capture the varying microbial C/P ratio and soil carbon dynamics in response to shifting nutrient constraints over time in tropical soils.
[Post-logging organic matter recovery in forest ecosystems of eastern Baikal region].
Vedrova, E F; Mukhortova, L V; Ivanov, V V; Krivobokov, L V; Boloneva, M V
2010-01-01
The dynamics of organic matter accumulated in the soil and main vegetation elements was analyzed for post-logging forest ecosystem succession series in eastern Baikal region. The phytomass was found to allocate up 63 and 50% of carbon in undisturbed Scots pine and fir stands, respectively. The post-logging phytomass contribution to the total carbon pool appeared to decrease down to 16% in Scots pine and 6% in fir stands. In Scots pine stands, carbon storage was determined to account for almost 70% of the initial carbon 60 years after logging. In 50- to 55-year-old fir stands, carbon recovered its initial pool only by 10%. Soil carbon recorded in recently logged Scots pine and fir sites appeared to be 5 and 16 times that accumulated in the phytomass, respectively. The ratio between phytomass carbon and soil organic matter recovered back to the prelogging level in Scots pine stands by the age of 50-60 years. While phytomass carbon also increased in fir stand of the same age, it did not reach the level of the control stand.
Determinants of states' allocations of the master settlement agreement payments.
Sloan, Frank A; Carlisle, Emily Streyer; Rattliff, John R; Trogdon, Justin
2005-08-01
To determine which factors influence states' allocation decisions for the tobacco Master Settlement Agreement and the four individual settlements' annual payments, including the decision to securitize, we analyzed the effects of voter characteristics, political parties, interest groups, prior spending on public tobacco control programs, and state fiscal health on per capita settlement funds allocated to tobacco-control, health, and other programs. Tobacco-producing states and those with high proportions of conservative Democrats or elderly, black, Hispanic, or wealthy people tended to spend less on tobacco control. Education and medical lobbies had strong positive influences on per capita allocations for tobacco-control and health-related programs. State fiscal crises affected amounts spent by states from settlement funds as well as the probability of securitizing future cash flows from the settlements.
Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro
2018-01-01
Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, –29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest. PMID:29390007
Tang, Jingchao; Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro
2018-01-01
Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.
Carbon allocation to young loblolly pine roots and stems
Paul P. Kormanik; Shi-Jean S. Sung; Clanton C. Black; Stanley J. Zarnoch
1995-01-01
This study of root biomass with loblolly pine was designed with the following objectives: (1) to measure the root biomass for a range of individual trees between the ages of 3 and 10 years on different artificial and natural forest sites and (2) to relate the root biomass to aboveground biomass components.
Measuring wood specific gravity, correctly
G. Bruce Williamson; Michael C. Wiemann
2010-01-01
The specific gravity (SG) of wood is a measure of the amount of structural material a tree species allocates to support and strength. In recent years, wood specific gravity, traditionally a foresterâs variable, has become the domain of ecologists exploring the universality of plant functional traits and conservationists estimating global carbon stocks. While these...
Michael G. Ryan; Jose Luiz Stape; Dan Binkley; Sebastiao Fonseca; Rodolfo A. Loos; Ernesto N. Takahashi; Claudio R. Silva; Sergio R. Silva; Rodrigo E. Hakamada; Jose Mario Ferreira; Augusto M. N. Lima; Jose Luiz Gava; Fernando P. Leite; Helder B. Andrade; Jacyr M. Alves; Gualter G. C. Silva
2010-01-01
Wood production varies substantially with resource availability, and the variation in wood production can result from several mechanisms: increased photosynthesis, and changes in partitioning of photosynthesis to wood production, belowground flux, foliage production or respiration. An understanding of the mechanistic basis for patterns in wood production...
Elevated CO2 or O3 effects on fine-root survivorship in ponderosa pine
Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograp...
ELEVATED CO2 AND O3 EFFECTS ON FINE-ROOT SURVIVORSHIP IN PONDEROSA PINE MESOCOSMS
Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograph...
CONTRIBUTIONS OF CURRENT YEAR PHOTOSYNTHATE TO FINE ROOTS ESTIMATED USING A 13C-DEPLETED CO2 SOURCE
The quantification of root turnover is necessary for a complete understanding of plant carbon (C) budgets, especially in terms of impacts of global climate change. To improve estimates of root turnover, we present a method to distinguish current- from prior-year allocation of ca...
A network analysis of indirect carbon emission flows among different industries in China.
Du, Qiang; Xu, Yadan; Wu, Min; Sun, Qiang; Bai, Libiao; Yu, Ming
2018-06-17
Indirect carbon emissions account for a large ratio of the total carbon emissions in processes to make the final products, and this implies indirect carbon emission flow across industries. Understanding these flows is crucial for allocating a carbon allowance for each industry. By combining input-output analysis and complex network theory, this study establishes an indirect carbon emission flow network (ICEFN) for 41 industries from 2005 to 2014 to investigate the interrelationships among different industries. The results show that the ICEFN was consistent with a small-world nature based on an analysis of the average path lengths and the clustering coefficients. Moreover, key industries in the ICEFN were identified using complex network theory on the basis of degree centrality and betweenness centrality. Furthermore, the 41 industries of the ICEFN were divided into four industrial subgroups that are related closely to one another. Finally, possible policy implications were provided based on the knowledge of the structure of the ICEFN and its trend.
Rice, P; O'Brien, D; Shalloo, L; Holden, N M
2017-11-01
A major methodological issue for life cycle assessment, commonly used to quantify greenhouse gas emissions from livestock systems, is allocation from multifunctional processes. When a process produces more than one output, the environmental burden has to be assigned between the outputs, such as milk and meat from a dairy cow. In the absence of an objective function for choosing an allocation method, a decision must be made considering a range of factors, one of which is the availability and quality of necessary data. The objective of this study was to evaluate allocation methods to calculate the climate change impact of the economically average (€/ha) dairy farm in Ireland considering both milk and meat outputs, focusing specifically on the pedigree of the available data for each method. The methods were: economic, energy, protein, emergy, mass of liveweight, mass of carcass weight and physical causality. The data quality for each method was expressed using a pedigree score based on reliability of the source, completeness, temporal applicability, geographical alignment and technological appropriateness. Scenario analysis was used to compare the normalised impact per functional unit (FU) from the different allocation methods, between the best and worst third of farms (in economic terms, €/ha) in the national farm survey. For the average farm, the allocation factors for milk ranged from 75% (physical causality) to 89% (mass of carcass weight), which in turn resulted in an impact per FU, from 1.04 to 1.22 kg CO 2 -eq/kg (fat and protein corrected milk). Pedigree scores ranged from 6.0 to 17.1 with protein and economic allocation having the best pedigree. It was concluded that when making the choice of allocation method, the quality of the data available (pedigree) should be given greater emphasis during the decision making process because the effect of allocation on the results. A range of allocation methods could be deployed to understand the uncertainty associated with the decision. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jansson, C.; Handakumbura, P. P.; Fortin, D.; Stanfill, B.; Rivas-Ubach, A.
2017-12-01
Predicting carbon uptake, assimilation and allocation for current and future biogeographical environments, including climate, is critical for our ability to select and/or design plant genotypes to meet increasing demand for plant biomass going into food, feed and energy production, while at the same time maintain or increase soil organic matter (SOM for soil fertility and carbon storage, and reduce emission of greenhouse gasses. As has been demonstrated for several plant species allometric relationships may differ between plant genotypes. Exploring plant genotypic diversity for biomass accumulation and allometry will potentially enable selection of genotypes with high CO2 assimilation and favorable allocation of recent photosynthate into above-ground and below-ground biomass. We are investigating genotypic diversity for PFTs in natural accessions of the annual C3 grass Brachypodium distachyon under current and future climate scenarios and how genotypic diversity correlates with metabolite profiles in aboveground and below-ground biomass. In the current study, we compare effects from non-stressed and drought conditions on biomass accumulation and shoot-root allometry.
Doetterl, Sebastian; Kearsley, Elizabeth; Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal
2015-01-01
African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.
Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal
2015-01-01
Background African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Principal Findings Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. Conclusions/Significance We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget. PMID:26599231
Eisenring, Michael; Meissle, Michael; Hagenbucher, Steffen; Naranjo, Steven E; Wettstein, Felix; Romeis, Jörg
2017-01-01
In its defense against herbivores, cotton ( Gossypium sp.) relies in part on the production of a set of inducible, non-volatile terpenoids. Under uniform damage levels, in planta allocation of induced cotton terpenoids has been found to be highest in youngest leaves, supporting assumptions of the optimal defense theory (ODT) which predicts that plants allocate defense compounds to tissues depending on their value and the likelihood of herbivore attack. However, our knowledge is limited on how varying, and thus more realistic, damage levels might affect cotton defense organization. We hypothesized that the allocation of terpenoids and densities of terpenoid-storing glands in leaves aligns with assumptions of the ODT, even when plants are subjected to temporally, spatially and quantitatively varying caterpillar ( Heliothis virescens ) damage. As expected, cotton plants allocated most of their defenses to their youngest leaves regardless of damage location. However, defense induction in older leaves varied with damage location. For at least 14 days after damage treatments ended, plants reallocated defense resources from previously young leaves to newly developed leaves. Furthermore, we observed a positive hyperbolic relationship between leaf damage area and both terpenoid concentrations and gland densities, indicating that cotton plants can fine-tune defense allocation. Although it appears that factors like vascular constraints and chemical properties of individual defense compounds can affect defense levels, our results overall demonstrate that induced defense organization of cotton subjected to varying damage treatments is in alignment with key assumptions of the ODT.
Eisenring, Michael; Meissle, Michael; Hagenbucher, Steffen; Naranjo, Steven E.; Wettstein, Felix; Romeis, Jörg
2017-01-01
In its defense against herbivores, cotton (Gossypium sp.) relies in part on the production of a set of inducible, non-volatile terpenoids. Under uniform damage levels, in planta allocation of induced cotton terpenoids has been found to be highest in youngest leaves, supporting assumptions of the optimal defense theory (ODT) which predicts that plants allocate defense compounds to tissues depending on their value and the likelihood of herbivore attack. However, our knowledge is limited on how varying, and thus more realistic, damage levels might affect cotton defense organization. We hypothesized that the allocation of terpenoids and densities of terpenoid-storing glands in leaves aligns with assumptions of the ODT, even when plants are subjected to temporally, spatially and quantitatively varying caterpillar (Heliothis virescens) damage. As expected, cotton plants allocated most of their defenses to their youngest leaves regardless of damage location. However, defense induction in older leaves varied with damage location. For at least 14 days after damage treatments ended, plants reallocated defense resources from previously young leaves to newly developed leaves. Furthermore, we observed a positive hyperbolic relationship between leaf damage area and both terpenoid concentrations and gland densities, indicating that cotton plants can fine-tune defense allocation. Although it appears that factors like vascular constraints and chemical properties of individual defense compounds can affect defense levels, our results overall demonstrate that induced defense organization of cotton subjected to varying damage treatments is in alignment with key assumptions of the ODT. PMID:28270830
Carbon sequestration, optimum forest rotation and their environmental impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr; Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr
2012-11-15
Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. Themore » results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.« less
Funk, Jennifer L.; Glenwinkel, Lori A.; Sack, Lawren
2013-01-01
Invasive species are expected to cluster on the “high-return” end of the leaf economic spectrum, displaying leaf traits consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low irradiance to mimic the forest understory environment. We found several trait differences between native and invasive species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids. PMID:23700483
Esquível, M G; Matos, A R; Marques Silva, J
2017-07-01
Photosynthesis and lipid allocation were investigated in Rubisco small subunit mutants of the microalga Chlamydomonas reinhardtii. Comparative analyses were undertaken with cells grown photoheterotrophically under sulphur-replete or sulphur-depleted conditions. The Y67A Rubisco mutant, which has previously demonstrated a pronounced reduction in Rubisco levels and higher hydrogen production rates than the wild type, also shows the following divergences in photosynthetic phenotype and lipid allocation: (i) low Fv/Fm (maximum photochemical efficiency), (ii) low effective quantum yield of photosystem II (ΦPSII), (iii) low effectiveness at protection against high light intensities, (iv) a higher level of total lipids per pigment and (v) changes in the relative proportions of different fatty acids, with a marked decrease in unsaturated fatty acids (FAs). The most abundant thylakoid membrane lipid, monogalactosyldiacylglycerol, decreased in amount, while the neutral lipid/polar lipid ratio increased in the mutant. The low amount and activity of the mutated Rubisco Y67A enzyme seems to have an adverse effect on photosynthesis and causes changes in carbon allocation in terms of membrane fatty acid composition and storage lipid accumulation. Our results suggest that Rubisco mutants of Chlamydomonas might be useful in biodiesel production.
Rytter, Rose-Marie
2013-09-01
The effect of limited nitrogen (N) or water availability on fine root growth and turnover was examined in two deciduous species, Alnus incana L. and Salix viminalis L., grown under three different regimes: (i) supply of N and water in amounts which would not hamper growth, (ii) limited N supply and (iii) limited water supply. Plants were grown outdoors during three seasons in covered and buried lysimeters placed in a stand structure and filled with quartz sand. Computer-controlled irrigation and fertilization were supplied through drip tubes. Production and turnover of fine roots were estimated by combining minirhizotron observations and core sampling, or by sequential core sampling. Annual turnover rates of fine roots <1 mm (5-6 year(-1)) and 1-2 mm (0.9-2.8 year(-1)) were not affected by changes in N or water availability. Fine root production (<1 mm) differed between Alnus and Salix, and between treatments in Salix; i.e., absolute length and biomass production increased in the order: water limited < unlimited < N limited. Few treatment effects were detected for fine roots 1-2 mm. Proportionally more C was allocated to fine roots (≤2 mm) in N or water-limited Salix; 2.7 and 2.3 times the allocation to fine roots in the unlimited regime, respectively. Estimated input to soil organic carbon increased by ca. 20% at N limitation in Salix. However, future studies on fine root decomposition under various environmental conditions are required. Fine root growth responses to N or water limitation were less pronounced in Alnus, thus indicating species differences caused by N-fixing capacity and slower initial growth in Alnus, or higher fine root plasticity in Salix. A similar seasonal growth pattern across species and treatments suggested the influence of outer stimuli, such as temperature and light.
Emissions of volatile organic compounds from hybrid poplar depend on CO2 concentration and genotype
NASA Astrophysics Data System (ADS)
Eller, A. S.; de Gouw, J. A.; Monson, R. K.
2010-12-01
Hybrid poplar is a fast-growing tree species that is likely to be an important source of biomass for the production of cellulose-based biofuels and may influence regional atmospheric chemistry through the emission of volatile organic compounds (VOCs). We used proton-transfer reaction mass spectrometry to measure VOC emissions from the leaves of four different hybrid poplar genotypes grown under ambient (400 ppm) and elevated (650 ppm) carbon dioxide concentration (CO2). The purpose of this experiment was to determine whether VOC emissions are different among genotypes and whether these emissions are likely to change as atmospheric CO2 rises. Methanol and isoprene made up over 90% of the VOC emissions and were strongly dependent on leaf age, with young leaves producing primarily methanol and switching to isoprene production as they matured. Monoterpene emissions were small, but tended to be higher in young leaves. Plants grown under elevated CO2 emitted smaller quantities of both methanol and isoprene, but the magnitude of the effect was dependent on genotype. Isoprene emission rates from mature leaves dropped from ~35 to ~28 nmol m-2 s-1 when plants were grown under elevated CO2. Emissions from individuals grown under ambient CO2 varied more based on genotype than those grown under elevated CO2, which means that we might expect smaller differences between genotypes in the future. Genotype and CO2 also affected how much carbon (C) individuals allocated to the production of VOCs. The emission rate of C from VOCs was 0.5 - 2% of the rate at which C was assimilated via net photosynthesis. The % C emitted was strongly related to genotype; clones from crosses between Populus deltoides and P. trichocarpa (T x D) allocated a greater % of their C to VOC emissions than clones from crosses of P. deltoids and P. nigra (D x N). Individuals from all four genotypes allocated a smaller % of their C to the emission of VOCs when they were grown under elevated CO2. These results illustrate that even in closely related individuals there are inherent differences in VOC emissions that are not due to simple differences in metabolic rates and that elevated CO2 reduces these inherent differences. Even though VOC rates were lower under elevated CO2 they were still much higher than emissions reported for switchgrass, another biofuel species, which means that future regional air quality around biofuel plantations will be influenced by the choice of biofuel species.
