Science.gov

Sample records for affects cell shape

  1. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics.

    PubMed

    Rosero, Amparo; Oulehlová, Denisa; Stillerová, Lenka; Schiebertová, Petra; Grunt, Michal; Žárský, Viktor; Cvrčková, Fatima

    2016-03-01

    Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development. PMID:26738547

  2. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics.

    PubMed

    Rosero, Amparo; Oulehlová, Denisa; Stillerová, Lenka; Schiebertová, Petra; Grunt, Michal; Žárský, Viktor; Cvrčková, Fatima

    2016-03-01

    Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development.

  3. Light Quantity Affects the Regulation of Cell Shape in Fremyella diplosiphon

    PubMed Central

    Pattanaik, Bagmi; Whitaker, Melissa J.; Montgomery, Beronda L.

    2012-01-01

    In some cyanobacteria, the color or prevalent wavelengths of ambient light can impact the protein or pigment composition of the light-harvesting complexes. In some cases, light color or quality impacts cellular morphology. The significance of changes in pigmentation is associated strongly with optimizing light absorption for photosynthesis, whereas the significance of changes in light quality-dependent cellular morphology is less well understood. In natural aquatic environments, light quality and intensity change simultaneously at varying depths of the water column. Thus, we hypothesize that changes in morphology that also have been attributed to differences in the prevalent wavelengths of available light may largely be associated with changes in light intensity. Fremyella diplosiphon shows highly reproducible light-dependent changes in pigmentation and morphology. Under red light (RL), F. diplosiphon cells are blue-green in color, due to the accumulation of high levels of phycocyanin, a RL-absorbing pigment in the light-harvesting complexes or phycobilisomes (PBSs), and the shape of cells are short and rounded. Conversely, under green light (GL), F. diplosiphon cells are red in color due to accumulation of GL-absorbing phycoerythrin in PBSs, and are longer and brick-shaped. GL is enriched at lower depths in the water column, where overall levels of light also are reduced, i.e., to 10% or less of the intensity found at the water surface. We hypothesize that longer cells under low light intensities at increasing depths in the water column, which are generally also enriched in green wavelengths, are associated with greater levels of total photosynthetic pigments in the thylakoid membranes. To test this hypothesis, we grew F. diplosiphon under increasing intensities of GL and observed whether the length of cells diminished due to reduced pressure to maintain larger cells and the associated increased photosynthetic membrane capacity under high light intensity

  4. Collagen Substrate Stiffness Anisotropy Affects Cellular Elongation, Nuclear Shape, and Stem Cell Fate toward Anisotropic Tissue Lineage.

    PubMed

    Islam, Anowarul; Younesi, Mousa; Mbimba, Thomas; Akkus, Ozan

    2016-09-01

    Rigidity of substrates plays an important role in stem cell fate. Studies are commonly carried out on isotropically stiff substrate or substrates with unidirectional stiffness gradients. However, many native tissues are anisotropically stiff and it is unknown whether controlled presentation of stiff and compliant material axes on the same substrate governs cytoskeletal and nuclear morphology, as well as stem cell differentiation. In this study, electrocompacted collagen sheets are stretched to varying degrees to tune the stiffness anisotropy (SA) in the range of 1 to 8, resulting in stiff and compliant material axes orthogonal to each other. The cytoskeletal aspect ratio increased with increasing SA by about fourfold. Such elongation was absent on cellulose acetate replicas of aligned collagen surfaces indicating that the elongation was not driven by surface topography. Mesenchymal stem cells (MSCs) seeded on varying anisotropy sheets displayed a dose-dependent upregulation of tendon-related markers such as Mohawk and Scleraxis. After 21 d of culture, highly anisotropic sheets induced greater levels of production of type-I, type-III collagen, and thrombospondin-4. Therefore, SA has direct effects on MSC differentiation. These findings may also have ramifications of stem cell fate on other anisotropically stiff tissues, such as skeletal/cardiac muscles, ligaments, and bone.

  5. Collagen Substrate Stiffness Anisotropy Affects Cellular Elongation, Nuclear Shape, and Stem Cell Fate toward Anisotropic Tissue Lineage.

    PubMed

    Islam, Anowarul; Younesi, Mousa; Mbimba, Thomas; Akkus, Ozan

    2016-09-01

    Rigidity of substrates plays an important role in stem cell fate. Studies are commonly carried out on isotropically stiff substrate or substrates with unidirectional stiffness gradients. However, many native tissues are anisotropically stiff and it is unknown whether controlled presentation of stiff and compliant material axes on the same substrate governs cytoskeletal and nuclear morphology, as well as stem cell differentiation. In this study, electrocompacted collagen sheets are stretched to varying degrees to tune the stiffness anisotropy (SA) in the range of 1 to 8, resulting in stiff and compliant material axes orthogonal to each other. The cytoskeletal aspect ratio increased with increasing SA by about fourfold. Such elongation was absent on cellulose acetate replicas of aligned collagen surfaces indicating that the elongation was not driven by surface topography. Mesenchymal stem cells (MSCs) seeded on varying anisotropy sheets displayed a dose-dependent upregulation of tendon-related markers such as Mohawk and Scleraxis. After 21 d of culture, highly anisotropic sheets induced greater levels of production of type-I, type-III collagen, and thrombospondin-4. Therefore, SA has direct effects on MSC differentiation. These findings may also have ramifications of stem cell fate on other anisotropically stiff tissues, such as skeletal/cardiac muscles, ligaments, and bone. PMID:27377355

  6. Shape determination in motile cells

    NASA Astrophysics Data System (ADS)

    Mogilner, Alex

    2010-03-01

    Flat, simple shaped, rapidly gliding fish keratocyte cell is the model system of choice to study cell motility. The cell motile appendage, lamellipod, has a characteristic bent-rectangular shape. Recent experiments showed that the lamellipodial geometry is tightly correlated with cell speed and with actin dynamics. These quantitative data combined with computational modeling suggest that a model for robust actin treadmill inside the 'unstretchable membrane bag'. According to this model, a force balance between membrane tension and growing and pushing actin network distributed unevenly along the cell periphery can explain the cell shape and motility. However, when adhesion of the cell to the surface weakens, the actin dynamics become less regular, and myosin-powered contraction starts playing crucial role in stabilizing the cell shape. I will illustrate how the combination of theoretical and experimental approaches helped to unravel the keratocyte motile behavior.

  7. Engineering Cell Shape and Function

    NASA Astrophysics Data System (ADS)

    Singhvi, Rahul; Kumar, Amit; Lopez, Gabriel P.; Stephanopoulos, Gregory N.; Wang, Daniel I. C.; Whitesides, George M.; Ingber, Donald E.

    1994-04-01

    An elastomeric stamp, containing defined features on the micrometer scale, was used to imprint gold surfaces with specific patterns of self-assembled monolayers of alkanethiols and, thereby, to create islands of defined shape and size that support extracellular matrix protein adsorption and cell attachment. Through this technique, it was possible to place cells in predetermined locations and arrays, separated by defined distances, and to dictate their shape. Limiting the degree of cell extension provided control over cell growth and protein secretion. This method is experimentally simple and highly adaptable. It should be useful for applications in biotechnology that require analysis of individual cells cultured at high density or repeated access to cells placed in specified locations.

  8. The Shape Bias Is Affected by Differing Similarity among Objects

    ERIC Educational Resources Information Center

    Tek, Saime; Jaffery, Gul; Swensen, Lauren; Fein, Deborah; Naigles, Letitia R.

    2012-01-01

    Previous research has demonstrated that visual properties of objects can affect shape-based categorization in a novel-name extension task; however, we still do not know how a relationship between visual properties of objects affects judgments in a novel-name extension task. We examined effects of increased visual similarity among the target and…

  9. Emergent Properties of Patch Shapes Affect Edge Permeability to Animals

    PubMed Central

    Nams, Vilis O.

    2011-01-01

    Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance. PMID:21747965

  10. Geometric control of bacterial cell shape

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua

    2014-03-01

    How bacteria grow into specific, 3D shapes remains a central mystery in microbiology. We have developed an imaging and analysis pipeline to simultaneously probe the shape of cells and the localization of proteins in 3D during growth. We find evidence for feedback between the local geometry of the cell, localization of key morphological proteins, and cell growth that helps to ensure the maintenance of rod-shape in elongating Escherichia coli cells.

  11. Focal Length Affects Depicted Shape and Perception of Facial Images.

    PubMed

    Třebický, Vít; Fialová, Jitka; Kleisner, Karel; Havlíček, Jan

    2016-01-01

    Static photographs are currently the most often employed stimuli in research on social perception. The method of photograph acquisition might affect the depicted subject's facial appearance and thus also the impression of such stimuli. An important factor influencing the resulting photograph is focal length, as different focal lengths produce various levels of image distortion. Here we tested whether different focal lengths (50, 85, 105 mm) affect depicted shape and perception of female and male faces. We collected three portrait photographs of 45 (22 females, 23 males) participants under standardized conditions and camera setting varying only in the focal length. Subsequently, the three photographs from each individual were shown on screen in a randomized order using a 3-alternative forced-choice paradigm. The images were judged for attractiveness, dominance, and femininity/masculinity by 369 raters (193 females, 176 males). Facial width-to-height ratio (fWHR) was measured from each photograph and overall facial shape was analysed employing geometric morphometric methods (GMM). Our results showed that photographs taken with 50 mm focal length were rated as significantly less feminine/masculine, attractive, and dominant compared to the images taken with longer focal lengths. Further, shorter focal lengths produced faces with smaller fWHR. Subsequent GMM revealed focal length significantly affected overall facial shape of the photographed subjects. Thus methodology of photograph acquisition, focal length in this case, can significantly affect results of studies using photographic stimuli perhaps due to different levels of perspective distortion that influence shapes and proportions of morphological traits.

  12. Biophysical Measurements of Bacterial Cell Shape.

    PubMed

    Nguyen, Jeffrey P; Bratton, Benjamin P; Shaevitz, Joshua W

    2016-01-01

    A bacteria's shape plays a large role in determining its mechanism of motility, energy requirements, and ability to avoid predation. Although it is a major factor in cell fitness, little is known about how cell shape is determined or maintained. These problems are made worse by a lack of accurate methods to measure cell shape in vivo, as current methods do not account for blurring artifacts introduced by the microscope. Here, we introduce a method using 2D active surfaces and forward convolution with a measured point spread function to measure the 3D shape of different strains of E. coli from fluorescent images. Using this technique, we are also able to measure the distribution of fluorescent molecules, such as polymers, on the cell surface. This quantification of the surface geometry and fluorescence distribution allow for a more precise measure of 3D cell shape and is a useful tool for measuring protein localization and the mechanisms of bacterial shape control. PMID:27311676

  13. Plant cell shape: modulators and measurements

    PubMed Central

    Ivakov, Alexander; Persson, Staffan

    2013-01-01

    Plant cell shape, seen as an integrative output, is of considerable interest in various fields, such as cell wall research, cytoskeleton dynamics and biomechanics. In this review we summarize the current state of knowledge on cell shape formation in plants focusing on shape of simple cylindrical cells, as well as in complex multipolar cells such as leaf pavement cells and trichomes. We summarize established concepts as well as recent additions to the understanding of how cells construct cell walls of a given shape and the underlying processes. These processes include cell wall synthesis, activity of the actin and microtubule cytoskeletons, in particular their regulation by microtubule associated proteins, actin-related proteins, GTP'ases and their effectors, as well as the recently-elucidated roles of plant hormone signaling and vesicular membrane trafficking. We discuss some of the challenges in cell shape research with a particular emphasis on quantitative imaging and statistical analysis of shape in 2D and 3D, as well as novel developments in this area. Finally, we review recent examples of the use of novel imaging techniques and how they have contributed to our understanding of cell shape formation. PMID:24312104

  14. Focal Length Affects Depicted Shape and Perception of Facial Images.

    PubMed

    Třebický, Vít; Fialová, Jitka; Kleisner, Karel; Havlíček, Jan

    2016-01-01

    Static photographs are currently the most often employed stimuli in research on social perception. The method of photograph acquisition might affect the depicted subject's facial appearance and thus also the impression of such stimuli. An important factor influencing the resulting photograph is focal length, as different focal lengths produce various levels of image distortion. Here we tested whether different focal lengths (50, 85, 105 mm) affect depicted shape and perception of female and male faces. We collected three portrait photographs of 45 (22 females, 23 males) participants under standardized conditions and camera setting varying only in the focal length. Subsequently, the three photographs from each individual were shown on screen in a randomized order using a 3-alternative forced-choice paradigm. The images were judged for attractiveness, dominance, and femininity/masculinity by 369 raters (193 females, 176 males). Facial width-to-height ratio (fWHR) was measured from each photograph and overall facial shape was analysed employing geometric morphometric methods (GMM). Our results showed that photographs taken with 50 mm focal length were rated as significantly less feminine/masculine, attractive, and dominant compared to the images taken with longer focal lengths. Further, shorter focal lengths produced faces with smaller fWHR. Subsequent GMM revealed focal length significantly affected overall facial shape of the photographed subjects. Thus methodology of photograph acquisition, focal length in this case, can significantly affect results of studies using photographic stimuli perhaps due to different levels of perspective distortion that influence shapes and proportions of morphological traits. PMID:26894832

  15. Focal Length Affects Depicted Shape and Perception of Facial Images

    PubMed Central

    Třebický, Vít; Fialová, Jitka; Kleisner, Karel; Havlíček, Jan

    2016-01-01

    Static photographs are currently the most often employed stimuli in research on social perception. The method of photograph acquisition might affect the depicted subject’s facial appearance and thus also the impression of such stimuli. An important factor influencing the resulting photograph is focal length, as different focal lengths produce various levels of image distortion. Here we tested whether different focal lengths (50, 85, 105 mm) affect depicted shape and perception of female and male faces. We collected three portrait photographs of 45 (22 females, 23 males) participants under standardized conditions and camera setting varying only in the focal length. Subsequently, the three photographs from each individual were shown on screen in a randomized order using a 3-alternative forced-choice paradigm. The images were judged for attractiveness, dominance, and femininity/masculinity by 369 raters (193 females, 176 males). Facial width-to-height ratio (fWHR) was measured from each photograph and overall facial shape was analysed employing geometric morphometric methods (GMM). Our results showed that photographs taken with 50 mm focal length were rated as significantly less feminine/masculine, attractive, and dominant compared to the images taken with longer focal lengths. Further, shorter focal lengths produced faces with smaller fWHR. Subsequent GMM revealed focal length significantly affected overall facial shape of the photographed subjects. Thus methodology of photograph acquisition, focal length in this case, can significantly affect results of studies using photographic stimuli perhaps due to different levels of perspective distortion that influence shapes and proportions of morphological traits. PMID:26894832

  16. Modeling cell shape and dynamics on micropatterns

    PubMed Central

    Albert, Philipp J.; Schwarz, Ulrich S.

    2016-01-01

    ABSTRACT Adhesive micropatterns have become a standard tool to study cells under defined conditions. Applications range from controlling the differentiation and fate of single cells to guiding the collective migration of cell sheets. In long-term experiments, single cell normalization is challenged by cell division. For all of these setups, mathematical models predicting cell shape and dynamics can guide pattern design. Here we review recent advances in predicting and explaining cell shape, traction forces and dynamics on micropatterns. Starting with contour models as the simplest approach to explain concave cell shapes, we move on to network and continuum descriptions as examples for static models. To describe dynamic processes, cellular Potts, vertex and phase field models can be used. Different types of model are appropriate to address different biological questions and together, they provide a versatile tool box to predict cell behavior on micropatterns. PMID:26838278

  17. Shape of growth cells in directional solidification.

    PubMed

    Pocheau, A; Georgelin, M

    2006-01-01

    The purpose of this study is to characterize experimentally the whole shape of the growth cells displayed in directional solidification and its evolution with respect to control parameters. A library of cells is first built up from observation of directional solidification of a succinonitrile alloy in a large range of pulling velocity, cell spacing, and thermal gradient. Cell boundaries are then extracted from these images and fitted by trial functions on their whole profile, from cell tip to cell grooves. A coherent evolution of the fit parameters with the control parameters is evidenced. It enables us to characterize the whole cell shape by a single function involving only two parameters which vary smoothly in the control parameter space. This, in particular, evidences a continuous evolution of the cell geometry at the cell to dendrite transition which denies the existence of a change of branch of solutions at the occurrence of sidebranching. More generally, this global determination of cell shape complemented with a previous determination of the position of cells in the thermal field (the cell tip undercooling) provides a complete characterization of growth solutions and of their evolutions in this system. It thus brings about a relevant framework for testing and improving theoretical and numerical understanding of cell shapes and cell stability in directional solidification.

  18. Modeling the Shapes of Cells

    ERIC Educational Resources Information Center

    Garimella, Umadevi I.; Robertson, Belinda M.

    2015-01-01

    A solid understanding of the structure and function of cells can help establish the foundation for learning advanced concepts in the biological sciences. The concept of the cell is introduced in middle school life science courses and is continued at the undergraduate level in college (NRC 2012; Reece et al. 2014). Cells are introduced to students…

  19. Membrane tension feedback on shape and motility of eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko

    2016-04-01

    In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell's two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane's bending energy to the shape and integrity of the cell. As in experiments, we investigate two pertinent observables - the cell's velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.

  20. Shape memory polymers for active cell culture.

    PubMed

    Davis, Kevin A; Luo, Xiaofan; Mather, Patrick T; Henderson, James H

    2011-07-04

    Shape memory polymers (SMPs) are a class of "smart" materials that have the ability to change from a fixed, temporary shape to a pre-determined permanent shape upon the application of a stimulus such as heat(1-5). In a typical shape memory cycle, the SMP is first deformed at an elevated temperature that is higher than its transition temperature, T(trans;) [either the melting temperature (T(m;)) or the glass transition temperature (T(g;))]. The deformation is elastic in nature and mainly leads to a reduction in conformational entropy of the constituent network chains (following the rubber elasticity theory). The deformed SMP is then cooled to a temperature below its T(trans;) while maintaining the external strain or stress constant. During cooling, the material transitions to a more rigid state (semi-crystalline or glassy), which kinetically traps or "freezes" the material in this low-entropy state leading to macroscopic shape fixing. Shape recovery is triggered by continuously heating the material through T(trans;) under a stress-free (unconstrained) condition. By allowing the network chains (with regained mobility) to relax to their thermodynamically favored, maximal-entropy state, the material changes from the temporary shape to the permanent shape. Cells are capable of surveying the mechanical properties of their surrounding environment(6). The mechanisms through which mechanical interactions between cells and their physical environment control cell behavior are areas of active research. Substrates of defined topography have emerged as powerful tools in the investigation of these mechanisms. Mesoscale, microscale, and nanoscale patterns of substrate topography have been shown to direct cell alignment, cell adhesion, and cell traction forces(7-14). These findings have underscored the potential for substrate topography to control and assay the mechanical interactions between cells and their physical environment during cell culture, but the substrates used to date

  1. MICROTUBULE BIOGENESIS AND CELL SHAPE IN OCHROMONAS

    PubMed Central

    Brown, David L.; Bouck, G. Benjamin

    1973-01-01

    The proposal made in the preceding paper that the species-specific shape of Ochromonas is mediated by cytoplasmic microtubules which are related to two nucleating sites has been experimentally verified. Exposure of cells to colchicine or hydrostatic pressure causes microtubule disassembly and a correlative loss of cell shape in a posterior to anterior direction. Upon removal of colchicine or release of pressure, cell shape regenerates and microtubules reappear, first in association with the kineto-beak site concomitant with regeneration of the anterior asymmetry, and later at the rhizoplast site concomitant with formation of the posterior tail. It is concluded that two separate sets of cytoplasmic tubules function in formation and maintenance of specific portions of the total cell shape. On the basis of the following observations, we further suggest that the beak and rhizoplast sites could exert control over the position and timing of the appearance, the orientation, and the pattern of microtubule distribution in Ochromonas. (a) the two sites are accurately positioned in the cell relative to other cell organelles; (b) in regenerating cells microtubules reform first at these sites and appear to elongate to the cell posterior; (c) microtubules initially reappear in the orientation characteristic of the fully differentiated cell; (d) the two sets of tubules are polymerized at different times, in the same sequence, during reassembly or resynthesis of the microtubular system. Experiments using cycloheximide, after a treatment with colchicine, have demonstrated that Ochromonas cannot reassume its normal shape without new protein synthesis. This suggests that microtubule protein once exposed to colchicine cannot be reassembled into microtubules. Pressure-treated cells, on the other hand, reassemble tubules and regenerate the normal shape in the presence or absence of cycloheximide. The use of these two agents in analyzing nucleating site function and the independent

  2. How cell death shapes cancer

    PubMed Central

    Labi, V; Erlacher, M

    2015-01-01

    Apoptosis has been established as a mechanism of anti-cancer defense. Members of the BCL-2 family are critical mediators of apoptotic cell death in health and disease, often found to be deregulated in cancer and believed to lead to the survival of malignant clones. However, over the years, a number of studies pointed out that a model in which cell death resistance unambiguously acts as a barrier against malignant disease might be too simple. This is based on paradoxical observations made in tumor patients as well as mouse models indicating that apoptosis can indeed drive tumor formation, at least under certain circumstances. One possible explanation for this phenomenon is that apoptosis can promote proliferation critically needed to compensate for cell loss, for example, upon therapy, and to restore tissue homeostasis. However, this, at the same time, can promote tumor development by allowing expansion of selected clones. Usually, tissue resident stem/progenitor cells are a major source for repopulation, some of them potentially carrying (age-, injury- or therapy-induced) genetic aberrations deleterious for the host. Thereby, apoptosis might drive genomic instability by facilitating the emergence of pathologic clones during phases of proliferation and subsequent replication stress-associated DNA damage. Tumorigenesis initiated by repeated cell attrition and repopulation, as confirmed in different genetic models, has parallels in human cancers, exemplified in therapy-induced secondary malignancies and myelodysplastic syndromes in patients with congenital bone marrow failure syndromes. Here, we aim to review evidence in support of the oncogenic role of stress-induced apoptosis. PMID:25741600

  3. Shape and dynamics of tip growing cells

    NASA Astrophysics Data System (ADS)

    Mahadevan, L.

    2010-03-01

    Walled cells have the ability to remodel their shape while sustaining an internal turgor pressure that can reach many atmospheres. I will describe how we may treat a tip growing cell as an osmotic engine which elongates via the assembly and expansion of cell wall in the apical region of the cell. A simple model that couples transport to growth allows us to determine the radius of the pollen tube and its growth velocity in terms of the turgor pressure and the secretion rate and rheology of the cell wall material, and results in simple scaling laws for the geometry and dynamics of the cell. We find that a single dimensionless parameter, which characterizes the relative roles of cell wall assembly and expansion, is sufficient to explain the observed variability in pollen tube shapes and also provides a framework for the comparative study of pollen tubes and fungal hyphae in an evolutionary context.

  4. Orchestrating immune responses: How size, shape and rigidity affect the immunogenicity of particulate vaccines.

    PubMed

    Benne, Naomi; van Duijn, Janine; Kuiper, Johan; Jiskoot, Wim; Slütter, Bram

    2016-07-28

    Particulate carrier systems are promising drug delivery vehicles for subunit vaccination as they can enhance and direct the type of T cell response. In order to develop vaccines with optimal immunogenicity, a thorough understanding of parameters that could affect the strength and quality of immune responses is required. Pathogens have different dimensions and stimulate the immune system in a specific way. It is therefore not surprising that physicochemical characteristics of particulate vaccines, such as particle size, shape, and rigidity, affect multiple processes that impact their immunogenicity. Among these processes are the uptake of the particles from the site of administration, passage through lymphoid tissue and the uptake, antigen processing and activation of antigen-presenting cells. Herein, we systematically review the role of the size, shape and rigidity of particulate vaccines in enhancing and skewing T cell response and attempted to provide a "roadmap" for rational vaccine design.

  5. Shape-memory surfaces for cell mechanobiology

    NASA Astrophysics Data System (ADS)

    Ebara, Mitsuhiro

    2015-02-01

    Shape-memory polymers (SMPs) are a new class of smart materials, which have the capability to change from a temporary shape ‘A’ to a memorized permanent shape ‘B’ upon application of an external stimulus. In recent years, SMPs have attracted much attention from basic and fundamental research to industrial and practical applications due to the cheap and efficient alternative to well-known metallic shape-memory alloys. Since the shape-memory effect in SMPs is not related to a specific material property of single polymers, the control of nanoarchitecture of polymer networks is particularly important for the smart functions of SMPs. Such nanoarchitectonic approaches have enabled us to further create shape-memory surfaces (SMSs) with tunable surface topography at nano scale. The present review aims to bring together the exciting design of SMSs and the ever-expanding range of their uses as tools to control cell functions. The goal for these endeavors is to mimic the surrounding mechanical cues of extracellular environments which have been considered as critical parameters in cell fate determination. The untapped potential of SMSs makes them one of the most exciting interfaces of materials science and cell mechanobiology.

  6. Physics of cell elasticity, shape and adhesion

    NASA Astrophysics Data System (ADS)

    Safran, S. A.; Gov, N.; Nicolas, A.; Schwarz, U. S.; Tlusty, T.

    2005-07-01

    We review recent theoretical work that analyzes experimental measurements of the shape, fluctuations and adhesion properties of biological cells. Particular emphasis is placed on the role of the cytoskeleton and cell elasticity and we contrast the shape and adhesion of elastic cells with fluid-filled vesicles. In red blood cells (RBC), the cytoskeleton consists of a two-dimensional network of spectrin proteins. Our analysis of the wavevector and frequency dependence of the fluctuation spectrum of RBC indicates that the spectrin network acts as a confining potential that reduces the fluctuations of the lipid bilayer membrane. However, since the cytoskeleton is only sparsely connected to the bilayer, one cannot regard the composite cytoskeleton-membrane as a polymerized object with a shear modulus. The sensitivity of RBC fluctuations and shapes to ATP concentration may reflect topological defects induced in the cytoskeleton network by ATP. The shapes of cells that adhere to a substrate are strongly determined by the cytoskeletal elasticity that can be varied experimentally by drugs that depolymerize the cytoskeleton. This leads to a tension-driven retraction of the cell body and a pearling instability of the resulting ray-like protrusions. Recent experiments have shown that adhering cells exert polarized forces on substrates. The interactions of such “force dipoles” in either bulk gels or on surfaces can be used to predict the nature of self-assembly of cell aggregates and may be important in the formation of artificial tissues. Finally, we note that cell adhesion strongly depends on the forces exerted on the adhesion sites by the tension of the cytoskeleton. The size and shape of the adhesion regions are strongly modified as the tension is varied and we present an elastic model that relates this tension to deformations that induce the recruitment of new molecules to the adhesion region. In all these examples, cell shape and adhesion differ from vesicle shape and

  7. Moving Cell Boundaries Drive Nuclear Shaping during Cell Spreading

    PubMed Central

    Li, Yuan; Lovett, David; Zhang, Qiao; Neelam, Srujana; Kuchibhotla, Ram Anirudh; Zhu, Ruijun; Gundersen, Gregg G.; Lele, Tanmay P.; Dickinson, Richard B.

    2015-01-01

    The nucleus has a smooth, regular appearance in normal cells, and its shape is greatly altered in human pathologies. Yet, how the cell establishes nuclear shape is not well understood. We imaged the dynamics of nuclear shaping in NIH3T3 fibroblasts. Nuclei translated toward the substratum and began flattening during the early stages of cell spreading. Initially, nuclear height and width correlated with the degree of cell spreading, but over time, reached steady-state values even as the cell continued to spread. Actomyosin activity, actomyosin bundles, microtubules, and intermediate filaments, as well as the LINC complex, were all dispensable for nuclear flattening as long as the cell could spread. Inhibition of actin polymerization as well as myosin light chain kinase with the drug ML7 limited both the initial spreading of cells and flattening of nuclei, and for well-spread cells, inhibition of myosin-II ATPase with the drug blebbistatin decreased cell spreading with associated nuclear rounding. Together, these results show that cell spreading is necessary and sufficient to drive nuclear flattening under a wide range of conditions, including in the presence or absence of myosin activity. To explain this observation, we propose a computational model for nuclear and cell mechanics that shows how frictional transmission of stress from the moving cell boundaries to the nuclear surface shapes the nucleus during early cell spreading. Our results point to a surprisingly simple mechanical system in cells for establishing nuclear shapes. PMID:26287620

  8. Atomic Force Microscopy Based Cell Shape Index

    NASA Astrophysics Data System (ADS)

    Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia

    2013-03-01

    Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.

  9. A Bacterial Cell Shape-Determining Inhibitor.

    PubMed

    Liu, Yanjie; Frirdich, Emilisa; Taylor, Jennifer A; Chan, Anson C K; Blair, Kris M; Vermeulen, Jenny; Ha, Reuben; Murphy, Michael E P; Salama, Nina R; Gaynor, Erin C; Tanner, Martin E

    2016-04-15

    Helicobacter pylori and Campylobacter jejuni are human pathogens and causative agents of gastric ulcers/cancer and gastroenteritis, respectively. Recent studies have uncovered a series of proteases that are responsible for maintaining the helical shape of these organisms. The H. pylori metalloprotease Csd4 and its C. jejuni homologue Pgp1 cleave the amide bond between meso-diaminopimelate and iso-d-glutamic acid in truncated peptidoglycan side chains. Deletion of either csd4 or pgp1 results in bacteria with a straight rod phenotype, a reduced ability to move in viscous media, and reduced pathogenicity. In this work, a phosphinic acid-based pseudodipeptide inhibitor was designed to act as a tetrahedral intermediate analog against the Csd4 enzyme. The phosphinic acid was shown to inhibit the cleavage of the alternate substrate, Ac-l-Ala-iso-d-Glu-meso-Dap, with a Ki value of 1.5 μM. Structural analysis of the Csd4-inhibitor complex shows that the phosphinic acid displaces the zinc-bound water and chelates the metal in a bidentate fashion. The phosphinate oxygens also interact with the key acid/base residue, Glu222, and the oxyanion-stabilizing residue, Arg86. The results are consistent with the "promoted-water pathway" mechanism for carboxypeptidase A catalysis. Studies on cultured bacteria showed that the inhibitor causes significant cell straightening when incubated with H. pylori at millimolar concentrations. A diminished, yet observable, effect on the morphology of C. jejuni was also apparent. Cell straightening was more pronounced with an acapsular C. jejuni mutant strain compared to the wild type, suggesting that the capsule impaired inhibitor accessibility. These studies demonstrate that a highly polar compound is capable of crossing the outer membrane and altering cell shape, presumably by inhibiting cell shape determinant proteases. Peptidoglycan proteases acting as cell shape determinants represent novel targets for the development of antimicrobials

  10. MICROTUBULE BIOGENESIS AND CELL SHAPE IN OCHROMONAS

    PubMed Central

    Bouck, G. Benjamin; Brown, David L.

    1973-01-01

    In the first of two companion papers which attempt to correlate microtubules and their nucleating sites with developmental and cell division patterns in the unicellular flagellate, Ochromonas, the distribution of cytoplasmic and mitotic microtubules and various kinetosome-related fibers are detailed. Of the five kinetosome-related fibers, which have been found in Ochromonas, two, the kineto-beak fibers and the rhizoplast fibers are utilized as attachment sites for distinct groups of microtubules. The set of microtubules attached to the kineto-beak fibers apparently shape the anterior beak region of the cell whereas the rhizoplast microtubules appear to extend into and shape the tail in vegetative cells. In mitotic cells a rhizoplast is found at each spindle pole apparently serving as foci for the spindle microtubules. These findings are discussed in relation to the less well defined attachment sites for vegetative and mitotic microtubules in other kinds of cells. It is noted that the effects of depolymerizing microtubules in vivo might be easily quantitated in whole populations since no external wall or pellicle contributes to the maintenance or the biogenesis of the characteristic cell form of Ochromonas. PMID:4682900

  11. The Effect of Shape Memory on Red Blood Cell Motions

    NASA Astrophysics Data System (ADS)

    Niu, Xiting; Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2013-11-01

    An elastic spring model is applied to study the effect of the shape memory on the motion of red blood cell in flows. In shear flow, shape memory also plays an important role to obtain all three motions: tumbling, swinging, and tank-treading. In Poiseuille flow, cell has an equilibrium shape as a slipper or parachute depending on capillary number. To ensure the tank-treading motion while in slippery shape, a modified model is proposed by introducing a shape memory coefficient which describes the degree of shape memory in cells. The effect of the coefficient on the cell motion of red blood cell will be presented.

  12. Joint modeling of cell and nuclear shape variation.

    PubMed

    Johnson, Gregory R; Buck, Taraz E; Sullivan, Devin P; Rohde, Gustavo K; Murphy, Robert F

    2015-11-01

    Modeling cell shape variation is critical to our understanding of cell biology. Previous work has demonstrated the utility of nonrigid image registration methods for the construction of nonparametric nuclear shape models in which pairwise deformation distances are measured between all shapes and are embedded into a low-dimensional shape space. Using these methods, we explore the relationship between cell shape and nuclear shape. We find that these are frequently dependent on each other and use this as the motivation for the development of combined cell and nuclear shape space models, extending nonparametric cell representations to multiple-component three-dimensional cellular shapes and identifying modes of joint shape variation. We learn a first-order dynamics model to predict cell and nuclear shapes, given shapes at a previous time point. We use this to determine the effects of endogenous protein tags or drugs on the shape dynamics of cell lines and show that tagged C1QBP reduces the correlation between cell and nuclear shape. To reduce the computational cost of learning these models, we demonstrate the ability to reconstruct shape spaces using a fraction of computed pairwise distances. The open-source tools provide a powerful basis for future studies of the molecular basis of cell organization. PMID:26354424

  13. Preserving cell shape under environmental stress

    PubMed Central

    Cook, Boaz; Hardy, Robert W.; McConnaughey, William B.; Zuker, Charles S.

    2008-01-01

    Maintaining cell shape and tone is crucial for the function and survival of cells and tissues. Mechanotransduction relies on the transformation of minuscule mechanical forces into high-fidelity electrical responses1 2 3. When mechanoreceptors are stimulated, mechanically sensitive cation channels open and produce an inward transduction current that depolarizes the cell. For this process to operate effectively, the transduction machinery has to retain integrity and remain unfailingly independent of environmental changes. This is particularly challenging for poikilothermic organisms, where changes in temperature in the environment may impact the function of mechanoreceptor neurons. Thus, we wondered how insects whose habitat might quickly vary over several tens of degrees of temperature manage to maintain highly effective mechanical senses. We screened for Drosophila mutants with defective mechanical responses at elevated ambient temperatures, and identified a gene, spam, whose role is to protect the mechanosensory organ from massive cellular deformation caused by heat-induced osmotic imbalance. Here, we show that Spam protein forms an extracellular shield that guards mechanosensory neurons from environmental insult. Remarkably, heterologously expressed Spam protein also endowed other cells with superb defense against physically- and chemically-induced deformation. We studied the mechanical impact of Spam-coating and show that spam-coated cells are up to ten times stiffer than uncoated-controls. Together, these results help explain how poikilothermic organisms preserve the architecture of critical cells during environmental stress, and illustrate an elegant and simple solution to such challenge. PMID:18297055

  14. Cell sorting using efficient light shaping approaches

    NASA Astrophysics Data System (ADS)

    Bañas, Andrew; Palima, Darwin; Villangca, Mark; Glückstad, Jesper

    2016-03-01

    Early detection of diseases can save lives. Hence, there is emphasis in sorting rare disease-indicating cells within small dilute quantities such as in the confines of lab-on-a-chip devices. In our work, we use optical forces to isolate red blood cells detected by machine vision. This approach is gentler, less invasive and more economical compared to conventional FACS systems. As cells are less responsive to plastic or glass beads commonly used in the optical manipulation literature, and since laser safety would be an issue in clinical use, we develop efficient approaches in utilizing lasers and light modulation devices. The Generalized Phase Contrast (GPC) method that can be used for efficiently illuminating spatial light modulators or creating well-defined contiguous optical traps is supplemented by diffractive techniques capable of integrating the available light and creating 2D or 3D beam distributions aimed at the positions of the detected cells. Furthermore, the beam shaping freedom provided by GPC can allow optimizations in the beam's propagation and its interaction with the catapulted cells.

  15. How Cells Integrate Complex Stimuli: The Effect of Feedback from Phosphoinositides and Cell Shape on Cell Polarization and Motility

    PubMed Central

    Edelstein-Keshet, Leah

    2012-01-01

    To regulate shape changes, motility and chemotaxis in eukaryotic cells, signal transduction pathways channel extracellular stimuli to the reorganization of the actin cytoskeleton. The complexity of such networks makes it difficult to understand the roles of individual components, let alone their interactions and multiple feedbacks within a given layer and between layers of signalling. Even more challenging is the question of if and how the shape of the cell affects and is affected by this internal spatiotemporal reorganization. Here we build on our previous 2D cell motility model where signalling from the Rho family GTPases (Cdc42, Rac, and Rho) was shown to organize the cell polarization, actin reorganization, shape change, and motility in simple gradients. We extend this work in two ways: First, we investigate the effects of the feedback between the phosphoinositides (PIs) , and Rho family GTPases. We show how that feedback increases heights and breadths of zones of Cdc42 activity, facilitating global communication between competing cell “fronts”. This hastens the commitment to a single lamellipodium initiated in response to multiple, complex, or rapidly changing stimuli. Second, we show how cell shape feeds back on internal distribution of GTPases. Constraints on chemical isocline curvature imposed by boundary conditions results in the fact that dynamic cell shape leads to faster biochemical redistribution when the cell is repolarized. Cells with frozen cytoskeleton, and static shapes, consequently respond more slowly to reorienting stimuli than cells with dynamic shape changes, the degree of the shape-induced effects being proportional to the extent of cell deformation. We explain these concepts in the context of several in silico experiments using our 2D computational cell model. PMID:22396633

  16. Cell Autonomous Shape Changes in Germband Retraction

    NASA Astrophysics Data System (ADS)

    Lynch, Holley; Kim, Elliott; Gish, Robert; Hutson, M. Shane

    2012-02-01

    Germband retraction involves the cohesive movement and regulated cellular mechanics of two tissues on the surface of fruit fly embryos, the germband and the amnioserosa. The germband initially forms a `U' shape, curling from the ventral surface, around the posterior of the embryo, and onto the dorsal surface; the amnioserosa lies between the arms of this `U'. Retraction straightens the germband and leaves it only on the ventral side. During retraction, the germband becomes clearly segmented with deep furrows between segments, and its cells elongate towards the amnioserosa, along what becomes the dorsal-ventral axis. To determine the importance of these changes for the overall movement of the tissues, we observed embryos that did not complete germband retraction due to targeted laser ablation of half the amnioserosa. Without the chemical and mechanical influence of the amnioserosa, germband furrows still formed and germband cells still elongated; however, this elongation was misaligned compared to unablated embryos. Thus, furrow formation and cell elongation in the germband are autonomous, but insufficient to drive proper tissue motion. These results suggest that part of the necessary role of the amnioserosa is proper orientation of germband cell elongation.

  17. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  18. How Follicular Dendritic Cells Shape the B-Cell Antigenome

    PubMed Central

    Kranich, Jan; Krautler, Nike Julia

    2016-01-01

    Follicular dendritic cells (FDCs) are stromal cells residing in primary follicles and in germinal centers of secondary and tertiary lymphoid organs (SLOs and TLOs). There, they play a crucial role in B-cell activation and affinity maturation of antibodies. FDCs have the unique capacity to bind and retain native antigen in B-cell follicles for long periods of time. Therefore, FDCs shape the B-cell antigenome (the sum of all B-cell antigens) in SLOs and TLOs. In this review, we discuss recent findings that explain how this stromal cell type can arise in almost any tissue during TLO formation and, furthermore, focus on the mechanisms of antigen capture and retention involved in the generation of long-lasting antigen depots displayed on FDCs. PMID:27446069

  19. Exploring the function of cell shape and size during mitosis.

    PubMed

    Cadart, Clotilde; Zlotek-Zlotkiewicz, Ewa; Le Berre, Maël; Piel, Matthieu; Matthews, Helen K

    2014-04-28

    Dividing cells almost always adopt a spherical shape. This is true of most eukaryotic cells lacking a rigid cell wall and is observed in tissue culture and single-celled organisms, as well as in cells dividing inside tissues. While the mechanisms underlying this shape change are now well described, the functional importance of the spherical mitotic cell for the success of cell division has been thus far scarcely addressed. Here we discuss how mitotic rounding contributes to spindle assembly and positioning, as well as the potential consequences of abnormal mitotic cell shape and size on chromosome segregation, tissue growth, and cancer.

  20. Newtonian cell interactions shape natural killer cell education.

    PubMed

    Goodridge, Jodie P; Önfelt, Björn; Malmberg, Karl-Johan

    2015-09-01

    Newton's third law of motion states that for every action on a physical object there is an equal and opposite reaction. The dynamic change in functional potential of natural killer (NK) cells during education bears many features of such classical mechanics. Cumulative physical interactions between cells, under a constant influence of homeostatic drivers of differentiation, lead to a reactive spectrum that ultimately shapes the functionality of each NK cell. Inhibitory signaling from an array of self-specific receptors appear not only to suppress self-reactivity but also aid in the persistence of effector functions over time, thereby allowing the cell to gradually build up a functional potential. Conversely, the frequent non-cytolytic interactions between normal cells in the absence of such inhibitory signaling result in continuous stimulation of the cells and attenuation of effector function. Although an innate cell, the degree to which the fate of the NK cell is predetermined versus its ability to adapt to its own environment can be revealed through a Newtonian view of NK cell education, one which is both chronological and dynamic. As such, the development of NK cell functional diversity is the product of qualitatively different physical interactions with host cells, rather than simply the sum of their signals or an imprint based on intrinsically different transcriptional programs.

  1. Newtonian cell interactions shape natural killer cell education.

    PubMed

    Goodridge, Jodie P; Önfelt, Björn; Malmberg, Karl-Johan

    2015-09-01

    Newton's third law of motion states that for every action on a physical object there is an equal and opposite reaction. The dynamic change in functional potential of natural killer (NK) cells during education bears many features of such classical mechanics. Cumulative physical interactions between cells, under a constant influence of homeostatic drivers of differentiation, lead to a reactive spectrum that ultimately shapes the functionality of each NK cell. Inhibitory signaling from an array of self-specific receptors appear not only to suppress self-reactivity but also aid in the persistence of effector functions over time, thereby allowing the cell to gradually build up a functional potential. Conversely, the frequent non-cytolytic interactions between normal cells in the absence of such inhibitory signaling result in continuous stimulation of the cells and attenuation of effector function. Although an innate cell, the degree to which the fate of the NK cell is predetermined versus its ability to adapt to its own environment can be revealed through a Newtonian view of NK cell education, one which is both chronological and dynamic. As such, the development of NK cell functional diversity is the product of qualitatively different physical interactions with host cells, rather than simply the sum of their signals or an imprint based on intrinsically different transcriptional programs. PMID:26284479

  2. Cell shape regulates global histone acetylation in human mammaryepithelial cells

    SciTech Connect

    Le Beyec, Johanne; Xu, Ren; Lee, Sun-Young; Nelson, Celeste M.; Rizki, Aylin; Alcaraz, Jordi; Bissell, Mina J.

    2007-02-28

    Extracellular matrix (ECM) regulates cell morphology and gene expression in vivo; these relationships are maintained in three-dimensional (3D) cultures of mammary epithelial cells. In the presence of laminin-rich ECM (lrECM), mammary epithelial cells round up and undergo global histone deacetylation, a process critical for their functional differentiation. However, it remains unclear whether lrECM-dependent cell rounding and global histone deacetylation are indeed part of a common physical-biochemical pathway. Using 3D cultures as well as nonadhesive and micropatterned substrata, here we showed that the cell 'rounding' caused by lrECM was sufficient to induce deacetylation of histones H3 and H4 in the absence of biochemical cues. Microarray and confocal analysis demonstrated that this deacetylation in 3D culture is associated with a global increase in chromatin condensation and a reduction in gene expression. Whereas cells cultured on plastic substrata formed prominent stress fibers, cells grown in 3D lrECM or on micropatterns lacked these structures. Disruption of the actin cytoskeleton with cytochalasin D phenocopied the lrECM-induced cell rounding and histone deacetylation. These results reveal a novel link between ECM-controlled cell shape and chromatin structure, and suggest that this link is mediated by changes in the actin cytoskeleton.

  3. Rho-kinase Controls Cell Shape Changes during Cytokinesis

    PubMed Central

    Hickson, Gilles R.X.; Echard, Arnaud; O’Farrell, Patrick H.

    2006-01-01

    Summary Background: Animal cell cytokinesis is characterized by a sequence of dramatic cortical rearrangements. How these are coordinated and coupled with mitosis is largely unknown. To explore the initiation of cytokinesis, we focused on the earliest cell shape change, cell elongation, which occurs during anaphase B and prior to cytokinetic furrowing. Results: Using RNAi and live video microscopy in Drosophila S2 cells, we implicate Rho-kinase (Rok) and myosin II in anaphase cell elongation. rok RNAi decreased equatorial myosin II recruitment, prevented cell elongation, and caused a remarkable spindle defect where the spindle poles collided with an unyielding cell cortex and the interpolar microtubules buckled outward as they continued to extend. Disruption of the actin cytoskeleton with Latrunculin A, which abolishes cortical rigidity, suppressed the spindle defect. rok RNAi also affected furrowing, which was delayed and slowed, sometimes distorted, and in severe cases blocked altogether. Co-depletion of the myosin binding subunit (Mbs) of myosin phosphatase, an antagonist of myosin II activation, only partially suppressed the cell-elongation defect and the furrowing delay, but prevented cytokinesis failures induced by prolonged rok RNAi. The marked sensitivity of cell elongation to Rok depletion was highlighted by RNAi to other genes in the Rho pathway, such as pebble, racGAP50C, and diaphanous, which had profound effects on furrowing but lesser effects on elongation. Conclusions: We show that cortical changes underlying cell elongation are more sensitive to depletion of Rok and myosin II, in comparison to other regulators of cytokinesis, and suggest that a distinct regulatory pathway promotes cell elongation. PMID:16488869

  4. Crowded, cell-like environment induces shape changes in aspherical protein

    PubMed Central

    Homouz, Dirar; Perham, Michael; Samiotakis, Antonios; Cheung, Margaret S.; Wittung-Stafshede, Pernilla

    2008-01-01

    How the crowded environment inside cells affects the structures of proteins with aspherical shapes is a vital question because many proteins and protein–protein complexes in vivo adopt anisotropic shapes. Here we address this question by combining computational and experimental studies of a football-shaped protein (i.e., Borrelia burgdorferi VlsE) in crowded, cell-like conditions. The results show that macromolecular crowding affects protein-folding dynamics as well as overall protein shape. In crowded milieus, distinct conformational changes in VlsE are accompanied by secondary structure alterations that lead to exposure of a hidden antigenic region. Our work demonstrates the malleability of “native” proteins and implies that crowding-induced shape changes may be important for protein function and malfunction in vivo. PMID:18697933

  5. Crowded, cell-like environment induces shape changes in aspherical protein.

    PubMed

    Homouz, Dirar; Perham, Michael; Samiotakis, Antonios; Cheung, Margaret S; Wittung-Stafshede, Pernilla

    2008-08-19

    How the crowded environment inside cells affects the structures of proteins with aspherical shapes is a vital question because many proteins and protein-protein complexes in vivo adopt anisotropic shapes. Here we address this question by combining computational and experimental studies of a football-shaped protein (i.e., Borrelia burgdorferi VlsE) in crowded, cell-like conditions. The results show that macromolecular crowding affects protein-folding dynamics as well as overall protein shape. In crowded milieus, distinct conformational changes in VlsE are accompanied by secondary structure alterations that lead to exposure of a hidden antigenic region. Our work demonstrates the malleability of "native" proteins and implies that crowding-induced shape changes may be important for protein function and malfunction in vivo. PMID:18697933

  6. Dynamic Force Balances and Cell Shape Changes during Cytokinesis

    NASA Astrophysics Data System (ADS)

    Sain, Anirban; Inamdar, Mandar M.; Jülicher, Frank

    2015-01-01

    During the division of animal cells, an actomyosin ring is formed in the cell cortex. The contraction of this ring induces shape changes of the cell and the formation of a cytokinesis furrow. In many cases, a cell-cell interface forms that separates the two new cells. Here we present a simple physical description of the cell shape changes and the dynamics of the interface closure, based on force balances involving active stresses and viscous friction. We discuss conditions in which the interface closure is either axially symmetric or asymmetric. We show that our model can account for the observed dynamics of ring contraction and interface closure in the C. elegans embryo.

  7. Dynamic force balances and cell shape changes during cytokinesis.

    PubMed

    Sain, Anirban; Inamdar, Mandar M; Jülicher, Frank

    2015-01-30

    During the division of animal cells, an actomyosin ring is formed in the cell cortex. The contraction of this ring induces shape changes of the cell and the formation of a cytokinesis furrow. In many cases, a cell-cell interface forms that separates the two new cells. Here we present a simple physical description of the cell shape changes and the dynamics of the interface closure, based on force balances involving active stresses and viscous friction. We discuss conditions in which the interface closure is either axially symmetric or asymmetric. We show that our model can account for the observed dynamics of ring contraction and interface closure in the C. elegans embryo.

  8. Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments.

    PubMed

    Yang, Desirée C; Blair, Kris M; Salama, Nina R

    2016-03-01

    Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition. PMID:26864431

  9. Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments.

    PubMed

    Yang, Desirée C; Blair, Kris M; Salama, Nina R

    2016-03-01

    Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition.

  10. Affective Priming by Simple Geometric Shapes: Evidence from Event-related Brain Potentials

    PubMed Central

    Wang, Yinan; Zhang, Qin

    2016-01-01

    Previous work has demonstrated that simple geometric shapes may convey emotional meaning using various experimental paradigms. However, whether affective meaning of simple geometric shapes can be automatically activated and influence the evaluations of subsequent stimulus is still unclear. Thus the present study employed an affective priming paradigm to investigate whether and how two geometric shapes (circle vs. downward triangle) impact on the affective processing of subsequently presented faces (Experiment 1) and words (Experiment 2). At behavioral level, no significant effect of affective congruency was found. However, ERP results in Experiment 1 and 2 showed a typical effect of affective congruency. The LPP elicited by affectively incongruent trials was larger compared to congruent trials. Our results provide support for the notion that downward triangle is perceived as negative and circle as positive and their emotional meaning can be activated automatically and then exert an influence on the electrophysiological processing of subsequent stimuli. The lack of significant congruent effect in behavioral measures and the inversed N400 congruent effect might reveal that the affective meaning of geometric shapes is weak because they are just abstract threatening cues rather than real threat. In addition, because no male participants are included in the present study, our findings are limited to females. PMID:27379001

  11. Shape functions for velocity interpolation in general hexahedral cells

    USGS Publications Warehouse

    Naff, R.L.; Russell, T.F.; Wilson, J.D.

    2002-01-01

    Numerical methods for grids with irregular cells require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element (CVMFE) methods, vector shape functions approximate velocities and vector test functions enforce a discrete form of Darcy's law. In this paper, a new vector shape function is developed for use with irregular, hexahedral cells (trilinear images of cubes). It interpolates velocities and fluxes quadratically, because as shown here, the usual Piola-transformed shape functions, which interpolate linearly, cannot match uniform flow on general hexahedral cells. Truncation-error estimates for the shape function are demonstrated. CVMFE simulations of uniform and non-uniform flow with irregular meshes show first- and second-order convergence of fluxes in the L2 norm in the presence and absence of singularities, respectively.

  12. Assembly of complex cell microenvironments using geometrically docked hydrogel shapes

    PubMed Central

    Eng, George; Lee, Benjamin W.; Parsa, Hesam; Chin, Curtis D.; Schneider, Jesse; Linkov, Gary; Sia, Samuel K.; Vunjak-Novakovic, Gordana

    2013-01-01

    Cellular communities in living tissues act in concert to establish intricate microenvironments, with complexity difficult to recapitulate in vitro. We report a method for docking numerous cellularized hydrogel shapes (100–1,000 µm in size) into hydrogel templates to construct 3D cellular microenvironments. Each shape can be uniquely designed to contain customizable concentrations of cells and molecular species, and can be placed into any spatial configuration, providing extensive compositional and geometric tunability of shape-coded patterns using a highly biocompatible hydrogel material. Using precisely arranged hydrogel shapes, we investigated migratory patterns of human mesenchymal stem cells and endothelial cells. We then developed a finite element gradient model predicting chemotactic directions of cell migration in micropatterned cocultures that were validated by tracking ∼2,500 individual cell trajectories. This simple yet robust hydrogel platform provides a comprehensive approach to the assembly of 3D cell environments. PMID:23487790

  13. Flexible Octopus-Shaped Hydrogel Particles for Specific Cell Capture.

    PubMed

    Chen, Lynna; An, Harry Z; Haghgooie, Ramin; Shank, Aaron T; Martel, Joseph M; Toner, Mehmet; Doyle, Patrick S

    2016-04-01

    Multiarm hydrogel microparticles with varying geometry are fabricated to specifically capture cells expressing epithelial cell adhesion molecule. Results show that particle shape influences cell-capture efficiency due to differences in surface area, hydrodynamic effects, and steric constraints. These findings can lead to improved particle design for cell separation and diagnostic applications. PMID:26929053

  14. Light-dependent governance of cell shape dimensions in cyanobacteria

    PubMed Central

    Montgomery, Beronda L.

    2015-01-01

    The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted. PMID:26074902

  15. Unjamming and cell shape in the asthmatic airway epithelium

    NASA Astrophysics Data System (ADS)

    Park, Jin-Ah; Kim, Jae Hun; Bi, Dapeng; Mitchel, Jennifer A.; Qazvini, Nader Taheri; Tantisira, Kelan; Park, Chan Young; McGill, Maureen; Kim, Sae-Hoon; Gweon, Bomi; Notbohm, Jacob; Steward, Robert, Jr.; Burger, Stephanie; Randell, Scott H.; Kho, Alvin T.; Tambe, Dhananjay T.; Hardin, Corey; Shore, Stephanie A.; Israel, Elliot; Weitz, David A.; Tschumperlin, Daniel J.; Henske, Elizabeth P.; Weiss, Scott T.; Manning, M. Lisa; Butler, James P.; Drazen, Jeffrey M.; Fredberg, Jeffrey J.

    2015-10-01

    From coffee beans flowing in a chute to cells remodelling in a living tissue, a wide variety of close-packed collective systems--both inert and living--have the potential to jam. The collective can sometimes flow like a fluid or jam and rigidify like a solid. The unjammed-to-jammed transition remains poorly understood, however, and structural properties characterizing these phases remain unknown. Using primary human bronchial epithelial cells, we show that the jamming transition in asthma is linked to cell shape, thus establishing in that system a structural criterion for cell jamming. Surprisingly, the collapse of critical scaling predicts a counter-intuitive relationship between jamming, cell shape and cell-cell adhesive stresses that is borne out by direct experimental observations. Cell shape thus provides a rigorous structural signature for classification and investigation of bronchial epithelial layer jamming in asthma, and potentially in any process in disease or development in which epithelial dynamics play a prominent role.

  16. Shaping of NK cell subsets by aging.

    PubMed

    Solana, Rafael; Campos, Carmen; Pera, Alejandra; Tarazona, Raquel

    2014-08-01

    NK cells are key players in the innate immune response against virus infection and tumors. Here we describe the current knowledge on age-associated changes in NK cells and the role of persistent CMV infection in configuring NK cell compartment in the elderly. Aging but not CMV causes a redistribution of NK cell subsets as shown by a decrease of CD56bright cells and an increase of CD56-CD16+ NK cells. On the contrary the changes in CD56dimCD16+ NK cells are compatible with the accumulation of CD57+ long-lived NK cells that can also be observed in young CMV-seropositive individuals. NK cell function and dynamics in the elderly will be related not only with age but also with exposure to pathogens, especially CMV.

  17. CetZ tubulin-like proteins control archaeal cell shape

    PubMed Central

    Duggin, Iain G.; Aylett, Christopher H. S.; Walsh, James C.; Michie, Katharine A.; Wang, Qing; Turnbull, Lynne; Dawson, Emma M.; Harry, Elizabeth J.; Whitchurch, Cynthia B.; Amos, Linda A.; Löwe, Jan

    2014-01-01

    Tubulin is a major component of the eukaryotic cytoskeleton, controlling cell shape, structure and dynamics, whereas its bacterial homolog FtsZ establishes the cytokinetic ring that constricts during cell division1,2. How such different roles of tubulin and FtsZ evolved is unknown. Archaea may hold clues as these organisms share characteristics with Eukarya and Bacteria3. Here we report the structure and function of proteins from a distinct family related to tubulin and FtsZ, named CetZ, which co-exists with FtsZ in many archaea. CetZ crystal structures showed the FtsZ/tubulin superfamily fold, and one crystal form contained sheets of protofilaments, suggesting a structural role. However, inactivation of the CetZs in Haloferax volcanii did not affect cell division. Instead, CetZ1 was required for differentiation of the irregular plate-shaped cells into a rod-shaped cell type that was essential for normal swimming motility. CetZ1 formed dynamic cytoskeletal structures in vivo, relating to its capacity to remodel the cell envelope and direct rod formation. CetZ2 was also implicated in H. volcanii cell shape control. Our findings expand the known roles of the FtsZ/tubulin superfamily to include archaeal cell shape dynamics, suggesting that a cytoskeletal role might predate eukaryotic cell evolution, and they support the premise that a major function of microbial rod-shape is to facilitate swimming. PMID:25533961

  18. Characterization of MreB polymers in E. coli and their correlations to cell shape

    NASA Astrophysics Data System (ADS)

    Nguyen, Jeffrey; Ouzonov, Nikolay; Gitai, Zemer; Shaevitz, Joshua

    2015-03-01

    Shape influences all facets of how bacteria interact with their environment. The size of E. coli is determined by the peptidoglycan cell wall and internal turgor pressure. The cell wall is patterned by MreB, an actin homolog that forms short polymers on the cytoplasmic membrane. MreB coordinates the breaking of old material and the insertion of new material for growth, but it is currently unknown what mechanism sets the absolute diameter of the cell. Using new techniques in fluorescence microscopy and image processing, we are able to quantify cell shape in 3- dimensions and access previously unattainable data on the conformation of MreB polymers. To study how MreB affects the diameter of bacteria, we analyzed the shapes and polymers of cells that have had MreB perturbed by one of two methods. We first treated cells with the MreB polymerization-inhibiting drug A22. Secondly, we created point mutants in MreB that change MreB polymer conformation and the cell shape. By analyzing the correlations between different shape and polymer metrics, we find that under both treatments, the average helical pitch angle of the polymers correlates strongly with the cell diameter. This observation links the micron scale shape of the cell to the nanometer scale MreB cytoskeleton.

  19. No Stress! Relax! Mechanisms Governing Growth and Shape in Plant Cells

    PubMed Central

    Guerriero, Gea; Hausman, Jean-Francois; Cai, Giampiero

    2014-01-01

    The mechanisms through which plant cells control growth and shape are the result of the coordinated action of many events, notably cell wall stress relaxation and turgor-driven expansion. The scalar nature of turgor pressure would drive plant cells to assume spherical shapes; however, this is not the case, as plant cells show an amazing variety of morphologies. Plant cell walls are dynamic structures that can display alterations in matrix polysaccharide composition and concentration, which ultimately affect the wall deformation rate. The wide varieties of plant cell shapes, spanning from elongated cylinders (as pollen tubes) and jigsaw puzzle-like epidermal cells, to very long fibres and branched stellate leaf trichomes, can be understood if the underlying mechanisms regulating wall biosynthesis and cytoskeletal dynamics are addressed. This review aims at gathering the available knowledge on the fundamental mechanisms regulating expansion, growth and shape in plant cells by putting a special emphasis on the cell wall-cytoskeleton system continuum. In particular, we discuss from a molecular point of view the growth mechanisms characterizing cell types with strikingly different geometries and describe their relationship with primary walls. The purpose, here, is to provide the reader with a comprehensive overview of the multitude of events through which plant cells manage to expand and control their final shapes. PMID:24663059

  20. Cell, isoform, and environment factors shape gradients and modulate chemotaxis.

    PubMed

    Chang, S Laura; Cavnar, Stephen P; Takayama, Shuichi; Luker, Gary D; Linderman, Jennifer J

    2015-01-01

    Chemokine gradient formation requires multiple processes that include ligand secretion and diffusion, receptor binding and internalization, and immobilization of ligand to surfaces. To understand how these events dynamically shape gradients and influence ensuing cell chemotaxis, we built a multi-scale hybrid agent-based model linking gradient formation, cell responses, and receptor-level information. The CXCL12/CXCR4/CXCR7 signaling axis is highly implicated in metastasis of many cancers. We model CXCL12 gradient formation as it is impacted by CXCR4 and CXCR7, with particular focus on the three most highly expressed isoforms of CXCL12. We trained and validated our model using data from an in vitro microfluidic source-sink device. Our simulations demonstrate how isoform differences on the molecular level affect gradient formation and cell responses. We determine that ligand properties specific to CXCL12 isoforms (binding to the migration surface and to CXCR4) significantly impact migration and explain differences in in vitro chemotaxis data. We extend our model to analyze CXCL12 gradient formation in a tumor environment and find that short distance, steep gradients characteristic of the CXCL12-γ isoform are effective at driving chemotaxis. We highlight the importance of CXCL12-γ in cancer cell migration: its high effective affinity for both extracellular surface sites and CXCR4 strongly promote CXCR4+ cell migration. CXCL12-γ is also more difficult to inhibit, and we predict that co-inhibition of CXCR4 and CXCR7 is necessary to effectively hinder CXCL12-γ-induced migration. These findings support the growing importance of understanding differences in protein isoforms, and in particular their implications for cancer treatment.

  1. Cortical Flow-Driven Shapes of Nonadherent Cells

    NASA Astrophysics Data System (ADS)

    Callan-Jones, A. C.; Ruprecht, V.; Wieser, S.; Heisenberg, C. P.; Voituriez, R.

    2016-01-01

    Nonadherent polarized cells have been observed to have a pearlike, elongated shape. Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for this morphology. The predicted shapes can be determined from the flow pattern only; they prove to be independent of the mechanism at the origin of the cortical flow, and are only weakly sensitive to the cytoplasmic rheology. In the case of actin flows resulting from a contractile instability, we propose a phase diagram of three-dimensional cell shapes that encompasses nonpolarized spherical, elongated, as well as oblate shapes, all of which have been observed in experiment.

  2. Shape anisotropy induces rotations in optically trapped red blood cells

    NASA Astrophysics Data System (ADS)

    Bambardekar, Kapil; Dharmadhikari, Jayashree A.; Dharmadhikari, Aditya K.; Yamada, Toshihoro; Kato, Tsuyoshi; Kono, Hirohiko; Fujimura, Yuichi; Sharma, Shobhona; Mathur, Deepak

    2010-07-01

    A combined experimental and theoretical study is carried out to probe the rotational behavior of red blood cells (RBCs) in a single beam optical trap. We induce shape changes in RBCs by altering the properties of the suspension medium in which live cells float. We find that certain shape anisotropies result in the rotation of optically trapped cells. Indeed, even normal (healthy) RBCs can be made to rotate using linearly polarized trapping light by altering the osmotic stress the cells are subjected to. Hyperosmotic stress is found to induce shape anisotropies. We also probe the effect of the medium's viscosity on cell rotation. The observed rotations are modeled using a Langevin-type equation of motion that takes into account frictional forces that are generated as RBCs rotate in the medium. We observe good correlation between our measured data and calculated results.

  3. Influence of Helical Cell Shape on Motility of Helicobacter Pylori

    NASA Astrophysics Data System (ADS)

    Hardcastle, Joseph; Martinez, Laura; Salama, Nina; Bansil, Rama; Boston University Collaboration; University of Washington Collaboration

    2014-03-01

    Bacteria's body shape plays an important role in motility by effecting chemotaxis, swimming mechanisms, and swimming speed. A prime example of this is the bacteria Helicobacter Pylori;whose helical shape has long been believed to provide an advantage in penetrating the viscous mucus layer protecting the stomach lining, its niche environment. To explore this we have performed bacteria tracking experiments of both wild-type bacteria along with mutants, which have a straight rod shape. A wide distribution of speeds was found. This distribution reflects both a result of temporal variation in speed and different shape morphologies in the bacterial population. Our results show that body shape plays less role in a simple fluid. However, in a more viscous solution the helical shape results in increased swimming speeds. In addition, we use experimentally obtained cell shape measurements to model the hydrodynamic influence of cell shape on swimming speed using resistive force theory. The results agree with the experiment, especially when we fold in the temporal distribution. Interestingly, our results suggest distinct wild-type subpopulations with varying number of half helices can lead to different swimming speeds. NSF PHY

  4. Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells

    PubMed Central

    Bazile, Franck; Pascal, Aude; Arnal, Isabelle; Le Clainche, Christophe; Chesnel, Franck; Kubiak, Jacek Z.

    2009-01-01

    Translationally Controlled Tumor-associated Protein (TCTP) is a ubiquitous and highly conserved protein implicated in cancers. Here we demonstrate that interactions of TCTP with microtubules (MTs) are functionally important but indirect, and we reveal novel interaction of TCTP with the actin cytoskeleton. Firstly, immunofluorescence in Xenopus XL2 cells revealed cytoplasmic fibers stained with TCTP but not with tubulin antibodies, as well as MT-free of TCTP. Furthermore, TCTP localized to a subset of actin-rich fibers in migrating cells. Secondly XlTCTP did not affect in vitro assembly/disassembly of MTs, and lacked MT binding affinity both in pull-down assays and in cell-free extracts. Although TCTP also failed to bind to purified F-actin, it associated with microfilaments in cell-free extracts. Thirdly, TCTP concentrated in mitotic spindle did not colocalize with MTs, and was easily dissociated from these structures except at the poles. Finally, RNAi knockdown of TCTP in XL2 and HeLa cells provoked drastic, MT-dependent, shape change. These data show that although TCTP interacts with MTs it does not behave as classic MT Associated Protein (MAP). Our evidence for an association of TCTP with F-actin structures, and for an involvement in cell shape regulation, implicates this protein in integrating cytoskeletal interations both in interphase and mitosis providing a new avenue to fully understand the role of TCTP. PMID:19168579

  5. Does colloid shape affect detachment of colloids by a moving air-water interface?

    PubMed

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L; Davis, Howard P

    2013-05-14

    Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An air bubble was introduced into the channel and passed through, thereby generating a receding followed by an advancing air-water interface. The detachment of colloids by the air-water interfaces was visualized with a confocal microscope, quantified by image analysis, and analyzed statistically to determine significant differences. For all colloid shapes, the advancing air-water interface caused pronounced colloid detachment (>63%), whereas the receding interface was ineffective in colloid detachment (<1.5%). Among the different colloid shapes, the barrels were most readily removed (94%) by the advancing interface, followed by the spheres and oblong disks (80%) and the rods (63%). Colloid detachment was significantly affected by colloid shape. The presence of an edge, as it occurs in a barrel-shaped colloid, promoted colloid detachment because the air-water interface is being pinned at the edge of the colloid. This suggests that the magnitude of colloid mobilization and transport in porous media is underestimated for edged particles and overestimated for rodlike particles when a sphere is used as a model colloid.

  6. The Actin Cortex: A Bridge between Cell Shape and Function.

    PubMed

    Chalut, Kevin J; Paluch, Ewa K

    2016-09-26

    The cortical actin network controls many animal cell shape changes by locally modulating cortical tension. Recent work has provided insight into cortex components and regulators. However, how the network is reorganized in response to cellular signaling, and the role reorganization may play during cell state changes, remain to be determined. PMID:27676427

  7. Interplay of model ingredients affecting aggregate shape plasticity in diffusion-limited aggregation

    NASA Astrophysics Data System (ADS)

    Duarte-Neto, P.; Stošić, T.; Stošić, B.; Lessa, R.; Milošević, M. V.

    2014-07-01

    We analyze the combined effect of three ingredients of an aggregation model—surface tension, particle flow and particle source—representing typical characteristics of many aggregation growth processes in nature. Through extensive numerical experiments and for different underlying lattice structures we demonstrate that the location of incoming particles and their preferential direction of flow can significantly affect the resulting general shape of the aggregate, while the surface tension controls the surface roughness. Combining all three ingredients increases the aggregate shape plasticity, yielding a wider spectrum of shapes as compared to earlier works that analyzed these ingredients separately. Our results indicate that the considered combination of effects is fundamental for modeling the polymorphic growth of a wide variety of structures in confined geometries and/or in the presence of external fields, such as rocks, crystals, corals, and biominerals.

  8. Interplay of model ingredients affecting aggregate shape plasticity in diffusion-limited aggregation.

    PubMed

    Duarte-Neto, P; Stošić, T; Stošić, B; Lessa, R; Milošević, M V

    2014-07-01

    We analyze the combined effect of three ingredients of an aggregation model--surface tension, particle flow and particle source--representing typical characteristics of many aggregation growth processes in nature. Through extensive numerical experiments and for different underlying lattice structures we demonstrate that the location of incoming particles and their preferential direction of flow can significantly affect the resulting general shape of the aggregate, while the surface tension controls the surface roughness. Combining all three ingredients increases the aggregate shape plasticity, yielding a wider spectrum of shapes as compared to earlier works that analyzed these ingredients separately. Our results indicate that the considered combination of effects is fundamental for modeling the polymorphic growth of a wide variety of structures in confined geometries and/or in the presence of external fields, such as rocks, crystals, corals, and biominerals. PMID:25122308

  9. Intergenerational continuity of cell shape dynamics in Caulobacter crescentus.

    PubMed

    Wright, Charles S; Banerjee, Shiladitya; Iyer-Biswas, Srividya; Crosson, Sean; Dinner, Aaron R; Scherer, Norbert F

    2015-03-17

    We investigate the intergenerational shape dynamics of single Caulobacter crescentus cells using a novel combination of imaging techniques and theoretical modeling. We determine the dynamics of cell pole-to-pole lengths, cross-sectional widths, and medial curvatures from high accuracy measurements of cell contours. Moreover, these shape parameters are determined for over 250 cells across approximately 10000 total generations, which affords high statistical precision. Our data and model show that constriction is initiated early in the cell cycle and that its dynamics are controlled by the time scale of exponential longitudinal growth. Based on our extensive and detailed growth and contour data, we develop a minimal mechanical model that quantitatively accounts for the cell shape dynamics and suggests that the asymmetric location of the division plane reflects the distinct mechanical properties of the stalked and swarmer poles. Furthermore, we find that the asymmetry in the division plane location is inherited from the previous generation. We interpret these results in terms of the current molecular understanding of shape, growth, and division of C. crescentus.

  10. Intergenerational continuity of cell shape dynamics in Caulobacter crescentus

    NASA Astrophysics Data System (ADS)

    Wright, Charles S.; Banerjee, Shiladitya; Iyer-Biswas, Srividya; Crosson, Sean; Dinner, Aaron R.; Scherer, Norbert F.

    2015-03-01

    We investigate the intergenerational shape dynamics of single Caulobacter crescentus cells using a novel combination of imaging techniques and theoretical modeling. We determine the dynamics of cell pole-to-pole lengths, cross-sectional widths, and medial curvatures from high accuracy measurements of cell contours. Moreover, these shape parameters are determined for over 250 cells across approximately 10000 total generations, which affords high statistical precision. Our data and model show that constriction is initiated early in the cell cycle and that its dynamics are controlled by the time scale of exponential longitudinal growth. Based on our extensive and detailed growth and contour data, we develop a minimal mechanical model that quantitatively accounts for the cell shape dynamics and suggests that the asymmetric location of the division plane reflects the distinct mechanical properties of the stalked and swarmer poles. Furthermore, we find that the asymmetry in the division plane location is inherited from the previous generation. We interpret these results in terms of the current molecular understanding of shape, growth, and division of C. crescentus.

  11. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics

    NASA Astrophysics Data System (ADS)

    Leonhardt, Helmar; Gerhardt, Matthias; Höppner, Nadine; Krüger, Kirsten; Tarantola, Marco; Beta, Carsten

    2016-01-01

    We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.

  12. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch.

    PubMed

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang

    2016-02-01

    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell's behaviors to the global mechanics and patterns of tissues. PMID:26774292

  13. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch.

    PubMed

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang

    2016-02-01

    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell's behaviors to the global mechanics and patterns of tissues.

  14. Unjamming and cell shape in the asthmatic airway epithelium

    PubMed Central

    Park, Jin-Ah; Kim, Jae Hun; Bi, Dapeng; Mitchel, Jennifer A.; Qazvini, Nader Taheri; Tantisira, Kelan; Park, Chan Young; McGill, Maureen; Kim, Sae-Hoon; Gweon, Bomi; Notbohm, Jacob; Steward, Robert; Burger, Stephanie; Randell, Scott H.; Kho, Alvin T.; Tambe, Dhananjay T.; Hardin, Corey; Shore, Stephanie A.; Israel, Elliot; Weitz, David A.; Tschumperlin, Daniel J.; Henske, Elizabeth P.; Weiss, Scott T.; Lisa Manning, M.; Butler, James P.; Drazen, Jeffrey M.; Fredberg, Jeffrey J.

    2015-01-01

    From coffee beans flowing in a chute to cells remodelling in a living tissue, a wide variety of close-packed collective systems— both inert and living—have the potential to jam. The collective can sometimes flow like a fluid or jam and rigidify like a solid. The unjammed-to-jammed transition remains poorly understood, however, and structural properties characterizing these phases remain unknown. Using primary human bronchial epithelial cells, we show that the jamming transition in asthma is linked to cell shape, thus establishing in that system a structural criterion for cell jamming. Surprisingly, the collapse of critical scaling predicts a counter-intuitive relationship between jamming, cell shape and cell–cell adhesive stresses that is borne out by direct experimental observations. Cell shape thus provides a rigorous structural signature for classification and investigation of bronchial epithelial layer jamming in asthma, and potentially in any process in disease or development in which epithelial dynamics play a prominent role. PMID:26237129

  15. Volume regulation and shape bifurcation in the cell nucleus.

    PubMed

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X

    2015-09-15

    Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation.

  16. Hoxb1b controls oriented cell division, cell shape and microtubule dynamics in neural tube morphogenesis

    PubMed Central

    Žigman, Mihaela; Laumann-Lipp, Nico; Titus, Tom; Postlethwait, John; Moens, Cecilia B.

    2014-01-01

    Hox genes are classically ascribed to function in patterning the anterior-posterior axis of bilaterian animals; however, their role in directing molecular mechanisms underlying morphogenesis at the cellular level remains largely unstudied. We unveil a non-classical role for the zebrafish hoxb1b gene, which shares ancestral functions with mammalian Hoxa1, in controlling progenitor cell shape and oriented cell division during zebrafish anterior hindbrain neural tube morphogenesis. This is likely distinct from its role in cell fate acquisition and segment boundary formation. We show that, without affecting major components of apico-basal or planar cell polarity, Hoxb1b regulates mitotic spindle rotation during the oriented neural keel symmetric mitoses that are required for normal neural tube lumen formation in the zebrafish. This function correlates with a non-cell-autonomous requirement for Hoxb1b in regulating microtubule plus-end dynamics in progenitor cells in interphase. We propose that Hox genes can influence global tissue morphogenesis by control of microtubule dynamics in individual cells in vivo. PMID:24449840

  17. Hoxb1b controls oriented cell division, cell shape and microtubule dynamics in neural tube morphogenesis.

    PubMed

    Zigman, Mihaela; Laumann-Lipp, Nico; Titus, Tom; Postlethwait, John; Moens, Cecilia B

    2014-02-01

    Hox genes are classically ascribed to function in patterning the anterior-posterior axis of bilaterian animals; however, their role in directing molecular mechanisms underlying morphogenesis at the cellular level remains largely unstudied. We unveil a non-classical role for the zebrafish hoxb1b gene, which shares ancestral functions with mammalian Hoxa1, in controlling progenitor cell shape and oriented cell division during zebrafish anterior hindbrain neural tube morphogenesis. This is likely distinct from its role in cell fate acquisition and segment boundary formation. We show that, without affecting major components of apico-basal or planar cell polarity, Hoxb1b regulates mitotic spindle rotation during the oriented neural keel symmetric mitoses that are required for normal neural tube lumen formation in the zebrafish. This function correlates with a non-cell-autonomous requirement for Hoxb1b in regulating microtubule plus-end dynamics in progenitor cells in interphase. We propose that Hox genes can influence global tissue morphogenesis by control of microtubule dynamics in individual cells in vivo.

  18. Dynamic multiprotein assemblies shape the spatial structure of cell signaling.

    PubMed

    Nussinov, Ruth; Jang, Hyunbum

    2014-01-01

    Cell signaling underlies critical cellular decisions. Coordination, efficiency as well as fail-safe mechanisms are key elements. How the cell ensures that these hallmarks are at play are important questions. Cell signaling is often viewed as taking place through discrete and cross-talking pathways; oftentimes these are modularized to emphasize distinct functions. While simple, convenient and clear, such models largely neglect the spatial structure of cell signaling; they also convey inter-modular (or inter-protein) spatial separation that may not exist. Here our thesis is that cell signaling is shaped by a network of multiprotein assemblies. While pre-organized, the assemblies and network are loose and dynamic. They contain transiently-associated multiprotein complexes which are often mediated by scaffolding proteins. They are also typically anchored in the membrane, and their continuum may span the cell. IQGAP1 scaffolding protein which binds proteins including Raf, calmodulin, Mek, Erk, actin, and tens more, with actin shaping B-cell (and likely other) membrane-anchored nanoclusters and allosterically polymerizing in dynamic cytoskeleton formation, and Raf anchoring in the membrane along with Ras, provides a striking example. The multivalent network of dynamic proteins and lipids, with specific interactions forming and breaking, can be viewed as endowing gel-like properties. Collectively, this reasons that efficient, productive and reliable cell signaling takes place primarily through transient, preorganized and cooperative protein-protein interactions spanning the cell rather than stochastic, diffusion-controlled processes.

  19. Cell shape dynamics during the staphylococcal cell cycle.

    PubMed

    Monteiro, João M; Fernandes, Pedro B; Vaz, Filipa; Pereira, Ana R; Tavares, Andreia C; Ferreira, Maria T; Pereira, Pedro M; Veiga, Helena; Kuru, Erkin; VanNieuwenhze, Michael S; Brun, Yves V; Filipe, Sérgio R; Pinho, Mariana G

    2015-08-17

    Staphylococcus aureus is an aggressive pathogen and a model organism to study cell division in sequential orthogonal planes in spherical bacteria. However, the small size of staphylococcal cells has impaired analysis of changes in morphology during the cell cycle. Here we use super-resolution microscopy and determine that S. aureus cells are not spherical throughout the cell cycle, but elongate during specific time windows, through peptidoglycan synthesis and remodelling. Both peptidoglycan hydrolysis and turgor pressure are required during division for reshaping the flat division septum into a curved surface. In this process, the septum generates less than one hemisphere of each daughter cell, a trait we show is common to other cocci. Therefore, cell surface scars of previous divisions do not divide the cells in quadrants, generating asymmetry in the daughter cells. Our results introduce a need to reassess the models for division plane selection in cocci.

  20. A lateral signalling pathway coordinates shape volatility during cell migration

    PubMed Central

    Zhang, Liang; Luga, Valbona; Armitage, Sarah K.; Musiol, Martin; Won, Amy; Yip, Christopher M.; Plotnikov, Sergey V.; Wrana, Jeffrey L.

    2016-01-01

    Cell migration is fundamental for both physiological and pathological processes. Migrating cells usually display high dynamics in morphology, which is orchestrated by an integrative array of signalling pathways. Here we identify a novel pathway, we term lateral signalling, comprised of the planar cell polarity (PCP) protein Pk1 and the RhoGAPs, Arhgap21/23. We show that the Pk1–Arhgap21/23 complex inhibits RhoA, is localized on the non-protrusive lateral membrane cortex and its disruption leads to the disorganization of the actomyosin network and altered focal adhesion dynamics. Pk1-mediated lateral signalling confines protrusive activity and is regulated by Smurf2, an E3 ubiquitin ligase in the PCP pathway. Furthermore, we demonstrate that dynamic interplay between lateral and protrusive signalling generates cyclical fluctuations in cell shape that we quantify here as shape volatility, which strongly correlates with migration speed. These studies uncover a previously unrecognized lateral signalling pathway that coordinates shape volatility during productive cell migration. PMID:27226243

  1. Cell shape recognition by colloidal cell imprints: Energy of the cell-imprint interaction

    NASA Astrophysics Data System (ADS)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2015-09-01

    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into account the geometry factor in the colloidal interaction between a spherical target particle and a hemispherical shell at two different orientations with respect to each other. We took into account only classical DLVO surface forces, i.e., the van der Waals and the electric double layer forces, in the interaction of a spherical target cell and a hemispherical shell as a function of their size ratio, mutual orientation, distance between their surfaces, their respective surface potentials, and the ionic strength of the aqueous solution. We found that the calculated interaction energies are several orders higher when match and recognition between the target cell and the target cell imprint is achieved. Our analysis revealed that the recognition effect of the hemispherical shell towards the target microsphere comes from the greatly increased surface contact area when a full match of their size and shape is produced. When the interaction between the surfaces of the hemishell and the target cell is attractive, the recognition greatly amplifies the attraction and this increases the likelihood of them to bind strongly. However, if the surface interaction between the cell and the imprint is repulsive, the shape and size match makes this interaction even more repulsive and thus decreases the likelihood of binding. These results show that the surface chemistry of the target cells and their colloidal imprints is very important in controlling the outcome of the interaction, while the shape recognition only amplifies the interaction. In the case of nonmonotonous surface-to-surface interaction we discovered some interesting interplay between the effects of shape match and surface chemistry

  2. Cell shape recognition by colloidal cell imprints: energy of the cell-imprint interaction.

    PubMed

    Borovička, Josef; Stoyanov, Simeon D; Paunov, Vesselin N

    2015-09-01

    The results presented in this study are aimed at the theoretical estimate of the interactions between a spherical microbial cell and the colloidal cell imprints in terms of the Derjaguin, Landau, Vervey, and Overbeek (DLVO) surface forces. We adapted the Derjaguin approximation to take into account the geometry factor in the colloidal interaction between a spherical target particle and a hemispherical shell at two different orientations with respect to each other. We took into account only classical DLVO surface forces, i.e., the van der Waals and the electric double layer forces, in the interaction of a spherical target cell and a hemispherical shell as a function of their size ratio, mutual orientation, distance between their surfaces, their respective surface potentials, and the ionic strength of the aqueous solution. We found that the calculated interaction energies are several orders higher when match and recognition between the target cell and the target cell imprint is achieved. Our analysis revealed that the recognition effect of the hemispherical shell towards the target microsphere comes from the greatly increased surface contact area when a full match of their size and shape is produced. When the interaction between the surfaces of the hemishell and the target cell is attractive, the recognition greatly amplifies the attraction and this increases the likelihood of them to bind strongly. However, if the surface interaction between the cell and the imprint is repulsive, the shape and size match makes this interaction even more repulsive and thus decreases the likelihood of binding. These results show that the surface chemistry of the target cells and their colloidal imprints is very important in controlling the outcome of the interaction, while the shape recognition only amplifies the interaction. In the case of nonmonotonous surface-to-surface interaction we discovered some interesting interplay between the effects of shape match and surface chemistry

  3. Physical parameters affecting living cells in space

    NASA Astrophysics Data System (ADS)

    Langbein, Dieter

    The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present.

  4. Volume Changes During Active Shape Fluctuations in Cells

    NASA Astrophysics Data System (ADS)

    Taloni, Alessandro; Kardash, Elena; Salman, Oguz Umut; Truskinovsky, Lev; Zapperi, Stefano; La Porta, Caterina A. M.

    2015-05-01

    Cells modify their volume in response to changes in osmotic pressure but it is usually assumed that other active shape variations do not involve significant volume fluctuations. Here we report experiments demonstrating that water transport in and out of the cell is needed for the formation of blebs, commonly observed protrusions in the plasma membrane driven by cortex contraction. We develop and simulate a model of fluid-mediated membrane-cortex deformations and show that a permeable membrane is necessary for bleb formation which is otherwise impaired. Taken together, our experimental and theoretical results emphasize the subtle balance between hydrodynamics and elasticity in actively driven cell morphological changes.

  5. Volume Changes During Active Shape Fluctuations in Cells

    NASA Astrophysics Data System (ADS)

    La Porta, Caterina A. M.; Taloni, Alessandro; Kardash, Elena; Salman, Oguz Umut; Truskinovsky, Lev; Zapperi, Stefano

    Cells modify their volume in response to changes in osmotic pressure but it is usually assumed that other active shape variations do not involve significant volume fluctuations. Here we report experiments demonstrating that water transport in and out of the cell is needed for the formation of blebs, commonly observed protrusions in the plasma membrane driven by cortex contraction. We develop and simulate a model of fluid-mediated membrane-cortex deformations and show that a permeable membrane is necessary for bleb formation which is otherwise impaired. Taken together, our experimental and theoretical results emphasize the subtle balance between hydrodynamics and elasticity in actively driven cell morphological changes.

  6. Non-ideal assembly of the driving unit affecting shape of load-displacement curves

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Zhao, Hongwei

    2015-03-01

    The results of nanoindentation testing strongly rely on load-displacement curves, but an abnormal load-displacement curve with obvious inflection in the unloading portion was commonly observed in previously published papers and the reason is not clear. In this paper, possible reasons involved in a custom-made indentation instrument, such as sensors, control and assembly issues, are analyzed and discussed step by step. Experimental results indicate that non-ideal assembly of the precision driving unit strongly affects the shape of the load-displacement curve and its affecting mechanism is studied by theoretical analysis and finite element simulations. This paper reveals the reason leading to the abnormal load-displacement curve, which is helpful for debugging of indentation instruments and can enhance comparability of indentation results.

  7. Noise affects the shape of female preference functions for acoustic signals.

    PubMed

    Reichert, Michael S; Ronacher, Bernhard

    2015-02-01

    The shape of female mate preference functions influences the speed and direction of sexual signal evolution. However, the expression of female preferences is modulated by interactions between environmental conditions and the female's sensory processing system. Noise is an especially relevant environmental condition because it interferes directly with the neural processing of signals. Although noise is therefore likely a significant force in the evolution of communication systems, little is known about its effects on preference function shape. In the grasshopper Chorthippus biguttulus, female preferences for male calling song characteristics are likely to be affected by noise because its auditory system is sensitive to fine temporal details of songs. We measured female preference functions for variation in male song characteristics in several levels of masking noise and found strong effects of noise on preference function shape. The overall responsiveness to signals in noise generally decreased. Preference strength increased for some signal characteristics and decreased for others, largely corresponding to expectations based on neurophysiological studies of acoustic signal processing. These results suggest that different signal characteristics will be favored under different noise conditions, and thus that signal evolution may proceed differently depending on the extent and temporal patterning of environmental noise.

  8. The Neurobiology Shaping Affective Touch: Expectation, Motivation, and Meaning in the Multisensory Context

    PubMed Central

    Ellingsen, Dan-Mikael; Leknes, Siri; Løseth, Guro; Wessberg, Johan; Olausson, Håkan

    2016-01-01

    Inter-individual touch can be a desirable reward that can both relieve negative affect and evoke strong feelings of pleasure. However, if other sensory cues indicate it is undesirable to interact with the toucher, the affective experience of the same touch may be flipped to disgust. While a broad literature has addressed, on one hand the neurophysiological basis of ascending touch pathways, and on the other hand the central neurochemistry involved in touch behaviors, investigations of how external context and internal state shapes the hedonic value of touch have only recently emerged. Here, we review the psychological and neurobiological mechanisms responsible for the integration of tactile “bottom–up” stimuli and “top–down” information into affective touch experiences. We highlight the reciprocal influences between gentle touch and contextual information, and consider how, and at which levels of neural processing, top-down influences may modulate ascending touch signals. Finally, we discuss the central neurochemistry, specifically the μ-opioids and oxytocin systems, involved in affective touch processing, and how the functions of these neurotransmitters largely depend on the context and motivational state of the individual. PMID:26779092

  9. Change in Cell Shape Is Required for Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition of Mammary Epithelial Cells

    PubMed Central

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2010-01-01

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a “cuboidal” epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-β-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents. PMID:18506791

  10. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    SciTech Connect

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  11. IgE epitope proximity determines immune complex shape and effector cell activation capacity

    PubMed Central

    Gieras, Anna; Linhart, Birgit; Roux, Kenneth H.; Dutta, Moumita; Khodoun, Marat; Zafred, Domen; Cabauatan, Clarissa R.; Lupinek, Christian; Weber, Milena; Focke-Tejkl, Margarete; Keller, Walter; Finkelman, Fred D.; Valenta, Rudolf

    2016-01-01

    Background IgE-allergen complexes induce mast cell and basophil activation and thus immediate allergic inflammation. They are also important for IgE-facilitated allergen presentation to T cells by antigen-presenting cells. Objective To investigate whether the proximity of IgE binding sites on an allergen affects immune complex shape and subsequent effector cell activation in vitro and in vivo. Methods We constructed artificial allergens by grafting IgE epitopes in different numbers and proximity onto a scaffold protein. The shape of immune complexes formed between artificial allergens and the corresponding IgE was studied by negative-stain electron microscopy. Allergenic activity was determined using basophil activation assays. Mice were primed with IgE, followed by injection of artificial allergens to evaluate their in vivo allergenic activity. Severity of systemic anaphylaxis was measured by changes in body temperature. Results We could demonstrate simultaneous binding of 4 IgE antibodies in close vicinity to each other. The proximity of IgE binding sites on allergens influenced the shape of the resulting immune complexes and the magnitude of effector cell activation and in vivo inflammation. Conclusions Our results demonstrate that the proximity of IgE epitopes on an allergen affects its allergenic activity. We thus identified a novel mechanism by which IgE-allergen complexes regulate allergic inflammation. This mechanism should be important for allergy and other immune complex–mediated diseases. PMID:26684291

  12. How uncertainty bounds the shape index of simple cells.

    PubMed

    Barbieri, D; Citti, G; Sarti, A

    2014-04-17

    We propose a theoretical motivation to quantify actual physiological features, such as the shape index distributions measured by Jones and Palmer in cats and by Ringach in macaque monkeys. We will adopt the uncertainty principle associated to the task of detection of position and orientation as the main tool to provide quantitative bounds on the family of simple cells concretely implemented in primary visual cortex.Mathematics Subject Classification (2000)2010: 62P10, 43A32, 81R15.

  13. Human Glycolipid Transfer Protein (GLTP) Expression Modulates Cell Shape

    PubMed Central

    Gao, Yongguang; Chung, Taeowan; Zou, Xianqiong; Pike, Helen M.; Brown, Rhoderick E.

    2011-01-01

    Glycolipid transfer protein (GLTP) accelerates glycosphingolipid (GSL) intermembrane transfer via a unique lipid transfer/binding fold (GLTP-fold) that defines the GLTP superfamily and is the prototype for GLTP-like domains in larger proteins, i.e. phosphoinositol 4-phosphate adaptor protein-2 (FAPP2). Although GLTP-folds are known to play roles in the nonvesicular intracellular trafficking of glycolipids, their ability to alter cell phenotype remains unexplored. In the present study, overexpression of human glycolipid transfer protein (GLTP) was found to dramatically alter cell phenotype, with cells becoming round between 24 and 48 h after transfection. By 48 h post transfection, ∼70% conversion to the markedly round shape was evident in HeLa and HEK-293 cells, but not in A549 cells. In contrast, overexpression of W96A-GLTP, a liganding-site point mutant with abrogated ability to transfer glycolipid, did not alter cell shape. The round adherent cells exhibited diminished motility in wound healing assays and an inability to endocytose cholera toxin but remained viable and showed little increase in apoptosis as assessed by poly(ADP-ribose) polymerase cleavage. A round cell phenotype also was induced by overexpression of FAPP2, which binds/transfers glycolipid via its C-terminal GLTP-like fold, but not by a plant GLTP ortholog (ACD11), which is incapable of glycolipid binding/transfer. Screening for human protein partners of GLTP by yeast two hybrid screening and by immuno-pulldown analyses revealed regulation of the GLTP-induced cell rounding response by interaction with δ-catenin. Remarkably, while δ-catenin overexpression alone induced dendritic outgrowths, coexpression of GLTP along with δ-catenin accelerated transition to the rounded phenotype. The findings represent the first known phenotypic changes triggered by GLTP overexpression and regulated by direct interaction with a p120-catenin protein family member. PMID:21625605

  14. Chromosome replication, cell growth, division and shape: a personal perspective

    PubMed Central

    Zaritsky, Arieh; Woldringh, Conrad L.

    2015-01-01

    The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the bacterial cell division cycle (BCD), described as “The Central Dogma in Bacteriology,” is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion) is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that the total amount of DNA associated with the replication terminus, so called “nucleoid complexity,” is directly related to cell size and shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation) to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, e.g., stress in the plasma membrane, relieving nucleoid occlusion in the cell’s center hence enabling the divisome to assemble and function between segregated daughter nucleoids. PMID:26284044

  15. Shape memory alloy-based active chiral composite cells

    NASA Astrophysics Data System (ADS)

    Prajapati, Maulik; Roy Mahapatra, D.

    2014-04-01

    Wing morphing is one of the emerging methodology towards improving aerodynamic efficiency of flight vehicle structures. In this paper a morphing structural element is designed and studied which has its origin in the well known chiral structures. The new aspect of design and functionality explored in this paper is that the chiral cell is actuated using thermal Shape Memory Alloy (SMA) actuator wires to provide directional motion. Such structure utilizes the potential of different actuations concepts based on actuator embedded in the chiral structure skin. This paper describes a new class of chiral cell structure with integrated SMA wire for actuation. Chiral topological constructs are obtained by considering passive and active load path decoupling and sub-optimal shape changes. Single cell of chiral honeycomb with actuators are analyzed using finite element simulation results and experiments. To this end, a multi-cell plan-form is characterized showing interesting possibilities in structural morphing applications. The applicability of the developed chiral cell to flexible wing skin, variable stiffness based design and controlling longitudinal-to-transverse stiffness ratio are discussed.

  16. Shape control and compartmentalization in active colloidal cells

    PubMed Central

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M.; Nguyen, Nguyen H. P.; Bishop, Kyle J. M.; Glotzer, Sharon C.

    2015-01-01

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation. PMID:26253763

  17. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea.

    PubMed

    Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu

    2015-03-16

    Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf.

  18. A minimal physical model captures the shapes of crawling cells

    NASA Astrophysics Data System (ADS)

    Tjhung, E.; Tiribocchi, A.; Marenduzzo, D.; Cates, M. E.

    2015-01-01

    Cell motility in higher organisms (eukaryotes) is crucial to biological functions ranging from wound healing to immune response, and also implicated in diseases such as cancer. For cells crawling on hard surfaces, significant insights into motility have been gained from experiments replicating such motion in vitro. Such experiments show that crawling uses a combination of actin treadmilling (polymerization), which pushes the front of a cell forward, and myosin-induced stress (contractility), which retracts the rear. Here we present a simplified physical model of a crawling cell, consisting of a droplet of active polar fluid with contractility throughout, but treadmilling connected to a thin layer near the supporting wall. The model shows a variety of shapes and/or motility regimes, some closely resembling cases seen experimentally. Our work strongly supports the view that cellular motility exploits autonomous physical mechanisms whose operation does not need continuous regulatory effort.

  19. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea.

    PubMed

    Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu

    2015-01-01

    Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf. PMID:25774486

  20. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea

    PubMed Central

    Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu

    2015-01-01

    Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf. PMID:25774486

  1. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Li, Jingchao; Li, Jia'en Jasmine; Zhang, Jing; Wang, Xinlong; Kawazoe, Naoki; Chen, Guoping

    2016-04-01

    Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the differentiation response of stem cells has not been elucidated. In this work, a series of bovine serum albumin (BSA)-coated Au nanospheres, Au nanostars and Au nanorods with different diameters of 40, 70 and 110 nm were synthesized and their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) were investigated. All the AuNPs showed good cytocompatibility and did not influence proliferation of hMSCs at the studied concentrations. Osteogenic differentiation of hMSCs was dependent on the size and shape of AuNPs. Sphere-40, sphere-70 and rod-70 significantly increased the alkaline phosphatase (ALP) activity and calcium deposition of cells while rod-40 reduced the ALP activity and calcium deposition. Gene profiling revealed that the expression of osteogenic marker genes was down-regulated after incubation with rod-40. However, up-regulation of these genes was found in the sphere-40, sphere-70 and rod-70 treatment. Moreover, it was found that the size and shape of AuNPs affected the osteogenic differentiation of hMSCs through regulating the activation of Yes-associated protein (YAP). These results indicate that the size and shape of AuNPs had an influence on the osteogenic differentiation of hMSCs, which should provide useful guidance for the preparation of AuNPs with defined size and shape for their biomedical applications.Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the

  2. Activity affects dendritic shape and synapse elimination during steroid controlled dendritic retraction in Manduca sexta.

    PubMed

    Duch, Carsten; Mentel, Tim

    2004-11-01

    Insect metamorphosis is a compelling example for dendritic and synaptic remodeling as larval and adult behaviors place distinct demands on the CNS. During the metamorphosis of the moth, Manduca sexta, many larval motoneurons are remodeled to serve a new function in the adult. During late larval life, steroid hormones trigger axonal and dendritic regression as well as larval synapse elimination. These regressive events are accompanied by stereotypical changes in motor behavior during the so-called wandering stages. Both normally occurring changes in dendritic shape and in motor output have previously been analyzed quantitatively for the individually identified motoneuron MN5. This study tested whether activity affected steroid-induced dendritic regression and synapse disassembly in MN5 by means of chronically implanted extracellular electrodes. Stimulating MN5 in vivo in intact, normally developing animals during a developmental period when it usually shows no activity significantly slowed the regression of high-order dendrites. Both physiological and anatomical analysis demonstrated that reduced dendritic regression was accompanied by a significant reduction in larval synapse disassembly. Therefore, steroid-induced alterations of dendritic shape and synaptic connectivity are modified by activity-dependent mechanisms. This interaction might be a common mechanism for rapid adjustments of rigid, inflexible, hormonal programs.

  3. Do non-native plant species affect the shape of productivity-diversity relationships?

    USGS Publications Warehouse

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  4. Non-universal Voronoi cell shapes in amorphous ellipsoid packs

    NASA Astrophysics Data System (ADS)

    Schaller, Fabian M.; Kapfer, Sebastian C.; Hilton, James E.; Cleary, Paul W.; Mecke, Klaus; De Michele, Cristiano; Schilling, Tanja; Saadatfar, Mohammad; Schröter, Matthias; Delaney, Gary W.; Schröder-Turk, Gerd E.

    2015-07-01

    In particulate systems with short-range interactions, such as granular matter or simple fluids, local structure determines the macroscopic physical properties. We analyse local structure metrics derived from the Voronoi diagram of oblate ellipsoids, for various aspect ratios α and global packing fractions φ\\text{g} . We focus on jammed static configurations of frictional ellipsoids, obtained by tomographic imaging and by discrete element method simulations. The rescaled distribution of local packing fractions φ\\text{l} , defined as the ratio of particle volume and its Voronoi cell volume, is found to be independent of the particle aspect ratio, and coincide with results for sphere packs. By contrast, the typical Voronoi cell shape, quantified by the Minkowski tensor anisotropy index β=β_02,0 , points towards a difference between random packings of spheres and those of oblate ellipsoids. While the average cell shape β of all cells with a given value of φ\\text{l} is similar in dense and loose jammed sphere packings, the structure of dense and loose ellipsoid packings differs substantially such that this does not hold true.

  5. Lowering extracellular chloride concentration alters outer hair cell shape.

    PubMed

    Cecola, R P; Bobbin, R P

    1992-08-01

    In general, increasing external K+ concentration, as well as exposure to hypotonic medium, induces a shortening of outer hair cells (OHCs) accompanied by an increase in width and volume. One possible mechanism suggested for these changes is a movement of Cl- and/or water across the cell membrane. We therefore examined the role of Cl- in OHC volume maintenance by testing the effect of decreasing extracellular Cl- concentration on OHC length and shape. In addition, the effect of hypotonic medium was examined. OHCs were isolated from guinea pig cochleae, mechanically dissociated and dispersed, and placed in a modified Hanks balanced salt solution (HBS). Exposing the cells to a Cl(-)-free HBS produced an initial shortening, which was rapidly followed by an increase in length. After about 9 min of exposure to Cl(-)-free HBS, the cells appeared to lose all water and collapsed. Upon return to normal HBS, the OHCs returned to their normal shape. We speculate that the collapse of the OHCs may be due to the loss of intracellular Cl-, which, in turn, resulted in the loss of intracellular K+ and water. The results indicate that Cl- contributes greatly to the maintenance of OHC volume. In addition, we confirmed that isolated OHCs swell in hypotonic medium and maintain their swollen state until returned to normal medium. The mechanism for maintenance of the swollen state is unknown.

  6. Cell Shape and Cardiosphere Differentiation: A Revelation by Proteomic Profiling

    PubMed Central

    Kawaguchi, Nanako; Machida, Mitsuyo; Nakanishi, Toshio

    2013-01-01

    Stem cells (embryonic stem cells, somatic stem cells such as neural stem cells, and cardiac stem cells) and cancer cells are known to aggregate and form spheroid structures. This behavior is common in undifferentiated cells and may be necessary for adapting to certain conditions such as low-oxygen levels or to maintain undifferentiated status in microenvironments including stem cell niches. In order to decipher the meaning of this spheroid structure, we established a cardiosphere clone (CSC-21E) derived from the rat heart which can switch its morphology between spheroid and nonspheroid. Two forms, floating cardiospheres and dish-attached flat cells, could be switched reversibly by changing the cell culture condition. We performed differential proteome analysis studies and obtained protein profiles distinct between spherical forms and flat cells. From protein profiling analysis, we found upregulation of glycolytic enzymes in spheroids with some stress proteins switched in expression levels between these two forms. Evidence has been accumulating that certain chaperone/stress proteins are upregulated in concert with cellular changes including proliferation and differentiation. We would like to discuss the possible mechanism of how these aggregates affect cell differentiation and/or other cellular functions. PMID:24073335

  7. Cell shape acquisition and maintenance in rodlike bacteria

    NASA Astrophysics Data System (ADS)

    van Teeffelen, Sven; Wingreen, Ned; Gitai, Zemer

    2010-03-01

    The shape of rodlike bacteria such as Escherichia coli is mainly governed by the expansion and reorganization of the peptidoglycan cell wall. The cell wall is a huge, mostly single-layered molecule of stiff glycan strands that typically run perpendicular to the long axis and are crosslinked by short peptides. The wall resists the excess pressure from inside the cell. Although much is known about the enzymes that synthesize the wall, the mechanisms by which the cell maintains a constant rod diameter and uniform glycan strand orientation during growth remain unknown. Here we present quantitative results on the structure and dynamics of two essential proteins, which are believed to play an important role in cell wall synthesis. In particular, we have focused on the filament-forming protein MreB, an actin homolog that forms a long helical bundle along the inner membrane of the cell, and penicillin-binding protein 2, an essential protein for peptide bond formation in the periplasm. Based on their interplay we discuss the possibility of MreB serving as a guide and ruler for cell wall synthesis.

  8. Gravity effect on lymphocyte deformation through cell shape change.

    PubMed

    Hung, R J; Tsao, Y D; Spauling, G F

    1995-01-01

    The effects on human cells (lymphocyte) immersed in a culture liquid under microgravity environment has been investigated. The study was based on the numerical simulation of the Morphology of human cells affected by the time dependent variation of gravity acceleration ranging from 10(-3) to 2 g(o) (g(o) = 9.81 m/s2) in 15 s. Both the free floating cells and the cells which came into contact with the upper and lower inclined walls imposed by the time-dependent reduced gravity acceleration were considered in this study. The results show that, when the gravity acceleration increased, the cell morphology changed from spherical to horizontally elongated ellipsoid for both the free floating cells and the stationary cells on the lower inclined wall while the cell morphology varied from spherical to vertically-elongated ellipsoid for the cells hanging on the upper inclined wall. A test of the deformation of human cells exposed to the variation of gravity levels, carried out in the KC-135 free fall aircraft, show that the results of experimental observations agree exactly with the theoretical model computation described in this paper. These results will be useful for study of the behavior and morphology of cells in space.

  9. Common Cell Shape Evolution of Two Nasopharyngeal Pathogens

    PubMed Central

    Veyrier, Frédéric J.; Biais, Nicolas; Morales, Pablo; Belkacem, Nouria; Guilhen, Cyril; Ranjeva, Sylvia; Sismeiro, Odile; Péhau-Arnaudet, Gérard; Rocha, Eduardo P.; Werts, Catherine

    2015-01-01

    Respiratory infectious diseases are the third cause of worldwide death. The nasopharynx is the portal of entry and the ecological niche of many microorganisms, of which some are pathogenic to humans, such as Neisseria meningitidis and Moraxella catarrhalis. These microbes possess several surface structures that interact with the actors of the innate immune system. In our attempt to understand the past evolution of these bacteria and their adaption to the nasopharynx, we first studied differences in cell wall structure, one of the strongest immune-modulators. We were able to show that a modification of peptidoglycan (PG) composition (increased proportion of pentapeptides) and a cell shape change from rod to cocci had been selected for along the past evolution of N. meningitidis. Using genomic comparison across species, we correlated the emergence of the new cell shape (cocci) with the deletion, from the genome of N. meningitidis ancestor, of only one gene: yacF. Moreover, the reconstruction of this genetic deletion in a bacterium harboring the ancestral version of the locus together with the analysis of the PG structure, suggest that this gene is coordinating the transition from cell elongation to cell division. Accompanying the loss of yacF, the elongation machinery was also lost by several of the descendants leading to the change in the PG structure observed in N. meningitidis. Finally, the same evolution was observed for the ancestor of M. catarrhalis. This suggests a strong selection of these genetic events during the colonization of the nasopharynx. This selection may have been forced by the requirement of evolving permissive interaction with the immune system, the need to reduce the cellular surface exposed to immune attacks without reducing the intracellular storage capacity, or the necessity to better compete for adhesion to target cells. PMID:26162030

  10. Substrate properties affect collective cell motion

    NASA Astrophysics Data System (ADS)

    Pegoraro, Adrian; Guo, Ming; Ehrlicher, Allen; Weitz, David

    2013-03-01

    When cells move collectively, cooperative motion, which is characterized by long range correlations in cell movement, is necessary for migration. This collective cell motion is influenced by cell-cell interactions as well as by cell-substrate coupling. Furthermore, on soft substrates it is possible for cells to mechanically couple over long distances through the substrate itself. By changing the properties of the substrate, it is possible to decouple some of these contributions and better understand the role they play in collective cell motion. We vary both the substrate stiffness and adhesion protein concentration and find changes in the collective cell motion of the cells despite only small differences in total cell density and average cell size in the confluent layers. We test these changes on polyacrylamide and PDMS substrates as well as on structured substrates made of PDMS posts that prevent mechanical coupling through the substrate while still allowing stiffness to be varied.

  11. SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS

    SciTech Connect

    Murph, S.

    2012-09-12

    While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

  12. Cochlear outer hair cells undergo an apical circumference remodeling constrained by the hair bundle shape.

    PubMed

    Etournay, Raphaël; Lepelletier, Léa; Boutet de Monvel, Jacques; Michel, Vincent; Cayet, Nadège; Leibovici, Michel; Weil, Dominique; Foucher, Isabelle; Hardelin, Jean-Pierre; Petit, Christine

    2010-04-01

    Epithelial cells acquire diverse shapes relating to their different functions. This is particularly relevant for the cochlear outer hair cells (OHCs), whose apical and basolateral shapes accommodate the functioning of these cells as mechano-electrical and electromechanical transducers, respectively. We uncovered a circumferential shape transition of the apical junctional complex (AJC) of OHCs, which occurs during the early postnatal period in the mouse, prior to hearing onset. Geometric analysis of the OHC apical circumference using immunostaining of the AJC protein ZO1 and Fourier-interpolated contour detection characterizes this transition as a switch from a rounded-hexagon to a non-convex circumference delineating two lateral lobes at the neural side of the cell, with a negative curvature in between. This shape tightly correlates with the 'V'-configuration of the OHC hair bundle, the apical mechanosensitive organelle that converts sound-evoked vibrations into variations in cell membrane potential. The OHC apical circumference remodeling failed or was incomplete in all the mouse mutants affected in hair bundle morphogenesis that we tested. During the normal shape transition, myosin VIIa and myosin II (A and B isoforms) displayed polarized redistributions into and out of the developing lobes, respectively, while Shroom2 and F-actin transiently accumulated in the lobes. Defects in these redistributions were observed in the mutants, paralleling their apical circumference abnormalities. Our results point to a pivotal role for actomyosin cytoskeleton tensions in the reshaping of the OHC apical circumference. We propose that this remodeling contributes to optimize the mechanical coupling between the basal and apical poles of mature OHCs.

  13. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis.

    PubMed

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas; Klipp, Edda

    2016-09-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  14. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis

    PubMed Central

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas

    2016-01-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  15. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis.

    PubMed

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas; Klipp, Edda

    2016-09-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells.

  16. Memory of cell shape biases stochastic fate decision-making despite mitotic rounding.

    PubMed

    Akanuma, Takashi; Chen, Cong; Sato, Tetsuo; Merks, Roeland M H; Sato, Thomas N

    2016-01-01

    Cell shape influences function, and the current model suggests that such shape effect is transient. However, cells dynamically change their shapes, thus, the critical question is whether shape information remains influential on future cell function even after the original shape is lost. We address this question by integrating experimental and computational approaches. Quantitative live imaging of asymmetric cell-fate decision-making and their live shape manipulation demonstrates that cellular eccentricity of progenitor cell indeed biases stochastic fate decisions of daughter cells despite mitotic rounding. Modelling and simulation indicates that polarized localization of Delta protein instructs by the progenitor eccentricity is an origin of the bias. Simulation with varying parameters predicts that diffusion rate and abundance of Delta molecules quantitatively influence the bias. These predictions are experimentally validated by physical and genetic methods, showing that cells exploit a mechanism reported herein to influence their future fates based on their past shape despite dynamic shape changes. PMID:27349214

  17. Memory of cell shape biases stochastic fate decision-making despite mitotic rounding

    PubMed Central

    Akanuma, Takashi; Chen, Cong; Sato, Tetsuo; Merks, Roeland M. H.; Sato, Thomas N.

    2016-01-01

    Cell shape influences function, and the current model suggests that such shape effect is transient. However, cells dynamically change their shapes, thus, the critical question is whether shape information remains influential on future cell function even after the original shape is lost. We address this question by integrating experimental and computational approaches. Quantitative live imaging of asymmetric cell-fate decision-making and their live shape manipulation demonstrates that cellular eccentricity of progenitor cell indeed biases stochastic fate decisions of daughter cells despite mitotic rounding. Modelling and simulation indicates that polarized localization of Delta protein instructs by the progenitor eccentricity is an origin of the bias. Simulation with varying parameters predicts that diffusion rate and abundance of Delta molecules quantitatively influence the bias. These predictions are experimentally validated by physical and genetic methods, showing that cells exploit a mechanism reported herein to influence their future fates based on their past shape despite dynamic shape changes. PMID:27349214

  18. Memory of cell shape biases stochastic fate decision-making despite mitotic rounding.

    PubMed

    Akanuma, Takashi; Chen, Cong; Sato, Tetsuo; Merks, Roeland M H; Sato, Thomas N

    2016-01-01

    Cell shape influences function, and the current model suggests that such shape effect is transient. However, cells dynamically change their shapes, thus, the critical question is whether shape information remains influential on future cell function even after the original shape is lost. We address this question by integrating experimental and computational approaches. Quantitative live imaging of asymmetric cell-fate decision-making and their live shape manipulation demonstrates that cellular eccentricity of progenitor cell indeed biases stochastic fate decisions of daughter cells despite mitotic rounding. Modelling and simulation indicates that polarized localization of Delta protein instructs by the progenitor eccentricity is an origin of the bias. Simulation with varying parameters predicts that diffusion rate and abundance of Delta molecules quantitatively influence the bias. These predictions are experimentally validated by physical and genetic methods, showing that cells exploit a mechanism reported herein to influence their future fates based on their past shape despite dynamic shape changes.

  19. Anatomically shaped tooth and periodontal regeneration by cell homing.

    PubMed

    Kim, K; Lee, C H; Kim, B K; Mao, J J

    2010-08-01

    Tooth regeneration by cell delivery encounters translational hurdles. We hypothesized that anatomically correct teeth can regenerate in scaffolds without cell transplantation. Novel, anatomically shaped human molar scaffolds and rat incisor scaffolds were fabricated by 3D bioprinting from a hybrid of poly-epsilon-caprolactone and hydroxyapatite with 200-microm-diameter interconnecting microchannels. In each of 22 rats, an incisor scaffold was implanted orthotopically following mandibular incisor extraction, whereas a human molar scaffold was implanted ectopically into the dorsum. Stromal-derived factor-1 (SDF1) and bone morphogenetic protein-7 (BMP7) were delivered in scaffold microchannels. After 9 weeks, a putative periodontal ligament and new bone regenerated at the interface of rat incisor scaffold with native alveolar bone. SDF1 and BMP7 delivery not only recruited significantly more endogenous cells, but also elaborated greater angiogenesis than growth-factor-free control scaffolds. Regeneration of tooth-like structures and periodontal integration by cell homing provide an alternative to cell delivery, and may accelerate clinical applications.

  20. Anatomically Shaped Tooth and Periodontal Regeneration by Cell Homing

    PubMed Central

    Kim, K.; Lee, C.H.; Kim, B.K.; Mao, J.J.

    2010-01-01

    Tooth regeneration by cell delivery encounters translational hurdles. We hypothesized that anatomically correct teeth can regenerate in scaffolds without cell transplantation. Novel, anatomically shaped human molar scaffolds and rat incisor scaffolds were fabricated by 3D bioprinting from a hybrid of poly-ε-caprolactone and hydroxyapatite with 200-µm-diameter interconnecting microchannels. In each of 22 rats, an incisor scaffold was implanted orthotopically following mandibular incisor extraction, whereas a human molar scaffold was implanted ectopically into the dorsum. Stromal-derived factor-1 (SDF1) and bone morphogenetic protein-7 (BMP7) were delivered in scaffold microchannels. After 9 weeks, a putative periodontal ligament and new bone regenerated at the interface of rat incisor scaffold with native alveolar bone. SDF1 and BMP7 delivery not only recruited significantly more endogenous cells, but also elaborated greater angiogenesis than growth-factor-free control scaffolds. Regeneration of tooth-like structures and periodontal integration by cell homing provide an alternative to cell delivery, and may accelerate clinical applications. PMID:20448245

  1. Electrokinetic shape changes of cochlear outer hair cells.

    PubMed

    Kachar, B; Brownell, W E; Altschuler, R; Fex, J

    Rapid mechanical changes have been associated with electrical activity in a variety of non-muscle excitable cells. Recently, mechanical changes have been reported in cochlear hair cells. Here we describe electrically evoked mechanical changes in isolated cochlear outer hair cells (OHCs) with characteristics which suggest that direct electrokinetic phenomena are implicated in the response. OHCs make up one of two mechanosensitive hair cell populations in the mammalian cochlea; their role may be to modulate the micromechanical properties of the hearing organ through mechanical feedback mechanisms. In the experiments described here, we applied sinusoidally modulated electrical potentials across isolated OHCs; this produced oscillatory elongation and shortening of the cells and oscillatory displacements of intracellular organelles. The movements were a function of the direction and strength of the electrical field, were inversely related to the ionic concentration of the medium, and occurred in the presence of metabolic uncouplers. The cylindrical shape of the OHCs and the presence of a system of membranes within the cytoplasm--laminated cisternae--may provide the anatomical substrate for electrokinetic phenomena such as electro-osmosis.

  2. Electrokinetic shape changes of cochlear outer hair cells

    NASA Astrophysics Data System (ADS)

    Kachar, Bechara; Brownell, William E.; Altschuler, Richard; Fex, Jörgen

    1986-07-01

    Rapid mechanical changes have been associated with electrical activity in a variety of non-muscle excitable cells1-5. Recently, mechanical changes have been reported in cochlear hair cells6-8. Here we describe electrically evoked mechanical changes in isolated cochlear outer hair cells (OHCs) with characteristics which suggest that direct electrokinetic phenomena are implicated in the response. OHCs make up one of two mechanosensitive hair cell populations in the mammalian cochlea; their role may be to modulate the micromechanical properties of the hearing organ through mechanical feedback mechanisms6-10. In the experiments described here, we applied sinusoidally modulated electrical potentials across isolated OHCs; this produced oscillatory elongation and shortening of the cells and oscillatory displacements of intracellular organdies. The movements were a function of the direction and strength of the electrical field, were inversely related to the ionic concentration of the medium, and occurred in the presence of metabolic uncouplers. The cylindrical shape of the OHCs and the presence of a system of membranes within the cytoplasm-laminated cisternae11-may provide the anatomical substrate for electrokinetic phenomena such as electro-osmosis12,13.

  3. Understanding Cell Shape Phenotypes Associated with Stem Cell Differentiation Induced by Topographical Cues of Nanofiber Microenvironment

    NASA Astrophysics Data System (ADS)

    Chen, Desu; Sarkar, Sumona; Losert, Wolfgang

    It is increasingly important to understand cell responses to bioinspired material structures and topographies designed to guide cell functional alterations. In this study, we investigated association between early stage cell morphological response and osteogenic differentiation of human bone marrow stromal cells (hBMSCs) induced by poly(ɛ-caprolactone) (PCL) nanofiber scaffolds (PCL-NF). Accounting for both multi-parametric complexity and biological heterogeneity, we developed an analysis framework based on support vector machines and a multi-cell level averaging method (supercell) to determine the most pronounced cell shape features describing shape phenotypes of cells in PCL-NF compared to cells on flat PCL films. We found that smaller size and more dendritic shape were the major morphological responses of hBMSCs to PCL-NF on day 1 of cell culture. Further, we investigated the shape phenotypes of hBMSCs in PCL-NF of different fiber densities to monitor the transition between 2-D and 3-D topographies. We tracked the genotypic, phenotypic and morphological responses of hBMSCs to different fiber densities at multiple time points to identify correlations between hBMSCs differentiation and early stage morphology in PCL-NF scaffolds.

  4. Glutaraldehyde induces cell shape changes in isolated outer hair cells from the inner ear.

    PubMed

    Slepecky, N; Ulfendahl, M

    1988-01-01

    Individual isolated outer hair cells (OHCs) from the cochlea were maintained in a collagen gel and viewed in the light microscope. They were observed during fixation and processing for transmission electron microscopy and individual cells were selected for observation in the electron microscope. Application of glutaraldehyde at several concentrations caused OHCs to become shorter. Shrinkage occurred during dehydration but there was no further change during infiltration with the epoxy resin. Ultrastructural analysis of isolated cells fixed with glutaraldehyde and postfixed with osmium tetroxide showed that these cells were similar to cells fixed in the intact cochlea. The glutaraldehyde-induced cell shape change is similar to the shortening seen in intact OHCs in response to the application of solutions containing high potassium or caffeine. Application of glutaraldehyde to cells pretreated with potassium or caffeine caused further shortening. Glutaraldehyde-induced cell shape change was not blocked by the application of tetracaine, which did prevent potassium-induced and caffeine-induced shortening. Glutaraldehyde-induced cell shape change was not stopped by short treatment with N-ethylmaleimide, which did inhibit potassium-induced shortening. Results from these experiments suggest that the glutaraldehyde-induced OHC shape change is not caused by an effect on the membrane or by calcium activation of a contractile response. Shortening may be caused by shrinkage due to cross-linking of proteins.

  5. Ring-Shaped Microlanes and Chemical Barriers as a Platform for Probing Single-Cell Migration

    PubMed Central

    Schreiber, Christoph; Segerer, Felix J.; Wagner, Ernst; Roidl, Andreas; Rädler, Joachim O.