Li, Rui; Jiang, Chang-sheng; Hao, Qing-ju
2015-09-01
Four land utilization patterns were selected for this study in Jinyun mountain, including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land. Soil samples were taken every 10 cm in the depth of 60 cm soil and proportions of large macroaggregates (> 2 mm), small macroaggregates (0. 25-2 mm), microaggregates (0. 053 - 0. 25 mm) and silt + clay (<0. 053 mm) were obtained by wet sieving method to measure the content of organic carbon and labile organic carbon in each aggregate fraction and analyze impacts of land uses on organic carbon and labile organic carbon of soil aggregates. LOC content of four soil aggregates were significantly reduced with the increase of soil depth; in layers of 0-60 cm soil depth, our results showed that LOC contents of forest and abandoned land were higher than orchard and sloping farmland. Reserves of labile organic carbon were estimated by the same soil quality, it revealed that forest (3. 68 Mg.hm-2) > abandoned land (1. 73 Mg.hm-2) > orchard (1. 43 Mg.hm-2) >sloping farmland (0.54 Mg.hm-2) in large macroaggregates, abandoned land (7.77, 5. 01 Mg.hm-2) > forest (4. 96, 2.71 Mg.hm-2) > orchard (3. 33, 21. 10 Mg.hm-2) > sloping farmland (1. 68, 1. 35 Mg.hm-2) in small macroaggregates and microaggregates, and abandoned land(4. 32 Mg.hm-2) > orchard(4. 00 Mg.hm-2) > forest(3. 22 Mg.hm-2) > sloping farmland (2.37 Mg.hm-2) in silt + clay, forest and abandoned land were higher than orchard and sloping farmland in other three soil aggregates except silt + clay. It was observed that the level of organic carbon and labile organic carbon were decreased when bringing forest under cultivation to orchard or farmland, and augments on organic carbon and labile organic carbon were found after exchanging farmland to abandoned land. The most reverses of forest and abandoned land emerged in small macroaggregates, orchard and sloping farmland were in microaggregates. That was, during the transformations of land utilization pattern, soil aggregates with bigger size were easier to accumulate or lose labile organic carbon. Allocation ratios of labile organic carbon to soil organic carbon under four land uses were decreased as the soil depth added. Allocation ratios of orchard and sloping farmland were a bit higher than forest and abandoned land, which indicated that organic carbon of forest and abandoned land were more steady and available for soil as a carbon sink, meanwhile, the forest and abandoned land would avoid more CO2 diffusing to the atmosphere from the decomposition of soil organic carbon.
Mayor, Eric; Bangerter, Adrian
2016-01-01
Gaze is instrumental in coordinating face-to-face social interactions. But little is known about gaze use when social interactions co-occur with other joint activities. We investigated the case of walking while talking. We assessed how gaze gets allocated among various targets in mobile conversations, whether allocation of gaze to other targets affects conversational coordination, and whether reduced availability of gaze for conversational coordination affects conversational performance and content. In an experimental study, pairs were videotaped in four conditions of mobility (standing still, talking while walking along a straight-line itinerary, talking while walking along a complex itinerary, or walking along a complex itinerary with no conversational task). Gaze to partners was substantially reduced in mobile conversations, but gaze was still used to coordinate conversation via displays of mutual orientation, and conversational performance and content was not different between stationary and mobile conditions. Results expand the phenomena of multitasking to joint activities. PMID:27822189
Wild, Birgit; Schnecker, Jörg; Alves, Ricardo J. Eloy; Barsukov, Pavel; Bárta, Jiří; Čapek, Petr; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Mikutta, Robert; Rusalimova, Olga; Šantrůčková, Hana; Shibistova, Olga; Urich, Tim; Watzka, Margarete; Zrazhevskaya, Galina; Richter, Andreas
2014-01-01
Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM (“priming effect”). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze–thaw processes) to additions of 13C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant productivity, can change the decomposition of SOM stored in deeper layers of permafrost soils, with possible repercussions on the global climate. PMID:25089062
Long, Randall W; Bush, Susan E; Grady, Kevin C; Smith, David S; Potts, Daniel L; D'Antonio, Carla M; Dudley, Tom L; Fehlberg, Shannon D; Gaskin, John F; Glenn, Edward P; Hultine, Kevin R
2017-01-01
Patterns of woody-plant mortality have been linked to global-scale environmental changes, such as extreme drought, heat stress, more frequent and intense fires, and episodic outbreaks of insects and pathogens. Although many studies have focussed on survival and mortality in response to specific physiological stresses, little attention has been paid to the role of genetic heritability of traits and local adaptation in influencing patterns of plant mortality, especially in non-native species. Tamarix spp. is a dominant, non-native riparian tree in western North America that is experiencing dieback in some areas of its range due to episodic herbivory by the recently introduced northern tamarisk leaf beetle ( Diorhabda carinulata ). We propose that genotype × environment interactions largely underpin current and future patterns of Tamarix mortality. We anticipate that (i) despite its recent introduction, and the potential for significant gene flow, Tamarix in western North America is generally adapted to local environmental conditions across its current range in part due to hybridization of two species; (ii) local adaptation to specific climate, soil and resource availability will yield predictable responses to episodic herbivory; and (iii) the ability to cope with a combination of episodic herbivory and increased aridity associated with climate change will be largely based on functional tradeoffs in resource allocation. This review focusses on the potential heritability of plant carbon allocation patterns in Tamarix , focussing on the relative contribution of acquired carbon to non-structural carbohydrate (NSC) pools versus other sinks as the basis for surviving episodic disturbance. Where high aridity and/or poor edaphic position lead to chronic stress, NSC pools may fall below a minimum threshold because of an imbalance between the supply of carbon and its demand by various sinks. Identifying patterns of local adaptation of traits related to resource allocation will improve forecasting of Tamarix population susceptibility to episodic herbivory.
Yee, Donald A.; Kaufman, Michael G.; Ezeakacha, Nnaemeka F.
2015-01-01
Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar detrital environments, and if supported may assist in explaining the production of vector populations in nature. PMID:26244643
Yee, Donald A; Kaufman, Michael G; Ezeakacha, Nnaemeka F
2015-01-01
Allocation patterns of carbon and nitrogen in animals are influenced by food quality and quantity, as well as by inherent metabolic and physiological constraints within organisms. Whole body stoichiometry also may vary between the sexes who differ in development rates and reproductive allocation patterns. In aquatic containers, such as tree holes and tires, detrital inputs, which vary in amounts of carbon and nitrogen, form the basis of the mosquito-dominated food web. Differences in development times and mass between male and female mosquitoes may be the result of different reproductive constraints, which could also influence patterns of nutrient allocation. We examined development time, survival, and adult mass for males and females of three co-occurring species, Aedes albopictus, Ae. aegypti, and Culex quinquefasciatus, across environments with different ratios of animal and leaf detritus. We quantified the contribution of detritus to biomass using stable isotope analysis and measured tissue carbon and nitrogen concentrations among species and between the sexes. Development times were shorter and adults were heavier for Aedes in animal versus leaf-only environments, whereas Culex development times were invariant across detritus types. Aedes displayed similar survival across detritus types whereas C. quinquefasciatus showed decreased survival with increasing leaf detritus. All species had lower values of 15N and 13C in leaf-only detritus compared to animal, however, Aedes generally had lower tissue nitrogen compared to C. quinquefasciatus. There were no differences in the C:N ratio between male and female Aedes, however, Aedes were different than C. quinquefasciatus adults, with male C. quinquefasciatus significantly higher than females. Culex quinquefasciatus was homeostatic across detrital environments. These results allow us to hypothesize an underlying stoichiometric explanation for the variation in performance of different container species under similar detrital environments, and if supported may assist in explaining the production of vector populations in nature.
Mind the Roots: Phenotyping Below-Ground Crop Diversity and Its Influence on Final Yield
NASA Astrophysics Data System (ADS)
Nieters, C.; Guadagno, C. R.; Lemli, S.; Hosseini, A.; Ewers, B. E.