    2016-01-01

    Quantification and discrimination of pharmaceutical and disease-related effects on cell migration requires detailed characterization of single-cell motility. In this context, micropatterned substrates that constrain cells within defined geometries facilitate quantitative readout of locomotion. Here, we study quasi-one-dimensional cell migration in ring-shaped microlanes. We observe bimodal behavior in form of alternating states of directional migration (run state) and reorientation (rest state). Both states show exponential lifetime distributions with characteristic persistence times, which, together with the cell velocity in the run state, provide a set of parameters that succinctly describe cell motion. By introducing PEGylated barriers of different widths into the lane, we extend this description by quantifying the effects of abrupt changes in substrate chemistry on migrating cells. The transit probability decreases exponentially as a function of barrier width, thus specifying a characteristic penetration depth of the leading lamellipodia. Applying this fingerprint-like characterization of cell motion, we compare different cell lines, and demonstrate that the cancer drug candidate salinomycin affects transit probability and resting time, but not run time or run velocity. Hence, the presented assay allows to assess multiple migration-related parameters, permits detailed characterization of cell motility, and has potential applications in cell biology and advanced drug screening. PMID:27242099

  6. Ring-Shaped Microlanes and Chemical Barriers as a Platform for Probing Single-Cell Migration.

    PubMed

    Schreiber, Christoph; Segerer, Felix J; Wagner, Ernst; Roidl, Andreas; Rädler, Joachim O

    2016-01-01

    Quantification and discrimination of pharmaceutical and disease-related effects on cell migration requires detailed characterization of single-cell motility. In this context, micropatterned substrates that constrain cells within defined geometries facilitate quantitative readout of locomotion. Here, we study quasi-one-dimensional cell migration in ring-shaped microlanes. We observe bimodal behavior in form of alternating states of directional migration (run state) and reorientation (rest state). Both states show exponential lifetime distributions with characteristic persistence times, which, together with the cell velocity in the run state, provide a set of parameters that succinctly describe cell motion. By introducing PEGylated barriers of different widths into the lane, we extend this description by quantifying the effects of abrupt changes in substrate chemistry on migrating cells. The transit probability decreases exponentially as a function of barrier width, thus specifying a characteristic penetration depth of the leading lamellipodia. Applying this fingerprint-like characterization of cell motion, we compare different cell lines, and demonstrate that the cancer drug candidate salinomycin affects transit probability and resting time, but not run time or run velocity. Hence, the presented assay allows to assess multiple migration-related parameters, permits detailed characterization of cell motility, and has potential applications in cell biology and advanced drug screening. PMID:27242099

  7. Physical Forces Shape Group Identity of Swimming Pseudomonas putida Cells

    PubMed Central

    Espeso, David R.; Martínez-García, Esteban; de Lorenzo, Víctor; Goñi-Moreno, Ángel

    2016-01-01

    The often striking macroscopic patterns developed by motile bacterial populations on agar plates are a consequence of the environmental conditions where the cells grow and spread. Parameters such as medium stiffness and nutrient concentration have been reported to alter cell swimming behavior, while mutual interactions among populations shape collective patterns. One commonly observed occurrence is the mutual inhibition of clonal bacteria when moving toward each other, which results in a distinct halt at a finite distance on the agar matrix before having direct contact. The dynamics behind this phenomenon (i.e., intolerance to mix in time and space with otherwise identical others) has been traditionally explained in terms of cell-to-cell competition/cooperation regarding nutrient availability. In this work, the same scenario has been revisited from an alternative perspective: the effect of the physical mechanics that frame the process, in particular the consequences of collisions between moving bacteria and the semi-solid matrix of the swimming medium. To this end, we set up a simple experimental system in which the swimming patterns of Pseudomonas putida were tested with different geometries and agar concentrations. A computational analysis framework that highlights cell-to-medium interactions was developed to fit experimental observations. Simulated outputs suggested that the medium is compressed in the direction of the bacterial front motion. This phenomenon generates what was termed a compression wave that goes through the medium preceding the swimming population and that determines the visible high-level pattern. Taken together, the data suggested that the mechanical effects of the bacteria moving through the medium created a factual barrier that impedes to merge with neighboring cells swimming from a different site. The resulting divide between otherwise clonal bacteria is thus brought about by physical forces—not genetic or metabolic programs. PMID

  8. Physical Forces Shape Group Identity of Swimming Pseudomonas putida Cells

    PubMed Central

    Espeso, David R.; Martínez-García, Esteban; de Lorenzo, Víctor; Goñi-Moreno, Ángel

    2016-01-01

    The often striking macroscopic patterns developed by motile bacterial populations on agar plates are a consequence of the environmental conditions where the cells grow and spread. Parameters such as medium stiffness and nutrient concentration have been reported to alter cell swimming behavior, while mutual interactions among populations shape collective patterns. One commonly observed occurrence is the mutual inhibition of clonal bacteria when moving toward each other, which results in a distinct halt at a finite distance on the agar matrix before having direct contact. The dynamics behind this phenomenon (i.e., intolerance to mix in time and space with otherwise identical others) has been traditionally explained in terms of cell-to-cell competition/cooperation regarding nutrient availability. In this work, the same scenario has been revisited from an alternative perspective: the effect of the physical mechanics that frame the process, in particular the consequences of collisions between moving bacteria and the semi-solid matrix of the swimming medium. To this end, we set up a simple experimental system in which the swimming patterns of Pseudomonas putida were tested with different geometries and agar concentrations. A computational analysis framework that highlights cell-to-medium interactions was developed to fit experimental observations. Simulated outputs suggested that the medium is compressed in the direction of the bacterial front motion. This phenomenon generates what was termed a compression wave that goes through the medium preceding the swimming population and that determines the visible high-level pattern. Taken together, the data suggested that the mechanical effects of the bacteria moving through the medium created a factual barrier that impedes to merge with neighboring cells swimming from a different site. The resulting divide between otherwise clonal bacteria is thus brought about by physical forces—not genetic or metabolic programs.

  9. How B cells Shape the Immune Response against Mycobacterium tuberculosis

    PubMed Central

    Maglione, Paul J.; Chan, John

    2009-01-01

    Extensive work illustrating the importance of cellular immune mechanisms for protection against Mycobacterium tuberculosis has largely relegated B cell biology to an afterthought within the tuberculosis (TB) field. However, recent studies have illustrated that B lymphocytes, through a variety of interactions with the cellular immune response, play previously underappreciated roles in shaping host defense against nonviral intracellular pathogens, including M. tuberculosis. Work in our laboratory has recently shown that, by considering these lymphocytes more broadly within their variety of interactions with cellular immunity, B cells have a significant impact on the outcome of airborne challenge with M. tuberculosis as well as the resultant inflammatory response. In this review, we advocate for a revised view of TB immunology in which roles of cellular and humoral immunity are not mutually exclusive. In the context of our current understanding of host defense against nonviral intracellular infections, we review recent data supporting a more significant role of B cells during M. tuberculosis infection than previously thought. PMID:19283721

  10. Does Urinary Bladder Shape Affect Urinary Flow Rate in Men with Lower Urinary Tract Symptoms?

    PubMed Central

    Ateşçi, Yusuf Ziya; Aydoğdu, Özgü; Karaköse, Ayhan; Karal, Ömer; Şentürk, Utku

    2014-01-01

    We aimed to investigate the role of urinary bladder shape which may potentially change with advancing age, increased waist circumference, pelvic ischemia, and loosening of the urachus on bladder emptying and UFR. We retrospectively investigated the medical records of 76 men. The patients were divided into two groups according to bladder shapes in MRI scan (cone and spheric shapes). There was a significant difference between the two groups in terms of IPSS, Qmax, Qave, and waist circumference. A positive correlation has been demonstrated between mean peak urinary flow rate measured with UFM and mean flow rate calculated using the CP. There was a significant difference between mean urinary flow rates calculated with CP of cone and sphere bladder shapes. The change in the bladder shape might be a possible factor for LUTS in men and LUTS may be improved if modifiable factors including increased waist circumference and loosening of the urachus are corrected. PMID:24511301

  11. Analysis of a minimal Rho-GTPase circuit regulating cell shape

    NASA Astrophysics Data System (ADS)

    Holmes, William R.; Edelstein-Keshet, Leah

    2016-08-01

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase (‘wave-pinning’) model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  12. Analysis of a minimal Rho-GTPase circuit regulating cell shape

    NASA Astrophysics Data System (ADS)

    Holmes, William R.; Edelstein-Keshet, Leah

    2016-08-01

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac–Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac–Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac–Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac–Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac–Rho model to an even simpler single-GTPase (‘wave-pinning’) model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  13. Analysis of a minimal Rho-GTPase circuit regulating cell shape.

    PubMed

    Holmes, William R; Edelstein-Keshet, Leah

    2016-07-19

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase ('wave-pinning') model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  14. Tubular Scaffold with Shape Recovery Effect for Cell Guide Applications

    PubMed Central

    Hossain, Kazi M. Zakir; Zhu, Chenkai; Felfel, Reda M.; Sharmin, Nusrat; Ahmed, Ifty

    2015-01-01

    Tubular scaffolds with aligned polylactic acid (PLA) fibres were fabricated for cell guide applications by immersing rolled PLA fibre mats into a polyvinyl acetate (PVAc) solution to bind the mats. The PVAc solution was also mixed with up to 30 wt % β-tricalcium phosphate (β-TCP) content. Cross-sectional images of the scaffold materials obtained via scanning electron microscopy (SEM) revealed the aligned fibre morphology along with a significant number of voids in between the bundles of fibres. The addition of β-TCP into the scaffolds played an important role in increasing the void content from 17.1% to 25.3% for the 30 wt % β-TCP loading, which was measured via micro-CT (µCT) analysis. Furthermore, µCT analyses revealed the distribution of aggregated β-TCP particles in between the various PLA fibre layers of the scaffold. The compressive modulus properties of the scaffolds increased from 66 MPa to 83 MPa and the compressive strength properties decreased from 67 MPa to 41 MPa for the 30 wt % β-TCP content scaffold. The scaffolds produced were observed to change into a soft and flexible form which demonstrated shape recovery properties after immersion in phosphate buffered saline (PBS) media at 37 °C for 24 h. The cytocompatibility studies (using MG-63 human osteosarcoma cell line) revealed preferential cell proliferation along the longitudinal direction of the fibres as compared to the control tissue culture plastic. The manufacturing process highlighted above reveals a simple process for inducing controlled cell alignment and varying porosity features within tubular scaffolds for potential tissue engineering applications. PMID:26184328

  15. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells

    PubMed Central

    2011-01-01

    Background In nanotoxicology, the exact role of particle shape, in relation to the composition, on the capacity to induce toxicity is largely unknown. We investigated the toxic and immunotoxic effects of silver wires (length: 1.5 - 25 μm; diameter 100 - 160 nm), spherical silver nanoparticles (30 nm) and silver microparticles (<45 μm) on alveolar epithelial cells (A549). Methods Wires and nanoparticles were synthesized by wet-chemistry methods and extensively characterized. Cell viability and cytotoxicity were assessed and potential immunotoxic effects were investigated. To compare the effects on an activated and a resting immune system, cells were stimulated with rhTNF-α or left untreated. Changes in intracellular free calcium levels were determined using calcium imaging. Finally, ion release from the particles was assessed by ICP-MS and the effects of released ions on cell viability and cytotoxicity were tested. Results No effects were observed for the spherical particles, whereas the silver wires significantly reduced cell viability and increased LDH release from A549 cells. Cytokine promoter induction and NF-κB activation decreased in a concentration dependent manner similar to the decrease seen in cell viability. In addition, a strong increase of intracellular calcium levels within minutes after addition of wires was observed. This toxicity was not due to free silver ions, since the samples with the highest ion release did not induce toxicity and ion release control experiments with cells treated with pre-incubated medium did not show any effects either. Conclusions These data showed that silver wires strongly affect the alveolar epithelial cells, whereas spherical silver particles had no effect. This supports the hypothesis that shape is one of the important factors that determine particle toxicity. PMID:22208550

  16. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions.

  17. Cell shape, spreading symmetry and the polarization of stress-fibers in cells

    PubMed Central

    Zemel, A.; Rehfeldt, F.; Brown, A. E. X.; Discher, D. E.; Safran, S. A.

    2010-01-01

    The active regulation of cellular forces during cell adhesion plays an important role in the determination of cell size, shape and internal structure. While on flat, homogeneous and isotropic substrates some cells spread isotropically, others spread anisotropically and assume elongated structures. In addition, in their native environment as well as in vitro experiments, the cell shape and spreading asymmetry can be modulated by the local distribution of adhesive molecules and topography of the environment. We present a simple elastic model, and experiments on stem cells to explain the variation of cell size with the matrix rigidity. In addition, we predict the experimental consequences of two mechanisms of acto-myosin polarization and focus here on the effect of the cell spreading asymmetry on the regulation of the stress-fiber alignment in the cytoskeleton. We show that when cell spreading is sufficiently asymmetric the alignment of acto-myosin forces in the cell increases monotonically with the matrix rigidity; however, in general this alignment is non-monotonic as shown previously. These results highlight the importance of the symmetry characteristics of cell spreading in the regulation of cytoskeleton structure and suggest a mechanism by which different cell types may acquire different morphologies and internal structures in different mechanical environments. PMID:20458358

  18. Cell shape, spreading symmetry, and the polarization of stress-fibers in cells

    NASA Astrophysics Data System (ADS)

    Zemel, A.; Rehfeldt, F.; Brown, A. E. X.; Discher, D. E.; Safran, S. A.

    2010-05-01

    The active regulation of cellular forces during cell adhesion plays an important role in the determination of cell size, shape, and internal structure. While on flat, homogeneous and isotropic substrates some cells spread isotropically, others spread anisotropically and assume elongated structures. In addition, in their native environment as well as in vitro experiments, the cell shape and spreading asymmetry can be modulated by the local distribution of adhesive molecules and topography of the environment. We present a simple elastic model and experiments on stem cells to explain the variation of cell size with the matrix rigidity. In addition, we predict the experimental consequences of two mechanisms of acto-myosin polarization and focus here on the effect of the cell spreading asymmetry on the regulation of the stress-fiber alignment in the cytoskeleton. We show that when cell spreading is sufficiently asymmetric the alignment of acto-myosin forces in the cell increases monotonically with the matrix rigidity; however, in general this alignment is non-monotonic, as shown previously. These results highlight the importance of the symmetry characteristics of cell spreading in the regulation of cytoskeleton structure and suggest a mechanism by which different cell types may acquire different morphologies and internal structures in different mechanical environments.

  19. The Drosophila Actin Regulator ENABLED Regulates Cell Shape and Orientation during Gonad Morphogenesis

    PubMed Central

    Sano, Hiroko; Barbosa, Vitor; Clark, Ivan B. N.; Ishihara, Shuji; Sugimura, Kaoru; Lehmann, Ruth

    2012-01-01

    Organs develop distinctive morphologies to fulfill their unique functions. We used Drosophila embryonic gonads as a model to study how two different cell lineages, primordial germ cells (PGCs) and somatic gonadal precursors (SGPs), combine to form one organ. We developed a membrane GFP marker to image SGP behaviors live. These studies show that a combination of SGP cell shape changes and inward movement of anterior and posterior SGPs leads to the compaction of the spherical gonad. This process is disrupted in mutants of the actin regulator, enabled (ena). We show that Ena coordinates these cell shape changes and the inward movement of the SGPs, and Ena affects the intracellular localization of DE-cadherin (DE-cad). Mathematical simulation based on these observations suggests that changes in DE-cad localization can generate the forces needed to compact an elongated structure into a sphere. We propose that Ena regulates force balance in the SGPs by sequestering DE-cad, leading to the morphogenetic movement required for gonad compaction. PMID:23300733

  20. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces

    NASA Technical Reports Server (NTRS)

    Parker, Kevin Kit; Brock, Amy Lepre; Brangwynne, Cliff; Mannix, Robert J.; Wang, Ning; Ostuni, Emanuele; Geisse, Nicholas A.; Adams, Josephine C.; Whitesides, George M.; Ingber, Donald E.

    2002-01-01

    Directed cell migration is critical for tissue morphogenesis and wound healing, but the mechanism of directional control is poorly understood. Here we show that the direction in which cells extend their leading edge can be controlled by constraining cell shape using micrometer-sized extracellular matrix (ECM) islands. When cultured on square ECM islands in the presence of motility factors, cells preferentially extended lamellipodia, filopodia, and microspikes from their corners. Square cells reoriented their stress fibers and focal adhesions so that tractional forces were concentrated in these corner regions. When cell tension was dissipated, lamellipodia extension ceased. Mechanical interactions between cells and ECM that modulate cytoskeletal tension may therefore play a key role in the control of directional cell motility.

  1. How does cancer cell metabolism affect tumor migration and invasion?

    PubMed

    Han, Tianyu; Kang, De; Ji, Daokun; Wang, Xiaoyu; Zhan, Weihua; Fu, Minggui; Xin, Hong-Bo; Wang, Jian-Bin

    2013-01-01

    Cancer metastasis is the major cause of cancer-associated death. Accordingly, identification of the regulatory mechanisms that control whether or not tumor cells become "directed walkers" is a crucial issue of cancer research. The deregulation of cell migration during cancer progression determines the capacity of tumor cells to escape from the primary tumors and invade adjacent tissues to finally form metastases. The ability to switch from a predominantly oxidative metabolism to glycolysis and the production of lactate even when oxygen is plentiful is a key characteristic of cancer cells. This metabolic switch, known as the Warburg effect, was first described in 1920s, and affected not only tumor cell growth but also tumor cell migration. In this review, we will focus on the recent studies on how cancer cell metabolism affects tumor cell migration and invasion. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell migration is critical for development of therapeutic strategies for cancer patients.

  2. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity.

    PubMed

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity.

  3. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    PubMed Central

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity. PMID:26966693

  4. Wingless signaling and the control of cell shape in Drosophila wing imaginal discs.

    PubMed

    Widmann, Thomas J; Dahmann, Christian

    2009-10-01

    The control of cell morphology is important for shaping animals during development. Here we address the role of the Wnt/Wingless signal transduction pathway and two of its target genes, vestigial and shotgun (encoding E-cadherin), in controlling the columnar shape of Drosophila wing disc cells. We show that clones of cells mutant for arrow (encoding an essential component of the Wingless signal transduction pathway), vestigial or shotgun undergo profound cell shape changes and are extruded towards the basal side of the epithelium. Compartment-wide expression of a dominant-negative form of the Wingless transducer T-cell factor (TCF/Pangolin), or double-stranded RNA targeting vestigial or shotgun, leads to abnormally short cells throughout this region, indicating that these genes act cell autonomously to maintain normal columnar cell shape. Conversely, overexpression of Wingless, a constitutively-active form of the Wingless transducer beta-catenin/Armadillo, or Vestigial, results in precocious cell elongation. Co-expression of Vestigial partially suppresses the abnormal cell shape induced by dominant-negative TCF. We conclude that Wingless signal transduction plays a cell-autonomous role in promoting and maintaining the columnar shape of wing disc cells. Furthermore, our data suggest that Wingless controls cell shape, in part, through maintaining vestigial expression. PMID:19627985

  5. Wingless signaling and the control of cell shape in Drosophila wing imaginal discs.

    PubMed

    Widmann, Thomas J; Dahmann, Christian

    2009-10-01

    The control of cell morphology is important for shaping animals during development. Here we address the role of the Wnt/Wingless signal transduction pathway and two of its target genes, vestigial and shotgun (encoding E-cadherin), in controlling the columnar shape of Drosophila wing disc cells. We show that clones of cells mutant for arrow (encoding an essential component of the Wingless signal transduction pathway), vestigial or shotgun undergo profound cell shape changes and are extruded towards the basal side of the epithelium. Compartment-wide expression of a dominant-negative form of the Wingless transducer T-cell factor (TCF/Pangolin), or double-stranded RNA targeting vestigial or shotgun, leads to abnormally short cells throughout this region, indicating that these genes act cell autonomously to maintain normal columnar cell shape. Conversely, overexpression of Wingless, a constitutively-active form of the Wingless transducer beta-catenin/Armadillo, or Vestigial, results in precocious cell elongation. Co-expression of Vestigial partially suppresses the abnormal cell shape induced by dominant-negative TCF. We conclude that Wingless signal transduction plays a cell-autonomous role in promoting and maintaining the columnar shape of wing disc cells. Furthermore, our data suggest that Wingless controls cell shape, in part, through maintaining vestigial expression.

  6. The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues.

    PubMed

    Muchhala, Nathan; Serrano, Diana

    2015-01-01

    Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts.

  7. The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues

    PubMed Central

    Muchhala, Nathan; Serrano, Diana

    2015-01-01

    Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts. PMID:26445216

  8. The Complexity of Background Clutter Affects Nectar Bat Use of Flower Odor and Shape Cues.

    PubMed

    Muchhala, Nathan; Serrano, Diana

    2015-01-01

    Given their small size and high metabolism, nectar bats need to be able to quickly locate flowers during foraging bouts. Chiropterophilous plants depend on these bats for their reproduction, thus they also benefit if their flowers can be easily located, and we would expect that floral traits such as odor and shape have evolved to maximize detection by bats. However, relatively little is known about the importance of different floral cues during foraging bouts. In the present study, we undertook a set of flight cage experiments with two species of nectar bats (Anoura caudifer and A. geoffroyi) and artificial flowers to compare the importance of shape and scent cues in locating flowers. In a training phase, a bat was presented an artificial flower with a given shape and scent, whose position was constantly shifted to prevent reliance on spatial memory. In the experimental phase, two flowers were presented, one with the training-flower scent and one with the training-flower shape. For each experimental repetition, we recorded which flower was located first, and then shifted flower positions. Additionally, experiments were repeated in a simple environment, without background clutter, or a complex environment, with a background of leaves and branches. Results demonstrate that bats visit either flower indiscriminately with simple backgrounds, with no significant difference in terms of whether they visit the training-flower odor or training-flower shape first. However, in a complex background olfaction was the most important cue; scented flowers were consistently located first. This suggests that for well-exposed flowers, without obstruction from clutter, vision and/or echolocation are sufficient in locating them. In more complex backgrounds, nectar bats depend more heavily on olfaction during foraging bouts. PMID:26445216

  9. Control of the epithelial stem cell epigenome: the shaping of epithelial stem cell identity.

    PubMed

    Iglesias-Bartolome, Ramiro; Callejas-Valera, Juan Luis; Gutkind, J Silvio

    2013-04-01

    The squamous epithelium covering the skin and oral mucosa relies on epithelial stem cells for tissue renewal. Dynamic changes in DNA methylation, histone methylation and acetylation, and higher order chromatin structure are required to preserve their self-renewal capacity while orchestrating the timely execution of cell differentiation programs. This complex network of epigenetic modifications shapes the epithelial stem cell identity and fate. Pathological alterations can be perceived by aberrant chromatin sensors, such as the INK4/ARF locus, which initiate tumor suppressive cell senescence programs, and can often result in epithelial stem cell exhaustion. Unveiling the mechanisms controlling the epigenome in epithelial stem cells may help protect against the loss of their tissue regenerative capacity, thereby preventing premature aging without increasing cancer risk. PMID:23434069

  10. Human cells and cell membrane molecular models are affected in vitro by chlorpromazine.

    PubMed

    Suwalsky, Mario; Villena, Fernando; Sotomayor, Carlos P; Bolognin, Silvia; Zatta, Paolo

    2008-06-01

    This study presents evidence that chlorpromazine (CPZ) affects human cells and cell membrane molecular models. Human SH-SY5Y neuroblastoma cells incubated with 0.1 mM CPZ suffered a decrease of cell viability. On the other hand, phase contrast microscopy observations of human erythrocytes indicated that they underwent a morphological alteration as 1 microM CPZ changed their discoid normal shape to stomatocytes, and to hemolysis with 1 mM CPZ. X-ray diffraction experiments performed on dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) bilayers, classes of the major phospholipids present in the outer and inner sides of the erythrocyte membrane, respectively showed that CPZ disordered the polar head and acyl chain regions of both DMPC and DMPE, where these interactions were stronger with DMPC bilayers. Fluorescence spectroscopy on DMPC LUV at 18 degrees C confirmed these results. In fact, the assays showed that CPZ induced a significant reduction of their generalized polarization (GP) and anisotropy (r) values, indicative of enhanced disorder at the polar head and acyl chain regions of the DMPC lipid bilayer. PMID:18372093

  11. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  12. The taming of the cell: shape-memory nanopatterns direct cell orientation

    PubMed Central

    Ebara, Mitsuhiro; Uto, Koichiro; Idota, Naokazu; Hoffman, John M; Aoyagi, Takao

    2014-01-01

    We report here that the direction of aligned cells on nanopatterns can be tuned to a perpendicular direction without use of any biochemical reagents. This was enabled by shape-memory activation of nanopatterns that transition from a memorized temporal pattern to the original permanent pattern by heating. The thermally induced shape-memory nanopatterns were prepared by chemically crosslinking semi-crystalline poly(ε-caprolactone) (PCL) in a mold to show shape-memory effects over its melting temperature (Tm = 33°C). Permanent surface patterns were first generated by crosslinking the PCL macromonomers in a mold, and temporary surface patterns were then embossed onto the permanent patterns. The temporary surface patterns could be easily triggered to transition quickly to the permanent surface patterns by a 37°C heat treatment, while surface wettability was independent of temperature. To investigate the role of dynamic and reversible surface nanopatterns on cell alignment on the PCL films before and after a topographic transition, NIH 3T3 fibroblasts were seeded on fibronectin-coated PCL films with a temporary grooved topography (grooves with a height of 300 nm and width of 2 μm were spaced 9 μm apart). Interestingly, cells did not change their direction immediately after the surface transition. However, cell alignment was gradually lost with time, and finally cells realigned parallel to the permanent grooves that emerged. The addition of a cytoskeletal inhibitor prevented realignment. These results clearly indicate that cells can sense dynamic changes in the surrounding environments and spontaneously adapt to a new environment by remodeling their cytoskeleton. These findings will serve as the basis for new development of spatiotemporal tunable materials to direct cell fate. PMID:24872707

  13. Influence of HepG2 cell shape on nanoparticle uptake.

    PubMed

    Prats-Mateu, Batirtze; Ertl, Peter; Toca-Herrera, José Luis

    2014-08-01

    Cell mechanics provides insights in cell responses to external stress, which is an important parameter known to influence a variety of cell functions. Understanding the interdependence between mechanical stimulus, cell shape and function is essential in controlling cell culture microenvironment. In this paper, we report on the effect of cationic and anionic interfaces on cell shape and nanoparticle uptake activity of hepatocellular carcinoma cells HepG2. The shape of HepG2 cells changed from a round-like shape to a spread-like form exhibiting lamellar protrusions by incubating them on coated polystyrene well plates with polystyrene sulfonate and poly-ethylene imine (PEI), respectively. This change in shape of HepG2 cells did not influence the uptake of 49-nm particles (which entered the cells by diffusion). However, the internalization of 240-nm diameter particles was larger on cells seeded on cationic PEI. Particle uptake was measured at 4°C and 37°C; the optimal incubation time was 6 h. Cell shape and particle uptake were monitored by fluorescence and confocal microscopy. Quantification of particle internalization was carried out with flow cytometry.

  14. Cortical Actomyosin Breakage Triggers Shape Oscillations in Cells and Cell Fragments

    PubMed Central

    Paluch, Ewa; Piel, Matthieu; Prost, Jacques; Bornens, Michel; Sykes, Cécile

    2005-01-01

    Cell shape and movements rely on complex biochemical pathways that regulate actin, microtubules, and substrate adhesions. Some of these pathways act through altering the cortex contractility. Here we examined cellular systems where contractility is enhanced by disassembly of the microtubules. We found that adherent cells, when detached from their substrate, developed a membrane bulge devoid of detectable actin and myosin. A constriction ring at the base of the bulge oscillated from one side of the cell to the other. The movement was accompanied by sequential redistribution of actin and myosin to the membrane. We observed this oscillatory behavior also in cell fragments of various sizes, providing a simplified, nucleus-free system for biophysical studies. Our observations suggest a mechanism based on active gel dynamics and inspired by symmetry breaking of actin gels growing around beads. The proposed mechanism for breakage of the actomyosin cortex may be used for cell polarization. PMID:15879479

  15. IKKbeta mediates cell shape-induced aromatase expression and estrogen biosynthesis in adipose stromal cells.

    PubMed

    Ghosh, Sagar; Choudary, Ahsan; Ghosh, Sangeeta; Musi, Nicolas; Hu, Yanfen; Li, Rong

    2009-05-01

    Aromatase (Cyp19) is a key enzyme in estrogen biosynthesis and an important target in breast cancer therapy. Within tumor microenvironment, tumor cells stimulate aromatase expression in adipose stromal cells (ASCs), which in turn promotes estrogen-dependent growth of estrogen receptor (ER)-positive tumor cells. However, it is not clear how aromatase transcription and estrogen biosynthesis are regulated in ASCs under a precancerous condition. Here we demonstrate that cell shape change alone is sufficient to induce aromatase expression in primary ASCs from cancer-free individuals. The activation of aromatase transcription is mediated by IkappaB kinase-beta (IKKbeta), a kinase previously known for its cancer-promoting activity in tumor cells. Activation of IKKbeta leads to elevated expression of transcription factor CCAAT/enhancer-binding protein-beta (C/EBPbeta), which binds to and stimulates two breast cancer-associated promoters of the aromatase gene. We also show that shape-induced estrogen production in ASCs can stimulate estrogen-dependent transcription in ER-positive breast tumor cells. We suggest that IKKbeta-dependent aromatase induction due to changes in cellular architecture in adipose tissue may contribute to the breast cancer risks associated with high mammagraphic density and obesity.

  16. γδ T Cells Shape Preimmune Peripheral B Cell Populations.

    PubMed

    Huang, Yafei; Getahun, Andrew; Heiser, Ryan A; Detanico, Thiago O; Aviszus, Katja; Kirchenbaum, Greg A; Casper, Tamara L; Huang, Chunjian; Aydintug, M Kemal; Carding, Simon R; Ikuta, Koichi; Huang, Hua; Wysocki, Lawrence J; Cambier, John C; O'Brien, Rebecca L; Born, Willi K

    2016-01-01

    We previously reported that selective ablation of certain γδ T cell subsets, rather than removal of all γδ T cells, strongly affects serum Ab levels in nonimmunized mice. This type of manipulation also changed T cells, including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4(+) and Vγ6(+) γδ T cells (B6.TCR-Vγ4(-/-)/6(-/-)), we observed expanded Vγ1(+) cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, and elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4(-/-)/6(-/-) mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of Ab-producing cells, as well as serum levels of Abs, IL-4, and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain and on their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Taken together, these data demonstrate the capability of γδ T cells of modulating size and productivity of preimmune peripheral B cell populations. PMID:26582947

  17. Building ensemble representations: How the shape of preceding distractor distributions affects visual search.

    PubMed

    Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni

    2016-08-01

    Perception allows us to extract information about regularities in the environment. Observers can quickly determine summary statistics of a group of objects and detect outliers. The existing body of research has, however, not revealed how such ensemble representations develop over time. Moreover, the correspondence between the physical distribution of features in the external world and their potential internal representation as a probability density function (PDF) by the visual system is still unknown. Here, for the first time we demonstrate that such internal PDFs are built during visual search and show how they can be assessed with repetition and role-reversal effects. Using singleton search for an oddly oriented target line among differently oriented distractors (a priming of pop-out paradigm), we test how different properties of previously observed distractor distributions (mean, variability, and shape) influence search times. Our results indicate that observers learn properties of distractor distributions over and above mean and variance; in fact, response times also depend on the shape of the preceding distractor distribution. Response times decrease as a function of target distance from the mean of preceding Gaussian distractor distributions, and the decrease is steeper when preceding distributions have small standard deviations. When preceding distributions are uniform, however, this decrease in response times can be described by a two-piece function corresponding to the uniform distribution PDF. Moreover, following skewed distributions response times function is skewed in accordance with the skew in distributions. Indeed, internal PDFs seem to be specifically tuned to the observed feature distribution. PMID:27232163

  18. Building ensemble representations: How the shape of preceding distractor distributions affects visual search.

    PubMed

    Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni

    2016-08-01

    Perception allows us to extract information about regularities in the environment. Observers can quickly determine summary statistics of a group of objects and detect outliers. The existing body of research has, however, not revealed how such ensemble representations develop over time. Moreover, the correspondence between the physical distribution of features in the external world and their potential internal representation as a probability density function (PDF) by the visual system is still unknown. Here, for the first time we demonstrate that such internal PDFs are built during visual search and show how they can be assessed with repetition and role-reversal effects. Using singleton search for an oddly oriented target line among differently oriented distractors (a priming of pop-out paradigm), we test how different properties of previously observed distractor distributions (mean, variability, and shape) influence search times. Our results indicate that observers learn properties of distractor distributions over and above mean and variance; in fact, response times also depend on the shape of the preceding distractor distribution. Response times decrease as a function of target distance from the mean of preceding Gaussian distractor distributions, and the decrease is steeper when preceding distributions have small standard deviations. When preceding distributions are uniform, however, this decrease in response times can be described by a two-piece function corresponding to the uniform distribution PDF. Moreover, following skewed distributions response times function is skewed in accordance with the skew in distributions. Indeed, internal PDFs seem to be specifically tuned to the observed feature distribution.

  19. Cell differentiation on disk- and string-shaped hydrogels fabricated from Ca(2+) -responsive self-assembling peptides.

    PubMed

    Fukunaga, Kazuto; Tsutsumi, Hiroshi; Mihara, Hisakazu

    2016-11-01

    We recently developed a self-assembling peptide, E1Y9, that self-assembles into nanofibers and forms a hydrogel in the presence of Ca(2+) . E1Y9 derivatives conjugated with functional peptide sequences derived from extracellular matrices (ECMs) reportedly self-assemble into peptide nanofibers that enhance cell adhesion and differentiation. In this study, E1Y9/E1Y9-IKVAV-mixed hydrogels were constructed to serve as artificial ECMs that promote cell differentiation. E1Y9 and E1Y9-IKVAV co-assembled into networked nanofibers, and hydrogels with disk and string shapes were formed in response to Ca(2+) treatment. The neuronal differentiation of PC12 cells was facilitated on hydrogels of both shapes that contained the IKVAV motifs. Moreover, long neurites extended along the long axis of the string-shaped gel, suggesting that the structure of hydrogels of this shape can affect cellular orientation. Thus, E1Y9 hydrogels can potentially be used as artificial ECMs with desirable bioactivities and shapes that could be useful in tissue engineering applications. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 476-483, 2016.

  20. The impact of mechanical stress on stem cell properties: The link between cell shape and pluripotency.

    PubMed

    Ho, Jolene Caifeng; Ueda, Jun; Shimizu, Takeshi

    2016-01-01

    Embryonic development and differentiation are controlled largely by external stimuli. Mechanical forces, such as those exerted by the surrounding cells and tissues, gravity and substrate rigidity, have been shown to affect cell morphology and spreading, thus triggering signaling pathways that dictate their development. These mechanosignaling pathways play important roles in cellular differentiation and the determination of cell fate. In this review, we discuss the effects of external environmental stimuli on cell differentiation and how this affects pluripotency, as well as the key molecules and pathways involved in mechanosignaling, particularly in relation to embryonic stem cells. Advances in experimental techniques and devices used to study the different aspects of mechanobiology are also examined. Finally, the effects of mechanical stress on the initiation and maintenance of pathological processes such as cancer, as well as their implications for prognosis and possible therapies are discussed.

  1. Distinct protease pathways control cell shape and apoptosis in v-src-transformed quail neuroretina cells

    SciTech Connect

    Neel, Benjamin D.; Gillet, Germain . E-mail: g.gillet@ibcp.fr

    2005-11-15

    Intracellular proteases play key roles in cell differentiation, proliferation and apoptosis. In nerve cells, little is known about their relative contribution to the pathways which control cell physiology, including cell death. Neoplastic transformation of avian neuroretina cells by p60 {sup v-src} tyrosine kinase results in dramatic morphological changes and deregulation of apoptosis. To identify the proteases involved in the cellular response to p60 {sup v-src}, we evaluated the effect of specific inhibitors of caspases, calpains and the proteasome on cell shape changes and apoptosis induced by p60 {sup v-src} inactivation in quail neuroretina cells transformed by tsNY68, a thermosensitive strain of Rous sarcoma virus. We found that the ubiquitin-proteasome pathway is recruited early after p60 {sup v-src} inactivation and is critical for morphological changes, whereas caspases are essential for cell death. This study provides evidence that distinct intracellular proteases are involved in the control of the morphology and fate of v-src-transformed cells.

  2. Magnetically shaped cell aggregates: from granular to contractile materials.

    PubMed

    Frasca, G; Du, V; Bacri, J-C; Gazeau, F; Gay, C; Wilhelm, C

    2014-07-28

    In recent decades, significant advances have been made in the description and modelling of tissue morphogenesis. By contrast, the initial steps leading to the formation of a tissue structure, through cell-cell adhesion, have so far been described only for small numbers of interacting cells. Here, through the use of remote magnetic forces, we succeeded at creating cell aggregates of half million cells, instantaneously and for several cell types, not only those known to form spheroids. This magnetic compaction gives access to the cell elasticity, found in the range of 800 Pa. The magnetic force can be removed at any time, allowing the cell mass to evolve spontaneously thereafter. The dynamics of contraction of these cell aggregates just after their formation (or, in contrast, their spreading for non-interacting monocyte cells) provides direct information on cell-cell interactions and allows retrieving the adhesion energy, in between 0.05 and 2 mJ m(-2), depending on the cell type tested, and in the case of cohesive aggregates. Thus, we show, by probing a large number of cell types, that cell aggregates behave like complex materials, undergoing a transition from a wet granular to contractile network, and that this transition is controlled by cell-cell interactions. PMID:24710948

  3. Water Imbibition into Rock as Affected by Sample Shape, Pore, Conductivity, and Antecedent Water Content

    SciTech Connect

    R.P. Ewing

    2005-08-29

    Infiltration is often presumed to follow Philip's equation, I = st{sup 1/2}, where I is cumulative infiltration, s is sorptivity, and t is time. This form of the equation is appropriate for short times, and/or for negligible gravitational effects. For a uniform soil, this equation describes a plot of log(mass imbibed) versus log(time), with a slope (imbibition exponent) of 1/2. The equation has also been applied to low-porosity rocks, where the extremely small pores render gravitational forces negligible. Experiments recently performed on a wide variety of rocks produced imbibition exponents from 0.2 to 0.5. Many rock types showed initial imbibition proceeding as I {approx} t{sup 1/4}, then later switched to ''normal'' (t{sup 1/2}) behavior. The distance to the wetting front that corresponds to this cross-over behavior was found to be related to the sample shape: tall thin samples are more likely to exhibit the exponent 1/4, and to cross over to 1/2-type behavior later, while short, squat samples are less likely to display the 1/4-type behavior at all. Additionally, the exponents are sensitive to antecedent water content, with initially wetter samples having smaller values. In this study, we present the experimental data, and provide a consistent and physically-based explanation using percolation theory. The analogy between imbibition and diffusion is used to model imbibition into samples with low pore connectivity, with the exponents and their crossover behavior emerging from a random walk process. All laboratory phenomena--different exponents, crossover behavior, and effects of sample shape and antecedent water content--are reproduced by the model, with similar patterns across experiment and simulation. We conclude both that diffusion is a useful and powerful conceptual model for understanding imbibition, and also that imbibition experiments, being simpler than diffusion measurements, can be used to examine diffusive behavior in rock.

  4. Local positive feedback regulation determines cell shape in root hair cells.

    PubMed

    Takeda, Seiji; Gapper, Catherine; Kaya, Hidetaka; Bell, Elizabeth; Kuchitsu, Kazuyuki; Dolan, Liam

    2008-02-29

    The specification and maintenance of growth sites are tightly regulated during cell morphogenesis in all organisms. ROOT HAIR DEFECTIVE 2 reduced nicotinamide adenine dinucleotide phosphate (RHD2 NADPH) oxidase-derived reactive oxygen species (ROS) stimulate a Ca2+ influx into the cytoplasm that is required for root hair growth in Arabidopsis thaliana. We found that Ca2+, in turn, activated the RHD2 NADPH oxidase to produce ROS at the growing point in the root hair. Together, these components could establish a means of positive feedback regulation that maintains an active growth site in expanding root hair cells. Because the location and stability of growth sites predict the ultimate form of a plant cell, our findings demonstrate how a positive feedback mechanism involving RHD2, ROS, and Ca2+ can determine cell shape.

  5. Numerical modeling of shape and size dependent intermediate band quantum dot solar cell

    NASA Astrophysics Data System (ADS)

    Sabeur, Abdelkader; Jiang, Jianliang; Imran, Ali

    2015-08-01

    The electronic structure of the self-assembled quantum dot is presented in this paper to explore the efficient design of quantum dot solar cell. The electronic states of InAs quantum dot embedded in a GaAs matrix have been studied in this article, in which it is assumed the effective mass is independent of level energy for simplification. The shape effect and the layer effect for single quantum dot are investigated, and a simple one-band model for array quantum dots is studied. In the array quantum dots the wave function interaction will be strong, when the space between quantum dots is very close, which will affect the level energy.

  6. Nanoparticle-functionalized polymer platform for controlling metastatic cancer cell adhesion, shape, and motility.

    PubMed

    Lee, Hyojin; Jang, Yeongseon; Seo, Jinhwa; Nam, Jwa-Min; Char, Kookheon

    2011-07-26

    Controlling and understanding the changes in metastatic cancer cell adhesion, shape, and motility are of paramount importance in cancer research, diagnosis, and treatment. Here, we used gold nanoparticles (AuNPs) as nanotopological structures and protein nanocluster forming substrates. Cell adhesion controlling proteins [in this case, fibronection (Fn) and ephrinB3] were modified to AuNPs, and these particles were then modified to the layer-by-layer (LbL) polymer surface that offers a handle for tuning surface charge and mechanical property of a cell-interfacing substrate. We found that metastatic cancer cell adhesion is affected by nanoparticle density on a surface, and ∼140 particles per 400 μm(2) (∼1.7 μm spacing between AuNPs) is optimal for effective metastatic cell adhesion. It was also shown that the AuNP surface density and protein nanoclustering on a spherical AuNP are controlling factors for the efficient interfacing and signaling of metastatic cancer cells. Importantly, the existence of nanotopological features (AuNPs in this case) is much more critical in inducing more dramatic changes in metastatic cell adhesion, protrusion, polarity, and motility than the presence of a cell adhesion protein, Fn, on the surface. Moreover, cell focal adhesion and motility-related paxillin clusters were heavily formed in cell lamellipodia and filopodia and high expression of phospho-paxillins were observed when the cells were cultured on either an AuNP or Fn-modified AuNP polymer surface. The ephrin signaling that results in the decreased expression of paxillin was found to be more effective when ephrins were modified to the AuNP surface than when ephrinB3 was directly attached to the polymer film. The overall trend for cell motility change is such that a nanoparticle-modified LbL surface induces higher cell motility and the AuNP modification to the LbL surface results in more pronounced change in cell motility than Fn or ephrin modification to the LbL surface.

  7. Errors in Moral Forecasting: Perceptions of Affect Shape the Gap Between Moral Behaviors and Moral Forecasts.

    PubMed

    Teper, Rimma; Tullett, Alexa M; Page-Gould, Elizabeth; Inzlicht, Michael

    2015-07-01

    Research in moral decision making has shown that there may not be a one-to-one relationship between peoples' moral forecasts and behaviors. Although past work suggests that physiological arousal may account for part of the behavior-forecasting discrepancy, whether or not perceptions of affect play an important determinant remains unclear. Here, we investigate whether this discrepancy may arise because people fail to anticipate how they will feel in morally significant situations. In Study 1, forecasters predicted cheating significantly more on a test than participants in a behavior condition actually cheated. Importantly, forecasters who received false somatic feedback, indicative of high arousal, produced forecasts that aligned more closely with behaviors. In Study 2, forecasters who misattributed their arousal to an extraneous source forecasted cheating significantly more. In Study 3, higher dispositional emotional awareness was related to less forecasted cheating. These findings suggest that perceptions of affect play a key role in the behavior-forecasting dissociation.

  8. Potato Snakin-1 Gene Silencing Affects Cell Division, Primary Metabolism, and Cell Wall Composition1[W

    PubMed Central

    Nahirñak, Vanesa; Almasia, Natalia Inés; Fernandez, Paula Virginia; Hopp, Horacio Esteban; Estevez, José Manuel; Carrari, Fernando; Vazquez-Rovere, Cecilia

    2012-01-01

    Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense. PMID:22080603

  9. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice.

    PubMed

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  10. How does particle shape affect the near jamming properties of granular materials? Pentagons vs. disks

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqiu; Bares, Jonathan; Behringer, Bob

    Understanding the role of particle shape in system-scale properties is a fundamental challenge in granular physics. We investigated the difference between the response of systems made of pentagons vs. more traditional disks. We performed isotropic compression experiments on 2D photoelastic pentagons and disks near the jamming transition. These experiments show qualitative and quantitative differences in the macroscopic responses of the two systems, such as shifts in the packing fraction at jamming onset and differences in the contact number evolution. Some of these differences are due to a reduction of packing order and the appearance of side-side contacts for the pentatons. We also examined the stress relaxation and dynamical heterogeneity of pentagon particles by performing cyclic compression to allow the system explore phase diagram. We contrast disk and pentagon evolution using four-point-susceptibility and G2 techniques. Work supported by NSF-DMR1206351, DMS1248071, NASA NNX15AD38G, and the W.M. Keck Foundation.

  11. A feed-forward spiking model of shape-coding by IT cells

    PubMed Central

    Romeo, August; Supèr, Hans

    2014-01-01

    The ability to recognize a shape is linked to figure-ground (FG) organization. Cell preferences appear to be correlated across contrast-polarity reversals and mirror reversals of polygon displays, but not so much across FG reversals. Here we present a network structure which explains both shape-coding by simulated IT cells and suppression of responses to FG reversed stimuli. In our model FG segregation is achieved before shape discrimination, which is itself evidenced by the difference in spiking onsets of a pair of output cells. The studied example also includes feature extraction and illustrates a classification of binary images depending on the dominance of vertical or horizontal borders. PMID:24904494

  12. A feed-forward spiking model of shape-coding by IT cells.

    PubMed

    Romeo, August; Supèr, Hans

    2014-01-01

    The ability to recognize a shape is linked to figure-ground (FG) organization. Cell preferences appear to be correlated across contrast-polarity reversals and mirror reversals of polygon displays, but not so much across FG reversals. Here we present a network structure which explains both shape-coding by simulated IT cells and suppression of responses to FG reversed stimuli. In our model FG segregation is achieved before shape discrimination, which is itself evidenced by the difference in spiking onsets of a pair of output cells. The studied example also includes feature extraction and illustrates a classification of binary images depending on the dominance of vertical or horizontal borders. PMID:24904494

  13. Single cells spreading on a protein lattice adopt an energy minimizing shape

    PubMed Central

    Vianay, Benoit; Käfer, Jos; Planus, Emmanuelle; Block, Marc; Graner, François; Guillou, Hervé

    2010-01-01

    When spreading onto a protein microlattice living cells spontaneously acquire simple shapes determined by the lattice geometry. This suggests that, on a lattice, living cells’ shapes are in thermodynamic metastable states. Using a model at thermodynamic equilibrium we are able to reproduce the observed shapes. We build a phase diagram based on two adimensional parameters characterizing essential cellular properties involved in spreading: the cell’s compressibility and fluctuations. PMID:20867675

  14. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil.

    PubMed

    Bernard, Laetitia; Chapuis-Lardy, Lydie; Razafimbelo, Tantely; Razafindrakoto, Malalatiana; Pablo, Anne-Laure; Legname, Elvire; Poulain, Julie; Brüls, Thomas; O'Donohue, Michael; Brauman, Alain; Chotte, Jean-Luc; Blanchart, Eric

    2012-01-01

    Priming effect (PE) is defined as a stimulation of the mineralization of soil organic matter (SOM) following a supply of fresh organic matter. This process can have important consequences on the fate of SOM and on the management of residues in agricultural soils, especially in tropical regions where soil fertility is essentially based on the management of organic matter. Earthworms are ecosystem engineers known to affect the dynamics of SOM. Endogeic earthworms ingest large amounts of soil and assimilate a part of organic matter it contains. During gut transit, microorganisms are transported to new substrates and their activity is stimulated by (i) the production of readily assimilable organic matter (mucus) and (ii) the possible presence of fresh organic residues in the ingested soil. The objective of our study was to see (i) whether earthworms impact the PE intensity when a fresh residue is added to a tropical soil and (ii) whether this impact is linked to a stimulation/inhibition of bacterial taxa, and which taxa are affected. A tropical soil from Madagascar was incubated in the laboratory, with a (13)C wheat straw residue, in the presence or absence of a peregrine endogeic tropical earthworm, Pontoscolex corethrurus. Emissions of (12)CO(2) and (13)CO(2) were followed during 16 days. The coupling between DNA-SIP (stable isotope probing) and pyrosequencing showed that stimulation of both the mineralization of wheat residues and the PE can be linked to the stimulation of several groups especially belonging to the Bacteroidetes phylum.

  15. Global architecture of F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction

    PubMed Central

    Shao, Yue; Mann, Jennifer M.; Chen, Weiqiang; Fu, Jianping

    2014-01-01

    Uniaxial stretch is an important biophysical regulator of cell morphology (or shape) and functions of vascular endothelial cells (ECs). However, it is unclear whether and how cell shape can independently regulate EC mechanotransductive properties under uniaxial stretch. Herein, utilizing a novel uniaxial cell-stretching device integrated with micropost force sensors, we reported the first experimental evidence showing cell shape-dependent EC mechanotransduction via cytoskeleton (CSK) contractile forces in response to uniaxial stretch. Combining experiments and theoretical modeling from first principles, we showed that it was the global architecture of the F-actin CSK that instructed the cell shape-dependent EC mechanotransductive process. Furthermore, a cell shape-dependent nature was relayed in EC mechanotransduction via dynamic focal adhesion (FA) assembly. Our results suggested a novel mechanotransductive process in ECs wherein the global architecture of the F-actin CSK, governed by cell shape, controls mechanotransduction via CSK contractile forces and force-dependent FA assembly under uniaxial stretch. PMID:24435061

  16. ABSENCE OF SCLEROSTIN ADVERSELY AFFECTS B CELL SURVIVAL

    PubMed Central

    Cain, Corey J.; Rueda, Randell; McLelland, Bryce; Collette, Nicole M.; Loots, Gabriela G.; Manilay, Jennifer O.

    2012-01-01

    Increased osteoblast activity in sclerostin-knockout (Sost−/−) mice results in generalized hyperostosis and bones with small bone marrow cavities due to hyperactive mineralizing osteoblast populations. Hematopoietic cell fate decisions are dependent on their local microenvironment, which contains osteoblast and stromal cell populations that support both hematopoietic stem cell quiescence and facilitate B cell development. In this study, we investigated whether high bone mass environments affect B cell development via the utilization of Sost−/− mice, a model of sclerosteosis. We found the bone marrow of Sost−/− mice to be specifically depleted of B cells, due to elevated apoptosis at all B cell developmental stages. In contrast, B cell function in the spleen was normal. Sost expression analysis confirmed that Sost is primarily expressed in osteocytes and is not expressed in any hematopoietic lineage, which indicated that the B cell defects in Sost−/− mice are non-cell autonomous and this was confirmed by transplantation of wildtype (WT) bone marrow into lethally irradiated Sost−/− recipients. WT→Sost−/− chimeras displayed a reduction in B cells, whereas reciprocal Sost−/−→WT chimeras did not, supporting the idea that the Sost−/− bone environment cannot fully support normal B cell development. Expression of the pre-B cell growth stimulating factor, Cxcl12, was significantly lower in bone marrow stromal cells of Sost−/− mice while the Wnt target genes Lef-1 and Ccnd1 remained unchanged in B cells. Taken together, these results demonstrate a novel role for Sost in the regulation of bone marrow environments that support B cells. PMID:22434688

  17. Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis.

    PubMed

    Bosveld, Floris; Markova, Olga; Guirao, Boris; Martin, Charlotte; Wang, Zhimin; Pierre, Anaëlle; Balakireva, Maria; Gaugue, Isabelle; Ainslie, Anna; Christophorou, Nicolas; Lubensky, David K; Minc, Nicolas; Bellaïche, Yohanns

    2016-02-25

    The orientation of cell division along the long axis of the interphase cell--the century-old Hertwig's rule--has profound roles in tissue proliferation, morphogenesis, architecture and mechanics. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways. At mitosis, epithelial cells usually adopt a rounded shape to ensure faithful chromosome segregation and to promote morphogenesis. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. Here we show that in Drosophila epithelia, tricellular junctions (TCJs) localize force generators, pulling on astral microtubules and orienting cell division via the Dynein-associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJs emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues. PMID:26886796

  18. Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis.

    PubMed

    Bosveld, Floris; Markova, Olga; Guirao, Boris; Martin, Charlotte; Wang, Zhimin; Pierre, Anaëlle; Balakireva, Maria; Gaugue, Isabelle; Ainslie, Anna; Christophorou, Nicolas; Lubensky, David K; Minc, Nicolas; Bellaïche, Yohanns

    2016-02-25

    The orientation of cell division along the long axis of the interphase cell--the century-old Hertwig's rule--has profound roles in tissue proliferation, morphogenesis, architecture and mechanics. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways. At mitosis, epithelial cells usually adopt a rounded shape to ensure faithful chromosome segregation and to promote morphogenesis. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. Here we show that in Drosophila epithelia, tricellular junctions (TCJs) localize force generators, pulling on astral microtubules and orienting cell division via the Dynein-associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJs emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues.

  19. The sertolian epithelium in the testis of men affected by 'Sertoli-cell-only syndrome'.

    PubMed

    Tedde, G; Montella, A; Fiocca, D; Delrio, A N

    1993-01-01

    Because of the architectural complexity of the seminiferous epithelium, the Sertoli cell is extremely difficult to study. The individual cellular constituents of the tubular wall are intimately associated with one another; especially Sertoli cells and germinal cells are tightly connected. As implied by the name, Sertoli-cell-only syndrome (SCOS) is characterized by the presence of only Sertoli cells in the seminiferous tubule. The absence of germinal cells makes this condition ideal for the morphological study of Sertoli cell. Testicular biopsy specimens of subjects affected by SCOS were studied under light and electron microscopy. The Sertoli cells appeared to be morphologically normal, except for their shape, that appears to be columnar as result of the complete absence of the germinal cells. The cellular outlines were irregular, particularly at the base, but the cytoplasm contained normal organelles and inclusions. The presence of both pale and dark elements was evident. These differences in staining reflect the variability in concentration of glycogen particles and intermediate microfilaments in the cytoplasm. In spite of these differences between Sertoli cells in SCOS and those in normal subjects, SCOS represents a satisfactory model for the morphological and functional analysis of the Sertoli cells. PMID:7694556

  20. Crawling and Gliding: A Computational Model for Shape-Driven Cell Migration

    PubMed Central

    Niculescu, Ioana; Textor, Johannes; de Boer, Rob J.

    2015-01-01

    Cell migration is a complex process involving many intracellular and extracellular factors, with different cell types adopting sometimes strikingly different morphologies. Modeling realistically behaving cells in tissues is computationally challenging because it implies dealing with multiple levels of complexity. We extend the Cellular Potts Model with an actin-inspired feedback mechanism that allows small stochastic cell rufflings to expand to cell protrusions. This simple phenomenological model produces realistically crawling and deforming amoeboid cells, and gliding half-moon shaped keratocyte-like cells. Both cell types can migrate randomly or follow directional cues. They can squeeze in between other cells in densely populated environments or migrate collectively. The model is computationally light, which allows the study of large, dense and heterogeneous tissues containing cells with realistic shapes and migratory properties. PMID:26488304

  1. The mechanisms shaping the single-cell transcriptional landscape.

    PubMed

    Martinez-Jimenez, Celia Pilar; Odom, Duncan T

    2016-04-01

    Recent technological and computational advances in understanding the transcriptional and chromatin features of single cells have begun answering longstanding questions in the extent and impact of biological heterogeneity. Here, we outline the intrinsic and extrinsic mechanisms that underlie the transcriptional and functional diversity within superficially homogeneous populations, and we discuss how fascinating new studies have afforded novel insight into each mechanism. The studies are chosen in part to include initial reports of novel functional genomics tools where the eventual applications will clearly have profound impact on our understanding the dynamics of cell-to-cell transcriptional variation-from individual cells to whole organisms.

  2. Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments.

    PubMed

    Martínez, Laura E; Hardcastle, Joseph M; Wang, Jeffrey; Pincus, Zachary; Tsang, Jennifer; Hoover, Timothy R; Bansil, Rama; Salama, Nina R

    2016-01-01

    The helical shape of the human stomach pathogen Helicobacter pylori has been suggested to provide mechanical advantage for penetrating the viscous stomach mucus layer. Using single-cell tracking and quantitative morphology analysis, we document marked variation in cell body helical parameters and flagellum number among H. pylori strains leading to distinct and broad speed distributions in broth and viscous gastric mucin media. These distributions reflect both temporal variation in swimming speed and morphologic variation within the population. Isogenic mutants with straight-rod morphology showed 7-21% reduction in speed and a lower fraction of motile bacteria. Mutational perturbation of flagellum number revealed a 19% increase in speed with 4 versus 3 median flagellum number. Resistive force theory modeling incorporating variation of both cell shape and flagellum number predicts qualitative speed differences of 10-30% among strains. However, quantitative comparisons suggest resistive force theory underestimates the influence of cell body shape on speed for helical shaped bacteria.

  3. Changes in cell shape are correlated with metastatic potential in murine and human osteosarcomas.

    PubMed

    Lyons, Samanthe M; Alizadeh, Elaheh; Mannheimer, Joshua; Schuamberg, Katherine; Castle, Jordan; Schroder, Bryce; Turk, Philip; Thamm, Douglas; Prasad, Ashok

    2016-02-12

    Metastatic cancer cells for many cancers are known to have altered cytoskeletal properties, in particular to be more deformable and contractile. Consequently, shape characteristics of more metastatic cancer cells may be expected to have diverged from those of their parental cells. To examine this hypothesis we study shape characteristics of paired osteosarcoma cell lines, each consisting of a less metastatic parental line and a more metastatic line, derived from the former by in vivo selection. Two-dimensional images of four pairs of lines were processed. Statistical analysis of morphometric characteristics shows that shape characteristics of the metastatic cell line are partly overlapping and partly diverged from the parental line. Significantly, the shape changes fall into two categories, with three paired cell lines displaying a more mesenchymal-like morphology, while the fourth displaying a change towards a more rounded morphology. A neural network algorithm could distinguish between samples of the less metastatic cells from the more metastatic cells with near perfect accuracy. Thus, subtle changes in shape carry information about the genetic changes that lead to invasiveness and metastasis of osteosarcoma cancer cells.

  4. Epithelial cell shape is regulated by Lulu proteins via myosin-II.

    PubMed

    Nakajima, Hiroyuki; Tanoue, Takuji

    2010-02-15

    Cell-shape change in epithelial structures is fundamental to animal morphogenesis. Recent studies identified myosin-II as the major generator of driving forces for cell-shape changes during morphogenesis. Lulu (Epb41l5) is a major regulator of morphogenesis, although the downstream molecular and cellular mechanisms remain obscure in mammals. In Drosophila and zebrafish, Lulu proteins were reported to negatively regulate Crumbs, an apical domain regulator, thus regulating morphogenesis. In this study, we show that mammalian Lulu activates myosin-II, thus regulating epithelial cell shape. In our experiments, Lulu expression in epithelial cells resulted in apical constriction and lateral elongation in the cells, accompanied by upregulation of myosin-II. The inhibition of myosin-II activity almost completely blocked this Lulu-driven cell-shape change. We further found that Rock participates in the myosin-II activation. Additionally, RNAi-mediated depletion of Lulu in epithelial cells resulted in disorganization of myosin-II and a concomitant loss of proper lateral domain organization in the cells. From these results, we propose that Lulu regulates epithelial cell shape by controlling myosin-II activity. PMID:20103536

  5. Changes in cell shape are correlated with metastatic potential in murine and human osteosarcomas

    PubMed Central

    Lyons, Samanthe M.; Alizadeh, Elaheh; Mannheimer, Joshua; Schuamberg, Katherine; Castle, Jordan; Schroder, Bryce; Turk, Philip; Thamm, Douglas; Prasad, Ashok

    2016-01-01

    ABSTRACT Metastatic cancer cells for many cancers are known to have altered cytoskeletal properties, in particular to be more deformable and contractile. Consequently, shape characteristics of more metastatic cancer cells may be expected to have diverged from those of their parental cells. To examine this hypothesis we study shape characteristics of paired osteosarcoma cell lines, each consisting of a less metastatic parental line and a more metastatic line, derived from the former by in vivo selection. Two-dimensional images of four pairs of lines were processed. Statistical analysis of morphometric characteristics shows that shape characteristics of the metastatic cell line are partly overlapping and partly diverged from the parental line. Significantly, the shape changes fall into two categories, with three paired cell lines displaying a more mesenchymal-like morphology, while the fourth displaying a change towards a more rounded morphology. A neural network algorithm could distinguish between samples of the less metastatic cells from the more metastatic cells with near perfect accuracy. Thus, subtle changes in shape carry information about the genetic changes that lead to invasiveness and metastasis of osteosarcoma cancer cells. PMID:26873952

  6. Microtubule-dependent control of cell shape and pseudopodial activity is inhibited by the antibody to kinesin motor domain

    PubMed Central

    1993-01-01

    One of the major functions of cytoplasmic microtubules is their involvement in maintenance of asymmetric cell shape. Microtubules were considered to perform this function working as rigid structural elements. At the same time, microtubules play a critical role in intracellular organelle transport, and this fact raises the possibility that the involvement of microtubules in maintenance of cell shape may be mediated by directed transport of certain cellular components to a limited area of the cell surface (e.g., to the leading edge) rather than by their functioning as a mechanical support. To test this hypothesis we microinjected cultured human fibroblasts with the antibody (called HD antibody) raised against kinesin motor domain highly conserved among the different members of kinesin superfamily. As was shown before this antibody inhibits kinesin-dependent microtubule gliding in vitro and interferes with a number of microtubule-dependent transport processes in living cells. Preimmune IgG fraction was used for control experiments. Injections of fibroblasts with HD antibody but not with preimmune IgG significantly reduced their asymmetry, resulting in loss of long processes and elongated cell shape. In addition, antibody injection suppressed pseudopodial activity at the leading edge of fibroblasts moving into an experimentally made wound. Analysis of membrane organelle distribution showed that kinesin antibody induced clustering of mitochondria in perinuclear region and their withdrawal from peripheral parts of the cytoplasm. HD antibody does not affect either density or distribution of cytoplasmic microtubules. The results of our experiments show that many changes of phenotype induced in cells by microtubule-depolymerizing agents can be mimicked by the inhibition of motor proteins, and therefore microtubule functions in maintaining of the cell shape and polarity are mediated by motor proteins rather than by being provided by rigidity of tubulin polymer itself. PMID

  7. Auxin and LANCEOLATE affect leaf shape in tomato via different developmental processes.

    PubMed

    Ben-Gera, Hadas; Ori, Naomi

    2012-10-01

    Elaboration of a complex leaves depends on the morphogenetic activity of a specific tissue at the leaf margin termed marginal-blastozon (MB). In tomato (Solanum lycopersicym), prolonged activity of the MB leads to the development of compound leaves. The activity of the MB is restricted by the TCP transcription factor LANCEOLATE (LA). Plants harboring the dominant LA mutant allele La-2 have simple leaves with a uniform blade. Conversely, leaves of pFIL > > miR319 are compound and grow indeterminately in their margins due to leaf overexpression of miR319, a negative regulator of LA and additional miR319-sensitive genes. We have recently shown that the auxin-response sensor DR5::VENUS marks and precedes leaflet initiation events in the MB. Mutations in ENTIRE (E), an auxin signal inhibitor from the Aux/IAA family, lead to the expansion of the DR5::VENUS signal to throughout the leaf-primordia margin, and to a simplified leaf phenotype. Here, we examined the interaction between auxin, E, and LA in tomato leaf development. In La-2 leaf primordia, the auxin signal is very weak and is diffused to throughout the leaf margin, suggesting that auxin acts within the developmental-context of MB activity, which is controlled by LA. e La-2 double mutants showed an enhanced simple leaf phenotype and e pFIL > > miR319 leaves initiated less leaflets than wild-type, but their margins showed continuous growth. These results suggest that E and auxin affect leaflet initiation within the context of the extended MB activity, but their influence on the extent of indeterminate growth of the leaf is minor.

  8. Bacterial Shape and ActA Distribution Affect Initiation of Listeria monocytogenes Actin-Based Motility

    PubMed Central

    Rafelski, Susanne M.; Theriot, Julie A.

    2005-01-01

    We have examined the process by which the intracellular bacterial pathogen Listeria monocytogenes initiates actin-based motility and determined the contribution of the variable surface distribution of the ActA protein to initiation and steady-state movement. To directly correlate ActA distributions to actin dynamics and motility of live bacteria, ActA was fused to a monomeric red fluorescent protein (mRFP1). Actin comet tail formation and steady-state bacterial movement rates both depended on ActA distribution, which in turn was tightly coupled to the bacterial cell cycle. Motility initiation was found to be a highly complex, multistep process for bacteria, in contrast to the simple symmetry breaking previously observed for ActA-coated spherical beads. F-actin initially accumulated along the sides of the bacterium and then slowly migrated to the bacterial pole expressing the highest density of ActA as a tail formed. Early movement was highly unstable with extreme changes in speed and frequent stops. Over time, saltatory motility and sensitivity to the immediate environment decreased as bacterial movement became robust at a constant steady-state speed. PMID:15980176

  9. Effects of colchicine on the shape of chick neuroepithelial cells during neurulation.

    PubMed

    Fernandez, J G; de Paz, P; Chamorro, C A

    1987-11-01

    We have analyzed the effects of colchicine on the cell shapes in chick neuroepithelium. Cell shapes were ascertained by the position of the nucleus in plastic serial sections. We tested three colchicine doses (5 X 10(-5) M, 5 X 10(-6) M, and 5 X 10(-7) M) by two experimental treatments (in ovo and in vitro). Colchicine treatment in vitro is always effective in depolymerizing microtubules of neuroepithelial cells and reduces the percentages of wedge-shaped cells in the median area of neuroepithelium. The same effect can be observed when the embryos are treated with 5 X 10(-5) M or 5 X 10(-6) M colchicine in ovo. A concentration of colchicine of 5 X 10(-7) M in ovo cannot disrupt microtubules in stage 8 and stage 10 embryos, and the percentage of wedge-shaped cells is the same as that of the untreated cells. In stage 6 embryos this colchicine dose effects the microtubules and the percentages of wedge-shaped cells. These facts are interpreted in respect to variations in microtubular resistance to microtubular-disrupting agents that are shown by the neuroepithelial cells from different developmental stages.

  10. How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer?

    PubMed

    Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min

    2016-01-01

    Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures. PMID:26782664

  11. How Do the Size, Charge and Shape of Nanoparticles Affect Amyloid β Aggregation on Brain Lipid Bilayer?

    NASA Astrophysics Data System (ADS)

    Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min

    2016-01-01

    Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.

  12. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization

    PubMed Central

    Ursell, Tristan S.; Nguyen, Jeffrey; Monds, Russell D.; Colavin, Alexandre; Billings, Gabriel; Ouzounov, Nikolay; Gitai, Zemer; Shaevitz, Joshua W.; Huang, Kerwyn Casey

    2014-01-01

    Cells typically maintain characteristic shapes, but the mechanisms of self-organization for robust morphological maintenance remain unclear in most systems. Precise regulation of rod-like shape in Escherichia coli cells requires the MreB actin-like cytoskeleton, but the mechanism by which MreB maintains rod-like shape is unknown. Here, we use time-lapse and 3D imaging coupled with computational analysis to map the growth, geometry, and cytoskeletal organization of single bacterial cells at subcellular resolution. Our results demonstrate that feedback between cell geometry and MreB localization maintains rod-like cell shape by targeting cell wall growth to regions of negative cell wall curvature. Pulse-chase labeling indicates that growth is heterogeneous and correlates spatially and temporally with MreB localization, whereas MreB inhibition results in more homogeneous growth, including growth in polar regions previously thought to be inert. Biophysical simulations establish that curvature feedback on the localization of cell wall growth is an effective mechanism for cell straightening and suggest that surface deformations caused by cell wall insertion could direct circumferential motion of MreB. Our work shows that MreB orchestrates persistent, heterogeneous growth at the subcellular scale, enabling robust, uniform growth at the cellular scale without requiring global organization. PMID:24550515

  13. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    PubMed Central

    Ramanauskiene, Kristina; Raudonis, Raimondas

    2016-01-01

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies.

  14. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    PubMed Central

    Ramanauskiene, Kristina; Raudonis, Raimondas

    2016-01-01

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies. PMID:27688825

  15. Active self-polarization of contractile cells in asymmetrically shaped domains

    NASA Astrophysics Data System (ADS)

    Zemel, A.; Safran, S. A.

    2007-08-01

    Mechanical forces generated by contractile cells allow the cells to sense their environment and to interact with other cells. By locally pulling on their environment, cells can sense and respond to mechanical features such as the local stress (or strain), the shape of a cellular domain, and the surrounding rigidity; at the same time, they also modify the mechanical state of the system. This creates a mechanical feedback loop that can result in self-polarization of cells. In this paper, we present a quantitative mechanical model that predicts the self-polarization of cells in spheroidally shaped domains, comprising contractile cells and an elastic matrix, that are embedded in a three-dimensional, cell-free gel. The theory is based on a generalization of the known results for passive inclusions in solids to include the effects of cell activity. We use the active cellular susceptibility tensor presented by Zemel [Phys. Rev. Lett. 97, 128103 (2006)] to calculate the polarization response and hence the elastic stress field developed by the cells in the cellular domain. The cell polarization is analyzed as a function of the shape and the elastic moduli of the cellular domain compared with the cell-free surrounding material. Consistent with experiment, our theory predicts the development of a stronger contractile force for cells in a gel that is surrounded by a large, cell-free material whose elastic modulus is stiffer than that of the gel that contains the cells. This provides a quantitative explanation of the differences in the development of cellular forces as observed in free and fixed gels. In the case of an asymmetrically shaped (spheroidal) domain of cells, we show that the anisotropic elastic field within the domain leads to a spontaneous self-polarization of the cells along the long axis of the domain.

  16. Shape optimization of axisymmetric solids with the finite cell method using a fixed grid

    NASA Astrophysics Data System (ADS)

    Meng, Liang; Zhang, Wei-Hong; Zhu, Ji-Hong; Xu, Zhao; Cai, Shou-Hu

    2016-06-01

    In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional conforming mesh in the finite element method with structured cells that are fixed during the whole design process with a view to avoid the sophisticated re-meshing and eventual mesh distortion. Then, B-spline shape functions are further implemented to yield a high-order continuity field along the cell boundary in stress analysis. By means of the implicit description of the shape boundary, stress sensitivity is analytically derived with respect to shape design variables. Finally, we illustrate the efficiency and accuracy of the proposed protocol by several numerical test cases as well as a whole design procedure carried out on an aeronautic turbine disk.

  17. A cytoskeletal spring for the control of cell shape in outer hair cells isolated from the guinea pig cochlea.

    PubMed

    Holley, M C; Ashmore, J F

    1990-01-01

    A two-dimensional cortical cytoskeletal lattice associated with the lateral plasma membranes of mammalian outer hair cells maintains cell shape and provides a restoring force to oppose active changes in cell length. The lattice is composed of two morphologically distinct filaments which are arranged to reinforce the cell circumferentially whilst allowing limited changes in cell length and diameter. This function can only be fulfilled if intracellular pressure is high enough to put the lattice under tension.

  18. The hexagonal shape of the honeycomb cells depends on the construction behavior of bees.

    PubMed

    Nazzi, Francesco

    2016-01-01

    The hexagonal shape of the honey bee cells has attracted the attention of humans for centuries. It is now accepted that bees build cylindrical cells that later transform into hexagonal prisms through a process that it is still debated. The early explanations involving the geometers' skills of bees have been abandoned in favor of new hypotheses involving the action of physical forces, but recent data suggest that mechanical shaping by bees plays a role. However, the observed geometry can arise only if isodiametric cells are previously arranged in a way that each one is surrounded by six other similar cells; here I suggest that this is a consequence of the building program adopted by bees and propose a possible behavioral rule ultimately accounting for the hexagonal shape of bee cells. PMID:27320492

  19. Fabrication method for cores of structural sandwich materials including star shaped core cells

    DOEpatents

    Christensen, Richard M.

    1997-01-01

    A method for fabricating structural sandwich materials having a core pattern which utilizes star and non-star shaped cells. The sheets of material are bonded together or a single folded sheet is used, and bonded or welded at specific locations, into a flat configuration, and are then mechanically pulled or expanded normal to the plane of the sheets which expand to form the cells. This method can be utilized to fabricate other geometric cell arrangements than the star/non-star shaped cells. Four sheets of material (either a pair of bonded sheets or a single folded sheet) are bonded so as to define an area therebetween, which forms the star shaped cell when expanded.

  20. Fabrication method for cores of structural sandwich materials including star shaped core cells

    DOEpatents

    Christensen, R.M.

    1997-07-15

    A method for fabricating structural sandwich materials having a core pattern which utilizes star and non-star shaped cells is disclosed. The sheets of material are bonded together or a single folded sheet is used, and bonded or welded at specific locations, into a flat configuration, and are then mechanically pulled or expanded normal to the plane of the sheets which expand to form the cells. This method can be utilized to fabricate other geometric cell arrangements than the star/non-star shaped cells. Four sheets of material (either a pair of bonded sheets or a single folded sheet) are bonded so as to define an area therebetween, which forms the star shaped cell when expanded. 3 figs.

  1. The hexagonal shape of the honeycomb cells depends on the construction behavior of bees

    PubMed Central

    Nazzi, Francesco

    2016-01-01

    The hexagonal shape of the honey bee cells has attracted the attention of humans for centuries. It is now accepted that bees build cylindrical cells that later transform into hexagonal prisms through a process that it is still debated. The early explanations involving the geometers’ skills of bees have been abandoned in favor of new hypotheses involving the action of physical forces, but recent data suggest that mechanical shaping by bees plays a role. However, the observed geometry can arise only if isodiametric cells are previously arranged in a way that each one is surrounded by six other similar cells; here I suggest that this is a consequence of the building program adopted by bees and propose a possible behavioral rule ultimately accounting for the hexagonal shape of bee cells. PMID:27320492

  2. Linking cell shape, elasticity and fate: in vitro re-differentiation of chondrocytes

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaofei; Chim, Yahua; Yin, Huabing

    2014-02-01

    Autologous chondrocyte transplantation (ACT) has become a promising method for repairing large articular defects. However, dedifferentiation of chondrocytes during cell expansion remains a major limitation for ACT procedures. In this study, we explore the potential of confining cell shape for re-differentiation of dedifferentiated bovine chondrocytes. A novel culture system, combining 2D micropatterning with 3D matrix formation, was developed to control and maintain individual chondrocyte's shape. Both collagen II synthesis and the mechanical properties of cells were monitored during re-differentiation. We show that a spherical morphology without cell spreading plays a limited role in induction of re-differentiation. Instead, isolated, dedifferentiated chondrocytes partially regain chondrogenic properties if they have an appropriate cell shape and limited spreading.

  3. CELL TRACKING USING PARTICLE FILTERS WITH IMPLICIT CONVEX SHAPE MODEL IN 4D CONFOCAL MICROSCOPY IMAGES

    PubMed Central

    Ramesh, Nisha; Tasdizen, Tolga

    2016-01-01

    Bayesian frameworks are commonly used in tracking algorithms. An important example is the particle filter, where a stochastic motion model describes the evolution of the state, and the observation model relates the noisy measurements to the state. Particle filters have been used to track the lineage of cells. Propagating the shape model of the cell through the particle filter is beneficial for tracking. We approximate arbitrary shapes of cells with a novel implicit convex function. The importance sampling step of the particle filter is defined using the cost associated with fitting our implicit convex shape model to the observations. Our technique is capable of tracking the lineage of cells for nonmitotic stages. We validate our algorithm by tracking the lineage of retinal and lens cells in zebrafish embryos. PMID:27403085

  4. Optimizing micropattern geometries for cell shape and migration with genetic algorithms.

    PubMed

    Albert, Philipp J; Schwarz, Ulrich S

    2016-07-11

    Adhesive micropatterns have become a standard tool to control cell shape and function in cell culture. However, the variety of possible patterns is infinitely large and experiments often restrict themselves to established designs. Here we suggest a systematic method to establish novel micropatterns for desired functions using genetic algorithms. The evolutionary fitness of a certain pattern is computed using a cellular Potts model that describes cell behavior on micropattern. We first predict optimal patterns for a desired cell shape. We then optimize ratchet geometries to bias cell migration in a certain direction and find that asymmetric triangles are superior over the symmetric ones often used in experiments. Finally we design geometries which reverse the migration direction of cells when cell density increases due to cell division. PMID:27334659

  5. Substrate elasticity affects bovine satellite cell activation kinetics in vitro.

    PubMed

    Lapin, M R; Gonzalez, J M; Johnson, S E

    2013-05-01

    Satellite cells support efficient postnatal skeletal muscle hypertrophy through fusion into the adjacent muscle fiber. Nuclear contribution allows for maintenance of the fiber myonuclear domain and proficient transcription of myogenic genes. Niche growth factors affect satellite cell biology; however, the interplay between fiber elasticity and microenvironment proteins remains largely unknown. The objective of the experiment was to examine the effects of hepatocyte growth factor (HGF) and surface elasticity on bovine satellite cell (BSC) activation kinetics in vitro. Young's elastic modulus was calculated for the semimembranosus (SM) and LM muscles of young bulls (5 d; n = 8) and adult cows (27 mo; n = 4) cattle. Results indicate that LM elasticity decreased (P < 0.05) with age; no difference in Young's modulus for the SM was noted. Bovine satellite cells were seeded atop polyacrylamide bioscaffolds with surface elasticities that mimic young bull and adult cow LM or traditional cultureware. Cells were maintained in low-serum media supplemented with 5 ng/mL HGF or vehicle only for 24 or 48 h. Activation was evaluated by proliferating cell nuclear antigen (PCNA) immunocytochemistry. Results indicate that BSC maintained on rigid surfaces were activated at 24 h and refractive to HGF supplementation. By contrast, fewer (P < 0.05) BSC had exited quiescence after 24 h of culture on surfaces reflective of either young bull (8.1 ± 1.7 kPa) or adult cow (14.6 ± 1.6 kPa) LM. Supplementation with HGF promoted activation of BSC cultured on bioscaffolds as measured by an increase (P < 0.05) in PCNA immunopositive cells. Culture on pliant surfaces affected neither activation kinetics nor numbers of Paired box 7 (Pax7) immunopositive muscle stem cells (P > 0.05). However, with increasing surface elasticity, an increase (P < 0.05) in the numbers of muscle progenitors was observed. These results confirm that biophysical and biochemical signals regulate BSC activation.

  6. Optimization of the parameters affecting the shape and position of crystal-melt interface in YAG single crystal growth

    NASA Astrophysics Data System (ADS)

    Asadian, Morteza; Seyedein, S. H.; Aboutalebi, M. R.; Maroosi, A.

    2009-01-01

    In Czochralski method, the shape of crystal-melt interface and its position play a major role on the quality of single crystals. In the Czochralski crystal growth process having a nearly flat interface, a single crystal with less structural defect, uniform physical properties and homogenous chemical composition is obtained. In the present study, firstly a 2-D fluid flow and solidification model was developed to simulate the YAG single crystal growth process using a finite volume method. The fluid flow and solidification heat transfer model was further tested by available experimental data. The verified fluid flow and solidification heat transfer model was used to build an artificial neural network and trained to optimize the parameters affecting the shape and position of the interface. Finally, the trained neural network was employed to optimize the operating parameters such as pulling rate, rotation speed of the crystal, ambient gas and temperature of crucible wall to obtain a closely flat crystal-melt interface. The optimized variables were eventually used in fluid flow model to evaluate the performance of the optimization model.

  7. Hutchinson-Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates.

    PubMed

    Booth-Gauthier, Elizabeth A; Du, Vicard; Ghibaudo, Marion; Rape, Andrew D; Dahl, Kris Noel; Ladoux, Benoit

    2013-03-01

    Cell migration through tight interstitial spaces in three dimensional (3D) environments impacts development, wound healing and cancer metastasis and is altered by the aging process. The stiffness of the extracellular matrix (ECM) increases with aging and affects the cells and cytoskeletal processes involved in cell migration. However, the nucleus, which is the largest and densest organelle, has not been widely studied during cell migration through the ECM. Additionally, the nucleus is stiffened during the aging process through the accumulation of a mutant nucleoskeleton protein lamin A, progerin. By using microfabricated substrates to mimic the confined environment of surrounding tissues, we characterized nuclear movements and deformation during cell migration into micropillars where interspacing can be tuned to vary nuclear confinement. Cell motility decreased with decreased micropillar (μP) spacing and correlated with increased dysmorphic shapes of nuclei. We examined the effects of increased nuclear stiffness which correlates with cellular aging by studying Hutchinson-Gilford progeria syndrome cells which are known to accumulate progerin. With the expression of progerin, cells showed a threshold response to decreased μP spacing. Cells became trapped in the close spacing, possibly from visible micro-defects in the nucleoskeleton induced by cell crawling through the μP and from reduced force generation, measured independently. We suggest that ECM changes during aging could be compounded by the increasing stiffness of the nucleus and thus changes in cell migration through 3D tissues.

  8. Dexamethasone and Azathioprine Promote Cytoskeletal Changes and Affect Mesenchymal Stem Cell Migratory Behavior

    PubMed Central

    Schneider, Natália; Gonçalves, Fabiany da Costa; Pinto, Fernanda Otesbelgue; Lopez, Patrícia Luciana da Costa; Araújo, Anelise Bergmann; Pfaffenseller, Bianca; Passos, Eduardo Pandolfi; Cirne-Lima, Elizabeth Obino; Meurer, Luíse; Lamers, Marcelo Lazzaron; Paz, Ana Helena

    2015-01-01

    Glucocorticoids and immunosuppressive drugs are commonly used to treat inflammatory disorders, such as inflammatory bowel disease (IBD), and despite a few improvements, the remission of IBD is still difficult to maintain. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have emerged as regulators of the immune response, and their viability and activation of their migratory properties are essential for successful cell therapy. However, little is known about the effects of immunosuppressant drugs used in IBD treatment on MSC behavior. The aim of this study was to evaluate MSC viability, nuclear morphometry, cell polarity, F-actin and focal adhesion kinase (FAK) distribution, and cell migratory properties in the presence of the immunosuppressive drugs azathioprine (AZA) and dexamethasone (DEX). After an initial characterization, MSCs were treated with DEX (10 μM) or AZA (1 μM) for 24 hrs or 7 days. Neither drug had an effect on cell viability or nuclear morphometry. However, AZA treatment induced a more elongated cell shape, while DEX was associated with a more rounded cell shape (P < 0.05) with a higher presence of ventral actin stress fibers (P < 0.05) and a decrease in protrusion stability. After 7 days of treatment, AZA improved the cell spatial trajectory (ST) and increased the migration speed (24.35%, P < 0.05, n = 4), while DEX impaired ST and migration speed after 24 hrs and 7 days of treatment (-28.69% and -25.37%, respectively; P < 0.05, n = 4). In conclusion, our data suggest that these immunosuppressive drugs each affect MSC morphology and migratory capacity differently, possibly impacting the success of cell therapy. PMID:25756665

  9. Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models

    NASA Astrophysics Data System (ADS)

    Giese, Wolfgang; Eigel, Martin; Westerheide, Sebastian; Engwer, Christian; Klipp, Edda

    2015-12-01

    In silico experiments bear the potential for further understanding of biological transport processes by allowing a systematic modification of any spatial property and providing immediate simulation results. Cell polarization and spatial reorganization of membrane proteins are fundamental for cell division, chemotaxis and morphogenesis. We chose the yeast Saccharomyces cerevisiae as an exemplary model system which entails the shuttling of small Rho GTPases such as Cdc42 and Rho, between an active membrane-bound form and an inactive cytosolic form. We used partial differential equations to describe the membrane-cytosol shuttling of proteins. In this study, a consistent extension of a class of 1D reaction-diffusion systems into higher space dimensions is suggested. The membrane is modeled as a thin layer to allow for lateral diffusion and the cytosol is modeled as an enclosed volume. Two well-known polarization mechanisms were considered. One shows the classical Turing-instability patterns, the other exhibits wave-pinning dynamics. For both models, we investigated how cell shape and diffusion barriers like septin structures or bud scars influence the formation of signaling molecule clusters and subsequent polarization. An extensive set of in silico experiments with different modeling hypotheses illustrated the dependence of cell polarization models on local membrane curvature, cell size and inhomogeneities on the membrane and in the cytosol. In particular, the results of our computer simulations suggested that for both mechanisms, local diffusion barriers on the membrane facilitate Rho GTPase aggregation, while diffusion barriers in the cytosol and cell protrusions limit spontaneous molecule aggregations of active Rho GTPase locally.

  10. Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models.

    PubMed

    Giese, Wolfgang; Eigel, Martin; Westerheide, Sebastian; Engwer, Christian; Klipp, Edda

    2015-11-24

    In silico experiments bear the potential for further understanding of biological transport processes by allowing a systematic modification of any spatial property and providing immediate simulation results. Cell polarization and spatial reorganization of membrane proteins are fundamental for cell division, chemotaxis and morphogenesis. We chose the yeast Saccharomyces cerevisiae as an exemplary model system which entails the shuttling of small Rho GTPases such as Cdc42 and Rho, between an active membrane-bound form and an inactive cytosolic form. We used partial differential equations to describe the membrane-cytosol shuttling of proteins. In this study, a consistent extension of a class of 1D reaction-diffusion systems into higher space dimensions is suggested. The membrane is modeled as a thin layer to allow for lateral diffusion and the cytosol is modeled as an enclosed volume. Two well-known polarization mechanisms were considered. One shows the classical Turing-instability patterns, the other exhibits wave-pinning dynamics. For both models, we investigated how cell shape and diffusion barriers like septin structures or bud scars influence the formation of signaling molecule clusters and subsequent polarization. An extensive set of in silico experiments with different modeling hypotheses illustrated the dependence of cell polarization models on local membrane curvature, cell size and inhomogeneities on the membrane and in the cytosol. In particular, the results of our computer simulations suggested that for both mechanisms, local diffusion barriers on the membrane facilitate Rho GTPase aggregation, while diffusion barriers in the cytosol and cell protrusions limit spontaneous molecule aggregations of active Rho GTPase locally.

  11. Cell culture arrays using micron-sized ferromagnetic ring-shaped thin films

    SciTech Connect

    Huang, Chen-Yu; Wei, Zung-Hang; Lai, Mei-Feng; Ger, Tzong-Rong

    2015-05-07

    Cell patterning has become an important technology for tissue engineering. In this research, domain walls are formed at the two ends of a ferromagnetic ring thin film after applying a strong external magnetic field, which can effectively attract magnetically labeled cells and control the position for biological cell. Magnetophoresis experiment was conducted to quantify the magnetic nanoparticle inside the cells. A ring-shaped magnetic thin films array was fabricated through photolithography. It is observed that magnetically labeled cells can be successfully attracted to the two ends of the ring-shaped magnetic thin film structure and more cells were attracted and further attached to the structures. The cells are co-cultured with the structure and kept proliferating; therefore, such ring thin film can be an important candidate for in-vitro biomedical chips or tissue engineering.

  12. Cell Shapes and Traction Forces Determine Stress in Motile Confluent Tissue

    NASA Astrophysics Data System (ADS)

    Yang, Xingbo; Bi, Dapeng; Czajkowski, Michael; Manning, Lisa; Marchetti, Cristina

    Collective cell migration is a highly regulated process involved in wound healing, cancer metastasis and morphogenesis. The understanding of the regulatory mechanism requires the study of mechanical interactions among cells that coordinate their active motion. To this end, we develop a method that determines cellular forces and tissue stresses from experimentally accessible cell shapes and traction forces. This approach allows us for the first time to calculate membrane tensions and hydrostatic pressures at a cellular level in collective migrating cell layers out of equilibrium. It helps us understand the mechanical origin of tissue stresses as previous inferred using Traction Force Microscopy (TFM). We test this approach on a new model of motile confluent tissue, which we term Self-propelled Voronoi Model (SPV) that incorporates cell elasticity, Contractility and motility. With the model, we explore the mechanical properties of confluent motile tissue as a function of cell activities and cell shapes in various geometries.

  13. folded gastrulation, cell shape change and the control of myosin localization.

    PubMed

    Dawes-Hoang, Rachel E; Parmar, Kush M; Christiansen, Audrey E; Phelps, Chris B; Brand, Andrea H; Wieschaus, Eric F

    2005-09-01

    The global cell movements that shape an embryo are driven by intricate changes to the cytoarchitecture of individual cells. In a developing embryo, these changes are controlled by patterning genes that confer cell identity. However, little is known about how patterning genes influence cytoarchitecture to drive changes in cell shape. In this paper, we analyze the function of the folded gastrulation gene (fog), a known target of the patterning gene twist. Our analysis of fog function therefore illuminates a molecular pathway spanning all the way from patterning gene to physical change in cell shape. We show that secretion of Fog protein is apically polarized, making this the earliest polarized component of a pathway that ultimately drives myosin to the apical side of the cell. We demonstrate that fog is both necessary and sufficient to drive apical myosin localization through a mechanism involving activation of myosin contractility with actin. We determine that this contractility driven form of localization involves RhoGEF2 and the downstream effector Rho kinase. This distinguishes apical myosin localization from basal myosin localization, which we find not to require actinomyosin contractility or FOG/RhoGEF2/Rho-kinase signaling. Furthermore, we demonstrate that once localized apically, myosin continues to contract. The force generated by continued myosin contraction is translated into a flattening and constriction of the cell surface through a tethering of the actinomyosin cytoskeleton to the apical adherens junctions. Our analysis of fog function therefore provides a direct link from patterning to cell shape change. PMID:16123312

  14. Factors affecting white cell content in platelet concentrates.

    PubMed

    Champion, A B; Carmen, R A

    1985-01-01

    In this study, we investigated the factors affecting white cell content in platelet concentrates. White cell yields can be reduced 50 percent by stopping platelet-rich plasma expression when the interface is 1 cm from the top of the blood bag as compared to stopping expression when the interface reaches the top of the bag. Further reductions can be achieved by careful handling during transfer of units from the centrifuge cups to expressors (after the first spin) and by carefully balancing units against each other to ensure proper rotor balance during the first spin. Following these suggestions, blood banks should be able to produce platelet concentrates with white cell yields between 2 and 6 X 10(7) and with platelet yields between 7.5 and 8 X 10(10). Transfusion of this product may reduce febrile reactions and lower the incidence of alloimmunizations. PMID:4024231

  15. Noggin 1 overexpression in retinal progenitors affects bipolar cell generation.

    PubMed

    Messina, Andrea; Bridi, Simone; Bozza, Angela; Bozzi, Yuri; Baudet, Marie-Laure; Casarosa, Simona

    2016-01-01

    Waves of Bone Morphogenetic Proteins (BMPs) and their antagonists are present during initial eye development, but their possible roles in retinogenesis are still unknown. We have recently shown that noggin 1, a BMP antagonist, renders pluripotent cells able to differentiate into retinal precursors, and might be involved in the maintenance of retinal structures in the adult vertebrate eye. Here, we report that noggin 1, differently from noggin 2 and noggin 4, is expressed during all phases of Xenopus laevis retinal development. Gain-of-function experiments by electroporation in the optic vesicle show that overexpression of noggin 1 significantly decreases the number of bipolar cells in the inner nuclear layer of the retina, without significantly affecting the generation of the other retinal cell types. Our data suggest that BMP signaling could be involved in the differentiation of retinal progenitors into specific retinal subtypes during late phases of vertebrate retinal development. PMID:27389985

  16. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells

    PubMed Central

    Moreb, Jan S; Baker, Henry V; Chang, Lung-Ji; Amaya, Maria; Lopez, M Cecilia; Ostmark, Blanca; Chou, Wayne

    2008-01-01

    Background Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell lung cancer. Neither the mechanisms nor the biologic significance for such over expression have been studied. Methods We have employed oligonucleotide microarrays to analyze changes in gene profiles in A549 lung cancer cell line in which ALDH activity was reduced by up to 95% using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3). Stringent analysis methods were used to identify gene expression patterns that are specific to the knock down of ALDH activity and significantly different in comparison to wild type A549 cells (WT) or cells similarly transduced with green fluorescent protein (GFP) siRNA. Results We confirmed significant and specific down regulation of ALDH1A1 and ALDH3A1 in Lenti 1+3 cells and in comparison to 12 other ALDH genes detected. The results of the microarray analysis were validated by real time RT-PCR on RNA obtained from Lenti 1+3 or WT cells treated with ALDH activity inhibitors. Detailed functional analysis was performed on 101 genes that were significantly different (P < 0.001) and their expression changed by ≥ 2 folds in the Lenti 1+3 group versus the control groups. There were 75 down regulated and 26 up regulated genes. Protein binding, organ development, signal transduction, transcription, lipid metabolism, and cell migration and adhesion were among the most affected pathways. Conclusion These molecular effects of the ALDH knock-down are associated with in vitro functional changes in the proliferation and motility of these cells and demonstrate the significance of ALDH enzymes in cell homeostasis with a potentially significant impact on the treatment of lung cancer. PMID:19025616

  17. Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments

    NASA Technical Reports Server (NTRS)

    Jardine, Andrew Peter (Inventor)

    2015-01-01

    This invention relates to the exploitation of porous foam articles exhibiting the Shape Memory Effect as actuators. Each foam article is composed of a plurality of geometric shapes, such that some geometric shapes can fit snugly into or around rigid mating connectors that attach the Shape Memory foam article intimately into the load path between a static structure and a moveable structure. The foam is open-celled, composed of a plurality of interconnected struts whose mean diameter can vary from approximately 50 to 500 microns. Gases and fluids flowing through the foam transfer heat rapidly with the struts, providing rapid Shape Memory Effect transformations. Embodiments of porous foam articles as torsional actuators and approximately planar structures are disposed. Simple, integral connection systems exploiting the ability to supply large loads to a structure, and that can also supply hot and cold gases and fluids to effect rapid actuation are also disposed.

  18. Shape transitions of fluid vesicles and red blood cells in capillary flows

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-10-01

    The dynamics of fluid vesicles and red blood cells (RBCs) in cylindrical capillary flow is studied by using a three-dimensional mesoscopic simulation approach. As flow velocity increases, a model RBC is found to transit from a nonaxisymmetric discocyteto an axisymmetric parachute shape (coaxial with the flow axis), while a fluid vesicle is found to transit from a discocyte to a prolate ellipsoid. Both shape transitions reduce the flow resistance. The critical velocities of the shape transitions are linearly dependent on the bending rigidity and on the shear modulus of the membrane. Slipper-like shapes of the RBC model are observed around the transition velocities. Our results are in good agreement with experiments on RBCs. mesoscale hydrodynamics simulation | microfluidics | shape transformations

  19. Reduced Expression of the Vesicular Acetylcholine Transporter and Neurotransmitter Content Affects Synaptic Vesicle Distribution and Shape in Mouse Neuromuscular Junction

    PubMed Central

    Rodrigues, Hermann A.; Fonseca, Matheus de C.; Camargo, Wallace L.; Lima, Patrícia M. A.; Martinelli, Patrícia M.; Naves, Lígia A.; Prado, Vânia F.; Prado, Marco A. M.; Guatimosim, Cristina

    2013-01-01

    In vertebrates, nerve muscle communication is mediated by the release of the neurotransmitter acetylcholine packed inside synaptic vesicles by a specific vesicular acetylcholine transporter (VAChT). Here we used a mouse model (VAChT KDHOM) with 70% reduction in the expression of VAChT to investigate the morphological and functional consequences of a decreased acetylcholine uptake and release in neuromuscular synapses. Upon hypertonic stimulation, VAChT KDHOM mice presented a reduction in the amplitude and frequency of miniature endplate potentials, FM 1–43 staining intensity, total number of synaptic vesicles and altered distribution of vesicles within the synaptic terminal. In contrast, under electrical stimulation or no stimulation, VAChT KDHOM neuromuscular junctions did not differ from WT on total number of vesicles but showed altered distribution. Additionally, motor nerve terminals in VAChT KDHOM exhibited small and flattened synaptic vesicles similar to that observed in WT mice treated with vesamicol that blocks acetylcholine uptake. Based on these results, we propose that decreased VAChT levels affect synaptic vesicle biogenesis and distribution whereas a lower ACh content affects vesicles shape. PMID:24260111

  20. Reduced expression of the vesicular acetylcholine transporter and neurotransmitter content affects synaptic vesicle distribution and shape in mouse neuromuscular junction.

    PubMed

    Rodrigues, Hermann A; Fonseca, Matheus de C; Camargo, Wallace L; Lima, Patrícia M A; Martinelli, Patrícia M; Naves, Lígia A; Prado, Vânia F; Prado, Marco A M; Guatimosim, Cristina

    2013-01-01

    In vertebrates, nerve muscle communication is mediated by the release of the neurotransmitter acetylcholine packed inside synaptic vesicles by a specific vesicular acetylcholine transporter (VAChT). Here we used a mouse model (VAChT KD(HOM)) with 70% reduction in the expression of VAChT to investigate the morphological and functional consequences of a decreased acetylcholine uptake and release in neuromuscular synapses. Upon hypertonic stimulation, VAChT KD(HOM) mice presented a reduction in the amplitude and frequency of miniature endplate potentials, FM 1-43 staining intensity, total number of synaptic vesicles and altered distribution of vesicles within the synaptic terminal. In contrast, under electrical stimulation or no stimulation, VAChT KD(HOM) neuromuscular junctions did not differ from WT on total number of vesicles but showed altered distribution. Additionally, motor nerve terminals in VAChT KD(HOM) exhibited small and flattened synaptic vesicles similar to that observed in WT mice treated with vesamicol that blocks acetylcholine uptake. Based on these results, we propose that decreased VAChT levels affect synaptic vesicle biogenesis and distribution whereas a lower ACh content affects vesicles shape. PMID:24260111

  1. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells.

    PubMed

    Sunshine, Joel C; Perica, Karlo; Schneck, Jonathan P; Green, Jordan J

    2014-01-01

    Previous work developing particle-based acellular, artificial antigen presenting cells (aAPCs) has focused exclusively on spherical platforms. To explore the role of shape, we generated ellipsoidal PLGA microparticles with varying aspect ratios (ARs) and synthesized aAPCs from them. The ellipsoidal biomimetic aAPCs with high-AR showed significantly enhanced in vitro and in vivo activity above spherical aAPCs with particle volume and antigen content held constant. Confocal imaging indicates that CD8+ T cells preferentially migrate to and are activated by interaction with the long axis of the aAPC. Importantly, enhanced activity of high-AR aAPCs was seen in a mouse melanoma model, with high-AR aAPCs improving melanoma survival compared to non-cognate aAPCs (p = 0.004) and cognate spherical aAPCs (p = 0.05). These findings indicate that particle geometry is a critical design criterion in the generation of aAPCs, and may offer insight into the essential role of geometry in the interaction between CD8+ T cells and biological APCs. PMID:24099710

  2. Evolutionary Forces Shaping the Golgi Glycosylation Machinery: Why Cell Surface Glycans Are Universal to Living Cells

    PubMed Central

    Varki, Ajit

    2011-01-01

    Despite more than 3 billion years since the origin of life on earth, the powerful forces of biological evolution seem to have failed to generate any living cell that is devoid of a dense and complex array of cell surface glycans. Thus, cell surface glycans seem to be as essential for life as having a DNA genetic code, diverse RNAs, structural/functional proteins, lipid-based membranes, and metabolites that mediate energy flux and signaling. The likely reasons for this apparently universal law of biology are considered here, and include the fact that glycans have the greatest potential for generating diversity, and thus evading recognition by pathogens. This may also explain why in striking contrast to the genetic code, glycans show widely divergent patterns between taxa. On the other hand, glycans have also been coopted for myriad intrinsic functions, which can vary in their importance for organismal survival. In keeping with these considerations, a significant percentage of the genes in the typical genome are dedicated to the generation and/or turnover of glycans. Among eukaryotes, the Golgi is the subcellular organelle that serves to generate much of the diversity of cell surface glycans, carrying out various glycan modifications of glycoconjugates that transit through the Golgi, en route to the cell surface or extracellular destinations. Here I present an overview of general considerations regarding the selective forces shaping evolution of the Golgi glycosylation machinery, and then briefly discuss the common types of variations seen in each major class of glycans, finally focusing on sialic acids as an extreme example of evolutionary glycan diversity generated by the Golgi. Future studies need to address both the phylogenetic diversity the Golgi and the molecular mechanisms for its rapid responses to intrinsic and environmental stimuli. PMID:21525513

  3. Shape quantification of single red blood cells based on their scattering patterns from microscopic images

    NASA Astrophysics Data System (ADS)

    Schneider, Gert; Artmann, Gerhard

    1995-02-01

    The differentiation between discocytic and stomatocytic red blood cell (RBC) shape using conventional microscopic imaging and image analysis tools is still on a very poor level. A procedure to differentiate the degree of stomatocytic shape changes was developed. We obtained multiple microscopic images of the same RBCs settled on a human albumin coated cover slip. The images were acquired when the microscope objective was subsequently focused through the cell layer. At equidistant horizontal planes (z-axis) below, within, and above the microscopic focal plane the light intensity distribution was considered. Using a model based on light refraction, we calculated the intensity distribution of the planes which are out of focus. Using this tool we are able to differentiate RBC shapes precisely. On the other hand, using this model from and the light intensity distributions of different focal planes, we are able to reconstruct the shape of one single RBC located in the optical axis of the microscope.

  4. An experimental study of mushroom shaped stall cells. [on finite wings with separated flow

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.

    1982-01-01

    Surface patterns characterized by a pair of counter-rotating swirls have been observed in connection with the conduction of surface flow visualization experiments involving test geometries with separated flows. An example of this phenomenon occurring on a finite wing with trailing edge stall has been referred to by Winkelmann and Barlow (1980) as 'mushroom shaped'. A description is presented of a collection of experimental results which show or suggest the occurrence of mushroom shaped stall cells on a variety of test geometries. Investigations conducted with finite wings, airfoil models, and flat plates are considered, and attention is given to studies involving the use of bluff models, investigations of shock induced boundary layer separation, and mushroom shaped patterns observed in a number of miscellaneous cases. It is concluded that the mushroom shaped stall cell appears commonly in separated flow regions.

  5. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    PubMed

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  6. Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells

    SciTech Connect

    Li, NW; Leng, YJ; Hickner, MA; Wang, CY

    2013-07-10

    To produce an anion-conductive and durable polymer electrolyte for alkaline fuel cell applications, a series of quaternized poly(2,6-dimethyl phenylene oxide)s containing long alkyl side chains pendant to the nitrogen-centered cation were synthesized using a Menshutkin reaction to form comb-shaped structures. The pendant alkyl chains were responsible for the development of highly conductive ionic domains, as confirmed by small-angle X-ray scattering (SAXS). The comb-shaped polymers having one alkyl side chain showed higher hydroxide conductivities than those with benzyltrimethyl ammonium moieties or structures with more than one alkyl side chain per cationic site. The highest conductivity was observed for comb-shaped polymers with benzyldimethylhexadecyl ammonium cations. The chemical stabilities of the comb-shaped membranes were evaluated under severe, accelerated-aging conditions, and degradation was observed by measuring IEC and ion conductivity changes during aging. The comb-shaped membranes retained their high ion conductivity in 1 M NaOH at 80 degrees C for 2000 h. These cationic polymers were employed as ionomers in catalyst layers for alkaline fuel cells. The results indicated that the C-16 alkyl side chain ionomer had a slightly better initial performance, despite its low IEC value, but very poor durability in the fuel cell. In contrast, 90% of the initial performance was retained for the alkaline fuel cell with electrodes containing the C-6 side chain after 60 h of fuel cell operation.

  7. Universally Conserved Relationships between Nuclear Shape and Cytoplasmic Mechanical Properties in Human Stem Cells

    NASA Astrophysics Data System (ADS)

    Lozoya, Oswaldo A.; Gilchrist, Christopher L.; Guilak, Farshid

    2016-03-01

    The ability of cells to proliferate, differentiate, transduce extracellular signals and assemble tissues involves structural connections between nucleus and cytoskeleton. Yet, how the mechanics of these connections vary inside stem cells is not fully understood. To address those questions, we combined two-dimensional particle-tracking microrheology and morphological measures using variable reduction techniques to measure whether cytoplasmic mechanics allow for discrimination between different human adherent stem cell types and across different culture conditions. Here we show that nuclear shape is a quantifiable discriminant of mechanical properties in the perinuclear cytoskeleton (pnCSK) of various stem cell types. Also, we find the pnCSK is a region with different mechanical properties than elsewhere in the cytoskeleton, with heterogeneously distributed locations exhibiting subdiffusive features, and which obeys physical relations conserved among various stem cell types. Finally, we offer a prospective basis to discriminate between stem cell types by coupling perinuclear mechanical properties to nuclear shape.

  8. How to be in a good shape? The influence of clone morphology on cell competition.

    PubMed

    Levayer, Romain; Moreno, Eduardo

    2016-01-01

    Cell competition is a conserved mechanism where slow proliferating cells (so called losers) are eliminated by faster proliferating neighbors (so called winners) through apoptosis.(1) It is an important process which prevents developmental malformations and maintains tissue fitness in aging adults.(2) Recently, we have shown that the probability of elimination of loser cells correlates with the surface of contact between losers and winners in Myc-induced competition.(3) Moreover, we have characterized an active mechanism that increases the surface of contact between losers and winners, hence accelerating the elimination of loser cells. This is the first indication that cell shape and mechanics can influence cell competition. Here, we will discuss the consequence of the relationship between shape and competition, as well as the relevance of this model for other modes of competition.

  9. Evolved Colloidosomes Undergoing Cell-like Autonomous Shape Oscillations with Buckling.

    PubMed

    Tamate, Ryota; Ueki, Takeshi; Yoshida, Ryo

    2016-04-18

    In living systems, there are many autonomous and oscillatory phenomena to sustain life, such as heart contractions and breathing. At the microscopic level, oscillatory shape deformations of cells are often observed in dynamic behaviors during cell migration and morphogenesis. In many cases, oscillatory behaviors of cells are not simplistic but complex with diverse deformations. So far, we have succeeded in developing self-oscillating polymers and gels, but complex oscillatory behaviors mimicking those of living cells have yet to be reproduced. Herein, we report a cell-like hollow sphere composed of self-oscillating microgels, that is, a colloidosome, that exhibits drastic shape oscillation in addition to swelling/deswelling oscillations driven by an oscillatory reaction. The resulting oscillatory profile waveform becomes markedly more complex than a conventional one. Especially for larger colloidosomes, multiple buckling and moving buckling points are observed to be analogous to cells. PMID:26960167

  10. Universally Conserved Relationships between Nuclear Shape and Cytoplasmic Mechanical Properties in Human Stem Cells

    PubMed Central

    Lozoya, Oswaldo A.; Gilchrist, Christopher L.; Guilak, Farshid

    2016-01-01

    The ability of cells to proliferate, differentiate, transduce extracellular signals and assemble tissues involves structural connections between nucleus and cytoskeleton. Yet, how the mechanics of these connections vary inside stem cells is not fully understood. To address those questions, we combined two-dimensional particle-tracking microrheology and morphological measures using variable reduction techniques to measure whether cytoplasmic mechanics allow for discrimination between different human adherent stem cell types and across different culture conditions. Here we show that nuclear shape is a quantifiable discriminant of mechanical properties in the perinuclear cytoskeleton (pnCSK) of various stem cell types. Also, we find the pnCSK is a region with different mechanical properties than elsewhere in the cytoskeleton, with heterogeneously distributed locations exhibiting subdiffusive features, and which obeys physical relations conserved among various stem cell types. Finally, we offer a prospective basis to discriminate between stem cell types by coupling perinuclear mechanical properties to nuclear shape. PMID:26976044

  11. Shape and shear guide sperm cells spiraling upstream

    NASA Astrophysics Data System (ADS)

    Kantsler, Vasily; Dunkel, Jorn; Goldstein, Raymond E.

    2014-11-01

    A major puzzle in biology is how mammalian sperm determine and maintain the correct swimming direction during the various phases of the sexual reproduction process. Currently debated mechanisms for sperm long range travel vary from peristaltic pumping to temperature sensing (thermotaxis) and direct response to fluid flow (rheotaxis), but little is known quantitatively about their relative importance. Here, we report the first quantitative experimental study of mammalian sperm rheotaxis. Using microfluidic devices, we investigate systematically the swimming behavior of human and bull sperm over a wide range of physiologically relevant shear rates and viscosities. Our measurements show that the interplay of fluid shear, steric surface-interactions and chirality of the flagellar beat leads to a stable upstream spiraling motion of sperm cells, thus providing a generic and robust rectification mechanism to support mammalian fertilization. To rationalize these findings, we identify a minimal mathematical model that is capable of describing quantitatively the experimental observations.

  12. Multiscale modeling of cell shape from the actin cytoskeleton.

    PubMed

    Rangamani, Padmini; Xiong, Granville Yuguang; Iyengar, Ravi

    2014-01-01

    The actin cytoskeleton is a dynamic structure that constantly undergoes complex reorganization events during many cellular processes. Mathematical models and simulations are powerful tools that can provide insight into the physical mechanisms underlying these processes and make predictions that can be experimentally tested. Representation of the interactions of the actin filaments with the plasma membrane and the movement of the plasma membrane for computation remains a challenge. Here, we provide an overview of the different modeling approaches used to study cytoskeletal dynamics and highlight the differential geometry approach that we have used to implement the interactions between the plasma membrane and the cytoskeleton. Using cell spreading as an example, we demonstrate how this approach is able to successfully capture in simulations, experimentally observed behavior. We provide a perspective on how the differential geometry approach can be used for other biological processes. PMID:24560144

  13. Melanopsin, photosensitive ganglion cells, and seasonal affective disorder.

    PubMed

    Roecklein, Kathryn A; Wong, Patricia M; Miller, Megan A; Donofry, Shannon D; Kamarck, Marissa L; Brainard, George C

    2013-03-01

    In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1-2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells.

  14. Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation

    NASA Technical Reports Server (NTRS)

    Goldmann, Wolfgang H.; Ingber, Donald E.

    2002-01-01

    Studies were carried out using vinculin-deficient F9 embryonic carcinoma (gamma229) cells to analyze the relationship between structure and function within the focal adhesion protein vinculin, in the context of control of cell shape, cell mechanics, and movement. Atomic force microscopy studies revealed that transfection of the head (aa 1-821) or tail (aa 811-1066) domain of vinculin, alone or together, was unable to fully reverse the decrease in cell stiffness, spreading, and lamellipodia formation caused by vinculin deficiency. In contrast, replacement with intact vinculin completely restored normal cell mechanics and spreading regardless of whether its tyrosine phosphorylation site was deleted. Constitutively active rac also only induced extension of lamellipodia when microinjected into cells that expressed intact vinculin protein. These data indicate that vinculin's ability to physically couple integrins to the cytoskeleton, to mechanically stabilize cell shape, and to support rac-dependent lamellipodia formation all appear to depend on its intact three-dimensional structure.

  15. Time-lapse microscopy and classification of 2D human mesenchymal stem cells based on cell shape picks up myogenic from osteogenic and adipogenic differentiation.

    PubMed

    Seiler, Christof; Gazdhar, Amiq; Reyes, Mauricio; Benneker, Lorin M; Geiser, Thomas; Siebenrock, Klaus A; Gantenbein-Ritter, Benjamin

    2014-09-01

    Current methods to characterize mesenchymal stem cells (MSCs) are limited to CD marker expression, plastic adherence and their ability to differentiate into adipogenic, osteogenic and chondrogenic precursors. It seems evident that stem cells undergoing differentiation should differ in many aspects, such as morphology and possibly also behaviour; however, such a correlation has not yet been exploited for fate prediction of MSCs. Primary human MSCs from bone marrow were expanded and pelleted to form high-density cultures and were then randomly divided into four groups to differentiate into adipogenic, osteogenic chondrogenic and myogenic progenitor cells. The cells were expanded as heterogeneous and tracked with time-lapse microscopy to record cell shape, using phase-contrast microscopy. The cells were segmented using a custom-made image-processing pipeline. Seven morphological features were extracted for each of the segmented cells. Statistical analysis was performed on the seven-dimensional feature vectors, using a tree-like classification method. Differentiation of cells was monitored with key marker genes and histology. Cells in differentiation media were expressing the key genes for each of the three pathways after 21 days, i.e. adipogenic, osteogenic and chondrogenic, which was also confirmed by histological staining. Time-lapse microscopy data were obtained and contained new evidence that two cell shape features, eccentricity and filopodia (= 'fingers') are highly informative to classify myogenic differentiation from all others. However, no robust classifiers could be identified for the other cell differentiation paths. The results suggest that non-invasive automated time-lapse microscopy could potentially be used to predict the stem cell fate of hMSCs for clinical application, based on morphology for earlier time-points. The classification is challenged by cell density, proliferation and possible unknown donor-specific factors, which affect the performance of

  16. Geometrical shape design of nanophotonic surfaces for thin film solar cells.

    PubMed

    Nam, W I; Yoo, Y J; Song, Y M

    2016-07-11

    We present the effect of geometrical parameters, particularly shape, on optical absorption enhancement for thin film solar cells based on crystalline silicon (c-Si) and gallium arsenide (GaAs) using a rigorous coupled wave analysis (RCWA) method. It is discovered that the "sweet spot" that maximizes efficiency of solar cells exists for the design of nanophotonic surfaces. For the case of ultrathin, rod array is practical due to the effective optical resonances resulted from the optimum geometry whereas parabola array is viable for relatively thicker cells owing to the effective graded index profile. A specific value of thickness, which is the median value of other two devices tailored by rod and paraboloid, is optimized by truncated shape structure. It is therefore worth scanning the optimum shape of nanostructures in a given thickness in order to achieve high performance. PMID:27410892

  17. Automated characterization of cell shape changes during amoeboid motility by skeletonization

    PubMed Central

    2010-01-01

    Background The ability of a cell to change shape is crucial for the proper function of many cellular processes, including cell migration. One type of cell migration, referred to as amoeboid motility, involves alternating cycles of morphological expansion and retraction. Traditionally, this process has been characterized by a number of parameters providing global information about shape changes, which are insufficient to distinguish phenotypes based on local pseudopodial activities that typify amoeboid motility. Results We developed a method that automatically detects and characterizes pseudopodial behavior of cells. The method uses skeletonization, a technique from morphological image processing to reduce a shape into a series of connected lines. It involves a series of automatic algorithms including image segmentation, boundary smoothing, skeletonization and branch pruning, and takes into account the cell shape changes between successive frames to detect protrusion and retraction activities. In addition, the activities are clustered into different groups, each representing the protruding and retracting history of an individual pseudopod. Conclusions We illustrate the algorithms on movies of chemotaxing Dictyostelium cells and show that our method makes it possible to capture the spatial and temporal dynamics as well as the stochastic features of the pseudopodial behavior. Thus, the method provides a powerful tool for investigating amoeboid motility. PMID:20334652

  18. The 2004 Indian Ocean Tsunami in Maldives: waves and disaster affected by shape of coral reefs and islands

    NASA Astrophysics Data System (ADS)

    Kan, H.; Ali, M.; Riyaz, M.

    2005-12-01

    In Maldives, 39 islands are significantly damaged among 200 inhabited islands and nearly a third of the Maldivian people are severely affected by the Indian Ocean Tsunami in 26 December 2004. We surveyed tsunami impact in 43 islands by measuring island topography and run-up height, interview to local people and mapping of the flooded and destructed areas. The differences in tsunami height and disaster corresponding to the atoll shape and island topography are observed. In the northern atolls, atoll rims consist of many ring-shaped reefs, i.e. miniature atolls called `faro', and interrupted many channels between them. The interrupted atoll rim may play an important role to reducing tsunami run-up height. Severe damage was not observed in the eastern coast of the islands. Beach ridge also contribute to the protection against tsunami. However, in some islands, houses beside the lagoon are damaged by backwashing floodwater from the lagoon. Water marks show the run-up height of -1.8m above MSL. The lagoon water-level seems to set-up by tsunami which permeates into the lagoon through the interrupted atoll rim. The disaster was severe at the southern atolls of Meemu, Thaa and Laamu. The higher run-up heights of up to 3.2m above MSL and enormous building damages were observed at the islands on the eastern atoll rims. The continuous atoll rim of these atolls may reinforce tsunami impact at the eastern islands. In addition, tsunami surge washed the islands totally because of low island topography without beach ridge. Significant floodwater from lagoon was not observed in these atolls. It seems the lagoon water-level was not set-up largely. The continuous atoll rim reduces the tsunami influence to the lagoon and the western side of the atolls. The continuity of atoll rim is probably the major factor to cause the difference in water movement, i.e. tsunami run-up and lagoon set-up, which affects the disaster in the islands. Beach ridge contribute to reduce the tsunami impact to

  19. TUNING OF SIZE AND SHAPE OF AU-PT NANOCATALYST FOR DIRECT METHANOL FUEL CELLS

    SciTech Connect

    Murph, S.

    2011-04-20

    In this paper, we report the precise control of the size, shape and surface morphology of Au-Pt nanocatalysts (cubes, blocks, octahedrons and dogbones) synthesized via a seed-mediated approach. Gold 'seeds' of different aspect ratios (1 to 4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au-Pt nanocatalysts at a low temperature (40 C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis (EDX), UV-Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was used to evaluate the Au-Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) of direct methanol fuel cells. The results indicate the Au-Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au-Pt dogbones and Pt-black, however its performance is affected by the presence of MeOH.

  20. The receptor for advanced glycation end products (RAGE) affects T cell differentiation in OVA induced asthma.

    PubMed

    Akirav, Eitan M; Henegariu, Octavian; Preston-Hurlburt, Paula; Schmidt, Ann Marie; Clynes, Raphael; Herold, Kevan C

    2014-01-01

    The receptor for glycation end products (RAGE) has been previously implicated in shaping the adaptive immune response. RAGE is expressed in T cells after activation and constitutively in T cells from patients with diabetes. The effects of RAGE on adaptive immune responses are not clear: Previous reports show that RAGE blockade affects Th1 responses. To clarify the role of RAGE in adaptive immune responses and the mechanisms of its effects, we examined whether RAGE plays a role in T cell activation in a Th2 response involving ovalbumin (OVA)-induced asthma in mice. WT and RAGE deficient wild-type and OT-II mice, expressing a T cell receptor specific for OVA, were immunized intranasally with OVA. Lung cellular infiltration and T cell responses were analyzed by immunostaining, FACS, and multiplex bead analyses for cytokines. RAGE deficient mice showed reduced cellular infiltration in the bronchial alveolar lavage fluid and impaired T cell activation in the mediastinal lymph nodes when compared with WT mice. In addition, RAGE deficiency resulted in reduced OT-II T cell infiltration of the lung and impaired IFNγ and IL-5 production when compared with WT mice and reduced infiltration when transferred into WT hosts. When cultured under conditions favoring the differentiation of T cells subsets, RAGE deficient T cells showed reduced production of IFNγ but increased production of IL-17. Our data show a stimulatory role for RAGE in T activation in OVA-induced asthma. This role is largely mediated by the effects of RAGE on T cell proliferation and differentiation. These findings suggest that RAGE may play a regulatory role in T cell responses following immune activation.

  1. Genome rearrangement affects RNA virus adaptability on prostate cancer cells

    PubMed Central

    Pesko, Kendra; Voigt, Emily A.; Swick, Adam; Morley, Valerie J.; Timm, Collin; Yin, John; Turner, Paul E.

    2015-01-01

    Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wild type gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense non-segmented RNA viruses (order Mononegavirales) have specific genome architecture: 3′ UTR – core protein genes – envelope protein genes – RNA-dependent RNA-polymerase gene – 5′ UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV) variants with the nucleocapsid (N) gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N gene translocation toward the 5′ end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC-3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function), especially on PC-3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture) adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective environments for a

  2. Puromycin insensitive leucyl-specific aminopeptidase (PILSAP) affects RhoA activation in endothelial cells.

    PubMed

    Suzuki, Takahiro; Abe, Mayumi; Miyashita, Hiroki; Kobayashi, Toshimitsu; Sato, Yasufumi

    2007-06-01

    Puromycin insensitive leucyl-specific aminopeptidase (PILSAP) expressed in endothelial cells (ECs) plays an important role in angiogenesis due to its involvement in migration, proliferation and network formation. Here we examined the biological function of PILSAP with respect to EC morphogenesis and the related intracellular signaling for this process. When mouse endothelial MSS31 cells were cultured, a dominant negative PILSAP mutant converted cell shape to disk-like morphology, blocked stress fiber formation, and augmented membrane ruffling in random directions. These phenotypic changes led us to test whether PILSAP affected activities of Rho family small G-proteins. Abrogation of PILSAP enzymatic activity or its expression attenuated RhoA but not Rac1 activation during cell adhesion. This attenuation of RhoA activation was also evident when G-protein coupled receptors such as proteinase-activated receptor or lysophosphatidic acid receptor were activated in ECs. These results indicate that PILSAP affects RhoA activation and that influences the proper function of ECs.

  3. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, T.C.; McLarnon, F.R.; Cairns, E.J.

    1994-04-12

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K[sub 2]CO[sub 3] salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics. 8 figures.

  4. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1994-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K.sub.2 CO.sub.3 salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  5. Calcium Signalling Triggered by NAADP in T Cells Determines Cell Shape and Motility During Immune Synapse Formation

    PubMed Central

    Nebel, Merle; Zhang, Bo; Odoardi, Francesca; Flügel, Alexander; Potter, Barry V. L.; Guse, Andreas H.

    2016-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) has been implicated as an initial Ca2+ trigger in T cell Ca2+ signalling, but its role in formation of the immune synapse in CD4+ effector T cells has not been analysed. CD4+ T cells are activated by the interaction with peptide-MHCII complexes on the surface of antigen-presenting cells. Establishing a two-cell system including primary rat CD4+ T cells specific for myelin basic protein and rat astrocytes enabled us to mirror this activation process in vitro and to analyse Ca2+ signalling, cell shape changes and motility in T cells during formation and maintenance of the immune synapse. After immune synapse formation, T cells showed strong, antigen-dependent increases in free cytosolic calcium concentration ([Ca2+]i). Analysis of cell shape and motility revealed rounding and immobilization of T cells depending on the amplitude of the Ca2+ signal. NAADP-antagonist BZ194 effectively blocked Ca2+ signals in T cells evoked by the interaction with antigen-presenting astrocytes. BZ194 reduced the percentage of T cells showing high Ca2+ signals thereby supporting the proposed trigger function of NAADP for global Ca2+ signalling. Taken together, the NAADP signalling pathway is further confirmed as a promising target for specific pharmacological intervention to modulate T cell activation. PMID:27747143

  6. Fabrication of a membrane filter with controlled pore shape and its application to cell separation and strong single cell trapping

    NASA Astrophysics Data System (ADS)

    Choi, Dong-Hoon; Yoon, Gun-Wook; Park, Jeong Won; Ihm, Chunhwa; Lee, Dae-Sik; Yoon, Jun-Bo

    2015-10-01

    A porous membrane filter is one of the key components for sample preparation in lab-on-a-chip applications. However, most of the membranes reported to date have only been used for size-based separation since it is difficult to provide functionality to the membrane or improve the performance of the membrane. In this work, as a method to functionalize the membrane filter, controlling the shape of the membrane pores is suggested, and a convenient and mass-producible fabrication method is provided. With the proposed method, membrane filters with round, conical and funnel shape pores were successfully fabricated, and we demonstrated that the sidewall slope of the conical shape pores could be precisely controlled. To verify that the membrane filter can be functionalized by controlled pore shape, we investigated filtration and trapping performance of the membrane filter with conical shape pores. In a filtration test of 1000 cancer cells (MCF-7, a breast cancer cell line) spiked in phosphate buffered saline (PBS) solution, 77% of the total cancer cells were retained on the membrane, and each cell from among 99.3% of the retained cells was automatically isolated in a single conical pore during the filtration process. Thanks to its engineered pore shape, trapping ability of the membrane with conical pores is dramatically improved. Microparticles trapped in the conical pores maintain their locations without any losses even at a more than 30 times faster external flow rate com-pared with those mounted on conventional cylindrical pores. Also, 78% of the cells trapped in the conical pores withstand an external flow of over 300 μl min-1 whereas only 18% of the cells trapped in the cylindrical pores remain on the membrane after 120 μl min-1 of an external flow is applied.