2017-12-01
Changes in global climate patterns and water regimes are having profound impacts on worldwide crop production. An ever-growing population paired with increasing temperatures and unpredictable periods of severe drought call for accurate modeling of future crop yield. Although novel approaches are being developed in high-throughput, above-ground image phenotyping, the below-ground plant system is still poorly phenotyped. Collection of plant root morphology and hydraulics are needed to inform mathematical models to reliably estimate yields of crops grown in sub-optimal conditions. We used Brassica rapa to inform our model as it is a globally cultivated crop with several functionally diverse cultivars. Specifically, we use 7 different accessions from oilseed (R500 and Yellow Sarson), leafy type (Pac choi and Chinese cabbage), a vegetable turnip, and two Wisconsin Fast Plants (Imb211 and Fast Plant self-compatible), which have shorter life cycles and potentially large differences in allocation to roots. Bi-weekly, we harvested above and below-ground biomass to compare the varieties in terms of carbon allocation throughout their life cycle. Using WinRhizo software, we analyzed root system length and surface area to compare and contrast root morphology among cultivars. Our results confirm that root structural characteristics are crucial to explain plant water use and carbon allocation. The root:shoot ratio reveals a significant (p < 0.01) difference among crop accession. To validate the procedure across different varieties and life stages we also compared surface area results from the image-based technology to dry biomass finding a strong linear relationship (R2= 0.85). To assess the influence of a diverse above-ground morphology on the root system we also measured above-ground anatomical and physiological traits such as gas exchange, chlorophyll content, and chlorophyll a fluorescence. A thorough analysis of the root system will clarify carbon dynamics and hydraulics at the whole-plant level, improving final yield predictions.
Bush, Susan E.; Grady, Kevin C.; Smith, David S.; Potts, Daniel L.; D'Antonio, Carla M.; Dudley, Tom L.; Fehlberg, Shannon D.; Gaskin, John F.; Glenn, Edward P.; Hultine, Kevin R.
2017-01-01
Abstract Patterns of woody-plant mortality have been linked to global-scale environmental changes, such as extreme drought, heat stress, more frequent and intense fires, and episodic outbreaks of insects and pathogens. Although many studies have focussed on survival and mortality in response to specific physiological stresses, little attention has been paid to the role of genetic heritability of traits and local adaptation in influencing patterns of plant mortality, especially in non-native species. Tamarix spp. is a dominant, non-native riparian tree in western North America that is experiencing dieback in some areas of its range due to episodic herbivory by the recently introduced northern tamarisk leaf beetle (Diorhabda carinulata). We propose that genotype × environment interactions largely underpin current and future patterns of Tamarix mortality. We anticipate that (i) despite its recent introduction, and the potential for significant gene flow, Tamarix in western North America is generally adapted to local environmental conditions across its current range in part due to hybridization of two species; (ii) local adaptation to specific climate, soil and resource availability will yield predictable responses to episodic herbivory; and (iii) the ability to cope with a combination of episodic herbivory and increased aridity associated with climate change will be largely based on functional tradeoffs in resource allocation. This review focusses on the potential heritability of plant carbon allocation patterns in Tamarix, focussing on the relative contribution of acquired carbon to non-structural carbohydrate (NSC) pools versus other sinks as the basis for surviving episodic disturbance. Where high aridity and/or poor edaphic position lead to chronic stress, NSC pools may fall below a minimum threshold because of an imbalance between the supply of carbon and its demand by various sinks. Identifying patterns of local adaptation of traits related to resource allocation will improve forecasting of Tamarix population susceptibility to episodic herbivory. PMID:28852513
Zang, Ulrich; Goisser, Michael; Grams, Thorsten E E; Häberle, Karl-Heinz; Matyssek, Rainer; Matzner, Egbert; Borken, Werner
2014-01-01
Drought reduces the carbon (C) assimilation of trees and decouples aboveground from belowground carbon fluxes, but little is known about the response of drought-stressed trees to rewetting. This study aims to assess dynamics and patterns of C allocation in beech saplings under dry and rewetted soil conditions. In October 2010, 5-year-old beech saplings from a forest site were transplanted into 20 l pots. In 2011, the saplings were subjected to different levels of soil drought ranging from non-limiting water supply (control) to severe water limitation with soil water potentials of less than -1.5 MPa. As a physiologically relevant measure of drought, the cumulated soil water potential (i.e., drought stress dose (DSD)) was calculated for the growing season. In late August, the saplings were transferred into a climate chamber and pulse-labeled with (13)C-depleted CO2 (δ(13)C of -47‰). Isotopic signatures in leaf and soil respiration were repeatedly measured. Five days after soil rewetting, a second label was applied using 99 atom% (13)CO2. After another 12 days, the fate of assimilated C in each sapling was assessed by calculating the (13)C mass balance. Photosynthesis decreased by 60% in saplings under severe drought. The mean residence time (MRT) of recent assimilates in leaf respiration was more than three times longer than under non-limited conditions and was positively correlated to DSD. Also, the appearance of the label in soil respiration was delayed. Within 5 days after rewetting, photosynthesis, MRT of recent assimilates in leaf respiration and appearance of the label in soil respiration recovered fully. Despite the fast recovery, less label was recovered in the biomass of the previously drought-stressed plants, which also allocated less C to the root compartment (45 vs 64% in the control). We conclude that beech saplings quickly recover from extreme soil drought, although transitional after-effects prevail in C allocation, possibly due to repair-driven respiratory processes.
Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe
2016-02-01
The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet
2018-01-01
Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.
Age, allocation and availability of nonstructural carbon in mature red maple trees.
Carbone, Mariah S; Czimczik, Claudia I; Keenan, Trevor F; Murakami, Paula F; Pederson, Neil; Schaberg, Paul G; Xu, Xiaomei; Richardson, Andrew D
2013-12-01
The allocation of nonstructural carbon (NSC) to growth, metabolism and storage remains poorly understood, but is critical for the prediction of stress tolerance and mortality. We used the radiocarbon ((14) C) 'bomb spike' as a tracer of substrate and age of carbon in stemwood NSC, CO2 emitted by stems, tree ring cellulose and stump sprouts regenerated following harvesting in mature red maple trees. We addressed the following questions: which factors influence the age of stemwood NSC?; to what extent is stored vs new NSC used for metabolism and growth?; and, is older, stored NSC available for use? The mean age of extracted stemwood NSC was 10 yr. More vigorous trees had both larger and younger stemwood NSC pools. NSC used to support metabolism (stem CO2 ) was 1-2 yr old in spring before leaves emerged, but reflected current-year photosynthetic products in late summer. The tree ring cellulose (14) C age was 0.9 yr older than direct ring counts. Stump sprouts were formed from NSC up to 17 yr old. Thus, younger NSC is preferentially used for growth and day-to-day metabolic demands. More recently stored NSC contributes to annual ring growth and metabolism in the dormant season, yet decade-old and older NSC is accessible for regrowth. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Airborne Detection and Tracking of Geologic Leakage Sites
NASA Astrophysics Data System (ADS)
Jacob, Jamey; Allamraju, Rakshit; Axelrod, Allan; Brown, Calvin; Chowdhary, Girish; Mitchell, Taylor
2014-11-01
Safe storage of CO2 to reduce greenhouse gas emissions without adversely affecting energy use or hindering economic growth requires development of monitoring technology that is capable of validating storage permanence while ensuring the integrity of sequestration operations. Soil gas monitoring has difficulty accurately distinguishing gas flux signals related to leakage from those associated with meteorologically driven changes of soil moisture and temperature. Integrated ground and airborne monitoring systems are being deployed capable of directly detecting CO2 concentration in storage sites. Two complimentary approaches to detecting leaks in the carbon sequestration fields are presented. The first approach focuses on reducing the requisite network communication for fusing individual Gaussian Process (GP) CO2 sensing models into a global GP CO2 model. The GP fusion approach learns how to optimally allocate the static and mobile sensors. The second approach leverages a hierarchical GP-Sigmoidal Gaussian Cox Process for airborne predictive mission planning to optimally reducing the entropy of the global CO2 model. Results from the approaches will be presented.
The climate impacts of bioenergy systems depend on market and regulatory policy contexts.