  7. Iron affects the structure of cell membrane molecular models.

    PubMed

    Suwalsky, M; Martínez, F; Cárdenas, H; Grzyb, J; Strzałka, K

    2005-03-01

    The effects of Fe(3+) and Fe(2+) on molecular models of biomembranes were investigated. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and of dimyristoylphosphatidylethanolamine (DMPE), classes of phospholipids located in the outer and inner moieties of cell membranes, respectively. X-ray studies showed that very low concentrations of Fe(3+) affected DMPC organization and 10(-3)M induced a total loss of its multilamellar periodic stacking. Experiments carried out with Fe(2+) on DMPC showed weaker effects than those induced by Fe(3+) ions. Similar experiments were performed on DMPE bilayers. Fe(3+) from 10(-7)M up to 10(-4)M had practically no effect on DMPE structure. However, 10(-3)M Fe(3+) induced a deep perturbation of the multilamellar structure of DMPE. However, 10(-3)M Fe(2+) had no effect on DMPE organization practically. Differential scanning calorimetry measurements also revealed different effects of Fe(3+) and Fe(2+) on the phase transition and other thermal properties of the examined lipids. In conclusion, the results obtained indicate that iron ions interact with phospholipid bilayers perturbing their structures. These findings are consistent with the observation that iron ions change cell membrane fluidity and, therefore, affect its functions. PMID:15752465

  8. Dynamics of Cell Shape and Forces on Micropatterned Substrates Predicted by a Cellular Potts Model

    PubMed Central

    Albert, Philipp J.; Schwarz, Ulrich S.

    2014-01-01

    Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model. The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes and forces for micropatterns that have not yet been experimentally studied. PMID:24896113

  9. Specialized features of the outer hair cell shapes in the cochlear fovea of bats.

    PubMed

    Zhang, S Q; Li, S L; Zhu, H L; Yan, L Y

    2015-01-01

    In this study, we examined the specialized features of the outer hair cells (OHCs) and the stereocilium bundles of the bat cochlear fovea. Bat cochlea hair cells were observed by scanning and transmission electron microscopy, and the auditory brainstem response thresholds were assessed. The stereocilia bundles of the OHCs were extremely short. The OHC bodies were flask-shaped and cambiform or ball-shape in the cochlear fovea. Digitations in the Deiters cells had exaggerated lengths, and cup formation of the Deiters cell, housed at the bottom of the OHC in the base of the cell, showed a specialized shape. Our results provide the first evidence that different shapes of the OHCs in the cochlea fovea are related to the high-frequency function of auditory response. Echolocating bats have cochlear morphologies that differ from those of non-echolocating animals. Bat cochlear foveae are specialized for analyzing the Doppler-shifted echoes of the first-harmonics of the CF2 component; these are overrepresented in the frequency range around the dominant harmonic of the echolocation calls of bats. However, the OHCs of the bat cochlear fovea have not been fully characterized. PMID:26345886

  10. Shape transitions of fluid vesicles and red blood cells in capillary flows

    PubMed Central

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The dynamics of fluid vesicles and red blood cells (RBCs) in cylindrical capillary flow is studied by using a three-dimensional mesoscopic simulation approach. As flow velocity increases, a model RBC is found to transit from a nonaxisymmetric discocyteto an axisymmetric parachute shape (coaxial with the flow axis), while a fluid vesicle is found to transit from a discocyte to a prolate ellipsoid. Both shape transitions reduce the flow resistance. The critical velocities of the shape transitions are linearly dependent on the bending rigidity and on the shear modulus of the membrane. Slipper-like shapes of the RBC model are observed around the transition velocities. Our results are in good agreement with experiments on RBCs. PMID:16186506

  11. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell

    NASA Astrophysics Data System (ADS)

    Zhang, Zhitao; Guo, Kunping; Li, Yiming; Li, Xueyi; Guan, Guozhen; Li, Houpu; Luo, Yongfeng; Zhao, Fangyuan; Zhang, Qi; Wei, Bin; Pei, Qibing; Peng, Huisheng

    2015-04-01

    The emergence of wearable electronics and optoelectronics requires the development of devices that are not only highly flexible but can also be woven into textiles to offer a truly integrated solution. Here, we report a colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell (PLEC). The fibre-shaped PLEC is fabricated using all-solution-based processes that can be scaled up for practical applications. The design has a coaxial structure comprising a modified metal wire cathode and a conducting aligned carbon nanotube sheet anode, with an electroluminescent polymer layer sandwiched between them. The fibre shape offers unique and promising advantages. For example, the luminance is independent of viewing angle, the fibre-shaped PLEC can provide a variety of different and tunable colours, it is lightweight, flexible and wearable, and it can potentially be woven into light-emitting clothes for the creation of smart fabrics.

  12. Numerical simulation of the transient shape of the red blood cell in microcapillary flow

    NASA Astrophysics Data System (ADS)

    Shi, Xing; Wang, Shuanglian; Zhang, Shuai

    2013-01-01

    The transient shape of a red blood cell (RBC) in a microcapillary flow is simulated under different initial conditions, including various axis orientations and centroid locations, using the LBM-DLM/FD method, which is derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method. Although the terminal velocity is not sensitive to the initial configuration, the evolution of the velocity and the shape are determined by the initial conditions. The parachute and the slipper shape are the most probable shapes for a deformed RBC in the flow. An RBC with an initial axis orientation of 90 degrees exhibits a more complicated deformation. RBCs have a tendency to move to the centerline of a tube if an offset between the RBC centroid and the centerline exists. Our numerical results are validated by experiments, and some details beyond the experiment are provided.

  13. A genomic multi-process survey of the machineries that control and link cell shape, microtubule organisation and cell cycle progression

    PubMed Central

    Geymonat, Marco; Bortfeld-Miller, Miriam; Walter, Thomas; Wagstaff, Laura; Piddini, Eugenia; Carazo Salas, Rafael E.

    2015-01-01

    SUMMARY Understanding cells as integrated systems requires that we systematically decipher how single genes affect multiple biological processes and how processes are functionally linked. Here, we used multi-process phenotypic profiling, combining high-resolution 3D confocal microscopy and multi-parametric image analysis, to simultaneously survey the fission yeast genome with respect to three key cellular processes: cell shape, microtubule organisation and cell cycle progression. We identify, validate and functionally annotate 262 genes controlling specific aspects of those processes. Of these 62% had not been linked to these processes before and 35% are implicated in multiple processes. Importantly, we identify a conserved role for DNA-damage responses in controlling microtubule stability. In addition, we investigate how the processes are functionally linked. We show unexpectedly that disruption of cell cycle progression does not necessarily impact on cell size control and that distinct aspects of cell shape regulate microtubules and vice-versa, identifying important systems-level links across these processes. PMID:25373780

  14. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    PubMed

    Papiorek, Sarah; Junker, Robert R; Lunau, Klaus

    2014-01-01

    Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of flower-visitors.

  15. Glyco-gold nanoparticle shapes enhance carbohydrate-protein interactions in mammalian cells

    NASA Astrophysics Data System (ADS)

    Sangabathuni, Sivakoti; Vasudeva Murthy, Raghavendra; Chaudhary, Preeti Madhukar; Surve, Manalee; Banerjee, Anirban; Kikkeri, Raghavendra

    2016-06-01

    Advances in shape-dependent nanoparticle (NP) research have prompted a close scrutiny of the behaviour of nanostructures in vitro and in vivo. Data pertaining to cellular uptake and site specific sequestration of different shapes of NPs will undoubtedly assist researchers to design better nano-probes for therapeutic and imaging purposes. Herein, we investigated the shape dependent uptake of glyco-gold nanoparticles (G-AuNPs) in different cancer cell lines. Specifically, we have compared the behaviour of spherical, rod and star AuNPs with mannose and galactose conjugations. In vitro experiments showed that the rod-AuNPs exhibited the highest uptake over that of the star and spherical counterparts. Further, an investigation of the mechanism of the uptake clearly demonstrated clathrin mediated endocytosis of the specific G-AuNPs. These results reveal the benefits of different G-AuNP shapes in carbohydrate-mediated interactions.Advances in shape-dependent nanoparticle (NP) research have prompted a close scrutiny of the behaviour of nanostructures in vitro and in vivo. Data pertaining to cellular uptake and site specific sequestration of different shapes of NPs will undoubtedly assist researchers to design better nano-probes for therapeutic and imaging purposes. Herein, we investigated the shape dependent uptake of glyco-gold nanoparticles (G-AuNPs) in different cancer cell lines. Specifically, we have compared the behaviour of spherical, rod and star AuNPs with mannose and galactose conjugations. In vitro experiments showed that the rod-AuNPs exhibited the highest uptake over that of the star and spherical counterparts. Further, an investigation of the mechanism of the uptake clearly demonstrated clathrin mediated endocytosis of the specific G-AuNPs. These results reveal the benefits of different G-AuNP shapes in carbohydrate-mediated interactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03008d

  16. Osteogenic Capacity of Human Adipose-Derived Stem Cells is Preserved Following Triggering of Shape Memory Scaffolds.

    PubMed

    Tseng, Ling-Fang; Wang, Jing; Baker, Richard M; Wang, Guirong; Mather, Patrick T; Henderson, James H

    2016-08-01

    Recent advances in shape memory polymers have enabled the study of programmable, shape-changing, cytocompatible tissue engineering scaffolds. For treatment of bone defects, scaffolds with shape memory functionality have been studied for their potential for minimally invasive delivery, conformal fitting to defect margins, and defect stabilization. However, the extent to which the osteogenic differentiation capacity of stem cells resident in shape memory scaffolds is preserved following programmed shape change has not yet been determined. As a result, the feasibility of shape memory polymer scaffolds being employed in stem cell-based treatment strategies remains unclear. To test the hypothesis that stem cell osteogenic differentiation can be preserved during and following triggering of programmed architectural changes in shape memory polymer scaffolds, human adipose-derived stem cells were seeded in shape memory polymer foam scaffolds or in shape memory polymer fibrous scaffolds programmed to expand or contract, respectively, when warmed to body temperature. Osteogenic differentiation in shape-changing and control scaffolds was compared using mineral deposition, protein production, and gene expression assays. For both shape-changing and control scaffolds, qualitatively and quantitatively comparable amounts of mineral deposition were observed; comparable levels of alkaline phosphatase activity were measured; and no significant differences in the expression of genetic markers of osteogenesis were detected. These findings support the feasibility of employing shape memory in scaffolds for stem cell-based therapies for bone repair. PMID:27401991

  17. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq

    PubMed Central

    Watters, Kyle E.; Abbott, Timothy R.; Lucks, Julius B.

    2016-01-01

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure–function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA–RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA–RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. PMID:26350218

  18. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq.

    PubMed

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B

    2016-01-29

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell.

  19. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq.

    PubMed

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B

    2016-01-29

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. PMID:26350218

  20. Mechanisms of cell shape change: the cytomechanics of cellular response to chemical environment and mechanical loading

    PubMed Central

    1992-01-01

    Processes such as cell locomotion and morphogenesis depend on both the generation of force by cytoskeletal elements and the response of the cell to the resulting mechanical loads. Many widely accepted theoretical models of processes involving cell shape change are based on untested hypotheses about the interaction of these two components of cell shape change. I have quantified the mechanical responses of cytoplasm to various chemical environments and mechanical loading regimes to understand better the mechanisms of cell shape change and to address the validity of these models. Measurements of cell mechanical properties were made with strands of cytoplasm submerged in media containing detergent to permeabilize the plasma membrane, thus allowing control over intracellular milieu. Experiments were performed with equipment that generated sinusoidally varying length changes of isolated strands of cytoplasm from Physarum polycephalum. Results indicate that stiffness, elasticity, and viscosity of cytoplasm all increase with increasing concentration of Ca2+, Mg2+, and ATP, and decrease with increasing magnitude and rate of deformation. These results specifically challenge assumptions underlying mathematical models of morphogenetic events such as epithelial folding and cell division, and further suggest that gelation may depend on both actin cross-linking and actin polymerization. PMID:1556158

  1. Mechanisms for shaping, orienting, positioning and patterning plant secondary cell walls.

    PubMed

    Pesquet, Edouard; Korolev, Andrey V; Calder, Grant; Lloyd, Clive W

    2011-06-01

    Xylem vessels are cells that develop a specifically ornamented secondary cell wall to ensure their vascular function, conferring both structural strength and impermeability. Further plasticity is given to these vascular cells by a range of different patterns described by their secondary cell walls that-as for the growth of all plant organs-are developmentally regulated. Microtubules and their associated proteins, named MAPs, are essential to define the shape, the orientation, the position and the overall pattern of these secondary cell walls. Key actors in this process are the land-plant specific MAP70 proteins which not only allow the secondary cell wall to be positioned at the cell cortex but also determine the overall pattern described by xylem vessel secondary cell walls. 

  2. Mitotic cell rounding and epithelial thinning regulate lumen growth and shape.

    PubMed

    Hoijman, Esteban; Rubbini, Davide; Colombelli, Julien; Alsina, Berta

    2015-06-16

    Many organ functions rely on epithelial cavities with particular shapes. Morphogenetic anomalies in these cavities lead to kidney, brain or inner ear diseases. Despite their relevance, the mechanisms regulating lumen dimensions are poorly understood. Here, we perform live imaging of zebrafish inner ear development and quantitatively analyse the dynamics of lumen growth in 3D. Using genetic, chemical and mechanical interferences, we identify two new morphogenetic mechanisms underlying anisotropic lumen growth. The first mechanism involves thinning of the epithelium as the cells change their shape and lose fluids in concert with expansion of the cavity, suggesting an intra-organ fluid redistribution process. In the second mechanism, revealed by laser microsurgery experiments, mitotic rounding cells apicobasally contract the epithelium and mechanically contribute to expansion of the lumen. Since these mechanisms are axis specific, they not only regulate lumen growth but also the shape of the cavity.

  3. Mitotic cell rounding and epithelial thinning regulate lumen growth and shape.

    PubMed

    Hoijman, Esteban; Rubbini, Davide; Colombelli, Julien; Alsina, Berta

    2015-01-01

    Many organ functions rely on epithelial cavities with particular shapes. Morphogenetic anomalies in these cavities lead to kidney, brain or inner ear diseases. Despite their relevance, the mechanisms regulating lumen dimensions are poorly understood. Here, we perform live imaging of zebrafish inner ear development and quantitatively analyse the dynamics of lumen growth in 3D. Using genetic, chemical and mechanical interferences, we identify two new morphogenetic mechanisms underlying anisotropic lumen growth. The first mechanism involves thinning of the epithelium as the cells change their shape and lose fluids in concert with expansion of the cavity, suggesting an intra-organ fluid redistribution process. In the second mechanism, revealed by laser microsurgery experiments, mitotic rounding cells apicobasally contract the epithelium and mechanically contribute to expansion of the lumen. Since these mechanisms are axis specific, they not only regulate lumen growth but also the shape of the cavity. PMID:26077034

  4. Tricellulin deficiency affects tight junction architecture and cochlear hair cells

    PubMed Central

    Nayak, Gowri; Lee, Sue I.; Yousaf, Rizwan; Edelmann, Stephanie E.; Trincot, Claire; Van Itallie, Christina M.; Sinha, Ghanshyam P.; Rafeeq, Maria; Jones, Sherri M.; Belyantseva, Inna A.; Anderson, James M.; Forge, Andrew; Frolenkov, Gregory I.; Riazuddin, Saima

    2013-01-01

    The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while the endocochlear potential and paracellular permeability of a biotin-based tracer in the stria vascularis were unaltered. Freeze-fracture electron microscopy revealed disruption of the strands of intramembrane particles connecting bicellular and tricellular junctions in the inner ear epithelia of tricellulin-deficient mice. These ultrastructural changes may selectively affect the paracellular permeability of ions or small molecules, resulting in a toxic microenvironment for cochlear hair cells. Consistent with this hypothesis, hair cell loss was rescued in tricellulin-deficient mice when generation of normal endolymph was inhibited by a concomitant deletion of the transcription factor, Pou3f4. Finally, comprehensive phenotypic screening showed a broader pathological phenotype in the mutant mice, which highlights the non-redundant roles played by tricellulin. PMID:23979167

  5. Image analysis tools to quantify cell shape and protein dynamics near the leading edge.

    PubMed

    Ryan, Gillian L; Watanabe, Naoki; Vavylonis, Dimitrios

    2013-01-01

    We present a set of flexible image analysis tools to analyze dynamics of cell shape and protein concentrations near the leading edge of cells adhered to glass coverslips. Plugins for ImageJ streamline common analyses of microscopic images of cells, including the calculation of leading edge speeds, total and average intensities of fluorescent markers, and retrograde flow rate measurements of fluorescent single-molecule speckles. We also provide automated calculations of auto- and cross-correlation functions between velocity and intensity measurements. The application of the methods is illustrated on images of XTC cells.

  6. Aluminum fluoride affects the structure and functions of cell membranes.

    PubMed

    Suwalsky, M; Norris, B; Villena, F; Cuevas, F; Sotomayor, P; Zatta, P

    2004-06-01

    No useful biological function for aluminum has been found. To the contrary, it might play an important role in several pathologies, which could be related to its interactions with cell membranes. On the other hand, fluoride is a normal component of body fluids, soft tissues, bones and teeth. Its sodium salt is frequently added to drinking water to prevent dental caries. However, large doses cause severe pathological alterations. In view of the toxicity of Al(3+) and F(-) ions, it was thought of interest to explore the damaging effects that AlF(3) might induce in cell membranes. With this aim, it was incubated with human erythrocytes, which were examined by phase contrast and scanning electron microscopy, and molecular models of biomembranes. The latter consisted of large unilamellar vesicles (LUV) of dimyristoylphosphatidylcholine (DMPC) and bilayers of DMPC and dimyristoylphosphatidylethanolamine (DMPE) which were studied by fluorescence spectroscopy and X-ray diffraction, respectively. In order to understand the effects of AlF(3) on ion transport (principally sodium and chloride) we used the isolated toad skin to which electrophysiological measurements were applied. It was found that AlF(3) altered the shape of erythrocytes inducing the formation of echinocytes. This effect was explained by X-ray diffraction which revealed that AlF(3) perturbed the structure of DMPC, class of lipids located in the outer monolayer of the erythrocyte membrane. This result was confirmed by fluorescence spectroscopy on DMPC LUV. The biphasic (stimulatory followed by inhibitory) effects on the isolated skin suggested changes in apical Cl(-) secretion and moderate ATPase inactivation. PMID:15110101

  7. Flickering Analysis of Erythrocyte Mechanical Properties: Dependence on Oxygenation Level, Cell Shape, and Hydration Level

    PubMed Central

    Yoon, Young-Zoon; Hong, Ha; Brown, Aidan; Kim, Dong Chung; Kang, Dae Joon; Lew, Virgilio L.; Cicuta, Pietro

    2009-01-01

    Erythrocytes (red blood cells) play an essential role in the respiratory functions of vertebrates, carrying oxygen from lungs to tissues and CO2 from tissues to lungs. They are mechanically very soft, enabling circulation through small capillaries. The small thermally induced displacements of the membrane provide an important tool in the investigation of the mechanics of the cell membrane. However, despite numerous studies, uncertainties in the interpretation of the data, and in the values derived for the main parameters of cell mechanics, have rendered past conclusions from the fluctuation approach somewhat controversial. Here we revisit the experimental method and theoretical analysis of fluctuations, to adapt them to the case of cell contour fluctuations, which are readily observable experimentally. This enables direct measurements of membrane tension, of bending modulus, and of the viscosity of the cell cytoplasm. Of the various factors that influence the mechanical properties of the cell, we focus here on: 1), the level of oxygenation, as monitored by Raman spectrometry; 2), cell shape; and 3), the concentration of hemoglobin. The results show that, contrary to previous reports, there is no significant difference in cell tension and bending modulus between oxygenated and deoxygenated states, in line with the softness requirement for optimal circulatory flow in both states. On the other hand, tension and bending moduli of discocyte- and spherocyte-shaped cells differ markedly, in both the oxygenated and deoxygenated states. The tension in spherocytes is much higher, consistent with recent theoretical models that describe the transitions between red blood cell shapes as a function of membrane tension. Cell cytoplasmic viscosity is strongly influenced by the hydration state. The implications of these results to circulatory flow dynamics in physiological and pathological conditions are discussed. PMID:19751665

  8. Intracellular Delivery by Shape Anisotropic Magnetic Particle-Induced Cell Membrane Cuts.

    PubMed

    Lin, Ming-Yu; Wu, Yi-Chien; Lee, Ji-Ann; Tung, Kuan-Wen; Zhou, Jessica; Teitell, Michael A; Yeh, J Andrew; Chiou, Pei Yu

    2016-08-01

    Introducing functional macromolecules into a variety of living cells is challenging but important for biology research and cell-based therapies. We report a novel cell delivery platform based on rotating shape anisotropic magnetic particles (SAMPs), which make very small cuts on cell membranes for macromolecule delivery with high efficiency and high survivability. SAMP delivery is performed by placing commercially available nickel powder onto cells grown in standard cell culture dishes. Application of a uniform magnetic field causes the magnetic particles to rotate because of mechanical torques induced by shape anisotropic magnetization. Cells touching these rotating particles are nicked, which generates transient membrane pores that enable the delivery of macromolecules into the cytosol of cells. Calcein dye, 3 and 40 kDa dextran polymers, a green fluorescence protein (GFP) plasmid, siRNA, and an enzyme (β-lactamase) were successfully delivered into HeLa cells, primary normal human dermal fibroblasts (NHDFs), and mouse cortical neurons that can be difficult to transfect. The SAMP approach offers several advantages, including easy implementation, low cost, high throughput, and efficient delivery of a broad range of macromolecules. Collectively, SAMP delivery has great potential for a broad range of academic and industrial applications. PMID:26882924

  9. Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells.

    PubMed

    Dallos, P; Evans, B N; Hallworth, R

    1991-03-14

    It is the prevailing notion that cochlear outer hair cells function as mechanical effectors as well as sensory receptors. Electrically induced changes in the shape of mammalian outer hair cells, studied in vitro, are commonly assumed to represent an aspect of their effector process that may occur in vivo. The nature of the motile process is obscure, even though none of the established cellular motors can be involved. Although it is known that the motile response is under voltage control, it is uncertain whether the stimulus is a drop in the voltage along the long axis of the cell or variation in the transmembrane potential. We have now performed experiments with cells partitioned in differing degrees between two chambers. Applied voltage stimulates the cell membrane segments in opposite polarity to an amount dependent on the partitioning. The findings show, in accordance with previous suggestions, that the driving stimulus is a local transmembrane voltage drop and that the cellular motor consists of many independent elements, distributed along the cell membrane and its associated cortical structures. We further show that the primary action of the motor elements is along the longitudinal dimension of the cell without necessarily involving changes in intracellular hydrostatic pressure. This establishes the outer hair cell motor as unique among mechanisms that control cell shape.

  10. Compact disk (CD)-shaped device for single cell isolation and PCR of a specific gene in the isolated cell.

    PubMed

    Furutani, Shunsuke; Nagai, Hidenori; Takamura, Yuzuru; Kubo, Izumi

    2010-12-01

    For immediate discrimination among isolated cells we propose a novel device and technique for isolation of cells and sequential detection of specific gene(s) within them by polymerase chain reaction (PCR). In this study, we isolated Salmonella enterica cells and detected the Salmonella-specific invA gene from isolated cells by PCR on a compact disk (CD)-shaped device. This device enabled liquid flow by centrifugal force without a micro pump, and was fabricated from silicon wafer and glass to avoid evaporation of a small amount of reagent. One device has 24 microchannels, and 313 microchambers integrated on each microchannel. One microliter of PCR mixture containing cells was separated into microchambers on the device at 5000 rpm for 30 s. Each microchamber contained approximately 1.5 nL PCR mixture. A Poisson distribution of S. enterica cells was observed for different densities of cell suspension. At 200 cells μL(-1) of S. enterica or less, isolated single cells could be determined on the device by amplification of DNA of the invA gene; at 400 cells μL(-1), chambers containing no, one, two, or three cells could be determined on the device. Selective detection of S. enterica was achieved by PCR from a mixture of S. enterica and Escherichia coli on the CD-shaped device.

  11. CellGeo: A computational platform for the analysis of shape changes in cells with complex geometries

    PubMed Central

    Tsygankov, Denis; Bilancia, Colleen G.; Vitriol, Eric A.; Hahn, Klaus M.

    2014-01-01

    Cell biologists increasingly rely on computer-aided image analysis, allowing them to collect precise, unbiased quantitative results. However, despite great progress in image processing and computer vision, current computational approaches fail to address many key aspects of cell behavior, including the cell protrusions that guide cell migration and drive morphogenesis. We developed the open source MATLAB application CellGeo, a user-friendly computational platform to allow simultaneous, automated tracking and analysis of dynamic changes in cell shape, including protrusions ranging from filopodia to lamellipodia. Our method maps an arbitrary cell shape onto a tree graph that, unlike traditional skeletonization algorithms, preserves complex boundary features. CellGeo allows rigorous but flexible definition and accurate automated detection and tracking of geometric features of interest. We demonstrate CellGeo’s utility by deriving new insights into (a) the roles of Diaphanous, Enabled, and Capping protein in regulating filopodia and lamellipodia dynamics in Drosophila melanogaster cells and (b) the dynamic properties of growth cones in catecholaminergic a–differentiated neuroblastoma cells. PMID:24493591

  12. The Anaplastic Lymphoma Kinase controls cell shape and growth of Anaplastic Large Cell Lymphoma through Cdc42 activation

    PubMed Central

    Ambrogio, Chiara; Voena, Claudia; Manazza, Andrea D.; Martinengo, Cinzia; Costa, Carlotta; Kirchhausen, Tomas; Hirsch, Emilio; Inghirami, Giorgio; Chiarle, Roberto

    2008-01-01

    Anaplastic Large Cell Lymphoma (ALCL) is a Non-Hodgkin Lymphoma (NHL) that originates from T cells and frequently expresses oncogenic fusion proteins derived from chromosomal translocations or inversions of the Anaplastic Lymphoma Kinase (ALK) gene. Proliferation and survival of ALCL cells are determined by the ALK activity. Here we show that the kinase activity of the Nucleophosmin (NPM)-ALK fusion regulated the shape of ALCL cells and F-actin filaments assembly in a pattern similar to T-Cell Receptor (TCR) stimulated cells. NPM-ALK formed a complex with the Guanine Exchange Factor (GEF) VAV1, enhancing its activation through phosphorylation. VAV1 increased Cdc42 activity and, in turn, Cdc42 regulated the shape and the migration of ALCL cells. In vitro knock-down of VAV1 or Cdc42 by sh-RNA, as well as pharmacological inhibition of Cdc42 activity by secramine, resulted in a cell-cycle arrest and apoptosis of ALCL cells. Importantly, the concomitant inhibition of Cdc42 and NPM-ALK kinase acted synergistically to induce apoptosis of ALCL cells. Finally, Cdc42 was necessary for the growth as well as for the maintenance of already established lymphomas in vivo. Thus, our data open perspectives for new therapeutic strategies by revealing a mechanism of regulation of ALCL cells growth through Cdc42. PMID:18974134

  13. On-Chip Single-Cell-Shape Control Technology for Understanding Contractile Motion of Cardiomyocytes Measured Using Optical Image Analysis System

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoyuki; Takizawa, Eikei; Nomura, Fumimasa; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2013-06-01

    Quantitative evaluation of mechanophysiological responses of cardiomyocytes has become more important for more precise prediction of cardiotoxicity. For the accurate detection of cardiomyocyte contraction, we have developed an on-chip single-cell-shape control technology on the basis of an agarose microchamber system and an on-chip optical image analysis system that records the contractile motions of cardiomyocytes with noninvasive/nondestructive measurement for long-term experiments. Using this on-chip single-cell-shape control technology, the shape of single cardiomyocytes was controlled by seeding the cells in 21-µm-radius (circular) or 20×70 µm2 (rectangular) agarose microchambers. To detect the contractility of cardiomyocytes, the cells were labeled with microbeads attached onto the surface of target cells and the motion of beads was acquired and analyzed using a newly developed wider-depth-of-field optics equipped with a 1/100 s high-speed digital camera. Mechanophysiological properties such as displacement and direction of movement were obtained using a real-time processing system module at spatial and temporal resolutions of 0.15 µm and 10 ms, respectively. Comparisons of displacement and direction of contraction between circular and rectangular cardiomyocytes indicated that the rectangular cardiomyocytes tended to contract along the longitudinal direction as in a real heart. This result suggests that the shape of cells affected the function of cells. The on-chip single-cell-shape control technology and optical image analysis system enable the detection of the motion of contraction of single-shape-controlled cardiomyocytes, and are expected to be applicable to the more precise prediction of cardiotoxicity.

  14. Deformable L-shaped microwell array for trapping pairs of heterogeneous cells

    NASA Astrophysics Data System (ADS)

    Lee, Gi-Hun; Kim, Sung-Hwan; Kang, AhRan; Takayama, Shuichi; Lee, Sang-Hoon; Park, Joong Yull

    2015-03-01

    To study cell-to-cell interactions, there has been a continuous demand on developing microsystems for trapping pairs of two different cells in microwell arrays. Here, we propose an L-shaped microwell (L-microwell) array that relies on the elasticity of a polydimethylsiloxane (PDMS) substrate for trapping and pairing heterogeneous cells. We designed an L-microwell suitable for trapping single cell in each branch via stretching/releasing the PDMS substrate, and also performed 3D time-dependent diffusion simulations to visualize how cell-secreted molecules diffuse in the L-microwell and communicate with the partner cell. The computational results showed that the secreted molecule first contacted the partner cell after 35 min, and the secreted molecule fully covered the partner cell in 4 h (when referenced to 10% of the secreted molecular concentration). The molecules that diffused to the outside of the L-microwell were significantly diluted by the bulk solution, which prevented unwanted cellular communication between neighboring L-microwells. We produced over 5000 cell pairs in one 2.25 cm2 array with about 30 000 L-microwells. The proposed L-microwell array offers a versatile and convenient cell pairing method to investigate cell-to-cell interactions in, for example, cell fusion, immune reactions, and cancer metastasis.

  15. The fundamental contribution of William Bate Hardy to shape the concept of mast cell heterogeneity.

    PubMed

    Crivellato, Enrico; Ribatti, Domenico

    2010-07-01

    This review article acknowledges the pioneering contribution of William Bate Hardy in shaping the concept of mast cell heterogeneity. In two outstanding papers, published in 1894 and 1895, he focussed on the 'wandering cells' (the modern leucocytes) in different mammalian species and distinguished two types of granular basophil cells, i.e., the coarsely granular basophil cells and the splanchnic basophil cells. These corresponded to the populations of connective tissue-type and mucosal mast cells, respectively, described 70 years later by Enerbäck in rodents. Among the coarsely granular basophil cells, he also differentiated those cells which populated the serosal cavities - the so-called coelomic coarsely granular basophil cells - from the common coarsely granular basophil cells, which were localized in the connective tissues. He stated that the granular basophil cells presented with different morphological and histochemical characteristics in diverse animal species as well as at different anatomical sites. Remarkably, he performed a series of functional experiments on the basophil cells as well as the other wandering cells, and suggested the view that different granular basophil cells might express functional specializations.

  16. Cell and nanoparticle transport in tumour microvasculature: the role of size, shape and surface functionality of nanoparticles.

    PubMed

    Li, Ying; Lian, Yanping; Zhang, Lucy T; Aldousari, Saad M; Hedia, Hassan S; Asiri, Saeed A; Liu, Wing Kam

    2016-02-01

    Through nanomedicine, game-changing methods are emerging to deliver drug molecules directly to diseased areas. One of the most promising of these is the targeted delivery of drugs and imaging agents via drug carrier-based platforms. Such drug delivery systems can now be synthesized from a wide range of different materials, made in a number of different shapes, and coated with an array of different organic molecules, including ligands. If optimized, these systems can enhance the efficacy and specificity of delivery compared with those of non-targeted systems. Emerging integrated multiscale experiments, models and simulations have opened the door for endless medical applications. Current bottlenecks in design of the drug-carrying particles are the lack of knowledge about the dispersion of these particles in the microvasculature and of their subsequent internalization by diseased cells (Bao et al. 2014 J. R. Soc. Interface 11, 20140301 (doi:10.1098/rsif.2014.0301)). We describe multiscale modelling techniques that study how drug carriers disperse within the microvasculature. The immersed molecular finite-element method is adopted to simulate whole blood including blood plasma, red blood cells and nanoparticles. With a novel dissipative particle dynamics method, the beginning stages of receptor-driven endocytosis of nanoparticles can be understood in detail. Using this multiscale modelling method, we elucidate how the size, shape and surface functionality of nanoparticles will affect their dispersion in the microvasculature and subsequent internalization by targeted cells. PMID:26855759

  17. New common variants affecting susceptibility to basal cell carcinoma.

    PubMed

    Stacey, Simon N; Sulem, Patrick; Masson, Gisli; Gudjonsson, Sigurjon A; Thorleifsson, Gudmar; Jakobsdottir, Margret; Sigurdsson, Asgeir; Gudbjartsson, Daniel F; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R; Thorisdottir, Kristin; Ragnarsson, Rafn; Scherer, Dominique; Hemminki, Kari; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Botella-Estrada, Rafael; Soriano, Virtudes; Juberias, Pablo; Saez, Berta; Gilaberte, Yolanda; Fuentelsaz, Victoria; Corredera, Cristina; Grasa, Matilde; Höiom, Veronica; Lindblom, Annika; Bonenkamp, Johannes J; van Rossum, Michelle M; Aben, Katja K H; de Vries, Esther; Santinami, Mario; Di Mauro, Maria G; Maurichi, Andrea; Wendt, Judith; Hochleitner, Pia; Pehamberger, Hubert; Gudmundsson, Julius; Magnusdottir, Droplaug N; Gretarsdottir, Solveig; Holm, Hilma; Steinthorsdottir, Valgerdur; Frigge, Michael L; Blondal, Thorarinn; Saemundsdottir, Jona; Bjarnason, Hjördis; Kristjansson, Kristleifur; Bjornsdottir, Gyda; Okamoto, Ichiro; Rivoltini, Licia; Rodolfo, Monica; Kiemeney, Lambertus A; Hansson, Johan; Nagore, Eduardo; Mayordomo, José I; Kumar, Rajiv; Karagas, Margaret R; Nelson, Heather H; Gulcher, Jeffrey R; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Olafsson, Jon H; Kong, Augustine; Stefansson, Kari

    2009-08-01

    In a follow-up to our previously reported genome-wide association study of cutaneous basal cell carcinoma (BCC), we describe here several new susceptibility variants. SNP rs11170164, encoding a G138E substitution in the keratin 5 (KRT5) gene, affects risk of BCC (OR = 1.35, P = 2.1 x 10(-9)). A variant at 9p21 near CDKN2A and CDKN2B also confers susceptibility to BCC (rs2151280[C]; OR = 1.19, P = 6.9 x 10(-9)), as does rs157935[T] at 7q32 near the imprinted gene KLF14 (OR = 1.23, P = 5.7 x 10(-10)). The effect of rs157935[T] is dependent on the parental origin of the risk allele. None of these variants were found to be associated with melanoma or fair-pigmentation traits. A melanoma- and pigmentation-associated variant in the SLC45A2 gene, L374F, is associated with risk of both BCC and squamous cell carcinoma. Finally, we report conclusive evidence that rs401681[C] in the TERT-CLPTM1L locus confers susceptibility to BCC but protects against melanoma. PMID:19578363

  18. Long helical filaments are not seen encircling cells in electron cryotomograms of rod-shaped bacteria

    SciTech Connect

    Swulius, Matthew T.; Chen, Songye; Jane Ding, H.; Li, Zhuo; Briegel, Ariane; Pilhofer, Martin; Tocheva, Elitza I.; Lybarger, Suzanne R.; Johnson, Tanya L.; Sandkvist, Maria; Jensen, Grant J.

    2011-04-22

    Highlights: {yields} No long helical filaments are seen near or along rod-shaped bacterial inner membranes by electron cryo-tomography. {yields} Electron cryo-tomography has the resolution to detect single filaments in vivo. -- Abstract: How rod-shaped bacteria form and maintain their shape is an important question in bacterial cell biology. Results from fluorescent light microscopy have led many to believe that the actin homolog MreB and a number of other proteins form long helical filaments along the inner membrane of the cell. Here we show using electron cryotomography of six different rod-shaped bacterial species, at macromolecular resolution, that no long (>80 nm) helical filaments exist near or along either surface of the inner membrane. We also use correlated cryo-fluorescent light microscopy (cryo-fLM) and electron cryo-tomography (ECT) to identify cytoplasmic bundles of MreB, showing that MreB filaments are detectable by ECT. In light of these results, the structure and function of MreB must be reconsidered: instead of acting as a large, rigid scaffold that localizes cell-wall synthetic machinery, moving MreB complexes may apply tension to growing peptidoglycan strands to ensure their orderly, linear insertion.

  19. Shape changes in isolated outer hair cells: measurements with attached microspheres.

    PubMed

    Zajic, G; Schacht, J

    1991-04-01

    Shape changes can be induced in isolated outer hair cells by various stimuli and quantified from digitized video-images. While overall changes in length between base and apex are easily measured, changes in defined segments of the cell require fixed landmarks on the cell body. The problem of locating such landmarks makes it difficult to assess if a change in length is uniform or largely confined to a particular segment of the cell. This information is important in identifying the location of a contractile apparatus and the elucidation of mechanisms of motility. We demonstrate here that microspheres can serve as reference points for such measurements. By attaching microspheres to cells we determined that, when outer hair cells increased their volume upon K(+)-depolarization, their middle segment shortened more significantly (14 +/- 6%) than either the basal (10 +/- 5%) or apical section (7 +/- 6%; P less than 0.01). In contrast, when cortical contractions were induced by elevating intracellular Ca2+, the elongation of the cells was more pronounced in their basal (8 +/- 2%) than their apical (6 +/- 2%; P = 0.06) or middle region (6 +/- 3%). This study provides further insight into the mechanisms of shape changes in isolated outer hair cells and illustrates a method to analyze localized changes in the absence of internal landmarks.

  20. Anabolic androgens affect the competitive interactions in cell migration and adhesion between normal mouse urothelial cells and urothelial carcinoma cells.

    PubMed

    Huang, Chi-Ping; Hsieh, Teng-Fu; Chen, Chi-Cheng; Hung, Xiao-Fan; Yu, Ai-Lin; Chang, Chawnshang; Shyr, Chih-Rong

    2014-09-26

    The urothelium is constantly rebuilt by normal urothelial cells to regenerate damaged tissues caused by stimuli in urine. However, the urothelial carcinoma cells expand the territory by aberrant growth of tumor cells, which migrate and occupy the damaged tissues to spread outside and disrupt the normal cells and organized tissues and form a tumor. Therefore, the interaction between normal urothelial cells and urothelial carcinoma cells affect the initiation and progression of urothelial tumors if normal urothelial cells fail to migrate and adhere to the damages sites to regenerate the tissues. Here, comparing normal murine urothelial cells with murine urothelial carcinoma cells (MBT-2), we found that normal cells had less migration ability than carcinoma cells. And in our co-culture system we found that carcinoma cells had propensity migrating toward normal urothelial cells and carcinoma cells had more advantages to adhere than normal cells. To reverse this condition, we used anabolic androgen, dihyrotestosterone (DHT) to treat normal cells and found that DHT treatment increased the migration ability of normal urothelial cells toward carcinoma cells and the adhesion capacity in competition with carcinoma cells. This study provides the base of a novel therapeutic approach by using anabolic hormone-enforced normal urothelial cells to regenerate the damage urothelium and defend against the occupancy of carcinoma cells to thwart cancer development and recurrence.

  1. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks

    NASA Technical Reports Server (NTRS)

    Huang, S.; Ingber, D. E.

    2000-01-01

    Development of characteristic tissue patterns requires that individual cells be switched locally between different phenotypes or "fates;" while one cell may proliferate, its neighbors may differentiate or die. Recent studies have revealed that local switching between these different gene programs is controlled through interplay between soluble growth factors, insoluble extracellular matrix molecules, and mechanical forces which produce cell shape distortion. Although the precise molecular basis remains unknown, shape-dependent control of cell growth and function appears to be mediated by tension-dependent changes in the actin cytoskeleton. However, the question remains: how can a generalized physical stimulus, such as cell distortion, activate the same set of genes and signaling proteins that are triggered by molecules which bind to specific cell surface receptors. In this article, we use computer simulations based on dynamic Boolean networks to show that the different cell fates that a particular cell can exhibit may represent a preprogrammed set of common end programs or "attractors" which self-organize within the cell's regulatory networks. In this type of dynamic network model of information processing, generalized stimuli (e.g., mechanical forces) and specific molecular cues elicit signals which follow different trajectories, but eventually converge onto one of a small set of common end programs (growth, quiescence, differentiation, apoptosis, etc.). In other words, if cells use this type of information processing system, then control of cell function would involve selection of preexisting (latent) behavioral modes of the cell, rather than instruction by specific binding molecules. Importantly, the results of the computer simulation closely mimic experimental data obtained with living endothelial cells. The major implication of this finding is that current methods used for analysis of cell function that rely on characterization of linear signaling pathways or

  2. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape

    NASA Technical Reports Server (NTRS)

    Sims, J. R.; Karp, S.; Ingber, D. E.

    1992-01-01

    Studies were carried out with capillary endothelial cells cultured on fibronectin (FN)-coated dishes in order to analyze the mechanism of cell and nuclear shape control by extracellular matrix (ECM). To examine the role of the cytoskeleton in shape determination independent of changes in transmembrane osmotic pressure, membranes of adherent cells were permeabilized with saponin (25 micrograms/ml) using a buffer that maintains the functional integrity of contractile microfilaments. Real-time videomicroscopic studies revealed that addition of 250 microM ATP resulted in time-dependent retraction and rounding of permeabilized cells and nuclei in a manner similar to that observed in intact living cells following detachment using trypsin-EDTA. Computerized image analysis confirmed that permeabilized cells remained essentially rigid in the absence of ATP and that retraction was stimulated in a dose-dependent manner as the concentration of ATP was raised from 10 to 250 microM. Maximal rounding occurred by 30 min with projected cell and nuclear areas being reduced by 69 and 41%, respectively. ATP-induced rounding was also accompanied by a redistribution of microfilaments resulting in formation of a dense net of F-actin surrounding retracted nuclei. Importantly, ATP-stimulated changes in cell, cytoskeletal, and nuclear form were prevented in permeabilized cells using a synthetic myosin peptide (IRICRKG) that has been previously shown to inhibit actomyosin filament sliding in muscle. In contrast, both the rate and extent of cell and nuclear rounding were increased in permeabilized cells exposed to ATP when the soluble FN peptide, GRGDSP, was used to dislodge immobilized FN from cell surface integrin receptors.(ABSTRACT TRUNCATED AT 250 WORDS).

  3. On the sigmoidal shape of current-voltage curves of photoelectrochemical solar cells

    SciTech Connect

    Mao, D.; Kim, K.J.; Frank, A.J.

    1995-06-01

    Current-voltage (J-V) curves of n-GaAs/KOH(aq)-Se{sub 2}{sup 2{minus}}/Se{sup 2{minus}} and n-Si/acetone-LiClO{sub 4}-Fc{sup +/0} (ferrocenium ion/ferrocene) solar cells exhibit sigmoidal shapes near the open-circuit potential. J-V and flatband potential measurements indicate that the deviation of the J-V curves from the ideal square-like shape to S shape is due to the light-induced displacement of the bandedges. Analytical expression describing the dependence of light-induced bandedge shifts on the anodic photocurrent, the density of surface states, and the interfacial charge-transfer velocity are derived and verified experimentally. Application of the expressions to J-V data yields quantitative information on the kinetics of interfacial charge transfer.

  4. Shaping of the autoreactive regulatory T cell repertoire by thymic cortical positive selection

    PubMed Central

    Ribot, Julie; Enault, Geneviève; Pilipenko, Sylvie; Huchenq, Anne; Calise, Maryline; Hudrisier, Denis; Romagnoli, Paola; van Meerwijk, Joost PM

    2007-01-01

    The main function of regulatory T lymphocytes is to keep autoimmune responses at bay. Accordingly, it has been firmly established that the repertoire of CD4+CD25+Foxp3+ regulatory T cells is enriched in autospecific cells. Differences in thymic positive and/or negative selection may account for selection of the qualitatively distinct regulatory and conventional T cell repertoires. It has previously been shown that precursors for regulatory T cells are less sensitive to negative selection than conventional T cell-precursors. Studies with TCR/ligand doubly transgenic mice suggested that agonist ligand might induce positive selection of regulatory (but not conventional) T cells. However, massive deletion of conventional (but not regulatory) T cell precursors observed in these mice renders interpretation of such data problematic and a potential role for positive selection in generation of the autospecific regulatory T cell-repertoire has remained therefore incompletely understood. To study this important unresolved issue and circumvent use of TCR/ligand transgenic mice, we have developed transgenic mice expressing a single MHC class II/peptide ligand on positively selecting thymic cortical epithelial cells. We found that functional regulatory (but not conventional) T cells specific for the single ligand were preferentially selected from the naturally diverse repertoire of immature precursors. Our data therefore demonstrate that thymic cortical positive selection of regulatory and conventional T cell precursors is governed by distinct rules and that it plays an important role in shaping the autoreactive regulatory T cell repertoire. PMID:17982064

  5. Ethanol induces human red cell shape transformations and enhanced ligand-mediated agglutinability

    SciTech Connect

    Weinstein, R.S.; McLawhon, R.W.; Marikovsky, Y.

    1986-03-01

    Ethanol concentrations are markedly elevated in rat stomach wall when ulcerogenic doses of 100 % ethanol (2 ml for 5 to 10 minutes) are instilled in rat gastric lumen. The authors observed that red cells in gastric mucosal postcapillary venules become spiculated and interadherent under these conditions. The authors have now studied this phenomenon in vitro using washing human red cells. Concentrations of high grade ethanol ranging from 2 to 10% (v/v) in physiological buffered saline (pH 7.3) without Ca/sup + +/ or Mg/sup + +/ at 25/sup 0/C rapidly transformed human red cells into spiculated forms. 2% ethanol transformed human red cells into disco-echinocytes in 15 min. whereas 10% ethanol transformed red blood cells into echinocytes within 3 min. Washing out of ethanol at 1 hour reverted the echinocytes into discocytes. However, following 3 hours of incubation in 10% ethanol washing out of ethanol produced stomatocytes. The ethanol-induced echinocytic shape transformations were accompanied by a dose-related increase in red cell agglutinability with poly-L-lysine or the plant lectin wheat germ agglutinin. The enhanced agglutinability was reversed by restoring the red cell shape changes and alterations in surface properties may play a role in the pathogenesis of ethanol-induced gastric ulcers.

  6. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine.

    PubMed

    Lobo, Joana; See, Eugene Yong-Shun; Biggs, Manus; Pandit, Abhay

    2016-07-01

    Cellular morphology has recently been indicated as a powerful indicator of cellular function. The analysis of cell shape has evolved from rudimentary forms of microscopic visual inspection to more advanced methodologies that utilize high-resolution microscopy coupled with sophisticated computer hardware and software for data analysis. Despite this progress, there is still a lack of standardization in quantification of morphometric parameters. In addition, uncertainty remains as to which methodologies and parameters of cell morphology will yield meaningful data, which methods should be utilized to categorize cell shape, and the extent of reliability of measurements and the interpretation of the resulting analysis. A large range of descriptors has been employed to objectively assess the cellular morphology in two-dimensional and three-dimensional domains. Intuitively, simple and applicable morphometric descriptors are preferable and standardized protocols for cell shape analysis can be achieved with the help of computerized tools. In this review, cellular morphology is discussed as a descriptor of cellular function and the current morphometric parameters that are used quantitatively in two- and three-dimensional environments are described. Furthermore, the current problems associated with these morphometric measurements are addressed. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25757807

  7. Structure of Csd3 from Helicobacter pylori, a cell shape-determining metallopeptidase

    SciTech Connect

    An, Doo Ri; Kim, Hyoun Sook; Kim, Jieun; Im, Ha Na; Yoon, Hye Jin; Yoon, Ji Young; Jang, Jun Young; Hesek, Dusan; Lee, Mijoon; Mobashery, Shahriar; Kim, Soon-Jong; Lee, Byung Il; Suh, Se Won

    2015-03-01

    H. pylori Csd3 (HP0506), together with other peptidoglycan hydrolases, plays an important role in determining cell shape. Its crystal structure in the latent state is reported. Helicobacter pylori is associated with various gastrointestinal diseases such as gastritis, ulcers and gastric cancer. Its colonization of the human gastric mucosa requires high motility, which depends on its helical cell shape. Seven cell shape-determining genes (csd1, csd2, csd3/hdpA, ccmA, csd4, csd5 and csd6) have been identified in H. pylori. Their proteins play key roles in determining the cell shape through modifications of the cell-wall peptidoglycan by the alteration of cross-linking or by the trimming of peptidoglycan muropeptides. Among them, Csd3 (also known as HdpA) is a bifunctional enzyme. Its d, d-endopeptidase activity cleaves the d-Ala{sup 4}-mDAP{sup 3} peptide bond between cross-linked muramyl tetrapeptides and pentapeptides. It is also a d, d-carboxypeptidase that cleaves off the terminal d-Ala{sup 5} from the muramyl pentapeptide. Here, the crystal structure of this protein has been determined, revealing the organization of its three domains in a latent and inactive state. The N-terminal domain 1 and the core of domain 2 share the same fold despite a very low level of sequence identity, and their surface-charge distributions are different. The C-terminal LytM domain contains the catalytic site with a Zn{sup 2+} ion, like the similar domains of other M23 metallopeptidases. Domain 1 occludes the active site of the LytM domain. The core of domain 2 is held against the LytM domain by the C-terminal tail region that protrudes from the LytM domain.

  8. Corneal endothelial cells possess an elaborate multipolar shape to maximize the basolateral to apical membrane area

    PubMed Central

    Harrison, Theresa A.; He, Zhiguo; Boggs, Kristin; Thuret, Gilles; Liu, Hong-Xiang

    2016-01-01

    Purpose The corneal endothelium is widely believed to consist of geometrically regular cells interconnected by junctional complexes. However, while en face visualization of the endothelial apical surface reveals characteristic polygonal borders, the overall form of the component cells has rarely been observed. Methods To visualize the shape of individual endothelial cells within the native monolayer, two independent Cre/LoxP-based cell labeling approaches were used. In the first, a P0-Cre mouse driver strain was bred to an R26-tdTomato reporter line to map neural crest–derived endothelial cells with cytosolic red fluorescent protein. In the second, HPRT-Cre induction of small numbers of green and red fluorescent protein–filled cells within a background of unlabeled cells was achieved using a dual-color reporter system, mosaic analysis with double markers (MADM). Selective imaging of the endothelial lateral membranes at different apicobasal levels was accomplished after staining with antibodies to ZO-1 and the neural cell adhesion molecule (NCAM). Results When viewed in their entirety in whole-mount preparations, fluorescent protein–filled cells appear star-shaped, extending multiple dendritic processes that radiate outward in the plane of the monolayer. Examination of rare cases where cells expressing different fluorescent proteins lie directly adjacent to one another reveals that these long processes undergo extensive interdigitation. The resulting overlap allows individual cells to extend over a greater area than if the cell boundaries were mutually exclusive. Anti-NCAM staining of these interlocking peripheral cell extensions reveals an elaborate system of lateral membrane folds that, when viewed in optical sections, increase in complexity from the apical to the basal pole. This not only produces a substantial increase in the basolateral, relative to the apical, membrane but also greatly extends the paracellular pathway as a highly convoluted space

  9. Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE

    PubMed Central

    Flynn, Ryan A; Zhang, Qiangfeng Cliff; Spitale, Robert C; Lee, Byron; Mumbach, Maxwell R; Chang, Howard Y

    2016-01-01

    icSHAPE (in vivo click selective 2-hydroxyl acylation and profiling experiment) captures RNA secondary structure at a transcriptome-wide level by measuring nucleotide flexibility at base resolution. Living cells are treated with the icSHAPE chemical NAI-N3 followed by selective chemical enrichment of NAI-N3–modified RNA, which provides an improved signal-to-noise ratio compared with similar methods leveraging deep sequencing. Purified RNA is then reverse-transcribed to produce cDNA, with SHAPE-modified bases leading to truncated cDNA. After deep sequencing of cDNA, computational analysis yields flexibility scores for every base across the starting RNA population. The entire experimental procedure can be completed in ~5 d, and the sequencing and bioinformatics data analysis take an additional 4–5 d with no extensive computational skills required. Comparing in vivo and in vitro icSHAPE measurements can reveal in vivo RNA-binding protein imprints or facilitate the dissection of RNA post-transcriptional modifications. icSHAPE reactivities can additionally be used to constrain and improve RNA secondary structure prediction models. PMID:26766114

  10. Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE.

    PubMed

    Flynn, Ryan A; Zhang, Qiangfeng Cliff; Spitale, Robert C; Lee, Byron; Mumbach, Maxwell R; Chang, Howard Y

    2016-02-01

    icSHAPE (in vivo click selective 2-hydroxyl acylation and profiling experiment) captures RNA secondary structure at a transcriptome-wide level by measuring nucleotide flexibility at base resolution. Living cells are treated with the icSHAPE chemical NAI-N3 followed by selective chemical enrichment of NAI-N3-modified RNA, which provides an improved signal-to-noise ratio compared with similar methods leveraging deep sequencing. Purified RNA is then reverse-transcribed to produce cDNA, with SHAPE-modified bases leading to truncated cDNA. After deep sequencing of cDNA, computational analysis yields flexibility scores for every base across the starting RNA population. The entire experimental procedure can be completed in ∼5 d, and the sequencing and bioinformatics data analysis take an additional 4-5 d with no extensive computational skills required. Comparing in vivo and in vitro icSHAPE measurements can reveal in vivo RNA-binding protein imprints or facilitate the dissection of RNA post-transcriptional modifications. icSHAPE reactivities can additionally be used to constrain and improve RNA secondary structure prediction models.

  11. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline

    PubMed Central

    Chi, Woo; Wu, Eleanor; Morgan, Bruce A.

    2013-01-01

    Although the hair shaft is derived from the progeny of keratinocyte stem cells in the follicular epithelium, the growth and differentiation of follicular keratinocytes is guided by a specialized mesenchymal population, the dermal papilla (DP), that is embedded in the hair bulb. Here we show that the number of DP cells in the follicle correlates with the size and shape of the hair produced in the mouse pelage. The same stem cell pool gives rise to hairs of different sizes or types in successive hair cycles, and this shift is accompanied by a corresponding change in DP cell number. Using a mouse model that allows selective ablation of DP cells in vivo, we show that DP cell number dictates the size and shape of the hair. Furthermore, we confirm the hypothesis that the DP plays a crucial role in activating stem cells to initiate the formation of a new hair shaft. When DP cell number falls below a critical threshold, hair follicles with a normal keratinocyte compartment fail to generate new hairs. However, neighbouring follicles with a few more DP cells can re-enter the growth phase, and those that do exploit an intrinsic mechanism to restore both DP cell number and normal hair growth. These results demonstrate that the mesenchymal niche directs stem and progenitor cell behaviour to initiate regeneration and specify hair morphology. Degeneration of the DP population in mice leads to the types of hair thinning and loss observed during human aging, and the results reported here suggest novel approaches to reversing hair loss. PMID:23487317

  12. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline.

    PubMed

    Chi, Woo; Wu, Eleanor; Morgan, Bruce A

    2013-04-01

    Although the hair shaft is derived from the progeny of keratinocyte stem cells in the follicular epithelium, the growth and differentiation of follicular keratinocytes is guided by a specialized mesenchymal population, the dermal papilla (DP), that is embedded in the hair bulb. Here we show that the number of DP cells in the follicle correlates with the size and shape of the hair produced in the mouse pelage. The same stem cell pool gives rise to hairs of different sizes or types in successive hair cycles, and this shift is accompanied by a corresponding change in DP cell number. Using a mouse model that allows selective ablation of DP cells in vivo, we show that DP cell number dictates the size and shape of the hair. Furthermore, we confirm the hypothesis that the DP plays a crucial role in activating stem cells to initiate the formation of a new hair shaft. When DP cell number falls below a critical threshold, hair follicles with a normal keratinocyte compartment fail to generate new hairs. However, neighbouring follicles with a few more DP cells can re-enter the growth phase, and those that do exploit an intrinsic mechanism to restore both DP cell number and normal hair growth. These results demonstrate that the mesenchymal niche directs stem and progenitor cell behaviour to initiate regeneration and specify hair morphology. Degeneration of the DP population in mice leads to the types of hair thinning and loss observed during human aging, and the results reported here suggest novel approaches to reversing hair loss.

  13. Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells

    PubMed Central

    Sero, Julia E; Sailem, Heba Zuhair; Ardy, Rico Chandra; Almuttaqi, Hannah; Zhang, Tongli; Bakal, Chris

    2015-01-01

    Although a great deal is known about the signaling events that promote nuclear translocation of NF-κB, how cellular biophysics and the microenvironment might regulate the dynamics of this pathway is poorly understood. In this study, we used high-content image analysis and Bayesian network modeling to ask whether cell shape and context features influence NF-κB activation using the inherent variability present in unperturbed populations of breast tumor and non-tumor cell lines. Cell–cell contact, cell and nuclear area, and protrusiveness all contributed to variability in NF-κB localization in the absence and presence of TNFα. Higher levels of nuclear NF-κB were associated with mesenchymal-like versus epithelial-like morphologies, and RhoA-ROCK-myosin II signaling was critical for mediating shape-based differences in NF-κB localization and oscillations. Thus, mechanical factors such as cell shape and the microenvironment can influence NF-κB signaling and may in part explain how different phenotypic outcomes can arise from the same chemical cues. PMID:25735303

  14. Factors affecting the cryosurvival of mouse two-cell embryos.

    PubMed

    Critser, J K; Arneson, B W; Aaker, D V; Huse-Benda, A R; Ball, G D

    1988-01-01

    A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Relationship between stiffness, internal cell pressure and shape of outer hair cells isolated from the guinea-pig hearing organ.

    PubMed

    Chan, E; Ulfendahl, M

    1997-12-01

    The mechanical properties of outer hair cells are of importance for normal hearing, and it has been shown that damage of the cells can lead to a reduction in the hearing sensitivity. In this study, we measured the stiffness of isolated outer hair cells in hyper- and hypotonic conditions, and examined the change in stiffness in relation to the corresponding changes in internal cell pressure and cell shape. The results showed that the axial stiffness of isolated outer hair cells (30-90 microns in length, 8-12 microns in diameter), ranging from 0.13-5.39 mN m-1, was inversely related to cell length. Exposure to hyper- and hypotonic external media with a small percentage change in osmolality caused a similar magnitude of change in cell length and cell diameter, but an average 60% change in cell stiffness. Therefore, a moderate osmotic change in the external medium can lead to a significant alteration in cell stiffness. The findings thus indicate an important contribution of internal cell pressure to cell stiffness.

  16. Solitary subcutaneous mucinosis surrounded by bizarre-shaped, factor XIIIa-positive cells with intranuclear vacuoles.

    PubMed

    Terui, T; Aiba, S; Tagami, H

    1998-05-01

    We describe a subcutaneous mucinosis developing in the right cheek of a 38-year-old man. Histologic examination revealed bipolar fibroblast-like cells embedded in a well demarcated mucinous stroma in the subcutis without a manifest reticulin network. In addition, bizarre, sometimes multinucleate, cells with intranuclear vacuoles were found at the periphery of the mucinous stroma. Immunohistologically, both the bipolar fibroblastic cells and bizarre-shaped cells were positive for vimentin, but were negative for smooth muscle A-actin, desmin, CD34, S100, trypsin, or chymotrypsin. However, the latter reacted to anti-factor XIIIa antibody, suggesting that they are derived from dermal dendritic cells. We think that this solitary subcutaneous mucinosis is a unique variant of cutaneous focal mucinosis, because neither a reticulin network nor reactivity to anti-smooth muscle A-actin antibody were demonstrable.

  17. Behavior of osteoblast-like cells on calcium-deficient hydroxyapatite ceramics composed of particles with different shapes and sizes.

    PubMed

    Kamitakahara, Masanobu; Uno, Yuika; Ioku, Koji

    2014-01-01

    In designing the biomaterials, it is important to control their surface morphologies, because they affect the interactions between the materials and cells. We previously reported that porous calcium-deficient hydroxyapatite (HA) ceramics composed of rod-like particles had advantages over sintered porous HA ceramics; however, the effects of the surface morphology of calcium-deficient HA ceramics on cell behavior have remained unclear. Using a hydrothermal process, we successfully prepared porous calcium-deficient HA ceramics with different surface morphologies, composed of plate-like particles of 200-300, 500-800 nm, or 2-3 μm in width and rod-like particles of 1 or 3-5 μm in width, respectively. The effects of these surface morphologies on the behavior of osteoblast-like cells were examined. Although the numbers of cells adhered to the ceramic specimens did not differ significantly among the specimens, the proliferation rates of cells on the ceramics decreased with decreasing particle size. Our results reveal that controlling the surface morphology that is governed by particle shape and size is important for designing porous calcium-deficient HA ceramics.

  18. An Adhesion-Dependent Switch between Mechanisms That Determine Motile Cell Shape

    PubMed Central

    Barnhart, Erin L.; Lee, Kun-Chun; Keren, Kinneret; Mogilner, Alex; Theriot, Julie A.

    2011-01-01

    Keratocytes are fast-moving cells in which adhesion dynamics are tightly coupled to the actin polymerization motor that drives migration, resulting in highly coordinated cell movement. We have found that modifying the adhesive properties of the underlying substrate has a dramatic effect on keratocyte morphology. Cells crawling at intermediate adhesion strengths resembled stereotypical keratocytes, characterized by a broad, fan-shaped lamellipodium, clearly defined leading and trailing edges, and persistent rates of protrusion and retraction. Cells at low adhesion strength were small and round with highly variable protrusion and retraction rates, and cells at high adhesion strength were large and asymmetrical and, strikingly, exhibited traveling waves of protrusion. To elucidate the mechanisms by which adhesion strength determines cell behavior, we examined the organization of adhesions, myosin II, and the actin network in keratocytes migrating on substrates with different adhesion strengths. On the whole, our results are consistent with a quantitative physical model in which keratocyte shape and migratory behavior emerge from the self-organization of actin, adhesions, and myosin, and quantitative changes in either adhesion strength or myosin contraction can switch keratocytes among qualitatively distinct migration regimes. PMID:21559321

  19. Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell

    NASA Astrophysics Data System (ADS)

    Fan, H. Q.; Kumar, S.; Kübler, H.; Shaffer, J. P.

    2016-05-01

    We introduce a method to measure radio frequency (RF) electric fields (E-fields) using atoms contained in a prism-shaped vapor cell. The method utilizes the concept of electromagnetically induced transparency with Rydberg atoms. The RF E-field induces changes in the index of refraction of the vapor resulting in deflection of the probe laser beam as it passes through the prism-shaped vapor cell. We measured a minimum RF E-field of 8.25 μ {{Vcm}}-1 with a sensitivity of ∼ 46.5 μ {{Vcm}}-1 {{Hz}}-1/2. The experimental results agree with a numerical model that includes dephasing effects. We discuss possible improvements to obtain higher sensitivity for RF E-field measurements.

  20. Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode

    DOEpatents

    Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    1995-01-01

    An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing one or more hydroxides having the formula M(OH), one or more fluorides having the formula MF, and one or more carbonates having the formula M.sub.2 CO.sub.3, where M is a metal selected from the group consisting of alkali metals. The electrolyte inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.

  1. A study of shape optimization on the metallic nanoparticles for thin-film solar cells

    PubMed Central

    2013-01-01

    The shape of metallic nanoparticles used to enhance the performance of thin-film solar cells is described by Gielis' superformula and optimized by an evolutionary algorithm. As a result, we have found a lens-like nanoparticle capable of improving the short circuit current density to 19.93 mA/cm2. Compared with a two-scale nanospherical configuration recently reported to synthesize the merits of large and small spheres into a single structure, the optimized nanoparticle enables the solar cell to achieve a further 7.75% improvement in the current density and is much more fabrication friendly due to its simple shape and tolerance to geometrical distortions. PMID:24168131

  2. Disturbance in function and expression of condensin affects chromosome compaction in HeLa cells.

    PubMed

    Zhai, Lei; Wang, Hongzhen; Tang, Wen; Liu, Wenguang; Hao, Shui; Zeng, Xianlu

    2011-07-01

    Condensin, a major non-histone protein complex on chromosomes, is responsible for the formation of rod-shaped chromosome in mitosis. A heterodimer composed of SMC2 (structural maintenance of chromosomes) and SMC4 subunits constitutes the core part of condensin. Although extensive studies have been done in yeast, fruit fly and Xenopus to uncover the mechanisms and molecular nature of SMC proteins, little is known about the complex in mammalian cells. We have conducted a series of experiments to unveil the nature of condensin complex in human chromosome formation. The results show that overexpression of the C-terminal domain of SMC subunits disturbs chromosome condensation, leading to formation of swollen chromosomes, while knockdown of SMC subunits severely disturbs mitotic chromosome formation, resulting in chromatin bridges between daughter cells and multiple nuclei in single cells. The salt extraction assay indicates that a fraction of the condensin complex is bound to chromatin in interphase, but most of the condensin bind to chromatin at the onset of mitosis. Thus, disturbance in condensin function or expression affects chromosome condensation and influences mitotic progression.

  3. Influence of pore and strut shape on open cell metal foam bulk properties

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Hugo, Jean-Michel; Topin, Frederic; Vicente, Jerome

    2012-05-01

    The thermo-physical behavior of open-celled metal foams depends on their microscopic structure. An ideal periodic isotropic structure of tetrakaidecahedron shape i.e. Kelvin cell is studied. We have proposed an analytical model in order to obtain geometrical parameters correctly as they have substantial influence on thermal and hydraulic phenomena, where strut geometry is of prime importance. Various relationships between different geometrical parameters and porosities are presented. Consequently, empirical correlations are proposed to determine permeability and inertia coefficient using Ergun like model for computing pressure drop.

  4. The extent to which garments affect the assessment of body shapes of males from faceless CCTV images.

    PubMed

    Lucas, Teghan; Kumaratilake, Jaliya; Henneberg, Maciej

    2014-01-01

    Closed circuit television (CCTV) systems are being widely used in crime surveillance. The images produced are of poor quality often face details are not visible, however expert witnesses in the field of biological anthropology use morphological descriptions of body shapes in an attempt to identify persons of interest. These methods can be applied to individual images when other cues such as gait, are not present. Criminals commonly disguise their faces, but body shape characteristics can be used to distinguish a person of interest from others. Garments may distort the body shape appearance, thus this study was undertaken to investigate the effects of garments on the description of body shape from CCTV images. Twelve adult males representing a wide body shape range of Sheldonian somatotypes were photographed in identical garments comprising of tight fitting black shirt, horizontally striped shirt, padded leather jacket and in naked torso. These photographs were assessed by 51 males and females aged 18-50 years, with varying levels of education, and different experience in use of CCTV images for identification of people, to identify the 12 participants. The effect of assessors was not significant. They correctly distinguished 88.6% of individuals wearing the same wear, but could not match the same individuals wearing different wear above the random expectations. However, they matched somatotypes above random expectation. Type of clothing produced little bias in somatotype matching; ectomorphic component of individuals wearing black shirts and padded jackets was overestimated and underestimated, respectively. In conclusion, type of the wear had little effect in the description of individuals from CCTV images using the body shapes.

  5. The extent to which garments affect the assessment of body shapes of males from faceless CCTV images.

    PubMed

    Lucas, Teghan; Kumaratilake, Jaliya; Henneberg, Maciej

    2014-01-01

    Closed circuit television (CCTV) systems are being widely used in crime surveillance. The images produced are of poor quality often face details are not visible, however expert witnesses in the field of biological anthropology use morphological descriptions of body shapes in an attempt to identify persons of interest. These methods can be applied to individual images when other cues such as gait, are not present. Criminals commonly disguise their faces, but body shape characteristics can be used to distinguish a person of interest from others. Garments may distort the body shape appearance, thus this study was undertaken to investigate the effects of garments on the description of body shape from CCTV images. Twelve adult males representing a wide body shape range of Sheldonian somatotypes were photographed in identical garments comprising of tight fitting black shirt, horizontally striped shirt, padded leather jacket and in naked torso. These photographs were assessed by 51 males and females aged 18-50 years, with varying levels of education, and different experience in use of CCTV images for identification of people, to identify the 12 participants. The effect of assessors was not significant. They correctly distinguished 88.6% of individuals wearing the same wear, but could not match the same individuals wearing different wear above the random expectations. However, they matched somatotypes above random expectation. Type of clothing produced little bias in somatotype matching; ectomorphic component of individuals wearing black shirts and padded jackets was overestimated and underestimated, respectively. In conclusion, type of the wear had little effect in the description of individuals from CCTV images using the body shapes. PMID:25065119

  6. Fluorescence intensity decay shape analysis microscopy (FIDSAM) for quantitative and sensitive live-cell imaging

    NASA Astrophysics Data System (ADS)

    Peter, Sébastien; Elgass, Kirstin; Sackrow, Marcus; Caesar, Katharina; Born, Anne-Kathrin; Maniura, Katharina; Harter, Klaus; Meixner, Alfred J.; Schleifenbaum, Frank

    2010-02-01

    Fluorescence microscopy became an invaluable tool in cell biology in the past 20 years. However, the information that lies in these studies is often corrupted by a cellular fluorescence background known as autofluorescence. Since the unspecific background often overlaps with most commonly used labels in terms of fluorescence spectra and fluorescence lifetime, the use of spectral filters in the emission beampath or timegating in fluorescence lifetime imaging (FLIM) is often no appropriate means for distinction between signal and background. Despite the prevalence of fluorescence techniques only little progress has been reported in techniques that specifically suppress autofluorescence or that clearly discriminate autofluorescence from label fluorescence. Fluorescence intensity decay shape analysis microscopy (FIDSAM) is a novel technique which is based on the image acquisition protocol of FLIM. Whereas FLIM spatially resolved maps the average fluorescence lifetime distribution in a heterogeneous sample such as a cell, FIDSAM enhances the dynamic image contrast by determination of the autofluorescence contribution by comparing the fluorescence decay shape to a reference function. The technique therefore makes use of the key difference between label and autofluorescence, i.e. that for label fluorescence only one emitting species contributes to fluorescence intensity decay curves whereas many different species of minor intensity contribute to autofluorescence. That way, we were able to suppress autofluorescence contributions from chloroplasts in Arabidopsis stoma cells and from cell walls in Arabidopsis hypocotyl cells to background level. Furthermore, we could extend the method to more challenging labels such as the cyan fluorescent protein CFP in human fibroblasts.

  7. The forces that shape embryos: physical aspects of convergent extension by cell intercalation

    NASA Astrophysics Data System (ADS)

    Keller, Ray; Shook, David; Skoglund, Paul

    2008-03-01

    We discuss the physical aspects of the morphogenic process of convergence (narrowing) and extension (lengthening) of tissues by cell intercalation. These movements, often referred to as 'convergent extension', occur in both epithelial and mesenchymal tissues during embryogenesis and organogenesis of invertebrates and vertebrates, and they play large roles in shaping the body plan during development. Our focus is on the presumptive mesodermal and neural tissues of the Xenopus (frog) embryo, tissues for which some physical measurements have been made. We discuss the physical aspects of how polarized cell motility, oriented along future tissue axes, generate the forces that drive oriented cell intercalation and how this intercalation results in convergence and extension or convergence and thickening of the tissue. Our goal is to identify aspects of these morphogenic movements for further biophysical, molecular and cell biological, and modeling studies.

  8. Effect of Biodegradable Shape-Memory Polymers on Proliferation of 3T3 Cells

    NASA Astrophysics Data System (ADS)

    Xu, Shuo-Gui; Zhang, Peng; Zhu, Guang-Ming; Jiang, Ying-Ming

    2011-07-01

    This article evaluates the in vitro biocompatibility for biodegradable shape-memory polymers (BSMP) invented by the authors. 3T3 cells (3T3-Swiss albino GNM 9) of primary and passaged cultures were inoculated into two kinds of carriers: the BSMP carrier and the control group carrier. Viability, proliferation, and DNA synthesis (the major biocompatibility parameters), were measured and evaluated for both the BSMP and naked carrier via cell growth curve analysis, MTT colorimetry and addition of 3H-TdR to culture media. The results showed that there was no difference between the BSMP carrier and the control dish in terms of viability, proliferation, and metabolism of the 3T3 cells. Overall, the BSMP carrier provides good biocompatibility and low toxicity to cells in vitro, and could indicate future potential for this medium as a biological material for implants in vivo.

  9. Internalization of Red Blood Cell-Mimicking Hydrogel Capsules with pH-Triggered Shape Responses

    PubMed Central

    2015-01-01

    We report on naturally inspired hydrogel capsules with pH-induced transitions from discoids to oblate ellipsoids and their interactions with cells. We integrate characteristics of erythrocytes such as discoidal shape, hollow structure, and elasticity with reversible pH-responsiveness of poly(methacrylic acid) (PMAA) to design a new type of drug delivery carrier to be potentially triggered by chemical stimuli in the tumor lesion. The capsules are fabricated from cross-linked PMAA multilayers using sacrificial discoid silicon templates. The degree of capsule shape transition is controlled by the pH-tuned volume change, which in turn is regulated by the capsule wall composition. The (PMAA)15 capsules undergo a dramatic 24-fold volume change, while a moderate 2.3-fold volume variation is observed for more rigid PMAA–(poly(N-vinylpyrrolidone) (PMAA–PVPON)5 capsules when solution pH is varied between 7.4 and 4. Despite that both types of capsules exhibit discoid-to-oblate ellipsoid transitions, a 3-fold greater swelling in radial dimensions is found for one-component systems due to a greater degree of the circular face bulging. We also show that (PMAA–PVPON)5 discoidal capsules interact differently with J774A.1 macrophages, HMVEC endothelial cells, and 4T1 breast cancer cells. The discoidal capsules show 60% lower internalization as compared to spherical capsules. Finally, hydrogel capsules demonstrate a 2-fold decrease in size upon internalization. These capsules represent a unique example of elastic hydrogel discoids capable of pH-induced drastic and reversible variations in aspect ratios. Considering the RBC-mimicking shape, their dimensions, and their capability to undergo pH-triggered intracellular responses, the hydrogel capsules demonstrate considerable potential as novel carriers in shape-regulated transport and cellular uptake. PMID:24848786

  10. A miniaturized prototype of resonant banana-shaped photoacoustic cell for gas sensing

    NASA Astrophysics Data System (ADS)

    Ulasevich, A. L.; Gorelik, A. V.; Kouzmouk, A. A.; Starovoitov, V. S.

    2013-09-01

    A resonant photoacoustic cell intended for laser-spectroscopy gas sensing is represented. This cell is a miniature imitation of a macro-scale banana-shaped cell developed previously. The parameters, which specify the cavity shape, are chosen so as not only to provide optimal cell operation at a selected acoustic resonance but also to reduce substantially the cell sizes. A miniaturized prototype cell (the volume of acoustic cavity of ∼5 mm3) adapted to the narrow diffraction-limited beam of near-infrared laser is produced and examined experimentally. The noise-associated measurement error and laser-initiated signals are studied as functions of modulation frequency. The background signal and the useful response to light absorption by the gas are analyzed in measurements of absorption for ammonia in nitrogen flow with the help of a pigtailed DFB laser diode oscillated near a wavelength of 1.53 μm. The performance of prototype operation at the second longitudinal acoustic resonance (the resonance frequency of ∼32.9 kHz, Q-factor of ∼16.3) is estimated. The noise-limited minimal detectable absorption normalized to laser-beam power and detection bandwidth is ∼8.07 × 10-8 cm-1 W Hz-1/2. The amplitude of the background signal is equivalent to an absorption coefficient of ∼2.51 × 10-5 cm-1. Advantages and drawbacks of the cell prototype are discussed. Despite low absorption-sensing performance, the produced miniaturized cell prototype shows a good capability of gas-leak detection.

  11. Cell Interactions and Patterned Intercalations Shape and Link Epithelial Tubes in C. elegans

    PubMed Central

    Rasmussen, Jeffrey P.; Feldman, Jessica L.; Reddy, Sowmya Somashekar; Priess, James R.

    2013-01-01

    Many animal organs are composed largely or entirely of polarized epithelial tubes, and the formation of complex organ systems, such as the digestive or vascular systems, requires that separate tubes link with a common polarity. The Caenorhabditis elegans digestive tract consists primarily of three interconnected tubes—the pharynx, valve, and intestine—and provides a simple model for understanding the cellular and molecular mechanisms used to form and connect epithelial tubes. Here, we use live imaging and 3D reconstructions of developing cells to examine tube formation. The three tubes develop from a pharynx/valve primordium and a separate intestine primordium. Cells in the pharynx/valve primordium polarize and become wedge-shaped, transforming the primordium into a cylindrical cyst centered on the future lumenal axis. For continuity of the digestive tract, valve cells must have the same, radial axis of apicobasal polarity as adjacent intestinal cells. We show that intestinal cells contribute to valve cell polarity by restricting the distribution of a polarizing cue, laminin. After developing apicobasal polarity, many pharyngeal and valve cells appear to explore their neighborhoods through lateral, actin-rich lamellipodia. For a subset of cells, these lamellipodia precede more extensive intercalations that create the valve. Formation of the valve tube begins when two valve cells become embedded at the left-right boundary of the intestinal primordium. Other valve cells organize symmetrically around these two cells, and wrap partially or completely around the orthogonal, lumenal axis, thus extruding a small valve tube from the larger cyst. We show that the transcription factors DIE-1 and EGL-43/EVI1 regulate cell intercalations and cell fates during valve formation, and that the Notch pathway is required to establish the proper boundary between the pharyngeal and valve tubes. PMID:24039608

  12. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development.

    PubMed

    Brunt, Lucy H; Norton, Joanna L; Bright, Jen A; Rayfield, Emily J; Hammond, Chrissy L

    2015-09-18

    Abnormal joint morphogenesis is linked to clinical conditions such as Developmental Dysplasia of the Hip (DDH) and to osteoarthritis (OA). Muscle activity is known to be important during the developmental process of joint morphogenesis. However, less is known about how this mechanical stimulus affects the behaviour of joint cells to generate altered morphology. Using zebrafish, in which we can image all joint musculoskeletal tissues at high resolution, we show that removal of muscle activity through anaesthetisation or genetic manipulation causes a change to the shape of the joint between the Meckel's cartilage and Palatoquadrate (the jaw joint), such that the joint develops asymmetrically leading to an overlap of the cartilage elements on the medial side which inhibits normal joint function. We identify the time during which muscle activity is critical to produce a normal joint. Using Finite Element Analysis (FEA), to model the strains exerted by muscle on the skeletal elements, we identify that minimum principal strains are located at the medial region of the joint and interzone during mouth opening. Then, by studying the cells immediately proximal to the joint, we demonstrate that biomechanical strain regulates cell orientation within the developing joint, such that when muscle-induced strain is removed, cells on the medial side of the joint notably change their orientation. Together, these data show that biomechanical forces are required to establish symmetry in the joint during development. PMID:26253758

  13. Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development

    PubMed Central

    Brunt, Lucy H.; Norton, Joanna L.; Bright, Jen A.; Rayfield, Emily J.; Hammond, Chrissy L.

    2015-01-01

    Abnormal joint morphogenesis is linked to clinical conditions such as Developmental Dysplasia of the Hip (DDH) and to osteoarthritis (OA). Muscle activity is known to be important during the developmental process of joint morphogenesis. However, less is known about how this mechanical stimulus affects the behaviour of joint cells to generate altered morphology. Using zebrafish, in which we can image all joint musculoskeletal tissues at high resolution, we show that removal of muscle activity through anaesthetisation or genetic manipulation causes a change to the shape of the joint between the Meckel's cartilage and Palatoquadrate (the jaw joint), such that the joint develops asymmetrically leading to an overlap of the cartilage elements on the medial side which inhibits normal joint function. We identify the time during which muscle activity is critical to produce a normal joint. Using Finite Element Analysis (FEA), to model the strains exerted by muscle on the skeletal elements, we identify that minimum principal strains are located at the medial region of the joint and interzone during mouth opening. Then, by studying the cells immediately proximal to the joint, we demonstrate that biomechanical strain regulates cell orientation within the developing joint, such that when muscle-induced strain is removed, cells on the medial side of the joint notably change their orientation. Together, these data show that biomechanical forces are required to establish symmetry in the joint during development. PMID:26253758

  14. Directly observed reversible shape changes and hemoglobin stratification during centrifugation of human and Amphiuma red blood cells.

    PubMed

    Hoffman, Joseph F; Inoué, Shinya

    2006-02-21

    This paper describes changes that occur in human and Amphiuma red blood cells observed during centrifugation with a special microscope. Dilute suspensions of cells were layered, in a centrifuge chamber, above an osmotically matched dense solution, containing Nycodenz, Ficoll, or Percoll (Pharmacia) that formed a density gradient that allowed the cells to slowly settle to an equilibrium position. Biconcave human red blood cells moved downward at low forces with minimum wobble. The cells oriented vertically when the force field was increased and Hb sedimented as the lower part of each cell became bulged and assumed a "bag-like" shape. The upper centripetal portion of the cell became thinner and remained biconcave. These changes occurred rapidly and were completely reversible upon lowering the centrifugal force. Bag-shaped cells, upon touching red cells in rouleau, immediately reverted to biconcave disks as they flipped onto a stack. Amphiuma red cells displayed a different type of reversible stratification and deformation at high force fields. Here the cells became stretched, with the nucleus now moving centrifugally, the Hb moving centripetally, and the bottom of the cells becoming thinner and clear. Nevertheless, the distribution of the marginal bands at the cells' rim was unchanged. We conclude that centrifugation, per se, while changing a red cell's shape and the distribution of its intracellular constituents, does so in a completely reversible manner. Centrifugation of red cells harboring altered or missing structural elements could provide information on shape determinants that are still unexplained. PMID:16477016

  15. Cytochalasin J affects chromosome congression and spindle microtubule organization in PtK1 cells.

    PubMed

    Snyder, J A; Cohen, L

    1995-01-01

    PtK1 cells were treated with 10 micrograms/ml cytochalasin J (CJ) for 15 min at various stages of mitosis. When applied at nuclear envelope breakdown (NEB) chromosome congression was blocked or substantially slowed, and chromosomes failed to show organization patterns typical of prometaphase. Spindle microtubule (MT) numbers appeared unaffected as judged by the pattern of birefringent retardation. However, ultrastructural analysis showed MTs to be reorganized within the spindle domain with some exhibiting fragmentation and others failing to interact with poorly defined kinetochore laminae. The spindle domain took on a curved, almost banana-like shape, as related to the position of the centrosomes and lack of orientation of chromosomes. Serial section analysis of kinetochore regions showed reduced contour length and maturation of the kinetochore plate with few MTs associated with this structure. Cells similarly treated with 10 micrograms/ml CJ at NEB for 15 min and then released into conditioned medium for 15 min showed the most chromosomes resumed congression to the metaphase plate. Ultrastructural analysis revealed a more normal organization of spindle MTs, but kinetochore structure remained affected. CJ treatment of cells in prometaphase slightly affected chromosomes congression with most chromosomes aligning at the metaphase plate after 10-15 min of treatment. Ultrastructural analysis showed that astral MTs were disrupted and spindle MTs were fragmented; few MTs coursed from kinetochore to pole. Kinetochore structure was also affected with only small numbers of short MTs seen associated with kinetochores. Application of CJ at anaphase onset had little effect on anaphase A and B, but cytokinesis failed to occur. Anti-tubulin staining of a monolayer of cells treated with 10 micrograms/ml CJ for 15 min showed that over 60% of mitotic figures exhibited changes in MT organization. Cells showing the greatest effect of treatment had several foci of bundles of MTs, as

  16. Cell position during larval development affects postdiapause development in Megachile rotundata (Hymenoptera: Megachilidae).

    PubMed

    Yocum, George D; Rinehart, Joseph P; Kemp, William P

    2014-08-01

    Megachile rotundata (F.) (Hymenoptera: Megachilidae) is the primary pollinator of alfalfa in the northwestern United States and western Canada and provides pollination services for onion, carrot, hybrid canola, various legumes, and other specialty crops. M. rotundata females are gregarious, nest in cavities either naturally occurring or in artificial nesting blocks, where they construct a linear series of brood cells. Because of the physical layout of the nest, the age of the larvae within the nest and the microenvironment the individual larvae experience will vary. These interacting factors along with other maternal inputs affect the resulting phenotypes of the nest mates. To further our understanding of in-nest physiology, gender and developmental rates were examined in relationship to cell position within the nest. Eighty-two percent of the females were located within the first three cells, those furthest from the nest entrance. For those individuals developing in cells located in the deepest half of the nest, the sex of the previous bee had a significant effect on the female decision of the gender of the following nest mate. Removing the prepupae from the nest and rearing them under identical conditions demonstrated that position within the nest during larval development had a significant effect on the postdiapause developmental rates, with males whose larval development occurred deeper in the nest developing more slowly than those toward the entrance. No positional effect on postdiapause developmental rates was noted for the females. The cell position effect on male postdiapause developmental rate demonstrates that postdiapause development is not a rigid physiological mechanism uniform in all individuals, but is a dynamic plastic process shaped by past environmental conditions. PMID:24914676

  17. Shaping the T-cell repertoire: a matter of life and death.

    PubMed

    Wiegers, G Jan; Kaufmann, Manuel; Tischner, Denise; Villunger, Andreas

    2011-01-01

    Thymocyte selection aims to shape a T-cell repertoire that, on the one hand, is able to recognize and respond to foreign peptides and, on the other hand, tolerizes the presence of self-peptides in the periphery. Deletion of T cells or their precursors that fail to fulfill these criteria is mainly mediated by the Bcl-2-regulated apoptosis pathway. Absence of T-cell receptor (TCR)-mediated signals or hyperactivation of the TCR by high-affinity self-peptide-major histocompatibility complexes can both trigger apoptotic cell death in developing thymocytes. Notably, TCR-signaling strength also defines survival and outgrowth of the fittest antigen-specific T-cell clones in the periphery. TCR threshold activity leading to such drastically opposing signaling outcomes (life or death) is modulated in part by cytokines and other factors, such as glucocorticoids, that fine-tune the Bcl-2 rheostat, thereby impacting on cell survival. This review aims to highlight the role of Bcl-2-regulated cell death for clonal T-cell selection. PMID:21060321

  18. Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration.

    PubMed

    Di Luca, Andrea; Lorenzo-Moldero, Ivan; Mota, Carlos; Lepedda, Antonio; Auhl, Dietmar; Van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-07-01

    Osteochondral regeneration remains nowadays a major problem since the outcome of current techniques is not satisfactory in terms of functional tissue formation and development. A possible solution is the combination of human mesenchymal stem cells (hMSCs) with additive manufacturing technologies to fabricate scaffolds with instructive properties. In this study, the differentiation of hMSCs within a scaffold presenting a gradient in pore shape is presented. The variation in pore shape is determined by varying the angle formed by the fibers of two consequent layers. The fiber deposition patterns are 0-90, which generate squared pores, 0-45, 0-30, and 0-15, that generate rhomboidal pores with an increasing major axis as the deposition angle decreases. Within the gradient construct, squared pores support a better chondrogenic differentiation whereas cells residing in the rhomboidal pores display a better osteogenic differentiation. When cultured under osteochondral conditions the trend in both osteogenic and chondrogenic markers is maintained. Engineering the pore shape, thus creating axial gradients in structural properties, seems to be an instructive strategy to fabricate functional 3D scaffolds that are able to influence hMSCs differentiation for osteochondral tissue regeneration. PMID:27109461

  19. Origins of Escherichia coli growth rate and cell shape changes at high external osmolality.

    PubMed

    Pilizota, Teuta; Shaevitz, Joshua W

    2014-10-21

    In Escherichia coli, a sudden increase in external concentration causes a pressure drop across the cell envelope, followed by an active recovery. After recovery, and if the external osmolality remains high, cells have been shown to grow more slowly, smaller, and at reduced turgor pressure. Despite the fact that the active recovery is a key stress response, the nature of these changes and how they relate to each other is not understood. Here, we use fluorescence imaging of single cells during hyperosmotic shocks, combined with custom made microfluidic devices, to show that cells fully recover their volume to the initial, preshock value and continue to grow at a slower rate immediately after the recovery. We show that the cell envelope material properties do not change after hyperosmotic shock, and that cell shape recovers along with cell volume. Taken together, these observations indicate that the turgor pressure recovers to its initial value so that reduced turgor is not responsible for the reduced growth rate observed immediately after recovery. To determine the point at which the reduction in cell size and turgor pressure occurs after shock, we measured the volume of E. coli cells at different stages of growth in bulk cultures. We show that cell volume reaches the same maximal level irrespective of the osmolality of the media. Based on these measurements, we propose that turgor pressure is used as a feedback variable for osmoregulatory pumps instead of being directly responsible for the reduction in growth rates. Reestablishment of turgor to its initial value might ensure correct attachment of the inner membrane and cell wall needed for cell wall biosynthesis.

  20. Origins of Escherichia coli Growth Rate and Cell Shape Changes at High External Osmolality

    PubMed Central

    Pilizota, Teuta; Shaevitz, Joshua W.

    2014-01-01

    In Escherichia coli, a sudden increase in external concentration causes a pressure drop across the cell envelope, followed by an active recovery. After recovery, and if the external osmolality remains high, cells have been shown to grow more slowly, smaller, and at reduced turgor pressure. Despite the fact that the active recovery is a key stress response, the nature of these changes and how they relate to each other is not understood. Here, we use fluorescence imaging of single cells during hyperosmotic shocks, combined with custom made microfluidic devices, to show that cells fully recover their volume to the initial, preshock value and continue to grow at a slower rate immediately after the recovery. We show that the cell envelope material properties do not change after hyperosmotic shock, and that cell shape recovers along with cell volume. Taken together, these observations indicate that the turgor pressure recovers to its initial value so that reduced turgor is not responsible for the reduced growth rate observed immediately after recovery. To determine the point at which the reduction in cell size and turgor pressure occurs after shock, we measured the volume of E. coli cells at different stages of growth in bulk cultures. We show that cell volume reaches the same maximal level irrespective of the osmolality of the media. Based on these measurements, we propose that turgor pressure is used as a feedback variable for osmoregulatory pumps instead of being directly responsible for the reduction in growth rates. Reestablishment of turgor to its initial value might ensure correct attachment of the inner membrane and cell wall needed for cell wall biosynthesis. PMID:25418177

  1. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  2. Effects of Adhesion Dynamics and Substrate Compliance on the Shape and Motility of Crawling Cells

    PubMed Central

    Ziebert, Falko; Aranson, Igor S.

    2013-01-01

    Computational modeling of eukaryotic cells moving on substrates is an extraordinarily complex task: many physical processes, such as actin polymerization, action of motors, formation of adhesive contacts concomitant with both substrate deformation and recruitment of actin etc., as well as regulatory pathways are intertwined. Moreover, highly nontrivial cell responses emerge when the substrate becomes deformable and/or heterogeneous. Here we extended a computational model for motile cell fragments, based on an earlier developed phase field approach, to account for explicit dynamics of adhesion site formation, as well as for substrate compliance via an effective elastic spring. Our model displays steady motion vs. stick-slip transitions with concomitant shape oscillations as a function of the actin protrusion rate, the substrate stiffness, and the rates of adhesion. Implementing a step in the substrate’s elastic modulus, as well as periodic patterned surfaces exemplified by alternating stripes of high and low adhesiveness, we were able to reproduce the correct motility modes and shape phenomenology found experimentally. We also predict the following nontrivial behavior: the direction of motion of cells can switch from parallel to perpendicular to the stripes as a function of both the adhesion strength and the width ratio of adhesive to non-adhesive stripes. PMID:23741334

  3. The Redundancy of Peptidoglycan Carboxypeptidases Ensures Robust Cell Shape Maintenance in Escherichia coli

    PubMed Central

    Peters, Katharina; Kannan, Suresh; Rao, Vincenzo A.; Biboy, Jacob; Vollmer, Daniela; Erickson, Stephen W.; Lewis, Richard J.

    2016-01-01

    ABSTRACT Peptidoglycan (PG) is an essential structural component of the bacterial cell wall and maintains the integrity and shape of the cell by forming a continuous layer around the cytoplasmic membrane. The thin PG layer of Escherichia coli resides in the periplasm, a unique compartment whose composition and pH can vary depending on the local environment of the cell. Hence, the growth of the PG layer must be sufficiently robust to allow cell growth and division under different conditions. We have analyzed the PG composition of 28 mutants lacking multiple PG enzymes (penicillin-binding proteins [PBPs]) after growth in acidic or near-neutral-pH media. Statistical analysis of the muropeptide profiles identified dd-carboxypeptidases (DD-CPases) that were more active in cells grown at acidic pH. In particular, the absence of the DD-CPase PBP6b caused a significant increase in the pentapeptide content of PG as well as morphological defects when the cells were grown at acidic pH. Other DD-CPases (PBP4, PBP4b, PBP5, PBP6a, PBP7, and AmpH) and the PG synthase PBP1B made a smaller or null contribution to the pentapeptide-trimming activity at acidic pH. We solved the crystal structure of PBP6b and also demonstrated that the enzyme is more stable and has a lower Km at acidic pH, explaining why PBP6b is more active at low pH. Hence, PBP6b is a specialized DD-CPase that contributes to cell shape maintenance at low pH, and E. coli appears to utilize redundant DD-CPases for normal growth under different conditions. PMID:27329754

  4. Primary cilia mechanics affects cell mechanosensation: A computational study.

    PubMed

    Khayyeri, Hanifeh; Barreto, Sara; Lacroix, Damien

    2015-08-21

    Primary cilia (PC) are mechanical cell structures linked to the cytoskeleton and are central to how cells sense biomechanical signals from their environment. However, it is unclear exactly how PC mechanics influences cell mechanosensation. In this study we investigate how the PC mechanical characteristics are involved in the mechanotransduction process whereby cilium deflection under fluid flow induces strains on the internal cell components that regulate the cell׳s mechanosensitive response. Our investigation employs a computational approach in which a finite element model of a cell consisting of a nucleus, cytoplasm, cortex, microtubules, actin bundles and a primary cilium was used together with a finite element representation of a flow chamber. Fluid-structure interaction analysis was performed by simulating perfusion flow of 1mm/s on the cell model. Simulations of cells with different PC mechanical characteristics, showed that the length and the stiffness of PC are responsible for the transmission of mechanical stimuli to the cytoskeleton. Fluid flow deflects the cilium, with the highest strains found at the base of the PC and in the cytoplasm. The PC deflection created further strains on the cell nucleus but did not influence microtubules and actin bundles significantly. Our results indicate that PC deflection under fluid flow stimulation transmits mechanical strain primarily to other essential organelles in the cytoplasm, such as the Golgi complex, that regulate cells' mechanoresponse. The simulations further suggest that cell mechanosensitivity can be altered by targeting PC length and rigidity.

  5. Shape-dependent conversion efficiency of Si nanowire solar cells with polygonal cross-sections

    NASA Astrophysics Data System (ADS)

    He, Yan; Yu, Wangbing; Ouyang, Gang

    2016-06-01

    A deeper insight into shape-dependent power conversion efficiency (PCE) of Si nanowire (SiNW) solar cells with polygonal cross-sectional shapes, including trigon, tetragon, hexagon, and circle, has been explored based on the atomic-bond-relaxation approach and detailed balance principle. It has been found that the surface effect induced by the loss-coordination atoms located at edges and surfaces, as well as the thermal effect, plays the dominant roles for the band shift and PCE of SiNWs due to the lattice strain occurrence at the self-equilibrium state. Our predictions are consistent with the available evidences, providing an important advance in the development of Si-based nanostructures for the desirable applications.

  6. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients

    PubMed Central

    Kim, Deok-Ho; Han, Karam; Gupta, Kshitiz; Kwon, Keon Woo

    2009-01-01

    In this report, we describe using ultraviolet (UV)-assisted capillary force lithography (CFL) to create a model substratum of anisotropic micro- and nanotopographic pattern arrays with variable local density for the analysis of cell-substratum interactions. A single cell adhesion substratum with the constant ridge width (1 µm), and depth (400 nm) and variable groove widths (1 µm to 9.1 µm) allowed us to characterize the dependence of cellular responses, including cell shape, orientation, and migration, on the anisotropy and local density of the variable micro- and nanotopographic pattern. We found that fibroblasts adhering to the denser pattern areas aligned and elongated more strongly along the direction of ridges, vs. those on the sparser areas, exhibiting a biphasic dependence of the migration speed on the pattern density. In addition, cells responded to local variations in topography by altering morphology and migrating along the direction of grooves biased by the direction of pattern orientation (short term) and pattern density (long term). Molecular dynamic live cell imaging and immunocytochemical analysis of focal adhesions and actin cytoskeleton suggest that variable substratum topography can result in distinct types of cytoskeleton reorganization. We also demonstrate that fibroblasts cultured as monolayers on the same substratum retain most of the properties displayed by single cells. This result, in addition to demonstrating a more sophisticated method to study aspects of wound healing processes, strongly suggests that even in the presence of considerable cell-cell interactions, the cues provided by the underlying substratum topography continue to exercise substantial influence on cell behavior. The described experimental platform might not only further our understanding of biomechanical regulation of cell-matrix interactions, but also contribute to bioengineering of devices with the optimally structured design of cell-material interface. PMID:19595452

  7. Piper and Vismia species from Colombian Amazonia differentially affect cell proliferation of hepatocarcinoma cells.

    PubMed

    Lizcano, Leandro J; Siles, Maite; Trepiana, Jenifer; Hernández, M Luisa; Navarro, Rosaura; Ruiz-Larrea, M Begoña; Ruiz-Sanz, José Ignacio

    2015-01-01

    There is an increasing interest to identify plant-derived natural products with antitumor activities. In this work, we have studied the effects of aqueous leaf extracts from Amazonian Vismia and Piper species on human hepatocarcinoma cell toxicity. Results showed that, depending on the cell type, the plants displayed differential effects; thus, Vismia baccifera induced the selective killing of HepG2, while increasing cell growth of PLC-PRF and SK-HEP-1. In contrast, these two last cell lines were sensitive to the toxicity by Piper krukoffii and Piper putumayoense, while the Piperaceae did not affect HepG2 growth. All the extracts induced cytotoxicity to rat hepatoma McA-RH7777, but were innocuous (V. baccifera at concentrations < 75 µg/mL) or even protected cells from basal death (P. putumayoense) in primary cultures of rat hepatocytes. In every case, cytotoxicity was accompanied by an intracellular accumulation of reactive oxygen species (ROS). These results provide evidence for the anticancer activities of the studied plants on specific cell lines and suggest that cell killing could be mediated by ROS, thus involving mechanisms independent of the plants free radical scavenging activities. Results also support the use of these extracts of the Vismia and Piper genera with opposite effects as a model system to study the mechanisms of the antitumoral activity against different types of hepatocarcinoma. PMID:25558904

  8. How does metabolism affect cell death in cancer?

    PubMed

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment.

  9. Stem cell origin differently affects bone tissue engineering strategies

    PubMed Central

    Mattioli-Belmonte, Monica; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Orciani, Monia; Dicarlo, Manuela; Fini, Milena; Orsini, Giovanna; Di Primio, Roberto; Falconi, Mirella

    2015-01-01

    Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs) are the first- identified and well-recognized stem cell population used in bone tissue engineering. Nevertheless, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The fruitful selection and combination of tissue engineered scaffold, progenitor cells, and physiologic signaling molecules allowed the surgeon to reconstruct the missing natural tissue. On the basis of these considerations, we analyzed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e., periodontal ligament, maxillary periosteum) as well as adipose-derived stem cells (ASCs), in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, taking into account their specific features, they could be intriguing cell sources in different stem cell-based bone/periodontal tissue regeneration approaches. PMID:26441682

  10. Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo

    PubMed Central

    Onjiko, Rosemary M.; Moody, Sally A.; Nemes, Peter

    2015-01-01

    Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells. Dissection of three different cell types with distinct tissue fates from 16-cell embryos of the South African clawed frog (Xenopus laevis) and microextraction of their metabolomes enabled the identification of 40 metabolites that anchored interconnected central metabolic networks. Relative quantitation revealed that several metabolites were differentially active between the cell types in the wild-type, unperturbed embryos. Altering postfertilization cytoplasmic movements that perturb dorsal development confirmed that these three cells have characteristic small-molecular activity already at cleavage stages as a result of cell type and not differences in pigmentation, yolk content, cell size, or position in the embryo. Changing the metabolite concentration caused changes in cell movements at gastrulation that also altered the tissue fates of these cells, demonstrating that the metabolome affects cell phenotypes in the embryo. PMID:25941375

  11. Myosin II-mediated cell shape changes and cell intercalation contribute to primitive streak formation

    PubMed Central

    Song, Feifei; Sang, Helen M.; Martin, René; Knölker, Hans-Joachim; MacDonald, Michael P; Weijer, Cornelis J

    2016-01-01

    Primitive streak formation in the chick embryo involves large scale highly coordinated flows of over 100.000 cells in the epiblast. These large scale tissue flows and deformations can be correlated with specific anisotropic cell behaviours in the forming mesendoderm through a combined light-sheet microscopy and computational analysis. Relevant behaviours include apical contraction, elongation along the apical-basal axis followed by ingression as well as asynchronous directional cell intercalation of small groups of mesendoderm cells. Cell intercalation is associated with sequential, directional contraction of apical junctions, the onset, localisation and direction of which correlate strongly with the appearance of active Myosin II cables in aligned apical junctions in neighbouring cells. Use of a class specific Myosin inhibitors and gene specific knockdowns show that apical contraction and intercalation are Myosin II dependent and also reveal critical roles for Myosin I and Myosin V family members in the assembly of junctional Myosin II cables. PMID:25812521

  12. Genetic background affects susceptibility to tumoral stem cell reprogramming

    PubMed Central

    García-Ramírez, Idoia; Ruiz-Roca, Lucía; Martín-Lorenzo, Alberto; Blanco, Óscar; García-Cenador, María Begoña; García-Criado, Francisco Javier; Vicente-Dueñas, Carolina; Sánchez-García, Isidro

    2013-01-01

    The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control. PMID:23839033

  13. Phenomenological model relating cell shape to water reabsorption in proximal nephron.

    PubMed

    Welling, D J; Welling, L W; Hill, J J

    1978-04-01

    If the complex pattern of intercellular channels in proximal tubule is determined in part by the forces of large transepithelial water flow, the shape of the cells is an indicator of the type and magnitude of the forces required for water movement and the routes of that flow. To test this thesis, morphologic data and volume flow parameters for rabbit proximal tubule are related generally by a mass balance equation. If the intercellular boundaries are assumed to be highly deformable and to respond to changes in hydrostatic pressure, the solution to that equation is a simple relationship between cell shape and the forces required for water movement. The resulting phenomenological model suggests an important new role for peritubular serum proteins and can be used to compute reasonable values for cell wall hydraulic conductivity, intercellular protein diffusion constant, and a channel fluid osmolality not more than 1% greater than that of luminal fluid. It is concluded that quantitative morphologic studies may serve as a powerful means for evaluating and understanding transport phenomena in the nephron.

  14. Controlling shape and position of vascular formation in engineered tissues by arbitrary assembly of endothelial cells.

    PubMed

    Takehara, Hiroaki; Sakaguchi, Katsuhisa; Kuroda, Masatoshi; Muraoka, Megumi; Itoga, Kazuyoshi; Okano, Teruo; Shimizu, Tatsuya

    2015-01-01

    Cellular self-assembly based on cell-to-cell communication is a well-known tissue organizing process in living bodies. Hence, integrating cellular self-assembly processes into tissue engineering is a promising approach to fabricate well-organized functional tissues. In this research, we investigated the capability of endothelial cells (ECs) to control shape and position of vascular formation using arbitral-assembling techniques in three-dimensional engineered tissues. To quantify the degree of migration of ECs in endothelial network formation, image correlation analysis was conducted. Positive correlation between the original positions of arbitrarily assembled ECs and the positions of formed endothelial networks indicated the potential for controlling shape and position of vascular formations in engineered tissues. To demonstrate the feasibility of controlling vascular formations, engineered tissues with vascular networks in triangle and circle patterns were made. The technique reported here employs cellular self-assembly for tissue engineering and is expected to provide fundamental beneficial methods to supply various functional tissues for drug screening and regenerative medicine.

  15. Harvesting Technique Affects Adipose-Derived Stem Cell Yield

    PubMed Central

    Iyyanki, Tejaswi; Hubenak, Justin; Liu, Jun; Chang, Edward I.; Beahm, Elisabeth K.; Zhang, Qixu

    2015-01-01

    Background The success of an autologous fat graft depends in part on its total stromal vascular fraction (SVF) and adipose-derived stem cells (ASCs). However, variations in the yields of ASCs and SVF cells as a result of different harvesting techniques and donor sites are poorly understood. Objective To investigate the effects of adipose tissue harvesting technique and donor site on the yield of ASCs and SVF cells. Methods Subcutaneous fat tissues from the abdomen, flank, or axilla were harvested from patients of various ages by mechanical liposuction, direct surgical excision, or Coleman's technique with or without centrifugation. Cells were isolated and then analyzed with flow cytometry to determine the yields of total SVF cells and ASCs (CD11b−, CD45−, CD34+, CD90+, D7-FIB+). Differences in ASC and total SVF yields were assessed with one-way analysis of variance. Differentiation experiments were performed to confirm the multilineage potential of cultured SVF cells. Results Compared with Coleman's technique without centrifugation, direct excision yielded significantly more ASCs (P < .001) and total SVF cells (P = .007); liposuction yielded significantly fewer ASCs (P < .001) and total SVF cells (P < .05); and Coleman's technique with centrifugation yielded significantly more total SVF cells (P < .005), but not ASCs. The total number of SVF cells in fat harvested from the abdomen was significantly larger than the number in fat harvested from the flank or axilla (P < .05). Cultured SVF cells differentiated to adipocytes, osteocytes, and chondrocytes. Conclusions Adipose tissue harvested from the abdomen through direct excision or Coleman's technique with centrifugation was found to yield the most SVF cells and ASCs. PMID:25791999

  16. Daily rhythmic changes of cell size and shape in the first optic neuropil in Drosophila melanogaster.

    PubMed

    Pyza, E; Meinertzhagen, I A

    1999-07-01

    Daily rhythms of changes in axon size and shape are seen in two types of monopolar cell-L1 and L2-that are unique cells within each of the modules or cartridges of the first optic neuropil or lamina in the fly's optic lobe. In the fruit fly Drosophila, L1 and L2's axons swell at the beginning of both day and night, with larger size increases occurring at the beginning of night. Later, they shrink during the day and night, respectively. Simultaneously, they change shape from an inverted conical form during the day to a cylindrical one at night. This is because the axonal cross section of L1 increases during the night, especially at proximal depths of the lamina, closest to the brain, whereas the axon of L2 increases in size at distal lamina depths. The cross-sectional areas of the L1 cell and of an individual cartridge both change under constant darkness (DD), indicating the circadian origin of changes observed under day/night (LD) conditions. We sought to see whether such changes impart a net change to the entire lamina's volume or shape that is visible by light microscopy, but oscillations in the volume or the curvature of the whole lamina neuropil are found neither in LD nor in DD. These size changes are discussed in relation to previous findings in the housefly Musca, with respect to differences in L1 and L2 between the two species, and to differences in the time course of their circadian changes. PMID:10398073

  17. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  18. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  19. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    PubMed

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  20. What shapes the stimulus to the inner hair cell?: A moderated discussion

    NASA Astrophysics Data System (ADS)

    Fridberger, Anders; Guinan, John J.

    2015-12-01

    The following is an edited transcript of a recorded discussion session on the topic of "What Shapes the Stimulus to the Inner Hair Cell?". The discussion, moderated by the authors, took place at the 12th International Workshop on the Mechanics of Hearing held at Cape Sounio, Greece, in June 2014. All participants knew that the session was being recorded. In view of both the spontaneous nature of the discussion and the editing, however, this transcript may not represent the considered or final views of the participants, and may not represent a consensus of experts in the field. The reader is advised to consult additional independent publications.

  1. Cell shape change and invagination of the cephalic furrow involves reorganization of F-actin.

    PubMed

    Spencer, Allison K; Siddiqui, Bilal A; Thomas, Jeffrey H

    2015-06-15

    Invagination of epithelial sheets to form furrows is a fundamental morphogenetic movement and is found in a variety of developmental events including gastrulation and vertebrate neural tube formation. The cephalic furrow is a deep epithelial invagination that forms during Drosophila gastrulation. In the first phase of cephalic furrow formation, the initiator cells that will lead invagination undergo apicobasal shortening and apical constriction in the absence of epithelial invagination. In the second phase of cephalic furrow formation, the epithelium starts to invaginate, accompanied by both basal expansion and continued apicobasal shortening of the initiator cells. The cells adjacent to the initiator cells also adopt wedge shapes, but only after invagination is well underway. Myosin II does not appear to drive apical constriction in cephalic furrow formation. However, cortical F-actin is increased in the apices of the initiator cells and in invaginating cells during both phases of cephalic furrow formation. These findings suggest that a novel mechanism for epithelial invagination is involved in cephalic furrow formation.

  2. Metric tensor as the dynamical variable for variable-cell-shape molecular dynamics

    SciTech Connect

    Souza, I.; Martins, J.L. |

    1997-04-01

    We propose a variable-cell-shape molecular dynamics algorithm where the dynamical variables associated with the cell are the six independent dot products between the vectors defining the cell instead of the nine Cartesian components of those vectors. Our choice of the metric tensor as the dynamical variable automatically eliminates the cell orientation from the dynamics. Furthermore, choosing for the cell kinetic energy a simple scalar that is quadratic in the time derivatives of the metric tensor makes the dynamics invariant with respect to the choice of the simulation cell edges. Choosing the tensorial density of that scalar allows us to have a dynamics that obeys the virial theorem. We derive the equations of motion for the two conditions of constant external pressure and constant thermodynamic tension. We also show that using the metric as a variable is convenient for structural optimization under those two conditions. We use simulations for Ar with Lennard-Jones parameters and for Si with forces and stresses calculated from first principles of density-functional theory to illustrate the applications of the method. {copyright} {ital 1997} {ital The American Physical Society}

  3. Slow motility in hair cells of the frog amphibian papilla: Ca2+-dependent shape changes.

    PubMed

    Farahbakhsh, Nasser A; Narins, Peter M

    2006-02-01

    We investigated the process of slow motility in non-mammalian auditory hair cells by recording the time course of shape change in hair cells of the frog amphibian papilla. The tall hair cells in the rostral segment of this organ, reported to be the sole recipients of efferent innervation, were found to shorten in response to an increase in the concentration of the intracellular free calcium. These shortenings are composed of two partially-overlapping phases: an initial rapid iso-volumetric contraction, followed by a slower length decrease accompanied with swelling. It is possible to unmask the iso-volumetric contraction by delaying the cell swelling with the help of K+ or Cl- channel inhibitors, quinine or furosemide. Furthermore, it appears that the longitudinal contraction in these cells is Ca2+-calmodulin-dependent: in the presence of W-7, a calmodulin inhibitor, only a slow, swelling phase could be observed. These findings suggest that amphibian rostral AP hair cells resemble their mammalian counterparts in expressing both a Ca2+-calmodulin-dependent contractile structure and an "osmotic" mechanism capable of mediating length change in response to extracellular stimuli. Such a mechanism might be utilized by the efferent neurotransmitters for adaptive modulation of mechano-electrical transduction, sensitivity enhancement, frequency selectivity, and protection against over-stimulation.

  4. Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells.

    PubMed

    Akhtar Ali, Muhammad; Younis, Shady; Wallerman, Ola; Gupta, Rajesh; Andersson, Leif; Sjöblom, Tobias

    2015-06-23

    The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle-related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-β, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes.

  5. Mutations in Coliphage P1 Affecting Host Cell Lysis

    PubMed Central

    Walker, Jean Tweedy; Walker, Donald H.

    1980-01-01

    A total of 103 amber mutants of coliphage P1 were tested for lysis of nonpermissive cells. Of these, 83 caused cell lysis at the normal lysis time and have defects in particle morphogenesis. Five amber mutants, with mutations in the same gene (gene 2), caused premature lysis and may have a defect in a lysis regulator. Fifteen amber mutants were unable to cause cell lysis. Artificially lysed cells infected with five of these mutants produced viable phage particles, and phage particles were seen in thin sections of unlysed, infected cells. However, phage production by these mutants was not continued after the normal lysis time. We conclude that the defect of these five mutants is in a lysis function. The five mutations were found to be in the same gene (designated gene 17). The remaining 10 amber mutants, whose mutations were found to be in the same gene (gene 10), were also unable to cause cell lysis. They differed from those in gene 17 in that no viable phage particles were produced from artificially lysed cells, and no phage particles were seen in thin sections of unlysed, infected cells. We conclude that the gene 10 mutants cannot synthesize late proteins, and it is possible that gene 10 may code for a regulator of late gene expression for P1. Images PMID:16789200

  6. Glycosaminoglycans affect heparanase location in CHO cell lines.

    PubMed

    Piva, Maria B R; Suarez, Eloah R; Melo, Carina M; Cavalheiro, Renan P; Nader, Helena B; Pinhal, Maria A S

    2015-09-01

    Glycosaminoglycans (GAG) play a ubiquitous role in tissues and cells. In eukaryotic cells, heparan sulfate (HS) is initially degraded by an endo-β-glucuronidase called heparanase-1 (HPSE). HS oligosaccharides generated by the action of HPSE intensify the activity of signaling molecules, activating inflammatory response, tumor metastasis, and angiogenesis. The aim of the present study was to understand if sulfated GAG could modulate HPSE, since the mechanisms that regulate HPSE have not been completely defined. CHO-K1 cells were treated with 4-methylumbelliferone (4-MU) and sodium chlorate, to promote total inhibition of GAG synthesis, and reduce the sulfation pattern, respectively. The GAG profile of the wild CHO-K1 cells and CHO-745, deficient in xylosyltransferase, was determined after [(35)S]-sulfate labeling. HPSE expression was determined via real-time quantitative polymerase chain reaction. Total ablation of GAG with 4-MU in CHO-K1 inhibited HPSE expression, while the lack of sulfation had no effect. Interestingly, 4-MU had no effect in CHO-745 cells for these assays. In addition, a different enzyme location was observed in CHO-K1 wild-type cells, which presents HPSE mainly in the extracellular matrix, in comparison with the CHO-745 mutant cells, which is found in the cytoplasm. In view of our results, we can conclude that GAG are essential modulators of HPSE expression and location. Therefore, GAG profile could impact cell behavior mediated by the regulation of HPSE.

  7. Cell shape and the presentation of adhesion ligands guide smooth muscle myogenesis.

    PubMed

    Zhang, Douglas; Sun, Michael B; Lee, Junmin; Abdeen, Amr A; Kilian, Kristopher A

    2016-05-01

    The reliable generation of smooth muscle cells is important for a number of tissue engineering applications. Human mesenchymal stem cells (MSCs) are a promising progenitor of smooth muscle, with high expression of smooth muscle markers observed in a fraction of isolated cells, which can be increased by introduction of soluble supplements that direct differentiation. Here we demonstrate a new micropatterning technique, where peptides of different ligand affinity can be microcontact printed onto an inert background, to explore MSC differentiation to smooth muscle through controlled biochemical and biophysical cues alone. Using copper-catalyzed alkyne-azide cycloaddition (CuAAC), we patterned our surfaces with RGD peptide ligands-both a linear peptide with low integrin affinity and a cyclic version with high integrin affinity-for the culture of MSCs in shapes with various aspect ratios. At low aspect ratio, ligand affinity is a prime determinant for smooth muscle differentiation, while at high aspect ratio, ligand affinity has less of an effect. Pathway analysis reveals a role for focal adhesion turnover, Rac1, RhoA/ROCK, and calpain during smooth muscle differentiation of MSCs in response to cell shape and the affinity of the cell adhesion interface. Controlling integrin-ligand affinity at the biomaterials interface is important for mediating adhesion but may also prove useful for directing smooth muscle myogenesis. Peptide patterning enables the systematic investigation of single to multiple peptides derived from any protein, at different densities across a biomaterials surface, which has the potential to direct multiple MSC differentiation outcomes without the need for soluble supplements.

  8. Spatial arrangement of prey affects the shape of ratio-dependent functional response in strongly antagonistic predators.

    PubMed

    Hossie, Thomas J; Murray, Dennis L

    2016-04-01

    Predators play a key role in shaping natural ecosystems, and understanding the factors that influence a predator's kill rate is central to predicting predator-prey dynamics. While prey density has a well-established effect on predation, it is increasingly apparent that predator density also can critically influence predator kill rates. The effects of both prey and predator density on the functional response will, however, be determined in part by their distribution on the landscape. To examine this complex relationship we experimentally manipulated prey density, predator density, and prey distribution using a tadpole (prey)-dragonfly nymph (predator) system. Predation was strongly ratio-dependent irrespective of prey distribution, but the shape of the functional response changed from hyperbolic to sigmoidal when prey were clumped in space. This sigmoidal functional response reflected a relatively strong negative effect of predator interference on kill rates at low prey: predator ratios when prey were clumped. Prey aggregation also appeared to promote stabilizing density-dependent intraguild predation in our system. We conclude that systems with highly antagonistic predators and patchily distributed prey are more likely to experience stable dynamics, and that our understanding of the functional response will be improved by research that examines directly the mechanisms generating interference. PMID:27220200

  9. Theory of electrically driven shape changes of cochlear outer hair cells.

    PubMed

    Dallos, P; Hallworth, R; Evans, B N

    1993-07-01

    1. A theory of cochlear outer hair cell electromotility is developed and specifically applied to somatic shape changes elicited in a microchamber. The microchamber permits the arbitrary electrical and mechanical partitioning of the outer hair cell along its length. This means that the two partitioned segments are stimulated with different input voltages and undergo different shape changes. Consequently, by imposing more constraints than other methods, experiments in the microchamber are particularly suitable for testing different theories of outer hair cell motility. 2. The present model is based on simple hypotheses. They include a distributed motor associated with the cell membrane or cortex and the assumption that the displacement generated by the motor is related to the transmembrane voltage across the associated membrane element. It is expected that the force generated by the motor is counterbalanced by an elastic restoring force indigenous to the cell membrane and cortex, and a tensile force due to intracellular pressure. It is assumed that all changes take place while total cell volume is conserved. The above elements of the theory taken together permit the development of qualitative and quantitative predictions about the expected motile responses of both partitioned segments of the cell. Only a DC treatment is offered here. 3. Both a linear motor and an expanded treatment that incorporates a stochastic molecular motor model are considered. The latter is represented by a two-state Boltzmann process. We show that the linear motor treatment is an appropriate extrapolation of the stochastic motor theory for the case of small voltage driving signals. Comparison of experimental results with model responses permits the estimation of model parameters. Good match of data is obtained if it is assumed that the molecular motors undergo conformational length changes of 0.7-1.0 nm, that they have an effective displacement vector at approximately -20 degrees with the long

  10. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    SciTech Connect

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.; Kaehler, Christian M. . E-mail: C.M.Kaehler@uibk.ac.at

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis. Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.

  11. Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization

    PubMed Central

    Zheng, Guoping; Ge, Menghua; Qiu, Guanguan; Shu, Qiang; Xu, Jianguo

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-α stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models. PMID:26257791

  12. To shape a cell: an inquiry into the causes of morphogenesis of microorganisms.

    PubMed Central

    Harold, F M

    1990-01-01

    We recognize organisms first and foremost by their forms, but how they grow and shape themselves still largely passes understanding. The objective of this article is to survey what has been learned of morphogenesis of walled eucaryotic microorganisms as a set of problems in cellular heredity, biochemistry, physiology, and organization. Despite the diversity of microbial forms and habits, some common principles can be discerned. (i) That the form of each organism represents the expression of a genetic program is almost universally taken for granted. However, reflection on the findings with morphologically aberrant mutants suggests that the metaphor of a genetic program is misleading. Cellular form is generated by a web of interacting chemical and physical processes, whose every strand is woven of multiple gene products. The relationship between genes and form is indirect and cumulative; therefore, morphogenesis must be addressed as a problem not of molecular genetics but of cellular physiology. (ii) The shape of walled cells is determined by the manner in which the wall is laid down during growth and development. Turgor pressure commonly, perhaps always, supplies the driving force for surface enlargement. Cells yield to this scalar force by localized, controlled wall synthesis; their forms represent variations on the theme of local compliance with global force. (iii) Growth and division in bacteria display most immediately the interplay of hydrostatic pressure, localized wall synthesis, and structural constraints. Koch's surface stress theory provides a comprehensive and quantitative framework for understanding bacterial shapes. (iv) In the larger and more versatile eucaryotic cells, expansion is mediated by the secretion of vesicles. Secretion and ancillary processes, such as cytoplasmic transport, are spatially organized on the micrometer scale. The diversity of vectorial physiology and of the forms it generates is illustrated by examples: apical growth of fungal

  13. Clinorotation affects mesophyll photosynthetic cells in leaves of pea seedlings.

    PubMed

    Adamchuk, N I

    1998-07-01

    Experiments with autotrophs in altered gravity condition have a grate significant for development of space biology. The main results of investigation in the photosynthetic apparatus state under microgravity condition have based on the experiments with maturity plants and their differentiated cells. The structural and functional organization of photosynthetic cells in seedlings is poor understandable still. Along with chloroplasts preserving a native membrane system in palisade parenchyma cells of the 29-day pea plant leaves in microgravity, chloroplasts with fribly packed or damaged granae, whose thylakoids appeared as vesicles with an electrontransparent content, were also observed. The investigation of preceding process induced these effects have a sense. That is why, the goal of our experiments was to perform the study of a structural organization of the photosynthetic cells of 3-d pair of pea seedlings leaves under the influence of clinorotation.

  14. Wire-shaped perovskite solar cell based on TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan; Kulkarni, Sneha A.; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K.; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-01

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

  15. Conically shaped single-crystalline diamond backing plates for a diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Krauss, G.; Reifler, H.; Steurer, W.

    2005-10-01

    Based on computer-aided design (CAD) and finite-element calculations (FEM), single-crystalline diamond backing plates were tailored as a replacement of beryllium for high-pressure diamond anvil cells with a focus on in-house single-crystal experiments. Although the modified cell has an opening angle of 90°, a very homogeneous stress distribution all over the backing plate was realized to avoid failure. The conically shaped backing plates work well in the targeted pressure range up to Mg2Co3Sn10.15 up to 9.69 GPa. The influence of simultaneous diffraction phenomena in the diamonds (diamond dips) is illustrated by single-counter and area-detector measurements using standard laboratory equipment.