Lemoine, Derek M; Plevin, Richard J; Cohn, Avery S; Jones, Andrew D; Brandt, Adam R; Vergara, Sintana E; Kammen, Daniel M
2010-10-01
Biomass can help reduce greenhouse gas (GHG) emissions by displacing petroleum in the transportation sector, by displacing fossil-based electricity, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory contexts outside the scope of attributional life cycle assessments. We show that bioelectricity's advantage over liquid biofuels depends on the GHG intensity of the electricity displaced. Bioelectricity that displaces coal-fired electricity could reduce GHG emissions, but bioelectricity that displaces wind electricity could increase GHG emissions. The electricity displaced depends upon existing infrastructure and policies affecting the electric grid. These findings demonstrate how model assumptions about whether the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis can inform. Our bioenergy life cycle assessment can inform questions about a bioenergy mandate's optimal allocation between liquid fuels and electricity generation, but questions about the optimal level of bioenergy use require analyses with different assumptions about fixed and free parameters.
Cavatte, Paulo C; Rodríguez-López, Nélson F; Martins, Samuel C V; Mattos, Mariela S; Sanglard, Lílian M V P; Damatta, Fábio M
2012-05-01
In this study, the combined effects of light and water availability on the functional relationships of the relative growth rate (RGR), leaf chemical composition, construction and maintenance costs, and benefits in terms of payback time for Coffea arabica are presented. Coffee plants were grown for 8 months in 100% or 15% full sunlight and then a four-month water shortage was implemented. Plants grown under full sunlight were also transferred to shade and vice versa. Overall, most of the traits assessed were much more responsive to the availability of light than to the water supply. Larger construction costs (12%), primarily associated with elevated phenol and alkaloid pools, were found under full sunlight. There was a positive correlation between these compounds and the RGR, the mass-based net carbon assimilation rate and the carbon isotope composition ratio, which, in turn, correlated negatively with the specific leaf area. The payback time was remarkably lower in the sun than in shade leaves and increased greatly in water-deprived plants. The differences in maintenance costs among the treatments were narrow, with no significant impact on the RGR, and there was no apparent trade-off in resource allocation between growth and defence. The current irradiance during leaf bud formation affected both the specific leaf area and leaf physiology upon transferring the plants from low to high light and vice versa. In summary, sun-grown plants fixed more carbon for growth and secondary metabolism, with the net effect of an increased RGR.
NASA Astrophysics Data System (ADS)
Ogée, J.; Barbour, M. M.; Dewar, R. C.; Wingate, L.; Bert, D.; Bosc, A.; Lambrot, C.; Stievenard, M.; Bariac, T.; Berbigier, P.; Loustau, D.
2007-12-01
High-resolution measurements of the carbon and oxygen stable isotope composition of cellulose in annual tree rings (δ13Ccellulose and δ18Ocellulose, respectively) reveal well-defined seasonal patterns that could contain valuable records of past climate and tree function. Interpreting these signals is nonetheless complex because they not only record the signature of current assimilates, but also depend on carbon allocation dynamics within the trees. Here, we will present a single-substrate model for wood growth in order to interpret qualitatively and quantitatively these seasonal isotopic signals. We will also show how this model can relate to more complex models of phloem transport and cambial activity. The model will then be tested against an isotopic intra-annual chronology collected on a Pinus pinaster tree equipped with point dendrometers and growing on a Carboeurope site where climate, soil and flux variables are also monitored. The empirical δ13Ccellulose and δ18Ocellulose signals exhibit dynamic seasonal patterns with clear differences between years, which makes it suitable for model testing. We will show how our simple model of carbohydrate reserves, forced by sap flow and eddy covariance measurements, enables us to interpret these seasonal and inter-annual patterns. Finally, we will present a sensitivity analysis of the model, showing how gas-exchange parameters, carbon and water pool sizes or wood maturation times affect these isotopic signals. Acknowledgements: this study benefited from the CarboEurope-IP Bray site facilities and was funded by the French INSU programme Eclipse, with an additional support from the INRA department EFPA.
He, Li-hong; Wang, Hai-yan; Lei, Xiang-dong
2016-02-01
Model based on vegetation ecophysiological process contains many parameters, and reasonable parameter values will greatly improve simulation ability. Sensitivity analysis, as an important method to screen out the sensitive parameters, can comprehensively analyze how model parameters affect the simulation results. In this paper, we conducted parameter sensitivity analysis of BIOME-BGC model with a case study of simulating net primary productivity (NPP) of Larix olgensis forest in Wangqing, Jilin Province. First, with the contrastive analysis between field measurement data and the simulation results, we tested the BIOME-BGC model' s capability of simulating the NPP of L. olgensis forest. Then, Morris and EFAST sensitivity methods were used to screen the sensitive parameters that had strong influence on NPP. On this basis, we also quantitatively estimated the sensitivity of the screened parameters, and calculated the global, the first-order and the second-order sensitivity indices. The results showed that the BIOME-BGC model could well simulate the NPP of L. olgensis forest in the sample plot. The Morris sensitivity method provided a reliable parameter sensitivity analysis result under the condition of a relatively small sample size. The EFAST sensitivity method could quantitatively measure the impact of simulation result of a single parameter as well as the interaction between the parameters in BIOME-BGC model. The influential sensitive parameters for L. olgensis forest NPP were new stem carbon to new leaf carbon allocation and leaf carbon to nitrogen ratio, the effect of their interaction was significantly greater than the other parameter' teraction effect.
Zinc allocation and re-allocation in rice.
Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E L; Struik, Paul C
2014-01-01
Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Two solution culture experiments using (70)Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg(-1) dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement.
Zinc allocation and re-allocation in rice
Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E. L.; Struik, Paul C.
2014-01-01
Aims: Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Methods: Two solution culture experiments using 70Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. Results: A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg−1 dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. Conclusions: In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement. PMID:24478788
Resource allocation processes at multilateral organizations working in global health
Chi, Y-Ling; Bump, Jesse B
2018-01-01
Abstract International institutions provide well over US$10 billion in development assistance for health (DAH) annually and between 1990 and 2014, DAH disbursements totaled $458 billion but how do they decide who gets what, and for what purpose? In this article, we explore how allocation decisions were made by the nine convening agencies of the Equitable Access Initiative. We provide clear, plain language descriptions of the complete process from resource mobilization to allocation for the nine multilateral agencies with prominent agendas in global health. Then, through a comparative analysis we illuminate the choices and strategies employed in the nine international institutions. We find that resource allocation in all reviewed institutions follow a similar pattern, which we categorized in a framework of five steps: strategy definition, resource mobilization, eligibility of countries, support type and funds allocation. All the reviewed institutions generate resource allocation decisions through well-structured and fairly complex processes. Variations in those processes seem to reflect differences in institutional principles and goals. However, these processes have serious shortcomings. Technical problems include inadequate flexibility to account for or meet country needs. Although aid effectiveness and value for money are commonly referenced, we find that neither performance nor impact is a major criterion for allocating resources. We found very little formal consideration of the incentives generated by allocation choices. Political issues include non-transparent influence on allocation processes by donors and bureaucrats, and the common practice of earmarking funds to bypass the normal allocation process entirely. Ethical deficiencies include low accountability and transparency at international institutions, and limited participation by affected citizens or their representatives. We find that recipient countries have low influence on allocation processes themselves, although within these processes they have some influence in relatively narrow areas. PMID:29415239
Garcia, Danilo; MacDonald, Shane; Archer, Trevor
2015-01-01
Background. The notion of the affective system as being composed of two dimensions led Archer and colleagues to the development of the affective profiles model. The model consists of four different profiles based on combinations of individuals' experience of high/low positive and negative affect: self-fulfilling, low affective, high affective, and self-destructive. During the past 10 years, an increasing number of studies have used this person-centered model as the backdrop for the investigation of between and within individual differences in ill-being and well-being. The most common approach to this profiling is by dividing individuals' scores of self-reported affect using the median of the population as reference for high/low splits. However, scores just-above and just-below the median might become high and low by arbitrariness, not by reality. Thus, it is plausible to criticize the validity of this variable-oriented approach. Our aim was to compare the median splits approach with a person-oriented approach, namely, cluster analysis. Method. The participants (N = 2, 225) were recruited through Amazons' Mechanical Turk and asked to self-report affect using the Positive Affect Negative Affect Schedule. We compared the profiles' homogeneity and Silhouette coefficients to discern differences in homogeneity and heterogeneity between approaches. We also conducted exact cell-wise analyses matching the profiles from both approaches and matching profiles and gender to investigate profiling agreement with respect to affectivity levels and affectivity and gender. All analyses were conducted using the ROPstat software. Results. The cluster approach (weighted average of cluster homogeneity coefficients = 0.62, Silhouette coefficients = 0.68) generated profiles with greater homogeneity and more distinctive from each other compared to the median splits approach (weighted average of cluster homogeneity coefficients = 0.75, Silhouette coefficients = 0.59). Most of the participants (n = 1,736, 78.0%) were allocated to the same profile (Rand Index = .83), however, 489 (21.98%) were allocated to different profiles depending on the approach. Both approaches allocated females and males similarly in three of the four profiles. Only the cluster analysis approach classified men significantly more often than chance to a self-fulfilling profile (type) and females less often than chance to this very same profile (antitype). Conclusions. Although the question whether one approach is more appropriate than the other is still without answer, the cluster method allocated individuals to profiles that are more in accordance with the conceptual basis of the model and also to expected gender differences. More importantly, regardless of the approach, our findings suggest that the model mirrors a complex and dynamic adaptive system.