  16. Nanofibrous Microposts and Microwells of Controlled Shapes and Their Hybridization with Hydrogels for Cell Encapsulation

    PubMed Central

    2015-01-01

    A simple, robust, and cost-effective method is developed to fabricate nanofibrous micropatterns particularly microposts and microwells of controlled shapes. The key to this method is the use of an easily micropatternable and intrinsically conductive metal alloy as a template to collect electrospun fibers. The micropatterned alloy allows conformal fiber deposition with high fidelity on its topographical features and in situ formation of diverse, free-standing micropatterned nanofibrous membranes. Interestingly, these membranes can serve as structural frames to form robust hydrogel micropatterns that may otherwise be fragile on their own. These hybrid micropatterns represent a new platform for cell encapsulation where the nanofiber frames enhance the mechanical integrity of hydrogel and the micropatterns provide additional surface area for mass transfer and cell loading. PMID:24806031

  17. Wire-shaped perovskite solar cell based on TiO2 nanotubes.

    PubMed

    Wang, Xiaoyan; Kulkarni, Sneha A; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-20

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

  18. Shape engineering for electronic and optoelectronic properties of Si nanostructure solar cells

    NASA Astrophysics Data System (ADS)

    He, Yan; Zhao, Yipeng; Quan, Jun; Ouyang, Gang

    2016-10-01

    An analytical model is developed to explore the shape-dependent electronic and optoelectronic properties of silicon nanostructure solar cells, including nanocones (NCs), nanowires (NWs), and truncated-nanocones (TNCs), on the basis of atomic-bond-relaxation consideration and detailed balance principle. It is found that the inhomogeneous NCs can not only make the band gap shrink gradually from the top to the bottom, but also suppress the surface recombination and enhance light absorption. Moreover, the optimal performance of silicon nanostructures can be achieved through modulating the geometrical parameters. Strikingly, the SiNCs show the highest solar conversion efficiency compared with that of NWs and TNCs under identical conditions, which suggest that this kind of nanostructures could be expected to be applicable for the new-typed and friendly alternative solar cell unit.

  19. Wire-shaped perovskite solar cell based on TiO2 nanotubes.

    PubMed

    Wang, Xiaoyan; Kulkarni, Sneha A; Li, Zhen; Xu, Wenjing; Batabyal, Sudip K; Zhang, Sam; Cao, Anyuan; Wong, Lydia Helena

    2016-05-20

    In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics. PMID:27070991

  20. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  1. Amber mutation affecting the length of Escherichia coli cells.

    PubMed Central

    Martínez-Salas, E; Vicente, M

    1980-01-01

    An amber mutation in a newly found gene (wee) of Escherichia coli has been isolated from strain OV-2, which harbors a temperature-sensitive suppressor. At 42 degrees C cells of the mutant, OV-25, increased in mass and deoxyribonucleic acid content and divided at normal rates, compared with the wild type under the same growth conditions. Total cell length increased under the restrictive conditions, although at a slightly lower rate. Values of mean cell length and cell volume, contrary to what would be expected from the increment in the rate of increase in particles, mass, and deoxyribonucleic acid, became at 42 degrees C smaller than those found in the wild type. A parallel increase in protein content per length and cell density and a loss of viability were found to occur after four generations at the restrictive temperature. The behavior of strain OV-25 in the absence of the wee gene product could be interpreted in terms of either a faulty regulation of the elongation processes or their abnormal coordination with the cell cycle. The genetic location of the wee gene has been found to be at 83.5 min on the E. coli genetic map. PMID:7000749

  2. Alcohol-soluble Star-shaped Oligofluorenes as Interlayer for High Performance Polymer Solar Cells

    PubMed Central

    Zou, Yang; He, Zhicai; Zhao, Baofeng; Liu, Yuan; Yang, Chuluo; Wu, Hongbin; Cao, Yong

    2015-01-01

    Two star-shaped oligofluorenes with hexakis(fluoren-2-yl)benzene as core are designed and sythesized for interfacial materials in polymer solar cell. Diethanolamino groups are attached to the side chain of fluorene units for T0-OH and T1-OH to enable the alcohol solubility, and additional hydrophobic n-hexyl chains are also grafted on the increased fluorene arms for T1-OH. In conventional device with PCDTBT/PC71BM as active layer, a 50% enhanced PCE is obtained by incorporating T0-OH and T1-OH as the interlayer compared with device without interlayer. By optimizing the active material with PTB7 and with the inverted device structure, a maximum PCE of 9.30% is achieved, which is among the highest efficiencies for PTB7 based polymer solar cells. The work function of modified electrode, the surface morphology and the suraface properties are systematically studied. By modifying the structures of the star-shaped molecules, a balance between the hydrophobic and hydrophilic property is finely tuned, and thus facilitate the interlayer for high performance of PSCs. PMID:26612688

  3. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    SciTech Connect

    Takegahara, Yuki; Yamanouchi, Keitaro Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  4. Inhibition of HIF-1α Affects Autophagy Mediated Glycosylation in Oral Squamous Cell Carcinoma Cells

    PubMed Central

    Li, Yi-Ning; Hu, Ji-An; Wang, Hui-Ming

    2015-01-01

    Purpose. To validate the function of autophagy with the regulation of hypoxia inhibitor-induced glycosylation in oral squamous cell carcinoma cell. Methods. Human Tca8113 cell line was used to detect autophagy and glycosylation related protein expression by western blotting and immunofluorescence with HIF-1α inhibitor. Short interfering RNA (siRNA) transfection blocked human ATG12 and ATG1. Results. HIF-1α inhibitor PX-478 reduced the amount of LC3-II and LC3-I in Tca8113 cells. PX-478 decreased the expression of O-GlcNAc and OGT and increased OGA expression. The tendency of O-GlcNAc showed a similar pattern to OGT. PX-478 gradually decreased OGT expression in Tca8113 cells. Protein level of O-GlcNAc and OGT increased in ATG12 and ATG1 depletion. The expression of OGT decreased at first and then rose slowly with the treatment of Atg12 and Atg1 siRNA and PX-478 fluctuant. Autophagy affected the stability of OGT when HIF-1α signaling was blocked. Conclusions. Autophagy reduced by hypoxic stress inhibited. HIF-1α inhibitor decreased glycosylation. OGT became unstable in the absence of autophagy when HIF-1α signaling was blocked. PMID:26640316

  5. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings

    PubMed Central

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I.; Bonnema, Guusje; Angenent, Gerco C.; Immink, Richard G. H.; Groot, Steven P. C.

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  6. New thiazolidinediones affect endothelial cell activation and angiogenesis.

    PubMed

    Rudnicki, Martina; Tripodi, Gustavo L; Ferrer, Renila; Boscá, Lisardo; Pitta, Marina G R; Pitta, Ivan R; Abdalla, Dulcineia S P

    2016-07-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ (PPARγ) agonists used in treating type 2 diabetes that may exhibit beneficial pleiotropic effects on endothelial cells. In this study, we characterized the effects of three new TZDs [GQ-32 (3-biphenyl-4-ylmethyl-5-(4-nitro-benzylidene)-thiazolidine-2,4-dione), GQ-169 (5-(4-chloro-benzylidene)-3-(2,6-dichloro-benzyl)-thiazolidine-2,4-dione), and LYSO-7 (5-(5-bromo-1H-indol-3-ylmethylene)-3-(4-chlorobenzyl)-thiazolidine-2,4-dione)] on endothelial cells. The effects of the new TZDs were evaluated on the production of nitric oxide (NO) and reactive oxygen species (ROS), cell migration, tube formation and the gene expression of adhesion molecules and angiogenic mediators in human umbilical vein endothelial cells (HUVECs). PPARγ activation by new TZDs was addressed with a reporter gene assay. The three new TZDs activated PPARγ and suppressed the tumor necrosis factor α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. GQ-169 and LYSO-7 also inhibited the glucose-induced ROS production. Although NO production assessed with 4-amino-5-methylamino-2',7'-difluorofluorescein-FM probe indicated that all tested TZDs enhanced intracellular levels of NO, only LYSO-7 treatment significantly increased the release of NO from HUVEC measured by chemiluminescence analysis of culture media. Additionally, GQ-32 and GQ-169 induced endothelial cell migration and tube formation by the up-regulation of angiogenic molecules expression, such as vascular endothelial growth factor A and interleukin 8. GQ-169 also increased the mRNA levels of basic fibroblast growth factor, and GQ-32 enhanced transforming growth factor-β expression. Together, the results of this study reveal that these new TZDs act as partial agonists of PPARγ and modulate endothelial cell activation and endothelial dysfunction besides to stimulate migration and tube formation. PMID:27108791

  7. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings.

    PubMed

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I; Bonnema, Guusje; Angenent, Gerco C; Immink, Richard G H; Groot, Steven P C

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  8. Synergistic Targeting of Cell Membrane, Cytoplasm and Nucleus of Cancer Cells using Rod-Shaped Nanoparticles

    PubMed Central

    Barua, Sutapa; Mitragotri, Samir

    2014-01-01

    Design of carriers for effective delivery and targeting of drugs to cellular and sub-cellular compartments is an unmet need in medicine. Here, we report pure drug nanoparticles comprising camptothecin (CPT), trastuzumab (TTZ) and doxorubicin (DOX) to enable cell-specific interactions, subcellular accumulation and growth inhibition of breast cancer cells. CPT is formulated in the form of nanorods which are coated with TTZ. DOX is encapsulated in the TTZ corona around the CPT nanoparticle. Our results show that TTZ/DOX-coated CPT nanorods exhibit cell-specific internalization in BT-474 breast cancer cells, after which TTZ is recycled to the plasma membrane leaving CPT nanorods in the perinuclear region and delivering DOX into the nucleus of the cells. The effects of CPT-TTZ-DOX nanoparticles on growth inhibition are synergistic (combination index = 0.17±0.03) showing 10-10,000 fold lower inhibitory concentrations (IC50) compared to those of individual drugs. The design of antibody-targeted pure drug nanoparticles offers a promising design strategy to facilitate intracellular delivery and therapeutic efficiency of anticancer drugs. PMID:24053162

  9. Synergistic targeting of cell membrane, cytoplasm, and nucleus of cancer cells using rod-shaped nanoparticles.

    PubMed

    Barua, Sutapa; Mitragotri, Samir

    2013-11-26

    Design of carriers for effective delivery and targeting of drugs to cellular and subcellular compartments is an unmet need in medicine. Here, we report pure drug nanoparticles comprising camptothecin (CPT), trastuzumab (TTZ), and doxorubicin (DOX) to enable cell-specific interactions, subcellular accumulation, and growth inhibition of breast cancer cells. CPT is formulated in the form of nanorods which are coated with TTZ. DOX is encapsulated in the TTZ corona around the CPT nanoparticle. Our results show that TTZ/DOX-coated CPT nanorods exhibit cell-specific internalization in BT-474 breast cancer cells, after which TTZ is recycled to the plasma membrane, leaving CPT nanorods in the perinuclear region and delivering DOX into the nucleus of the cells. The effects of CPT-TTZ-DOX nanoparticles on growth inhibition are synergistic (combination index = 0.17 ± 0.03) showing 10-10 000-fold lower inhibitory concentrations (IC50) compared to those of individual drugs. The design of antibody-targeted pure drug nanoparticles offers a promising design strategy to facilitate intracellular delivery and therapeutic efficiency of anticancer drugs.

  10. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms.

    PubMed

    Janson, Isaac A; Putnam, Andrew J

    2015-03-01

    Chemical, mechanical, and topographic extracellular matrix (ECM) cues have been extensively studied for their influence on cell behavior. These ECM cues alter cell adhesion, cell shape, and cell migration and activate signal transduction pathways to influence gene expression, proliferation, and differentiation. ECM elasticity and topography, in particular, have emerged as material properties of intense focus based on strong evidence these physical cues can partially dictate stem cell differentiation. Cells generate forces to pull on their adhesive contacts, and these tractional forces appear to be a common element of cells' responses to both elasticity and topography. This review focuses on recently published work that links ECM topography and mechanics and their influence on differentiation and other cell behaviors. We also highlight signaling pathways typically implicated in mechanotransduction that are (or may be) shared by cells subjected to topographic cues. Finally, we conclude with a brief discussion of the potential implications of these commonalities for cell based therapies and biomaterial design.

  11. Evolution of spur-length diversity in Aquilegia petals is achieved solely through cell-shape anisotropy.

    PubMed

    Puzey, Joshua R; Gerbode, Sharon J; Hodges, Scott A; Kramer, Elena M; Mahadevan, L

    2012-04-22

    The role of petal spurs and specialized pollinator interactions has been studied since Darwin. Aquilegia petal spurs exhibit striking size and shape diversity, correlated with specialized pollinators ranging from bees to hawkmoths in a textbook example of adaptive radiation. Despite the evolutionary significance of spur length, remarkably little is known about Aquilegia spur morphogenesis and its evolution. Using experimental measurements, both at tissue and cellular levels, combined with numerical modelling, we have investigated the relative roles of cell divisions and cell shape in determining the morphology of the Aquilegia petal spur. Contrary to decades-old hypotheses implicating a discrete meristematic zone as the driver of spur growth, we find that Aquilegia petal spurs develop via anisotropic cell expansion. Furthermore, changes in cell anisotropy account for 99 per cent of the spur-length variation in the genus, suggesting that the true evolutionary innovation underlying the rapid radiation of Aquilegia was the mechanism of tuning cell shape.

  12. TCS1, a Microtubule-Binding Protein, Interacts with KCBP/ZWICHEL to Regulate Trichome Cell Shape in Arabidopsis thaliana

    PubMed Central

    Tian, Juan; Wang, Xiaohong; Mao, Tonglin; Yuan, Ming; Li, Yunhai

    2016-01-01

    How cell shape is controlled is a fundamental question in developmental biology, but the genetic and molecular mechanisms that determine cell shape are largely unknown. Arabidopsis trichomes have been used as a good model system to investigate cell shape at the single-cell level. Here we describe the trichome cell shape 1 (tcs1) mutants with the reduced trichome branch number in Arabidopsis. TCS1 encodes a coiled-coil domain-containing protein. Pharmacological analyses and observations of microtubule dynamics show that TCS1 influences the stability of microtubules. Biochemical analyses and live-cell imaging indicate that TCS1 binds to microtubules and promotes the assembly of microtubules. Further results reveal that TCS1 physically associates with KCBP/ZWICHEL, a microtubule motor involved in the regulation of trichome branch number. Genetic analyses indicate that kcbp/zwi is epistatic to tcs1 with respect to trichome branch number. Thus, our findings define a novel genetic and molecular mechanism by which TCS1 interacts with KCBP to regulate trichome cell shape by influencing the stability of microtubules. PMID:27768706

  13. Post-transcriptional RNA Regulons Affecting Cell Cycle and Proliferation

    PubMed Central

    Blackinton, Jeff G.

    2014-01-01

    The cellular growth cycle is initiated and maintained by punctual, yet agile, regulatory events involving modifications of cell cycle proteins as well as coordinated gene expression to support cyclic checkpoint decisions. Recent evidence indicates that post-transcriptional partitioning of messenger RNA subsets by RNA-binding proteins help physically localize, temporally coordinate, and efficiently translate cell cycle proteins. This dynamic organization of mRNAs encoding cell cycle components contributes to the overall economy of the cell cycle consistent with the post-transcriptional RNA regulon model of gene expression. This review examines several recent studies demonstrating the coordination of mRNA subsets encoding cell cycle proteins during nuclear export and subsequent coupling to protein synthesis, and discusses evidence for mRNA coordination of p53 targets and the DNA damage response pathway. We consider how these observations may connect to upstream and downstream post-transcriptional coordination and coupling of splicing, export, localization, and translation. Published examples from yeast, nematode, insect, and mammalian systems are discussed, and we consider genetic evidence supporting the conclusion that dysregulation of RNA regulons may promote pathogenic states of growth such as carcinogenesis. PMID:24882724

  14. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  15. Monoterpene (-)-citronellal affects hepatocarcinoma cell signaling via an olfactory receptor.

    PubMed

    Maßberg, Désirée; Simon, Annika; Häussinger, Dieter; Keitel, Verena; Gisselmann, Günter; Conrad, Heike; Hatt, Hanns

    2015-01-15

    Terpenes are the major constituents of essential oils in plants. In recent years, terpenes have become of clinical relevance due to their ability to suppress cancer development. Their effect on cellular proliferation has made them promising agents in the prevention or treatment of many types of cancer. In the present study, a subset of different monoterpenes was investigated for their molecular effects on the hepatocellular carcinoma cell line Huh7. Using fluorometric calcium imaging, acyclic monoterpene (-)-citronellal was found to induce transient Ca(2+) signals in Huh7 cells by activating a cAMP-dependent signaling pathway. Moreover, we detected the (-)-citronellal-activated human olfactory receptor OR1A2 at the mRNA and protein levels and demonstrated its potential involvement in (-)-citronellal-induced calcium signaling in Huh7 cells. Furthermore, activation of OR1A2 results in phosphorylation of p38 MAPK and reduced cell proliferation, indicating an effect on hepatocellular carcinoma progression. Here, we provide for the first time data on the molecular mechanism evoked by (-)-citronellal in human hepatocellular carcinoma cells. The identified olfactory receptor could serve as a potential therapeutic target for cancer diagnosis and treatment.

  16. Specific biomolecule corona is associated with ring-shaped organization of silver nanoparticles in cells

    NASA Astrophysics Data System (ADS)

    Drescher, Daniela; Guttmann, Peter; Büchner, Tina; Werner, Stephan; Laube, Gregor; Hornemann, Andrea; Tarek, Basel; Schneider, Gerd; Kneipp, Janina

    2013-09-01

    We correlate the localization of silver nanoparticles inside cells with respect to the cellular architecture with the molecular information in the vicinity of the particle surface by combining nanoscale 3D cryo-soft X-ray tomography (cryo-SXT) with surface-enhanced Raman scattering (SERS). The interaction of the silver nanoparticle surface with small molecules and biopolymers was monitored by SERS in vitro over time in living cells. The spectra indicate a stable, time-independent surface composition of silver nanoparticles, despite the changing environment in the endosomal structure. Cryo-SXT reveals a characteristic ring-shaped organization of the silver nanoparticles in endosomes of different cell types. The ring-like structures inside the endosomes suggest a strong association among silver particles and with membrane structures. The comparison of the data with those obtained with gold nanoparticles suggests that the interactions between the nanoparticles and with the endosomal component are influenced by the molecular composition of the corona.We correlate the localization of silver nanoparticles inside cells with respect to the cellular architecture with the molecular information in the vicinity of the particle surface by combining nanoscale 3D cryo-soft X-ray tomography (cryo-SXT) with surface-enhanced Raman scattering (SERS). The interaction of the silver nanoparticle surface with small molecules and biopolymers was monitored by SERS in vitro over time in living cells. The spectra indicate a stable, time-independent surface composition of silver nanoparticles, despite the changing environment in the endosomal structure. Cryo-SXT reveals a characteristic ring-shaped organization of the silver nanoparticles in endosomes of different cell types. The ring-like structures inside the endosomes suggest a strong association among silver particles and with membrane structures. The comparison of the data with those obtained with gold nanoparticles suggests that the

  17. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension

    NASA Technical Reports Server (NTRS)

    Wang, N.; Ingber, D. E.

    1994-01-01

    We have investigated how extracellular matrix (ECM) alters the mechanical properties of the cytoskeleton (CSK). Mechanical stresses were applied to integrin receptors on the apical surfaces of adherent endothelial cells using RGD-coated ferromagnetic microbeads (5.5-microns diameter) in conjunction with a magnetic twisting device. Increasing the number of basal cell-ECM contacts by raising the fibronectin (FN) coating density from 10 to 500 ng/cm2 promoted cell spreading by fivefold and increased CSK stiffness, apparent viscosity, and permanent deformation all by more than twofold, as measured in response to maximal stress (40 dyne/cm2). When the applied stress was increased from 7 to 40 dyne/cm2, the stiffness and apparent viscosity of the CSK increased in parallel, although cell shape, ECM contacts, nor permanent deformation was altered. Application of the same stresses over a lower number ECM contacts using smaller beads (1.4-microns diameter) resulted in decreased CSK stiffness and apparent viscosity, confirming that this technique probes into the depth of the CSK and not just the cortical membrane. When magnetic measurements were carried out using cells whose membranes were disrupted and ATP stores depleted using saponin, CSK stiffness and apparent viscosity were found to rise by approximately 20%, whereas permanent deformation decreased by more than half. Addition of ATP (250 microM) under conditions that promote CSK tension generation in membrane-permeabilized cells resulted in decreases in CSK stiffness and apparent viscosity that could be detected within 2 min after ATP addition, before any measurable change in cell size.(ABSTRACT TRUNCATED AT 250 WORDS).

  18. Does prolonged cycling of moderate intensity affect immune cell function?

    PubMed Central

    Scharhag, J; Meyer, T; Gabriel, H; Schlick, B; Faude, O; Kindermann, W; Shephard, R

    2005-01-01

    Background: Prolonged exercise may induce temporary immunosuppression with a presumed increased susceptibility for infection. However, there are only few data on immune cell function after prolonged cycling at moderate intensities typical for road cycling training sessions. Methods: The present study examined the influence on immune cell function of 4 h of cycling at a constant intensity of 70% of the individual anaerobic threshold. Interleukin-6 (IL-6) and C-reactive protein (CRP), leukocyte and lymphocyte populations, activities of natural killer (NK), neutrophils, and monocytes were examined before and after exercise, and also on a control day without exercise. Results: Cycling for 4 h induced a moderate acute phase response with increases in IL-6 from 1.0 (SD 0.5) before to 9.6 (5.6) pg/ml 1 h after exercise and CRP from 0.5 (SD 0.4) before to 1.8 (1.3) mg/l 1 day after exercise. Although absolute numbers of circulating NK cells, monocytes, and neutrophils increased during exercise, on a per cell basis NK cell activity, neutrophil and monocyte phagocytosis, and monocyte oxidative burst did not significantly change after exercise. However, a minor effect over time for neutrophil oxidative burst was noted, tending to decrease after exercise. Conclusions: Prolonged cycling at moderate intensities does not seem to seriously alter the function of cells of the first line of defence. Therefore, the influence of a single typical road cycling training session on the immune system is only moderate and appears to be safe from an immunological point of view. PMID:15728699

  19. Fabrication and characterization of cuprous oxide solar cell with net-shaped counter electrode

    NASA Astrophysics Data System (ADS)

    Basuki, Stefanus; Uranus, Henri P.; Pangaribuan, Julinda

    2015-01-01

    In this work, simple solar cells using cuprous oxide were fabricated and characterized. The solar cells in this experiment used cuprous oxide plate as detecting electrode and copper wires which were woven into a net-shape with a gap size of 2 x 2 cm as a counter electrode. Twenty samples of solar cells were fabricated with oxide layer which were thermally grown in temperature up to 550 oC. Samples with variations in oxidation time (15 minutes, 30 minutes, 40 minutes, and 45 minutes) and distance between electrodes (2 cm, 3 cm, and 4 cm) with an electrolyte solution of NaCl with molarity of 2.188 mol/l were produced. The samples were characterized by measuring their V-I curve. For this purpose, a simple, own-made solar simulator were fabricated and characterized. Using curve fitting technique, parameters such as FF (Fill Factor), efficiency, open circuit voltage, short circuit current, internal resistance, and performance degradation as a function of time of the cells were extracted. The result shows optimum efficiency of 4.573. 10-4%, while optimum oxidation time is 40 minutes and optimum distance between electrodes is 3 cm.

  20. Cycling of soluble lead flow cells comprising a honeycomb-shaped positive electrode

    NASA Astrophysics Data System (ADS)

    Oury, A.; Kirchev, A.; Bultel, Y.

    2014-10-01

    In this study, soluble lead/methanesulfonic acid flow cells comprising a 3-D honeycomb-shaped positive electrode sandwiched between two planar negative electrodes are tested under galvanostatic cycling. Two types of materials are used for the honeycomb: homemade vitreous carbon/carbon composite and graphite. The cells comprising the C/C composite substrate shows a poor cyclability with coulombic and energy efficiencies below 80% and 50%, respectively, as well as a very limited lifetime. After a few tens of cycles, the cells cannot be discharged any longer due to the emergence of overvoltages associated with the passivation of the positive electrode in the discharged states. Using the graphite-based electrode, the cyclability is considerably improved: efficiencies of 95% in charge and 75% in energy are obtained, a hundred of cycles can be achieved and no passivation is observed. The cycle life of the cell is, however, limited by lead dendrite-like formation at the negative plates. Finally, this study shows that the incorporation of fluoride ions into the electrolyte improves greatly the adhesion of PbO2 on the positive electrode surface upon cycling.

  1. Motorized RhoGAP myosin IXb (Myo9b) controls cell shape and motility

    PubMed Central

    Hanley, Peter J.; Xu, Yan; Kronlage, Moritz; Grobe, Kay; Schön, Peter; Song, Jian; Sorokin, Lydia; Schwab, Albrecht; Bähler, Martin

    2010-01-01

    Directional motility is a fundamental function of immune cells, which are recruited to sites of pathogen invasion or tissue damage by chemoattractant signals. To move, cells need to generate lamellipodial membrane protrusions at the front and retract the trailing end. These elementary events are initiated by Rho-family GTPases, which cycle between active GTP-bound and inactive GDP-bound states. How the activity of these “molecular switches” is spatially coordinated is only beginning to be understood. Here, we show that myosin IXb (Myo9b), a Rho GTPase-activating protein (RhoGAP) expressed in immune cells, is essential for coordinating the activity of Rho. We generated Myo9b-deficient mice and show that Myo9b−/− macrophages have strikingly defective spreading and polarization. Furthermore, Myo9b−/− macrophages fail to generate lamellipodia in response to a chemoattractant, and migration in a chemotactic gradient is severely impaired. Inhibition of Rho rescues the Myo9b−/− phenotype, but impairs tail retraction. We also found that Myo9b is important in vivo. Chemoattractant-induced monocyte recruitment to the peritoneal cavity is substantially reduced in Myo9b−/− mice. Thus, we identify the “motorized Rho inhibitor” Myo9b as a key molecular component required for spatially coordinated cell shape changes and motility. PMID:20566876

  2. How traditions of ethical reasoning and institutional processes shape stem cell research in Britain.

    PubMed

    Hauskeller, Christine

    2004-10-01

    This article aims to show how the traditions of ethical reasoning and policy-making shape stem cell research in Britain. To do so I give a detailed account of the earlier developments of regulations on embryo research and the specific scientific advances made in Britain. The subsequent regulation of stem cell research was largely predetermined by those structures and the different and partly opposing orientations of a utilitarian approach to policies on biomedicine. The setting up of the first stem cell bank and the directing of public funding into not only bioethical but also sociological guidance of the development of the new science field are aspects of the particular British way of supporting stem cell research. However, there is also an ongoing philosophical and juridical debate on the possible erosion of fundamental values caused by incremental regulatory weakening. Although I am highly sympathetic to the critical position that there is a need for a metaphysical anchor to secure individual human rights, one has to admit that the British mode of handling the inevitable ethical problems we face with biomedical progress is rather successful in terms of securing some of the basic needs and values of a modern democratic society.

  3. Regional tumour glutamine supply affects chromatin and cell identity.

    PubMed

    Højfeldt, Jonas W; Helin, Kristian

    2016-09-28

    Limited perfusion of solid tumours produces a nutrient-deprived tumour core microenvironment. Low glutamine levels in the tumour core are now shown to lead to reduced levels of α-ketoglutarate and decreased histone demethylase activity, thereby promoting a less differentiated and more therapy-resistant state of the tumour cells.

  4. Regional tumour glutamine supply affects chromatin and cell identity.

    PubMed

    Højfeldt, Jonas W; Helin, Kristian

    2016-09-28

    Limited perfusion of solid tumours produces a nutrient-deprived tumour core microenvironment. Low glutamine levels in the tumour core are now shown to lead to reduced levels of α-ketoglutarate and decreased histone demethylase activity, thereby promoting a less differentiated and more therapy-resistant state of the tumour cells. PMID:27684506

  5. Iodine Affects Differentiation and Migration Process in Trophoblastic Cells.

    PubMed

    Olivo-Vidal, Zendy Evelyn; Rodríguez, Roció Coutiño; Arroyo-Helguera, Omar

    2016-02-01

    Iodine deficiency is associated with oxidative stress increase and preeclampsia during gestation, suggesting that iodine concentration plays an important role in the normal placenta physiology. The question raised is to analyze the effect of iodine deficiency on oxidative stress, viability, differentiation, and migration process and changes in the expression of differentiation and migration markers. Iodine deprivation was done using potassium perchlorate (KCLO4) to block sodium iodide symporter (NIS) transporter and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid DIDS to inhibit pendrine (PEN) transport for 3-48 h. Then trophoblast cells were treated with low iodine doses of 5-500 μM and high iodine doses of 100-5000 μM. Oxidative stress, viability, and human chorionic gonadotropin (hGC) were measured by colorimetric methods. Migration throphoblast cells were evaluated by both wound healing and Boyden chamber assays. Changes in mRNA expression were analyzed by real-time RT-PCR. Iodine deprivation induces a significant increase of reactive oxygen species (ROS), viability, and migration process vs control cells. We found a significant overregulation in the mRNA's peroxisome proliferator-activated receptor (PPAR-gamma), Snail, and matrix metalloproteinase-9 (MMP-9) mRNA's in cells deprived of iodine, as well as a down glial cell missing-1 (GCM-1) regulation, hGC, pregnancy-associated plasma protein-A (PAPP-A), and E-cadherin mRNA expression. The expression of hypoxic induction factor alpha (HIFα) mRNA does not change with iodine deprivation. In cells deprived of iodine, supplementing low iodine doses (5-500 μM) does not induce any significant changes in viability. However, ROS and migration process were decreased, although we found an increased human chorionic gonadotropin (hCG) secretion as a differentiation marker. In addition, we found that PPAR-gamma, Snail, and MPP-9 mRNAs expression are downregulated with low iodine doses, in contrast with GCM-1, PAPP

  6. Chimeric Protein Template-Induced Shape Control of Bone Mineral Nanoparticles and Its Impact on Mesenchymal Stem Cell Fate

    PubMed Central

    Wang, Yifan; Du, Yinying; Liu, Haoming; Zhu, Ye; Mao, Chuanbin; Zhang, Shengmin

    2016-01-01

    Protein-mediated molecular self-assembly has become a powerful strategy to fabricate biomimetic biomaterials with controlled shapes. Here we designed a novel chimeric molecular template made of two proteins, silk fibroin (SF) and albumin (ALB), which serve as a promoter and an inhibitor for hydroxyapatite (HA) formation, respectively, to synthesize HA nanoparticles with controlled shapes. HA nanospheres were produced by the chimeric ALB-SF template, whereas HA nanorods were generated by the SF template alone. The success in controlling the shape of HA nanoparticles allowed us to further study the effect of the shape of HA nanoparticles on the fate of rat mesenchymal stem cells (MSCs). We found that the nanoparticle shape had a crucial impact on the cellular uptake and HA nanospheres were internalized in MSCs at a faster rate. Both HA nanospheres and nanorods showed no significant influence on cell proliferation and migration. However, HA nanospheres significantly promoted the osteoblastic differentiation of MSCs in comparison to HA nanorods. Our work suggests that a chimeric combination of promoter and inhibitor proteins is a promising approach to tuning the shape of nanoparticles. It also sheds new light into the role of the shape of the HA nanoparticles in directing stem cell fate. PMID:26079683

  7. Tackling Cell Transplantation Anoikis: An Injectable, Shape Memory Cryogel Microcarrier Platform Material for Stem Cell and Neuronal Cell Growth.

    PubMed

    Newland, Ben; Welzel, Petra B; Newland, Heike; Renneberg, Claudia; Kolar, Petr; Tsurkan, Mikhail; Rosser, Anne; Freudenberg, Uwe; Werner, Carsten

    2015-10-01

    Highly macroporous semisynthetic cryogel microcarriers can be synthesized for culturing stem cells and neuronal type cells. Growth factors loaded to heparin-containing microcarriers show near zero-order release kinetics and cell-loaded microcarriers can be injected through a fine gauge cannula without negative effect on the cells. These carriers can be applied for cell transplantation applications.

  8. Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel

    PubMed Central

    Yaginuma, T.; Oliveira, M. S. N.; Lima, R.; Ishikawa, T.; Yamaguchi, T.

    2013-01-01

    It is well known that certain pathological conditions result in a decrease of red blood cells (RBCs) deformability and subsequently can significantly alter the blood flow in microcirculation, which may block capillaries and cause ischemia in the tissues. Microfluidic systems able to obtain reliable quantitative measurements of RBC deformability hold the key to understand and diagnose RBC related diseases. In this work, a microfluidic system composed of a microchannel with a hyperbolic-shaped contraction followed by a sudden expansion is presented. We provide a detailed quantitative description of the degree of deformation of human RBCs under a controlled homogeneous extensional flow field. We measured the deformation index (DI) as well as the velocity of the RBCs travelling along the centerline of the channel for four different flow rates and analyze the impact of the particle Reynolds number. The results show that human RBC deformation tends to reach a plateau value in the region of constant extensional rate, the value of which depends on the extension rate. Additionally, we observe that the presence of a sudden expansion downstream of the hyperbolic contraction modifies the spatial distribution of cells and substantially increases the cell free layer (CFL) downstream of the expansion plane similarly to what is seen in other expansion flows. Beyond a certain value of flow rate, there is only a weak effect of inlet flow rates on the enhancement of the downstream CFL. These in vitro experiments show the potential of using microfluidic systems with hyperbolic-shaped microchannels both for the separation of the RBCs from plasma and to assess changes in RBC deformability in physiological and pathological situations for clinical purposes. However, the selection of the geometry and the identification of the most suitable region to evaluate the changes on the RBC deformability under extensional flows are crucial if microfluidics is to be used as an in vitro clinical

  9. Human red blood cell behavior under homogeneous extensional flow in a hyperbolic-shaped microchannel.

    PubMed

    Yaginuma, T; Oliveira, M S N; Lima, R; Ishikawa, T; Yamaguchi, T

    2013-01-01

    It is well known that certain pathological conditions result in a decrease of red blood cells (RBCs) deformability and subsequently can significantly alter the blood flow in microcirculation, which may block capillaries and cause ischemia in the tissues. Microfluidic systems able to obtain reliable quantitative measurements of RBC deformability hold the key to understand and diagnose RBC related diseases. In this work, a microfluidic system composed of a microchannel with a hyperbolic-shaped contraction followed by a sudden expansion is presented. We provide a detailed quantitative description of the degree of deformation of human RBCs under a controlled homogeneous extensional flow field. We measured the deformation index (DI) as well as the velocity of the RBCs travelling along the centerline of the channel for four different flow rates and analyze the impact of the particle Reynolds number. The results show that human RBC deformation tends to reach a plateau value in the region of constant extensional rate, the value of which depends on the extension rate. Additionally, we observe that the presence of a sudden expansion downstream of the hyperbolic contraction modifies the spatial distribution of cells and substantially increases the cell free layer (CFL) downstream of the expansion plane similarly to what is seen in other expansion flows. Beyond a certain value of flow rate, there is only a weak effect of inlet flow rates on the enhancement of the downstream CFL. These in vitro experiments show the potential of using microfluidic systems with hyperbolic-shaped microchannels both for the separation of the RBCs from plasma and to assess changes in RBC deformability in physiological and pathological situations for clinical purposes. However, the selection of the geometry and the identification of the most suitable region to evaluate the changes on the RBC deformability under extensional flows are crucial if microfluidics is to be used as an in vitro clinical

  10. Cadmium administration affects circulatory mononuclear cells in rats.

    PubMed

    Djokic, Jelena; Popov Aleksandrov, Aleksandra; Ninkov, Marina; Mirkov, Ivana; Zolotarevski, Lidija; Kataranovski, Dragan; Kataranovski, Milena

    2015-01-01

    Although numerous investigations have demonstrated a direct effect of cadmium (Cd) on peripheral blood mononuclear cell (PBMC) activity in humans, there is virtually no data concerning the in vivo impact of this metal on circulatory mononuclear cells. In this study, the effects of a sub-lethal Cd (1 mg/kg) dose were examined in rats 48 h following a single intraperitoneal injection. Cd treatment resulted in increased total peripheral blood leukocyte levels; however, decreases in PBMC numbers were seen. These changes coincided with an accumulation of mononuclear cells in the lungs and an increase in mononuclear cells expressing CD11b. A lack of effect of Cd on spontaneous nitric oxide (NO) production and on iNOS mRNA levels in the PBMC was also noted. Differential effects of Cd on PBMC inflammatory cytokine (IL-1β, TNFα, IL-6, IFNγ, and IL-17) gene expression and production were also seen. Specifically, except for IL-1β (levels increased), there were decreases (relative to controls) in mRNA levels for all the other cytokines examined. While there were no Cd treatment-related changes in spontaneous production of the cytokines assessed, there seemed to be a trend (p = 0.06) toward a decrease in spontaneous IL-6 release. When these harvested cells were stimulated ex vivo, there was no effect from Cd exposure on LPS-stimulated IL-1β and TNFα or on ConA-stimulated IFNγ or IL-17 production, but a decrease in IL-6 production in response to LPS was, again, noted. A preliminary study with a lower Cd dose (0.5 mg/kg) revealed some of the same outcomes noted here (mononuclear cell infiltration into lungs, increases in PBMC IL-1β mRNA levels), but differential (increased IL-17 mRNA levels) or newly detected outcomes (increased levels of IL-1α mRNA) as well. The described effects of the single in vivo exposure to Cd on PBMC might contribute to a better overall understanding of the immunomodulatory potential of this environmental contaminant.

  11. Layer-shaped alginate hydrogels enhance the biological performance of human adipose-derived stem cells

    PubMed Central

    2012-01-01

    Background The reconstruction of adipose tissue defects is often challenged by the complications that may occur following plastic and reconstructive surgery, including donor-site morbidity, implant migration and foreign body reaction. To overcome these problems, adipose tissue engineering (ATE) using stem cell-based regeneration strategies has been widely explored in the last years. Mounting evidence has shown that adipose-derived stem cells (ADSCs) represent a promising cell source for ATE. In the context of a small number of reports concerning adipose tissue regeneration using three-dimensional (3-D) systems, the present study was designed to evaluate the biological performance of a novel alginate matrix that incorporates human ADSCs (hADSCs). Results Culture-expanded cells isolated from the stromal vascular fraction (SVF), corresponding to the third passage which showed the expression of mesenchymal stem cell (MSC) markers, were used in the 3-D culture systems. The latter represented a calcium alginate hydrogel, obtained by the diffusion of calcium gluconate (CGH matrix), and shaped as discoid-thin layer. For comparative purposes, a similar hADSC-laden alginate hydrogel cross-linked with calcium chloride was considered as reference hydrogel (RH matrix). Both hydrogels showed a porous structure under scanning electron microscopy (SEM) and the hADSCs embedded displayed normal spherical morphologies, some of them showing signs of mitosis. More than 85% of the entrapped cells survived throughout the incubation period of 7 days. The percentage of viable cells was significantly higher within CGH matrix at 2 days post-seeding, and approximately similar within both hydrogels after 7 days of culture. Moreover, both alginate-based hydrogels stimulated cell proliferation. The number of hADSC within hydrogels has increased during the incubation period of 7 days and was higher in the case of CGH matrix. Cells grown under adipogenic conditions for 21 days showed

  12. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    NASA Astrophysics Data System (ADS)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  13. Matrix metalloproteinase inhibition negatively affects muscle stem cell behavior.

    PubMed

    Bellayr, Ian; Holden, Kyle; Mu, Xiaodong; Pan, Haiying; Li, Yong

    2013-01-01

    Skeletal muscle is a large and complex system that is crucial for structural support, movement and function. When injured, the repair of skeletal muscle undergoes three phases: inflammation and degeneration, regeneration and fibrosis formation in severe injuries. During fibrosis formation, muscle healing is impaired because of the accumulation of excess collagen. A group of zinc-dependent endopeptidases that have been found to aid in the repair of skeletal muscle are matrix metalloproteinases (MMPs). MMPs are able to assist in tissue remodeling through the regulation of extracellular matrix (ECM) components, as well as contributing to cell migration, proliferation, differentiation and angiogenesis. In the present study, the effect of GM6001, a broad-spectrum MMP inhibitor, on muscle-derived stem cells (MDSCs) is investigated. We find that MMP inhibition negatively impacts skeletal muscle healing by impairing MDSCs in migratory and multiple differentiation abilities. These results indicate that MMP signaling plays an essential role in the wound healing of muscle tissue because their inhibition is detrimental to stem cells residing in skeletal muscle. PMID:23329998

  14. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    PubMed Central

    Chevalier, N.R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  15. Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata).

    PubMed

    Prüm, Bettina; Seidel, Robin; Bohn, Holger Florian; Speck, Thomas

    2012-01-01

    Plant surfaces showing hierarchical structuring are frequently found in plant organs such as leaves, petals, fruits and stems. In our study we focus on the level of cell shape and on the level of superimposed microstructuring, leading to hierarchical surfaces if both levels are present. While it has been shown that epicuticular wax crystals and cuticular folds strongly reduce insect attachment, and that smooth papillate epidermal cells in petals improve the grip of pollinators, the impact of hierarchical surface structuring of plant surfaces possessing convex or papillate cells on insect attachment remains unclear. We performed traction experiments with male Colorado potato beetles on nine different plant surfaces with different structures. The selected plant surfaces showed epidermal cells with either tabular, convex or papillate cell shape, covered either with flat films of wax, epicuticular wax crystals or with cuticular folds. On surfaces possessing either superimposed wax crystals or cuticular folds we found traction forces to be almost one order of magnitude lower than on surfaces covered only with flat films of wax. Independent of superimposed microstructures we found that convex and papillate epidermal cell shapes slightly enhance the attachment ability of the beetles. Thus, in plant surfaces, cell shape and superimposed microstructuring yield contrary effects on the attachment of the Colorado potato beetle, with convex or papillate cells enhancing attachment and both wax crystals or cuticular folds reducing attachment. However, the overall magnitude of traction force mainly depends on the presence or absence of superimposed microstructuring. PMID:22428097

  16. Oryza sativa H+-ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice.

    PubMed

    Toda, Yosuke; Wang, Yin; Takahashi, Akira; Kawai, Yuya; Tada, Yasuomi; Yamaji, Naoki; Feng Ma, Jian; Ashikari, Motoyuki; Kinoshita, Toshinori

    2016-06-01

    The stomatal apparatus consists of a pair of guard cells and regulates gas exchange between the leaf and atmosphere. In guard cells, blue light (BL) activates H(+)-ATPase in the plasma membrane through the phosphorylation of its penultimate threonine, mediating stomatal opening. Although this regulation is thought to be widely adopted among kidney-shaped guard cells in dicots, the molecular basis underlying that of dumbbell-shaped guard cells in monocots remains unclear. Here, we show that H(+)-ATPases are involved in the regulation of dumbbell-shaped guard cells. Stomatal opening of rice was promoted by the H(+)-ATPase activator fusicoccin and by BL, and the latter was suppressed by the H(+)-ATPase inhibitor vanadate. Using H(+)-ATPase antibodies, we showed the presence of phosphoregulation of the penultimate threonine in Oryza sativa H(+)-ATPases (OSAs) and localization of OSAs in the plasma membrane of guard cells. Interestingly, we identified one H(+)-ATPase isoform, OSA7, that is preferentially expressed among the OSA genes in guard cells, and found that loss of function of OSA7 resulted in partial insensitivity to BL. We conclude that H(+)-ATPase is involved in BL-induced stomatal opening of dumbbell-shaped guard cells in monocotyledon species. PMID:27048369

  17. Oryza sativa H+-ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice

    PubMed Central

    Toda, Yosuke; Wang, Yin; Takahashi, Akira; Kawai, Yuya; Tada, Yasuomi; Yamaji, Naoki; Feng Ma, Jian; Ashikari, Motoyuki; Kinoshita, Toshinori

    2016-01-01

    The stomatal apparatus consists of a pair of guard cells and regulates gas exchange between the leaf and atmosphere. In guard cells, blue light (BL) activates H+-ATPase in the plasma membrane through the phosphorylation of its penultimate threonine, mediating stomatal opening. Although this regulation is thought to be widely adopted among kidney-shaped guard cells in dicots, the molecular basis underlying that of dumbbell-shaped guard cells in monocots remains unclear. Here, we show that H+-ATPases are involved in the regulation of dumbbell-shaped guard cells. Stomatal opening of rice was promoted by the H+-ATPase activator fusicoccin and by BL, and the latter was suppressed by the H+-ATPase inhibitor vanadate. Using H+-ATPase antibodies, we showed the presence of phosphoregulation of the penultimate threonine in Oryza sativa H+-ATPases (OSAs) and localization of OSAs in the plasma membrane of guard cells. Interestingly, we identified one H+-ATPase isoform, OSA7, that is preferentially expressed among the OSA genes in guard cells, and found that loss of function of OSA7 resulted in partial insensitivity to BL. We conclude that H+-ATPase is involved in BL-induced stomatal opening of dumbbell-shaped guard cells in monocotyledon species. PMID:27048369

  18. Oryza sativa H+-ATPase (OSA) is Involved in the Regulation of Dumbbell-Shaped Guard Cells of Rice.

    PubMed

    Toda, Yosuke; Wang, Yin; Takahashi, Akira; Kawai, Yuya; Tada, Yasuomi; Yamaji, Naoki; Feng Ma, Jian; Ashikari, Motoyuki; Kinoshita, Toshinori

    2016-06-01

    The stomatal apparatus consists of a pair of guard cells and regulates gas exchange between the leaf and atmosphere. In guard cells, blue light (BL) activates H(+)-ATPase in the plasma membrane through the phosphorylation of its penultimate threonine, mediating stomatal opening. Although this regulation is thought to be widely adopted among kidney-shaped guard cells in dicots, the molecular basis underlying that of dumbbell-shaped guard cells in monocots remains unclear. Here, we show that H(+)-ATPases are involved in the regulation of dumbbell-shaped guard cells. Stomatal opening of rice was promoted by the H(+)-ATPase activator fusicoccin and by BL, and the latter was suppressed by the H(+)-ATPase inhibitor vanadate. Using H(+)-ATPase antibodies, we showed the presence of phosphoregulation of the penultimate threonine in Oryza sativa H(+)-ATPases (OSAs) and localization of OSAs in the plasma membrane of guard cells. Interestingly, we identified one H(+)-ATPase isoform, OSA7, that is preferentially expressed among the OSA genes in guard cells, and found that loss of function of OSA7 resulted in partial insensitivity to BL. We conclude that H(+)-ATPase is involved in BL-induced stomatal opening of dumbbell-shaped guard cells in monocotyledon species.

  19. Magnetic engineering of stable rod-shaped stem cell aggregates: circumventing the pitfall of self-bending.

    PubMed

    Du, V; Fayol, D; Reffay, M; Luciani, N; Bacri, J-C; Gay, C; Wilhelm, C

    2015-02-01

    A current challenge for tissue engineering while restoring the function of diseased or damaged tissue is to customize the tissue according to the target area. Scaffold-free approaches usually yield spheroid shapes with the risk of necrosis at the center due to poor nutrient and oxygen diffusion. Here, we used magnetic forces developed at the cellular scale by miniaturized magnets to create rod-shaped aggregates of stem cells that subsequently matured into a tissue-like structure. However, during the maturation process, the tissue-rods spontaneously bent and coiled into sphere-like structures, triggered by the increasing cell-cell adhesion within the initially non-homogeneous tissue. Optimisation of the intra-tissular magnetic forces successfully hindered the transition, in order to produce stable rod-shaped stem cells aggregates. PMID:25580701

  20. Shaping and preserving β-cell identity with microRNAs.

    PubMed

    Dumortier, O; Fabris, G; Van Obberghen, E

    2016-09-01

    The highly sophisticated identity of pancreatic β-cells is geared to accomplish its unique feat of providing insulin for organismal glucose and lipid homeostasis. This requires a particular and streamlined fuel metabolism which defines mature β-cells as glucose sensors linked to an insulin exocytosis machinery. The establishment of an appropriate β-cell mass and function during development as well as the maintenance of their identity throughout life are necessary for energy homeostasis. The small non-coding RNAs, microRNAs (miRNAs), are now well-recognized regulators of gene transcripts, which in general are negatively affected by them. Convincing evidence exists to view miRNAs as major actors in β-cell development and function, suggesting an important role for them in the distinctive β-cell 'identity card'. Here, we summarize key features that associate miRNAs and the establishment of the appropriate β-cell identity and its necessary maintenance during their 'long life'. PMID:27615131

  1. Shaping and preserving β-cell identity with microRNAs.

    PubMed

    Dumortier, O; Fabris, G; Van Obberghen, E

    2016-09-01

    The highly sophisticated identity of pancreatic β-cells is geared to accomplish its unique feat of providing insulin for organismal glucose and lipid homeostasis. This requires a particular and streamlined fuel metabolism which defines mature β-cells as glucose sensors linked to an insulin exocytosis machinery. The establishment of an appropriate β-cell mass and function during development as well as the maintenance of their identity throughout life are necessary for energy homeostasis. The small non-coding RNAs, microRNAs (miRNAs), are now well-recognized regulators of gene transcripts, which in general are negatively affected by them. Convincing evidence exists to view miRNAs as major actors in β-cell development and function, suggesting an important role for them in the distinctive β-cell 'identity card'. Here, we summarize key features that associate miRNAs and the establishment of the appropriate β-cell identity and its necessary maintenance during their 'long life'.

  2. Epoxyeicosatrienoic Acids Affect Electrolyte Transport in Renal Tubular Epithelial Cells: Dependence on Cyclooxygenase and Cell Polarity

    PubMed Central

    Nüsing, Rolf M.; Schweer, Horst; Fleming, Ingrid; Zeldin, Darryl C.; Wegmann, Markus

    2007-01-01

    We investigated the effects of epoxyeicosatrienoic acids (EETs) on ion transport in the polarized renal distal tubular cell line, MDCK C7. Of the four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) studied, only apical, but not basolateral, application of 5,6-EET increased short circuit current (Isc) with kinetics similar to those of arachidonic acid. The ion transport was blocked by preincubation with the cyclooxygenase inhibitor indomethacin or with the chloride channel blocker NPPB. Further, both a Cl−-free bath solution and the Ca2+ antagonist verapamil blocked 5,6-EET-induced ion transport. Although the presence of the PGE2 receptors EP2, EP3, and EP4 was demonstrated, apically added PGE2 was ineffective and basolaterally added PGE2 caused a different kinetics in ion transport compared to 5,6-EET. Moreover, PGE2 sythesis in MDCK C7 cells was unaffected by 5,6-EET treatment. GC/MS/MS analysis of cell supernatants revealed the presence of the biologically inactive 5,6-dihydroxy-PGE1 in 5,6-EET-treated cells, but not in control cells. Indomethacin suppressed the formation of 5,6-dihydroxy-PGE1. 5,6-epoxy-PGE1 the precursor of 5,6-dihydroxy-PGE1, caused a similar ion transport as 5,6-EET. Cytochrome P450 enzymes homolog to human CYP2C8, CYP2C9, and CYP2J2 protein were detected immunologically in the MDCK C7 cells. Our findings suggest that 5,6-EET affects Cl-transport in renal distal tubular cells independent of PGE2 but by a mechanism, dependent on its conversion to 5,6-epoxy-PGE1 by cyclooxygenase. We suggest a role for this P450 epoxygenase product in the regulation of electrolyte transport, especially as a saluretic compound acting from the luminal side of tubular cells in the mammalian kidney. PMID:17494091

  3. The novel herbicide oxaziclomefone inhibits cell expansion in maize cell cultures without affecting turgor pressure or wall acidification.

    PubMed

    O'Looney, Nichola; Fry, Stephen C

    2005-11-01

    Oxaziclomefone [OAC; IUPAC name 3-(1-(3,5-dichlorophenyl)-1-methylethyl)-3,4-dihydro-6-methyl-5-phenyl-2H-1,3-oxazin-4-one] is a new herbicide that inhibits cell expansion in grass roots. Its effects on cell cultures and mode of action were unknown. In principle, cell expansion could be inhibited by a decrease in either turgor pressure or wall extensibility. Cell expansion was estimated as settled cell volume; cell division was estimated by cell counting. Membrane permeability to water was measured by a novel method involving simultaneous assay of the efflux of (3)H(2)O and [(14)C]mannitol from a 'bed' of cultured cells. Osmotic potential was measured by depression of freezing point. OAC inhibited cell expansion in cultures of maize (Zea mays), spinach (Spinacia oleracea) and rose (Rosa sp.), with an ID(50) of 5, 30 and 250 nm, respectively. In maize cultures, OAC did not affect cell division for the first 40 h. It did not affect the osmotic potential of cell sap or culture medium, nor did it impede water transport across cell membranes. It did not affect cells' ability to acidify the apoplast (medium), which may be necessary for 'acid growth'. As OAC did not diminish turgor pressure, its ability to inhibit cell expansion must depend on changes in wall extensibility. It could be a valuable tool for studies on cell expansion.

  4. Fusion and metabolism of plant cells as affected by microgravity.

    PubMed

    Hampp, R; Hoffmann, E; Schönherr, K; Johann, P; De Filippis, L

    1997-01-01

    Plant cell protoplasts derived from leaf tissue of two different tobacco species (Nicotiana tabacum., N. rustica L.) were exposed to short-term (sounding rocket experiments) and long-term (spacelab) microgravity environments in order to study both (electro) cell fusion and cell metabolism during early and later stages of tissue regeneration. The period of exposure to microgravity varied from 10 min (sounding rocket) to 10 d (space shuttle). The process of electro fusion of protoplasts was improved under conditions of microgravity: the time needed to establish close membrane contact between protoplasts (alignment time) was reduced (5 as compared to 15 s under 1 g) and numbers of fusion products between protoplasts of different specific density were increased by a factor of about 10. In addition, viability of fusion products, as shown by the ability to form callus, increased from about 60% to more than 90%. Regenerated fusion products obtained from both sounding-rocket and spacelab experiments showed a wide range of intermediate properties between the two parental plants. This was verified by isozyme analysis and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). In order to address potential metabolic responses, more general markers such as the overall energy state (ATP/ADP ratio), the redox charge of the diphosphopyridine nucleotide system (NADH/NAD ratio), and the pool size of fructose-2,6-bisphosphate (Fru 2,6 bisp), a regulator of the balance between glycolysis and gluconeogenesis, were determined. Responses of these parameters were different with regard to short-term and long-term exposure. Shortly after transition to reduced gravitation (sounding rocket) ratios of ATP/ADP exhibited strong fluctuation while the pool size of NAD decreased (indicating an increased NADH/NAD ratio) and that of Fru 2,6 bisp increased. As similar changes can be observed under stress conditions, this response is probably indicative of a metabolic stress

  5. Tension, cell shape and triple-junction angle anisotropy in the Drosophila germband

    NASA Astrophysics Data System (ADS)

    Lacy, Monica; Hutson, M. Shane; Meyer, Christian; McDonald, Xena

    In the field of tissue mechanics, the embryonic development of Drosophila melanogaster offers many opportunities for study. One of Drosophila's most crucial morphogenetic stages is the retraction of an epithelial tissue called the germband. During retraction, the segments of the retracting germband, as well as the individual germband cells, elongate in response to forces from a connected tissue, the amnioserosa. Modeling of this elongation, based on tissue responses to laser wounding, has plotted the internal germband tension against the external amnioserosa stress, creating a phase space to determine points and regions corresponding to stable elongation. Although the resulting fits indicate a necessary opposition of internal and external forces, they are inconclusive regarding the exact balance. We will present results testing the model predictions by measuring cell shapes and the correlations between cell-edge directions and triple-junction angles. These measures resolve the ambiguity in pinpointing the internal-external force balance for each germband segment. Research was supported by NIH Grant Numbers 1R01GM099107 and 1R21AR068933.

  6. Changes in Ect2 Localization Couple Actomyosin-Dependent Cell Shape Changes to Mitotic Progression

    PubMed Central

    Matthews, Helen K.; Delabre, Ulysse; Rohn, Jennifer L.; Guck, Jochen; Kunda, Patricia; Baum, Buzz

    2012-01-01

    Summary As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first becomes active in prophase, when it is exported from the nucleus into the cytoplasm, activating RhoA to induce the formation of a mechanically stiff and rounded metaphase cortex. Then, at anaphase, binding to RacGAP1 at the spindle midzone repositions Ect2 to induce local actomyosin ring formation. Ect2 localization therefore defines the stage-specific changes in actin cortex organization critical for accurate cell division. PMID:22898780

  7. Immunological identification of candidate proteins involved in regulating active shape changes of outer hair cells.

    PubMed

    Knipper, M; Zimmermann, U; Köpschall, I; Rohbock, K; Jüngling, S; Zenner, H P

    1995-06-01

    By employing immunological methods, it has been demonstrated that myosin, myosin light chain (MLC) and myosin light chain kinase (MLCK) proteins in outer hair cells (OHC) are immunologically different from isoforms in platelets, smooth muscle and heart muscle, and are probably more related to isoforms found in red blood cells (RBC). Moreover, proteins related to band 3 protein (b3p) and protein 4.1 (p 4.1), ankyrin as well as fodrin and spectrin, but not glycophorin, have been identified in isolated OHCs. Both OHCs and RBC differ from other motile non-muscle cells in their lack of smooth muscle isoforms of actin, their common high levels of spectrin-, ankyrin- and band 3-like proteins, as well as the expression of the 80 kDa protein 4.1 isoform. The data support the notion that motility of OHC may be based upon regulation of the b3p/p 4.1/ankyrin complex, and thus may be reminiscent to the active shape changes in RBC.

  8. Size, Shape, and Arrangement of Cellulose Microfibril in Higher Plant Cell Walls

    SciTech Connect

    Ding, S. Y.

    2013-01-01

    Plant cell walls from maize (Zea mays L.) are imaged using atomic force microscopy (AFM) at the sub-nanometer resolution. We found that the size and shape of fundamental cellulose elementary fibril (CEF) is essentially identical in different cell wall types, i.e., primary wall (PW), parenchyma secondary wall (pSW), and sclerenchyma secondary wall (sSW), which is consistent with previously proposed 36-chain model (Ding et al., 2006, J. Agric. Food Chem.). The arrangement of individual CEFs in these wall types exhibits two orientations. In PW, CEFs are horizontally associated through their hydrophilic faces, and the planar faces are exposed, forming ribbon-like macrofibrils. In pSW and sSW, CEFs are vertically oriented, forming layers, in which hemicelluloses are interacted with the hydrophobic faces of the CEF and serve as spacers between CEFs. Lignification occurs between CEF-hemicelluloses layers in secondary walls. Furthermore, we demonstrated quantitative analysis of plant cell wall accessibility to and digestibility by different cellulase systems at real-time using chemical imaging (e.g., stimulated Raman scattering) and fluorescence microscopy of labeled cellulases (Ding et al., 2012, Science, in press).

  9. Cytomegalovirus shapes long-term immune reconstitution after allogeneic stem cell transplantation

    PubMed Central

    Itzykson, Raphael; Robin, Marie; Moins-Teisserenc, Helene; Delord, Marc; Busson, Marc; Xhaard, Aliénor; de Fontebrune, Flore Sicre; de Latour, Régis Peffault; Toubert, Antoine; Socié, Gérard

    2015-01-01

    Immune reconstitution after allogeneic stem cell transplantation is a dynamic and complex process depending on the recipient and donor characteristics, on the modalities of transplantation, and on the occurrence of graft-versus-host disease. Multivariate methods widely used for gene expression profiling can simultaneously analyze the patterns of a great number of biological variables on a heterogeneous set of patients. Here we use these methods on flow cytometry assessment of up to 25 lymphocyte populations to analyze the global pattern of long-term immune reconstitution after transplantation. Immune patterns were most distinct from healthy controls at six months, and had not yet fully recovered as long as two years after transplant. The two principal determinants of variability were linked to the balance of B and CD8+ T cells and of natural killer and B cells, respectively. Recipient’s cytomegalovirus serostatus, cytomegalovirus replication, and chronic graft-versus-host disease were the main factors shaping the immune pattern one year after transplant. We identified a complex signature of under- and over-representation of immune populations dictated by recipient’s cytomegalovirus seropositivity. Finally, we identified dimensions of variance in immune patterns as significant predictors of long-term non-relapse mortality, independently of chronic graft-versus-host disease. PMID:25261095

  10. Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions.