Prey risk allocation in a grazing ecosystem.
Gude, Justin A; Garrott, Robert A; Borkowski, John J; King, Fred
2006-02-01
Understanding the behaviorally mediated indirect effects of predators in ecosystems requires knowledge of predator-prey behavioral interactions. In predator-ungulate-plant systems, empirical research quantifying how predators affect ungulate group sizes and distribution, in the context of other influential variables, is particularly needed. The risk allocation hypothesis proposes that prey behavioral responses to predation risk depend on background frequencies of exposure to risk, and it can be used to make predictions about predator-ungulate-plant interactions. We determined non-predation variables that affect elk (Cervus elaphus) group sizes and distribution on a winter range in the Greater Yellowstone Ecosystem (GYE) using logistic and log-linear regression on surveys of 513 1-km2 areas conducted over two years. Employing model selection techniques, we evaluated risk allocation and other a priori hypotheses of elk group size and distributional responses to wolf (Canis lupus) predation risk while accounting for influential non-wolf-predation variables. We found little evidence that wolves affect elk group sizes, which were strongly influenced by habitat type and hunting by humans. Following predictions from the risk allocation hypothesis, wolves likely created a more dynamic elk distribution in areas that they frequently hunted, as elk tended to move following wolf encounters in those areas. This response should dilute elk foraging pressure on plant communities in areas where they are frequently hunted by wolves. We predict that this should decrease the spatial heterogeneity of elk impacts on grasslands in areas that wolves frequently hunt. We also predict that this should decrease browsing pressure on heavily browsed woody plant stands in certain areas, which is supported by recent research in the GYE.
Six distributional effects of environmental policy.
Fullerton, Don
2011-06-01
While prior literature has identified various effects of environmental policy, this note uses the example of a proposed carbon permit system to illustrate and discuss six different types of distributional effects: (1) higher prices of carbon-intensive products, (2) changes in relative returns to factors like labor, capital, and resources, (3) allocation of scarcity rents from a restricted number of permits, (4) distribution of the benefits from improvements in environmental quality, (5) temporary effects during the transition, and (6) capitalization of all those effects into prices of land, corporate stock, or house values. The note also discusses whether all six effects could be regressive, that is, whether carbon policy could place disproportionate burden on the poor. © 2011 Society for Risk Analysis.
Functional and Structural Optimality in Plant Growth: A Crop Modelling Case Study
NASA Astrophysics Data System (ADS)
Caldararu, S.; Purves, D. W.; Smith, M. J.
2014-12-01
Simple mechanistic models of vegetation processes are essential both to our understanding of plant behaviour and to our ability to predict future changes in vegetation. One concept that can take us closer to such models is that of plant optimality, the hypothesis that plants aim to achieve an optimal state. Conceptually, plant optimality can be either structural or functional optimality. A structural constraint would mean that plants aim to achieve a certain structural characteristic such as an allometric relationship or nutrient content that allows optimal function. A functional condition refers to plants achieving optimal functionality, in most cases by maximising carbon gain. Functional optimality conditions are applied on shorter time scales and lead to higher plasticity, making plants more adaptable to changes in their environment. In contrast, structural constraints are optimal given the specific environmental conditions that plants are adapted to and offer less flexibility. We exemplify these concepts using a simple model of crop growth. The model represents annual cycles of growth from sowing date to harvest, including both vegetative and reproductive growth and phenology. Structural constraints to growth are represented as an optimal C:N ratio in all plant organs, which drives allocation throughout the vegetative growing stage. Reproductive phenology - i.e. the onset of flowering and grain filling - is determined by a functional optimality condition in the form of maximising final seed mass, so that vegetative growth stops when the plant reaches maximum nitrogen or carbon uptake. We investigate the plants' response to variations in environmental conditions within these two optimality constraints and show that final yield is most affected by changes during vegetative growth which affect the structural constraint.
Thébault, Aurélie; Frey, Beat; Mitchell, Edward A D; Buttler, Alexandre
2010-08-01
Invasive plant species represent a threat to terrestrial ecosystems, but their effects on the soil biota and the mechanisms involved are not yet well understood. Many invasive species have undergone polyploidisation, leading to the coexistence of various cytotypes in the native range, whereas, in most cases, only one cytotype is present in the introduced range. Since genetic variation within a species can modify soil rhizosphere communities, we studied the effects of different cytotypes and ranges (native diploid, native tetraploid and introduced tetraploid) of Centaurea maculosa and Senecio inaequidens on microbial biomass carbon, rhizosphere total DNA content and bacterial communities of a standard soil in relation to plant functional traits. There was no overall significant difference in microbial biomass between cytotypes. The variation of rhizosphere total DNA content and bacterial community structure according to cytotype was species specific. The rhizosphere DNA content of S. inaequidens decreased with polyploidisation in the native range but did not vary for C. maculosa. In contrast, the bacterial community structure of C. maculosa was affected by polyploidisation and its diversity increased, whereas there was no significant change for S. inaequidens. Traits of S. inaequidens were correlated to the rhizosphere biota. Bacterial diversity and total DNA content were positively correlated with resource allocation to belowground growth and late flowering, whereas microbial biomass carbon was negatively correlated to investment in reproduction. There were no correlations between traits of the cytotypes of C. maculosa and corresponding rhizosphere soil biota. This study shows that polyploidisation may affect rhizosphere bacterial community composition, but that effects vary among plant species. Such changes may contribute to the success of invasive polyploid genotypes in the introduced range.
Quantitative assessment of carbon allocation anomalies in low temperature bainite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rementeria, Rosalia
Low temperature bainite is a mixture of ferrite and austenite with a high dislocation density and nanoscale precipitates produced by isothermal transformation of the austenite in high-carbon high-silicon steels. The mass balance for carbon is systematically unsuitable when considering only ferrite and austenite forming the structure, but no attempt has been made to evaluate the amount of carbon located at linear defects and precipitates. Additionally, bainitic ferrite has been recently shown to have a tetragonal crystal structure, allowing greater amounts of carbon in solid solution than those expected by the paraequilibrium phase boundaries. In order to quantify the contribution ofmore » all the carbon sinks, we have followed the evolution of carbon in ferrite and austenite, along with the precipitation of cementite and η–carbide, during the isothermal bainitic transformation at 220 and 250 °C by means of in-situ synchrotron high energy X-ray diffraction and complementary transmission electron microscopy (TEM) and atom probe tomography (APT) analyses. Furthermore, this is the first time that the mass balance for carbon is successfully achieved by considering all the transformation products together with an estimation of the carbon segregated to linear defects.« less
Quantitative assessment of carbon allocation anomalies in low temperature bainite
Rementeria, Rosalia
2017-05-24
Low temperature bainite is a mixture of ferrite and austenite with a high dislocation density and nanoscale precipitates produced by isothermal transformation of the austenite in high-carbon high-silicon steels. The mass balance for carbon is systematically unsuitable when considering only ferrite and austenite forming the structure, but no attempt has been made to evaluate the amount of carbon located at linear defects and precipitates. Additionally, bainitic ferrite has been recently shown to have a tetragonal crystal structure, allowing greater amounts of carbon in solid solution than those expected by the paraequilibrium phase boundaries. In order to quantify the contribution ofmore » all the carbon sinks, we have followed the evolution of carbon in ferrite and austenite, along with the precipitation of cementite and η–carbide, during the isothermal bainitic transformation at 220 and 250 °C by means of in-situ synchrotron high energy X-ray diffraction and complementary transmission electron microscopy (TEM) and atom probe tomography (APT) analyses. Furthermore, this is the first time that the mass balance for carbon is successfully achieved by considering all the transformation products together with an estimation of the carbon segregated to linear defects.« less
Siegenthaler, Andy; Buttler, Alexandre; Grosvernier, Philippe; Gobat, Jean-Michel; Nilsson, Mats B; Mitchell, Edward A D
2013-02-01
Eriophorum vaginatum is a characteristic species of northern peatlands and a keystone plant for cutover bog restoration. Understanding the factors affecting E. vaginatum seedling establishment (i.e. growth dynamics and allocation) under global change has practical implications for the management of abandoned mined bogs and restoration of their C-sequestration function. We studied the responses of leaf dynamics, above- and belowground biomass production of establishing seedlings to elevated CO(2) and N. We hypothesised that nutrient factors such as limitation shifts or dilutions would modulate growth stimulation. Elevated CO(2) did not affect biomass, but increased the number of young leaves in spring (+400 %), and the plant vitality (i.e. number of green leaves/total number of leaves) (+3 %), both of which were negatively correlated to [K(+)] in surface porewater, suggesting a K-limited production of young leaves. Nutrient ratios in green leaves indicated either N and K co-limitation or K limitation. N addition enhanced the number of tillers (+38 %), green leaves (+18 %), aboveground and belowground biomass (+99, +61 %), leaf mass-to-length ratio (+28 %), and reduced the leaf turnover (-32 %). N addition enhanced N availability and decreased [K(+)] in spring surface porewater. Increased tiller and leaf production in July were associated with a doubling in [K(+)] in surface porewater suggesting that under enhanced N production is K driven. Both experiments illustrate the importance of tradeoffs in E. vaginatum growth between: (1) producing tillers and generating new leaves, (2) maintaining adult leaves and initiating new ones, and (3) investing in basal parts (corms) for storage or in root growth for greater K uptake. The K concentration in surface porewater is thus the single most important factor controlling the growth of E. vaginatum seedlings in the regeneration of selected cutover bogs.
Churchland, Carolyn; Grayston, Sue J.
2014-01-01
Mycorrhizal associations are ubiquitous and form a substantial component of the microbial biomass in forest ecosystems and fluxes of C to these belowground organisms account for a substantial portion of carbon assimilated by forest vegetation. Climate change has been predicted to alter belowground plant-allocated C which may cause compositional shifts in soil microbial communities, and it has been hypothesized that this community change will influence C mitigation in forest ecosystems. Some 10,000 species of ectomycorrhizal fungi are currently recognized, some of which are host specific and will only associate with a single tree species, for example, Suillus grevillei with larch. Mycorrhizae are a strong sink for plant C, differences in mycorrhizal anatomy, particularly the presence and extent of emanating hyphae, can affect the amount of plant C allocated to these assemblages. Mycorrhizal morphology affects not only spatial distribution of C in forests, but also differences in the longevity of these diverse structures may have important consequences for C sequestration in soil. Mycorrhizal growth form has been used to group fungi into distinctive functional groups that vary qualitatively and spatially in their foraging and nutrient acquiring potential. Through new genomic techniques we are beginning to understand the mechanisms involved in the specificity and selection of ectomycorrhizal associations though much less is known about arbuscular mycorrhizal associations. In this review we examine evidence for tree species- mycorrhizal specificity, and the mechanisms involved (e.g., signal compounds). We also explore what is known about the effects of these associations and interactions with other soil organisms on the quality and quantity of C flow into the mycorrhizosphere (the area under the influence of mycorrhizal root tips), including spatial and seasonal variations. The enormity of the mycorrhizosphere biome in forests and its potential to sequester substantial C belowground highlights the vital importance of increasing our knowledge of the dynamics of the different mycorrhizal functional groups in diverse forests. PMID:24917855
Optimal Time-Resource Allocation for Energy-Efficient Physical Activity Detection
Thatte, Gautam; Li, Ming; Lee, Sangwon; Emken, B. Adar; Annavaram, Murali; Narayanan, Shrikanth; Spruijt-Metz, Donna; Mitra, Urbashi
2011-01-01
The optimal allocation of samples for physical activity detection in a wireless body area network for health-monitoring is considered. The number of biometric samples collected at the mobile device fusion center, from both device-internal and external Bluetooth heterogeneous sensors, is optimized to minimize the transmission power for a fixed number of samples, and to meet a performance requirement defined using the probability of misclassification between multiple hypotheses. A filter-based feature selection method determines an optimal feature set for classification, and a correlated Gaussian model is considered. Using experimental data from overweight adolescent subjects, it is found that allocating a greater proportion of samples to sensors which better discriminate between certain activity levels can result in either a lower probability of error or energy-savings ranging from 18% to 22%, in comparison to equal allocation of samples. The current activity of the subjects and the performance requirements do not significantly affect the optimal allocation, but employing personalized models results in improved energy-efficiency. As the number of samples is an integer, an exhaustive search to determine the optimal allocation is typical, but computationally expensive. To this end, an alternate, continuous-valued vector optimization is derived which yields approximately optimal allocations and can be implemented on the mobile fusion center due to its significantly lower complexity. PMID:21796237
The contribution of fine roots to peatland stability under changing environmental conditions
NASA Astrophysics Data System (ADS)
Malhotra, A.; Brice, D. J.; Childs, J.; Phillips, J.; Hanson, P. J.; Iversen, C. M.
2017-12-01
Fine-root production and traits are closely linked with ecosystem nutrient and water fluxes, and may regulate these fluxes in response to environmental change. Plant strategies can shift to favoring below- over aboveground biomass allocation when nutrients or moisture are limited. Fine-roots traits such as root tissue density (RTD) or specific root length (SRL) can also adapt to the environment, for example, by maximizing the area of soil exploited by decreasing RTD and increasing SRL during dry conditions. Fine-root trait plasticity could contribute to the stability of peatland carbon function in response to environmental change. However, the extent and mechanisms of peatland fine-root plasticity are unknown. We investigated fine-root growth and traits and their link to environmental factors and aboveground dynamics at SPRUCE (Spruce and Peatland Responses Under Changing Environments), a warming and elevated CO2 (eCO2) experiment in an ombrotrophic peatland. In the first growing season of whole ecosystem warming, fine-root production increased with warming and drying. Above- versus belowground allocation strategies varied by plant functional type (PFT). In shrubs, contrary to our expectation, aboveground- to fine-root production allocation ratio increased with dryer conditions, perhaps as a response to a concurrent increase in nutrients. Trait response hypotheses were largely supported, with RTD decreasing and SRL increasing with warming; however, response varied among PFTs. Once eCO2 was turned on in the second growing season, preliminary results suggest interactive effects of warming and eCO2 on total fine-root production: production decreased or increased with warming in ambient or elevated CO2 plots, respectively. Both trait and production responses to warming and eCO2 varied by microtopography and depth. Our results highlight plasticity of fine-root traits and biomass allocation strategies; the extent and mechanism of which varies by PFT. We will summarize our results using a trait-based approach as a first step toward modeling fine-root contributions to peatland carbon stability in response to environmental change.
ERIC Educational Resources Information Center
Dolan, Janice; Ndaruhutse, Susy
2011-01-01
In recent years, Save the Children, a non-governmental organization, prioritized education for children affected by conflict through its Rewrite the Future Campaign. By significantly scaling up the resources allocated to programmes in conflict-affected countries, the organization has grown its education programmes in these contexts. Thus it has…
Rick G. Kelsey; D. Gallego; F.J. Sánchez-Garcia; J.A. Pajares
2014-01-01
Tree mortality from temperature-driven drought is occurring in forests around the world, often in conjunction with bark beetle outbreaks when carbon allocation to tree defense declines. Physiological metrics for detecting stressed trees with enhanced vulnerability prior to bark beetle attacks remain elusive. Ethanol, water, monoterpene concentrations, and composition...