    PubMed

    Lira, Sérgio A; Miranda, José A

    2016-01-01

    We investigate a quasi-two-dimensional system composed of an initially circular ferrofluid droplet surrounded by a nonmagnetic fluid of higher density. These immiscible fluids flow in a rotating Hele-Shaw cell, under the influence of an in-plane radial magnetic field. We focus on the situation in which destabilizing bulk magnetic field effects are balanced by stabilizing centrifugal forces. In this framing, we consider the interplay of capillary and magnetic normal traction effects in determining the fluid-fluid interface morphology. By employing a vortex-sheet formalism, we have been able to find a family of exact stationary N-fold polygonal shape solutions for the interface. A weakly nonlinear theory is then used to verify that such exact interfacial solutions are in fact stable. PMID:26871176

  11. A Springback Compensation Method for Complex-Shaped Flange Components in Fluid-Cell Forming Process

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqiang; Li, Dongsheng; Yang, Weijun

    2011-08-01

    The fluid-cell forming process (FFP), one of the main forming technologies in aeronautical manufactories, suffers seriously from the product quality problem due to springback. A springback compensation method is proposed particularly for complex-shaped flange parts. This method is derived from the classic displacement adjustment method, but differs in the way to predict the springback amount and calculate the adjusting vectors. Based on discussion on the relationship between the springback angles and the geometrical parameters of flange parts, a springback distribution function (SDF) is proposed to predict springback angles of curved flanges. The springback angles are mapped to nodal adjusting vectors of the die mesh and then the optimized die is obtained. The above procedures are applied to two fuselage flange parts and the experimental result shows that this method is valid.

  12. SHAPE SELECTIVE NANO-CATALYSTS: TOWARD DIRECT METHANOL FUEL CELLS APPLICATIONS

    SciTech Connect

    Murph, S.

    2010-06-16

    A series of bimetallic core-shell-alloy type Au-Pt nanomaterials with various morphologies, aspect ratios and compositions, were produced in a heterogenous epitaxial fashion. Gold nanoparticles with well-controlled particle size and shape, e.g. spheres, rods and cubes, were used as 'seeds' for platinum growth in the presence of a mild reducing agent, ascorbic acid and a cationic surfactant cethyltrimethyl ammonium bromide (CTAB). The reactions take place in air and water, and are quick, economical and amenable for scaling up. The synthesized nanocatalysts were characterized by electron microscopy techniques and energy dispersive X-ray analysis. Nafion membranes were embedded with the Au-Pt nanomaterials and analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their potential in direct methanol fuel cells applications.

  13. A Single-Use Paper-Shaped Microbial Fuel Cell for Rapid Aqueous Biosensing.

    PubMed

    Zuo, Kuichang; Liu, Han; Zhang, Qiaoying; Liang, Peng; Huang, Xia; Vecitis, Chad D

    2015-06-22

    The traditional chamber-based microbial fuel cell (MFC) often has the disadvantages of high ohmic resistance, large volume requirements, and delayed start-up. In this study, paper-shaped MFCs utilizing a porous carbon anode, a solid Ag2 O-coated carbon cathode, and a micrometer-thin porous polyvinylidene fluoride (PVDF) separator are investigated to address the classical MFC issues. The Ag2 O-coated cathode has a low overpotential of 0.06 V at a reducing current of 1 mA compared to a Pt-air cathode. Rapid inoculation by filtration results in an instantaneous power density of 92 mW m(-2) with an internal resistance of 162 Ω. Integrated current over the first 30 min of operation has a linear relation with microbial concentration. PMID:26013975

  14. Topographic modulation of the orientation and shape of cell nuclei and their influence on the measured elastic modulus of epithelial cells.

    PubMed

    McKee, Clayton T; Raghunathan, Vijay K; Nealey, Paul F; Russell, Paul; Murphy, Christopher J

    2011-11-01

    The influence of nucleus shape and orientation on the elastic modulus of epithelial cells was investigated with atomic force microscopy. The shape and orientation were controlled by presenting the epithelial cells with anisotropic parallel ridges and grooves of varying pitch at the cell substratum. As the cells oriented to the underlying topography, the volume of the nucleus increased as the pitch of the topography increased from 400 nm to 2000 nm. The increase in nucleus volume was reflected by an increase in the measured elastic modulus of the topographically aligned cells. Significant alterations in the shape of the nucleus, by intimate contact with the topographic ridge and grooves of the underlying cell, were also observed via confocal microscopy, indicating that the nucleus may also act as a direct mechanosensor of substratum topography.

  15. Effects of Epidermal Cell Shape and Pigmentation on Optical Properties of Antirrhinum Petals at Visible and Ultraviolet Wavelengths.

    PubMed Central

    Gorton, H. L.; Vogelmann, T. C.

    1996-01-01

    We used the Mixta+ and mixta- lines of Antirrhinum majus as a model system to investigate the effects of epidermal cell shape and pigmentation on tissue optical properties in the visible and ultraviolet (UV) spectral regions. Adaxial epidermal cells of Mixta+ flowers have a conical-papillate shape; in the mixta- line the cells are slightly domed. Mixta+ cells contained significantly more anthocyanin and other flavonoids than mixta- cells when plants were grown under either high- or low-UV conditions. Mixta+ cells focused light (3.5-4.7 times incident) within their pigmented interiors, whereas mixta- cells focused light (2.1-2.7 times incident) in the unpigmented mesophyll. UV light penetrated the epidermis (commonly 20-50% transmittance at 312 nm) mainly through the unpigmented peripheral regions of the cells that were similar for the two lines, so that overall penetration through Mixta+ and mixta- epidermises was equal. However, maximum UV absorption in the central region of epidermal cells was slightly greater in Mixta+ than mixta-, and intact Mixta+ flowers reflected less light in the spectral regions with intermediate flavonoid absorbance. In both cases, about 50 to 75% of the difference could be attributed to cell shape and resulting changes in the optical pathlength or focusing. PMID:12226425

  16. Microfilaments and microtubules control the shape, motility, and subcellular distribution of cortical mitochondria in characean internodal cells.

    PubMed

    Foissner, I

    2004-12-01

    The shape, motility, and subcellular distribution of mitochondria in characean internodal cells were studied by visualizing fluorescent dyes with confocal laser scanning microscopy and conducting drug-inhibitor experiments. Shape, size, number, and distribution of mitochondria varied according to the growth status and the metabolic activity within the cell. Vermiform (sausage-shaped), disc-, or amoeba-like mitochondria were present in elongating internodes, whereas very young cells and older cells that had completed growth contained short, rodlike organelles only. Mitochondria were evenly distributed and passively transported in the streaming endoplasm. In the cortex, mitochondria were sandwiched between the plasma membrane and the stationary chloroplast files and distributed in relation to the pattern of pH banding. Highest mitochondrial densities were found at the acid, photosynthetically more active regions, whereas the alkaline sites contained fewer and smaller mitochondria. In the cortex of elongating cells, small mitochondria moved slowly along microtubules or actin filaments. The shape and motility of giant mitochondria depended on the simultaneous interaction with both cytoskeletal systems. There was no microtubule-dependent motility in the cortex of nonelongating mature cells and mitochondria only occasionally travelled along actin filaments. These observations suggest that mitochondria of characean internodes possess motor proteins for microtubules and actin filaments, both of which can be used either as tracks for migration or for immobilization. The cortical cytoskeleton probably controls the spatiotemporal distribution of mitochondria within the cell and promotes their association with chloroplasts, which is necessary for exchange of metabolites during photosynthesis and detoxification.

  17. Survivor needs or logistical convenience? Factors shaping decisions to deliver relief to earthquake-affected communities, Pakistan 2005-06.

    PubMed

    Benini, Aldo; Conley, Charles; Dittemore, Brody; Waksman, Zachary

    2009-03-01

    In Bureaucratizing the Good Samaritan, Waters (2001) argues that bureaucratic rationality distracts humanitarian agencies from the needs of the people they are supposed to assist, in favour of other values that their institutional frameworks dictate. We test his claim by investigating the response to the Pakistan 2005 earthquake. One of us (Dittemore) worked with the United Nations Joint Logistics Centre in the theatre, managing a relief cargo shipment database. The response, known as 'Operation Winter Race', was hampered by extreme logistical challenges, but ultimately succeeded in averting a second disaster resulting from cold and starvation. We use statistical models to probe whether survivor needs significantly guided decisions to deliver relief to affected communities. Needs assessments remained incomplete and incoherent. We measure needs through proxy indicators and integrate them, on a Geographic Information System (GIS) platform, with logistics and relief delivery data. We find that, despite strong logistics effects, needs orientations were significant. However, the strength of decision factors varies between commodity types (food versus clothing and shelter versus reconstruction materials) as well as over the different phases of the response. This study confirms Thomas's observation that logistics databases are rich 'repositories of data that can be analyzed to provide post-event learning' (Thomas, 2003, p. 4). This article is an invitation for others to engage in creative humanitarian data management.

  18. [Factors affecting plaque formation by Lassa virus in Vero cells].

    PubMed

    Lukashevich, I S; Vasiuchkov, A D; Mar'iankova, R F; Votiakov, V I

    1982-01-01

    The method of Porterfield and Allison was adapted for titration of the infectious activity of Lassa virus by the plaque formation in Vero cells. The virus was cloned, and the effect of the time of adsorption, pH, temperature, as well as polycations (DEAD-dextran, protamine sulphate) dimethylsuphoxide (DMSO), and trypsin added during adsorption or into the agar overlay on the effectiveness of plaque production by Lassa virus (virus titres, plaque size) were studied. The optimal adsorption time was found to be 1 1/2-2 hours, pH 8.0. The number of plaques produced by the virus was approximately similar at 35 degrees C. The substances under study did not enhance the efficacy of plaque formation, on the contrary, DMSO and high concentrations of polycations decreased plaque size.

  19. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function.

    PubMed Central

    Tiruppathi, C; Malik, A B; Del Vecchio, P J; Keese, C R; Giaever, I

    1992-01-01

    We have developed an electrical method to study endothelial cell shape changes in real time in order to examine the mechanisms of alterations in the endothelial barrier function. Endothelial shape changes were quantified by using a monolayer of endothelial cells grown on a small (10(-3) cm2) evaporated gold electrode and measuring the changes in electrical impedance. Bovine pulmonary microvessel endothelial cells and bovine pulmonary artery endothelial cells were used to study the effects of alpha-thrombin on cell-shape dynamics by the impedance measurement. alpha-Thrombin produced a dose-dependent decrease in impedance that occurred within 0.5 min in both cell types, indicative of retraction of endothelial cells and widening of interendothelial junctions because of "rounding up" of the cells. The alpha-thrombin-induced decrease in impedance persisted for approximately 2 hr, after which the value recovered to basal levels. Pretreatment of endothelial cells with the protein kinase C inhibitor, calphostin C, or with 8-bromoadenosine 3',5'-cyclic monophosphate prevented the decreased impedance, suggesting that the endothelial cell change is modulated by activation of second-messenger pathways. The alpha-thrombin-induced decrease in impedance was in agreement with the previously observed increases in transendothelial albumin permeability and evidence of formation of intercellular gaps after alpha-thrombin challenge. The impedance measurement may be a valuable in vitro method for the assessment of mechanisms of decreased endothelial barrier function occurring with inflammatory mediators. Since the rapidly occurring changes in endothelial cell shape in response to mediators such as thrombin are mediated activation of second-messenger pathways, the ability to monitor endothelial cell dynamics in real time may provide insights into the signal-transduction events mediating the increased endothelial permeability. PMID:1518814

  20. Peptidoglycan LD-carboxypeptidase Pgp2 influences Campylobacter jejuni helical cell shape and pathogenic properties and provides the substrate for the DL-carboxypeptidase Pgp1.

    PubMed

    Frirdich, Emilisa; Vermeulen, Jenny; Biboy, Jacob; Soares, Fraser; Taveirne, Michael E; Johnson, Jeremiah G; DiRita, Victor J; Girardin, Stephen E; Vollmer, Waldemar; Gaynor, Erin C

    2014-03-21

    Despite the importance of Campylobacter jejuni as a pathogen, little is known about the fundamental aspects of its peptidoglycan (PG) structure and factors modulating its helical morphology. A PG dl-carboxypeptidase Pgp1 essential for maintenance of C. jejuni helical shape was recently identified. Bioinformatic analysis revealed the CJJ81176_0915 gene product as co-occurring with Pgp1 in several organisms. Deletion of cjj81176_0915 (renamed pgp2) resulted in straight morphology, representing the second C. jejuni gene affecting cell shape. The PG structure of a Δpgp2 mutant showed an increase in tetrapeptide-containing muropeptides and a complete absence of tripeptides, consistent with ld-carboxypeptidase activity, which was confirmed biochemically. PG analysis of a Δpgp1Δpgp2 double mutant demonstrated that Pgp2 activity is required to generate the tripeptide substrate for Pgp1. Loss of pgp2 affected several pathogenic properties; the deletion strain was defective for motility in semisolid agar, biofilm formation, and fluorescence on calcofluor white. Δpgp2 PG also caused decreased stimulation of the human nucleotide-binding oligomerization domain 1 (Nod1) proinflammatory mediator in comparison with wild type, as expected from the reduction in muropeptide tripeptides (the primary Nod1 agonist) in the mutant; however, these changes did not alter the ability of the Δpgp2 mutant strain to survive within human epithelial cells or to elicit secretion of IL-8 from epithelial cells after infection. The pgp2 mutant also showed significantly reduced fitness in a chick colonization model. Collectively, these analyses enhance our understanding of C. jejuni PG maturation and help to clarify how PG structure and cell shape impact pathogenic attributes.

  1. Chick tendon fibroblast transcriptome and shape depend on whether the cell has made its own collagen matrix

    PubMed Central

    Yeung, Ching-Yan Chloé; Zeef, Leo A. H.; Lallyett, Chloe; Lu, Yinhui; Canty-Laird, Elizabeth G.; Kadler, Karl E.

    2015-01-01

    Collagen- and fibrin-based gels are extensively used to study cell behaviour. However, 2D–3D and collagen-fibrin comparisons of gene expression, cell shape and mechanotransduction, with an in vivo reference, have not been reported. Here we compared chick tendon fibroblasts (CTFs) at three stages of embryonic development with CTFs cultured in collagen- or fibrin-based tissue engineered constructs (TECs). CTFs synthesised their own collagen matrix in fibrin-based TECs and better recapitulated the gene expression, collagen fibril alignment and cell shape seen in vivo. In contrast, cells in 3D collagen gels exhibited a 2D-like morphology and expressed fewer of the genes expressed in vivo. Analysis of YAP/TAZ target genes showed that collagen gels desensitise mechanotransduction pathways. In conclusion, gene expression and cell shape are similar on plastic and 3D collagen whereas cells in 3D fibrin have a shape and transcriptome better resembling the in vivo situation. Implications for wound healing are discussed. PMID:26337655

  2. Schwann cell interactions with polymer films are affected by groove geometry and film hydrophilicity.

    PubMed

    Mobasseri, S A; Terenghi, G; Downes, S

    2014-10-01

    We have developed a biodegradable polymer scaffold made of a polycaprolactone/polylactic acid (PCL/PLA) film. Surface properties such as topography and chemistry have a vital influence on cell-material interactions. Surface modifications of PCL/PLA films were performed using topographical cues and UV-ozone treatment to improve Schwann cell organisation and behaviour. Schwann cell attachment, alignment and proliferation were evaluated on the grooved UV-ozone treated and non-treated films. Solvent casting of the polymer solution on patterned silicon substrates resulted in films with different groove shapes: V (V), sloped (SL) and square (SQ) shapes. Pitted films, with no grooves, were prepared as a negative control. The UV-ozone treatment was performed to increase hydrophilicity. The process specifications for UV-ozone treatment were evaluated and 5 min radiation time and 6 cm distance to the UV source were suggested as the optimal practise. When cultured on grooved films, Schwann cells elongated on the V and SL shape grooves without crossing over, and grew in the direction of the grooves. However, there was less elongation with more crossing over on the SQ shape grooves. The maximum cell length (511 μm) was observed on the treated V-grooved films. The cells cultured on pitted UV-ozone treated surfaces showed random arrangements with no increase in length. We have demonstrated that the synergic effects of physical cues combined with UV-ozone treatment have the potential to enhance Schwann cell morphology and alignment. PMID:25167538

  3. Cell volume and shape oscillations in rat type-II somatotrophs at hypotonic conditions.

    PubMed

    Engström, K G; Sävendahl, L

    1995-05-01

    The size and shape of growth hormone (GH)-producing rat type-II somatotrophs was studied during osmotic manipulation. When somatotrophs were exposed to large osmotic stress (200 and 225 mOsm), the peak projected cell area (PCA) was 132.9% +/- 12.6% and 116.8% +/- 2.8% (P < 0.01) and triggered a regulatory volume decrease (RVD) to avoid lysis. At lower osmotic stress (250 mOsm), the rate of swelling was slower, and the volume reached a steady state at 109.4% +/- 2.4% (P < 0.05) and was without RVD. At 275 and 287 mOsm, the swelling was delayed [PCA peak at 3-4 min; 105.8% +/- 1.5% (P < 0.05) and 104.2% +/- 1.7%] and then showed repeated synchronized cycles of swelling and shrink-age (P < 0.05). The data suggest that somatotrophs may have more than one mechanism for volume regulation. One mechanism is for large swelling (classic RVD response), whereas the other represents more physiological mechanisms for regulating the cell volume within a more limited geometry range. For low osmotic stress (250-287 mOsm), the somatotrophs became less spherical during swelling and, thus, were without membrane dilation. Therefore, this type of volume regulation must work independently from membrane stress. Related volume regulation mechanisms may underlie the previously observed volume fluctuations in somatotrophs seen during secretory stimulation with GH-releasing hormone. PMID:7600901

  4. The sodium channel band shapes the response to electric stimulation in retinal ganglion cells

    PubMed Central

    Jeng, J; Tang, S; Molnar, A; Desai, N J; Fried, S I

    2011-01-01

    To improve the quality of prosthetic vision, it is desirable to understand how targeted retinal neurons respond to stimulation. Unfortunately, the factors that shape the response of a single neuron to stimulation are not well understood. A dense band of voltage gated sodium channels within the proximal axon of retinal ganglion cells is the site most sensitive to electric stimulation, suggesting that band properties are likely to influence the response to stimulation. Here, we examined how three band properties influence sensitivity using a morphologically realistic ganglion cell model in NEURON. Longer bands were more sensitive to short-duration pulses than shorter bands and increasing the distance between band and soma also increased sensitivity. Simulations using the known limits of band length and location resulted in a sensitivity difference of approximately two. Additional simulations tested how changes to sodium channel conductance within the band influenced threshold and found that the sensitivity difference increased to a factor of nearly three. This is close to the factor of 5 difference measured in physiological studies suggesting that band properties contribute significantly to the sensitivity differences found between different types of retinal neurons. PMID:21558602

  5. Two Putative Polysaccharide Deacetylases Are Required for Osmotic Stability and Cell Shape Maintenance in Bacillus anthracis.

    PubMed

    Arnaouteli, Sofia; Giastas, Petros; Andreou, Athina; Tzanodaskalaki, Mary; Aldridge, Christine; Tzartos, Socrates J; Vollmer, Waldemar; Eliopoulos, Elias; Bouriotis, Vassilis

    2015-05-22

    Membrane-anchored lipoproteins have a broad range of functions and play key roles in several cellular processes in Gram-positive bacteria. BA0330 and BA0331 are the only lipoproteins among the 11 known or putative polysaccharide deacetylases of Bacillus anthracis. We found that both lipoproteins exhibit unique characteristics. BA0330 and BA0331 interact with peptidoglycan, and BA0330 is important for the adaptation of the bacterium to grow in the presence of a high concentration of salt, whereas BA0331 contributes to the maintenance of a uniform cell shape. They appear not to alter the peptidoglycan structure and do not contribute to lysozyme resistance. The high resolution x-ray structure of BA0330 revealed a C-terminal domain with the typical fold of a carbohydrate esterase 4 and an N-terminal domain unique for this family, composed of a two-layered (4 + 3) β-sandwich with structural similarity to fibronectin type 3 domains. Our data suggest that BA0330 and BA0331 have a structural role in stabilizing the cell wall of B. anthracis. PMID:25825488

  6. Two Putative Polysaccharide Deacetylases Are Required for Osmotic Stability and Cell Shape Maintenance in Bacillus anthracis*

    PubMed Central

    Arnaouteli, Sofia; Giastas, Petros; Andreou, Athina; Tzanodaskalaki, Mary; Aldridge, Christine; Tzartos, Socrates J.; Vollmer, Waldemar; Eliopoulos, Elias; Bouriotis, Vassilis

    2015-01-01

    Membrane-anchored lipoproteins have a broad range of functions and play key roles in several cellular processes in Gram-positive bacteria. BA0330 and BA0331 are the only lipoproteins among the 11 known or putative polysaccharide deacetylases of Bacillus anthracis. We found that both lipoproteins exhibit unique characteristics. BA0330 and BA0331 interact with peptidoglycan, and BA0330 is important for the adaptation of the bacterium to grow in the presence of a high concentration of salt, whereas BA0331 contributes to the maintenance of a uniform cell shape. They appear not to alter the peptidoglycan structure and do not contribute to lysozyme resistance. The high resolution x-ray structure of BA0330 revealed a C-terminal domain with the typical fold of a carbohydrate esterase 4 and an N-terminal domain unique for this family, composed of a two-layered (4 + 3) β-sandwich with structural similarity to fibronectin type 3 domains. Our data suggest that BA0330 and BA0331 have a structural role in stabilizing the cell wall of B. anthracis. PMID:25825488

  7. Plasmolysis and cell shape depend on solute outer-membrane permeability during hyperosmotic shock in E. coli.

    PubMed

    Pilizota, Teuta; Shaevitz, Joshua W

    2013-06-18

    The concentration of chemicals inside the bacterial cytoplasm generates an osmotic pressure, termed turgor, which inflates the cell and is necessary for cell growth and survival. In Escherichia coli, a sudden increase in external concentration causes a pressure drop across the cell envelope that drives changes in cell shape, such as plasmolysis, where the inner and outer membranes separate. Here, we use fluorescence imaging of single cells during hyperosmotic shock with a time resolution on the order of seconds to examine the response of cells to a range of different conditions. We show that shock using an outer-membrane impermeable solute results in total cell volume reduction with no plasmolysis, whereas a shock caused by outer-membrane permeable ions causes plasmolysis immediately upon shock. Slowly permeable solutes, such as sucrose, which cross the membrane in minutes, cause plasmolysis to occur gradually as the chemical potential equilibrates. In addition, we quantify the detailed morphological changes to cell shape during osmotic shock. Nonplasmolyzed cells shrink in length with an additional lateral size reduction as the magnitude of the shock increases. Quickly plasmolyzing cells shrink largely at the poles, whereas gradually plasmolyzing cells invaginate along the cell cylinder. Our results give a comprehensive picture of the initial response of E. coli to hyperosmotic shock and offer explanations for seemingly opposing results that have been reported previously.

  8. Plasmolysis and cell shape depend on solute outer-membrane permeability during hyperosmotic shock in E. coli.

    PubMed

    Pilizota, Teuta; Shaevitz, Joshua W

    2013-06-18

    The concentration of chemicals inside the bacterial cytoplasm generates an osmotic pressure, termed turgor, which inflates the cell and is necessary for cell growth and survival. In Escherichia coli, a sudden increase in external concentration causes a pressure drop across the cell envelope that drives changes in cell shape, such as plasmolysis, where the inner and outer membranes separate. Here, we use fluorescence imaging of single cells during hyperosmotic shock with a time resolution on the order of seconds to examine the response of cells to a range of different conditions. We show that shock using an outer-membrane impermeable solute results in total cell volume reduction with no plasmolysis, whereas a shock caused by outer-membrane permeable ions causes plasmolysis immediately upon shock. Slowly permeable solutes, such as sucrose, which cross the membrane in minutes, cause plasmolysis to occur gradually as the chemical potential equilibrates. In addition, we quantify the detailed morphological changes to cell shape during osmotic shock. Nonplasmolyzed cells shrink in length with an additional lateral size reduction as the magnitude of the shock increases. Quickly plasmolyzing cells shrink largely at the poles, whereas gradually plasmolyzing cells invaginate along the cell cylinder. Our results give a comprehensive picture of the initial response of E. coli to hyperosmotic shock and offer explanations for seemingly opposing results that have been reported previously. PMID:23790382

  9. Plasmolysis and Cell Shape Depend on Solute Outer-Membrane Permeability during Hyperosmotic Shock in E. coli

    PubMed Central

    Pilizota, Teuta; Shaevitz, Joshua W.

    2013-01-01

    The concentration of chemicals inside the bacterial cytoplasm generates an osmotic pressure, termed turgor, which inflates the cell and is necessary for cell growth and survival. In Escherichia coli, a sudden increase in external concentration causes a pressure drop across the cell envelope that drives changes in cell shape, such as plasmolysis, where the inner and outer membranes separate. Here, we use fluorescence imaging of single cells during hyperosmotic shock with a time resolution on the order of seconds to examine the response of cells to a range of different conditions. We show that shock using an outer-membrane impermeable solute results in total cell volume reduction with no plasmolysis, whereas a shock caused by outer-membrane permeable ions causes plasmolysis immediately upon shock. Slowly permeable solutes, such as sucrose, which cross the membrane in minutes, cause plasmolysis to occur gradually as the chemical potential equilibrates. In addition, we quantify the detailed morphological changes to cell shape during osmotic shock. Nonplasmolyzed cells shrink in length with an additional lateral size reduction as the magnitude of the shock increases. Quickly plasmolyzing cells shrink largely at the poles, whereas gradually plasmolyzing cells invaginate along the cell cylinder. Our results give a comprehensive picture of the initial response of E. coli to hyperosmotic shock and offer explanations for seemingly opposing results that have been reported previously. PMID:23790382

  10. Cell rigidity and shape override CD47's "self"-signaling in phagocytosis by hyperactivating myosin-II.

    PubMed

    Sosale, Nisha G; Rouhiparkouhi, Tahereh; Bradshaw, Andrew M; Dimova, Rumiana; Lipowsky, Reinhard; Discher, Dennis E

    2015-01-15

    A macrophage engulfs another cell or foreign particle in an adhesive process that often activates myosin-II, unless the macrophage also engages "marker of self" CD47 that inhibits myosin. For many cell types, adhesion-induced activation of myosin-II is maximized by adhesion to a rigid rather than a flexible substrate. Here we demonstrate that rigidity of a phagocytosed cell also hyperactivates myosin-II, which locally overwhelms self-signaling at a phagocytic synapse. Cell stiffness is one among many factors including shape that changes in erythropoiesis, in senescence and in diseases ranging from inherited anemias and malaria to cancer. Controlled stiffening of normal human red blood cells (RBCs) in different shapes does not compromise CD47's interaction with the macrophage self-recognition receptor signal regulatory protein alpha (SIRPA). Uptake of antibody-opsonized RBCs is always fastest with rigid RBC discocytes, which also show that maximal active myosin-II at the synapse can dominate self-signaling by CD47. Rigid but rounded RBC stomatocytes signal self better than rigid RBC discocytes, highlighting the effects of shape on CD47 inhibition. Physical properties of phagocytic targets thus regulate self signaling, as is relevant to erythropoiesis, to clearance of rigid RBCs after blood storage, clearance of rigid pathological cells such as thalassemic or sickle cells, and even to interactions of soft/stiff cancer cells with macrophages.

  11. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments.

    PubMed

    Di Marco Barros, Rafael; Roberts, Natalie A; Dart, Robin J; Vantourout, Pierre; Jandke, Anett; Nussbaumer, Oliver; Deban, Livija; Cipolat, Sara; Hart, Rosie; Iannitto, Maria Luisa; Laing, Adam; Spencer-Dene, Bradley; East, Philip; Gibbons, Deena; Irving, Peter M; Pereira, Pablo; Steinhoff, Ulrich; Hayday, Adrian

    2016-09-22

    Many body surfaces harbor organ-specific γδ T cell compartments that contribute to tissue integrity. Thus, murine dendritic epidermal T cells (DETCs) uniquely expressing T cell receptor (TCR)-Vγ5 chains protect from cutaneous carcinogens. The DETC repertoire is shaped by Skint1, a butyrophilin-like (Btnl) gene expressed specifically by thymic epithelial cells and suprabasal keratinocytes. However, the generality of this mechanism has remained opaque, since neither Skint1 nor DETCs are evolutionarily conserved. Here, Btnl1 expressed by murine enterocytes is shown to shape the local TCR-Vγ7(+) γδ compartment. Uninfluenced by microbial or food antigens, this activity evokes the developmental selection of TCRαβ(+) repertoires. Indeed, Btnl1 and Btnl6 jointly induce TCR-dependent responses specifically in intestinal Vγ7(+) cells. Likewise, human gut epithelial cells express BTNL3 and BTNL8 that jointly induce selective TCR-dependent responses of human colonic Vγ4(+) cells. Hence, a conserved mechanism emerges whereby epithelia use organ-specific BTNL/Btnl genes to shape local T cell compartments. PMID:27641500

  12. Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity[OPEN

    PubMed Central

    Rebocho, Alexandra B.

    2016-01-01

    Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth. PMID:27553356

  13. Factors affecting the development of somatic cell nuclear transfer embryos in Cattle.

    PubMed

    Akagi, Satoshi; Matsukawa, Kazutsugu; Takahashi, Seiya

    2014-01-01

    Nuclear transfer is a complex multistep procedure that includes oocyte maturation, cell cycle synchronization of donor cells, enucleation, cell fusion, oocyte activation and embryo culture. Therefore, many factors are believed to contribute to the success of embryo development following nuclear transfer. Numerous attempts to improve cloning efficiency have been conducted since the birth of the first sheep by somatic cell nuclear transfer. However, the efficiency of somatic cell cloning has remained low, and applications have been limited. In this review, we discuss some of the factors that affect the developmental ability of somatic cell nuclear transfer embryos in cattle.

  14. Eu/Tb codoped spindle-shaped fluorinated hydroxyapatite nanoparticles for dual-color cell imaging

    NASA Astrophysics Data System (ADS)

    Ma, Baojin; Zhang, Shan; Qiu, Jichuan; Li, Jianhua; Sang, Yuanhua; Xia, Haibing; Jiang, Huaidong; Claverie, Jerome; Liu, Hong

    2016-06-01

    Lanthanide doped fluorinated hydroxyapatite (FAp) nanoparticles are promising cell imaging nanomaterials but they are excited at wavelengths which do not match the light sources usually found in a commercial confocal laser scanning microscope (CLSM). In this work, we have successfully prepared spindle-shaped Eu/Tb codoped FAp nanoparticles by a hydrothermal method. Compared with single Eu doped FAp, Eu/Tb codoped FAp can be excited by a 488 nm laser, and exhibit both green and red light emission. By changing the amounts of Eu and Tb peaks, the emission in the green region (500-580 nm) can be decreased to the benefit of the emission in the red region (580-720 nm), thus reaching a balanced dual color emission. Using MC3T3-E1 cells co-cultured with Eu/Tb codoped FAp nanoparticles, it is observed that the nanoparticles are cytocompatible even at a concentration as high as 800 μg ml-1. The Eu/Tb codoped FAp nanoparticles are located in the cytoplasm and can be monitored by dual color--green and red imaging with a single excitation light at 488 nm. At a concentration of 200 μg ml-1, the cytoplasm is saturated in 8 hours, and Eu/Tb codoped FAp nanoparticles retain their fluorescence for at least 3 days. The cytocompatible Eu/Tb codoped FAp nanoparticles with unique dual color emission will be of great use for cell and tissue imaging.Lanthanide doped fluorinated hydroxyapatite (FAp) nanoparticles are promising cell imaging nanomaterials but they are excited at wavelengths which do not match the light sources usually found in a commercial confocal laser scanning microscope (CLSM). In this work, we have successfully prepared spindle-shaped Eu/Tb codoped FAp nanoparticles by a hydrothermal method. Compared with single Eu doped FAp, Eu/Tb codoped FAp can be excited by a 488 nm laser, and exhibit both green and red light emission. By changing the amounts of Eu and Tb peaks, the emission in the green region (500-580 nm) can be decreased to the benefit of the emission in the

  15. Advanced Ring-Shaped Microelectrode Assay Combined with Small Rectangular Electrode for Quasi-In vivo Measurement of Cell-to-Cell Conductance in Cardiomyocyte Network

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2013-06-01

    To predict the risk of fatal arrhythmia induced by cardiotoxicity in the highly complex human heart system, we have developed a novel quasi-in vivo electrophysiological measurement assay, which combines a ring-shaped human cardiomyocyte network and a set of two electrodes that form a large single ring-shaped electrode for the direct measurement of irregular cell-to-cell conductance occurrence in a cardiomyocyte network, and a small rectangular microelectrode for forced pacing of cardiomyocyte beating and for acquiring the field potential waveforms of cardiomyocytes. The advantages of this assay are as follows. The electrophysiological signals of cardiomyocytes in the ring-shaped network are superimposed directly on a single loop-shaped electrode, in which the information of asynchronous behavior of cell-to-cell conductance are included, without requiring a set of huge numbers of microelectrode arrays, a set of fast data conversion circuits, or a complex analysis in a computer. Another advantage is that the small rectangular electrode can control the position and timing of forced beating in a ring-shaped human induced pluripotent stem cell (hiPS)-derived cardiomyocyte network and can also acquire the field potentials of cardiomyocytes. First, we constructed the human iPS-derived cardiomyocyte ring-shaped network on the set of two electrodes, and acquired the field potential signals of particular cardiomyocytes in the ring-shaped cardiomyocyte network during simultaneous acquisition of the superimposed signals of whole-cardiomyocyte networks representing cell-to-cell conduction. Using the small rectangular electrode, we have also evaluated the response of the cell network to electrical stimulation. The mean and SD of the minimum stimulation voltage required for pacing (VMin) at the small rectangular electrode was 166+/-74 mV, which is the same as the magnitude of amplitude for the pacing using the ring-shaped electrode (179+/-33 mV). The results showed that the

  16. Bidirectional molecular transport shapes cell polarization in a two-dimensional model of eukaryotic chemotaxis.

    PubMed

    Feng, Shiliang; Zhu, Weiping

    2014-12-21

    Chemotacting eukaryotic cells can sense shallow gradients of chemoattractants and respond by assuming an asymmetric shape with well-defined front and back regions. Such a striking polarization phenomenon is produced largely through the interconversions and interactions between several cellular components, including Rac GTPase (Rac), phosphoinositide 3-kinase (PI3K), tensin homology protein (PTEN), phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2). Here, we developed a mathematical model of cell polarization by exploring bidirectional molecular transport that arose from phosphoinositides (PIs) and Rac-mediated feedback loops. We assumed a static gradient of activated Rac derived from an external signal field as the internal trigger signal. The evolution of PI(3,4,5)P3 and PI(4,5)P2 along with PI3K and PTEN that act as activator and inhibitor, respectively, were described by a pair of coupled transient reaction-diffusion equations. The entire system was solved using a Lattice-Boltzmann method with an embedded Monte-Carlo method to track the stochastic translocation behaviors of discrete PI3K/PTEN molecules. We first showed that, upon a graded external stimulus, the Rac to PI(3,4,5)P3 cascade exhibited a short range positive-feedback loop, while the PTEN to PI(4,5)P2 cascade contributed another long range negative-feedback loop, which dominated the "forward" and "backward" molecular transport, respectively. Second, polarization was governed by the ratio of [PI3K] to [PTEN], and manifested a switch-like behavior. Third, with a uniform stimulus, spontaneous polarization could occur in PTEN-deficient cells.

  17. Alpha-catenin-Dependent Recruitment of the Centrosomal Protein CAP350 to Adherens Junctions Allows Epithelial Cells to Acquire a Columnar Shape

    PubMed Central

    Zurbano, Angel; Formstecher, Etienne; Martinez-Morales, Juan R.; Bornens, Michel; Rios, Rosa M.

    2015-01-01

    Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis. PMID:25764135

  18. The effect of hair bundle shape on hair bundle hydrodynamics of inner ear hair cells at low and high frequencies.

    PubMed

    Shatz, L F

    2000-03-01

    The relationship between size and shape of the hair bundle of a hair cell in the inner ear and its sensitivity at asymptotically high and low frequencies was determined, thereby extending the results of an analysis of hair bundle hydrodynamics in two dimensions (Freeman and Weiss, 1990. Hydrodynamic analysis of a two-dimensional model for micromechanical resonance of free-standing hair bundles. Hear. Res. 48, 37-68) to three dimensions. A hemispheroid was used to represent the hair bundle. The hemispheroid had a number of advantages: it could represent shapes that range from thin, pencil-like shapes, to wide, flat, disk-like shapes. Also analytic methods could be used in the high frequency range to obtain an exact solution to the equations of motion. In the low frequency range, where an approximate solution was found using boundary element methods, the sensitivity of the responses of hair cells was mainly proportional to the cube of the heights of their hair bundles, and at high frequencies, the sensitivity of the hair cells was mainly proportional to the inverse of their heights. An excellent match was obtained between measurements of sensitivity curves in the basillar papilla of the alligator and bobtail lizards and the model's predictions. These results also suggest why hair bundles of hair cells in vestibular organs which are sensitive to low frequencies have ranges of heights that are an order of magnitude larger than the range of heights of hair bundles of hair cells found in auditory organs.

  19. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors

    PubMed Central

    Wen, Zhen; Yeh, Min-Hsin; Guo, Hengyu; Wang, Jie; Zi, Yunlong; Xu, Weidong; Deng, Jianan; Zhu, Lei; Wang, Xin; Hu, Chenguo; Zhu, Liping; Sun, Xuhui; Wang, Zhong Lin

    2016-01-01

    Wearable electronics fabricated on lightweight and flexible substrate are believed to have great potential for portable devices, but their applications are limited by the life span of their batteries. We propose a hybridized self-charging power textile system with the aim of simultaneously collecting outdoor sunshine and random body motion energies and then storing them in an energy storage unit. Both of the harvested energies can be easily converted into electricity by using fiber-shaped dye-sensitized solar cells (for solar energy) and fiber-shaped triboelectric nanogenerators (for random body motion energy) and then further stored as chemical energy in fiber-shaped supercapacitors. Because of the all–fiber-shaped structure of the entire system, our proposed hybridized self-charging textile system can be easily woven into electronic textiles to fabricate smart clothes to sustainably operate mobile or wearable electronics.

  20. Structural basis for the recognition of muramyltripeptide by Helicobacter pylori Csd4, a d,l-carboxypeptidase controlling the helical cell shape

    PubMed Central

    Kim, Hyoun Sook; Kim, Jieun; Im, Ha Na; An, Doo Ri; Lee, Mijoon; Hesek, Dusan; Mobashery, Shahriar; Kim, Jin Young; Cho, Kun; Yoon, Hye Jin; Han, Byung Woo; Lee, Byung Il; Suh, Se Won

    2014-01-01

    Helicobacter pylori infection causes a variety of gastrointestinal diseases, including peptic ulcers and gastric cancer. Its colonization of the gastric mucosa of the human stomach is a prerequisite for survival in the stomach. Colonization depends on its motility, which is facilitated by the helical shape of the bacterium. In H. pylori, cross-linking relaxation or trimming of peptidoglycan muropeptides affects the helical cell shape. Csd4 has been identified as one of the cell shape-determining peptidoglycan hydrolases in H. pylori. It is a Zn2+-dependent d,l-carboxypeptidase that cleaves the bond between the γ-d-Glu and the mDAP of the non-cross-linked muramyl­tripeptide (muramyl-l-Ala-γ-d-Glu-mDAP) of the peptidoglycan to produce the muramyldipeptide (muramyl-l-Ala-γ-d-Glu) and mDAP. Here, the crystal structure of H. pylori Csd4 (HP1075 in strain 26695) is reported in three different states: the ligand-unbound form, the substrate-bound form and the product-bound form. H. pylori Csd4 consists of three domains: an N-terminal d,l-carboxypeptidase domain with a typical carboxy­peptidase fold, a central β-barrel domain with a novel fold and a C-terminal immunoglobulin-like domain. The d,l-carboxypeptidase domain recognizes the substrate by interacting primarily with the terminal mDAP moiety of the muramyltripeptide. It undergoes a significant structural change upon binding either mDAP or the mDAP-containing muramyl­tripeptide. It it also shown that Csd5, another cell-shape determinant in H. pylori, is capable of interacting not only with H. pylori Csd4 but also with the dipeptide product of the reaction catalyzed by Csd4. PMID:25372672

  1. The small protein MbiA interacts with MreB and modulates cell shape in Caulobacter crescentus.

    PubMed

    Yakhnina, Anastasiya A; Gitai, Zemer

    2012-09-01

    In Caulobacter crescentus, the actin homologue MreB is critical for cell shape maintenance. Despite the central importance of MreB for cell morphology and viability, very little is known about MreB-interacting factors. Here, we use an overexpression approach to identify a novel MreB interactor, MbiA. MbiA interacts with MreB in both biochemical and genetic assays, colocalizes with MreB throughout the cell cycle, and relies on MreB for its localization. MbiA overexpression mimics the loss of MreB function, severely perturbing cell morphology, inhibiting growth and inducing cell lysis. Additionally, mbiA deletion shows a synthetic growth phenotype with a hypomorphic allele of the MreB interactor RodZ, suggesting that these two MreB-interacting proteins either have partially redundant functions or participate in the same functional complex. Our work thus establishes MbiA as a novel cell shape regulator that appears to function through regulating MreB, and opens avenues for discovery of more MreB-regulating factors by showing that overexpression screens are a valuable tool for uncovering potentially redundant cell shape effectors.

  2. Segmentation of densely populated cell nuclei from confocal image stacks using 3D non-parametric shape priors.

    PubMed

    Ong, Lee-Ling S; Wang, Mengmeng; Dauwels, Justin; Asada, H Harry

    2014-01-01

    An approach to jointly estimate 3D shapes and poses of stained nuclei from confocal microscopy images, using statistical prior information, is presented. Extracting nuclei boundaries from our experimental images of cell migration is challenging due to clustered nuclei and variations in their shapes. This issue is formulated as a maximum a posteriori estimation problem. By incorporating statistical prior models of 3D nuclei shapes into level set functions, the active contour evolutions applied on the images is constrained. A 3D alignment algorithm is developed to build the training databases and to match contours obtained from the images to them. To address the issue of aligning the model over multiple clustered nuclei, a watershed-like technique is used to detect and separate clustered regions prior to active contour evolution. Our method is tested on confocal images of endothelial cells in microfluidic devices, compared with existing approaches.

  3. Assessing state stem cell programs in the United States: how has state funding affected publication trends?

    PubMed

    Alberta, Hillary B; Cheng, Albert; Jackson, Emily L; Pjecha, Matthew; Levine, Aaron D

    2015-02-01

    Several states responded to federal funding limitations placed on human embryonic stem cell research and the potential of the field by creating state stem cell funding programs, yet little is known about the impact of these programs. Here we examine how state programs have affected publication trends in four states.

  4. Adhesion between cells, diffusion of growth factors, and elasticity of the AER produce the paddle shape of the chick limb

    PubMed Central

    Popławski, Nikodem J.; Swat, Maciej; Gens, J. Scott; Glazier, James A.

    2007-01-01

    A central question in developmental biology is how cells interact to organize into tissues? In this paper, we study the role of mesenchyme-ectoderm interaction in the growing chick limb bud using Glazier and Graner's cellular Potts model, a grid-based stochastic framework designed to simulate cell interactions and movement. We simulate cellular mechanisms including cell adhesion, growth, and division and diffusion of morphogens, to show that differential adhesion between the cells, diffusion of growth factors through the extracellular matrix, and the elastic properties of the apical ectodermal ridge together can produce the proper shape of the limb bud. PMID:18167520

  5. Sodium and calcium currents shape action potentials in immature mouse inner hair cells.

    PubMed

    Marcotti, Walter; Johnson, Stuart L; Rusch, Alfons; Kros, Corne J

    2003-11-01

    Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both alpha1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at -71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency.

  6. Sodium and calcium currents shape action potentials in immature mouse inner hair cells

    PubMed Central

    Marcotti, Walter; Johnson, Stuart L; Rüsch, Alfons; Kros, Corné J

    2003-01-01

    Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both α1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at −71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency. PMID:12937295

  7. A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen.

    PubMed

    Beyhan, Sinem; Gutierrez, Matias; Voorhies, Mark; Sil, Anita

    2013-07-01

    Survival at host temperature is a critical trait for pathogenic microbes of humans. Thermally dimorphic fungal pathogens, including Histoplasma capsulatum, are soil fungi that undergo dramatic changes in cell shape and virulence gene expression in response to host temperature. How these organisms link changes in temperature to both morphologic development and expression of virulence traits is unknown. Here we elucidate a temperature-responsive transcriptional network in H. capsulatum, which switches from a filamentous form in the environment to a pathogenic yeast form at body temperature. The circuit is driven by three highly conserved factors, Ryp1, Ryp2, and Ryp3, that are required for yeast-phase growth at 37°C. Ryp factors belong to distinct families of proteins that control developmental transitions in fungi: Ryp1 is a member of the WOPR family of transcription factors, and Ryp2 and Ryp3 are both members of the Velvet family of proteins whose molecular function is unknown. Here we provide the first evidence that these WOPR and Velvet proteins interact, and that Velvet proteins associate with DNA to drive gene expression. Using genome-wide chromatin immunoprecipitation studies, we determine that Ryp1, Ryp2, and Ryp3 associate with a large common set of genomic loci that includes known virulence genes, indicating that the Ryp factors directly control genes required for pathogenicity in addition to their role in regulating cell morphology. We further dissect the Ryp regulatory circuit by determining that a fourth transcription factor, which we name Ryp4, is required for yeast-phase growth and gene expression, associates with DNA, and displays interdependent regulation with Ryp1, Ryp2, and Ryp3. Finally, we define cis-acting motifs that recruit the Ryp factors to their interwoven network of temperature-responsive target genes. Taken together, our results reveal a positive feedback circuit that directs a broad transcriptional switch between environmental and

  8. Cells Sensing Mechanical Cues: Stiffness Influences the Lifetime of Cell-Extracellular Matrix Interactions by Affecting the Loading Rate.

    PubMed

    Jiang, Li; Sun, Zhenglong; Chen, Xiaofei; Li, Jing; Xu, Yue; Zu, Yan; Hu, Jiliang; Han, Dong; Yang, Chun

    2016-01-26

    The question of how cells sense substrate mechanical cues has gained increasing attention among biologists. By introducing contour-based data analysis to single-cell force spectroscopy, we identified a loading-rate threshold for the integrin α2β1-DGEA bond beyond which a dramatic increase in bond lifetime was observed. On the basis of mechanical cues (elasticity or topography), the effective spring constant of substrates k is mapped to the loading rate r under actomyosin pulling speed v, which, in turn, affects the lifetime of the integrin-ligand bond. Additionally, downregulating v with a low-dose blebbistatin treatment promotes the neuronal lineage specification of mesenchymal stem cells on osteogenic stiff substrates. Thus, sensing of the loading rate is central to how cells sense mechanical cues that affect cell-extracellular matrix interactions and stem cell differentiation.

  9. Quantitative analysis of changes in cell shape of Amoeba proteus during locomotion and upon responses to salt stimuli.

    PubMed

    Ueda, T; Kobatake, Y

    1983-09-01

    A new parameter expressing the complexity of cell shape defined as (periphery)2/(area) in 2D projection was found useful for a quantitative analysis of changes in the cell shape of Amoeba proteus and potentially of any amoeboid cells. During locomotion the complexity and the motive force of the protoplasmic streaming in amoeba varied periodically, and the Fourier analysis of the two showed a similar pattern in the power spectrum, giving a rather broad peak at about 2.5 X 10(-3) Hz. The complexity increased mainly due to elongation of the cell as external Ca2+ increased. This effect was blocked by La3+, half the inhibition being attained at 1/200 amount of the coexisting Ca2+. On the other hand, the complexity decreased due to rounding up of the cell as the concentration of other cations, such as Sr2+, Mg2+, Co2+, Ni2+, Na+, K+ etc., increased. Irrespective of the opposite effects of Ca2+ and other cations on the cell shape, the ATP concentration in amoeba decreased in both cases with increase of all these cations. The irregularity in amoeboid motility is discussed in terms of a dynamic system theory.

  10. Cadmium affects mitotically inherited histone modification pathways in mouse embryonic stem cells.

    PubMed

    Gadhia, S R; O'Brien, D; Barile, F A

    2015-12-25

    The fetal basis of adult disease (FeBAD) theorizes that embryonic challenges initiate pathologies in adult life through epigenetic modification of gene expression. In addition, inheritance of H3K27 methylation marks, especially in vitro, is still controversial. Metals, such as Cd, are known to affect differentiation, DNA repair and epigenetic status in mES cells. We tested the premise that Cd exerts differential toxicity in mouse embryonic stem (mES) cells by targeting total histone protein (THP) production early in stem cell development, while affecting H3K27-mono-methylation (H3K27me(1)) in latter stages of differentiation. The inability of mES cells to recover from Cd insult at concentrations greater than IC50 indicates that maximum cytotoxicity occurs during initial hours of exposure. Moreover, as a measure of chromatin stability, low dose acute Cd exposure lowers THP production. The heritable effects of Cd exposure on cell proliferation, chromatin stability and transcription observed through several cell population doublings were detected only during alternate passages on days 3, 7, and 11, presumably due to slower maturation of histone methylation marks. These findings demonstrate a selective disruption of chromatin structure following acute Cd exposure, an effect not seen in developmentally mature cells. Hence, we present that acute Cd toxicity is cumulative and disrupts DNA repair, while concurrently affecting cell cycle progression, chromatin stability and transcriptional state in mES cells.

  11. Shaping the nucleus: factors and forces.

    PubMed

    Walters, Alison D; Bommakanti, Ananth; Cohen-Fix, Orna

    2012-09-01

    Take a look at a textbook illustration of a cell and you will immediately be able to locate the nucleus, which is often drawn as a spherical or ovoid shaped structure. But not all cells have such nuclei. In fact, some disease states are diagnosed by the presence of nuclei that have an abnormal shape or size. What defines nuclear shape and nuclear size, and how does nuclear geometry affect nuclear function? While the answer to the latter question remains largely unknown, significant progress has been made towards understanding the former. In this review, we provide an overview of the factors and forces that affect nuclear shape and size, discuss the relationship between ER structure and nuclear morphology, and speculate on the possible connection between nuclear size and its shape. We also note the many interesting questions that remain to be explored. PMID:22566057

  12. Changes in size and shape of auditory hair cells in vivo during noise-induced temporary threshold shift.

    PubMed

    Dew, L A; Owen, R G; Mulroy, M J

    1993-03-01

    In this study we describe changes in the size and shape of auditory hair cells of the alligator lizard in vivo during noise-induced temporary threshold shift. These changes consist of a decrease in cell volume, a decrease in cell length and an increase in cell width. We speculate that these changes are due to relaxation of cytoskeletal contractile elements and osmotic loss of intracellular water. We also describe a decrease in the surface area of the hair cell plasmalemma, and speculate that it is related to the endocytosis and intracellular accumulation of cell membrane during synaptic vesicle recycling. Finally we describe an increase in the endolymphatic surface area of the hair cell, and speculate that this could alter the micromechanics of the stereociliary tuft to attenuate the effective stimulus.

  13. Actively targeted delivery of anticancer drug to tumor cells by redox-responsive star-shaped micelles.

    PubMed

    Shi, Chunli; Guo, Xing; Qu, Qianqian; Tang, Zhaomin; Wang, Yi; Zhou, Shaobing

    2014-10-01

    In cancer therapy nanocargos based on star-shaped polymer exhibit unique features such as better stability, smaller size distribution and higher drug capacity in comparison to linear polymeric micelles. In this study, we developed a multifunctional star-shaped micellar system by combination of active targeting ability and redox-responsive behavior. The star-shaped micelles with good stability were self-assembled from four-arm poly(ε-caprolactone)-poly(ethylene glycol) copolymer. The redox-responsive behaviors of these micelles triggered by glutathione were evaluated from the changes of micellar size, morphology and molecular weight. In vitro drug release profiles exhibited that in a stimulated normal physiological environment, the redox-responsive star-shaped micelles could maintain good stability, whereas in a reducing and acid environment similar with that of tumor cells, the encapsulated agent was promptly released. In vitro cellular uptake and subcellular localization of these micelles were further studied with confocal laser scanning microscopy and flow cytometry against the human cervical cancer cell line HeLa. In vivo and ex vivo DOX fluorescence imaging displayed that these FA-functionalized star-shaped micelles possessed much better specificity to target solid tumor. Both the qualitative and quantitative results of the antitumor effect in 4T1 tumor-bearing BALB/c mice demonstrated that these redox-responsive star-shaped micelles have a high therapeutic efficiency to artificial solid tumor. Therefore, the multifunctional star-shaped micelles are a potential platform for targeted anticancer drug delivery.

  14. Eight-Shaped Hatching Increases the Risk of Inner Cell Mass Splitting in Extended Mouse Embryo Culture.

    PubMed

    Yan, Zheng; Liang, Hongxing; Deng, Li; Long, Hui; Chen, Hong; Chai, Weiran; Suo, Lun; Xu, Chen; Kuang, Yanping; Wu, Lingqian; Lu, Shengsheng; Lyu, Qifeng

    2015-01-01

    Increased risk of monozygotic twinning (MZT) has been shown to be associated with assisted reproduction techniques, particularly blastocyst culture. Interestingly, inner cell mass (ICM) splitting in human '8'-shaped hatching blastocysts that resulted in MZT was reported. However, the underlying cause of MZT is not known. In this study, we investigated in a mouse model whether in vitro culture leads to ICM splitting and its association with hatching types. Blastocyst hatching was observed in: (i) in vivo developed blastocysts and (ii-iii) in vitro cultured blastocysts following in vivo or in vitro fertilization. We found that '8'-shaped hatching occurred with significantly higher frequency in the two groups of in vitro cultured blastocysts than in the group of in vivo developed blastocysts (24.4% and 20.4% versus 0.8%, respectively; n = 805, P < 0.01). Moreover, Oct4 immunofluorescence staining was performed to identify the ICM in the hatching and hatched blastocysts. Scattered and split distribution of ICM cells was observed around the small zona opening of '8'-shaped hatching blastocysts. This occurred at a high frequency in the in vitro cultured groups. Furthermore, we found more double OCT4-positive masses, suggestive of increased ICM splitting in '8'-shaped hatching and hatched blastocysts than in 'U'-shaped hatching and hatched blastocysts (12.5% versus 1.9%, respectively; n = 838, P < 0.01). Therefore, our results demonstrate that extended in vitro culture can cause high frequencies of '8'-shaped hatching, and '8'-shaped hatching that may disturb ICM herniation leading to increased risk of ICM splitting in mouse blastocysts. These results may provide insights into the increased risk of human MZT after in vitro fertilization and blastocyst transfer.

  15. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness

    NASA Astrophysics Data System (ADS)

    Kal Van Tam, Janice; Uto, Koichiro; Ebara, Mitsuhiro; Pagliari, Stefania; Forte, Giancarlo; Aoyagi, Takao

    2012-12-01

    The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell-matrix interaction, using poly-ɛ-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.

  16. A novel tomato mutant, Solanum lycopersicum elongated fruit1 (Slelf1), exhibits an elongated fruit shape caused by increased cell layers in the proximal region of the ovary.

    PubMed

    Chusreeaeom, Katarut; Ariizumi, Tohru; Asamizu, Erika; Okabe, Yoshihiro; Shirasawa, Kenta; Ezura, Hiroshi

    2014-06-01

    Genes controlling fruit morphology offer important insights into patterns and mechanisms determining organ shape and size. In cultivated tomato (Solanum lycopersicum L.), a variety of fruit shapes are displayed, including round-, bell pepper-, pear-, and elongate-shaped forms. In this study, we characterized a tomato mutant possessing elongated fruit morphology by histologically analyzing its fruit structure and genetically analyzing and mapping the genetic locus. The mutant line, Solanum lycopersicum elongated fruit 1 (Slelf1), was selected in a previous study from an ethylmethane sulfonate-mutagenized population generated in the background of Micro-Tom, a dwarf and rapid-growth variety. Histological analysis of the Slelf1 mutant revealed dramatically increased elongation of ovary and fruit. Until 6 days before flowering, ovaries were round and they began to elongate afterward. We also determined pericarp thickness and the number of cell layers in three designated fruit regions. We found that mesocarp thickness, as well as the number of cell layers, was increased in the proximal region of immature green fruits, making this the key sector of fruit elongation. Using 262 F2 individuals derived from a cross between Slelf1 and the cultivar Ailsa Craig, we constructed a genetic map, simple sequence repeat (SSR), cleaved amplified polymorphism sequence (CAPS), and derived CAPS (dCAPS) markers and mapped to the 12 tomato chromosomes. Genetic mapping placed the candidate gene locus within a 0.2 Mbp interval on the long arm of chromosome 8 and was likely different from previously known loci affecting fruit shape. PMID:24519535

  17. Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology.

    PubMed

    Thomanetz, Venus; Angliker, Nico; Cloëtta, Dimitri; Lustenberger, Regula M; Schweighauser, Manuel; Oliveri, Filippo; Suzuki, Noboru; Rüegg, Markus A

    2013-04-15

    The mammalian target of rapamycin (mTOR) assembles into two distinct multi-protein complexes called mTORC1 and mTORC2. Whereas mTORC1 is known to regulate cell and organismal growth, the role of mTORC2 is less understood. We describe two mouse lines that are devoid of the mTORC2 component rictor in the entire central nervous system or in Purkinje cells. In both lines neurons were smaller and their morphology and function were strongly affected. The phenotypes were accompanied by loss of activation of Akt, PKC, and SGK1 without effects on mTORC1 activity. The striking decrease in the activation and expression of several PKC isoforms, the subsequent loss of activation of GAP-43 and MARCKS, and the established role of PKCs in spinocerebellar ataxia and in shaping the actin cytoskeleton strongly suggest that the morphological deficits observed in rictor-deficient neurons are mediated by PKCs. Together our experiments show that mTORC2 has a particularly important role in the brain and that it affects size, morphology, and function of neurons.

  18. Aquaporin-1 plays important role in proliferation by affecting cell cycle progression.

    PubMed

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Toledo-Aral, Juan José; Echevarría, Miriam

    2016-01-01

    Aquaporin-1 (AQP1) has been associated with tumor development. Here, we investigated how AQP1 may affect cell proliferation. The proliferative rate of adult carotid body (CB) cells, known to proliferate under chronic hypoxia, was analyzed in wild-type (AQP1(+/+) ) and knock out (AQP1(-/-) ) mice, maintained in normoxia or exposed to hypoxia while BrdU was administered. Fewer numbers of total BrdU(+) and TH-BrdU(+) cells were observed in AQP1(-/-) mice, indicating a role for AQP1 in CB proliferation. Then, by flow cytometry, cell cycle state and proliferation of cells overexpressing AQP1 were compared to those of wild-type cells. In the AQP1-overexpressing cells, we observed higher cell proliferation and percentages of cells in phases S and G2/M and fewer apoptotic cells after nocodazole treatment were detected by annexin V staining. Also in these cells, proteomic assays showed higher expression of cyclin D1 and E1 and microarray analysis revealed changes in many cell proliferation-related molecules, including, Zeb 2, Jun, NF-kβ, Cxcl9, Cxcl10, TNF, and the TNF receptor. Overall, our results indicate that the presence of AQP1 modifies the expression of key cell cycle proteins apparently related to increases in cell proliferation. This contributes to explaining the presence of AQP1 in many different tumors.

  19. Modulation of flagellum attachment zone protein FLAM3 and regulation of the cell shape in Trypanosoma brucei life cycle transitions

    PubMed Central

    Sunter, Jack D.; Benz, Corinna; Andre, Jane; Whipple, Sarah; McKean, Paul G.; Gull, Keith; Ginger, Michael L.; Lukeš, Julius

    2015-01-01

    ABSTRACT The cell shape of Trypanosoma brucei is influenced by flagellum-to-cell-body attachment through a specialised structure – the flagellum attachment zone (FAZ). T. brucei exhibits numerous morphological forms during its life cycle and, at each stage, the FAZ length varies. We have analysed FLAM3, a large protein that localises to the FAZ region within the old and new flagellum. Ablation of FLAM3 expression causes a reduction in FAZ length; however, this has remarkably different consequences in the tsetse procyclic form versus the mammalian bloodstream form. In procyclic form cells FLAM3 RNAi results in the transition to an epimastigote-like shape, whereas in bloodstream form cells a severe cytokinesis defect associated with flagellum detachment is observed. Moreover, we demonstrate that the amount of FLAM3 and its localisation is dependent on ClpGM6 expression and vice versa. This evidence demonstrates that FAZ is a key regulator of trypanosome shape, with experimental perturbations being life cycle form dependent. An evolutionary cell biology explanation suggests that these differences are a reflection of the division process, the cytoskeleton and intrinsic structural plasticity of particular life cycle forms. PMID:26148511

  20. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    SciTech Connect

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blueher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  1. Relationship between Microtubule Network Structure and Intracellular Transport in Cultured Endothelial Cells Affected by Shear Stress

    NASA Astrophysics Data System (ADS)

    Kudo, Susumu; Ikezawa, Kenji; Ikeda, Mariko; Tanishita, Kazuo

    Endothelial cells (ECs) that line the inner surface of blood vessels are barriers to the transport of various substances into or from vessel walls, and are continuously exposed to shear stress induced by blood flow in vivo. Shear stress affects the cytoskeleton (e.g., microtubules, microfilaments, intermediate filaments), and affects the transport of macromolecules. Here, the relationship between the microtubule network structure and this transport process for albumin uptake within cultured aortic endothelial cells affected by shear stress was studied. Based on fluorescent images of albumin uptake obtained by using confocal laser scanning microscopy (CLSM), both the microtubule network and albumin uptake in ECs were disrupted by colchicine and were affected by shear stress loading.

  2. Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape

    SciTech Connect

    Link, A. Halvorson, C. Schmidt, A.; Hagen, E. C.; Rose, D. V.; Welch, D. R.

    2014-12-15

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formatio