David R. Coyle; Mark D. Coleman
2005-01-01
Production increases in intensively managed forests have been obtained by improving resource availability through water and nutrient amendments. Increased stem production has been attributed to shifts in growth from roots to shoot, and such shifts would have important implications for below ground carbon sequestration. We examined above and below ground growth and...
Michael J. Aspinwall; John S. King; Steven E. McKeand; Jean-Christophe Domec
2011-01-01
Variation in leaf-level gas exchange among widely planted genetically improved loblolly pine (Pinus taeda L.) genotypes could impact stand-level water use, carbon assimilation, biomass production, C allocation, ecosystem sustainability and biogeochemical cycling under changing environmental conditions. We examined uniformity in leaf-level light-saturated photosynthesis...
Charles O. Sabatia; Rodney E. Will; Thomas B. Lynch
2010-01-01
In traditional harvesting systems, yield of forest stands may increase if a greater proportion of net primary production is allocated to bole wood. However, for management related to whole-tree harvesting, carbon sequestration, biofuels, and wildland fire avoidance, assessments of biomass partitioning to all aboveground components is needed. Thinning increases bole...
The influence of nutrient and water availability on carbohydrate storage in loblolly pine
K.H. Ludovici; H.L. Allen; T.J. Albaugh; P.M. Dougherty
2002-01-01
We quantified the effects of nutrient and water availability on monthly whole-tree carbohydrate budgets and determined allocation patterns of storage carbohydrates in loblolly pine (Pinus taeda) to test site resource impacts on internal carbon (C) storage. A factorial combination of two nutrient and two irrigation treatments were imposed on a 7-year...
USDA-ARS?s Scientific Manuscript database
More than 50% of the world’s soil C stocks reside below 30 cm, but relatively little is known about the importance of rhizodeposit C and associated microbial communities in deep soil processes. Phenotypic variability in plant root biomass could impact C cycling through belowground plant allocation,...
USDA-ARS?s Scientific Manuscript database
• The common mycorrhizal networks (CMN) of arbuscular mycorrhizal (AM) fungi in the soil provide multiple host plants with nutrients, but the mechanisms by which the nutrient transport to individual host plants within one CMN is controlled, are currently unknown. • We followed by radioactive and st...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-20
... listed below: 1. Equity Infusions In the investigation of HRS, we found that the GOB had granted subsidies in the form of equity infusions to USIMINAS from 1983 through 1988, and to COSIPA from 1983 through 1989, and in 1991. The countervailable benefits from those equity infusions were fully allocated...
Katherine A. McCulloh; Frederick C. Meinzer; John S. Sperry; Barbara Lachenbruch; Steven L. Voelker; David R. Woodruff; Jean-Christophe Domec
2011-01-01
Plant hydraulic architecture (PHA) has been linked to water transport sufficiency, photosynthetic rates, growth form and attendant carbon allocation. Despite its influence on traits central to conferring an overall competitive advantage in a given environment, few studies have examined whether key aspects of PHA are indicative of successional stage, especially within...
Nutrient availability constrains the hydraulic architecture and water relations of savannah trees.
S.J. Bucci; F.G. Scholz; G. Goldstein; F.C. Meinzer; A.C. Franco; P.I. Campanello; R. Villalobos-Vega; M. Bustamante; F. Miralles-Wilhelm
2006-01-01
Several plant functional traits were studied in five dominant woody savanna species in a Brazilian savanna to determine whether removal of nutrient limitations has an effect on carbon allocation, water relations, and hydraulic architecture. Four treatments consisting of a control, and nitrogen (N), phosphorus (P), and N plus P additions were maintained for 5 years....
Lu, Juan J; Tan, Dun Y; Baskin, Jerry M; Baskin, Carol C
2014-01-01
Seed morph, abiotic conditions and time of germination can affect plant fitness, but few studies have tested their combined effects on plasticity of plant life history traits. Thus, we tested the hypothesis that seed morph, germination season and watering regime influence phenotypic expression of post-germination life history traits in the diaspore-heteromorphic cold desert winter annual/spring ephemeral Diptychocarpus strictus. The two seed morphs were sown in watered and non-watered plots in late summer, and plants derived from them were watered or not-watered throughout the study. Seed morph did not affect phenology, growth and morphology, survival, dry mass accumulation and allocation or silique and seed production. Seeds in watered plots germinated in autumn (AW) and spring (SW) but only in spring for non-watered plots (SNW). A high percentage of AW, SW and SNW plants survived and reproduced, but flowering date and flowering period of autumn- vs. spring-germinated plants differed. Dry mass also differed with germination season/watering regime (AW > SW > SNW). Number of siliques and seeds increased with plant size (AW > SW > SNW), whereas percent dry mass allocated to reproduction was higher in small plants: SNW > SW > AW. Thus, although seed morph did not affect the expression of life history traits, germination season and watering regime significantly affected phenology, plant size and accumulation and allocation of biomass to reproduction. Flexibility throughout the life cycle of D. strictus is an adaptation to the variation in timing and amount of rainfall in its cold desert habitat.
Human footprint affects US carbon balance more than climate change
Bachelet, Dominique; Ferschweiler, Ken; Sheehan, Tim; Baker, Barry; Sleeter, Benjamin M.; Zhu, Zhiliang
2017-01-01
The MC2 model projects an overall increase in carbon capture in conterminous United States during the 21st century while also simulating a rise in fire causing much carbon loss. Carbon sequestration in soils is critical to prevent carbon losses from future disturbances, and we show that natural ecosystems store more carbon belowground than managed systems do. Natural and human-caused disturbances affect soil processes that shape ecosystem recovery and competitive interactions between native, exotics, and climate refugees. Tomorrow's carbon budgets will depend on how land use, natural disturbances, and climate variability will interact and affect the balance between carbon capture and release.
Society and the Carbon Cycle: A Social Science Perspective
NASA Astrophysics Data System (ADS)
Romero-Lankao, P.
2017-12-01
Societal activities, actions, and practices affect the carbon cycle and the climate of North America in complex ways. Carbon is a key component for the functioning of croplands, grasslands, forests. Carbon fuels our industry, transportation (vehicles and roadways), buildings, and other structures. Drawing on results from the SOCCR-2, this presentation uses a social science perspective to address three scientific questions. How do human actions and activities affect the carbon cycle? How human systems such as cities, agricultural field and forests are affected by changes in the carbon cycle? How is carbon management enabled and constraint by socio-political dynamics?
Performance Evaluation Model for Application Layer Firewalls.
Xuan, Shichang; Yang, Wu; Dong, Hui; Zhang, Jiangchuan
2016-01-01
Application layer firewalls protect the trusted area network against information security risks. However, firewall performance may affect user experience. Therefore, performance analysis plays a significant role in the evaluation of application layer firewalls. This paper presents an analytic model of the application layer firewall, based on a system analysis to evaluate the capability of the firewall. In order to enable users to improve the performance of the application layer firewall with limited resources, resource allocation was evaluated to obtain the optimal resource allocation scheme in terms of throughput, delay, and packet loss rate. The proposed model employs the Erlangian queuing model to analyze the performance parameters of the system with regard to the three layers (network, transport, and application layers). Then, the analysis results of all the layers are combined to obtain the overall system performance indicators. A discrete event simulation method was used to evaluate the proposed model. Finally, limited service desk resources were allocated to obtain the values of the performance indicators under different resource allocation scenarios in order to determine the optimal allocation scheme. Under limited resource allocation, this scheme enables users to maximize the performance of the application layer firewall.
Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions
2017-01-01
Multi-robot task allocation is one of the main problems to address in order to design a multi-robot system, very especially when robots form coalitions that must carry out tasks before a deadline. A lot of factors affect the performance of these systems and among them, this paper is focused on the physical interference effect, produced when two or more robots want to access the same point simultaneously. To our best knowledge, this paper presents the first formal description of multi-robot task allocation that includes a model of interference. Thanks to this description, the complexity of the allocation problem is analyzed. Moreover, the main contribution of this paper is to provide the conditions under which the optimal solution of the aforementioned allocation problem can be obtained solving an integer linear problem. The optimal results are compared to previous allocation algorithms already proposed by the first two authors of this paper and with a new method proposed in this paper. The results obtained show how the new task allocation algorithms reach up more than an 80% of the median of the optimal solution, outperforming previous auction algorithms with a huge reduction of the execution time. PMID:28118384